WO2013111186A1 - リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法 - Google Patents

リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法 Download PDF

Info

Publication number
WO2013111186A1
WO2013111186A1 PCT/JP2012/000463 JP2012000463W WO2013111186A1 WO 2013111186 A1 WO2013111186 A1 WO 2013111186A1 JP 2012000463 W JP2012000463 W JP 2012000463W WO 2013111186 A1 WO2013111186 A1 WO 2013111186A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ion battery
potential
lithium ion
battery
Prior art date
Application number
PCT/JP2012/000463
Other languages
English (en)
French (fr)
Inventor
康資 岩瀬
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/371,252 priority Critical patent/US9735454B2/en
Priority to DE112012005744.9T priority patent/DE112012005744B4/de
Priority to JP2013554991A priority patent/JP5780315B2/ja
Priority to PCT/JP2012/000463 priority patent/WO2013111186A1/ja
Priority to CN201280067756.7A priority patent/CN104067438B/zh
Publication of WO2013111186A1 publication Critical patent/WO2013111186A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a control device for a lithium ion battery, and more particularly, to a technique for recovering capacity deterioration accompanying lithium deposition of a lithium ion battery.
  • Lithium ion secondary batteries are known as power storage devices that store electric power supplied to a motor that drives a vehicle. It is known that lithium ion secondary batteries are deteriorated by repetitive charge and discharge, whereby lithium is deposited on the negative electrode surface.
  • Patent Document 1 discloses a heating unit that heats a secondary battery to a predetermined temperature, a temperature detection unit that detects the temperature of the secondary battery, and a heating unit that controls the heating unit based on the detection result of the temperature detection unit.
  • a battery system having heating control means for heating the secondary battery to a temperature at which the dendrite containing at least one of the constituent metals can be dissolved or higher and below the temperature at which the negative electrode contains a solid phase.
  • an object of the present invention is to return precipitated lithium to lithium ions without applying a large heat load.
  • a control device for a lithium ion battery is a control device for a lithium ion battery in which a power generation element including a positive electrode body and a negative electrode body is housed in a case, The positive electrode body at a second potential that is lower than the first potential, which is the positive electrode potential corresponding to the negative electrode potential causing precipitation of lithium, and higher than the positive electrode potential corresponding to the upper limit value of the operating voltage of the lithium ion battery.
  • the precipitated lithium can be returned to lithium ions without applying a large heat load.
  • FIG. 1 is a functional block diagram of the control device.
  • An arrow indicates a direction in which a signal or the like flows.
  • the control device 1 according to the present embodiment is used for a recovery process for returning lithium deposited in the lithium ion battery 2 to lithium ions.
  • the control device 1 includes a power supply unit 3, an acquisition unit 4, and a controller 5.
  • the power supply unit 3 is connected to the lithium ion battery 2 via a wiring (not shown).
  • the controller 5 outputs a control signal that permits charging of the lithium ion battery 2 to the power supply unit 3.
  • the power supply unit 3 charges the lithium ion battery 2 based on a control signal output from the controller 5.
  • the lithium ion battery 2 has a compound that generates protons at the target potential V2 shown in FIG.
  • the acquisition unit 4 acquires an evaluation value related to the degree of lithium deposition of the lithium ion battery 2.
  • the controller 5 allows charging by the power supply unit 3 when the evaluation value exceeds a predetermined value. As a result, the potential of the lithium ion battery 2 reaches the target potential V2, and protons are generated.
  • the generated proton returns lithium deposited on the negative electrode body of the lithium ion battery 2 to lithium ions. Details of the recovery process will be described later.
  • the evaluation value can be acquired from the lithium ion battery 2 or can be acquired from another element 6 such as a travel meter.
  • the evaluation value acquired from the lithium ion battery 2 may be the capacity of the lithium ion battery 2 or the internal resistance.
  • the evaluation value acquired from the other element 6 may be the travel distance of the vehicle, the years of use, and the number of times the ignition coil is turned on. Since lithium is deposited by the lithium ion battery 2 being repeatedly charged and discharged, lithium deposition is more likely to occur as the traveling distance of the vehicle becomes longer. Therefore, the degree of lithium deposition can be estimated from the travel distance of the vehicle.
  • FIG. 1 is a block diagram of a vehicle.
  • dotted arrows indicate the direction of signal flow.
  • a vehicle is a hybrid vehicle having a drive path for driving a motor using the output of a battery and a drive path for an engine.
  • the present invention can also be applied to an electric vehicle having only a drive path for driving a motor using the output of a battery.
  • the vehicle includes a battery 11, smoothing capacitors C1, C2, a voltage converter 12, an inverter 13, a motor generator MG1, a motor generator MG2, a power split planetary gear P1, and a reduction.
  • FIG. 3 shows a schematic configuration of the battery.
  • the battery 11 is arranged at a position between a plurality of lithium ion single cells 111 arranged in a predetermined direction, a spacer 112 arranged between the lithium ion single cells 111 adjacent in the predetermined direction, and a laminate thereof. And an end plate 113.
  • the lithium ion unit cell 111 includes a wound body, a battery case (corresponding to a case) in which the wound body is housed, and an electrolyte solution housed in the battery case together with the wound body.
  • the winding body is configured by rolling a power generation sheet (corresponding to a power generation element) around a predetermined axis.
  • the power generation sheet includes a sheet-like positive electrode body, a sheet-like negative electrode body, and a separator disposed between the positive electrode body and the negative electrode body.
  • the positive electrode body includes a current collector foil and an active material (for example, a lithium-transition metal composite oxide) applied to the current collector foil.
  • the negative electrode body includes a current collector foil and an active material (for example, carbon) applied to the current collector foil.
  • liquid biphenyl (BP) is accommodated together with the electrolytic solution.
  • Biphenyl is used as the above-mentioned compound that generates protons.
  • the vehicle further includes a power supply line PL1 and a ground line SL.
  • the battery 11 is connected to the voltage converter 12 via system main relays SMR-G, SMR-B, and SMR-P constituting the relay 15.
  • the system main relay SMR-G is connected to the positive terminal of the battery 11, and the system main relay SMR-B is connected to the negative terminal of the battery 11.
  • the system main relay SMR-P and the precharge resistor 17 are connected in parallel to the system main relay SMR-B.
  • SMR-G, SMR-B, and SMR-P are relays whose contacts close when the coil is energized. SMR being on means an energized state, and SMR being off means a non-energized state.
  • the ECU 30 turns off all the system main relays SMR-G, SMR-B, and SMR-P when the current is interrupted, that is, when the position of the ignition (IG) switch is in the OFF position. That is, the exciting current for the coils of the system main relays SMR-G, SMR-B, and SMR-P is turned off. Note that the position of the ignition (IG) switch is switched from the OFF position to the ON position.
  • the ECU 30 may be a CPU or an MPU, or may include an ASIC circuit that executes at least a part of processes executed in these CPUs.
  • the ECU 30 When the hybrid system is started (when the main power supply is connected), that is, for example, when the driver depresses the brake pedal and pushes the push-type start switch, the ECU 30 first turns on the system main relay SMR-G. Next, the ECU 30 turns on the system main relay SMR-P to perform precharging.
  • the precharge resistor 17 is connected to the system main relay SMR-P. For this reason, even when the system main relay SMR-P is turned on, the input voltage to the inverter 13 rises gently, and the occurrence of an inrush current can be prevented.
  • the ECU 30 When the ignition (IG) switch position is switched from the ON position to the OFF position, the ECU 30 first turns off the system main relay SMR-B, and then turns off the system main relay SMR-G. Thereby, the electrical connection between the battery 11 and the inverter 13 is cut off, and the power supply is cut off.
  • System main relays SMR-B, SMR-G, and SMR-P are controlled to be in a conductive / non-conductive state in accordance with a control signal supplied from ECU 30.
  • the capacitor C1 is connected between the power supply line PL1 and the ground line SL, and smoothes the voltage between the lines.
  • a DC / DC converter 21 and an air conditioner 23 are connected in parallel between the power supply line PL1 and the ground line SL.
  • the DC / DC converter 21 steps down the power supplied from the battery 11 to charge the auxiliary battery 22 or supply electric power to the auxiliary load 24.
  • the auxiliary machine load 24 includes electronic devices such as a vehicle lamp and an audio device (not shown).
  • the voltage converter 12 boosts the voltage across the terminals of the capacitor C1.
  • Capacitor C2 smoothes the voltage boosted by voltage converter 12.
  • Inverter 13 converts the DC voltage applied from voltage converter 12 into a three-phase AC and outputs the same to motor generator MG2.
  • Reduction planetary gear P2 transmits the power obtained by motor generator MG2 to reduction gear D, and drives the vehicle.
  • the power split planetary gear P1 splits the power obtained by the engine 14 into two paths, one of which is transmitted to the wheels via the speed reducer D, and the other drives the motor generator MG1 to generate power.
  • the electric power generated by the motor generator MG1 is used to drive the motor generator MG2, thereby assisting the engine 14.
  • Reduction planetary gear P2 transmits the power transmitted through speed reducer D to motor generator MG2 during vehicle deceleration, and drives motor generator MG2 as a generator.
  • the electric power obtained by motor generator MG2 is converted from a three-phase AC to a DC voltage in inverter 13 and transmitted to voltage converter 12.
  • the ECU 30 controls the voltage converter 12 to operate as a step-down circuit.
  • the electric power stepped down by the voltage converter 12 is stored in the battery 11.
  • the battery 11 can be charged by driving the motor generator MG1 with the power of the engine 14 to generate electric power.
  • the monitoring unit 31 acquires information on the voltage, current, and temperature of the battery 11.
  • the monitoring unit 31 is unitized together with the battery 11.
  • the voltage value acquired by the monitoring unit 31 may be each voltage value of each lithium ion unit cell 111 or a voltage value in a block unit composed of a plurality of lithium ion unit cells 111.
  • the temperature of the battery 11 may be acquired via a thermistor (not shown).
  • the current value of the battery 1 may be acquired by a current sensor (not shown).
  • the storage unit 32 stores various information necessary for charge / discharge control of the battery 11 and stores a program necessary for executing the recovery process.
  • the ECU 30 causes the battery 11 to execute the recovery process by reading and decoding the program stored in the storage unit 32 when performing the recovery process of the battery 11.
  • the lithium ion battery 2 illustrated in FIG. 1 corresponds to the battery 11 illustrated in FIG.
  • the power supply unit 3 illustrated in FIG. 1 corresponds to the motor generator MG1 illustrated in FIG.
  • the acquisition unit 4 illustrated in FIG. 1 corresponds to the monitoring unit 31 illustrated in FIG.
  • the controller 5 illustrated in FIG. 1 is realized by the cooperation of the ECU 30, the relay 15, the voltage converter 12, the inverter 13, and the like illustrated in FIG.
  • FIG. 4 schematically shows the relationship between the positive electrode potential (vertical axis) and the capacity (horizontal axis) of the lithium ion unit cell 111.
  • FIG. 5 schematically shows a mechanism in which lithium precipitated by biphenyl returns to lithium ions.
  • lithium is deposited on the negative electrode body side by repeating charge and discharge. Lithium deposition occurs when the negative electrode potential of the lithium ion cell 111 drops to a predetermined value. The predetermined value varies depending on the operating voltage of the lithium ion cell 111 and the like.
  • the target potential V2 is lower than the lithium deposition potential V1 (corresponding to the first potential) which is the positive electrode potential corresponding to the negative electrode potential causing the lithium deposition, and the lithium It is necessary to set higher than the upper limit of use potential V3 which is the positive electrode potential corresponding to the upper limit of the use voltage of the ion cell 111.
  • the “positive electrode potential corresponding to the negative electrode potential causing lithium deposition” refers to the positive electrode potential when lithium is deposited on the negative electrode body.
  • the “operating voltage of the lithium ion battery” is a design value determined from the viewpoint of suppressing the deterioration of the lithium ion single battery 111, and the ECU 30 basically determines that the lithium ion single battery 111 is within the range of the use voltage.
  • the charging / discharging of the battery 11 is controlled so as to be used.
  • the target potential V2 needs to be set lower than the lithium deposition potential V1. Further, when the target potential V2 becomes lower than the use upper limit potential V3, when the recovery process is not necessary, the lithium ion cell 111 is charged / discharged to consume biphenyl, and when the recovery process is necessary, the proton is insufficient. There is a risk. Therefore, the target potential V2 needs to be set higher than the use upper limit potential V3.
  • the target potential V2 is not a specific fixed potential, but is equal to or higher than the decomposition potential, and the lithium deposition potential V1. Can be set to a lower value.
  • step S101 the ECU 30 determines whether or not an ignition (IG) switch is turned on.
  • the ignition (IG) switch is turned on (step S101, Yes)
  • step S102 the ECU 30 determines whether or not the current capacity of the battery 11 is lower than the initial capacity ⁇ 0.95.
  • step S102, Yes it is considered that the battery 11 has deteriorated due to the deposition of lithium, and the process proceeds to step S103. If the current capacity of the battery 11 is equal to or greater than the initial capacity ⁇ 0.95 (step S102, No), it is considered that the battery 11 has not deteriorated due to lithium deposition, and the process proceeds to step S106.
  • the initial capacity of the battery 11 can be stored in advance in the storage unit 32 shown in FIG.
  • the initial capacity of the battery 11 is a capacity immediately after the battery 11 is manufactured.
  • the current capacity of the battery 11 can be calculated by measuring the time until the voltage of the battery 11 reaches the end-of-discharge voltage.
  • the battery 11 can drive the motor generator MG1 by the engine 14 and can fully charge the battery 11 using the electric power generated by the motor generator MG1.
  • the hybrid vehicle is a plug-in hybrid vehicle equipped with a charger
  • the battery 11 can be fully charged by connecting an external power source to the charger.
  • the ECU 30 causes the battery 11 to execute a recovery process.
  • the recovery processing method includes a charging process for charging the battery 11 for 0.1 second at a charging rate of 20 C, a discharging process for discharging the battery 11 for 10 seconds at a discharging rate of 2 C, and a pause process for resting for 10 seconds after the discharging process.
  • the charging / discharging cycle which consists of may be sufficient.
  • the recovery process may be a method of continuously performing this charge / discharge cycle for 100 cycles.
  • the positive electrode potential of the lithium ion unit cell 111 reaches the target potential V2 by charging, and lithium returns to lithium ions by protons released from biphenyl, so that lithium deposition decreases.
  • the reason why the battery 11 is discharged after charging is that the lithium ion unit cell 111 is significantly deteriorated by being left at a potential higher than the use upper limit potential V3.
  • the charging of the battery 11 in the recovery process can be performed by driving the engine 14 and rotating the motor generator MG1. Further, the battery 11 can be discharged in the recovery process by driving the auxiliary load 24.
  • step S104 the ECU 30 counts up the number of times the battery 11 is recovered, and stores the counted value in the storage unit 32. That is, when the recovery process for the battery 11 is the first time, the number of recovery processes is counted up from “0” to “1”.
  • step S105 the ECU 30 determines whether or not the capacity of the battery 11 has been recovered. Since the method for determining whether or not the capacity of the battery 11 has been recovered is the same as that in step S102, detailed description thereof is omitted.
  • the process proceeds to Step S106, and when the capacity of the battery 11 is not recovered (Yes at Step S105), the process proceeds to Step S107.
  • step S106 the ECU 30 considers that lithium deposition has been eliminated, and allows the battery 11 to be used continuously.
  • step S107 the ECU 30 determines whether or not the number of recovery processes stored in the storage unit 32 is greater than N. When the number of times of recovery processing is greater than N times (step S107, Yes), the ECU 30 regards that the battery 11 has deteriorated for reasons other than lithium deposition (for example, material deterioration of the power generation sheet) in step S108. A failure of the battery 11 is notified.
  • the means for notifying the failure of the battery 11 may be a method of outputting a sound to the occupant or a method of displaying an image on a display provided in the passenger compartment.
  • the ECU 30 regards that the number of recovery processes is insufficient in Step S103, and executes the recovery process again.
  • N times defined as the upper limit value of the number of times of recovery processing.
  • the battery 11 since it is not necessary to use a heating means during the recovery process, the battery 11 can be recovered while suppressing an increase in the thermal load applied to the battery 11.
  • lithium deposition occurs when the voltage of the lithium ion unit cell 111 increases. Therefore, as a method of suppressing lithium deposition, a method of reducing the voltage when the battery 11 is used can be considered. However, in this method, since the output (W) of the battery 11 is low, utilization of the battery 11 is limited. According to the method of the present embodiment, lithium deposited due to an increase in the voltage of the battery 11 can be reduced by the recovery process, so that the output (W) of the lithium ion battery can be increased.
  • the lithium ion unit cell 111 when the state in which lithium is deposited is left as it is, a film is formed between the deposited lithium and the electrolytic solution. And the recovery process is prevented by this formed film.
  • the ignition (IG) switch is turned off as a trigger, the presence or absence of lithium deposition is determined in a short period, and the recovery process is executed. Therefore, since the recovery process is performed before the coating is formed, the recovery process of the battery 11 is facilitated.
  • the recovery process is performed quickly only by raising the potential of the positive electrode of the battery 11 to the target potential V2, the time required for the recovery process can be shortened. Therefore, even if the frequency of the recovery process increases, use of the battery 11 (use for running the vehicle) is not significantly limited.
  • the heat generation temperature of the battery 11 is increased. According to the present embodiment, since the lithium deposited by performing the recovery process is reduced, an increase in the heat generation temperature of the battery 11 is suppressed.
  • FIG. 7 is a graph showing the evaluation results of the recovery process, where the horizontal axis represents the number of cycles and the vertical axis represents the battery capacity.
  • the lithium ion unit cell 111 of the above embodiment was used.
  • a lithium ion cell without biphenyl was used. These lithium ion cells were charged and discharged in a predetermined charge / discharge cycle, and the battery capacity was measured every 100 cycles.
  • the charging / discharging cycle includes a charging process for charging a lithium ion cell for 0.1 second at a charging rate of 20C, a discharging process for discharging the lithium ion cell for 10 seconds at a discharging rate of 2C, and a pause for 10 seconds after the discharging process.
  • a charge / discharge cycle consisting of a pause treatment was defined as one cycle.
  • the target potential V2 was set to 4.6V.
  • the lithium ion unit cell 111 was able to recover to the initial capacity.
  • the presence / absence of lithium deposition is determined from the capacity level of the battery 11.
  • the present invention is not limited to this, and can be determined from the internal resistance of the battery 11 as described above.
  • the presence or absence of lithium deposition can be determined by comparing the initial internal resistance of the battery 11 with the current internal resistance of the battery 11.
  • the initial internal resistance of the battery 11 is an internal resistance immediately after the battery 11 is manufactured.
  • the current internal resistance of the battery 11 can be calculated from the current information and voltage information of the battery 11 output from the monitoring unit 31.
  • the internal resistance may be the internal resistance of the battery 11 as a whole, or may be the internal resistance of the lithium ion unit cell 111 having the highest voltage value in the battery 11.
  • the ECU 30 may determine that lithium deposition has occurred when the current internal resistance of the battery 11 reaches 1.3 times the internal resistance immediately after manufacture of the battery 11.
  • biphenyl is used as the compound that releases protons.
  • the present invention is not limited to this. It may be a compound of The other compound may be cyclohexylbenzene (CHB) having a benzene ring. Cyclohexylbenzene has a higher potential at the time of decomposition than biphenyl, but decomposes at a potential lower than the lithium deposition potential V1. Therefore, by using cyclohexylbenzene, lithium deposited on the negative electrode body can be returned to lithium ions.
  • CHB cyclohexylbenzene
  • the recovery process of the battery 11 is performed in a state where the ignition (IG) switch of the vehicle is turned off.
  • the other method may be a method of performing the recovery process of the battery 11 in a state where the ignition (IG) switch of the vehicle is turned on. For example, when two batteries 11 used for vehicle travel are provided, the use of one battery that requires recovery processing as a travel battery is prohibited, and the use of the other battery as a travel battery is prohibited. By allowing, the recovery process can be performed without greatly affecting the vehicle travel.
  • the capacity or internal resistance of the battery 11 is calculated by a process other than the recovery process (for example, estimation of the charged amount (SOC)).
  • SOC charged amount
  • the recovery process is performed with the battery 11 mounted on the vehicle.
  • the present invention is not limited to this, and the battery 11 is removed from the vehicle at the time of vehicle disposal or vehicle inspection.
  • Recovery processing can also be performed.
  • biphenyl can be fed into the battery case during the recovery process.
  • the inlet of the battery case can be opened under an inert atmosphere, and biphenyl can be fed into the battery case through the opened inlet.
  • the injection port is an opening for accommodating the electrolytic solution in the battery case.
  • the battery 11 can be recovered by performing the process shown in the flowchart of FIG. 6 (except step S101). Thereby, the battery 11 can be recycled when the vehicle is discarded. Moreover, the recovery process which recovers the battery 11 can be performed with the other operation

Abstract

【課題】大きな熱負荷を与えることなく析出したリチウムをリチウムイオンに戻すことを目的とする。 【解決手段】正極体及び負極体を含む発電要素をケースに収容したリチウムイオン電池の制御装置であって、前記ケースの内部には、リチウムの析出を起こす負極電位に対応した正極電位である第1の電位よりも低く、前記リチウムイオン電池の使用電圧の上限値に対応した正極電位よりも高い第2の電位において、前記正極体に電子を放出することによりプロトンを発生する化合物が収容されており、前記リチウムイオン電池に対して電力を供給する電源部を駆動して、正極電位を前記第2の電位にすることにより、前記プロトンを用いて前記負極体に析出したリチウムをリチウムイオンにする回復処理を実行させるコントローラを有することを特徴とするリチウムイオン電池の制御装置。

Description

リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法
 本発明は、リチウムイオン電池の制御装置に関し、特に、リチウムイオン電池のリチウム析出に伴う容量劣化を回復する技術に関する。
 車両を走行させるモータに供給される電力を蓄電する蓄電装置として、リチウムイオン二次電池が知られている。リチウムイオン二次電池は、充放電を繰り返すことにより、負極表面にリチウムが析出して、劣化することが知られている。
 特許文献1は、二次電池を所定の温度に加熱する加熱手段と、二次電池の温度を検知する温度検知手段と、温度検知手段の検知結果に基づいて加熱手段を制御して、両電極の少なくとも一方の構成金属を含むデンドライトが溶解できる温度以上で、かつ負極が固相を含む状態なる温度以下に二次電池を加熱させる加熱制御手段とを有する電池システムを開示する。
特開2011-142016号公報
 しかしながら、上述の方法では、析出したリチウムを溶解する際に二次電池に加わる熱負荷が大きくなるため、熱害により電池性能が低下するおそれがある。
 そこで、本発明は、大きな熱負荷を与えることなく析出したリチウムをリチウムイオンに戻すことを目的とする。
 上記課題を解決するために、本発明に係るリチウムイオン電池の制御装置は、正極体及び負極体を含む発電要素をケースに収容したリチウムイオン電池の制御装置であって、前記ケースの内部には、リチウムの析出を起こす負極電位に対応した正極電位である第1の電位よりも低く、前記リチウムイオン電池の使用電圧の上限値に対応した正極電位よりも高い第2の電位において、前記正極体に電子を放出することによりプロトンを発生する化合物が収容されており、前記リチウムイオン電池に対して電力を供給する電源部を駆動して、正極電位を前記第2の電位にすることにより、前記プロトンを用いて前記負極体に析出したリチウムをリチウムイオンにする回復処理を実行させるコントローラ、を有することを特徴とする。
 本発明によれば、大きな熱負荷を与えることなく析出したリチウムをリチウムイオンに戻すことができる。
リチウムイオン電池の制御装置の構成を示したブロック図である。 車両のブロック図である。 バッテリの概略構成図である。 リチウムイオン単電池の正極の電位(縦軸)と容量(横軸)との関係を模式的に示している。 ビフェニルによりリチウム析出が減少するメカニズムを模式的に示している。 回復処理の手順を示したフローチャートである。 評価結果を示したグラフである。
 図1を参照しながら、本実施形態に係るリチウムイオン電池の制御装置の概略構成について説明する。図1は、制御装置の機能ブロック図である。矢印は、信号などが流れる方向を示している。本実施形態に係る制御装置1は、リチウムイオン電池2において析出したリチウムをリチウムイオンに戻す回復処理のために用いられる。制御装置1は、電源部3、取得部4及びコントローラ5を含む。電源部3は、図示しない配線を介してリチウムイオン電池2に対して接続されている。コントローラ5は、電源部3に対してリチウムイオン電池2の充電を許容する制御信号を出力する。電源部3は、コントローラ5から出力される制御信号に基づき、リチウムイオン電池2を充電する。
 リチウムイオン電池2は、図4に図示する目標電位V2にてプロトンを発生する化合物を有している。取得部4は、リチウムイオン電池2のリチウム析出の度合いに関連した評価値を取得する。コントローラ5は、評価値が所定値を超えたときに、電源部3による充電を許容する。これにより、リチウムイオン電池2の電位が目標電位V2に到達してプロトンが生成される。生成されたプロトンは、リチウムイオン電池2の負極体に析出したリチウムをリチウムイオンに戻す。回復処理の詳細は、後述する。
 ここで、評価値は、リチウムイオン電池2から取得したり、或いは走行メータ等の他の要素6から取得することができる。リチウムイオン電池2から取得する評価値は、リチウムイオン電池2の容量、或いは内部抵抗であってもよい。リチウムイオン電池2の負極体においてリチウムが析出すると、リチウムイオン電池2の容量が低下し、内部抵抗が増大する。したがって、リチウムイオン電池2の現在の容量、或いは現在の内部抵抗から、リチウム析出の度合いを把握することができる。また、他の要素6から取得する評価値は、車両の走行距離、使用年数、イグニッションコイルがオンされた回数であってもよい。リチウムイオン電池2が充放電を繰り返すことにより、リチウムが析出するため、車両の走行距離等が長くなるほど、リチウム析出が起こりやすくなる。したがって、車両の走行距離等からリチウム析出の度合いを推定することができる。
 次に、本実施形態に係る制御装置1が搭載された車両について説明する。図1は、車両のブロック図である。同図において、点線の矢印は信号の流れる方向を示している。車両は、バッテリの出力を用いてモータを駆動する駆動経路とエンジンによる駆動経路とを有するハイブリッド自動車である。なお、本発明はバッテリの出力を用いてモータを駆動する駆動経路のみ有する電気自動車にも適用することができる。
 同図を参照して、車両は、バッテリ11と、平滑用コンデンサC1、C2と、電圧コンバータ12と、インバータ13と、モータジェネレータMG1と、モータジェネレータMG2と、動力分割プラネタリーギヤP1と、リダクションプラネタリーギヤP2と、減速機Dと、エンジン14と、リレー15と、DC/DCコンバータ21と、補機バッテリ22と、エアコン23と、補機負荷24と、ECU30と、監視ユニット31と、記憶部32とを含む。
 図3は、バッテリの概略構成を示している。バッテリ11は、所定方向に配列される複数のリチウムイオン単電池111と、所定方向に隣接するリチウムイオン単電池111の間に配置されるスペーサ112と、これらの積層体を挟む位置に配置されるエンドプレート113とを含む。リチウムイオン単電池111は、捲回体と、捲回体が収容される電池ケース(ケースに相当する)と、捲回体とともに電池ケースの内部に収容される電解液とを含む。
 捲回体は、発電シート(発電要素に相当する)を所定の軸周りに捲き回すことにより構成される。発電シートは、シート状の正極体と、シート状の負極体と、正極体及び負極体の間に配置されるセパレータとを含む。正極体は、集電箔と、集電箔に塗布される活物質(例えば、リチウム-遷移金属複合酸化物)とを含む。負極体は、集電箔と、集電箔に塗布される活物質(例えば、カーボン)とを含む。
 電池ケースの内部には、電解液とともに液体のビフェニル(BP)が収容されている。ビフェニルは、プロトンを生成する上述の化合物として用いられる。
 再び図2を参照して、車両は、さらに、電源ラインPL1と、接地ラインSLとを含む。バッテリ11は、リレー15を構成するシステムメインリレーSMR-G,SMR-B,SMR-Pを介して、電圧コンバータ12に接続されている。バッテリ11のプラス端子には、システムメインリレーSMR-Gが接続され、バッテリ11のマイナス端子には、システムメインリレーSMR-Bが接続されている。また、システムメインリレーSMR-Pおよびプリチャージ抵抗17は、システムメインリレーSMR-Bに対して並列に接続されている。
 これらのシステムメインリレーSMR-G,SMR-B,SMR-Pは、コイルに対して通電したときに接点が閉じるリレーである。SMRがオンとは通電状態を意味し、SMRがオフとは非通電状態を意味する。
 ECU30は、電流遮断時、すなわちイグニッション(IG)スイッチのポジションがOFF位置になるときには、全てのシステムメインリレーSMR-G,SMR-B,SMR-Pをオフする。すなわち、システムメインリレーSMR-G,SMR-B,SMR-Pのコイルに対する励磁電流をオフにする。なお、イグニッション(IG)スイッチのポジションは、OFF位置→ON位置の順に切り替わる。ECU30は、CPU、MPUであってもよいし、これらのCPUなどにおいて実行される処理の少なくとも一部を回路的に実行するASIC回路を含んでも良い。
 ハイブリッドシステム起動時(メイン電源接続時)、すなわち、たとえば運転者がブレーキペダルを踏み込んでプッシュ式のスタートスイッチを押し込むと、ECU30は、最初にシステムメインリレーSMR-Gをオンにする。次に、ECU30は、システムメインリレーSMR-Pをオンしてプリチャージを実行する。
 システムメインリレーSMR-Pにはプリチャージ抵抗17が接続されている。このため、システムメインリレーSMR-Pをオンしてもインバータ13への入力電圧は緩やかに上昇し、突入電流の発生を防止できる。
 イグニッション(IG)スイッチのポジションがON位置からOFF位置に切り替わると、ECU30は、先ずシステムメインリレーSMR-Bをオフし、続いてシステムメインリレーSMR-Gをオフする。これにより、バッテリ11とインバータ13との間の電気的な接続が遮断され、電源遮断状態となる。システムメインリレーSMR-B,SMR-G,SMR-Pは、ECU30から与えられる制御信号に応じて導通/非導通状態が制御される。
 コンデンサC1は、電源ラインPL1と接地ラインSL間に接続され、ライン間電圧を平滑化する。また、電源ラインPL1と接地ラインSL間には、DC/DCコンバータ21と、エアコン23とが並列に接続されている。DC/DCコンバータ21は、バッテリ11から供給される電力を降圧して、補機バッテリ22を充電したり、或いは補機負荷24に電力を供給する。ここで、補機負荷24には、図示しない車両のランプ、オーディオ機器等の電子機器が含まれる。
 電圧コンバータ12は、コンデンサC1の端子間電圧を昇圧する。コンデンサC2は、電圧コンバータ12によって昇圧された電圧を平滑化する。インバータ13は、電圧コンバータ12から与えられる直流電圧を三相交流に変換してモータジェネレータMG2に出力する。リダクションプラネタリーギヤP2は、モータジェネレータMG2で得られた動力を減速機Dに伝達して、車両を駆動する。動力分割プラネタリーギヤP1は、エンジン14で得られた動力を二経路に分割し、一方は減速機Dを介して車輪に伝達され、他方はモータジェネレータMG1を駆動して発電を行う。このモータジェネレータMG1において発電された電力は、モータジェネレータMG2の駆動に用いられることでエンジン14を補助する。また、リダクションプラネタリーギヤP2は、車両減速時に、減速機Dを介して伝達される動力をモータジェネレータMG2に伝達し、モータジェネレータMG2を発電機として駆動する。このモータジェネレータMG2で得られた電力は、インバータ13において三相交流から直流電圧に変換され、電圧コンバータ12に伝達される。このとき、ECU30は、電圧コンバータ12が降圧回路として動作するように制御する。電圧コンバータ12で降圧された電力は、バッテリ11に蓄電される。
 また、車両停車中においては、エンジン14の動力によりモータジェネレータMG1を駆動して発電を行うことにより、バッテリ11を充電することができる。
 監視ユニット31は、バッテリ11の電圧、電流及び温度に関する情報を取得する。監視ユニット31は、バッテリ11とともにユニット化されている。監視ユニット31により取得される電圧値は、各リチウムイオン単電池111の各電圧値、或いは複数のリチウムイオン単電池111からなるブロック単位での電圧値であってもよい。バッテリ11の温度は、図示しないサーミスタを介して取得してもよい。バッテリ1の電流値は、図示しない電流センサにより取得してもよい。
 記憶部32は、バッテリ11の充放電制御に必要な種々の情報を記憶するほか、回復処理を実行するために必要なプログラム等を記憶する。ECU30は、バッテリ11の回復処理を行う際に記憶部32に記憶されたプログラムを読み出して、解読することにより、バッテリ11に対して回復処理を実行させる。
 次に、図1及び図2の対応関係について説明する。図1に図示するリチウムイオン電池2は、図2に図示するバッテリ11に対応している。図1に図示する電源部3は、図2に図示するモータジェネレータMG1に対応している。図1に図示する取得部4は、図2に図示する監視ユニット31に対応している。図1に図示するコントローラ5は、図2に図示するECU30、リレー15、電圧コンバータ12、インバータ13等が協働することにより実現される。
 図4及び図5を参照しながら、リチウムイオン単電池111の回復メカニズムについて説明する。図4は、リチウムイオン単電池111の正極の電位(縦軸)と容量(横軸)との関係を模式的に示している。図5は、ビフェニルにより析出したリチウムがリチウムイオンに戻るメカニズムを模式的に示している。図5に図示するように、リチウムイオン単電池111は、充放電を繰り返すことによって、負極体側にリチウムが析出する。リチウムの析出は、リチウムイオン単電池111の負極電位が所定の値に降下することにより発生する。所定の値は、リチウムイオン単電池111の使用電圧などに応じて異なる。
 リチウムイオン単電池111を充電して、正極電位が目標電位V2(第2の電位に相当する)に到達すると、ビフェニルの水素原子から正極体の活物質に対して電子が放出され、ビフェニルはプロトン(H+)を放出する。放出されたプロトンは、負極体に析出したリチウムから電子を受け取り、水素分子に変化する一方で、プロトンに電子を渡したリチウムはリチウムイオンに戻る。
 ここで、目標電位V2は、図4に図示するように、リチウムの析出を起こす負極電位に対応した正極電位であるリチウム析出電位V1(第1の電位に相当する)よりも低く、かつ、リチウムイオン単電池111の使用電圧の上限値に対応した正極電位である使用上限電位V3よりも高く設定する必要がある。「リチウムの析出を起こす負極電位に対応した正極電位」とは、負極体にリチウムが析出するときの正極電位のことである。「リチウムイオン電池の使用電圧」とは、リチウムイオン単電池111の劣化等を抑制する観点から定められた設計値であり、ECU30は、基本的にはリチウムイオン単電池111が使用電圧の範囲で使用されるようにバッテリ11の充放電を制御する。
 回復処理において、リチウムイオン単電池111の正極電位がリチウム析出電位V1よりも高くなると、リチウムが析出して、回復処理の意味がなくなる。そのため、目標電位V2はリチウム析出電位V1よりも低く設定する必要がある。また、目標電位V2が使用上限電位V3よりも低くなると、回復処理が必要でないときに、リチウムイオン単電池111が充放電されることによってビフェニルが消費され、回復処理が必要なときにプロトンが不足するおそれがある。そのため、目標電位V2は使用上限電位V3よりも高く設定する必要がある。
 また、ビフェニルは、正極電位が分解電位以上となったときに正極体に電位を放出するため、目標電位V2は、特定の固定電位ではなく、分解電位以上であって、かつ、リチウム析出電位V1よりも低い値に設定することができる。
 次に、図6のフローチャートを参照しながら、ECU30が行う処理について説明する。ステップS101において、ECU30は、イグニッション(IG)スイッチがオンされているか否かを判定する。イグニッション(IG)スイッチがオンされている場合には(ステップS101、Yes)、ステップS102に進む。ステップS102において、ECU30は、バッテリ11の現在の容量が初期容量×0.95よりも低いか否かを判定する。バッテリ11の現在の容量が初期容量×0.95よりも低い場合(ステップS102、Yes)、バッテリ11がリチウムの析出により劣化しているものとみなして、処理はステップS103に進む。バッテリ11の現在の容量が初期容量×0.95以上の場合(ステップS102、No)、バッテリ11がリチウムの析出により劣化していないものとみなして、処理はステップS106に進む。
 ここで、バッテリ11の初期容量は、図2に図示する記憶部32に予め記憶させておくことができる。バッテリ11の初期容量とは、バッテリ11の製造直後の容量のことである。また、バッテリ11の現在の容量は、バッテリ11を一定時間放電させた際の放電積算量から算出することができる。例えば、バッテリ11を満充電状態(SOC(State of charge)=100%)に充電した後に、バッテリ11を補機負荷24と接続して連続放電を行わせる。そして、バッテリ11の電圧が放電終止電圧に到達するまでの時間を計測することにより、バッテリ11の現在の容量を算出することができる。この場合、バッテリ11は、例えば、エンジン14によりモータジェネレータMG1を駆動し、このモータジェネレータMG1において発電された電力を用いてバッテリ11を満充電状態にすることができる。なお、ハイブリッド自動車が充電器を搭載したプラグインハイブリッド自動車である場合、例えば、充電器に対して外部電源を接続することにより、バッテリ11を満充電状態にすることもできる。
 再びフローチャートを参照して、ステップS103において、ECU30は、バッテリ11に対して回復処理を実行させる。回復処理の方法は、20Cの充電レートでバッテリ11を0.1秒間充電する充電処理と、2Cの放電レートでバッテリ11を10秒間放電せる放電処理と、放電処理後に10秒間休止する休止処理とからなる充放電サイクルであってもよい。また、回復処理は、この充放電サイクルを連続的に100サイクル行う方法であってもよい。充電によりリチウムイオン単電池111の正極電位は目標電位V2に達して、ビフェニルから放出されたプロトンによってリチウムがリチウムイオンに戻るため、リチウム析出が減少する。充電後にバッテリ11を放電させる理由は、リチウムイオン単電池111は、使用上限電位V3よりも高い電位に放置されることにより、劣化が著しく進行するからである。
 ここで、回復処理におけるバッテリ11の充電は、エンジン14を駆動してモータジェネレータMG1を回転させることにより行うことができる。また、回復処理にバッテリ11の放電は、補機負荷24を駆動することにより行うことができる。
 バッテリ11の回復処理が終了すると、ステップS104において、ECU30は、バッテリ11の回復処理回数をカウントアップし、カウントアップした数値を記憶部32に記憶する。すなわち、バッテリ11に対する回復処理が一回目である場合、回復処理回数は「0」から「1」にカウントアップされる。
 回復処理回数のカウントアップが終了すると、ステップS105において、ECU30は、バッテリ11の容量が回復したか否かを判別する。バッテリ11の容量が回復したか否かの判別方法は、ステップS102と同様であるため、詳細な説明を省略する。バッテリ11の容量が回復した場合(ステップS105、No)、ステップS106に進み、バッテリ11の容量が回復していない場合(ステップS105、Yes)ステップS107に進む。
 ステップS106において、ECU30は、リチウム析出が解消されたものとみなして、バッテリ11の継続使用を許容する。ステップS107において、ECU30は、記憶部32に記憶された回復処理の回数がN回よりも大きいか否かを判別する。回復処理の回数がN回よりも大きい場合(ステップS107、Yes)、ECU30は、ステップS108において、リチウム析出以外の理由(例えば、発電シートの材料劣化)でバッテリ11が劣化したものとみなして、バッテリ11の故障を報知する。ここで、バッテリ11の故障を報知する手段は、乗員に対して音声を出力する方法、車室内に設けられたディスプレイに対して画像を表示する方法であってもよい。回復処理の回数がN回以下である場合(ステップS107、No)、ECU30は、ステップS103において、回復処理の回数が不足しているとみなして、回復処理を再度実行する。なお、回復処理の回数の上限値として規定されるN回は、当業者が適宜設定することができる。
 本実施形態によれば、回復処理の際に加熱手段を用いる必要がないため、バッテリ11に加わる熱負荷の増大を抑制しながら、バッテリ11を回復させることができる。
 ここで、リチウム析出は、一般論として、リチウムイオン単電池111の電圧が高くなることにより発生する。したがって、リチウム析出を抑制する方法として、バッテリ11の使用時の電圧を下げる方法が考えられる。しかしながら、この方法では、バッテリ11の出力(W)が低くなるため、バッテリ11の活用が制限される。本実施形態の方法によれば、バッテリ11の電圧が高くなることによって析出したリチウムを回復処理により減らすことができるため、リチウムイオン電池の出力(W)を高くすることができる。
 リチウムイオン単電池111において、リチウムが析出した状態を放置すると、析出したリチウムと電解液との間に被膜が形成される。そして、この形成された被膜により、回復処理が妨げられる。本実施形態によれば、イグニッション(IG)スイッチがオフされたことをドリガーとして、短周期でリチウム析出の有無が判別されて、回復処理が実行される。したがって、被膜が形成される前に回復処理が行われるため、バッテリ11の回復処理が容易となる。
 バッテリ11の正極の電位を目標電位V2まで上げるだけで、速やかに回復処理が行われるため、回復処理に要する時間を短くすることができる。したがって、回復処理の頻度が増加しても、バッテリ11の使用(車両走行に用いるための使用)が著しく制限されることはない。
 また、リチウムが析出すると、バッテリ11の発熱温度が高くなる。本実施形態によれば、回復処理を行うことにより析出したリチウムが減少するため、バッテリ11の発熱温度の上昇が抑制される。
 (実施例)
 実施例を示して本発明について具体的に説明する。図7は、回復処理の評価結果を示したグラフであり、横軸がサイクル回数、縦軸が電池容量である。実施例では、上記実施形態のリチウムイオン単電池111を使用した。比較例では、ビフェニルを有しないリチウムイオン単電池を使用した。これらのリチウムイオン単電池を所定の充放電サイクルで充放電し、100サイクル毎に電池容量を測定した。充放電サイクルは、20Cの充電レートでリチウムイオン単電池を0.1秒間充電する充電処理と、2Cの放電レートでリチウムイオン単電池を10秒間放電せる放電処理と、放電処理後に10秒間休止する休止処理とからなる充放電サイクルを1サイクルとした。目標電位V2は、4.6Vに設定した。
 この評価結果に示すように、上記充放電サイクルを500回繰り返すことにより、リチウムイオン単電池111は、概ね初期の容量に回復させることができた。
 (変形例1)
 上述のフローチャートでは、バッテリ11の現在の容量が初期容量の95%よりも低くなった場合に、リチウムが析出したものと判別したが、本発明はこれに限るものではない。例えば、バッテリ11の現在の容量が初期容量のX%(ただし、X%>95%である)よりも低くなった場合に、リチウムが析出したものと判別してもよい。この場合、バッテリ11の回復処理の頻度が向上し、バッテリ11の寿命をより長期化することができる。また、バッテリ11の現在の容量が初期容量のY%(ただし、Y%<95%)よりも低くなった場合に、リチウムが析出したものと判別してもよい。この場合、バッテリ11の回復処理の頻度が低下するため、バッテリ11の使用(車両走行に用いるための使用)が制限される時間を短くすることができる。
 (変形例2)
 上述のフローチャートでは、リチウム析出の有無をバッテリ11の容量レベルから判定したが、本発明はこれに限るものではなく、上記したようにバッテリ11の内部抵抗から判定することもできる。この場合、バッテリ11の初期の内部抵抗とバッテリ11の現在の内部抵抗とを比較することにより、リチウム析出の有無を判別することができる。バッテリ11の初期の内部抵抗とは、バッテリ11の製造直後の内部抵抗のことである。バッテリ11の現在の内部抵抗は、監視ユニット31から出力されるバッテリ11の電流情報及び電圧情報から算出することができる。内部抵抗は、バッテリ11全体の内部抵抗であってもよいし、バッテリ11の中で最も電圧値が高いリチウムイオン単電池111の内部抵抗であってもよい。例えば、ECU30は、バッテリ11の現在の内部抵抗が、バッテリ11の製造直後の内部抵抗の1.3倍に到達したときに、リチウム析出が生じたものと判別してもよい。
 (変形例3)
 上述の実施形態では、プロトンを放出する化合物としてビフェニルを用いたが、本発明はこれに限るものではなく、使用上限電位V3よりも高く、かつ、リチウム析出電位V1よりも低い電位で分解する他の化合物であってもよい。当該他の化合物は、ベンゼン環を有するシクロエキシルベンゼン(CHB)であってもよい。シクロエキシルベンゼンは、ビフェニルよりも分解を起こすときの電位が高いが、リチウム析出電位V1よりも低い電位にて分解を生じる。したがって、シクロエキシルベンゼンを用いることにより、負極体に析出したリチウムをリチウムイオンに戻すことができる。
 (変形例4)
 上述の実施形態では、車両のイグニッション(IG)スイッチがオフされた状態でバッテリ11の回復処理を行ったが、本発明はこれに限るものではなく、他の方法であってもよい。当該他の方法は、車両のイグニッション(IG)スイッチがオンされた状態でバッテリ11の回復処理を行う方法であってもよい。例えば、車両走行に用いられるバッテリ11が二つ設けられている場合には、回復処理が必要な一方のバッテリの走行用バッテリとしての使用を禁止し、他方のバッテリの走行用バッテリとしての使用を許容することにより、車両走行に大きな影響を与えることなく、回復処理を行うことができる。車両走行中は、回復処理以外の他の処理(例えば、蓄電量(SOC)の推定)でバッテリ11の容量、或いは内部抵抗が算出されるため、他の処理において取得された情報を用いてリチウム析出の有無を判別することができる。これにより、リチウム析出の有無を判別するための独立した処理が省略化されるため、車両システムの煩雑化が抑制される。
 (変形例5)
 上述の実施形態では、バッテリ11を車両に搭載した状態で回復処理を行ったが、本発明はこれに限るものではなく、車両廃棄時、或いは車両点検時に車両から取り外されたバッテリ11に対して回復処理を行うこともできる。この場合、ビフェニルは、回復処理を行う際に電池ケースの内部に送液することができる。例えば、不活性雰囲気下で、電池ケースの注入口を開口し、この開口した注入口を介して電池ケースの内部にビフェニルを送液することができる。ここで、注入口とは、電解液を電池ケースの内部に収容するための開口部のことである。
 ビフェニルが電池ケースの内部に投入された後、図6のフローチャート(ただし、ステップS101を除く)に示す処理を行うことにより、バッテリ11を回復させることができる。これにより、車両廃棄時にバッテリ11をリサイクルすることができる。また、車両点検時に行われる他の作業とともに、バッテリ11を回復させる回復処理を行うことができる。
 1 制御装置  2 リチウムイオン電池  3 電源部
 4 取得部  5 コントローラ  6 走行メータ等の他の要素
 11 バッテリ  12 電圧コンバータ  13 インバータ
 14 エンジン  15 リレー  30 ECU
 31 監視ユニット  32 記憶部  
 111 リチウムイオン単電池

Claims (8)

  1.  正極体及び負極体を含む発電要素をケースに収容したリチウムイオン電池の制御装置であって、
     前記ケースの内部には、リチウムの析出を起こす負極電位に対応した正極電位である第1の電位よりも低く、前記リチウムイオン電池の使用電圧の上限値に対応した正極電位よりも高い第2の電位において、前記正極体に電子を放出することによりプロトンを発生する化合物が収容されており、
     前記リチウムイオン電池に対して電力を供給する電源部を駆動して、正極電位を前記第2の電位にすることにより、前記プロトンを用いて前記負極体に析出したリチウムをリチウムイオンにする回復処理を実行させるコントローラを有することを特徴とするリチウムイオン電池の制御装置。
  2.  前記化合物は、ベンゼン環を有することを特徴とする請求項1に記載のリチウムイオン電池の制御装置。
  3.  前記化合物は、ビフェニル又はシクロエキシルベンゼンであることを特徴とする請求項2に記載のリチウムイオン電池の制御装置。
  4.  前記リチウムイオン電池のリチウム析出の度合いに関連した評価値を取得する取得部を有し、
     前記コントローラは、前記評価値が所定値を超えたときに前記回復処理を実行させることを特徴とする請求項1乃至3のうちいずれか一つに記載のリチウムイオン電池の制御装置。
  5.  前記評価値は、前記リチウムイオン電池の容量であることを特徴とする請求項4に記載のリチウムイオン電池の制御装置。
  6.  前記評価値は、前記リチウムイオン電池の内部抵抗であることを特徴とする請求項4に記載のリチウムイオン電池の制御装置。
  7.  前記コントローラは、正極電位が前記第2の電位に到達した後に、前記リチウムイオン電池の使用電圧に対応した正極電位に電位を降下させる放電処理を行うことを特徴とする請求項1乃至6のうちいずれか一つに記載のリチウムイオン電池の制御装置。
  8.  正極体及び負極体を含む発電要素をケースに収容したリチウムイオン電池の制御方法であって、
     前記ケースの内部には、リチウムの析出を起こす負極電位に対応した正極電位である第1の電位よりも低く、前記リチウムイオン電池の使用電圧の上限値に対応した正極電位よりも高い第2の電位において、前記正極体に電子を放出することによりプロトンを発生する化合物が収容されており、
     前記リチウムイオン電池を充電して、正極電位を前記第2の電位とすることにより、前記プロトンを用いて前記負極体に析出したリチウムをリチウムイオンにすることを特徴とするリチウムイオン電池の制御方法。
PCT/JP2012/000463 2012-01-25 2012-01-25 リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法 WO2013111186A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/371,252 US9735454B2 (en) 2012-01-25 2012-01-25 Apparatus for controlling lithium-ion battery and method of recovering lithium-ion battery
DE112012005744.9T DE112012005744B4 (de) 2012-01-25 2012-01-25 Vorrichtung zum Steuern einer Lithium-Ionen-Batterie und Verfahren des Steuerns einer Lithium-Ionen-Batterie
JP2013554991A JP5780315B2 (ja) 2012-01-25 2012-01-25 リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法
PCT/JP2012/000463 WO2013111186A1 (ja) 2012-01-25 2012-01-25 リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法
CN201280067756.7A CN104067438B (zh) 2012-01-25 2012-01-25 锂离子电池的控制装置以及锂离子电池的复原方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000463 WO2013111186A1 (ja) 2012-01-25 2012-01-25 リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法

Publications (1)

Publication Number Publication Date
WO2013111186A1 true WO2013111186A1 (ja) 2013-08-01

Family

ID=48872968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000463 WO2013111186A1 (ja) 2012-01-25 2012-01-25 リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法

Country Status (5)

Country Link
US (1) US9735454B2 (ja)
JP (1) JP5780315B2 (ja)
CN (1) CN104067438B (ja)
DE (1) DE112012005744B4 (ja)
WO (1) WO2013111186A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041615A (ja) * 2016-09-07 2018-03-15 トヨタ自動車株式会社 二次電池の回復処理方法および再利用処理方法
JP2018156744A (ja) * 2017-03-15 2018-10-04 株式会社デンソー 電源システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6674637B2 (ja) * 2017-03-17 2020-04-01 トヨタ自動車株式会社 電池制御装置および電池制御システム
JP6973213B2 (ja) * 2018-03-16 2021-11-24 トヨタ自動車株式会社 二次電池システム、及び二次電池制御方法
CN112349989B (zh) * 2020-11-05 2022-09-20 武汉大学 一种废旧锂离子电池正极活性材料的修复再生方法及获得的再生正极活性材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321258A (ja) * 1997-05-16 1998-12-04 Nec Molienerg Canada Ltd 非水系の再充電可能なリチウム電池
JP2010520610A (ja) * 2007-03-06 2010-06-10 エア プロダクツ アンド ケミカルズ インコーポレイテッド レドックスシャトル化学反応をラジカル重合添加剤と組み合わせることによる過充電の予防
JP2011165343A (ja) * 2010-02-04 2011-08-25 Hitachi Ltd 非水電解質二次電池装置およびその負極を充電する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782663B2 (ja) * 2006-11-29 2011-09-28 パナソニック株式会社 充電システム、充電装置、及び電池パック
CN102037601B (zh) * 2007-07-12 2014-04-23 A123系统公司 用于锂离子电池的多功能混合金属橄榄石
JP2010198759A (ja) 2009-02-23 2010-09-09 Toyota Motor Corp 電池システム、及び、自動車
JP5532806B2 (ja) 2009-09-30 2014-06-25 日産自動車株式会社 リチウムイオン二次電池の容量回復方法
JP5146502B2 (ja) * 2009-11-12 2013-02-20 トヨタ自動車株式会社 二次電池の充放電制御装置
JP2011142016A (ja) * 2010-01-07 2011-07-21 Sumitomo Electric Ind Ltd 電池システム、電池の使用方法及び電池の再生方法
JP5353741B2 (ja) 2010-02-02 2013-11-27 トヨタ自動車株式会社 リチウムイオン二次電池の充放電制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321258A (ja) * 1997-05-16 1998-12-04 Nec Molienerg Canada Ltd 非水系の再充電可能なリチウム電池
JP2010520610A (ja) * 2007-03-06 2010-06-10 エア プロダクツ アンド ケミカルズ インコーポレイテッド レドックスシャトル化学反応をラジカル重合添加剤と組み合わせることによる過充電の予防
JP2011165343A (ja) * 2010-02-04 2011-08-25 Hitachi Ltd 非水電解質二次電池装置およびその負極を充電する方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041615A (ja) * 2016-09-07 2018-03-15 トヨタ自動車株式会社 二次電池の回復処理方法および再利用処理方法
US10539627B2 (en) 2016-09-07 2020-01-21 Toyota Jidosha Kabushiki Kaisha Method of restoring secondary battery and method of reusing secondary battery
JP2018156744A (ja) * 2017-03-15 2018-10-04 株式会社デンソー 電源システム

Also Published As

Publication number Publication date
US9735454B2 (en) 2017-08-15
DE112012005744T5 (de) 2014-10-16
JPWO2013111186A1 (ja) 2015-05-11
US20150004443A1 (en) 2015-01-01
CN104067438B (zh) 2016-09-28
DE112012005744B4 (de) 2019-08-14
CN104067438A (zh) 2014-09-24
JP5780315B2 (ja) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5867483B2 (ja) 蓄電システム
JP5821715B2 (ja) 蓄電システム、車両の充電制御装置及び異常検出方法
WO2013046250A1 (ja) バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム
US20160272070A1 (en) Power supply system for vehicle
JP2016134976A (ja) 蓄電システム
JP2009142062A (ja) 車両用電源装置
JP5780315B2 (ja) リチウムイオン電池の制御装置及びリチウムイオン電池の回復方法
WO2012104957A1 (ja) 電源管理装置
JP5796457B2 (ja) バッテリシステムおよびバッテリシステムの制御方法
JP2014131404A (ja) 車両用充電装置
JP5835136B2 (ja) 車載充電制御装置
JP6315293B2 (ja) 電力供給方法及び電力供給システム
US10804715B2 (en) Electrically driven vehicle
JP6079760B2 (ja) 車両用電源制御装置
JP2012106581A (ja) 車両用蓄電部保護システム
JP5691993B2 (ja) 蓄電システム及び電流センサ異常を検出する方法
JP2011010508A (ja) 電源システム
WO2013098904A1 (ja) 蓄電システム
JP5652442B2 (ja) 蓄電システム及び蓄電装置の制御装置
JP2010110033A (ja) 蓄電体の異常判定装置、車両及び蓄電素子の異常判定装置
JP2011098577A (ja) 車両
JP2013255324A (ja) 車載充電制御装置
US11361913B2 (en) Power accumulation system and vehicle including the same
JP2017143635A (ja) 車両用電源システム
JP6504408B2 (ja) 絶縁抵抗測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554991

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120057449

Country of ref document: DE

Ref document number: 112012005744

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866839

Country of ref document: EP

Kind code of ref document: A1