WO2012137333A1 - モールドモジュール、及び電動パワーステアリング装置 - Google Patents

モールドモジュール、及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2012137333A1
WO2012137333A1 PCT/JP2011/058808 JP2011058808W WO2012137333A1 WO 2012137333 A1 WO2012137333 A1 WO 2012137333A1 JP 2011058808 W JP2011058808 W JP 2011058808W WO 2012137333 A1 WO2012137333 A1 WO 2012137333A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
mold module
electric power
mold
power steering
Prior art date
Application number
PCT/JP2011/058808
Other languages
English (en)
French (fr)
Inventor
田中 大輔
浅尾 淑人
大前 勝彦
哲司 渡辺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46968768&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012137333(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/983,727 priority Critical patent/US9123693B2/en
Priority to CN201180068636.4A priority patent/CN103402853B/zh
Priority to EP11863213.2A priority patent/EP2695795B1/en
Priority to JP2013508686A priority patent/JP5705306B2/ja
Priority to EP19169795.2A priority patent/EP3536582B1/en
Priority to PCT/JP2011/058808 priority patent/WO2012137333A1/ja
Publication of WO2012137333A1 publication Critical patent/WO2012137333A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/40247Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10742Details of leads
    • H05K2201/10886Other details
    • H05K2201/10924Leads formed from a punched metal foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10742Details of leads
    • H05K2201/10886Other details
    • H05K2201/10931Exposed leads, i.e. encapsulation of component partly removed for exposing a part of lead, e.g. for soldering purposes

Definitions

  • the present invention relates to a mold module formed by molding a plurality of terminals and a plurality of electronic components mounted on the respective terminals with an insulating resin, and an electric power steering apparatus using the mold module.
  • the electronic components of the power section that constitutes the inverter and electronic relay are mounted on a substrate made of metal, ceramic, etc., and the heat of the electronic component is transferred from the lower surface of the substrate via heat radiation grease.
  • the heat sink is configured to dissipate heat (see, for example, Patent Document 1).
  • the electronic parts of the power section constituting the inverter and the electronic relay are mounted on a substrate made of metal, ceramic, etc., and the electronic components are transmitted from the bottom surface of the substrate via heat radiation grease. Since the heat of the component is radiated to the heat sink, there is a problem that the temperature distribution of each electronic component is not uniform, the thermal resistance of the heat radiation path is increased, and the heat radiation property is deteriorated.
  • the present invention has been made to solve the above-mentioned problems in the conventional apparatus.
  • the temperature distribution of each electronic component such as a semiconductor chip used in an electronic relay or an inverter circuit section is made uniform to dissipate heat.
  • An object of the present invention is to provide a mold module and an electric power steering device that can improve the performance.
  • the mold module according to the present invention is a mold module formed by molding a plurality of terminals forming wiring and a plurality of electronic components mounted on each of the terminals with a mold resin, and the plurality of terminals includes at least the terminals. A part is exposed on the back surface of the mold resin.
  • An electric power steering apparatus controls a reduction mechanism connected to a steering shaft of a vehicle, an electric motor having a rotor shaft connected to the reduction mechanism, and electric power supplied to an armature winding of the electric motor.
  • An electric power steering device comprising: an electric motor control device that generates a predetermined torque in the electric motor, wherein the electric motor control device includes a plurality of terminals that form wiring and a plurality of terminals mounted on the respective terminals.
  • An electronic component is molded with a mold resin, and at least a part of the plurality of terminals is exposed on the back surface of the mold resin, and the mold module has the back surface through a heat transfer resin. It is fixed to the case of the electric motor.
  • an electric power steering apparatus controls a reduction mechanism connected to a steering shaft of a vehicle, an electric motor having a rotor shaft connected to the reduction mechanism, and electric power supplied to an armature winding of the electric motor.
  • An electric power steering device comprising: an electric motor control device that generates a predetermined torque in the electric motor, wherein the electric motor control device includes a plurality of terminals that form wiring and a plurality of terminals mounted on the respective terminals.
  • the mold module is molded with a mold resin, and at least a part of the plurality of terminals is exposed on the back surface of the mold resin, and the mold module includes a ceramic insulating sheet on the back surface. It is fixed to the case of the electric motor.
  • the electric power steering device controls a reduction mechanism connected to a steering shaft of a vehicle, an electric motor having a rotor shaft connected to the reduction mechanism, and electric power supplied to an armature winding of the electric motor.
  • An electric power steering device comprising: an electric motor control device that generates a predetermined torque in the electric motor, wherein the electric motor control device includes a plurality of terminals that form wiring and a plurality of terminals mounted on the respective terminals.
  • An electronic component molded with a mold resin, and at least a part of the plurality of terminals are exposed on the back surface of the mold resin, a heat sink, and a control device case that houses the mold module and the heat sink.
  • the mold module has the back surface through a heat transfer resin. And it is characterized in that it is secured to the serial heatsink.
  • an electric power steering apparatus controls a reduction mechanism connected to a steering shaft of a vehicle, an electric motor having a rotor shaft connected to the reduction mechanism, and electric power supplied to an armature winding of the electric motor.
  • An electric power steering device comprising: an electric motor control device that generates a predetermined torque in the electric motor, wherein the electric motor control device includes a plurality of terminals that form wiring and a plurality of terminals mounted on the respective terminals.
  • An electronic component molded with a mold resin, and at least a part of the plurality of terminals is exposed on the back surface of the mold resin, a heat sink, and a control device case that houses the mold module and the heat sink.
  • the mold module has a ceramic back surface And it is characterized in that it is secured to the heat sink via the insulation sheet.
  • the mold module of the present invention since at least a part of the plurality of terminals is exposed on the back surface of the mold resin, when the mold module is mounted on the electric power steering device, the back surface of the mold module is attached to the case of the motor or By fixing to a heat sink or the like via a heat transfer resin, it is possible to obtain a mold module that reduces the thermal resistance of an electronic component such as a semiconductor chip and enhances the heat dissipation effect, both regularly and transiently.
  • the motor control device includes a plurality of terminals forming wiring and a plurality of electronic components mounted on each of the terminals molded by a mold resin, and the plurality of the plurality of terminals. Since at least a part of the terminal is provided with a mold module exposed on the back surface of the mold resin, the mold module is fixed to the case of the electric motor via the heat transfer resin, so that the transient is also steady. In particular, it is possible to obtain an electric power steering device that reduces the thermal resistance of an electronic component such as a semiconductor chip and increases the heat dissipation effect.
  • the electric motor control device includes a plurality of terminals forming wiring and a plurality of electronic components mounted on the respective terminals molded by a mold resin, and the plurality of the plurality of terminals. Since at least a part of the terminal is provided with a mold module that is exposed on the back surface of the mold resin, the back surface of the mold module is fixed to the case of the motor via a ceramic insulating sheet. While maintaining the thickness of the insulation sheet, the spacing is stabilized, and the insulation between the mold module and the motor case is improved even when conductive foreign matter is mixed in, the lower surface of the mold module or the case of the motor is deformed, and burrs are generated. Insulation reliability can be improved. .
  • the motor control device includes a plurality of terminals forming wiring and a plurality of electronic components mounted on each of the terminals molded by a mold resin, and the plurality of the plurality of terminals.
  • the mold module includes a heat transfer resin on the back surface. Therefore, an electric power steering apparatus can be obtained that reduces the thermal resistance of electronic components such as semiconductor chips and increases the heat dissipation effect, both regularly and transiently.
  • the electric motor control device includes a plurality of terminals forming wiring and a plurality of electronic components mounted on the respective terminals molded by a mold resin, and the plurality of the plurality of terminals.
  • the mold module has an insulating back surface made of ceramic. Since it is fixed to the heat sink through the sheet, the interval is stabilized by the thickness of the insulating sheet while maintaining high thermal conductivity, and when the conductive foreign matter is mixed, the lower surface of the mold module or the heat sink is deformed, or burrs are generated. Mold module etc. It is possible to improve the insulation reliability since it is possible to ensure insulation between the heat sink and.
  • 1 is a cross-sectional view of an electric power steering device according to Embodiment 1 of the present invention.
  • 1 is a cross-sectional view of a controller-integrated electric motor in an electric power steering apparatus according to Embodiment 1 of the present invention. It is a side view which shows the side by the side of the electric motor side of the deceleration mechanism side case in the electric power steering apparatus by Embodiment 1 of this invention in the state in which the power mold module and the relay mold module were attached. It is sectional drawing which shows the structure of the mold module used for the electric power steering apparatus by Embodiment 1 of this invention.
  • 1 is a circuit diagram of an electric power steering device according to Embodiment 1 of the present invention.
  • FIG. 1 is a cross-sectional view of an electric power steering apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view of a controller-integrated electric motor in the electric power steering apparatus according to Embodiment 1 of the present invention.
  • the controller-integrated electric motor used in the electric power steering apparatus according to Embodiment 1 is configured as a permanent magnet type synchronous electric motor.
  • an electric power steering apparatus 100 includes a controller integrated motor 30 that is connected to a steering shaft 10 connected to a handle (not shown) operated by a driver via a speed reduction mechanism 20. It is connected.
  • the controller-integrated electric motor 30 applies assist torque to the steering shaft 10 via the speed reduction mechanism 20 when the driver operates the steering wheel, thereby reducing the driver's steering operation force.
  • the reduction mechanism 20 includes a worm wheel 21 fixed to the steering shaft 10, a worm gear 22 having a worm gear shaft 23 that meshes with the worm wheel 21, and a housing 24.
  • the worm gear shaft 23 is spline-coupled to the rotor shaft 43 of the controller-integrated electric motor 30 by a boss 31 as a coupling fixed to the end of the rotor shaft 43 of the controller-integrated electric motor 30.
  • the controller-integrated electric motor 30 includes an electric motor unit 40 including a stator 41, a rotor 42, and a three-phase stator winding (hereinafter simply referred to as a stator winding) 413 as an armature winding, and an electric motor drive circuit.
  • a control device unit 50 as an electric motor control device and a reduction mechanism side case 60 as a metal case.
  • the stator 41 includes a hollow cylindrical stator core 411 formed by laminating a plurality of electromagnetic steel plates, and a stator winding wound around the stator core 411 via a resin insulator 412. 413.
  • the stator core 411 is press-fitted and fixed to the inner surface side of an iron cylindrical frame 414.
  • the frame 414 includes a bottom portion 4141 at one end portion in the axial direction, and a rear bearing box 4142 is formed at the center of the bottom portion 4141.
  • a rear bearing 431 formed by a ball bearing is press-fitted and fixed to the inner peripheral surface of the rear bearing box 4142 of the frame 414.
  • the other end portion in the axial direction of the frame 414 is opened, and an inlay portion 4143 for coupling to the motor-side case 51 is formed at the peripheral edge portion of the opened other end portion.
  • the frame 414 has an inlay portion 4143 fitted into a step portion formed on the outer peripheral surface of one end portion in the axial direction of the motor-side case 51, and is fixed to the motor-side case 51 by screws (not shown).
  • the above-mentioned motor side case 51 is formed of an aluminum alloy die-cast product, and the other axial end is coupled to the axial end of the speed reduction mechanism side case 60.
  • the stator winding 413 includes U-phase, V-phase, and W-phase windings.
  • the stator winding 413 is Y-connected by a winding terminal 416 accommodated in a resin terminal holder 415. .
  • the stator winding 413 may be ⁇ -connected.
  • the rotor 42 includes the above-described rotor shaft 43 and a rotor magnetic pole 422 made of a permanent magnet fixed to the outer periphery of the rotor shaft 43.
  • One end of the rotor shaft 43 is rotatably supported by the aforementioned rear bearing 431.
  • the rotor magnetic pole 422 rotates in synchronization with the rotation of the rotating magnetic field generated when the three-phase alternating current is supplied to the stator winding 413.
  • the speed reduction mechanism side case 60 is formed of an aluminum alloy die-cast product, and includes an inner wall portion 601 extending in a direction perpendicular to the axial direction.
  • a front bearing box 602 is formed at the center of the inner wall 601.
  • a front bearing 432 formed by a ball bearing is press-fitted and fixed to the inner peripheral surface of the front bearing box 602.
  • the speed reduction mechanism side case 60 and the housing 24 of the speed reduction mechanism 20 are configured such that an inlay portion 603 formed at one end in the axial direction of the speed reduction mechanism side case 60 is fitted to the inner peripheral surface of the housing 24 of the speed reduction mechanism 20. (Not shown) are integrally fixed.
  • a rotation sensor 70 constituted by a resolver is provided at the center of the internal space of the speed reduction mechanism side case 60.
  • the rotation sensor 70 includes a stator 71 fixed to an inner peripheral portion of a terminal mold portion 56 (described later) fixed to the inside of the speed reduction mechanism side case 60, and a rotor 72 fixed to the outer peripheral surface of the rotor shaft 31. With.
  • the detection winding provided on the stator 71 of the rotation sensor 70 generates a rotation detection signal corresponding to the rotation speed of the rotor 72 and thus the rotation speed of the rotor 42 of the electric motor 40.
  • the control device unit 50 includes a control device unit internal space communicating with the internal space of the electric motor unit 40, and a control board made of glass epoxy resin in which the microcomputer 531 and the FET drive circuit 532 are mounted in the control device unit internal space. 53, and three power mold modules 541, 542, 543 (in which two power semiconductor chips constituted by power MOSFETs, one relay semiconductor chip, and one shunt resistor are respectively mounted and built-in) In FIG. 2, only 541 is displayed), and one relay mold module 55 on which two relay semiconductor chips are mounted is housed. Details of mounting and incorporation of the semiconductor switch elements and the like in the three power mold modules 541, 542, and 543 and one relay mold module 55 will be described later.
  • the power mold modules 541, 542, and 543 and the relay mold module 55 may be collectively referred to simply as a mold module.
  • FIG. 3 is a side view showing the electric motor side surface of the speed reduction mechanism side case in the electric power steering apparatus according to Embodiment 1 of the present invention in a state where the power mold module and the relay mold module are attached.
  • the three power mold modules 541, 542, and 543 are provided corresponding to the U-phase, V-phase, and W-phase windings of the stator winding 413, respectively.
  • the modules 541, 542, and 543 are arranged almost evenly radially around the rotor shaft 43 as shown in FIG.
  • the relay mold module 55 is located between the power mold modules 541 and 543 and arranged in the upper part of the figure. These power mold modules 541, 542, and 543 and the relay mold module 55 are closely fixed to the electric motor side wall surface of the inner wall 601 of the speed reduction mechanism side case 60. The power mold modules 541, 542, and 543 and the relay mold module 55 may be closely fixed to the speed reducer side wall surface of the inner wall portion 601 of the speed reducer side case 60.
  • the power mold module and the relay mold module described above constitute the mold module of the present invention.
  • the configuration of the power mold module 541, 542, 543 will be described in detail with the power mold module 541 as a representative. Since the configuration of the power mold modules 542 and 543 is the same as that of the power mold module 541, description thereof is omitted.
  • the power mold module 541 includes a power semiconductor chip 541a constituting the U-phase upper arm of the three-phase bridge circuit constituting the motor drive circuit and a power semiconductor chip constituting the U-phase lower arm. 541b, one relay semiconductor chip 541c inserted between the U-phase winding of the stator winding 413 and the U-phase output terminal of the three-phase bridge circuit, a power semiconductor chip 541b, and a power supply GND
  • One shunt resistor 541d inserted therebetween is directly mounted on a lead frame / die pad portion 5411 of a copper lead frame 5410 having high conductivity and high heat conductivity by solder.
  • the power semiconductor chips 541a and 541b, the relay semiconductor chip 541c, and the shunt resistor 541d may be collectively referred to simply as elements.
  • the lead frame 5410 is connected to an external power source, a power supply GND, and a motor power line in addition to the above-described lead frame / die pad portion 5411.
  • a lead frame terminal portion 5413 directly connected to an element for inputting / outputting signals to / from the outside, and a large current line between elements such as the power semiconductor chip 541b or the relay semiconductor chip 541c directly inside the mold module 541 It consists of a power terminal unit 5414 to be connected.
  • a plurality of lead frame terminal portions 5413 are led out of the mold module and connected to a control board 53 made of glass epoxy resin on which a microcomputer 531 and an FET drive circuit 532 are mounted.
  • the lead frame power line lead-out portion 5412 led out of the mold module 541 dissipates heat and is directly connected to a power terminal 561 of a terminal mold portion 56 (see FIG. 2) to be described later.
  • the heat is dissipated by heat conduction.
  • the surface opposite to the mounting surface of the lead frame / die pad portion 5411 on which the element is mounted forms a heat radiating surface so that substantially the entire surface is exposed from the bottom surface of the mold resin.
  • the heat generation is radiated to the speed reduction mechanism side case 60 side having a heat sink function.
  • FIG. 4 is a cross-sectional view showing a configuration of a mold module used in the electric power steering apparatus according to Embodiment 1 of the present invention, and shows a power mold module 541.
  • FIG. 4 is a cross-sectional view of the power mold module 541 attached to the speed reduction mechanism side case 60 having a heat sink function.
  • each element of the lead frame die pad portion 5411 directly mounting the power semiconductor chips 541a and 541b (not shown), the relay semiconductor chip 541c, and the shunt resistor 541d (not shown).
  • the rear surface which is the surface opposite to the surface, is exposed from the mold resin 554 to form a heat radiating surface, and has high thermal conductivity filled between the inner wall portion 601 of the speed reduction mechanism side case 60 having a heat sink function, and The heat generation of the element is radiated to the speed reduction mechanism side case 60 side having a heat sink function through an adhesive 555 as an electrically insulating heat transfer resin.
  • the power mold module 541 including the power semiconductor chips 541a and 541b, the relay semiconductor chip 541c, the shunt resistor 541d, the lead frame 5410, and the like is molded and fixed integrally with a resin molding agent 554 as a molding resin.
  • the thermal balance inside the module is achieved by heat conduction of the resin molding agent 554.
  • each element on the lead frame / die pad portion 5411 generates heat corresponding to the power loss.
  • the heat radiation from the back surface of the lead frame / die pad 5411 The thermal resistance can be reduced as the area of the lead frame die pad 5411 on which the element is mounted is larger.
  • the part corresponding to the back surface of the power mold module 541 in the speed reduction mechanism side case 60 is formed to be thicker than the other parts, so that the heat capacity is increased, and the heat dissipation is improved.
  • the film thickness of the adhesive 555 that is, the distance between the lead frame die pad part 5411 and the inner wall part 601 of the speed reduction mechanism side case 60 is the surface facing the back surface of the power mold module 541, that is, the inner wall part 601 of the speed reduction mechanism side case 60.
  • the resin-made convex portions 556 formed in the step abut on the inner wall portion 601 of the speed reduction mechanism side case 60, so that a constant interval is maintained. As a result, a necessary insulation interval is stably maintained, and insulation between the speed reduction mechanism side case 60 and the power mold module 541 is ensured.
  • the highly heat-conductive and electrically insulating adhesive 555 contains a filler 5551 which is heat-conductive particles for enhancing heat conduction.
  • the source pads of the power semiconductor chip 541a and the relay semiconductor chip 541c are directly connected by a metallic power terminal portion 5414 having high conductivity and high thermal conductivity corresponding to large current conduction, and heat is generated due to resistance loss of the connection portion. And the whole is molded with the resin molding agent 554 to achieve thermal balance inside the module by heat conduction of the resin.
  • the lead frame / die pad unit 5411 is formed integrally with the lead frame / power line deriving unit 5412 and directly and electrically connects the power mold module 541 and an external circuit via the lead frame / power line deriving unit 5412. In addition, the heat dissipation to the outside of the power mold module 541 is performed by heat conduction.
  • the relay mold module 55 includes two relay semiconductor chips 551 and 552 that are inserted between the positive-side DC terminal of the above-described three-phase bridge circuit and a battery serving as a DC power source described later.
  • the relay mold module 55 two relay semiconductor chips 551 and 552 are respectively connected to a lead frame die pad portion 5511 of a metallic lead frame 5510 having high conductivity and high heat conductivity. It is mounted directly by solder.
  • the lead frame 5510 is connected to an external power source, a power source GND, and a motor / power line. Power for directly connecting a large current line between the two relay semiconductor chips 551 and 552 inside the lead frame terminal portion 5513 directly connected to the chip for inputting / outputting signals to / from the outside and the relay mold module 55 -It consists of a terminal part 5514.
  • a plurality of lead frame terminal portions 5513 are led out of the relay mold module 55 and connected to a glass epoxy resin control board 53 (see FIG. 2) on which the microcomputer 531 and the FET drive circuit 532 are mounted.
  • the lead frame power line lead-out portion 5512 radiates heat to the outside of the relay mold module 55 and is directly connected to and electrically connected to a power terminal 561 of the terminal mold portion 56 to be described later. Heat dissipation is also performed.
  • the back surface which is the surface opposite to the mounting surface of the lead frame / die pad portion 5511 on which the element is mounted, is almost entirely exposed from the mold resin to form a heat radiating surface. It has a structure that radiates heat toward the speed reduction mechanism side case 60 side having a function. As in the case of the power mold module 541 described above, the portion of the speed reduction mechanism-side case 60 facing the back surface of the relay mold module 55 is formed thicker than the other portions so that the heat capacity is increased. The heat dissipation is improved.
  • the relay mold module 55 including the relay semiconductor chips 551 and 552, the lead frame 5510, and the like is molded entirely with a resin molding agent that is a mold resin, similarly to the power mold module 541 described above.
  • the internal member is fixed, and the thermal balance inside the module is achieved by the heat conduction of the resin molding agent.
  • the mounting state to the speed reduction mechanism side case 60, the internal structure, heat dissipation to the speed reduction mechanism side case 60 via an adhesive, etc. are omitted because they have the same configuration and effects as the power mold module.
  • a terminal mold portion 56 is integrally formed by insert molding a plurality of copper power terminals 561 into resin. .
  • the terminal mold part 56 is fixed to the speed reduction mechanism side case 60 so as to fix the position while pressing the power mold modules 541, 542, 543 and the relay mold module 55 together on the speed reduction mechanism side case 60 side. Has been.
  • the control board 53 is fixed to the side of the terminal mold portion 56 on the motor side, and is a fixed distance from the power mold modules 541, 542, 543, the relay mold module 55, and the speed reduction mechanism side case 60. Is secured.
  • the power terminal 561 is connected to the power mold modules 541, 542, 543 and the lead frame power line deriving portions 5412, 5512 (see FIG. 3) derived from the relay mold module 55, so that each power terminal
  • the terminal mold portion 56 includes three capacitors 81, 82, and 83 (only 81 is shown in FIG. 2) for absorbing the ripple of the current flowing through the stator winding 413 of the motor portion 40. ), A coil 84 for preventing noise is mounted, and is electrically connected to the power terminal 561.
  • the power connector 90 fixed to the speed reduction mechanism side case 60 is electrically connected to the power terminal 561 and is three-phased via the semiconductor switch elements 551 and 552 mounted on the relay mold module 55 described above. Connected to the positive side DC terminal of the bridge circuit, led out of the speed reduction mechanism side case 60, and connected to a battery as a DC power source.
  • FIG. 5 is a circuit diagram of the electric power steering apparatus according to Embodiment 1 of the present invention.
  • the stator winding 413 is Y-connected by the winding terminal 416 as described above.
  • one power semiconductor chip 541a constitutes the U-phase upper arm of the three-phase bridge circuit
  • the other power semiconductor chip 541b constitutes a U-phase lower arm.
  • the other end of the power semiconductor chip 541a is connected to a ripple absorbing capacitor 81 and a noise blocking coil 84, and the other end of the power semiconductor chip 541b is connected to the power supply GND via a shunt resistor 541d.
  • the connection point at which one ends of the power semiconductor chips 541a and 541b are connected is the U-phase AC terminal side of the three-phase bridge circuit.
  • the relay semiconductor chip 541c mounted on the power mold module 541 has one end connected to the U-phase AC terminal and the other end connected to the U-phase terminal of the stator winding 413.
  • one power semiconductor chip 542a constitutes the W-phase upper arm of the three-phase bridge circuit
  • the other The arm semiconductor chip 542b constitutes the W-phase lower arm.
  • the other end of the power semiconductor chip 542a is connected to a ripple absorbing capacitor 82 and a noise blocking coil 84, and the other end of the power semiconductor chip 542b is connected to the power supply GND via a shunt resistor 542d.
  • the connection point at which one ends of the power semiconductor chips 542a and 542b are connected is the W-phase AC terminal side of the three-phase bridge circuit.
  • the relay semiconductor chip 542c mounted on the power mold module 542 has one end connected to the aforementioned W-phase AC terminal and the other end connected to the W-phase terminal of the stator winding 413.
  • one power semiconductor chip 543a constitutes the V-phase upper arm of the three-phase bridge circuit, and the other The power semiconductor chip 543b constitutes a V-phase lower arm.
  • the other end of the power semiconductor chip 543a is connected to a ripple absorbing capacitor 83 and a noise blocking coil 84, and the other end of the power element 543b is connected to the power supply GND via a shunt resistor 543d.
  • the connection point at which one ends of the power semiconductor chips 543a and 543b are connected is the W-phase AC terminal side of the three-phase bridge circuit.
  • the relay semiconductor chip 543d mounted on the power mold module 543 has one end connected to the V-phase AC terminal and the other end connected to the V-phase terminal of the stator winding 413.
  • One end of the pair of relay semiconductor chips 551 and 552 mounted on the relay mold module 55 is connected to each other, and the other end of the one relay semiconductor chip 551 is connected to the positive electrode of the three-phase bridge circuit via the coil 84.
  • the other relay semiconductor chip 552 is connected to the battery 85 mounted on the vehicle via the connector 90 (see FIGS. 1 and 2).
  • the FET drive circuit 532 mounted on the control board 53 has the output terminals of the power semiconductor chips 541a, 541b, 542a, 542b, 543a, 543b, the relay semiconductor chips 541c, 542cc, 543c, and the relay semiconductor.
  • the gates of the chips 551 and 552 are connected to each other, and a gate driving signal is given to each of these gates at a predetermined timing.
  • the microcomputer 531 mounted on the control board 53 controls the output timing of the gate drive signal output from the FET drive circuit 532 based on the rotation detection signal from the rotation sensor 70 described above.
  • a torque detection apparatus (not shown) is provided.
  • the steering torque is detected and input to the microcomputer 531.
  • a rotation detection signal corresponding to the steering rotation speed detected by the rotation sensor 70 is input to the microcomputer 531.
  • the microcomputer 531 calculates an assist torque based on the input steering torque, steering rotational speed, vehicle speed signal, and the like, and applies torque for applying the assist torque to the steering shaft 10 via the speed reduction mechanism 20.
  • the three-phase bridge circuit which is an electric motor drive circuit is controlled so that the unit 40 is generated.
  • the FET drive circuit 532 generates a gate drive signal at a predetermined timing based on a command from the microcomputer 531 and outputs each power semiconductor chip 541a, 541b, 542a, 542b, 543a, 543b of the three-phase bridge circuit. Control continuity.
  • the three-phase bridge circuit generates predetermined three-phase AC power, supplies the three-phase AC current to the stator winding 413 of the motor unit 40, and drives the motor unit 40. Torque generated by the electric motor unit 40 is applied as assist torque to the steering shaft 10 via the speed reduction mechanism 20. Thereby, the steering force by the driver is reduced.
  • an abnormality of ON failure has occurred in one or a plurality of power elements among the power semiconductor chips 541a, 541b, 542a, 542b, 543a, 543b constituting the three-phase bridge circuit that is an electric motor driving circuit. Then, a normal three-phase alternating current is not supplied to the stator winding 413, and the operation of the electric motor unit 40 becomes abnormal, which may cause danger to the operation of the vehicle.
  • the FET drive circuit 532 is inserted between the positive electrode side DC terminal of the three-phase bridge circuit and the battery 85 based on a command from the microcomputer 531.
  • Relay semiconductor chips 541c, 542c which are connected between the AC output terminal of the three-phase bridge circuit and each phase winding of the stator winding 413, while stopping the gate drive signal to the relay semiconductor chips 551, 552, The gate drive signal to 543c is stopped.
  • the three-phase bridge circuit as the electric motor drive circuit provided in the control unit 50 is disconnected from the battery 85 and stops operating, and the stator winding 413 is disconnected from the three-phase bridge circuit. Since the stator winding 413 is disconnected from the three-phase bridge circuit, the stator winding 413 is not short-circuited by the failed power semiconductor chip. Therefore, the braking force in the direction opposite to the steering direction is applied to the motor unit 40. Therefore, it is possible to prevent an abnormal situation such as the occurrence of the occurrence of difficulty in the steering wheel operation.
  • the gate drive signals to the relay semiconductor chips 551 and 552 and the relay semiconductor chips 541c, 542c, and 543c may be stopped in the same manner as described above when a failure other than the power semiconductor chip occurs. Furthermore, depending on the failure state of the power semiconductor chip or the failure state other than the power semiconductor chip, only one of the semiconductor switches of the relay semiconductor chips 551 and 552 and the relay semiconductor chips 541c, 542c, and 543c is connected. The gate drive signal may be stopped.
  • the switch connected between the DC terminal on the positive side of the three-phase bridge circuit and the battery 85, the AC output terminal of the three-phase bridge circuit, and the stator winding 413 are connected.
  • Both of the switches are constituted by relay semiconductor chips, but only one of these switches may be constituted by a relay semiconductor chip and the other may be constituted by a mechanical relay or the like.
  • the semiconductor chip as the heating element includes the resin-molded relay mold module 55 and the power mold module 541. 542, 543, and the mold module directly connects the lead frame / power line deriving portions 5412, 5512 to be signal lines to the semiconductor chip, and the semiconductor chip is directly connected to the surfaces of the lead frame / die pad portions 5411, 5511.
  • the heat sink is formed so that the entire back surface of the lead frame / die pad portions 5411 and 5511 is exposed, and the heat is dissipated via the adhesive 555 to the speed reduction mechanism side case 60 having a function as a heat sink.
  • the speed reduction mechanism side case 60 having a heat sink function has a thick back surface portion of the mold module. Can be improved.
  • the power mold module on which the semiconductor switch element and the power element are mounted is divided into three parts for each phase, so that the case is mounted.
  • the power mold module for each phase can be freely arranged, space can be used effectively, and the apparatus can be miniaturized. Further, since the three power mold modules are arranged radially around the rotor shaft of the motor unit, the projected area viewed from the rotor shaft direction can be further reduced. Embodiment 2.
  • FIG. 6 is a cross-sectional view showing the configuration of a mold module used in the electric power steering apparatus according to Embodiment 2 of the present invention.
  • the power semiconductor chips 541a, 542a, 543a, 541b, 542b, and 543b and the relay semiconductor chips 541c, 542c, and 543c each have a power loss generated to drive the electric power steering device.
  • the temperature of each element can be averaged by changing the ratio of the lead frame / die pad area to the magnitude of the loss.
  • the lead frame die pad portion on which the relay semiconductor chip 541c is mounted in order to make the temperature of the relay semiconductor chip 541c having a loss ratio larger than that of the power semiconductor chip 541a uniform, the lead frame die pad portion on which the relay semiconductor chip 541c is mounted.
  • the area ratio of 5411 is configured to be larger than the area ratio of the lead frame die pad portion 5411 on which the power semiconductor chip 541a is mounted.
  • the area ratio of the lead frame die pad is changed to achieve uniform temperature. be able to.
  • FIG. 7 is a cross-sectional view showing a configuration of a mold module used in the electric power steering apparatus according to Embodiment 3 of the present invention.
  • the power semiconductor chips 541a, 542a, 543a, 541b, 542b, 543b and the relay semiconductor chips 541c, 542c, 543c are mounted on the surface of the lead frame / die pad portions 5411, 5511, but the lead frame / die pad portion 5411, By increasing the thickness of 5511, the heat capacity can be increased and the heat conduction can be improved. In FIG. 7, among the mounted semiconductor chips, the thickness of the lead frame / die pad portion 5411 on which the relay semiconductor chip 541c having a large loss is mounted is increased.
  • the thickness of the lead frame / die pad portion on which the element is mounted is set according to the magnitude of the loss of each built-in element. Therefore, the temperature of each element can be made uniform and heat can be radiated effectively.
  • FIG. 8 is a cross-sectional view showing a configuration of a mold module used in the electric power steering apparatus according to Embodiment 4 of the present invention.
  • the interval of the adhesive layer formed by the adhesive 555 filled between the mold module 541 and the speed reduction mechanism side case 60 having a function as a heat sink is set by the convex portion 556.
  • the filler 5551 which is a heat conductive particle included in the adhesive 555 is used.
  • Embodiment 5. FIG.
  • FIG. 9 is a cross-sectional view showing a configuration of a mold module used in the electric power steering apparatus according to Embodiment 5 of the present invention.
  • the adhesive 555 is filled between the mold module 541 and the speed reduction mechanism side case 60.
  • high thermal conductivity and high strength are used instead of the adhesive.
  • a ceramic insulating sheet 700 is inserted. Accordingly, the interval is stabilized by the thickness of the ceramic insulating sheet 700 while maintaining high thermal conductivity, and when the conductive foreign matter is mixed in, the lower surface of the mold module 541 or the speed reduction mechanism side case 60 is deformed, or burrs are generated.
  • FIG. 10 is a cross-sectional view of a controller-integrated electric motor in an electric power steering apparatus according to Embodiment 6 of the present invention.
  • the controller-integrated electric motor is configured as a permanent magnet type synchronous motor.
  • the speed reduction mechanism side case 600 fixed to the speed reduction mechanism housing 24 is formed of an aluminum alloy die cast product.
  • An inlay portion 6003 formed at the end of the speed reduction mechanism side case 600 is fitted into a housing of a speed reduction mechanism (not shown), and is fixed to the housing with a bolt or the like.
  • a front bearing box 6002 is formed in the speed reduction mechanism side case 600.
  • a front bearing 432 formed by a ball bearing is press-fitted and fixed to the inner peripheral surface of the front bearing box 6002.
  • the rotation sensor 70 constituted by a resolver includes a stator 71 fixed to the speed reduction mechanism side case 60 (see FIG. 1) and a rotor 72 fixed to the outer peripheral surface of the rotor shaft 43.
  • the power mold module 540 of the control unit 50 is disposed in the frame body 520 and is closely fixed to the wall portion 601 (see FIG. 1) of the speed reduction mechanism side case 60.
  • the frame 414 of the electric motor unit 40 has an inlay portion formed at an axially open end thereof fitted to the electric motor side end of the speed reduction mechanism side 600 and is fixed to the speed reduction mechanism side case 600 by screws (not shown). .
  • a control device case 520 as a metal case includes a heat sink 510 having a fin portion 511 and a cover 521.
  • the control device case 520 is disposed and fixed at an upper portion of the speed reduction mechanism side case 600 in the figure.
  • the heat sink 510 serving as the bottom of the control device case 520 is formed of an aluminum alloy, and is fixed to the lower end portion of the side wall portion of the control device case 520 with screws.
  • a heat sink opening 512 having the same shape as the speed reduction mechanism side case opening formed on the upper surface of the speed reduction mechanism side case 600 and having the same center axis as the opening is formed on one side of the heat sink 510.
  • the speed reduction mechanism side case opening and the heat sink opening are arranged so that their central axes coincide with each other and overlap.
  • the mold module 540 includes a power semiconductor chip 541a that constitutes the U-phase upper arm of the three-phase bridge circuit that constitutes the motor drive circuit, and a power semiconductor chip 541b that constitutes the U-phase lower arm.
  • a chip 543b is mounted.
  • the mold module 540 includes a relay semiconductor chip 541c inserted between the U-phase winding of the stator winding and the U-phase output terminal of the three-phase bridge circuit, and a W-phase winding of the stator winding.
  • Relay semiconductor chip 542c inserted between the W-phase output terminal of the three-phase bridge circuit, and relay semiconductor inserted between the V-phase winding of the stator winding and the V-phase output terminal of the three-phase bridge circuit Chip 543c, shunt resistor 541d inserted between power semiconductor chip 541b and power supply GND, shunt resistor 542d inserted between power semiconductor chip 542b and power supply GND, power semiconductor chip 543c and power supply GND And a shunt resistor 543d inserted between and mounted.
  • FIG. 10 does not show a relay mold module including two relay semiconductor chips inserted between the positive side DC terminal of a three-phase bridge circuit as an electric motor drive circuit and an external battery.
  • the relay mold module may be integrated with the power mold module 540, or may be fixed as a separate module in contact with the heat sink 510 in the same manner as the power mold module 540, or the speed reduction mechanism side case. It may be fixed in contact with the inner wall surface of 600.
  • the control board 53 on which the microcomputer 531 and the FET drive circuit 532 are mounted is fixed to the upper end portion of the control device 520 with a space from the power mold module 540 inside the control device case 520.
  • Three bus bars 91, 92, 93 (only 91 is shown in the figure) connected to the U-phase, V-phase, and W-phase terminals of the stator winding 413 of the motor unit 40 are the above-described speed reduction mechanism side case opening. Are led out from the heat sink opening 512 to the inside of the control device case 520 and connected to the relay semiconductor chip connected to the AC terminal of the three-phase bridge circuit.
  • the above-described bus bars 91, 92, 93 are fixed to the base 931 fixed to the terminal holder 415 with screws 921.
  • the detection winding provided on the stator of the rotation sensor 70 constituted by a resolver is connected to a control device side connector (not shown) provided in the control device case 520 via a signal connection connector 941 (not shown). Connected).
  • the control device side connector is connected to a microcomputer 531 mounted on the control board 53.
  • Other configurations are the same as those of the first embodiment.
  • a single power mold module 540 includes power semiconductor chips for all phases of the U phase, the V phase, and the W phase, and motor fixing. Since all the relay semiconductor chips that cut off the conduction of the child windings, or the power mold module and the relay mold module are separately mounted, the power mold module 1 is compared with the power steering device according to the first embodiment. It is sufficient to mount one or two pieces on the electric power steering apparatus, and wiring between each power element can be performed in one or two power mold modules. Workability is improved and cost reduction is effective.
  • control device case 520 mounted with the power mold module is provided outside the speed reduction mechanism side case 600, the parts of the motor unit 40 and the parts of the control unit 50 are not mixed, Design that specializes in the functions of
  • the heat sink fin 511 may be provided on the outer wall surface of the speed reduction mechanism side case 60 protruding from the housing 24 of the speed reduction mechanism, or the wall portion of the metal case may be formed thick. Thereby, heat radiation of the power mold module fixed in contact with the metal case can be effectively performed.
  • FIG. 11 is a cross-sectional view of an electric power steering apparatus according to Embodiment 7 of the present invention.
  • the arrangement configuration of the controller-integrated electric motor 30 is such that the controller 50 including the motor drive circuit is in contact with the speed reduction mechanism 20 and the motor unit 40 is in contact with the other end.
  • the motor unit 40 is in contact with the speed reduction mechanism 20 and the control unit 50 including the motor drive circuit is in contact with the other end. It has a structure.
  • the electric motor unit 40 has a heat capacity with respect to the heat generated by the control unit 50, and also serves as a heat dissipation and heat conduction path, and generates heat when heated to the speed reduction mechanism 20 side. There is an effect of cooling the control unit 50 incorporating the.
  • the mold module according to the present invention described above has the following features.
  • the mold module according to the present invention is a mold module formed by molding a plurality of terminals forming wiring and a plurality of electronic components mounted on each of the terminals with a mold resin. , At least a part of which is exposed on the back surface of the mold resin.
  • the heat resistance of an electronic component such as a semiconductor chip can be reduced and the heat dissipation effect can be enhanced both in a steady state and in a transient manner.
  • each of the plurality of terminals has a surface area set in accordance with a magnitude of heat loss of the mounted electronic component.
  • the mold module configured in this way, the area ratio of the heat radiation surface on the lower surface side of the die pad portion of the lead frame is changed according to the ratio of the loss power of the built-in electronic component.
  • each of the plurality of terminals has a thickness set in accordance with a magnitude of heat loss of the mounted electronic component.
  • the thickness of the lead frame is changed according to the total loss of the built-in electronic components or the ratio of the power loss of each electronic component.
  • the plurality of terminals are configured by wirings connecting the plurality of electronic components.
  • the power line connection of the internal semiconductor chip is connected by using a copper terminal instead of wire bonding, and the terminal crosses the mold module. This is effective in reducing heat generation and making the temperature distribution in the mold module, the chip, and the terminal uniform.
  • An electric power steering apparatus includes a speed reduction mechanism connected to a steering shaft of a vehicle, an electric motor having a rotor shaft connected to the speed reduction mechanism, and electric power supplied to an armature winding of the electric motor.
  • An electric power steering apparatus comprising: an electric motor control device that controls and generates a predetermined torque in the electric motor, wherein the electric motor control device is mounted on a plurality of terminals that form wiring and each of the terminals
  • a plurality of electronic components are molded with a mold resin, and at least a part of the plurality of terminals is provided on a back surface of the mold resin.
  • the mold module includes a heat transfer resin on the back surface.
  • the electric power steering apparatus configured as described above, it is possible to obtain an electric power steering apparatus that reduces the thermal resistance of an electronic component such as a semiconductor chip and enhances the heat dissipation effect, both regularly and transiently.
  • the case of the electric motor to which the mold module is fixed is a case on the speed reduction mechanism side fixed to the speed reduction mechanism.
  • An electric power steering device that reduces the thermal resistance of an electronic component such as a semiconductor chip and enhances the heat dissipation effect can be obtained both in a steady and transient manner.
  • the case of the electric motor to which the mold module is fixed is a case on the anti-deceleration mechanism side. According to the electric power steering apparatus configured as described above, it is possible to obtain an electric power steering apparatus that reduces the thermal resistance of an electronic component such as a semiconductor chip and enhances the heat dissipation effect, both regularly and transiently.
  • the mold module includes a protrusion protruding from the back surface, and the heat transfer resin is disposed between the case of the electric motor and the back surface of the mold module. A gap formed by the protrusion is filled. According to the electric power steering apparatus configured as described above, the distance of the gap between the lower surface side of the lead frame filled with heat transfer resin and the case of the electric motor can be easily and reliably simply pressed down from the mold module. There is an effect that can be set and held.
  • a filler mixed in the heat transfer resin is provided, and a gap between the case of the electric motor and the back surface of the mold module is secured by the filler. It is characterized by being. According to the electric power steering device configured as described above, the gap between the gaps is kept constant by the filler mixed in the heat transfer resin, so that a special production process facility or mechanism structure is added. There is an effect that the mold module can be easily set and held easily by simply pressing the mold module from above.
  • An electric power steering apparatus includes a speed reduction mechanism connected to a steering shaft of a vehicle, an electric motor having a rotor shaft connected to the speed reduction mechanism, and electric power supplied to an armature winding of the electric motor.
  • An electric power steering apparatus comprising: an electric motor control device that controls and generates a predetermined torque in the electric motor, wherein the electric motor control device is mounted on a plurality of terminals that form wiring and each of the terminals
  • a plurality of electronic components are molded with a mold resin, and a mold module is formed in which at least a part of the plurality of terminals is exposed on the back surface of the mold resin.
  • the mold module includes a ceramic insulating sheet on the back surface. It is fixed to the case of the electric motor.
  • the interval is stabilized by the thickness of the ceramic insulating sheet while maintaining high heat conduction, and when the conductive foreign matter is mixed, the lower surface of the mold module or the case of the motor Since the insulation between the mold module and the case of the electric motor can be ensured even when deformation or burrs occur, the insulation reliability can be improved. Further, the thermal conductivity can be further enhanced by applying silicon grease for heat radiation between the ceramic insulating sheet and the mold module and between the ceramic insulating sheet and the motor case.
  • An electric power steering apparatus includes a speed reduction mechanism connected to a steering shaft of a vehicle, an electric motor having a rotor shaft connected to the speed reduction mechanism, and electric power supplied to an armature winding of the electric motor.
  • An electric power steering apparatus comprising: an electric motor control device that controls and generates a predetermined torque in the electric motor, wherein the electric motor control device is mounted on a plurality of terminals that form wiring and each of the terminals
  • a mold module in which a plurality of electronic components are molded with a mold resin and at least a part of the plurality of terminals are exposed on the back surface of the mold resin, a heat sink that cools the mold module, the mold module, and the heat sink And a control device case for storing the mold module.
  • Lumpur characterized in that the rear surface is secured to the heat sink via a heat transfer resin.
  • the control device case is fixed to a case on the speed reduction mechanism side of the electric motor.
  • the case of the electric motor having a large heat capacity serves as a heat conduction path to transfer heat to the gear side to which the electric power steering apparatus is attached, thereby increasing the effect of cooling the power circuit. Can do.
  • the heat sink includes a heat sink opening formed at a position corresponding to a speed reduction mechanism side case opening formed in the case on the speed reduction mechanism side.
  • the bus bar connected to the armature winding of the motor extends from the inside of the case on the speed reduction mechanism side of the electric motor to the inside of the control device case via the speed reduction mechanism side case opening and the heat sink opening, and the control device case It is connected to the mold module inside.
  • the mold module includes a convex portion protruding from the back surface
  • the heat transfer resin includes the protrusion between the heat sink and the back surface of the mold module. It fills in the clearance gap formed by. According to the electric power steering apparatus configured as described above, the distance between the lower surface side of the lead frame filled with heat transfer resin and the heat sink can be easily and reliably set by simply pressing the mold module from above. There is an effect that can be held.
  • the electric power steering device includes a filler mixed in the heat transfer resin, and a gap between the heat sink and the back surface of the mold module is secured by the filler. And Because the gap distance is kept constant by the filler mixed in the heat transfer resin, it is easy and reliable just by pressing the mold module from the top without adding any special production equipment or mechanism structure. There is an effect that can be set and held.
  • An electric power steering apparatus includes a speed reduction mechanism connected to a steering shaft of a vehicle, an electric motor having a rotor shaft connected to the speed reduction mechanism, and electric power supplied to an armature winding of the electric motor.
  • An electric power steering apparatus comprising: an electric motor control device that controls and generates a predetermined torque in the electric motor, wherein the electric motor control device is mounted on a plurality of terminals that form wiring and each of the terminals
  • a mold module in which a plurality of electronic components are molded with a mold resin, and at least a part of the plurality of terminals are exposed on the back surface of the mold resin, a heat sink, and a control device case that houses the mold module and the heat sink
  • the mold module has a ceramic back surface Characterized in that it is fixed to the heat sink via the insulation sheet.
  • the interval is stabilized by the thickness of the ceramic insulating sheet while maintaining high heat conduction, and when the conductive foreign matter is mixed, the lower surface of the mold module or the case of the heat sink Since the insulation between the mold module and the heat sink can be ensured even when deformation or burrs occur, the insulation reliability can be improved. Further, by applying a heat-dissipating silicon grease between the ceramic insulating sheet and the mold module and between the ceramic insulating sheet and the heat sink, the thermal conductivity can be further increased.
  • the mold module includes a power semiconductor chip of a power conversion circuit that converts DC power from a DC power source into AC power and supplies the AC power to the armature winding. It is characterized by that.
  • the electric power steering apparatus configured as described above, since it is possible to adopt a structure in which at least one phase upper and lower arms are built in the inverter circuit constituting the power conversion circuit, there is an effect of equalizing the temperature of the upper and lower arms. is there.
  • the mold module includes a relay semiconductor chip that can cut off the electric motor from a power source. According to the electric power steering apparatus configured as described above, there is an effect that it is possible to realize an electronic relay for the electric power steering apparatus with improved temperature uniformity and heat dissipation.
  • the electric motor is a control device-integrated electric motor equipped with the electric motor control device, and the electric motor control device extends an axis of a rotor shaft of the electric motor. It is arranged in a direction.
  • the motor control apparatus including the power circuit and the electric motor are integrated into a structure that is thermally coupled to each other. Therefore, the case of the electric motor having a large heat capacity becomes the heat conduction path. Can effectively dissipate heat. Further, by attaching the motor control device to the speed reduction mechanism side, there is an effect that heat can be transferred to the speed reduction mechanism side to effectively cool the power circuit and the like.
  • the electric motor is a control device-integrated electric motor equipped with the electric motor control device, and the electric motor control device is parallel to the axis of the rotor shaft of the electric motor. It is arrange
  • the mold module and the electric power steering device according to the present invention are used in the field of steering devices in the automobile industry.

Abstract

【課題】電子リレーやインバータ回路部で使用される半導体チップ等の各電子部品の温度分布を均一化し、放熱性を向上させ得るモールドモジュール、及び電動パワーステアリング装置を提供する。 【解決手段】この発明によるモールドモジュール、及び電動パワーステアリング装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とをモールド樹脂によりモールディングし、前記複数のターミナルは、その少なくとも一部分が前記モールド樹脂の裏面に露出しているモールドモジュール、及びこれを用いた電動パワーステアリング装置である。

Description

モールドモジュール、及び電動パワーステアリング装置
 この発明は、複数のターミナルとその夫々のターミナルに実装された複数の電子部品とを絶縁樹脂によりモールディングしてなるモールドモジュール、及びそのモールドモジュールを用いた電動パワーステアリング装置に関するものである。
 従来の電動パワーステアリング装置は、インバータや電子リレーを構成するパワー部の電子部品を、金属、セラミック等の基板上に実装し、その基板の下面から放熱グリース等を経由して電子部品の熱をヒートシンクに放熱するように構成されている(例えば、特許文献1参照)。
国際公開WO2010/007672A1号公報
 従来の電動パワーステアリング装置は、前述のようにインバータや電子リレーを構成するパワー部の電子部品を、金属、セラミック等の基板上に実装し、その基板の底面から放熱グリース等を経由して電子部品の熱をヒートシンクに放熱する構造であったため、各電子部品の温度分布が不均一であり、又、放熱経路の熱抵抗が増加し、放熱性が悪化するという課題があった。
 この発明は、従来の装置に於ける前述のような課題を解決するためになされたもので、電子リレーやインバータ回路部で使用される半導体チップ等の各電子部品の温度分布を均一化し、放熱性を向上させ得るモールドモジュール、及び電動パワーステアリング装置を提供することを目的としたものである。
 この発明によるモールドモジュールは、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とをモールド樹脂によりモールディングしてなるモールドモジュールであって、前記複数のターミナルは、その少なくとも一部分が前記モールド樹脂の裏面に露出していることを特徴とするものである。
 又、この発明による電動パワーステアリング装置は、車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールを備え、前記モールドモジュールは、前記裏面が伝熱樹脂を介して前記電動機のケースに固着されていることを特徴とするものである。
 更に、この発明による電動パワーステアリング装置は、車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールを備え、前記モールドモジュールは、前記裏面がセラミック製の絶縁シートを介して前記電動機のケースに固着されていることを特徴とするものである。
 又、この発明よる電動パワーステアリング装置は、車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールと、ヒートシンクと、前記モールドモジュールと前記ヒートシンクを収納する制御装置ケースとを備え、前記モールドモジュールは、前記裏面が伝熱樹脂を介して前記ヒートシンクに固着されていることを特徴とするものである。
 更に、この発明による電動パワーステアリング装置は、車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールと、ヒートシンクと、前記モールドモジュールと前記ヒートシンクを収納する制御装置ケースとを備え、前記モールドモジュールは、前記裏面がセラミック製の絶縁シートを介して前記ヒートシンクに固着されていることを特徴とするものである。
 この発明によるモールドモジュールによれば、複数のターミナルは、その少なくとも一部分がモールド樹脂の裏面に露出しているので、モールドモジュールを電動パワーステアリング装置に搭載するとき、モールドモジュールの裏面を電動機のケース若しくはヒートシンク等に伝熱樹脂を介して固着することにより、定常的にも過渡的にも、半導体チップ等の電子部品の熱抵抗を低減し放熱効果を高めるモールドモジュールを得ることができる。
 又、この発明による電動パワーステアリング装置によれば、電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールを備え、前記モールドモジュールは、前記裏面が伝熱樹脂を介して前記電動機のケースに固着されているので、定常的にも過渡的にも、半導体チップ等の電子部品の熱抵抗を低減し放熱効果を高める電動パワーステアリング装置を得ることができる。
 更に、この発明による電動パワーステアリング装置によれば、電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールを備え、前記モールドモジュールは、前記裏面がセラミック製の絶縁シートを介して前記電動機のケースに固着されているので、高熱伝導を保ちながら絶縁シートの厚みによって間隔の安定化をはかり、また導電性異物の混入時やモールドモジュールの下面または電動機のケースの変形、バリ発生時等にもモールドモジュールと電動機のケース間の絶縁性を確保することができるため絶縁信頼性を高めることができる。
 又、この発明による電動パワーステアリング装置によれば、電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールと、ヒートシンクと、前記モールドモジュールと前記ヒートシンクを収納する制御装置ケースとを備え、前記モールドモジュールは、前記裏面が伝熱樹脂を介して前記ヒートシンクに固着されているので、定常的にも過渡的にも、半導体チップ等の電子部品の熱抵抗を低減し放熱効果を高める電動パワーステアリング装置を得ることができる。
 更に、この発明による電動パワーステアリング装置によれば、電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールと、ヒートシンクと、前記モールドモジュールと前記ヒートシンクを収納する制御装置ケースとを備え、前記モールドモジュールは、前記裏面がセラミック製の絶縁シートを介して前記ヒートシンクに固着されているので、高熱伝導を保ちながら絶縁シートの厚みによって間隔の安定化をはかり、また導電性異物の混入時やモールドモジュールの下面またはヒートシンクの変形、バリ発生時等にもモールドモジュールとヒートシンク間の絶縁性を確保することができるため絶縁信頼性を高めることができる。
この発明の実施の形態1による電動パワーステアリング装置の断面図である。 この発明の実施の形態1による電動パワーステアリング装置に於ける制御装置一体型電動機の断面図である。 この発明の実施の形態1による電動パワーステアリング装置に於ける減速機構側ケースの電動機側の側面を、パワー・モールドモジュールとリレー・モールドモジュールが取り付けられた状態で示す側面図である。 この発明の実施の形態1による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。 この発明の実施の形態1による電動パワーステアリング装置の回路図である。
この発明の実施の形態2による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。 この発明の実施の形態3による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。 この発明の実施の形態4による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。 この発明の実施の形態5による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。 この発明の実施の形態6による電動パワーステアリング装置に於ける制御装置一体型電動機の断面図である。 この発明の実施の形態7による電動パワーステアリング装置の断面図である。
実施の形態1.
 図1はこの発明の実施の形態1による電動パワーステアリング装置の断面図、図2はこの発明の実施の形態1による電動パワーステアリング装置に於ける制御装置一体型電動機の断面図である。この実施の形態1による電動パワーステアリング装置に用いられた制御装置一体型電動機は、永久磁石型同期型電動機として構成されている。
 図1及び図2に於いて、電動パワーステアリング装置100は、運転者により操作されるハンドル(図示せず)に連結されたステアリング軸10に、減速機構20を介して制御装置一体型電動機30が連結されている。制御装置一体型電動機30は、運転者によるハンドル操作時に減速機構20を介してステアリング軸10にアシストトルクを加え、運転者のハンドル操作力を低減する。
 減速機構20は、ステアリング軸10に固定されたウオームホイール21と、このウオームホイール21に噛合するウオームギア軸23を有するウオームギア22と、ハウジング24とを備える。ウオームギア軸23は、制御装置一体型電動機30の回転子軸43の端部に固定されたカップリングとしてのボス31により制御装置一体型電動機30の回転子軸43とスプライン結合されている。
 制御装置一体型電動機30は、固定子41と回転子42と電機子巻線としての3相固定子巻線(以下単に固定子巻線と称する)413とからなる電動機部40と、電動機駆動回路を含む電動機制御装置としての制御装置部50と、金属製のケースとしての減速機構側ケース60とを備える。固定子41は、複数の電磁鋼板を積層して形成された中空の筒状の固定子鉄心411と、この固定子鉄心411に樹脂製の絶縁体412を介して巻回された固定子巻線413とを備える。固定子鉄心411は鉄製の円筒状のフレーム414の内面側に圧入固定されている。
 フレーム414は、その軸方向の一端部に底部4141を備え、この底部4141の中央部にはリアベアリングボックス4142が形成されている。ボールベアリングにより形成されたリアベアリング431は、フレーム414のリアベアリングボックス4142の内周面に圧入固定されている。
 フレーム414の軸方向の他端部は開口しており、その開口した他端部の周縁部には、電動機側ケース51と結合するためのインロー部4143が形成されている。フレーム414は、そのインロー部4143が電動機側ケース51の軸方向の一端部の外周面に形成された段部に嵌合され、ネジ(図示せず)により電動機側ケース51に固定されている。前述の電動機側ケース51は、アルミ合金のダイキャスト形成品によって形成されており、軸方向他端部が減速機構側ケース60の軸方向端部に結合されている。
 固定子巻線413は、U相、V相、W相の各相巻線により構成され、この実施の形態1では樹脂製のターミナルホルダ415に収納された巻線ターミナル416によりY結線されている。尚、固定子巻線413は、Δ結線される場合もある。
 回転子42は、前述の回転子軸43と、この回転子軸43の外周部に固定された永久磁石からなる回転子磁極422を備える。回転子軸43は、その一端部が前述のリアベアリング431により回転自在に支持されている。回転子磁極422は固定子巻線413に3相交流電流が供給されることにより発生する回転磁界の回転に同期して回転する。
 減速機構側ケース60は、アルミ合金のダイキャスト成形品により形成されており、その軸方向に対して直行する方向に延びる内壁部601を備える。この内壁部601の中央部にはフロントベアリングボックス602が形成されている。ボールベアリングにより形成されたフロントベアリング432は、フロントベアリングボックス602の内周面に圧入固定されている。減速機構側ケース60と減速機構20のハウジング24とは、減速機構側ケース60の軸方向の一端部に形成されたインロー部603が減速機構20のハウジング24の内周面に嵌合されてボルト(図示せず)により一体に固定されている。
 減速機構側ケース60の内部空間の中央部には、レゾルバにより構成された回転センサ70が設けられている。回転センサ70は、減速機構側ケース60の内部に固定された後述のターミナル・モールド部56の内周部の固定された固定子71と、回転子軸31の外周面に固定された回転子72とを備える。回転センサ70の固定子71に設けられた検出巻線は、回転子72の回転速度、従って電動機40の回転子42の回転速度に対応した回転検出信号を発生する。
 制御装置部50は、電動機部40の内部空間に連通する制御装置部内空間を備えるとともにその制御装置部内部空間に、マイクロコンピュータ531とFET駆動回路532とが実装されたガラスエポキシ樹脂製の制御基板53と、パワーMOSFETにより構成された2個のパワー半導体チップと1個のリレー半導体チップと1個のシャント抵抗とが各々実装されて内臓された3個のパワー・モールドモジュール541、542、543(図2には541のみ表示されている)と、2個のリレー半導体チップが搭載された1個のリレー・モールドモのジュール55とを収納している。3個のパワー・モールドモジュール541、542、543と、1個のリレー・モールドモジュール55における半導体スイッチ素子等の実装・内蔵の詳細は後述する。
 尚、以下の説明では、パワー・モールドモジュール541、542、543と、リレー・モールドモジュール55とを総称して、単に、モールドモジュール、と称することがある。
 図3は、この発明の実施の形態1による電動パワーステアリング装置に於ける減速機構側ケースの電動機側の側面を、パワー・モールドモジュールとリレー・モールドモジュールが取り付けられた状態で示す側面図である。前述の3個のパワー・モールドモジュール541、542、543は、固定子巻線413のU相、V相、W相の各相巻線に各々対応して設けられており、これらのパワー・モールドモジュール541、542、543は、図3に示すように回転子軸43の周りに放射状にほぼ均等に配置されている。
 リレー・モールドモジュール55は、パワー・モールドモジュール541と543の間に位置して図の上方に配置されている。これらのパワー・モールドモジュール541、542、543とリレー・モールドモのジュール55とは、減速機構側ケース60の内壁部601の電動機側壁面に密着固定されている。尚、パワー・モールドモジュール541、542、543とリレー・モールドモのジュール55とは、減速機側ケース60の内壁部601の減速機側壁面に密着固定してもよい。前述のパワー・モールドモジュールとリレー・モールドモジュールは、この発明のモールドモジュールを構成している。
 次にパワー・モールドモジュール541、542、543の構成について、パワー・モールドモジュール541を代表として詳細に説明する。パワー・モールドモジュール542、543の構成はパワー・モールドモジュール541と同様であるため説明は省略する。
 図3に示すように、パワー・モールドモジュール541には、電動機駆動回路を構成する3相ブリッジ回路のU相上段側アームを構成するパワー半導体チップ541aとU相下段側アームを構成するパワー半導体チップ541bと、固定子巻線413のU相巻線と前述の3相ブリッジ回路のU相出力端子との間に挿入される1個のリレー半導体チップ541cと、パワー半導体チップ541bと電源GNDとの間に挿入される1個のシャント抵抗541dとが、高導電かつ高熱伝導である銅製のリードフレーム5410のリードフレーム・ダイパッド部5411に半田によって直接実装されている。
 尚、パワー半導体チップ541a、541bと、リレー半導体チップ541cと、シャント抵抗541dとを総称して、単に、素子、と称することがある。
 リードフレーム5410は、前述のリードフレーム・ダイパッド部5411の他、外部の電源、電源GND、モータ・パワーラインと接続するために、モールドモジュール541の外部へ導出されるリードフレーム・パワーライン導出部5412と、外部と信号を入出力するために素子と直接接続されたリードフレーム・ターミナル部5413、及びモールドモジュール541の内部でパワー半導体チップ541bあるいはリレー半導体チップ541cなどの素子同士の大電流ラインを直接接続するパワー・ターミナル部5414からなる。
 複数のリードフレーム・ターミナル部5413がモールドモジュール外部に導出されて、マイクロコンピュータ531とFET駆動回路532とが実装されたガラスエポキシ樹脂製の制御基板53へ接続されている。又、モールドモジュール541の外部に導出されたリードフレーム・パワーライン導出部5412は、放熱するとともに、後述するターミナル・モールド部56(図2参照)のパワー・ターミナル561に直接接続されて、電気的に接続するとともに熱伝導による放熱も行われる。
 素子を実装しているリードフレーム・ダイパッド部5411の実装面に対する反対側の面は、後述するように、その略全体がモールド樹脂の底面から露出するように放熱面を形成しており、素子の発熱をヒートシンク機能を有する減速機構側ケース60側に放熱する構造となっている。
 図4は、この発明の実施の形態1による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図であり、パワー・モールドモジュール541を示している。又、図4は、パワー・モールドモジュール541がヒートシンク機能を有する減速機構側ケース60に取り付けられた状態での断面図である。
 図4に於いて、パワー半導体チップ541a、541b(図示せず)、リレー半導体チップ541c、シャント抵抗541d(図示せず)を直接搭載しているリードフレーム・ダイパッド部5411の、各素子の実装面に対する反対側の面である裏面は、その略全体がモールド樹脂554から露出して放熱面を形成し、ヒートシンク機能を有する減速機構側ケース60の内壁部601との間に充填した高熱伝導性かつ電気絶縁性の伝熱樹脂としての接着剤555を介して、素子の発熱をヒートシンク機能を有する減速機構側ケース60側に放熱する構造となっている。
 パワー半導体チップ541a、541b、リレー半導体チップ541c、シャント抵抗541d、リードフレーム5410等を内蔵したパワー・モールドモジュール541は、全体をモールド樹脂としての樹脂モールド剤554によってモールドされて一体に固定されるとともに、樹脂モールド剤554の熱伝導によってモジュール内部の熱的均衡を図っている。
 この構造に於いて、リードフレーム・ダイパッド部5411上の各素子は、各々の電力損失に応じた発熱をするが、この熱の放熱経路のうち、リードフレーム・ダイパッド5411の裏面からの放熱分については、その素子が搭載されているリードフレーム・ダイパッド5411の面積が大きいほど熱抵抗を低減することができる。
 又、減速機構側ケース60の内壁部601との間に充填した接着剤555の厚み、つまり、リードフレーム・ダイパッド5411の裏面と、減速機構側ケース60の内壁部601の間隔、が小さいほど熱抵抗を低減することができる。
 又、減速機構側ケース60に於けるパワー・モールドモジュール541の裏面に対応する部位は、他の部位よりも厚く形成され、熱容量が大きくなるように構成され、放熱性向上が図られている。
 接着剤555の膜厚、即ちリードフレーム・ダイパッド部5411と減速機構側ケース60の内壁部601との間隔は、パワー・モールドモジュール541の裏面つまり減速機構側ケース60の内壁部601に対向する面に形成した樹脂製の凸部556が減速機構側ケース60の内壁部601に当接することにより、一定間隔に保たれる。その結果、安定して必要とする絶縁間隔が保持され、減速機構側ケース60とパワー・モールドモジュール541の絶縁性が確保される。高熱伝導性かつ電気絶縁性の接着剤555は、内部に熱伝導を高めるための熱伝導性の粒子であるフィラー5551を含有している。
 パワー半導体チップ541aとリレー半導体チップ541cのソースバッド間は、大電流通電に対応した高導電かつ高熱伝導である金属性のパワー・ターミナル部5414によって直接接続されており、接続部の抵抗損失による発熱を低減し、かつ全体が樹脂モールド剤554でモールドされることで樹脂の熱伝導によってモジュール内部の熱的均衡を図っている。
 リードフレーム・ダイパッド部5411は、リードフレーム・パワーライン導出部5412と一体に形成されており、パワー・モールドモジュール541と外部回路とをリードフレーム・パワーライン導出部5412を介して直接電気的に接続する構造であるとともに、熱伝導によってパワー・モールドモジュール541の外部への放熱を行なう。
 次に、図3に示すリレー・モールドモジュール55について説明する。リレー・モールドモジュール55は、前述の3相ブリッジ回路の正極側直流端子と後述する直流電源としてのバッテリーとの間に挿入される2個のリレー半導体チップ551、552が実装、内蔵されている。
 図3に示すように、リレー・モールドモジュール55に於いて、2個のリレー半導体チップ551、552が、各々、高導電かつ高熱伝導である金属性のリードフレーム5510のリードフレーム・ダイパッド部5511に半田によって直接実装されている。リードフレーム5510は、上記リードフレーム・ダイパッド部5511の他、外部の電源、電源GND、モータ・パワーラインと接続するために、モールドモジュール55の外部へ導出するリードフレーム・パワーライン導出部5512と、外部と信号を入出力するためにチップと直接接続されるリードフレーム・ターミナル部5513、及びリレー・モールドモジュール55の内部で2個のリレー半導体チップ551、552同士の大電流ラインを直接接続するパワー・ターミナル部5514とからなる。
 複数のリードフレーム・ターミナル部5513がリレー・モールドモジュール55の外部に導出されて、マイクロコンピュータ531とFET駆動回路532とが実装されたガラスエポキシ樹脂製の制御基板53(図2参照)へ接続される。又、リードフレーム・パワーライン導出部5512は、リレー・モールドモジュール55の外部に放熱するとともに、後述するターミナル・モールド部56のパワー・ターミナル561に直接接続されて電気的に接続されるとともに熱伝導による放熱も行われる。
 又、素子を実装しているリードフレーム・ダイパッド部5511の実装面に対する反対側の面である裏面は、その略全体がモールド樹脂から露出して放熱面を形成しており、素子の発熱をヒートシンク機能を有する減速機構側ケース60側に放熱する構造となっている。又、前述のパワー・モールドモジュール541の場合と同様に、減速機構側ケース60に於けるリレー・モールドモジュール55の裏面に対向する部位は、他の部位よりも厚く形成され、熱容量が大きくなるように構成され、放熱性向上が図られている。
 前述のように、リレー半導体チップ551、552、リードフレーム5510等を内蔵したリレー・モールドモジュール55は、前述のパワー・モールドモジュール541と同様に、全体をモールド樹脂である樹脂モールド剤によってモールドされて内蔵部材を固定するとともに樹脂モールド剤の熱伝導によってモジュール内部の熱的均衡を図っている。
 減速機構側ケース60への取り付け状態、内部構造、接着剤を介した減速機構側ケース60への放熱等については、パワー・モールドモジュールと同様の構成、効果であるため省略する。
 次に、図2に於いて、減速機構側ケース60の内部空間には、銅製の複数のパワー・ターミナル561を樹脂にインサート成形して一体的に構成したターミナル・モールド部56が設けられている。ターミナル・モールド部56は、パワー・モールドモジュール541、542、543及びリレー・モールドモジュール55とを一括して減速機構側ケース60側に押さえつけながら、位置を固定するように減速機構側ケース60に固定されている。
 前述の制御基板53は、ターミナル・モールド部56の電動機側の側部に固定され、パワー・モールドモジュール541、542、543とリレー・モールドモジュール55及び減速機構側ケース60とに対して一定の距離が確保されている。
 パワー・ターミナル561は、パワー・モールドモジュール541、542、543及びリレー・モールドモジュール55から導出しているリードフレーム・パワーライン導出部5412、5512(図3参照)と接続することにより、各パワー・モールドモジュール541、542、543に各々設けられている前述のパワー半導体チップ541a、541b、542a、542b、543a、543b、リレー半導体チップ541c、542c、543c等とを電気的に接続している。
 又、ターミナル・モールド部56には、電動機部40の固定子巻線413に流れる電流のリップルを吸収するための3個のコンデンサ81、82、83(図2には81のみが図示されている)、ノイズを阻止するためのコイル84が装着されており、パワー・ターミナル561と電気的に接続されている。
 減速機構側ケース60に固定された電源コネクタ90は、パワー・ターミナル561と電気的に接続されており、前述のリレー・モールドモジュール55に実装されている半導体スイッチ素子551、552を介して3相ブリッジ回路の正極側直流端子と接続されて、減速機構側ケース60外部へ導出され、直流電源としてのバッテリーに接続される。
 次に、前述のように構成された制御装置部50の回路構成について説明する。図5は、この発明の実施の形態1による電動パワーステアリング装置の回路図である。図5に於いて、固定子巻線413は、前述した通り、巻線ターミナル416によりY結線されている。パワー・モールドモジュール541に実装され内蔵されて一端同士が互いに接続された一対のパワー半導体チップ541a及び541bのうち、一方のパワー半導体チップ541aは3相ブリッジ回路のU相上段側アームを構成し、他方のパワー半導体チップ541bはU相下段側アームを構成している。
 又、パワー半導体チップ541aの他端は、リップル吸収用のコンデンサ81とノイズ阻止用のコイル84に接続され、パワー半導体チップ541bの他端は、シャント抵抗541dを介して電源GNDに接続されている。前述のパワー半導体チップ541aと541bの一端同士が接続された接続点は、3相ブリッジ回路のU相交流端子側となる。又、パワー・モールドモジュール541に実装されたリレー半導体チップ541cは、その一端が前述のU相交流端子に接続され、他端が固定子巻線413のU相端子に接続されている。
 パワー・モールドモジュール542に実装、内蔵され一端同士が互いに接続された一対のパワー半導体チップ542a及び542bのうち、一方のパワー半導体チップ542aは3相ブリッジ回路のW相上段側アームを構成し、他方のアーム半導体チップ542bはW相下段側アームを構成している。
 又、パワー半導体チップ542aの他端は、リップル吸収用のコンデンサ82とノイズ阻止用のコイル84に接続され、パワー半導体チップ542bの他端は、シャント抵抗542dを介して電源GNDに接続されている。前述のパワー半導体チップ542aと542bの一端同士が接続された接続点は、3相ブリッジ回路のW相交流端子側となる。又、パワー・モールドモジュール542に実装されたリレー半導体チップ542cは、その一端が前述のW相交流端子に接続され、他端が固定子巻線413のW相端子に接続されている。
 パワー・モールドモジュール543に実装、内蔵され一端同士が互いに接続された一対のパワー半導体チップ543a及び543bのうち、一方のパワー半導体チップ543aは3相ブリッジ回路のV相上段側アームを構成し、他方のパワー半導体チップ543bはV相下段側アームを構成している。
 又、パワー半導体チップ543aの他端は、リップル吸収用のコンデンサ83とノイズ阻止用のコイル84に接続され、パワー素子543bの他端は、シャント抵抗543dを介して電源GNDに接続されている。前述のパワー半導体チップ543aと543bの一端同士が接続された接続点は、3相ブリッジ回路のW相交流端子側となる。又、パワー・モールドモジュール543に実装されたリレー半導体チップ543dは、その一端が前述のV相交流端子に接続され、他端が固定子巻線413のV相端子に接続されている。
 リレー・モールドモジュール55に実装された一対のリレー半導体チップ551、552は、その一端同士が互いに接続されており、その一方のリレー半導体チップ551の他端はコイル84を介し3相ブリッジ回路の正極側直流端子に接続され、他方のリレー半導体チップ552の他端は前述のコネクタ90(図1、図2参照)を介して車両に搭載されたバッテリー85に接続されている。
 制御基板53に実装されたFET駆動回路532は、その出力端子が、前述の各パワー半導体チップ541a、541b、及び542a、542b、及び543a、543b、リレー半導体チップ541c、542cc、543c、及びリレー半導体チップ551、552の各ゲートに接続されており、これらのゲートに各々所定のタイミングでゲート駆動信号を与えるように構成されている。制御基板53に実装されているマイクロコンピュータ531は、前述の回転センサ70からの回転検出信号に基づいてFET駆動回路532が出力するゲート駆動信号の出力タイミングを制御する。
 以上のように構成されたこの発明の実施の形態1による電動パワーステアリング装置100に於いて、運転者がハンドルを操作してステアリング軸10に操舵トルクを加えると、図示していないトルク検出装置がその操舵トルクを検出し、マイクロコンピュータ531に入力する。又、回転センサ70が検出した操舵回転数に対応する回転検出信号がマイクロコンピュータ531に入力される。マイクロコンピュータ531は、入力された操舵トルク、操舵回転数、及び車両の速度信号等に基づいてアシストトルクを演算し、そのアシストトルクを減速機構20を介してステアリング軸10に加えるためのトルクを電動機部40が発生するように、電動機駆動回路である3相ブリッジ回路を制御する。
 即ち、FET駆動回路532は、マイクロコンピュータ531からの指令に基づいて所定のタイミングにてゲート駆動信号を発生し、3相ブリッジ回路の各パワー半導体チップ541a、541b、542a、542b、543a、543bを導通制御する。これにより3相ブリッジ回路は、所定の3相交流電力を発生し、電動機部40の固定子巻線413に3相交流電流を供給し、電動機部40を駆動する。電動機部40の発生したトルクは、減速機構20を介してステアリング軸10にアシストトルクとして加えられる。これにより運転者によるハンドル操作力は軽減される。
 ここで、電動機駆動回路である3相ブリッジ回路を構成するパワー半導体チップ541a、541b、542a、542b、543a、543bのうち何れか1つ、若しくは複数のパワー素子に、オン故障の異常が発生したとすると、固定子巻線413に正常な3相交流電流が供給されなくなり、電動機部40の動作が異常となり車両の運行に危険をもたらす可能性がある。
 そこで、前述のようなパワー素子に異常が発生したとき、FET駆動回路532は、マイクロコンピュータ531からの指令に基づき、3相ブリッジ回路の正極側直流端子とバッテリー85との間に挿入されているリレー半導体チップ551、552へのゲート駆動信号を停止すると共に、3相ブリッジ回路の交流出力端子と固定子巻線413の各相巻線との間に接続されているリレー半導体チップ541c、542c、543cへのゲート駆動信号を停止する。
 これにより、制御装置部50に設けられている電動機駆動回路としての3相ブリッジ回路はバッテリー85から切り離されて動作を停止するとともに、固定子巻線413は3相ブリッジ回路から切り離される。固定子巻線413が3相ブリッジ回路から切り離されることにより、故障したパワー半導体チップにより固定子巻線413が短絡されることはなくなり、従って電動機部40に操舵方向に対して逆方向の制動力が発生してハンドル操作が困難となる等の異常事態を防止することができる。
 尚、パワー半導体チップ以外の故障時に、前述と同様にリレー半導体チップ551、552、及びリレー半導体チップ541c、542c、543cへのゲート駆動信号を停止するようにしてもよい。更には、パワー半導体チップの故障の状態、若しくはパワー半導体チップ以外の故障の状態によっては、リレー半導体チップ551、552、及びリレー半導体チップ541c、542c、543cのうち、何れかの半導体スイッチのみへのゲート駆動信号を停止するようにしてもよい。
 又、以上の説明では、3相ブリッジ回路の正極側の直流端子とバッテリー85との間に接続されたスイッチと3相ブリッジ回路の交流出力端子と固定子巻線413との間に接続されているスイッチとの双方をリレー半導体チップにより構成したが、それらのスイッチのうち、何れか一方のみをリレー半導体チップとし他方を機械式リレー等により構成してもよい。
 以上述べたように、この発明の実施の形態1によるモールドモジュール、及び電動パワーステアリング装置によれば、発熱体である半導体チップは、樹脂モールドされたリレー・モールドモジュール55及びパワー・モールドモジュール541、542、543により構成され、モールドモジュールは、半導体チップへダイレクトに信号線となるリードフレーム・パワーライン導出部5412、5512を接続し、半導体チップは、リードフレーム・ダイパッド部5411、5511の表面に直接実装されており、リードフレーム・ダイパッド部5411、5511の裏面は略全体が露出するように放熱面を形成してヒートシンクとしての機能をもつ減速機構側ケース60側へ接着剤555を介して放熱し、リードフレーム・パワーライン導出部5412、5512をターミナル・モールド部56へ接続・保持する構造とし、又、内部半導体チップ同士の接続にはパワー・ターミナル部5414、5514を用いているため、発熱を低減するとともにモールドモジュール内の温度分布を均一化し、ヒートシンクへの放熱性を向上させることができ、又、リードフレーム・パワーライン導出部5412、5512からの熱伝導によっても放熱性を向上させることができる。
 又、この発明の実施の形態1によるモールドモジュール及び電動パワーステアリング装置によれば、モールドモジュールとヒートシンクとしての機能をもつ減速機構側ケース60との間に充填される接着剤555によって形成される接着剤層の間隔を設定するために樹脂により形成した凸部556を備えた構成としているため、モールドモジュールを上から押さえるだけで、接着剤層の間隔を安定して、一定距離に保つことで、接着剤層間の熱抵抗を安定化することができる。
 又、この発明の実施の形態1による電動パワーステアリング装置によれば、ヒートシンク機能を持つ減速機構側ケース60は、モールドモジュール裏面部分を厚く構成しているため、熱容量を上げてモールドモジュールの放熱性を向上することができる。
 又、この発明の実施の形態1による電動パワーステアリング装置によれば、半導体スイッチ素子とパワー素子とが搭載されたパワー・モールドモジュールは、各相分に3分割してケース搭載されているので、各相のパワー・モールドモジュールを自由に配置することができ、スペースを有効に活用することができ、装置を小型化することができる。更に、3個のパワー・モールドモジュールを電動機部の回転子軸の周りに放射状に配置したので、回転子軸方向からみた投影面積をより小さくすることができる。
実施の形態2.
 図6は、この発明の実施の形態2による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。実施の形態1で説明したとおり、パワー半導体チップ541a、542a、543a、541b、542b、543b、及びリレー半導体チップ541c、542c、543cは、電動パワーステアリング装置を駆動するために発生する各々の電力損失によって発熱するが、その損失の大小に対して、リードフレーム・ダイパッド部面積の比率を大小に変化させることにより各素子の温度を平均化することができる。
 そこで、この実施の形態2では、図6に示すように、損失比率がパワー半導体チップ541aよりも大きいリレー半導体チップ541cの温度を均一化するために、リレー半導体チップ541cを搭載したリードフレームダイパッド部5411の面積比率を、パワー半導体チップ541aを搭載したリードフレームダイパッド部5411の面積比率よりも大きくなるよう構成したものである。
 このように、各半導体チップ及び電動パワーステアリング装置の駆動条件が変化して、各半導体チップの損失比率が変化した場合には、リードフレームダイパッドの面積比率を変更することで、温度均一化を図ることができる。
 以上のように実施の形態2による電動パワーステアリング装置に用いるモールドモジュールによれば、各半導体チップの損失の大小に対応して、リードフレーム・ダイパッド部の面積比率を設定することにより、各素子の温度均一化を図り、効果的に放熱することができる。
実施の形態3.
 図7は、この発明の実施の形態3による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。パワー半導体チップ541a、542a、543a、541b、542b、543b、及びリレー半導体チップ541c、542c、543cは、リードフレーム・ダイパッド部5411、5511の表面に実装されているが、リードフレーム・ダイパッド部5411、5511の厚みを大きくすることで、熱容量を上げてかつ、熱伝導を向上することができる。図7では実装されている半導体チップのうち損失の大きいリレー半導体チップ541cを実装しているリードフレーム・ダイパッド部5411の厚みを大きくしている。
 この発明の実施の形態3による電動パワーステアリング装置に用いるモールドモジュールでは、内蔵する各素子の損失の大小に応じて、その素子を実装しているリードフレーム・ダイパッド部の厚みを設定するようにしているため、各素子の温度均一化を図り、効果的に放熱することができる。
実施の形態4.
 図8は、この発明の実施の形態4による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。実施の形態1乃至3では、モールドモジュール541とヒートシンクとしての機能をもつ減速機構側ケース60との間に充填される接着剤555によって形成される接着剤層の間隔設定は、凸部556により行うようにしていたが、実施の形態4では凸部556に代えて、接着剤555に含まれる熱伝導性粒子であるフィラー5551を用いて行うようにしたものである。この実施の形態4によれば、凸部556を不要としながらモールドモジュールを上から押さえるだけで、接着剤層の間隔を安定して、一定距離に保つことで、熱抵抗を安定化することができる。
実施の形態5.
 図9は、この発明の実施の形態5による電動パワーステアリング装置に用いるモールドモジュールの構成を示す断面図である。前述の実施の形態1乃至4では、モールドモジュール541と減速機構側ケース60との間に接着剤555を充填していたが、実施の形態5では接着剤の代わりに高熱伝導性かつ高強度のセラミック製の絶縁シート700を挿入するようにしたものである。これにより、高熱伝導を保ちながらセラミック製の絶縁シート700の厚みによって間隔の安定化をはかり、又、導電性異物の混入時やモールドモジュール541下面または減速機構側ケース60の変形、バリ発生時などにもモールドモジュール541と減速機構側ケース60間の絶縁性を確保することができるため絶縁信頼性を高めることができる。又、セラミック製の絶縁シート700とモールドモジュール541間およびセラミック製の絶縁シート700と減速機構側ケース60間に放熱用のシリコングリース710を塗布することで、さらに熱伝導性を高めることができる。
実施の形態6.
 図10は、この発明の実施の形態6による電動パワーステアリング装置に於ける制御装置一体型電動機の断面図である。この実施の形態5に於いて、制御装置一体型電動機は、永久磁石型同期電動機として構成されている。
 図10に於いて、減速機構のハウジング24(図1参照)に固定される減速機構側ケース600は、アルミ合金ダイキャスト成形品により形成されている。減速機構側ケース600の端部に形成されたインロー部6003は、図示していない減速機構のハウジングに嵌合され、このハウジングにボルト等により固定される。減速機構側ケース600には、フロントベアリングボックス6002が形成されている。ボールベアリングにより形成されたフロントベアリング432は、フロントベアリングボックス6002の内周面に圧入固定されている。
 レゾルバにより構成された回転センサ70は、減速機構側ケース60(図1参照)に固定された固定子71と、回転子軸43の外周面に固定された回転子72とを備える。制御装置部50のパワー・モールドモジュール540は、枠体520内に配置されて減速機構側ケース60の壁部601(図1参照)に密着固定されている。電動機部40のフレーム414は、その軸方向開放端に形成されたインロー部が減速機構側600の電動機側端部に嵌合されネジ(図示せず)により減速機構側ケース600に固定されている。
 金属製ケースとしての制御装置ケース520は、フィン部511を有するヒートシンク510と、カバー521とを備える。制御装置ケース520は、減速機構側ケース600の図の上方部に配置され固定されている。制御装置ケース520の底部となるヒートシンク510は、アルミミウム合金により形成され、制御装置ケース520の側壁部の下端部にネジにより固定されている。
 又、ヒートシンク510の一辺には、減速機構側ケース600の上面部に形成された減速機構側ケース開口部と同一形状で、その開口部と中心軸線が一致したヒートシンク開口部512が形成されている。減速機構側ケース開口部とヒートシンク開口部は、それらの中心軸線を一致させて重なるように配置されている。
 ヒートシンク510の表面には、1個のモールドモジュールが当接され固定されている。このモールドモジュール540は、図5に示すように電動機駆動回路を構成する3相ブリッジ回路のU相上段側アームを構成するパワー半導体チップ541aとU相下段側アームを構成するパワー半導体チップ541bと、W相上段側アームを構成するパワー半導体チップ542aとW相下段側アームを構成するパワー半導体チップ542bと、V相上段側アームを構成するパワー半導体チップ543aとU相下段側アームを構成するパワー半導体チップ543bとが実装されている。
 又、モールドモジュール540には、固定子巻線のU相巻き線と3相ブリッジ回路のU相出力端子との間に挿入されるリレー半導体チップ541cと、固定子巻線のW相巻き線と3相ブリッジ回路のW相出力端子との間に挿入されるリレー半導体チップ542cと、固定子巻線のV相巻き線と3相ブリッジ回路のV相出力端子との間に挿入されるリレー半導体チップ543cと、パワー半導体チップ541bと電源GNDとの間に挿入されるシャント抵抗541dと、パワー半導体チップ542bと電源GNDとの間に挿入されるシャント抵抗542dと、パワー半導体チップ543cと電源GNDとの間に挿入されるシャント抵抗543dとが実装、内蔵されている。
 尚、図10には電動機駆動回路としての3相ブリッジ回路の正極側直流端子と外部のバッテリーとの間に挿入される2個のリレー半導体チップを内蔵するリレー・モールドモジュールを示していないが、このリレー・モールドモジュールをパワー・モールドモジュール540と一体化して構成してもよく、あるいは別モジュールとしてパワー・モールドモジュール540と同様にヒートシンク510に当接して固定してもよく、或いは減速機構側ケース600の壁部内面に当接させて固定してもよい。
 マイクロコンピュータ531とFET駆動回路532とを実装した制御基板53は、制御装置ケース520の内部でパワー・モールドモジュール540に対して間隔を介して制御装置520の上端部に固定されている。
 電動機部40の固定子巻線413のU相、V相、W相の各端子に接続された3本のバスバー91、92、93(図では91のみ示す)は、前述の減速機構側ケース開口部を介してヒートシンク開口部512から制御装置ケース520の内部に導出され、前述の3相ブリッジ回路の交流側端子に接続されたリレー半導体チップに各々接続されている。
 前述のバスバー91、92、93は、ターミナルホルダ415に固定されたベース931にネジ921により固定されている。又、レゾルバにより構成された回転センサ70の固定子に設けられた検出巻線は、信号接続用コネクタ941(図示せず)を介して制御装置ケース520に設けられた制御装置側コネクタ(図示せず)に接続されている。制御装置側コネクタは、制御基板53に実装されているマイクロコンピュータ531に接続されている。その他の構成は実施の形態1と同様である。
 以上のように構成されたこの実施の形態5による電動パワーステアリング装置によれば、一個のパワー・モールドモジュール540に、U相、V相、W相の全ての相のパワー半導体チップ、及び電動機固定子巻線の導通を遮断するリレー半導体チップの全て、又はパワー・モールドモジュールとリレー・モールドモジュールに分けて実装するようにしたので、実施の形態1によるパワーステアリング装置に比べ、パワー・モールドモジュール1個又は2個を電動パワーステアリング装置に搭載すれば良く、又、各パワー素子等の間の配線も1個又は2枚個のパワー・モールドモジュール内で行うことができるので、電動パワーステアリング装置の工作性が向上し、コスト低減に効果がある。
 又、パワー・モールドモジュールを搭載した制御装置ケース520は、減速機構側ケース600の外部に設けられているので、電動機部40の部品と制御装置部50の部品とが混在することはなく、各々の機能に特化した設計が可能になる。
 又、減速機構のハウジング24から突出する減速機構側ケース60の外壁面にヒートシンクフィン511を設けてもよく、或いは金属ケースの壁部の厚みを大きく形成してもよい。これにより、金属ケースに当接して固定されるパワー・モールドモジュール放熱を効果的に行なうことができる。
実施の形態7.
 図11は、この発明の実施の形態7による電動パワーステアリング装置の断面図である。実施の形態1に於いては、制御装置一体型電動機30の配置構成は、減速機構20に対して、電動機駆動回路を含む制御装置部50が接して、その他端に電動機部40が接する構造であったが、実施の形態6における制御装置一体型電動機30の配置構成では、減速機構20に対して、電動機部40が接して、その他端に電動機駆動回路を含む制御装置部50が接するような構造としている。
 上記のように構成することで、制御装置部50の発熱に対して電動機部40が熱容量となり、又、放熱及び熱伝導経路となって、減速機構20側へ電熱することで、発熱する半導体チップを内蔵する制御装置部50を冷却する効果がある。
 以上述べたこの発明によるモールドモジュールは、以下の特徴を備える。
(1)この発明によるモールドモジュールは、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とをモールド樹脂によりモールディングしてなるモールドモジュールであって、前記複数のターミナルは、その少なくとも一部分が前記モールド樹脂の裏面に露出していることを特徴とする。このように構成されたモールドモジュールによれば、定常的にも過渡的にも、半導体チップ等の電子部品の熱抵抗を低減し放熱効果を高めることができる。
(2)この発明によるモールドモジュールに於いて、前記複数のターミナルは、前記実装されている前記電子部品の熱損失の大きさに応じて夫々の表面積が設定されていることを特徴とする。このように構成したモールドモジュールによれば、内蔵する電子部品の損失電力の比率に応じてリードフレームのダイパッド部下面側である放熱面の面積比率を変えているため、モールドモジュール内部及び電子部品の温度を均一化し、モールドモジュール放熱効果を高め全体面積の最適化、最小化が図られる効果がある。
(3)この発明によるモールドモジュールに於いて、前記複数のターミナルは、前記実装されている前記電子部品の熱損失の大きさに応じて夫々の厚みが設定されていることを特徴とする。このように構成したモールドモジュールによれば、内蔵する電子部品の全体損失あるいは各電子部品の損失電力の比率に応じてリードフレームの厚みを変える構成としているため、モールドモジュール内部及び電子部品の温度を均一化し、モールドモジュール放熱効果を高め全体面積及び体積の最適化、最小化が図られる効果がある。
(4)この発明によるモールドモジュールに於いて、前記複数のターミナルは、前記複数の電子部品を接続する配線により構成されていることを特徴とする。このように構成したモールドモジュールによれば、内部の半導体チップのパワーラインの接続をワイヤーボンディングではなくて、銅ターミナルを用いることにより接続し、又、ターミナルがモールドモジュール内を横断する構造とすることができ、発熱を低減するとともにモールドモジュール内とチップ、ターミナルの温度分布を均一化する効果がある。
 又、この発明による電動パワーステアリング装置は、以下の特徴を備える。
(5)この発明による電動パワーステアリング装置は、車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールを備え、前記モールドモジュールは、前記裏面が伝熱樹脂を介して前記電動機のケースに固着されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、定常的にも過渡的にも、半導体チップ等の電子部品の熱抵抗を低減し放熱効果を高める電動パワーステアリング装置を得ることができる。
(6)この発明による電動パワーステアリング装置に於いて、前記モールドモジュールを固着している前記電動機のケースは、前記減速機構に固定される減速機構側のケースであることを特徴とする。定常的にも過渡的にも、半導体チップ等の電子部品の熱抵抗を低減し放熱効果を高める電動パワーステアリング装置を得ることができる。
(7)この発明による電動パワーステアリング装置に於いて、前記モールドモジュールを固着している前記電動機のケースは、前記反減速機構側のケースであることを特徴とする。このように構成した電動パワーステアリング装置によれば、定常的にも過渡的にも、半導体チップ等の電子部品の熱抵抗を低減し放熱効果を高める電動パワーステアリング装置を得ることができる。
(8)この発明による電動パワーステアリング装置に於いて、前記モールドモジュールは、前記裏面から突出する凸部を備え、前記伝熱樹脂は、前記電動機のケースと前記モールドモジュールの裏面との間に前記突部により形成される隙間内に充填されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、伝熱樹脂が充填されるリードフレームの下面側と電動機のケースとの間の隙間の距離を、モールドモジュールを上から押さえつけるだけで容易かつ確実に設定し保持することができる効果がある。
(9)この発明による電動パワーステアリング装置に於いて、前記伝熱樹脂内に混入されたフィラーを備え、前記電動機のケースと前記モールドモジュールの裏面との間の隙間は、前記フィラーにより確保されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、伝熱樹脂に混入されたフィラーによって、上記隙間の距離を一定に保つ構成としているため、特別な生産工程上の設備や機構構造の追加をすることなくモールドモジュールを上から押さえつけるだけで容易かつ確実に設定し保持することができる効果がある。
(10)この発明による電動パワーステアリング装置は、車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールを備え、前記モールドモジュールは、前記裏面がセラミック製の絶縁シートを介して前記電動機のケースに固着されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、高熱伝導を保ちながらセラミック製の絶縁シートの厚みによって間隔の安定化をはかり、又、導電性異物の混入時やモールドモジュールの下面または電動機のケースの変形、バリ発生時などにもモールドモジュールと電動機のケース間の絶縁性を確保することができるため絶縁信頼性を高めることができる。又、セラミック製の絶縁シートとモールドモジュール間及びセラミック製の絶縁シートと電動機のケース間に放熱用のシリコングリースを塗布することで、さらに熱伝導性を高めることができる。
(11)この発明による電動パワーステアリング装置は、車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールと、前記モールドモジュールを冷却するヒートシンクと、前記モールドモジュールと前記ヒートシンクを収納する制御装置ケースとを備え、前記モールドモジュールは、前記裏面が伝熱樹脂を介して前記ヒートシンクに固着されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、定常的にも過渡的にも、半導体チップ等の電子部品の熱抵抗を低減し放熱効果を高める電動パワーステアリング装置を得ることができる。
(12)この発明による電動パワーステアリング装置に於いて、前記制御装置ケースは、前記電動機の減速機構側のケースに固定されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、熱容量の大きな電動機のケースが熱伝導経路となって電動パワーステアリング装置がとりつけられるギア側へ伝熱され、パワー回路を冷却する効果を大きくすることができる。
(13)この発明による電動パワーステアリング装置に於いて、前記ヒートシンクは、前記減速機構側のケースに形成された減速機構側ケース開口部に対応する位置に形成されたヒートシンク開口部を備え、前記電動機の電機子巻線に接続されたバスバーは、前記電動機の減速機構側のケース内部から前記減速機構側ケース開口部と前記ヒートシンク開口部とを介して前記制御装置ケース内部に延び、前記制御装置ケース内部で前記モールドモジュールに接続されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、電動機と電動機制御装置とをコンパクトに一体化して固定することができると共に、配線作業を効率的に行うことができる。
(14)この発明による電動パワーステアリング装置に於いて、前記モールドモジュールは、前記裏面から突出する凸部を備え、前記伝熱樹脂は、前記ヒートシンクと前記モールドモジュールの裏面との間に前記突部により形成される隙間内に充填されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、伝熱樹脂が充填されるリードフレームの下面側とヒートシンクとの間の隙間の距離を、モールドモジュールを上から押さえつけるだけで容易かつ確実に設定し保持することができる効果がある。
(15)この発明による電動パワーステアリング装置は、前記伝熱樹脂内に混入されたフィラーを備え、前記ヒートシンクと前記モールドモジュールの裏面との間の隙間は、前記フィラーにより確保されていることを特徴とする。伝熱樹脂に混入されたフィラーによって、上記隙間の距離を一定に保つ構成としているため、特別な生産工程上の設備や機構構造の追加をすることなくモールドモジュールを上から押さえつけるだけで容易かつ確実に設定し保持することができる効果がある。
(16)この発明による電動パワーステアリング装置は、車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールと、ヒートシンクと、前記モールドモジュールと前記ヒートシンクを収納する制御装置ケースとを備え、前記モールドモジュールは、前記裏面がセラミック製の絶縁シートを介して前記ヒートシンクに固着されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、高熱伝導を保ちながらセラミック製の絶縁シートの厚みによって間隔の安定化をはかり、又、導電性異物の混入時やモールドモジュールの下面またはヒートシンクのケースの変形、バリ発生時などにもモールドモジュールとヒートシンクの間の絶縁性を確保することができるため絶縁信頼性を高めることができる。又、セラミック製の絶縁シートとモールドモジュール間及びセラミック製の絶縁シートとヒートシンク間に放熱用のシリコングリースを塗布することで、さらに熱伝導性を高めることができる。
(17)この発明による電動パワーステアリング装置に於いて、前記モールドモジュールは、直流電源からの直流電力を交流電力に変換して前記電機子巻線に供給する電力変換回路のパワー半導体チップを内蔵することを特徴とする。このように構成した電動パワーステアリング装置によれば、電力変換回路を構成するインバータ回路のうち少なくとも1相の上下アームを内蔵する構造とすることができるので、上下アームの温度を均一化する効果がある。
(18)この発明による電動パワーステアリング装置に於いて、前記モールドモジュールは、前記電動機を電源から遮断し得るリレー半導体チップを内蔵することを特徴とする。このように構成した電動パワーステアリング装置によれば、温度均一化及び放熱性を向上した電動パワーステアリング装置用の電子リレーを実現することを可能とする効果がある。
(19)この発明による電動パワーステアリング装置に於いて、前記電動機は、前記電動機制御装置を搭載した制御装置一体型電動機であり、前記電動機制御装置は、前記電動機の回転子軸の軸心の延びる方向に配置されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、パワー回路を含む電動機制御装置と電動機を一体構造として互いを熱的に結合する構成としているため、熱容量の大きな電動機のケースが熱伝導経路となって効果的に放熱することができる。又、電動機制御装置を減速機構側に取り付けることで、減速機構側へ伝熱しパワー回路等の冷却を効果的に行なうことができる効果がある。
(20)この発明による電動パワーステアリング装置に於いて、前記電動機は、前記電動機制御装置を搭載した制御装置一体型電動機であり、前記電動機制御装置は、前記電動機の回転子軸の軸心に並行する位置に配置されていることを特徴とする。このように構成した電動パワーステアリング装置によれば、コンパクトな制御装置一体型電動機を備えた電動パワーステアリング装置を得ることができる。
 この発明によるモールドモジュール、及び電動パワーステアリング装置は、自動車産業に於ける操舵装置の分野に用いられる。
10 ステアリング軸、100 電動パワーステアリング装置
20 減速機構、21 ウオームホイール、
22 ウオームギア、23 ウオームギア軸、
24 ハウジング、30 制御装置一体型電動機、
31 ボス、40 電動機部、
41 固定子、411 固定子鉄心、
412 絶縁体、413 固定子巻線、
414 フレーム、4141 底部、
4142 リアベアリングボックス、4143 インロー部、
415 ターミナルホルダ、416 巻線ターミナル、
42 回転子、422 回転子磁極、
43 回転子軸、431 リアベアリング、
432 フロントベアリング、50 制御装置部、
51 電動機側ケース、510 ヒートシンク、
511 ヒートシンクフィン、512 ヒートシンク開口部、
520 制御装置ケース、521 カバー、
53 制御基板、531 マイクロコンピュータ、
532 FET駆動回路、
540、541、542、543 パワー・モールドモジュール、
5410、5510 リードフレーム、
541a、541b、542a、542b、543a、543b パワー半導体チップ、
541c、542c、543c リレー半導体チップ、
541d、542d、543d シャント抵抗、
5411、5511 リードフレーム・ダイパッド部、
5412、5512 リードフレーム・パワーライン導出部、
5413、5513 リードフレーム・ターミナル部、
5414、5514 パワー・ターミナル部、
55 リレー・モールドモジュール、554 樹脂モールド剤、
555 接着剤、5551 フィラー、
556 凸部、700 セラミック製の絶縁シート
710 シリコングリース、56 ターミナル・モールド部、
561 パワー・ターミナル、60 減速機構側ケース、
600 減速機構側ケース、601 減速機構側ケースの内壁部、
602 フロントベアリングボックス、
6002 フロントベアリングボックス、603、6003 インロー部、
70 回転センサ、71 固定子、72 回転子、
81、82、83 コンデンサ、84 コイル、85 バッテリー、
90 電源コネクタ、901 固定部
91 バスバー、921 ネジ、931 ベース



 
 
 
 
  

Claims (20)

  1.  配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とをモールド樹脂によりモールディングしてなるモールドモジュールであって、
     前記複数のターミナルは、その少なくとも一部分が前記モールド樹脂の裏面に露出している、
    ことを特徴とするモールドモジュール。
  2.  前記複数のターミナルは、前記実装されている前記電子部品の熱損失の大きさに応じて夫々の表面積が設定されている、
    ことを特徴とする請求項1に記載のモールドモジュール。
  3.  前記複数のターミナルは、前記実装されている前記電子部品の熱損失の大きさに応じて夫々の厚みが設定されている、
    ことを特徴とする請求項1に記載のモールドモジュール。
  4.  前記複数のターミナルは、前記複数の電子部品を接続する配線により構成されている、
    ことを特徴とする請求項1乃至3のうちの何れか一項に記載のモールドモジュール。
  5.  車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、
     前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールを備え、
     前記モールドモジュールは、前記裏面が伝熱樹脂を介して前記電動機のケースに固着されている、
    ことを特徴とする電動パワーステアリング装置。
  6.  前記モールドモジュールを固着している前記電動機のケースは、前記減速機構に固定される減速機構側のケースである、
    ことを特徴とする請求項5に記載の電動パワーステアリング装置。
  7.  前記モールドモジュールを固着している前記電動機のケースは、前記反減速機構側のケースである、
    ことを特徴とする請求項5に記載の電動パワーステアリング装置。
  8.  前記モールドモジュールは、前記裏面から突出する凸部を備え、
     前記伝熱樹脂は、前記電動機のケースと前記モールドモジュールの裏面との間に前記突部により形成される隙間内に充填されている、
    ことを特徴とする請求項5乃至7のうちの何れか一項に記載の電動パワーステアリング装置。
  9.  前記伝熱樹脂内に混入されたフィラーを備え、
     前記電動機のケースと前記モールドモジュールの裏面との間の隙間は、前記フィラーにより確保されている、
    ことを特徴とする請求項5乃至8のうちの何れか一項に記載の電動パワーステアリング装置。
  10.  車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、
     前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールを備え、
     前記モールドモジュールは、前記裏面がセラミック製の絶縁シートを介して前記電動機のケースに固着されている、
    ことを特徴とする電動パワーステアリング装置。
  11.  車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、
     前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールと、ヒートシンクと、前記モールドモジュールと前記ヒートシンクを収納する制御装置ケースとを備え、
     前記モールドモジュールは、前記裏面が伝熱樹脂を介して前記ヒートシンクに固着されている、
     ことを特徴とする電動パワーステアリング装置。
  12.  前記制御装置ケースは、前記電動機の減速機構側のケースに固定されている、
    ことを特徴とする請求項11に記載の電動パワーステアリング装置。
  13.  前記ヒートシンクは、前記減速機構側のケースに形成された減速機構側ケース開口部に対応する位置に形成されたヒートシンク開口部を備え、
     前記電動機の電機子巻線に接続されたバスバーは、前記電動機の減速機構側のケース内部から前記減速機構側ケース開口部と前記ヒートシンク開口部とを介して前記制御装置ケース内部に延び、前記制御装置ケース内部で前記モールドモジュールに接続されている、
    ことを特徴とする請求項11又は12に記載の電動パワーステアリング装置。
  14.  前記モールドモジュールは、前記裏面から突出する凸部を備え、
     前記伝熱樹脂は、前記ヒートシンクと前記モールドモジュールの裏面との間に前記突部により形成される隙間内に充填されている、
    ことを特徴とする請求項11乃至13のうちの何れか一項に記載の電動パワーステアリング装置。
  15.  前記伝熱樹脂内に混入されたフィラーを備え、
     前記ヒートシンクと前記モールドモジュールの裏面との間の隙間は、前記フィラーにより確保されている、
    ことを特徴とする請求項11乃至14のうちの何れか一項に記載の電動パワーステアリング装置。
  16.  車両のステアリング軸に連結された減速機構と、前記減速機構に回転子軸が連結された電動機と、前記電動機の電機子巻線に供給する電力を制御して前記電動機に所定のトルクを発生させる電動機制御装置と、を備えた電動パワーステアリング装置であって、
     前記電動機制御装置は、配線を形成する複数のターミナルと前記夫々のターミナルに実装された複数の電子部品とがモールド樹脂によりモールディングされ、且つ前記複数のターミナルの少なくとも一部分が前記モールド樹脂の裏面に露出してなるモールドモジュールと、ヒートシンクと、前記モールドモジュールと前記ヒートシンクを収納する制御装置ケースとを備え、
     前記モールドモジュールは、前記裏面がセラミック製の絶縁シートを介して前記ヒートシンクに固着されている、
     ことを特徴とする電動パワーステアリング装置。
  17.  前記モールドモジュールは、直流電源からの直流電力を交流電力に変換して前記電機子巻線に供給する電力変換回路のパワー半導体チップを内蔵する、
    ことを特徴とする請求項5乃至16のうちの何れか一項に記載の電動パワーステアリング装置。
  18.  前記モールドモジュールは、前記電動機を電源から遮断し得るリレー半導体チップを内蔵する、
    ことを特徴とする請求項5乃至17のうちの何れか一項に記載の電動パワーステアリング装置。
  19.  前記電動機は、前記電動機制御装置を搭載した制御装置一体型電動機であり、
     前記電動機制御装置は、前記電動機の回転子軸の軸心の延びる方向に配置されている、
    ことを特徴とする請求項5乃至18のうちの何れか一項に記載の電動パワーステアリング装置。
  20.  前記電動機は、前記電動機制御装置を搭載した制御装置一体型電動機であり、
     前記電動機制御装置は、前記電動機の回転子軸の軸心に並行する位置に配置されている、
    ことを特徴とする請求項5乃至18のうちの何れか一項に記載の電動パワーステアリング装置。
PCT/JP2011/058808 2011-04-07 2011-04-07 モールドモジュール、及び電動パワーステアリング装置 WO2012137333A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/983,727 US9123693B2 (en) 2011-04-07 2011-04-07 Mold module utilized as power unit of electric power steering apparatus and electric power steering apparatus
CN201180068636.4A CN103402853B (zh) 2011-04-07 2011-04-07 作为电动助力转向装置的功率部使用的模塑模块以及电动助力转向装置
EP11863213.2A EP2695795B1 (en) 2011-04-07 2011-04-07 Molded module and electric power steering apparatus
JP2013508686A JP5705306B2 (ja) 2011-04-07 2011-04-07 電動パワーステアリング装置のパワー部として用いるモールドモジュール、及び電動パワーステアリング装置
EP19169795.2A EP3536582B1 (en) 2011-04-07 2011-04-07 Mold module and electric power steering apparatus
PCT/JP2011/058808 WO2012137333A1 (ja) 2011-04-07 2011-04-07 モールドモジュール、及び電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058808 WO2012137333A1 (ja) 2011-04-07 2011-04-07 モールドモジュール、及び電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2012137333A1 true WO2012137333A1 (ja) 2012-10-11

Family

ID=46968768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058808 WO2012137333A1 (ja) 2011-04-07 2011-04-07 モールドモジュール、及び電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US9123693B2 (ja)
EP (2) EP2695795B1 (ja)
JP (1) JP5705306B2 (ja)
CN (1) CN103402853B (ja)
WO (1) WO2012137333A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150216083A1 (en) * 2013-05-21 2015-07-30 Hitachi Automotive Systems, Ltd. Power Conversion Apparatus
EP2805872A4 (en) * 2012-01-17 2016-04-20 Mitsubishi Electric Corp ELECTRICAL INTEGRATED POWER STEERING APPARATUS
JP2017510237A (ja) * 2014-03-31 2017-04-06 レムフェルダー エレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツングLemfoerder Electronic GmbH ドライバアセンブリ
WO2018151102A1 (ja) * 2017-02-14 2018-08-23 日本電産サンキョー株式会社 モータおよびポンプ装置
WO2023058211A1 (ja) 2021-10-08 2023-04-13 三菱電機株式会社 半導体モジュール及びその製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062137A1 (en) * 2011-09-14 2013-03-14 Hitachi Automotive Systems, Ltd. Electric Power Steering System
WO2013111365A1 (ja) * 2012-01-25 2013-08-01 三菱電機株式会社 電動パワーステアリング装置
JP5888010B2 (ja) * 2012-03-08 2016-03-16 日産自動車株式会社 インバータモジュール
JP5901847B2 (ja) * 2013-04-26 2016-04-13 三菱電機株式会社 回転電機
JP6253402B2 (ja) * 2013-12-27 2017-12-27 日立オートモティブシステムズ株式会社 車載用電子モジュール
KR101560980B1 (ko) * 2014-06-23 2015-10-15 주식회사 만도 전동식 동력 보조 조향장치의 동력전달 장치
TWI535152B (zh) * 2015-02-09 2016-05-21 建準電機工業股份有限公司 馬達
DE102015204794A1 (de) 2015-03-17 2016-09-22 Volkswagen Aktiengesellschaft Leistungsschalteranordnung und Leistungsschaltermodul für ein elektrisch unterstütztes Lenksystem
DE102015104880A1 (de) * 2015-03-30 2016-10-06 Danfoss Silicon Power Gmbh Leistungsmodul
CN107660322B (zh) * 2015-04-27 2020-02-18 三菱电机株式会社 控制装置
WO2016209940A1 (en) * 2015-06-24 2016-12-29 Cts Corporation Rotary actuator
JP6521068B2 (ja) * 2015-07-07 2019-05-29 日産自動車株式会社 ホィール駆動装置の配設構造
US10673309B2 (en) 2015-08-05 2020-06-02 Mitsubishi Electric Corporation Inverter-integrated motor
JP6524023B2 (ja) * 2016-06-01 2019-06-05 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
FR3057118B1 (fr) * 2016-10-03 2020-08-14 Valeo Equip Electr Moteur Machine electrique tournante a dissipateur thermique integre
EP3547509A4 (en) 2016-11-22 2020-01-29 Mitsubishi Electric Corporation ELECTRIC ROTATOR
US10300609B2 (en) * 2016-12-15 2019-05-28 Boston Dynamics, Inc. Motor and controller integration for a legged robot
US11374469B2 (en) 2018-01-23 2022-06-28 MAGicALL, Inc. Electric machine with integrated controller
US11316335B2 (en) * 2020-04-30 2022-04-26 GM Global Technology Operations LLC Active disconnect device
WO2022173015A1 (ja) * 2021-02-12 2022-08-18 株式会社アイシン インバータ一体型回転電機
DE102023000187A1 (de) * 2022-02-15 2023-08-17 Sew-Eurodrive Gmbh & Co Kg Antrieb, insbesondere Elektromotor, mit einem Anschlusskasten

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250883A (ja) * 2000-03-08 2001-09-14 Sanyo Electric Co Ltd 回路装置の製造方法
JP2001257291A (ja) * 2000-03-13 2001-09-21 Sanyo Electric Co Ltd 回路装置
JP2001274313A (ja) * 2000-03-28 2001-10-05 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2002076195A (ja) * 2000-09-04 2002-03-15 Sanyo Electric Co Ltd Mosfetの実装構造およびその製造方法
JP2004140229A (ja) * 2002-10-18 2004-05-13 Renesas Technology Corp 半導体装置及びそれを組み込んだ電子装置
JP2005327791A (ja) * 2004-05-12 2005-11-24 Denso Corp 半導体装置およびその実装構造
JP2007129175A (ja) * 2005-10-06 2007-05-24 Denso Corp 電子装置の製造方法
JP2007234921A (ja) * 2006-03-02 2007-09-13 Denso Corp モールドパッケージ
JP2008174097A (ja) * 2007-01-18 2008-07-31 Mitsubishi Electric Corp 電動式パワーステアリング装置
JP2009206406A (ja) * 2008-02-29 2009-09-10 Mitsubishi Electric Corp パワー半導体装置
WO2010007672A1 (ja) 2008-07-16 2010-01-21 三菱電機株式会社 電動パワーステアリング装置、及び制御装置一体型電動機
WO2010010769A1 (ja) * 2008-07-25 2010-01-28 サンケン電気株式会社 半導体装置
JP2010165923A (ja) * 2009-01-16 2010-07-29 Renesas Electronics Corp 半導体装置、及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199645A (ja) 1996-01-17 1997-07-31 Mitsubishi Electric Corp 半導体装置および半導体モジュール
TW428295B (en) * 1999-02-24 2001-04-01 Matsushita Electronics Corp Resin-sealing semiconductor device, the manufacturing method and the lead frame thereof
US6562660B1 (en) * 2000-03-08 2003-05-13 Sanyo Electric Co., Ltd. Method of manufacturing the circuit device and circuit device
US6545364B2 (en) 2000-09-04 2003-04-08 Sanyo Electric Co., Ltd. Circuit device and method of manufacturing the same
JP2004140305A (ja) 2002-10-21 2004-05-13 Denso Corp 半導体集積回路装置
JP2004146628A (ja) 2002-10-25 2004-05-20 Sanyo Electric Co Ltd 半導体装置
JP4147987B2 (ja) 2003-03-17 2008-09-10 株式会社日立製作所 多相式交流回転電機
JP4327636B2 (ja) 2004-03-25 2009-09-09 Necエレクトロニクス株式会社 半導体装置及びその組立方法
JP2006049698A (ja) 2004-08-06 2006-02-16 Denso Corp 樹脂封止型半導体装置
US8022512B2 (en) * 2006-02-28 2011-09-20 Unisem (Mauritus) Holdings Limited No lead package with heat spreader
JP2007249290A (ja) 2006-03-13 2007-09-27 Osaka Gas Co Ltd 課金料金算出システム
JP4293272B2 (ja) 2007-11-09 2009-07-08 サンケン電気株式会社 半導体装置
JP2009238923A (ja) 2008-03-26 2009-10-15 Toyota Industries Corp 電子機器
US7838339B2 (en) 2008-04-04 2010-11-23 Gem Services, Inc. Semiconductor device package having features formed by stamping
JP5528329B2 (ja) * 2008-04-07 2014-06-25 三菱電機株式会社 制御装置一体型電動パワーステアリング装置用モータおよび電動パワーステアリング装置
JP2008263210A (ja) 2008-05-16 2008-10-30 Mitsubishi Electric Corp 電力用半導体装置
JP2010192591A (ja) 2009-02-17 2010-09-02 Mitsubishi Electric Corp 電力用半導体装置とその製造方法
JP2010199505A (ja) 2009-02-27 2010-09-09 Hitachi Ltd 電子回路装置
JP5467799B2 (ja) 2009-05-14 2014-04-09 ルネサスエレクトロニクス株式会社 半導体装置
JP5250018B2 (ja) 2010-12-13 2013-07-31 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250883A (ja) * 2000-03-08 2001-09-14 Sanyo Electric Co Ltd 回路装置の製造方法
JP2001257291A (ja) * 2000-03-13 2001-09-21 Sanyo Electric Co Ltd 回路装置
JP2001274313A (ja) * 2000-03-28 2001-10-05 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2002076195A (ja) * 2000-09-04 2002-03-15 Sanyo Electric Co Ltd Mosfetの実装構造およびその製造方法
JP2004140229A (ja) * 2002-10-18 2004-05-13 Renesas Technology Corp 半導体装置及びそれを組み込んだ電子装置
JP2005327791A (ja) * 2004-05-12 2005-11-24 Denso Corp 半導体装置およびその実装構造
JP2007129175A (ja) * 2005-10-06 2007-05-24 Denso Corp 電子装置の製造方法
JP2007234921A (ja) * 2006-03-02 2007-09-13 Denso Corp モールドパッケージ
JP2008174097A (ja) * 2007-01-18 2008-07-31 Mitsubishi Electric Corp 電動式パワーステアリング装置
JP2009206406A (ja) * 2008-02-29 2009-09-10 Mitsubishi Electric Corp パワー半導体装置
WO2010007672A1 (ja) 2008-07-16 2010-01-21 三菱電機株式会社 電動パワーステアリング装置、及び制御装置一体型電動機
WO2010010769A1 (ja) * 2008-07-25 2010-01-28 サンケン電気株式会社 半導体装置
JP2010165923A (ja) * 2009-01-16 2010-07-29 Renesas Electronics Corp 半導体装置、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2695795A1

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2805872A4 (en) * 2012-01-17 2016-04-20 Mitsubishi Electric Corp ELECTRICAL INTEGRATED POWER STEERING APPARATUS
US10017203B2 (en) 2012-01-17 2018-07-10 Mitsubishi Electric Corporation Integral-type electric power steering device
US20150216083A1 (en) * 2013-05-21 2015-07-30 Hitachi Automotive Systems, Ltd. Power Conversion Apparatus
US10136555B2 (en) 2013-05-21 2018-11-20 Hitachi Automotive Systems, Ltd. Power conversion apparatus having a metal plate for heat dissipation
JP2017510237A (ja) * 2014-03-31 2017-04-06 レムフェルダー エレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツングLemfoerder Electronic GmbH ドライバアセンブリ
WO2018151102A1 (ja) * 2017-02-14 2018-08-23 日本電産サンキョー株式会社 モータおよびポンプ装置
JPWO2018151102A1 (ja) * 2017-02-14 2019-12-12 日本電産サンキョー株式会社 モータおよびポンプ装置
US11303180B2 (en) 2017-02-14 2022-04-12 Nidec Sankyo Corporation Motor and pump device
WO2023058211A1 (ja) 2021-10-08 2023-04-13 三菱電機株式会社 半導体モジュール及びその製造方法

Also Published As

Publication number Publication date
CN103402853B (zh) 2016-01-13
EP2695795A1 (en) 2014-02-12
EP3536582A1 (en) 2019-09-11
US20140151146A1 (en) 2014-06-05
EP2695795B1 (en) 2019-06-19
US9123693B2 (en) 2015-09-01
EP2695795A4 (en) 2015-07-08
JP5705306B2 (ja) 2015-04-22
CN103402853A (zh) 2013-11-20
EP3536582B1 (en) 2022-08-10
JPWO2012137333A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5705306B2 (ja) 電動パワーステアリング装置のパワー部として用いるモールドモジュール、及び電動パワーステアリング装置
KR101260577B1 (ko) 전동 파워 스티어링 장치, 및 제어 장치 일체형 전동기
EP2637285B1 (en) Electric power steering power module and electric power steering drive control device employing same
JP5496357B2 (ja) 電動パワーステアリング用モータ駆動制御装置
JP6184531B2 (ja) 制御装置付き回転電機および電動パワーステアリング装置
JP5039171B2 (ja) 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置
JP5649727B2 (ja) 駆動装置一体型回転電機
WO2016117144A1 (ja) 電動パワーステアリング用モータ駆動制御装置
JP2017189033A (ja) 駆動装置、および、これを用いた電動パワーステアリング装置
WO2012160622A1 (ja) 電動パワーステアリング装置用モータ駆動装置
JP7210283B2 (ja) 回転電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508686

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011863213

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13983727

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE