WO2013108422A1 - 一体型電動パワーステアリング装置 - Google Patents
一体型電動パワーステアリング装置 Download PDFInfo
- Publication number
- WO2013108422A1 WO2013108422A1 PCT/JP2012/063598 JP2012063598W WO2013108422A1 WO 2013108422 A1 WO2013108422 A1 WO 2013108422A1 JP 2012063598 W JP2012063598 W JP 2012063598W WO 2013108422 A1 WO2013108422 A1 WO 2013108422A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- side case
- power steering
- electric power
- steering apparatus
- motor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0409—Electric motor acting on the steering column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0403—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
- B62D5/0406—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/225—Detecting coils
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
- H02K7/1163—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
- H02K7/1166—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
Definitions
- the present invention relates to an integrated electric power steering device mounted on a vehicle.
- a conventional integrated electric power steering device is configured by mounting a heat generating element of a power unit constituting an inverter or an electronic relay directly or on a substrate such as a metal or ceramic, and a screw or spring structure to a mechanism member such as a heat sink.
- the heat generating element is configured to be closely attached and fixed to dissipate heat generated by the heating element to the mechanism member (see, for example, Patent Document 1).
- the conventional integrated electric power steering apparatus has a problem that heat radiation countermeasures are insufficient with respect to a heating element mounted on a substrate arranged in a state of not being in close contact with a mechanism member.
- a dedicated heat sink or fan is mounted on the substrate and the heating element to cool it, but in this case, the weight becomes heavy and the strength of the element fixing solder and the solder on the substrate is not sufficient. There was a problem.
- the present invention has been made to solve the above-mentioned problems in the conventional integrated electric power steering apparatus, and improves the heat dissipation of the heating element while simplifying the structure and improving the assembly. Another object is to provide an integrated electric power steering device with high durability and reliability.
- An integrated electric power steering apparatus is as follows.
- a motor unit including an electric motor that generates an assist torque corresponding to a steering torque by a driver of the vehicle and applies the generated assist torque to a steering shaft of the vehicle via a speed reduction mechanism unit; and a control for controlling the electric motor
- An integrated electric power steering device comprising: a control device portion including a circuit element; and the electric motor portion, the speed reduction mechanism portion, and the control device portion are integrally fixed.
- the control device section includes a heating element that generates heat when operated including at least the control circuit element, a control board on which the heating element is mounted, and a mechanism member that fixes the control board. At least a part of the generated heat can be transferred to the mechanism member through a heat conductive member. It is configured as described above.
- the heat generated by the heating element can be effectively radiated and cooled to the mechanism member via the heat conducting member, so that the durability and reliability can be improved.
- a body-type electric power steering apparatus can be obtained.
- FIG. 1 is a cross-sectional view of an integrated electric power steering device according to Embodiment 1 of the present invention.
- FIG. 1 is a sectional view of a control device-integrated electric motor in an integrated electric power steering device according to Embodiment 1 of the present invention; It is sectional drawing of a part of integrated electric power steering device by Embodiment 2 of this invention. It is sectional drawing of a part of integrated electric power steering device by Embodiment 3 of this invention. It is sectional drawing of the integrated electric power steering apparatus by Embodiment 4 of this invention. It is sectional drawing of the integrated electric power steering apparatus by Embodiment 5 of this invention.
- FIG. 1 is a sectional view showing an integrated electric power steering apparatus according to Embodiment 1 of the present invention
- FIG. 2 is a control apparatus integrated electric motor in the integrated electric power steering apparatus according to Embodiment 1 of the present invention.
- the controller integrated motor also referred to as MCU
- MCU permanent magnet type synchronous motor
- an integrated electric power steering apparatus 100 includes a speed reduction mechanism (including gears; the same applies hereinafter) to a steering shaft 10 connected to a handle (not shown) operated by a driver.
- a controller-integrated electric motor 30 is integrally connected through the control unit 20. The controller-integrated electric motor 30 applies assist torque to the steering shaft 10 via the speed reduction mechanism unit 20 when the driver operates the steering wheel, thereby reducing the driver's steering operation force.
- the reduction mechanism 20 includes a worm wheel 21 fixed to the steering shaft 10, a worm gear 22 having a worm gear shaft 23 that meshes with the worm wheel 21, and a housing 24.
- the worm gear shaft 23 is spline-coupled to the rotor shaft 43 of the controller-integrated electric motor 30 by a boss 31 as a coupling fixed to the end of the rotor shaft 43 of the controller-integrated electric motor 30.
- the controller-integrated electric motor 30 includes an electric motor unit (also referred to as a motor) 40 including a stator 41 and a rotor 42, and a control device unit 50 including an electric motor drive circuit.
- the control device unit 50 includes a speed reduction mechanism side case 52 and an electric motor side case 51 as a metal case.
- the stator 41 is fixed to the inner surface side of an iron cylindrical frame 414.
- the frame 414 is fixed to the motor side case 51 with screws (not shown).
- the motor side case 51 is formed of an aluminum alloy die-cast product, and the other axial end is coupled to the axial end of the speed reduction mechanism side case 52.
- the speed reduction mechanism side case 52 is formed of an aluminum alloy die-cast product, and includes an inner wall portion 521 extending in a direction perpendicular to the axial direction.
- an inlay portion 522 formed at one end portion in the axial direction of the speed reduction mechanism side case 52 is fitted to the inner peripheral surface of the housing 24 of the speed reduction mechanism portion 20.
- the control device unit 50 includes a control device internal space that communicates with the internal space of the electric motor unit 40, and in the control device internal space, a heating element 531 such as a microcomputer or an FET drive circuit, and other elements necessary for control.
- the heat generated by the power circuit unit is the largest in the control device unit 50.
- the power board 54 is firmly fixed to the electric motor side wall surface of the inner wall portion 521 of the speed reduction mechanism side case 52.
- the power board 54 may be fixed in close contact with the speed reducer side wall surface of the inner wall 521 of the speed reduction mechanism side case 52 or the motor side case 51.
- the control board 53 includes a power signal terminal and a signal terminal, and is fixed on the terminal mold portion 56.
- the terminal mold portion 56 is fixed to the speed reduction mechanism side case 52 inside the control device portion 50.
- the control board 53, the external power supply line, the signal terminal, and the power board 54 are electrically connected by soldering or snap fitting.
- the speed reduction mechanism unit 20 and the integrated electric motor (MCU) 30 including the control unit 50 and the electric motor unit 40 are all configured to have a common rotating shaft.
- the power steering device is particularly defined as a coaxial integrated electric power steering device.
- the microcomputer and FET drive circuit mounted on the control board 53 always generate heat while the control unit 50 is in operation.
- the elements that are mounted on the control board 53 and generate heat are collectively referred to as a heat generating element 531.
- the heat generating element 531 requires an appropriate heat dissipating means in order to prevent destruction due to heat, runaway, and deterioration in reliability.
- the speed reduction mechanism side case 52 and the motor side case 51 of the control device unit 50 also have a function of conducting and radiating heat generated in the control device unit 50 to the atmosphere, these heat conduction and heat radiation to the heating element 531 are performed.
- the mechanism member 500 may be any member that has thermal conductivity and is disposed in the vicinity of the heat generating element 531.
- the motor unit 40 may be a part.
- the heat of the heating element 531 in the case of the conventional apparatus is the heating element 531.
- the heat is transferred from the surface of the control unit 53 to the control board 53 and then radiated to the air inside the control unit 50, and heat is transferred from the air to the mechanism member 500 to radiate heat.
- the heat dissipation effect of the heating element 531 on the control board 53 was small.
- the heat conductive member 57 having heat conductivity is arranged in the space between the heating element 531 and the mechanism member 500.
- a heat conduction path for radiating heat from the heat generating element 531 to the mechanism member 500 via the heat conduction member 57 can be formed to increase the heat radiation effect, and the structure for heat radiation can be simplified.
- the heat conducting member 57 is almost in contact with the surface of the heating element 531, and heat from the heating element 531 is effectively transmitted to the heat conducting member 57.
- the heat conduction member 57 is almost entirely brought into contact with the surface of the heat generating element 531 to obtain a large heat dissipation effect. Even if the position to be arranged is not only in the vicinity of the heat generating element 531 or in the vicinity of the heat generating element 531, but only in the peripheral part of the control board 53, the entire control board 53 is utilized by utilizing the heat conduction of the control board 53. This heat can be radiated to the mechanism member 500 through the heat radiating member.
- the heat conducting member 57 disposed between the control board 53 and the mechanism member 500 has flexibility, elasticity, and adhesiveness.
- the control board is used.
- the heat generating element 531 and the mechanism member 500 are in close contact with each other and thermally conduct without any gaps, and the control board 53 It is comprised so that the displacement by vibration can be suppressed.
- the reduction mechanism side case 52, the power board 54, the terminal mold part 56, the control board 53, and the motor side case 51 are sequentially stacked from the left side in FIG. Will be assembled.
- the speed reduction mechanism side case 52 and the motor side case 51 in the mechanism member 500 are arranged so that the control board 53 on which the heat generating element 531 is mounted and the mechanism member 500 face each other perpendicular to the axial direction.
- the heat conducting member 57 is disposed so as to face the vicinity of the heat generating element 531 mounted on the control board 53.
- the heat conducting member 57 may be applied to the surface of the heat generating element 531.
- the integrated electric power steering apparatus easily replaces the heat conducting member 57 with the heat generating element 531 and the motor-side case 51 in the mechanism member 500 in the above-described assembly process. It is comprised so that it can be inserted
- the heat conducting member 57 radiates heat from the heating element 531 to the mechanism member 500 on the side of the electric motor unit 40 having a large heat mass so that a large heat dissipation effect is obtained. Opposed to each other.
- the power board 54 on which the element and circuit generating the largest amount of heat are mounted is fixed in close contact with the speed reduction mechanism side case 52 of the control unit 50.
- the heat generated by the power board 54 is radiated to the speed reduction mechanism (gear) 20 side through the speed reduction mechanism side case 52.
- the heat generated by the heat generating element 531 mounted on the control board 53 is radiated to the electric motor unit 40 side through the heat conducting member 57 and the electric motor side case 51.
- the heat generated by the power board 54 and the heat generated by the heating element 531 mounted on the control board 53 are radiated without interfering with each other, and the heat radiation effect is increased.
- the motor-side case 51 in the mechanism member 500 has a convex portion 511 in the vicinity of the contact portion with the heat conducting member 57, and the surface of the convex portion 511 and the heating element 531 are adjusted by adjusting the thickness of the convex portion 511. It is possible to adjust the distance from the surface, and thus the thickness of the heat conducting member 57.
- the heat capacity of the mechanism member 500 is increased by the convex portion 511.
- the mechanism member 500 uses a material having a high thermal conductivity such as a metal, and has a higher thermal conductivity than the material of the member used as the heat conductive member 57. For this reason, by providing the convex portion 511 on the mechanism member 500, the distance to the heating element 531, that is, the thickness of the heat conducting member 57 is reduced to increase the heat dissipation effect, and the use amount of the heat conducting member 57 is reduced. It can be connected to reduce costs. Furthermore, the heat capacity of the heat generating element 531 is suppressed by increasing the heat capacity of the mechanism member 500 constituting the heat conduction path.
- the heat generating element 531 and the control board 53 on which the heat generating element 531 is mounted are pressed by the mechanism member 500 via the heat conducting member 57, and stress stress is generated. Since the heat conductive member 57 has flexibility and rebound resilience, it is advantageous that the thickness of the heat conductive member 57 is larger in order to reduce stress stress.
- the convex portion 511 in the vicinity of the contact portion between the mechanical member 500 and the heat conducting member 57, it is possible to achieve both thermal conductivity and stress relaxation of the heat conducting member 57 with respect to the heating element 531 mounted on the control board 53.
- the distance, that is, the thickness of the heat conducting member 57 can be set optimally.
- a plurality of convex portions 511 having different thicknesses are provided on the mechanism member 500 so as to correspond to the respective heating elements 531.
- the heat conducting member 57 having the optimum thickness can be arranged for all the heat generating elements 531.
- air is interposed between the heat conducting member 57 and the mechanism member 500 by subjecting the convex portion 511 to a means for reducing contact thermal resistance, for example, processing, plating, painting, or the like for reducing surface roughness. Therefore, it is possible to prevent the cooling performance from deteriorating and increase the heat dissipation effect.
- the pasting process of the heat conducting member 57 to the heating element 531 can be rationalized using an automatic coating machine.
- the curable resin used for the heat conductive member 57 is attached to the heating element 531 in the attaching step described above, and then the mechanism member 500 is assembled before the hardening, and is cured in the subsequent steps.
- the mechanism member 500 is configured to be free of stress by eliminating the generation of stress when the heat generating element 531 and the control board 53 are pressed against each other.
- control device unit 50, the electric motor unit 40, and the speed reduction mechanism unit 20 are configured on the same axis.
- the control device unit 50 is not on the same axis but is illustrated in the figure of the electric motor unit 40, for example.
- the heat radiation from the heating element 531 on the control board 53 to the mechanism member 500 via the heat conducting member 57 and the vibration displacement of the control board 53 may be adopted. The effect of suppressing this can be obtained in the same manner as in the case of the coaxial configuration.
- the power board 54 and the control board 53 are configured separately, the power board 54 is in close contact with the mechanism member 500, and the control board 53 is not in direct contact with the mechanism member 500.
- the substrate 54 may be configured to dissipate heat to the mechanism member 500 via the heat conducting member 57 without being in close contact with the mechanism member 500, or the power substrate 53 and the control board 54 may be combined into one piece to form the heat conducting member 57. It is also possible to radiate heat to the mechanism member 500 via
- the structure in which the heat conducting member 57 is interposed between the vicinity of the heating element 531 on the control board 53 and the mechanism member 500 is provided. Therefore, the temperature is suppressed by conducting heat from the heating element 531 to the mechanism member 500 via the heat conducting member 57, and the vibration conducting material is interposed between the control board 53 and the mechanism member 500. Therefore, the vibration displacement of the control board 53 can also be suppressed.
- the heat conducting member 57 is in direct contact with the heating element 531, so that the heat conduction from the heating element 531 to the mechanism member 500 is performed. The effect can be increased.
- the speed reduction mechanism portion 20, the control device portion 50, and the electric motor portion 40 have a coaxial structure and are perpendicular to the axis thereof. Since the speed reducer side case 52 and the motor side case 51 of the mechanism member 500 are arranged, and the heat conducting member 57 is arranged so as to oppose the surface of the control board 53, the control device unit 50 is constituted. The heat conduction member 57 can be easily sandwiched between the heating element 531 and the motor side case 51 in the process of assembling the mechanical parts, the power board 54, and the control board 53 sequentially from the axial direction. .
- the speed reduction mechanism side case 52 of the control unit 50 is disposed so as to face the heating element 531, and the heat of the heating element 531 is conducted. Since it is set as the structure thermally radiated to the motor side case 51 via the member 57, it can radiate
- the control device unit 50 since the control device unit 50 is coaxially disposed between the speed reduction mechanism unit 20 and the motor unit side 40, the control device unit 50, the power board 54 is arranged on the speed reduction mechanism side case 52 to dissipate the heat generated by the power board 54 with the largest heat generation to the speed reduction mechanism section 20 side.
- the heat can be radiated to the electric motor (motor) 40 side, and the heat can be efficiently radiated and cooled without interference between the heat from the power board 54 and the heat from the control board 53.
- the heating element 531 and the control are controlled.
- the interval between which the heat conducting member 57 is sandwiched between the substrate 53 and the mechanism member 500 can be adjusted and set to an optimum distance that achieves both stress stress reduction and cooling performance, and the heat capacity of the mechanism member 500 is increased.
- An increase in temperature of the heat generating element 531 can be suppressed.
- the contact surface of the convex portion 511 with the heat conducting member 57 has means for reducing the contact thermal resistance as described above. Therefore, it is possible to prevent air from interposing between the heat conducting member 57 and the mechanism member 500 and reducing the cooling performance.
- the heat conductive member 57 uses a curable resin, the sticking process of the heat conductive member 57 can be rationalized.
- the heat conducting member 57 is mounted before curing and is cured in the subsequent process.
- the substrate and the heating element 531 can be made stress-free so that no stress is applied.
- Embodiment 2 FIG. In the above-described first embodiment, the heat conducting member 57 is directly brought into contact with the surface of the heating element 531, but in the second embodiment, the surface of the control board 53 opposite to the surface on which the heating element 531 is mounted. The heat conducting member 57 is brought into contact with the opposite mounting surface.
- FIG. 3 is a cross-sectional view of a part of an integrated electric power steering apparatus according to Embodiment 2 of the present invention, in which a control unit 50 is disposed between the speed reduction mechanism unit 20 and the motor unit 40. 1 shows an electric power steering device.
- the control board 53 is fixed to the speed reduction mechanism side case 52.
- the heating element 531 is mounted on the surface of the control board 53 that faces the speed reduction mechanism side case 52.
- the heat conducting member 57 is placed in contact with the surface of the control board 53 opposite to the surface on which the heat generating element 531 is mounted.
- the surface of the convex portion 511 provided in the electric motor side case 51 is in contact with the surface of the heat conducting member 57.
- Other configurations are the same as those in the first embodiment.
- Heat generated by the heat generating element 531 is conducted to the heat conducting member 57 via the control board 53 and further conducted to the motor side case 51 of the mechanism member 500 via the heat conducting member 57.
- the surface of the control board 53 on which the heat generating element 531 is mounted and the surface on the non-mounting side are connected by a conductive through hole, and a conductive pattern is formed in a portion where the heat conductive member 57 contacts. Further, heat can be radiated more effectively using the conductive through hole and the conductive pattern.
- the distance between the heating element 531 and the mechanism member 500 may change due to thermal expansion / contraction of the mechanism member 500 due to a temperature change, but the mechanism member 500 and the heating element 531 are bonded by the heat conducting member 57. If so, tensile stress stress and pressing stress stress are applied to the heating element 531.
- the lead wire of the heating element 531 is usually mounted on the control board 53 by soldering. However, when the temperature change is repeated, repeated stress stress is applied to the lead wire of the heating element 531 and its solder portion. It will be.
- the surface heat conductive member 57 on the side of the control board 53 on which the heat generating element 531 is not mounted is arranged, so that the stress on the lead wire of the heat generating element 531 and its solder portion is arranged. Stress generation can be eliminated.
- the heat conducting member 57 is connected to the surface of the control board 53 on which the heat generating element 531 is not mounted and the mechanism member. 500, the stress stress on the lead wire of the heat generating element 531 and the soldered portion thereof generated with temperature change is eliminated, and the solder life and component life are extended to increase the reliability. be able to.
- the step of attaching the heat conducting member 57 can be rationalized.
- FIG. FIG. 4 is a cross-sectional view of a part of an integrated electric power steering apparatus according to Embodiment 3 of the present invention, in which a control unit 50 is disposed between the speed reduction mechanism unit 20 and the motor unit 40. 1 shows an electric power steering device.
- the control board 53 is fixed to the speed reduction mechanism side case 52.
- the heating element 531 is mounted on the surface of the control board 53 that faces the speed reduction mechanism side case 52.
- the heat conducting member 57 is disposed between the surface of the heat generating element 531 and the surface of the convex portion 5211 provided in the speed reduction mechanism side case 52.
- the heat generated from the heat generating element 531 is radiated to the speed reduction mechanism side case 52 via the heat conducting member 57.
- the heat conducting member 57 By disposing the heat conducting member 57 directly between the heating element 531 mounted on the surface of the control board 53 facing the speed reduction mechanism side case 52 and the speed reduction mechanism side case 52, heat generated in the heat generation element 531 is obtained. Can be dissipated by conducting heat to the speed reduction mechanism 20 side having a large heat mass.
- the heat generating element 531 is mounted on the surface of the control board 53 on the side opposite to the speed reduction mechanism side 52, and the heat conduction member 57 is disposed on the surface of the control board 53 facing the speed reduction mechanism side case 52 so as to dissipate heat. It may be.
- the effect in this case is the same as that of the second embodiment.
- the heat conductive member 57 uses a curable resin, the sticking process of the heat conductive member 57 can be rationalized.
- the integrated electric power steering device As described above, according to the integrated electric power steering device according to Embodiment 3 of the present invention, it is configured in a coaxial type in which the control device unit 50 is disposed between the speed reduction mechanism unit 20 and the electric motor unit 40, Since the heat from the heat generating element 531 is radiated to the speed reduction mechanism side case 52 via the heat conducting member 57, the heat radiation effect is increased by radiating heat from the heat generating element 531 to the speed reduction mechanism (gear) 20 side having a large heat mass. can do.
- FIG. FIG. 5 is a cross-sectional view of an integrated electric power steering device according to Embodiment 4 of the present invention, in which an electric motor unit 40 is disposed between the speed reduction mechanism unit 20 and the control device unit 50.
- a steering device is shown. That is, as shown in FIG. 5, the control device unit 50 is disposed coaxially with the motor unit 40 on the anti-deceleration mechanism unit (20) side of the motor unit 40.
- the control board 53 is fixed to the motor-side case 520 in the control unit 50.
- the heating element 531 is mounted on the surface of the control board 53 that faces the motor side case 520.
- the heat conducting member 57 is disposed between the surface of the heat generating element 531 and the surface of the convex portion 5201 provided in the motor side case 520.
- the heat from the heat generating element 531 is radiated to the motor side case 520 through the heat conducting member 57.
- the heat dissipation effect of the heat generating element 531 is achieved. Can be increased.
- the heat generating element 531 is mounted on the surface of the control board 53 facing the non-motor side case 510, and the heat conducting member 57 is provided on the surface of the control board 53 facing the motor side case 520 and the motor side case 520. It is good also as a structure which arrange
- the step of applying the heat conductive member 57 can be rationalized.
- the integrated electric power steering device is configured in a coaxial type in which the electric motor unit 40 is disposed between the speed reduction mechanism unit 20 and the control device unit 50. Since the heat from the heat generating element 531 is radiated to the motor side case 520 through the heat conducting member 57, the heat radiating effect of the heat generating element 531 can be enhanced.
- FIG. 6 is a cross-sectional view of an integrated electric power steering device according to Embodiment 5 of the present invention, in which a coaxial integrated electric power in which an electric motor unit 40 is disposed between a speed reduction mechanism unit 20 and a control device unit 50 is shown.
- a steering device is shown. That is, as shown in FIG. 6, the control device unit 50 is disposed coaxially with the motor unit 40 on the anti-deceleration mechanism unit (20) side of the motor unit 40.
- the heating element 531 is mounted on the surface of the control board 53 that is not opposed to the control device (ECU) side case 520.
- the heat conducting member 57 is disposed between the surface of the heat generating element 531 and the surface of the convex portion 5101 provided in the counter motor side case 510 in the mechanism member 500.
- the heat from the heat generating element 531 is radiated to the non-electric motor side case 510 of the control unit 50 via the heat conductive member 57, so that the heat is radiated to the side not having the heat generating element 531. This enhances the heat dissipation effect.
- the motor side case 520 of the control unit 50 is most A semiconductor element 531 that generates a large amount of heat and a power board 54 on which a power circuit is mounted are disposed, and the heat generated by the motor unit 40 itself is radiated to the motor unit 40 side that conducts heat to the speed reduction mechanism (gear) 20 side.
- the heat dissipation path of the heat generating element 531 on the control board 53 and the heat dissipation path of the power board 54 are radiated in opposite directions to efficiently radiate and cool without heat interference. Yes.
- the step of attaching the heat conductive member 57 can be rationalized.
- the control unit 50 is arranged at the axial end of the portion 40 on the side opposite to the speed reduction mechanism (20), and the heat from the heat generating element 531 is transmitted through the heat conducting member 57 to the heating element.
- the heat dissipation effect can be enhanced by dissipating heat to the anti-motor side case 510 that does not have the
- the electric motor unit 40 is disposed between the speed reduction mechanism unit 20 and the control unit 50, and the anti-deceleration mechanism unit (20 ) Side axial end, the control unit 50 is arranged in a coaxial type, and heat from the heating element 531 is transferred to the non-motor side case 510 having no heating element via the heat conducting member 57. Since the power board 54 on which the semiconductor element 531 having the largest heat generation and the power circuit are mounted is disposed in the motor side case 520 and the heat of the power board 54 is radiated to the motor side case 520, the heat is radiated. Since the heat of the power board 54 and the heat of the heat generating element 531 of the control board 53 are radiated by paths opposite to each other, the heat can be efficiently radiated and cooled without heat interference. .
- the heat conducting member 57 in the first to fifth embodiments is configured as a sheet-like member having flexibility, rebound resilience, and weak adhesion.
- Other configurations are the same as those in any one of the first to fifth embodiments.
- the heat conducting member 57 is formed into a sheet shape with a material having flexibility, rebound resilience, and weak adhesiveness, the heat conducting member 57 can be easily attached by sticking in the assembly process. Further, due to the flexibility of the sheet, the heat generating element 531 and the control board 53 are pressed against the mechanism member 500 at the time of assembly, and the stress generated by the heat generating element 531 and the control board 53 can be relieved.
- the distance between the heating element 531 or the control board 53 and the mechanism member 500 may change due to thermal expansion / contraction of the mechanism member 500 due to temperature change.
- the stress generated with respect to the change in the distance between the above-described distances can be absorbed and relaxed by the change in the thickness of the heat conducting member 57. For this reason, the repeated stress stress generated when the temperature change is repeated can be eliminated.
- the heat conducting member 57 is a sheet-like member having flexibility, rebound resilience, and weak adhesion, so that the assembly step The stress generated when the heating element 531 and the control board are pushed by the mechanism member 500 at the time of assembly can be relieved, and the lead and soldering portions of the heating element 531 that are generated due to temperature change, It is possible to eliminate stress stress on the substrate and each part solder on the substrate, and to extend the life of the solder and the life of the components, thereby improving the reliability.
- the embodiments can be freely combined, and the embodiments can be appropriately modified or omitted.
- the present invention can be used in the electric power steering apparatus of the automobile field, particularly of automobiles.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Power Steering Mechanism (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
電動機部(40)と減速機構部(20)と制御装置部(50)とが一体に固定され、制御装置部(50)は、少なくとも制御回路要素を含み動作することで発熱する発熱素子(531)と、発熱素子(531)を実装した制御基板(53)と、制御基板(53)を固定する機構部材(500)とを有し、発熱素子(531)が発生した熱の少なくとも一部を、熱伝導部材(57)を介して機構部材(500)へ伝熱させ得るように構成した。
Description
この発明は、車両に搭載される一体型電動パワーステアリング装置に関するものである。
従来の一体型電動パワーステアリング装置は、インバータや電子リレーを構成するパワー部の発熱素子を、直接、若しくは金属やセラミック等の基板上に実装して、ヒートシンク等の機構部材へネジやバネ構造によって密着させて固定し、発熱素子が発生する熱を機構部材へ放熱させるように構成されていた(例えば、特許文献1参照)。
従来の一体型電動パワーステアリング装置は、機構部材へ密着しない状態で配置される基板上に実装される発熱素子に対する放熱対策が不十分であるという課題があった。又、基板及び発熱素子上に専用のヒートシンクやファンを装着し冷却する別の従来例もあるが、この場合、重量が重くなり、素子固定用半田や基板上の半田の強度が十分ではないという課題があった。
この発明は、従来の一体型電動パワーステアリング装置に於ける前述のような課題を解決するためになされたもので、構造の簡略化と組立性の向上を図りながら発熱素子の放熱性を向上させると共に、耐久性及び信頼性の高い一体型電動パワーステアリング装置を提供することを目的とするものである。
この発明による一体型電動パワーステアリング装置は、
車両の運転者による操舵トルクに対応したアシストトルクを発生し、前記発生したアシストトルクを減速機構部を介して前記車両のステアリング軸に付与する電動機を備えた電動機部と、前記電動機を制御する制御回路要素を備えた制御装置部とを備え、前記電動機部と前記減速機構部と前記制御装置部とが一体に固定されてなる一体型電動パワーステアリング装置であって、
前記制御装置部は、少なくとも前記制御回路要素を含み動作することで発熱する発熱素子と、前記発熱素子を実装した制御基板と、前記制御基板を固定する機構部材とを有し、 前記発熱素子が発生した前記熱の少なくとも一部を、熱伝導部材を介して前記機構部材に伝熱させ得る、
ように構成したことを特徴とするものである。
車両の運転者による操舵トルクに対応したアシストトルクを発生し、前記発生したアシストトルクを減速機構部を介して前記車両のステアリング軸に付与する電動機を備えた電動機部と、前記電動機を制御する制御回路要素を備えた制御装置部とを備え、前記電動機部と前記減速機構部と前記制御装置部とが一体に固定されてなる一体型電動パワーステアリング装置であって、
前記制御装置部は、少なくとも前記制御回路要素を含み動作することで発熱する発熱素子と、前記発熱素子を実装した制御基板と、前記制御基板を固定する機構部材とを有し、 前記発熱素子が発生した前記熱の少なくとも一部を、熱伝導部材を介して前記機構部材に伝熱させ得る、
ように構成したことを特徴とするものである。
この発明による一体型電動パワーステアリング装置によれば、発熱素子が発生する熱を熱伝導部材を介して機構部材へ効果的に放熱して冷却することができるので、耐久性及び信頼性の高い一体型電動パワーステアリング装置を得ることができる。
実施の形態1.
図1は、この発明の実施の形態1による一体型電動パワーステアリング装置を示す断面図、図2は、この発明の実施の形態1による一体型電動パワーステアリング装置に於ける、制御装置一体型電動機の断面図である。以下述べるこの発明の実施の形態1による一体型電動パワーステアリング装置に於いて、制御装置一体型電動機(MCUとも称される)は、永久磁石型同期電動機として構成されている。
図1は、この発明の実施の形態1による一体型電動パワーステアリング装置を示す断面図、図2は、この発明の実施の形態1による一体型電動パワーステアリング装置に於ける、制御装置一体型電動機の断面図である。以下述べるこの発明の実施の形態1による一体型電動パワーステアリング装置に於いて、制御装置一体型電動機(MCUとも称される)は、永久磁石型同期電動機として構成されている。
図1及び図2に於いて、一体型電動パワーステアリング装置100は、運転者により操作されるハンドル(図示せず)に連結されたステアリング軸10に、減速機構部(ギヤを含む。以下同様)20を介して制御装置一体型電動機30が一体に連結されている。制御装置一体型電動機30は、運転者によるハンドル操作時に減速機構部20を介してステアリング軸10にアシストトルクを加え、運転者のハンドル操作力を低減する。
減速機構部20は、ステアリング軸10に固定されたウオームホイール21と、このウオームホイール21に噛合するウオームギア軸23を有するウオームギア22と、ハウジング24とを備える。ウオームギア軸23は、制御装置一体型電動機30の回転子軸43の端部に固定されたカップリングとしてのボス31により、制御装置一体型電動機30の回転子軸43とスプライン結合されている。
制御装置一体型電動機30は、固定子41と回転子42を備えた電動機部(モータとも称される)40と、電動機駆動回路を含む制御装置部50を備える。制御装置部50は、金属製のケースとしての、減速機構側ケース52と電動機側ケース51を備える。固定子41は、鉄製の円筒状のフレーム414の内面側に固定されている。
フレーム414は、ネジ(図示せず)により電動機側ケース51に固定されている。電動機側ケース51は、アルミ合金のダイキャスト形成品によって形成されており、軸方向他端部が減速機構側ケース52の軸方向端部に結合されている。
減速機構側ケース52は、アルミ合金のダイキャスト成形品により形成されており、その軸方向に対して直行する方向に延びる内壁部521を備える。減速機構側ケース52と減速機構部20のハウジング24とは、減速機構側ケース52の軸方向の一端部に形成されたインロー部522が減速機構部20のハウジング24の内周面に嵌合されてボルト(図示せず)により一体に固定されている。
制御装置部50は、電動機部40の内部空間に連通する制御装置内部空間を備えると共に、その制御装置内部空間に、マイクロコンピュータやFET駆動回路等の発熱素子531、及びその他の制御に必要な素子(図示せず)が実装されたガラスエポキシ樹脂製の制御基板53と、パワーMOSFETにより構成されたパワー半導体素子541とシャント抵抗(図示せず)、及びその他のパワー回路部に必要な素子(図示せず)が実装されたパワー基板54を収納している。尚、このパワー回路部の発熱は、制御装置部50の中で最も大きい。
パワー基板54は、減速機構側ケース52の内壁部521の電動機側壁面に密着固定されている。尚、パワー基板54は、減速機構側ケース52の内壁部521の減速機側壁面、或いは電動機側ケース51に密着固定してもよい。
制御基板53は、電源信号ターミナル及び信号ターミナルを内蔵し、ターミナル・モールド部56上に固定されている。ターミナル・モールド部56は、制御装置部50の内部で減速機構側ケース52に固定されている。制御基板53と、外部の電源線と信号ターミナルと、パワー基板54とは、半田付け又はスナップフィットによって電気的に接続されている。
前述のように、減速機構部20と、制御装置部50と電動機部40とからなる制御装置一体型電動機(MCU)30とが、何れも共通の回転軸を持つように構成される一体型電動パワーステアリング装置を、ここでは特に、同軸一体型電動パワーステアリング装置と定義する。
制御基板53上に実装されるマイクロコンピュータやFET駆動回路は、制御装置部50が動作中に常に発熱する。このように制御基板53に実装されて発熱する素子を発熱素子531と総称する。発熱素子531に対しては、熱による破壊、暴走、信頼性の低下を防ぐために適切な放熱手段を必要とする。
制御装置部50の減速機構側ケース52と電動機側ケース51は、制御装置部50で発生する熱を大気へ伝導、放熱する機能も併せ持つため、これらを、発熱素子531に対して熱伝導と放熱機能からみた場合の機構部材500と総称する。又、機構部材500は、熱伝導性を有して、発熱素子531の近傍に配置される部材であればよく、制御装置部50の構成部品の他、減速機構部20の一部、電動機部40の一部であってもよい。
制御基板53には発熱素子531が実装されており、発熱素子531の近傍と機構部材500との間は直接密着する構造ではないため、従来の装置の場合では発熱素子531の熱は発熱素子531の表面から、或いは制御基板53へ熱伝導してから、制御装置部50内部の空気に対して放熱し、その空気から機構部材500へと熱が伝わり放熱することとなるが、空気の熱抵抗は非常に大きく、制御基板53上の発熱素子531の放熱効果は小さいものであった。
従来、その放熱対策のために、発熱素子531へ専用ヒートシンクを設ける例やファンを配置する例もあるが、構造が複雑となり、部品点数が増加し、ネジやバネ構造等による押さえつけ工程が必要となり、重量が大きくなると共に素子及び素子固定用半田、基板及び基板上の半田強度が問題となっていた。
この発明の実施の形態1による一体型電動パワーステアリング装置によれば、発熱素子531と機構部材500との間の空間に、熱伝導性を有する熱伝導部材57を配置する構成としており、この構成によって、発熱素子531から熱伝導部材57を介して機構部材500へ放熱する熱伝導経路を形成し放熱効果を大きくすることができ、放熱のための構成も簡略化することができる。熱伝導部材57は、発熱素子531の表面にほぼ全面的に当接されており、発熱素子531からの熱が効果的に熱伝導部材57に伝達される。
尚、実施の形態1では、前述のように、発熱素子531の表面にほぼ全面的に熱伝導部材57を当接させて大きな放熱効果を得るように構成しているが、熱伝導部材57を配置する位置は発熱素子531の近傍、或いは発熱素子531の近傍だけでなく例えば制御基板53の周辺部等に配置するだけであっても、制御基板53の熱伝導を利用して制御基板53全体の熱を放熱部材を介して機構部材500へ放熱することが可能である。
又、制御基板53と機構部材500との間に配置する熱伝導部材57は、柔軟性と弾力性、接着性を有し、一体型電動パワーステアリング装置100に振動が加わった際に、制御基板53と機構部材500との間に於けるクッション材として機能することで、常に隙間を空けることなく発熱素子531と機構部材500との間でこれらに密着して熱伝導すると共に、制御基板53の振動による変位を抑えることができるように構成されている。
制御装置部50の組立工程に於いては、軸方向に対して図1の左側から、減速機構側ケース52、パワー基板54、ターミナルモールド部56、制御基板53、電動機側ケース51と順次積み上げ的に組付けていく。このとき、発熱素子531を実装している制御基板53と機構部材500とが軸方向に対して垂直に対向するように、機構部材500に於ける減速機構側ケース52と電動機側ケース51とが配置され、熱伝導部材57は、制御基板53に実装された発熱素子531の近傍に対向するように配置される。尚、熱伝導部材57は、発熱素子531の表面に塗布されるようにしてもよい。
このように、この発明の実施の形態1による一体型電動パワーステアリング装置は、前述の組立工程の中で、容易に熱伝導部材57を、発熱素子531と機構部材500に於ける電動機側ケース51との間に挟み込むことができるよう構成されている。
熱伝導部材57は、発熱素子531からヒートマスの大きい電動機部40側の機構部材500に放熱して大きい放熱効果が得られるように、発熱素子531の電動機部40側の表面は電動機側ケース51に対向して配置されている。
又、最も発熱の大きい素子及び回路を搭載するパワー基板54は、制御装置部50の減速機構側ケース52に密着して固定されている。これにより、パワー基板54が発生する熱は、減速機構側ケース52を介して減速機構(ギヤ)20側に放熱される。そして、前述したように、制御基板53に実装された発熱素子531が発生する熱は、熱伝導部材57及び電動機側ケース51を介して電動機部40側へ放熱される。その結果、パワー基板54が発生する熱と制御基板53に実装されている発熱素子531が発生する熱とは、互いに干渉することなく放熱され、放熱効果が大きくなる。
機構部材500に於ける電動機側ケース51は、熱伝導部材57との接触部近傍に凸部511を有し、この凸部511の厚みを調整することにより、凸部511の表面と発熱素子531の表面との距離、従って熱伝導部材57の厚みを調節することができる。
又、凸部511によって機構部材500の熱容量を大きくしている。機構部材500は、金属等の熱伝導性の高い材料を用いており、熱伝導部材57として用いる部材の材料よりも熱伝導性が高い。このため、機構部材500に凸部511を設けることによって、発熱素子531までの距離、即ち熱伝導部材57の厚みを小さくして放熱効果を高め、又、熱伝導部材57の使用量を低減してコストダウンにつなげることができるよう構成されている。更に、熱伝導経路を構成する機構部材500の熱容量を大きくすることで、発熱素子531の温度上昇を抑えるように構成されている。
機構部材500の取り付け工程に於いては、発熱素子531とそれを実装する制御基板53は、熱伝導部材57を介して機構部材500によって押し付けられることになり、応力ストレスが発生する。熱伝導性部材57は柔軟性と反発弾性を有するため、応力ストレス低減のためには熱伝導部材57の厚みが大きい方が有利となる。
機構部材500の熱伝導部材57との接触部近傍に凸部511を設けることにより、制御基板53上に実装される発熱素子531に対する熱伝導部材57の熱伝導性と応力緩和を両立するための距離、即ち熱伝導部材57の厚み、を最適に設定することができる。又、制御基板53上に夫々厚みが異なる発熱素子531が複数実装されている場合であっても、機構部材500に複数の厚みの異なる凸部511を各発熱素子531に夫々対応させて設けることで、全ての発熱素子531に対して最適厚みの熱伝導部材57を配置することができる。
又、凸部511に接触熱抵抗を低減する手段、例えば面粗度を小さくする加工処理やメッキ、塗装処理等を施すことによって、熱伝導部材57と機構部材500との間に空気が介在して冷却性が低下することを防止し放熱効果を大きくすることができる。
この実施の形態1では、熱伝導部材57に硬化性樹脂を用いることによって、熱伝導部材57の発熱素子531に対する貼付工程を、自動塗布機を用いて合理化を図れるようにしている。
又、熱伝導部材57に用いる硬化性樹脂は、前述の貼付工程に於いて、発熱素子531に貼付後、その硬化前に機構部材500を組み付け、その後の工程で硬化するようにすることで、機構部材500の組み付け時に機構部材500が発熱素子531や制御基板53を押しつけて密着する際の応力の発生を無くしてストレスフリーとなる構成としている。
尚、この実施の形態1では、制御装置部50と、電動機部40、及び減速機構部20を同軸上に構成しているが、制御装置部50を同軸上ではなく例えば電動機部40の図に於ける上面若しくは下面等に配置する構成としても良く、この場合であっても制御基板53上の発熱素子531から熱伝導部材57を介して機構部材500へ放熱する効果と制御基板53の振動変位を抑える効果を、同軸構成とした場合と同様に得ることができる。
又、この実施の形態1では、パワー基板54と制御基板53を別々に構成し、パワー基板54を機構部材500に密着させ、制御基板53は機構部材500と直接密着しない構成としているが、パワー基板54を機構部材500に密着させずに熱伝導部材57を介して機構部材500へ放熱する構成としてもよいし、パワー基板53と制御基板54を併せて1枚で構成し、熱伝導部材57を介して機構部材500へ放熱することも可能である。
以上述べたように、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、制御基板53上の発熱素子531近傍部と機構部材500との間に熱伝導部材57を介在させる構造としているため、発熱素子531から熱伝導部材57を介して機構部材500に熱伝導されて温度抑制されると共に、熱伝導部材57が制御基板53と機構部材500との間に於いて振動吸収材として働くため、制御基板53の振動変位も抑制することができる。
又、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、発熱素子531に直接熱伝導部材57が接触している構成としているため、発熱素子531から機構部材500への熱伝導効果を大きくすることができる。
更に、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、減速機構部20と、制御装置部50と、電動機部40とを同軸構造とし、その軸に対して垂直な面に機構部材500の減速機側ケース52と電動機側ケース51とを配置し、これらを制御基板53の面に対向するように熱伝導部材57を配置する構成としているため、制御装置部50を構成する機構部品、パワー基板54、制御基板53を、軸方向から順次積み上げ的に組み立てていく工程の中で、熱伝導部材57を容易に発熱素子531と電動機側ケース51との間に挟み込むことができる。
又、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、制御装置部50の減速機構側ケース52を発熱素子531に対向させるように配置し、発熱素子531の熱を熱伝導部材57を介して電動機側ケース51に放熱する構成としているため、ヒートマスの大きな電動機部40側に放熱することができ、放熱効果を大きくすることができる。
更に、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、減速機構部20と電動機部側40との間に制御装置部50を同軸に配置する構造としているので、制御装置部50内で減速機構側ケース52にパワー基板54を配置して、最も発熱の大きいパワー基板54の発熱を減速機構部20側に放熱し、制御基板53上の発熱素子531を熱伝導部材57を介して電動機(モータ)40側に放熱することができ、パワー基板54からの熱と制御基板53からの熱の干渉なく、効率的に放熱して冷却することができる。
又、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、熱伝導部材57に対向する機構部材500の熱伝導面に凸部511を備える構造としているため、発熱素子531及び制御基板53と機構部材500との間の熱伝導部材57が挟まれる間隔を、応力ストレス低減と冷却性が両立する最適距離に調節して設定することができるとともに、機構部材500の熱容量を上げて発熱素子531の温度上昇を抑制することができる。
更に、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、前述の凸部511に於ける熱伝導部材57との接触面は、前述したように接触熱抵抗の低減手段を有しているため、熱伝導部材57と機構部材500の間に空気が介在し冷却性が低下することを防ぐことができる。
又、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、熱伝導部材57は硬化性の樹脂を用いているため、熱伝導部材57の貼付工程を合理化することができる。
又、この発明の実施の形態1による一体型電動パワーステアリング装置によれば、熱伝導部材57は硬化前に装着し、後工程にて硬化するように構成しているため、機構部材500組立工程で基板や発熱素子531に応ストレスがかからないストレスフリーとすることができる。
実施の形態2.
前述の実施の形態1では、熱伝導部材57を、直接、発熱素子531の表面に当接させる構成としていたが、実施の形態2では、制御基板53の発熱素子531が実装される面に対する反対側の反実装面に、熱伝導部材57を当接させる構成としたものである。
前述の実施の形態1では、熱伝導部材57を、直接、発熱素子531の表面に当接させる構成としていたが、実施の形態2では、制御基板53の発熱素子531が実装される面に対する反対側の反実装面に、熱伝導部材57を当接させる構成としたものである。
図3は、この発明の実施の形態2による一体型電動パワーステアリング装置の一部分の断面図であり、減速機構部20と電動機部40との間に制御装置部50が配置される同軸型一体型電動パワーステアリング装置を示している。図3に於いて、制御基板53は、減速機構側ケース52に固定されている。発熱素子531は、制御基板53の減速機構側ケース52に対向する面に実装されている。熱伝導部材57は、制御基板53に於ける発熱素子531が実装されている面の反対側の面に当接して設置されている。電動機側ケース51に設けられた凸部511の表面は、熱伝導部材57の表面に当接している。その他の構成は、実施の形態1と同様である。
発熱素子531が発生する熱は、制御基板53を介して熱伝導部材57に熱伝導し、更に熱伝導部材57を介して機構部材500の電動機側ケース51へ熱伝導される。このとき、制御基板53の発熱素子531を実装している側の面と反実装側の面とを導電スルーホールで接続し、更に熱伝導部材57が接触する部分に導電パターンを形成しておくと、導電スルーホールと導電パターンを利用してさらに効果的に放熱することができる。
発熱素子531と機構部材500との間の距離は、温度変化に伴う機構部材500の熱膨張・収縮によって変化する場合があるが、熱伝導部材57によって機構部材500と発熱素子531が接着されていると、発熱素子531に対して引っ張り応力ストレス、及び押し付け応力ストレスがかかる。又、発熱素子531のリード線は、通常、制御基板53に半田付けによって実装されているが、温度変化が繰り替えされた場合、発熱素子531のリード線及びその半田部分には繰り返し応力ストレスが加わることになる。そこで、前述したように、制御基板53に於ける発熱素子531を実装していない側の面熱伝導部材57を配置する構成とすることで、発熱素子531のリード線及びその半田部分への応力ストレス発生を無くすことができる。
以上述べたように、この発明の実施の形態2による一体型電動パワーステアリング装置によれば、熱伝導部材57を、制御基板53に於ける発熱素子531を実装していない側の面と機構部材500との間に配置する構成としているため、温度変化に伴って発生する発熱素子531のリード線やその半田付け部分への応力ストレスを無くし、半田寿命、部品寿命を長くして信頼性を高めることができる。
又、この発明の実施の形態2による一体型電動パワーステアリング装置によれば、熱伝導部材57は硬化性の樹脂を用いているため、熱伝導部材57の貼付工程を合理化することができる。
実施の形態3.
図4は、この発明の実施の形態3による一体型電動パワーステアリング装置の一部分の断面図であり、減速機構部20と電動機部40との間に制御装置部50が配置される同軸型一体型電動パワーステアリング装置を示している。図4に於いて、制御基板53は、減速機構側ケース52に固定されている。発熱素子531は、制御基板53の減速機構側ケース52に対向する側の面に実装されている。熱伝導部材57は、発熱素子531の表面と減速機構側ケース52に設けられた凸部5211の表面との間に配置されている。
図4は、この発明の実施の形態3による一体型電動パワーステアリング装置の一部分の断面図であり、減速機構部20と電動機部40との間に制御装置部50が配置される同軸型一体型電動パワーステアリング装置を示している。図4に於いて、制御基板53は、減速機構側ケース52に固定されている。発熱素子531は、制御基板53の減速機構側ケース52に対向する側の面に実装されている。熱伝導部材57は、発熱素子531の表面と減速機構側ケース52に設けられた凸部5211の表面との間に配置されている。
このように、実施の形態3による一体型電動パワーステアリング装置では、発熱素子531から発生する熱は、熱伝導部材57を介して減速機構側ケース52に放熱する構造としている。制御基板53の減速機構側ケース52に対向する面に実装された発熱素子531と減速機構側ケース52との間に、直接、熱伝導部材57を配置することで、発熱素子531に発生する熱をヒートマスの大きい減速機構部20側へ熱伝導して放熱を行うことができる。
尚、発熱素子531を制御基板53の反減速機構側ケース52側の面に実装し、制御基板53の減速機構側ケース52に対向する側の面に熱伝導部材57を配置して放熱するようにしてもよい。この場合の効果は、実施の形態2と同様である。
又、この発明の実施の形態3による一体型電動パワーステアリング装置によれば、熱伝導部材57は硬化性の樹脂を用いているため、熱伝導部材57の貼付工程を合理化することができる。
以上述べたように、この発明の実施の形態3による一体型電動パワーステアリング装置によれば、減速機構部20と電動機部40との間に制御装置部50が配置される同軸型に構成され、発熱素子531からの熱を熱伝導部材57を介して減速機構側ケース52に放熱する構造としているため、発熱素子531からヒートマスの大きい減速機構(ギヤ)20側に放熱することで放熱効果を大きくすることができる。
実施の形態4.
図5は、この発明の実施の形態4による一体型電動パワーステアリング装置の断面図であり、減速機構部20と制御装置部50との間に電動機部40が配置される同軸型一体型電動パワーステアリング装置を示している。即ち、図5に示すように、制御装置部50は、電動機部40の反減速機構部(20)側に電動機部40と同軸に配置されている。
図5は、この発明の実施の形態4による一体型電動パワーステアリング装置の断面図であり、減速機構部20と制御装置部50との間に電動機部40が配置される同軸型一体型電動パワーステアリング装置を示している。即ち、図5に示すように、制御装置部50は、電動機部40の反減速機構部(20)側に電動機部40と同軸に配置されている。
制御基板53は、制御装置部50に於ける電動機側ケース520に固定されている。発熱素子531は、制御基板53に於ける電動機側ケース520に対向する側の面に実装されている。熱伝導部材57は、発熱素子531の表面と電動機側ケース520に設けられた凸部5201の表面との間に配置されている。
発熱素子531からの熱は、熱伝導部材57を介して電動機側ケース520に放熱する構成としている。発熱素子531から発生した熱を、ヒートマスが大きくかつ電動機部40自身の発熱を減速機構(ギヤ)20側に熱伝導している電動機部40側に放熱することで、発熱素子531の放熱効果を高めることができる。
尚、発熱素子531を制御基板53の反電動機側ケース510に対向する面に実装し、熱伝導部材57を、制御基板53の電動機側ケース520に対向する面と電動機側ケース520に設けられた凸部5201の表面との間に配置し、発熱部材531の熱を、制御基板531と熱伝送部材57を介して電動機側ケース520へ放熱する構成としてもよく、この場合の効果は実施の形態2と同様である。
又、この発明の実施の形態4による一体型電動パワーステアリング装置によれば、熱伝導部材57は硬化性の樹脂を用いているため、熱伝導部材57の貼付工程を合理化することができる。
以上述べたように、この発明の実施の形態4による一体型電動パワーステアリング装置は、減速機構部20と制御装置部50との間に電動機部40が配置される同軸型に構成されており、発熱素子531からの熱を、熱伝導部材57を介して電動機側ケース520に放熱する構造としているため、発熱素子531の放熱効果を高めることができる。
実施の形態5.
図6は、この発明の実施の形態5による一体型電動パワーステアリング装置の断面図であり、減速機構部20と制御装置部50との間に電動機部40が配置される同軸型一体型電動パワーステアリング装置を示している。即ち、図6に示すように、制御装置部50は、電動機部40の反減速機構部(20)側に電動機部40と同軸に配置されている。
図6は、この発明の実施の形態5による一体型電動パワーステアリング装置の断面図であり、減速機構部20と制御装置部50との間に電動機部40が配置される同軸型一体型電動パワーステアリング装置を示している。即ち、図6に示すように、制御装置部50は、電動機部40の反減速機構部(20)側に電動機部40と同軸に配置されている。
発熱素子531は、制御基板53の制御装置(ECU)側ケース520に対向していない側の面に実装されている。熱伝導部材57は、発熱素子531の表面と機構部材500に於ける反電動機側ケース510に設けられた凸部5101の表面との間に配置されている。
発熱素子531からの熱は、熱伝導部材57を介して制御装置部50の反電動機側ケース510へ熱伝導部材57を介して放熱されるので、発熱素子531を有していない側へ放熱することで放熱効果を高めている。
又、前述のように、発熱素子531の熱を、熱伝導部材57を介して反電動機側ケース510へ放熱するように構成するのに加えて、制御装置部50の電動機側ケース520に、最も発熱の大きい半導体素子531及びパワー回路を搭載するパワー基板54を配置して、その発熱をヒートマスが大きく電動機部40自身も減速機構(ギヤ)20側に熱伝導する電動機部40側に放熱することによって、制御基板53上の発熱素子531の放熱経路と、パワー基板54の放熱経路を互いに逆方向へ放熱して、熱の干渉なく効率的に放熱し、冷却することができるように構成している。
又、この発明の実施の形態5による一体型電動パワーステアリング装置によれば、熱伝導部材57は硬化性の樹脂を用いているため、熱伝導部材57の貼付工程を合理化することができる。
以上述べたように、この発明の実施の形態5による一体型電動パワーステアリング装置によれば、減速機構部20と制御装置部50との間に電動機部40が配置される同軸型、即ち、電動機部40の反減速機構部(20)側の軸方向端部に制御装置部50を配置した同軸型に構成されており、発熱素子531からの熱を、熱伝導部材57を介して、発熱体を有しない反電動機側ケース510へ放熱することによって放熱効果を高めることができる。
又、この発明の実施の形態5による一体型電動パワーステアリング装置によれば、減速機構部20と制御装置部50との間に電動機部40が配置し、電動機部40の反減速機構部(20)側の軸方向端部に制御装置部50を配置した同軸型に構成されており、発熱素子531からの熱を、熱伝導部材57を介して、発熱体を有しない反電動機側ケース510へ放熱するようにすると共に、最も発熱の大きい半導体素子531及びパワー回路を搭載するパワー基板54を電動機側ケース520に配置して電動機側ケース520にパワー基板54の熱を放熱する構造としているため、パワー基板54の熱と制御基板53の発熱素子531の熱を互いに逆方向の経路で放熱するよう構成したので、熱の干渉なく効率的に放熱、冷却することができる。
実施の形態6.
次に、この発明の実施の形態6による一体型電動パワーステアリング装置について説明する。実施の形態6では、前述の実施の形態1乃至5に於ける熱伝導部材57を、柔軟性と反発弾性、及び弱接着性を持つシート状部材に構成したものである。その他の構成は、実施の形態1乃至5のうちの何れかと同様である。
次に、この発明の実施の形態6による一体型電動パワーステアリング装置について説明する。実施の形態6では、前述の実施の形態1乃至5に於ける熱伝導部材57を、柔軟性と反発弾性、及び弱接着性を持つシート状部材に構成したものである。その他の構成は、実施の形態1乃至5のうちの何れかと同様である。
熱伝導部材57を、柔軟性と反発弾性、及び弱接着性を持つ材料によりシート状に構成したことで、組立工程に於いて熱伝導部材57の取り付けを貼付によって容易に装着することができる。又、シートの柔軟性によって、組付け時に発熱素子531と制御基板53が機構部材500に押圧されて発熱素子531と制御基板53発生する応力を緩和することができる。
更に、発熱素子531又は制御基板53と機構部材500との間隔の距離は、温度変化に伴う機構部材500の熱膨張・収縮によって距離が変化する場合があるが、熱伝導部材57を柔軟性と反発弾性及び弱接着性を持つシート状部材とすることで、前述の間隔の距離の変化に対して発生する応力を、熱伝導部材57の厚みの変化によって吸収緩和することができる。このため、温度変化が繰り返された場合に発生する、繰り返し応力ストレスを無くすことができる。
以上述べたように、この発明の実施の形態6による一体型電動パワーステアリング装置によれば、熱伝導部材57を柔軟性と反発弾性および弱接着性をもつシート状部材としたので、組付け工程を容易にし、組付け時に発熱素子531と制御基板が機構部材500に押されて発生する応力を緩和することができ、又、温度変化にともなって発生する発熱素子531のリードや半田付け部分、基板、基板上の各部半田への応力ストレスを無くし、半田寿命、部品寿命を長くして信頼性を高めることができる。
尚、この発明は、その発明の範囲内に於いて、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
この発明は、自動車分野、取り分け自動車の電動パワーステアリング装置に用いることができる。
100 一体型電動パワーステアリング装置
10 ステアリング軸 20 減速機構部
21 ウオームホイール 22 ウオームギア
23 ウオームギア軸 24 ハウジング
30 制御装置一体型電動機 31 ボス
40 電動機部 41 固定子
414 フレーム 42 回転子
43 回転子軸 50 制御装置部
500 機構部材 51、520 電動機側ケース
510 反電動機側ケース
511、5211、5101、5201 凸部
52 減速機構側ケース 521 減速機構側ケースの内壁部
520 制御装置部の電動機側ケース
522 インロー部 53 制御基板
531 発熱素子 54 パワー基板
541 パワー半導体素子 56 ターミナル・モールド部
57 熱伝導部材
10 ステアリング軸 20 減速機構部
21 ウオームホイール 22 ウオームギア
23 ウオームギア軸 24 ハウジング
30 制御装置一体型電動機 31 ボス
40 電動機部 41 固定子
414 フレーム 42 回転子
43 回転子軸 50 制御装置部
500 機構部材 51、520 電動機側ケース
510 反電動機側ケース
511、5211、5101、5201 凸部
52 減速機構側ケース 521 減速機構側ケースの内壁部
520 制御装置部の電動機側ケース
522 インロー部 53 制御基板
531 発熱素子 54 パワー基板
541 パワー半導体素子 56 ターミナル・モールド部
57 熱伝導部材
Claims (20)
- 車両の運転者による操舵トルクに対応したアシストトルクを発生し、前記発生したアシストトルクを減速機構部を介して前記車両のステアリング軸に付与する電動機を備えた電動機部と、前記電動機を制御する制御回路要素を備えた制御装置部とを備え、前記電動機部と前記減速機構部と前記制御装置部とが一体に固定されてなる一体型電動パワーステアリング装置であって、
前記制御装置部は、少なくとも前記制御回路要素を含み動作することで発熱する発熱素子と、前記発熱素子を実装した制御基板と、前記制御基板を固定する機構部材とを有し、
前記発熱素子が発生した前記熱の少なくとも一部を、熱伝導部材を介して前記機構部材に伝熱させ得る、
ように構成されたことを特徴とする一体型電動パワーステアリング装置。 - 前記制御装置部は、前記減速機構部と前記電動機部との間に配置され、
前記機構部材は、前記減速機構部に連結される減速機構側ケースと、前記電動機部に連結される電動機側ケースとを備え、
前記制御基板は、前記減速機構側ケースに固定され、
前記発熱素子は、前記制御基板の前記電動機側ケースの壁面に対向する面に実装され、
前記熱伝導部材は、前記発熱素子と前記電動機側ケースの壁面との間に配置されている、
ことを特徴とする請求項1に記載の一体型電動パワーステアリング装置。 - 前記制御装置部は、前記減速機構部と前記電動機部との間に配置され、
前記機構部材は、前記減速機構部に連結される減速機構側ケースと、前記電動機部に連結される電動機側ケースとを備え、
前記制御基板は、前記減速機構側ケースに固定され、
前記発熱素子は、前記制御基板の前記減速機構側ケースの壁面に対向する面に実装され、
前記熱伝導部材は、前記制御基板と前記電動機側ケースの壁面との間に配置され、且つ前記実装された発熱素子に対応する位置に配置されている、
ことを特徴とする請求項1に記載の一体型電動パワーステアリング装置。 - 前記電動機側ケースは、前記壁面に前記熱伝導部材に当接する凸部を備えている、
ことを特徴とする請求項3に記載の一体型電動パワーステアリング装置。 - 前記制御装置部は、前記減速機構部と前記電動機部との間に配置され、
前記機構部材は、前記減速機構部に連結される減速機構側ケースと、前記電動機部に連結される電動機側ケースとを備え、
前記制御基板は、前記減速機構側ケースに固定され、
前記発熱素子は、前記制御基板の前記減速機構側ケースの壁面に対向する面に実装され、
前記熱伝導部材は、前記発熱素子と前記減速機側ケースの壁面との間に配置されている、
ことを特徴とする請求項1に記載の一体型電動パワーステアリング装置。 - 前記減速機側ケースは、前記壁面に前記熱伝導部材に当接する凸部を備えている、
ことを特徴とする請求項5に記載の一体型電動パワーステアリング装置。 - 前記制御回路部は、前記電動機に供給する電力を制御するパワー回路要素と、少なくと
も前記パワー回路要素を実装したパワー基板とを備え、
前記パワー基板は、前記減速機側ケースに当接して装着されている、
ことを特徴とする請求項2乃至6のうちの何れか一項に記載の一体型電動パワーステアリング装置。 - 前記電動機部と前記制御装置部とは、前記電動機の回転子軸の延びる方向に同軸に一体に固定された制御装置一体型電動機を構成している、
ことを特徴とする請求項1乃至7のうちの何れか一項に記載の一体型電動パワーステアリング装置。 - 前記減速機側ケースの壁面と前記電動機側ケースの壁面とは、前記回転子軸の延びる方向に対して垂直方向に配置されている、
ことを特徴とする請求項8に記載の一体型電動パワーステアリング装置。 - 前記電動機部は、前記減速機構部と前記制御装置部との間に配置され、
前記機構部材は、前記電動機部に連結される電動機側ケースと、反電動機側ケースとを備え、
前記制御基板は、前記電動機側ケースに固定され、
前記発熱素子は、前記制御基板の前記電動機側ケースの壁面に対向する面に実装され、
前記熱伝導部材は、前記発熱素子と前記電動機側ケースの壁面との間に配置されている、
ことを特徴とする請求項1に記載の一体型電動パワーステアリング装置。 - 前記電動機側ケースは、前記壁面に前記熱伝導部材に当接する凸部を備えている、
ことを特徴とする請求項10に記載の一体型電動パワーステアリング装置。 - 前記電動機部は、前記減速機構部と前記制御装置部との間に配置され、
前記機構部材は、前記電動機部に連結される電動機側ケースと、反電動機側ケースとを備え、
前記制御基板は、前記電動機側ケースに固定され、
前記発熱素子は、前記制御基板の前記反電動機側ケースの壁面に対向する面に実装され、
前記熱伝導部材は、前記発熱素子と前記反電動機側ケースの壁面との間に配置されている、
ことを特徴とする請求項1に記載の一体型電動パワーステアリング装置。 - 前記反電動機側ケースは、前記壁面に前記熱伝導部材に当接する凸部を備えている、
ことを特徴とする請求項12に記載の一体型電動パワーステアリング装置。 - 前記制御回路部は、前記電動機に供給する電力を制御するパワー回路要素と、少なくとも前記パワー回路要素を実装したパワー基板とを備え、
前記パワー基板は、前記電動機側ケースに当接して装着されている、
ことを特徴とする請求項10乃至13のうちの何れか一項に記載の一体型電動パワーステアリング装置。 - 前記電動機部と前記制御装置部とは、前記電動機の回転子軸の延びる方向に同軸に一体に固定された制御装置一体型電動機を構成している、
ことを特徴とする請求項10乃至14のうちの何れか一項に記載の一体型電動パワーステアリング装置。 - 前記減速機側ケースの壁面と前記反電動機側ケースの壁面とは、前記回転子軸の延びる方向に対して垂直方向に配置されている、
ことを特徴とする請求項13に記載の一体型電動パワーステアリング装置。 - 前記凸部の前記熱伝導部材に当接する面は、接触熱抵抗低減手段を備えている、
ことを特徴とする請求項4、6、11、13のうちの何れか一項に記載の一体型電動パワーステアリング装置。 - 前記熱伝導部材は、シート状に形成されている、
ことを特徴とする請求項1乃至17のうちの何れか一項に記載の一体型電動パワーステアリング装置。 - 前記熱伝導部材は、熱硬化性樹脂により形成されている、
ことを特徴とする請求項1乃至17のうちの何れか一項に記載の一体型電動パワーステアリング装置。 - 前記熱硬化性樹脂により形成された熱伝導部材は、未硬化の状態で前記制御装置部に装着され、その後、硬化される、
ことを特徴とする請求項17に記載の一体型電動パワーステアリング装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12866198.0A EP2805872B1 (en) | 2012-01-17 | 2012-05-28 | Integrated electric power steering apparatus |
EP18176334.3A EP3403902B1 (en) | 2012-01-17 | 2012-05-28 | Integral-type electric power steering device |
CN201280055684.4A CN103930333B (zh) | 2012-01-17 | 2012-05-28 | 一体型电动动力转向装置 |
EP18176335.0A EP3403903B1 (en) | 2012-01-17 | 2012-05-28 | Integral-type electric power steering device |
EP18176333.5A EP3403901B1 (en) | 2012-01-17 | 2012-05-28 | Integral-type electric power steering device |
US14/351,967 US10017203B2 (en) | 2012-01-17 | 2012-05-28 | Integral-type electric power steering device |
IN3242CHN2014 IN2014CN03242A (ja) | 2012-01-17 | 2014-04-29 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012006764A JP5518106B2 (ja) | 2012-01-17 | 2012-01-17 | 一体型電動パワーステアリング装置 |
JP2012-006764 | 2012-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013108422A1 true WO2013108422A1 (ja) | 2013-07-25 |
Family
ID=48798862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063598 WO2013108422A1 (ja) | 2012-01-17 | 2012-05-28 | 一体型電動パワーステアリング装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10017203B2 (ja) |
EP (4) | EP3403902B1 (ja) |
JP (1) | JP5518106B2 (ja) |
CN (1) | CN103930333B (ja) |
IN (1) | IN2014CN03242A (ja) |
WO (1) | WO2013108422A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9114798B1 (en) | 2012-12-12 | 2015-08-25 | Hydro-Gear Limited Partnership | Electric actuator for drive apparatus |
JP6349190B2 (ja) * | 2014-07-31 | 2018-06-27 | Kyb株式会社 | ステアリング装置 |
CN105827060A (zh) * | 2015-01-08 | 2016-08-03 | 大陆汽车投资(上海)有限公司 | 集成式电力驱动系统 |
US10793182B2 (en) | 2015-02-18 | 2020-10-06 | Mitsubishi Electric Corporation | Integrated electric power steering apparatus |
JP2017013528A (ja) | 2015-06-26 | 2017-01-19 | 株式会社ジェイテクト | 車両用操舵装置 |
CN107923546B (zh) * | 2015-08-31 | 2020-03-10 | 日立汽车系统株式会社 | 驱动器及驱动器一体型电动执行器 |
DE102016209617A1 (de) * | 2016-06-01 | 2017-12-07 | Robert Bosch Gmbh | Elektrische Antriebseinheit mit einem Gehäuse |
FR3066970B1 (fr) * | 2017-06-02 | 2021-01-01 | Valeo Systemes Dessuyage | Moto-reducteur pour systeme d'essuyage de vehicule automobile |
JP2021093822A (ja) | 2019-12-10 | 2021-06-17 | 日立Astemo株式会社 | 電動駆動装置及び電動ステアリング装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002345211A (ja) * | 2001-05-17 | 2002-11-29 | Mitsubishi Electric Corp | 電動式パワーステアリング装置 |
JP2007062433A (ja) * | 2005-08-29 | 2007-03-15 | Mitsubishi Electric Corp | 電動式パワーステアリング装置 |
JP2007288929A (ja) * | 2006-04-17 | 2007-11-01 | Fujitsu Ten Ltd | 電動モータ |
WO2009125506A1 (ja) * | 2008-04-07 | 2009-10-15 | 三菱電機株式会社 | 制御装置一体型電動パワーステアリング装置用モータおよび電動パワーステアリング装置 |
JP2009274489A (ja) * | 2008-05-12 | 2009-11-26 | Jtekt Corp | 車両用操舵装置 |
WO2010007672A1 (ja) | 2008-07-16 | 2010-01-21 | 三菱電機株式会社 | 電動パワーステアリング装置、及び制御装置一体型電動機 |
JP2011217546A (ja) * | 2010-04-01 | 2011-10-27 | Hitachi Automotive Systems Ltd | パワーモジュール及びそれを用いた電力変換装置 |
JP2011228379A (ja) * | 2010-04-16 | 2011-11-10 | Denso Corp | 半導体モジュール、及び、それを用いた電動装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2983405B2 (ja) * | 1993-03-23 | 1999-11-29 | 三菱電機株式会社 | 電動式パワーステアリング回路装置 |
JP3563835B2 (ja) | 1995-07-12 | 2004-09-08 | 光洋精工株式会社 | パワーステアリング装置 |
JPH10234158A (ja) * | 1997-02-19 | 1998-09-02 | Tokyo R & D:Kk | 電動モータ |
JP3535827B2 (ja) * | 1997-10-01 | 2004-06-07 | カヤバ工業株式会社 | 電動パワーステアリング装置の電動モータ |
US6123167A (en) * | 1998-06-11 | 2000-09-26 | Trw Inc. | Electric steering motor with one-piece metal shell |
US6761813B2 (en) * | 2002-01-31 | 2004-07-13 | Intel Corporation | Heat transfer through covalent bonding of thermal interface material |
JP3838204B2 (ja) * | 2003-02-19 | 2006-10-25 | 株式会社豊田自動織機 | 電動コンプレッサ及び電動コンプレッサの組立方法 |
JP4615405B2 (ja) * | 2004-11-22 | 2011-01-19 | 日立オートモティブシステムズ株式会社 | モータ制御装置、パワーステアリング装置および制動力制御装置 |
US7199496B2 (en) * | 2005-01-18 | 2007-04-03 | Oriental Motor Boston Technology Group Incorporated | Integrated electric motor and drive, optimized for high-temperature operation |
JP4102404B2 (ja) | 2005-11-21 | 2008-06-18 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
JP4879649B2 (ja) | 2006-03-22 | 2012-02-22 | 本田技研工業株式会社 | 電動機の制御装置 |
DE102007014645A1 (de) | 2007-03-27 | 2008-10-30 | Continental Automotive Gmbh | Elektrische Baugruppe, insbesondere für eine Lenkhilfe eines Kraftfahrzeuges |
JP4385058B2 (ja) | 2007-05-07 | 2009-12-16 | 三菱電機株式会社 | 電子制御装置 |
DE102007000960A1 (de) | 2007-10-08 | 2009-04-30 | Zf Lenksysteme Gmbh | Steuergerät |
JP4623125B2 (ja) * | 2008-04-07 | 2011-02-02 | 三菱電機株式会社 | 電動パワ−ステアリング用電動モ−タ装置および電動パワーステアリング装置 |
JP5008742B2 (ja) * | 2010-03-31 | 2012-08-22 | 三菱電機株式会社 | 電動式駆動装置 |
US9123693B2 (en) | 2011-04-07 | 2015-09-01 | Mitsubishi Electric Corporation | Mold module utilized as power unit of electric power steering apparatus and electric power steering apparatus |
-
2012
- 2012-01-17 JP JP2012006764A patent/JP5518106B2/ja not_active Expired - Fee Related
- 2012-05-28 EP EP18176334.3A patent/EP3403902B1/en active Active
- 2012-05-28 EP EP12866198.0A patent/EP2805872B1/en not_active Not-in-force
- 2012-05-28 CN CN201280055684.4A patent/CN103930333B/zh not_active Expired - Fee Related
- 2012-05-28 WO PCT/JP2012/063598 patent/WO2013108422A1/ja active Application Filing
- 2012-05-28 EP EP18176335.0A patent/EP3403903B1/en active Active
- 2012-05-28 EP EP18176333.5A patent/EP3403901B1/en active Active
- 2012-05-28 US US14/351,967 patent/US10017203B2/en active Active
-
2014
- 2014-04-29 IN IN3242CHN2014 patent/IN2014CN03242A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002345211A (ja) * | 2001-05-17 | 2002-11-29 | Mitsubishi Electric Corp | 電動式パワーステアリング装置 |
JP2007062433A (ja) * | 2005-08-29 | 2007-03-15 | Mitsubishi Electric Corp | 電動式パワーステアリング装置 |
JP2007288929A (ja) * | 2006-04-17 | 2007-11-01 | Fujitsu Ten Ltd | 電動モータ |
WO2009125506A1 (ja) * | 2008-04-07 | 2009-10-15 | 三菱電機株式会社 | 制御装置一体型電動パワーステアリング装置用モータおよび電動パワーステアリング装置 |
JP2009274489A (ja) * | 2008-05-12 | 2009-11-26 | Jtekt Corp | 車両用操舵装置 |
WO2010007672A1 (ja) | 2008-07-16 | 2010-01-21 | 三菱電機株式会社 | 電動パワーステアリング装置、及び制御装置一体型電動機 |
JP2011217546A (ja) * | 2010-04-01 | 2011-10-27 | Hitachi Automotive Systems Ltd | パワーモジュール及びそれを用いた電力変換装置 |
JP2011228379A (ja) * | 2010-04-16 | 2011-11-10 | Denso Corp | 半導体モジュール、及び、それを用いた電動装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2805872B1 (en) | 2018-12-26 |
EP3403903B1 (en) | 2019-07-10 |
IN2014CN03242A (ja) | 2015-07-03 |
US20140239780A1 (en) | 2014-08-28 |
JP5518106B2 (ja) | 2014-06-11 |
CN103930333B (zh) | 2016-10-12 |
EP3403901B1 (en) | 2021-04-21 |
EP3403903A1 (en) | 2018-11-21 |
EP3403902A1 (en) | 2018-11-21 |
EP3403901A1 (en) | 2018-11-21 |
CN103930333A (zh) | 2014-07-16 |
EP2805872A4 (en) | 2016-04-20 |
EP3403902B1 (en) | 2020-03-11 |
EP2805872A1 (en) | 2014-11-26 |
JP2013147050A (ja) | 2013-08-01 |
US10017203B2 (en) | 2018-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5518106B2 (ja) | 一体型電動パワーステアリング装置 | |
JP5634610B2 (ja) | 電動式駆動装置 | |
JP5946962B2 (ja) | 電力変換装置 | |
WO2012060123A1 (ja) | 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置 | |
JP6183314B2 (ja) | 電子装置及びそれを備えた駆動装置 | |
WO2009125506A1 (ja) | 制御装置一体型電動パワーステアリング装置用モータおよび電動パワーステアリング装置 | |
WO2013021901A1 (ja) | 電動圧縮機の電気回路耐振構造 | |
JP6505311B2 (ja) | 電動機および換気扇 | |
CN111052570B (zh) | 电动驱动装置及电动助力转向装置 | |
CN110710087A (zh) | 电动驱动装置及电动动力转向装置 | |
WO2016080368A1 (ja) | 電動パワーステアリング用制御装置 | |
JP6248591B2 (ja) | 電子制御ユニット及び電動パワーステアリング装置 | |
JP6068933B2 (ja) | 車両用モータユニット | |
JP6001966B2 (ja) | 車両用モータユニット | |
JP2016213375A (ja) | 放熱基板及びこれを収納する放熱ケース。 | |
JP2017220568A (ja) | 電子部品を実装した基板を配置するための熱伝導材料を誘導するための溝を備えたケース | |
JP2013073957A (ja) | 電動パワーステアリングコントロールユニット | |
JP2016157715A (ja) | 放熱基板及びこれを収納する放熱ケース。 | |
JP2015180155A (ja) | 電動アクチュエータの駆動制御装置 | |
JP2017184294A (ja) | モータの制御装置 | |
JP2001186706A (ja) | モールドモータ及びモールドモータの製造方法及び空気調和機 | |
CN113412571A (zh) | 电动驱动装置以及电动动力转向装置 | |
JP2016058484A (ja) | 電子制御ユニット | |
JP6118052B2 (ja) | 車両用モータユニット | |
JP2017027994A (ja) | 放熱基板及びこれを収納する放熱ケース。 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12866198 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14351967 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012866198 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |