WO2016117144A1 - 電動パワーステアリング用モータ駆動制御装置 - Google Patents

電動パワーステアリング用モータ駆動制御装置 Download PDF

Info

Publication number
WO2016117144A1
WO2016117144A1 PCT/JP2015/067045 JP2015067045W WO2016117144A1 WO 2016117144 A1 WO2016117144 A1 WO 2016117144A1 JP 2015067045 W JP2015067045 W JP 2015067045W WO 2016117144 A1 WO2016117144 A1 WO 2016117144A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor drive
control device
electric power
power steering
drive control
Prior art date
Application number
PCT/JP2015/067045
Other languages
English (en)
French (fr)
Inventor
岩蕗 寛康
公輔 中野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016500416A priority Critical patent/JP6026048B1/ja
Priority to DE112015006036.7T priority patent/DE112015006036B4/de
Priority to CN201580055079.0A priority patent/CN106856667B/zh
Priority to US15/510,086 priority patent/US10106189B2/en
Publication of WO2016117144A1 publication Critical patent/WO2016117144A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0026Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units
    • H05K5/0043Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units comprising a frame housing mating with two lids wherein the PCB is flat mounted on the frame housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/023Stackable modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • the present invention relates to a motor drive control device for electric power steering that drives and controls a motor used in an electric power steering device for a vehicle, for example.
  • An electric power steering device for an automobile detects a turning direction and turning torque of a steering shaft that is turned by a driver operating a steering wheel, and based on the detected value, The electric motor is driven to rotate in the same direction, and a steering assist torque is generated.
  • a motor drive control device for electric power steering that controls the drive of a motor used in an electric power steering device has a small and highly reliable structure, and has the same MOSFET and smoothing capacitor as a semiconductor switch that constitutes drive control.
  • a control board on which the surface mounting components for the control circuit constituting the control circuit are mounted a power board on which the surface mounting components for power are mounted, and between the control board and the power board, the power supply system or other external devices such as an ECU
  • a laminated structure is adopted in which a connector case integrated with an external connection connector for connecting to is sandwiched between an upper cover and a lower heat sink.
  • JP2013-63689A (FIG. 2) JP2013-103535A (FIG. 2)
  • the MOSFET and the smoothing capacitor are arranged on the same metal substrate, and are configured by a lid and a housing.
  • the smoothing capacitor is affected by the heat generated from the MOSFET surface, and the housing is also attached to the metal substrate, so that the temperature rise of the smoothing capacitor increases. There was a problem.
  • the present invention has been made to solve the above-described problems, and suppresses the temperature rise of the smoothing capacitor whose lifetime is temperature-dependent, thereby improving the reliability and height of the control device.
  • An object of the present invention is to provide a motor drive control device for electric power steering that is reduced in size and reduced in size.
  • An electric power steering motor drive control device is an electric power steering motor drive control device for driving and controlling a motor used in the electric power steering device, and a plurality of switching elements for supplying current to the motor, A smoothing capacitor for absorbing a ripple component of the motor current that flows when the switching element is turned on / off, a control circuit on which a drive circuit for driving and controlling the switching element and a capacitor for the control circuit are mounted, and a control signal from the control board is transmitted to the switching element A control signal line to be supplied to the switching element, an electrical connection member for electrically connecting the switching element and the smoothing capacitor, and a heat sink portion in which the switching element is embedded and disposed, and the electrical connection member between the switching element and the control board As well as electrical It is obtained by placing the control circuit capacitor and the smoothing capacitor in a space formed between the connection member and the control board.
  • the smoothing capacitor is less affected by the heat from the switching element, the housing, and the heat sink, so that the temperature rise of the smoothing capacitor is suppressed and the reliability is improved. Further, since the height direction of the control device is reduced, the device can be miniaturized.
  • FIG. 1 is a circuit configuration diagram of an electric power steering device including a motor drive control device according to Embodiment 1 of the present invention.
  • FIG. 1 is a structural diagram of a motor drive control device according to Embodiment 1 of the present invention. It is sectional drawing of the electrical connection member used for the motor drive control apparatus which concerns on Embodiment 1 of this invention. It is another sectional drawing of the electrical connection member used for the motor drive control apparatus which concerns on Embodiment 1 of this invention. It is the figure which looked at the electrical connection member used for the motor drive control apparatus which concerns on Embodiment 1 of this invention from the upper surface. It is a figure which shows the positional relationship of each element used for the motor drive control apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a structural diagram of an electric power steering device including a motor drive control device according to Embodiment 1 of the present invention. It is a figure which shows the positional relationship of each element used for the motor drive control apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a circuit configuration diagram of an electric power steering device including a motor drive control device for electric power steering (hereinafter simply referred to as a motor drive control device) according to Embodiment 1
  • FIG. 2 is a structural diagram of the motor drive control device. It is.
  • an electric power steering device 100 includes an electric motor 30 that outputs an auxiliary torque to the steering wheel 1 of the vehicle, a motor drive control device 3 that controls the drive of the electric motor 30, and the rotational speed of the electric motor 30.
  • a deceleration device 2 that decelerates the vehicle, a battery 4 that supplies a current for driving the electric motor 30, and a torque sensor 6 that is disposed in the vicinity of the steering wheel of the vehicle and detects the steering torque of the steering wheel 1 that the driver steers.
  • the electric motor 30 driven by the motor drive control device 3 is a three-phase brushless motor, and the armature windings 31u, 31v, 31w are Y-connected.
  • the motor drive control device 3 includes a power connector 7 that electrically connects the battery 4 and the motor drive control device 3, and a vehicle side signal connector 8 that receives a vehicle side signal 5 such as a vehicle traveling speed signal from the vehicle side. And a torque sensor connector 9 for electrically connecting the torque sensor 6 and the motor drive control device 3.
  • the motor drive control device 3 also switches the motor current according to the smoothing capacitors 25a to 25c for absorbing the ripple component of the motor current flowing through the electric motor 30 and the magnitude and direction of the auxiliary torque output to the handle 1.
  • the power supply relay 40 which is a switching means for supplying and cutting off the battery current supplied to the switching elements 20a to 20c constituting the circuit, and the switching elements 20a to 20c and the power supply relay 40 constituting the three-phase bridge circuit are turned on / off.
  • the switching element 20a is mounted with a field effect transistor (hereinafter referred to as FET) 21a and FET 22a, the switching element 20b is mounted with FET 21b and FET 22b, and the switching element 20c is mounted with FET 21c and FET 22c connected to each other at one end. ing.
  • the FET 21a of the switching element 20a constitutes the U-phase plus side arm of the three-phase bridge circuit
  • the FET 22a constitutes the U-phase minus side arm
  • the FET 21b constitutes the V-phase plus side arm of the three-phase bridge circuit
  • the FET 22b is minus the V-phase.
  • the side arm is configured, the FET 21c is the W-phase plus side arm of the three-phase bridge circuit, and the FET 22c is the W-phase minus side arm.
  • the other ends of the FETs 21a to 21c are connected to smoothing capacitors 25a to 25c for absorbing a ripple component of the motor current flowing through the electric motor 30 by turning on and off the switching elements 20a to 20c, respectively.
  • the other ends of the FETs 22a to 22c are connected to an installation potential portion of the vehicle via shunt resistors 24a to 24c, respectively.
  • connection point A where one ends of the FET 21a and the FET 22a are connected, a connection point B where one ends of the FET 21b and the FET 22b are connected, and a connection point C where the FET 21c and the FET 22c are connected are respectively the U phase of the three-phase bridge circuit, V-phase and W-phase AC side terminals.
  • the connection points A, B, and C of the switching elements 20a to 20c are connected to one ends of the FETs 23a to 23c, respectively, and the other ends of the FETs 23a to 23c are armature windings 31u, 31v of the electric motor 30, respectively. And 31w U-phase, V-phase, and W-phase terminals.
  • the FETs 23a to 23c thus connected are controlled by the control board 10 so as to be normally turned on, and when necessary, the FETs 23a to 23c serve to electrically disconnect the electric motor 30, that is, to serve as a motor relay.
  • the same three switching elements are used as the switching elements 20a to 20c.
  • all the switching elements 20a to 20c are integrated into one module, and an inverter is formed using the one module.
  • a circuit may be configured.
  • one smoothing capacitor 25a to 25c is attached to each switching element 20a to 20c, but the number is not particularly limited as long as it is a necessary number for absorbing the ripple component of the motor current.
  • One end of the two FETs 41 and 42 mounted on the power relay 40 are connected to each other, the other end of one FET 41 is connected to the power connector 7 via the coil 43, and the other FET 42 The end is connected to the positive side DC terminal of the three-phase bridge circuit composed of the switching elements 20a to 20c.
  • 1 shows an example in which the position of the power relay 40 is arranged between the positive side of the switching elements 20a to 20c constituting the three-phase bridge circuit and the coil 43, but between the power connector 7 and the coil 43.
  • An arranged configuration may be used.
  • the single coil 43 is configured, but a configuration in which a plurality of coils are connected in series may be used in order to disperse heat generation.
  • the control board 10 includes a microcomputer 11, an FET drive circuit 12, a current detection circuit 13, and a control circuit capacitor 14.
  • the control circuit capacitor 14 is a capacitor for supplying the power source Vc to the semiconductor control elements and circuit elements constituting the microcomputer 11, the FET drive circuit 12, the current detection circuit 13 and the like mounted on the control board 10. Electrolytic capacitors are used to stably operate each control element and circuit element.
  • the torque sensor 6 detects the steering torque, and a steering torque signal corresponding to the detected torque is input to the microcomputer 11.
  • the rotation sensor 51 is constituted by a resolver or a magnetic sensor, and a rotation detection signal corresponding to the steering rotation number detected by the rotation sensor 51 is input to the microcomputer 11. Further, the motor current flowing through the electric motor 30 is detected by the current detection circuit 13 through one end of the shunt resistors 24 a to 24 c, and the motor current signal from the current detection circuit 13 is input to the microcomputer 11.
  • the microcomputer 11 calculates the FET from the steering torque signal from the torque sensor 6, the rotation detection signal detected by the rotation sensor 51, the vehicle side signal 5 such as the vehicle traveling speed signal, and the motor current signal from the current detection circuit 13. A control signal input to the drive circuit 12 is calculated.
  • the FET drive circuit 12 generates a gate drive signal at a predetermined timing based on a control signal from the microcomputer 11 and controls the switching elements 20a to 20c of the three-phase bridge circuit and each FET of the power supply relay 40.
  • the three-phase bridge circuit generates a predetermined three-phase alternating current and supplies the three-phase alternating current to the armature windings 31u to 31v of the electric motor 30 to drive the electric motor 30.
  • the torque generated by the electric motor 30 is applied as an assist torque to the steering shaft via the reduction gear 2. Thereby, the steering force of the steering wheel 1 by the driver is reduced.
  • FIG. 1 shows an example in which the armature windings 31u to 31v of the electric motor 30 are Y-connected, they may be ⁇ -connected.
  • the side where the motor drive control device 3 is connected to the motor 30 is the front side of the motor drive control device 3, and the side not connected to the motor is the rear side of the motor drive control device.
  • the motor drive control device 3 according to the first embodiment is hierarchically arranged in the order of the cover 60, the control board 10, the electrical connection member 15, and the heat sink part 70.
  • Mounted on the control board 10 are a microcomputer 11, an FET drive circuit 12 having a control element, a current detection circuit 13, and a control circuit capacitor 14 necessary for power supply to the control elements of the microcomputer 11 and the FET drive circuit 12.
  • the control signal from the control board 10 is sent to the switching elements 20a to 20c as electric signals via the control signal lines 26a to 26c connected to the switching elements 20a to 20c.
  • the switching elements 20a to 20c are made of resin-molded bare FET chips, and are equipped with shunt resistors 24a to 24c for the purpose of current detection.
  • the semiconductor elements used for the switching elements 20a to 20c are voltage-controlled self-extinguishing high-speed semiconductor elements, and MOSFETs or IGBTs are selected. If a wide gap semiconductor such as silicon carbide (SiC) or gallium nitride (GaN) is used, it is possible to configure a small motor drive control device 3 with lower loss due to its high-speed switching characteristics and high-temperature operation characteristics. .
  • the switching elements 20a to 20c drive the electric motor 30 by supplying a necessary current to the electric motor 30. Further, the switching elements 20a to 20c are arranged in the heat sink part 70.
  • the heat sink portion 70 is made of a metal such as aluminum, for example, and has a function of absorbing heat generated in the switching elements 20a to 20c and reducing a temperature rise of the switching elements 20a to 20c.
  • the heat sink portion 70 has a structure of a recess 70a that is cut deeper than the length in the thickness direction of the switching elements 20a to 20c so that the switching elements 20a to 20c are embedded.
  • the switching elements 20a to 20c are completely formed in the concave part 70a of the heat sink part 70.
  • the switching elements 20a to 20c have an insulating layer on a base material such as aluminum, and a copper foil for forming a circuit on the insulating layer, or a high thermal conductive ceramic material and a wiring conductor. It may be mounted on a ceramic substrate constituted by the above and contact with the heat sink part 70 through these substrates. Further, the switching elements 20a to 20c may be in contact with the heat sink part 70 via an adhesive or solder. With such a configuration, the heat generated in the switching elements 20a to 20c can be efficiently transmitted to the heat sink portion 70, so that the temperature rise of the switching elements 20a to 20c can be suppressed.
  • a highly thermally conductive insulating material such as mold resin or silicone gel is placed in the concave portion 70a.
  • An injected configuration may be used. With such a configuration, the heat generated in the switching elements 20a to 20c can be efficiently transmitted to the heat sink portion 70, so that the temperature rise of the switching elements 20a to 20c can be suppressed and the switching elements 20a to 20c can be suppressed. Since the electrically exposed portion of 20c can be insulated, the reliability can be further improved.
  • the FET 41 and the FET 42 constituting the power supply relay 40 are not shown, but are arranged so as to be embedded in the recesses 70a provided in the heat sink part 70 as in the switching elements 20a to 20c.
  • An electrical connection member 15 made of a metal bus bar and an insulating resin is in contact with the end surface (rear side) of the heat sink portion 70 provided with the recess 70a so as to completely cover the switching elements 20a to 20c. Has been placed. By doing this, smoothing capacitors 25a to 25c (25c are not visible in FIG. 2; the same applies hereinafter) disposed on the rear side of the electrical connection member 15, and a control board attached to the rear side of the electrical connection member 15 Since the influence of heat from the switching elements 20a to 20c and the heat sink part 70 can be suppressed on the microcomputer 11 and the control elements constituting the FET drive circuit 12 arranged in 10, the reliability is further improved. be able to.
  • a rotation sensor 51 is provided on the other end surface (front side) of the heat sink unit 70. The rotation sensor 51 may be a resolver, but may be configured by a combination of a permanent magnet and a GMR sensor.
  • the electrical connection member 15 is disposed between the switching elements 20a to 20c and the control board 10, and smoothing capacitors 25a to 25c are formed in a space formed between the electrical connection member 15 and the control board 10.
  • the control circuit capacitor 14 mounted on the control board 10 is also disposed in this space.
  • a cover 60 is screwed with a screw 101 into a heat sink connecting screw hole 92 (see FIG. 5) provided in the heat sink part 70 so as to cover the control board 10 and the electrical connection member 15.
  • the connection between the heat sink unit 70 and the cover 60 is not limited to screwing, but may be an adhesive or a combination of screws and adhesive.
  • the cover 60 is made of metal or resin, and the cover 60 is integrally formed with an arrangement space for the power connector 7, the vehicle-side signal connector 8, the torque sensor connector 9, and the coil 43.
  • FIG. 3 is a cross-sectional view of the electrical connection member 15. Power supply to the switching elements 20a to 20c and electrical connection between the switching elements 20a to 20c and the smoothing capacitors 25a to 25c are performed through the electrical connection member 15.
  • the electrical connection member 15 is planar, and the size of the plane is the same as or approximately the same as the planar size of the control board 10.
  • the electrical connection member 15 is configured such that a current-carrying bus bar made of a metal positive side bus bar 15a and a negative side bus bar 15b is disposed on an insulating member 15c such as a resin, or a part of the positive side bus bar 15a and the negative side bus bar 15b. Alternatively, all of them are formed by molding with an insulating member 15c such as resin.
  • the plus-side bus bar 15a and the minus-side bus bar 15b serve to supply current
  • the insulating member 15c such as resin is used to ensure electrical insulation between the current-carrying bus bars 15a and 15b and other parts such as the heat sink portion 70 and to be energized. It plays the role of a frame that supports the bus bar, and further, the heat shielding function that makes it difficult for the heat from the switching elements 20a to 20c and the heat from the heat sink part 70 to be transmitted to the smoothing capacitors 25a to 25c.
  • the insulating member 15c such as resin has a rising flange 15cd around the planar end so that a space is formed between the insulating member 15c and the control board 10.
  • one surface of the electrical connection member 15 comes into contact with the end face of the heat sink portion 70 as shown in FIG. 2, and completely covers the switching elements 20a to 20c.
  • the effects of heat from the switching elements 20a to 20c and the heat sink unit 70 on the smoothing capacitors 25a to 25c disposed on the upper surface of the electrical connection member 15, the microcomputer 11 and the FET drive circuit 12 disposed on the control board 10 Can be suppressed.
  • FIG. 4 is a diagram showing another structure of the electrical connection member 15. As shown in FIG. 4, even if the rising flange 15cd formed around the end of the insulating member 15c of the electrical connecting member 15 protrudes toward the heat sink portion 70 opposite to the control board 10 side, the switching element If the structure covers the region including 20a to 20c, the same effect as described above can be obtained.
  • FIG. 5 is a view of the heat sink portion 70, the switching elements 20a to 20c, and the electrical connection member 15 as viewed from the rear side.
  • the plus side bus bar 15 a and the minus side bus bar 15 b of the electrical connection member 15 are connected to the battery 4 via the power connector 7.
  • the plus-side bus bar 15a and the minus-side bus bar 15b are wired so as to be close to each other in parallel, and are arranged so as to draw a loop, and each of the plus-side bus bar 15a and the switching elements 20a to 20c has a P
  • the terminals 28a to 28c are connected to the negative side bus bar 15b and the N terminals 29a to 29c of the switching elements 20a to 20c.
  • smoothing capacitors 25a to 25c for reducing ripple current caused by the switching elements 20a to 20c are mounted on the electrical connection member 15.
  • the smoothing capacitors 25a to 25c are, for example, a large-capacity aluminum electrolytic capacitor or a conductive polymer hybrid aluminum electrolytic capacitor having a small DC equivalent resistance (ESR) to absorb the ripple component of the motor current flowing in the motor 30.
  • ESR DC equivalent resistance
  • the conductive polymer hybrid aluminum electrolytic capacitor is composed of a hybrid electrolyte having the characteristics of both a solid conductive polymer and a liquid electrolyte used in the aluminum electrolytic capacitor.
  • the motor drive control device 3 has low ESR and high ripple current characteristics equivalent to those of conductive polymer capacitors, and low leakage current characteristics that are characteristic of aluminum electrolytic capacitors. Therefore, when the ripple current characteristics are the same, the physique of the conductive polymer hybrid aluminum electrolytic capacitor is smaller than that of the aluminum electrolytic capacitor, so that the height of the motor drive control device 3 can be made lower by using this. Can do. Further, when the length of the end face of the smoothing capacitors 25a to 25c is smaller than the length of the side face, the end face of the smoothing capacitor may be placed horizontally so that it is perpendicular to the upper plane of the electrical connecting member 15. desirable. With such an arrangement, the height of the motor drive control device 3 can be further reduced.
  • FIG. 6 is a view of the positional relationship among the power relay 40, the switching elements 20a to 20b, and the smoothing capacitors 25a to 25c attached to the heat sink portion 70, as viewed from the rear side.
  • the power relay 40, the switching elements 20a to 20b, and the smoothing capacitors 25a to 25c are arranged at positions that do not overlap vertically when viewed from the rear side.
  • FIG. 6 shows a configuration in which the smoothing capacitors 25a to 25c are arranged in the circumferential direction as an example.
  • the arrangement direction may be either the inner side or the outer side of the end surface. Not limited to this, it may be placed vertically as shown in FIG. In any arrangement, the smoothing capacitors 25a to 25c are not easily affected by the heat generated from the switching elements 20a to 20b, so that the reliability can be further improved.
  • the control board 10 is composed of a multilayer (for example, four layers) glass / epoxy board, and the smoothing capacitors 25a to 25b are electrically connected so that the smoothing capacitors 25a to 25b are sandwiched between the control board 10 and the electrical connection member 15. It is attached to the rear side upper surface of the connecting member 15.
  • a microcomputer 11 a control element constituting the FET drive circuit 12, a current detection circuit 13, and a control circuit capacitor 14 necessary for supplying power to the control element are mounted on the control board 10.
  • the microcomputer 11, the FET drive circuit 12, and the current detection circuit 13 are arranged on the rear side surface of the control board 10, and the control circuit capacitor 14 is arranged on the front side surface of the control board 10, and the smoothing capacitors 25a to 25c are arranged. It is set as the structure arrange
  • the smoothing capacitors 25 a to 25 c and the control circuit capacitor 14 are sandwiched between the control board 10 and the electrical connection member 15 as described above, the space formed between the control board 10 and the electrical connection member 15 is effectively used. Therefore, the motor drive control device 3 can be reduced in size. Further, since the smoothing capacitors 25a to 25c and the control circuit capacitor 14 are not easily affected by the heat received from the switching elements 20a to 20b, the microcomputer 11, and the FET drive circuit 12, the reliability can be further improved. it can. *
  • FIG. 8 shows an example of the structure of an electric power steering device 100 in which the motor drive control device 3 and the electric motor 30 are integrated.
  • an armature winding 31 (31u, 31v, 31w) is wound around a stator core 32 (32u, 32v, 32w), and a rotor core 34 and a permanent magnet are opposed to the stator core 32.
  • a rotor with 33 is arranged.
  • a shaft 80 is press-fitted into the center of the rotation axis of the rotor core 34, and a boss 81 that is a coupling with a gear shaft is press-fitted into one end of the shaft 80.
  • the shaft 80 is supported by two bearings 71 and 72, and the bearings 71 and 72 are fixed to the cover 62 so that the rotor can rotate.
  • the part is provided with a rotation sensor 51.
  • the cover 62 and the stator core 32 are fixed to the frame 63 by shrink fitting or the like.
  • the frame 63 is made of, for example, aluminum, and is screwed to the frame connecting screw hole portion 91 (see FIG. 5) provided in the heat sink portion 70 with screws 102.
  • the armature winding 31 (31u, 31v, 31w) is electrically connected to a bus bar (not shown) via the terminal 61, and the bus bar (not shown) and the motor drive control device 3 are electrically connected. Is done.
  • the bus bar (not shown) can be supplied with current from the FET output units 27a to 27c (see FIG. 5) of the switching elements 20a to 20c of the motor drive control device 3, and can drive the electric motor 30.
  • the motor drive control device 3 is connected to the electric motor 30 via the heat sink part 70, and the motor drive control device 3 can block the heat generated from the electric motor 30 by the heat sink part 70. Furthermore, the smoothing capacitors 25a to 25c of the motor drive control device 3 can block the heat from the heat sink portion 70 and the switching elements 20a to 20c by the electrical connection member 15, so that the reliability can be further improved. it can.
  • the switching elements 20a to 20c, the control circuit capacitor 14, the smoothing capacitors 25a to 25c, the switching element and the smoothing capacitor are provided.
  • the control circuit capacitor 14 and the smoothing capacitor 2 is provided in the motor drive control device for electric power steering.
  • the smoothing capacitors 25a to 25c are less affected by the heat from the switching elements 20a to 20c, the housing, and the heat sink part 70.
  • the temperature rise of the capacitors 25a to 25c is suppressed, the reliability is improved, and the height direction of the motor drive control device 3 is reduced, so that the device can be downsized.
  • FIG. 9 is a diagram showing the positional relationship of each element used in the motor drive control device 3 corresponding to FIG.
  • the power relay 40 and the switching elements 20a to 20b are evenly arranged in FIG. 6, and the smoothing capacitors 25a to 25c are evenly arranged between these elements. As shown in FIG. 9, the switching elements 20a to 20c are arranged in the vicinity of the heat sink connecting screw hole 92.
  • Other configurations are the same as those of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals.
  • the heat sink connecting screw hole portion 92 is constituted by a part of the heat sink portion 70, and since the metal thickness of this portion is larger than the surroundings, the heat capacity is large. Therefore, since the cooling effect of the switching elements 20a to 20c is increased, the temperature rise can be suppressed, and the heat generated from the switching elements 20a to 20b by the smoothing capacitors 25a to 25c arranged on the rear side surface of the electrical connection member 15 can be suppressed. Since it becomes difficult to be affected, the reliability can be further improved. Further, when the smoothing capacitors 25a to 25c and the switching elements 20a to 20c are arranged at positions where they do not overlap each other when viewed from the rear side surface of the electrical connection member 15, they are affected by the heat from the switching elements 20a to 20c. Since it becomes difficult, reliability can be improved more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Power Steering Mechanism (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

 寿命が温度依存性を持つ平滑コンデンサの温度上昇を抑制すると共に制御装置の高さを小さくして小型化した電動パワーステアリング用モータ駆動制御装置を得る。 モータに電流を供給するスイッチング素子(20)と、スイッチング素子によるリップル電流を低減する平滑コンデンサ(25)と、スイッチング素子を制御する駆動回路(12)と制御回路用コンデンサ(14)を実装した制御基板(10)と、制御基板からの制御信号をスイッチング素子に供給する制御信号線(26)と、スイッチング素子と平滑コンデンサ(25)を電気的に接続する電気的接続部材(15)と、スイッチング素子を埋め込んで配置するヒートシンク部(70)を備え、スイッチング素子(20)と制御基板(10)との間に電気的接続部材(15)を配置すると共に、電気的接続部材(15)と制御基板(10)との空間に制御回路用コンデンサ(14)と平滑コンデンサ(25)を配置した。

Description

電動パワーステアリング用モータ駆動制御装置
 この発明は、例えば車両用の電動パワーステアリング装置に用いられるモータを駆動制御する電動パワーステアリング用モータ駆動制御装置に関するものである。
 自動車用の電動パワーステアリング装置は、運転者がステアリングホイールを操作することにより回動するステアリングシャフトの回動方向と回動トルクとを検出し、この検出値に基づいてステアリングシャフトの回動方向と同じ方向へ回動するように電動モータを駆動し、操舵アシストトルクを発生させるように構成されている。
 従来から電動パワーステアリング装置に用いられるモータを駆動制御する電動パワーステアリング用モータ駆動制御装置については、小型で信頼性の高い構造として、駆動制御を構成する半導体スイッチとしてのMOSFETと平滑コンデンサを同一の金属基板上に配置した電力変換回路部と、マイコンなどの制御回路部品を配置した制御回路部、およびフィルタを配置したフィルタ部を、蓋体とハウジングにより構成される収容空間に収容された積層構造が採られている。(例えば特許文献1の図2参照)
 また、制御回路を構成する制御回路用面実装部品が実装される制御基板、パワー用面実装部品が実装されるパワー基板、および制御基板とパワー基板間にあって、電源系統あるいは他のECU等の外部と接続するための外部接続コネクタが一体化されたコネクタケースを、上側のカバーと下側のヒートシンク間に挟みこんだ積層構造が採られている。(例えば特許文献2の図2参照)
特開2013-63689号公報(図2) 特開2013-103535号公報(図2)
 しかしながら、特許文献1に記載の電動パワーステアリング装置に用いられるモータを駆動制御する電動パワーステアリング用モータ駆動制御装置は、MOSFETと平滑コンデンサが同一の金属基板上に配置され、蓋体とハウジングにより構成される収容空間に積層されているため、平滑コンデンサが、MOSFET表面からの発熱の影響を受けると共に、金属基板が取り付けられたハウジングからも熱の影響を受けて、平滑コンデンサの温度上昇が大きくなってしまう課題があった。
 また、特許文献2に記載の電動パワーステアリング装置に用いられるモータを駆動制御する電動パワーステアリング用モータ駆動制御装置は、コンデンサやスイッチング素子などのパワー実装部品が同一のパワー基板上に配置されているため、同様の課題があった。特に、パワー基板に小型の面実装コンデンサを利用しているため、コンデンサの熱容量が小さいことで周りからの熱の影響を非常に受けやすく、温度上昇が大きくなってしまう課題があった。
 この発明は、上記のような課題を解決するためになされたものであり、寿命が温度依存性を持つ平滑コンデンサの温度上昇を抑制し、これにより信頼性を向上するとともに、制御装置の高さを小さくして小型化した電動パワーステアリング用モータ駆動制御装置の提供を目的とするものである。
 この発明に係る電動パワーステアリング用モータ駆動制御装置は、電動パワーステアリング装置に用いられるモータを駆動制御する電動パワーステアリング用モータ駆動制御装置であって、モータに電流を供給する複数のスイッチング素子と、スイッチング素子のオンオフによって流れるモータ電流のリップル成分を吸収するための平滑コンデンサと、スイッチング素子を駆動制御する駆動回路と制御回路用コンデンサを実装した制御基板と、制御基板からの制御信号を前記スイッチング素子に供給する制御信号線と、スイッチング素子と平滑コンデンサを電気的に接続する電気的接続部材と、スイッチング素子を埋め込んで配置するヒートシンク部を備え、スイッチング素子と制御基板との間に電気的接続部材を配置すると共に、電気的接続部材と制御基板との間に形成される空間に制御回路用コンデンサと平滑コンデンサを配置したものである。
 この発明の構成とすることにより、平滑コンデンサがスイッチング素子やハウジング、ヒートシンク部からの熱の影響を受けにくくなるため、平滑コンデンサの温度上昇が抑制され、信頼性が向上する。また、制御装置の高さ方向が小さくなるため、装置を小型化できるというものである。
この発明の実施の形態1に係るモータ駆動制御装置を含む電動パワーステアリング装置の回路構成図である。 この発明の実施の形態1に係るモータ駆動制御装置の構造図である。 この発明の実施の形態1に係るモータ駆動制御装置に使用される電気的接続部材の断面図である。 この発明の実施の形態1に係るモータ駆動制御装置に使用される電気的接続部材の別の断面図である。 この発明の実施の形態1に係るモータ駆動制御装置に使用される電気的接続部材を上面から見た図である。 この発明の実施の形態1に係るモータ駆動制御装置に使用される各素子の位置関係を示す図である。 この発明の実施の形態1に係るモータ駆動制御装置に使用される各素子の位置関係を示す別の図である。 この発明の実施の形態1に係るモータ駆動制御装置を含む電動パワーステアリング装置の構造図である。 この発明の実施の形態2に係るモータ駆動制御装置に使用される各素子の位置関係を示す図である。
実施の形態1.
 以下、この発明の実施の形態1に係る電動パワーステアリング用モータ駆動制御装置を図1~図8に基づいて説明する。
 図1は、実施の形態1に係る電動パワーステアリング用モータ駆動制御装置(以下、単にモータ駆動制御装置という。)を含む電動パワーステアリング装置の回路構成図、図2はモータ駆動制御装置の構造図である。
 まず、電動パワーステアリング装置全体の回路構成について説明する。図1において、電動パワーステアリング装置100は、車両のハンドル1に対して補助トルクを出力する電動モータ30と、この電動モータ30の駆動を制御するモータ駆動制御装置3と、電動モータ30の回転速度を減速させる減速装置2と、電動モータ30を駆動するための電流を供給するバッテリー4と、車両のハンドル付近に配置され、運転者の操舵するハンドル1の操舵トルクを検出するトルクセンサ6を備えている。
 なお、モータ駆動制御装置3により駆動される電動モータ30は、3相ブラシレスモータで構成されており、各々の電機子巻線31u、31v、31wはY結線されている。
 モータ駆動制御装置3は、バッテリー4とモータ駆動制御装置3とを電気的に接続する電源コネクタ7と、車両側から車両の走行速度信号などの車両側信号5が入力される車両側信号コネクタ8と、トルクセンサ6とモータ駆動制御装置3とを電気的に接続するトルクセンサ用コネクタ9を備えている。
 またモータ駆動制御装置3は、電動モータ30に流れるモータ電流のリップル成分を吸収するための平滑コンデンサ25a~25cと、ハンドル1に出力する補助トルクの大きさと方向に応じてモータ電流を切り替えるための3相ブリッジ回路を構成する同一のスイッチング素子20a、20b、20cと、スイッチング素子20a~20cのスイッチング動作時に発生する電磁ノイズが外部へ流出することを防止するコイル43と、バッテリー4から3相ブリッジ回路を構成するスイッチング素子20a~20cに供給されるバッテリー電流を通電、遮断するスイッチ手段である電源リレー40と、これら3相ブリッジ回路を構成するスイッチング素子20a~20cと電源リレー40のオン、オフの状態を制御するための制御基板10と、電動モータ30の回転数を検出する回転センサ51を備えている。
 スイッチング素子20aには電界効果トランジスタ(以下、FETと称す)21aとFET22aが、スイッチング素子20bにはFET21bとFET22bが、スイッチング素子20cにはFET21cとFET22cが、それぞれ一端同士を互いに接続して実装されている。スイッチング素子20aのFET21aが3相ブリッジ回路のU相のプラス側アーム、FET22aがU相のマイナス側アームを構成し、FET21bが3相ブリッジ回路のV相のプラス側アーム、FET22bがV相のマイナス側アームを構成し、FET21cが3相ブリッジ回路のW相のプラス側アーム、FET22cがW相のマイナス側アームを構成している。
 またFET21a~FET21cのそれぞれの他端は、スイッチング素子20a~20cのオンオフによって、電動モータ30に流れるモータ電流のリップル成分を吸収するための平滑コンデンサ25a~25cがそれぞれ接続されている。FET22a~22cの他端は、それぞれシャント抵抗24a~24cを介して車両の設置電位部に接続されている。
 FET21aとFET22aの一端同士が接続された接続点A、FET21bとFET22bの一端同士が接続された接続点B、およびFET21cとFET22cが接続された接続点Cは、それぞれ3相ブリッジ回路のU相、V相、W相の交流側端子となる。スイッチング素子20a~20cの接続点A、接続点B、接続点Cには、FET23a~23cの一端がそれぞれ接続され、FET23a~23cの他端がそれぞれ電動モータ30の電機子巻線31u、31v、および31wのU相、V相、W相端子に接続されている。このように接続されたFET23a~23cは、通常オン状態となるように制御基板10により制御され、必要な時は電動モータ30を電気的に切り離す役割、すなわちモーターリレーの役割を果たしている。
 なお実施の形態1では、スイッチング素子20a~20cに同一の3つのスイッチング素子を用いる構成としているが、スイッチング素子20a~20cをすべて一体化させて1つのモジュールとし、その1つのモジュールを用いてインバータ回路を構成してもよい。また図1では、平滑コンデンサ25a~25cを各スイッチング素子20a~20cに1個ずつ取り付けているが、モータ電流のリップル成分を吸収するための必要数であれば、特に個数を限定しない。
 電源リレー40に実装された2個のFET41とFET42は、その一端同士が互いに接続されており、一方のFET41の他端は、コイル43を介して電源コネクタ7に接続され、他方のFET42の他端は、スイッチング素子20a~20cで構成される3相ブリッジ回路のプラス側直流端子に接続されている。
 なお、図1では電源リレー40の位置を3相ブリッジ回路を構成するスイッチング素子20a~20cのプラス側とコイル43の間に配置した例を示しているが、電源コネクタ7とコイル43の間に配置した構成でも良い。また図1ではコイル43を1つで構成しているが、発熱を分散させるために複数のコイルを直列に接続した構成でもよい。
 制御基板10は、マイクロコンピュータ11、FET駆動回路12、電流検出回路13および制御回路用コンデンサ14が搭載されて構成されている。制御回路用コンデンサ14は、制御基板10に搭載されたマイクロコンピュータ11、FET駆動回路12、および電流検出回路13などを構成する半導体の制御素子や回路素子に電源Vcを供給するためのコンデンサであり、各制御素子や回路素子を安定に動作させるために電解コンデンサが使用される。
 運転者がハンドル1を操作してステアリング軸に操舵トルクを加えると、トルクセンサ6がその操舵トルクを検出し、その検出トルクに応じた操舵トルク信号がマイクロコンピュータ11に入力される。また回転センサ51はレゾルバあるいは磁気センサで構成され、回転センサ51が検出した操舵回転数に応じた回転検出信号がマイクロコンピュータ11に入力される。さらには、シャント抵抗24a~24cの一端を介して、電動モータ30に流れるモータ電流が電流検出回路13によって検出され、電流検出回路13からのモータ電流信号がマイクロコンピュータ11に入力される。
 マイクロコンピュータ11は、上記トルクセンサ6からの操舵トルク信号、回転センサ51で検出される回転検出信号、車両の走行速度信号などの車両側信号5、および電流検出回路13によるモータ電流信号から、FET駆動回路12に入力する制御信号を演算する。
 FET駆動回路12は、マイクロコンピュータ11からの制御信号に基づいて所定のタイミングでゲート駆動信号を発生し、3相ブリッジ回路のスイッチング素子20a~20cと電源リレー40の各FETを導通制御する。これにより3相ブリッジ回路は所定の3相交流電流を発生し、電動モータ30の電機子巻線31u~31vに3相交流電流を供給して電動モータ30を駆動する。
 電動モータ30の発生したトルクは、減速装置2を介してステアリング軸にアシストトルクとして加えられる。これにより、運転者によるハンドル1の操舵力は軽減されるというものである。なお図1では、電動モータ30の電機子巻線31u~31vがY結線される例を示したが、Δ結線されていても良い。
 次にこの発明の実施の形態1におけるモータ駆動制御装置3の構造を、図2に基づいて説明する。なお図2において、モータ駆動制御装置3がモータ30に接続される側をモータ駆動制御装置3のフロント側、モータに接続されない側をモータ駆動制御装置のリア側とする。実施の形態1に係るモータ駆動制御装置3は、カバー60、制御基板10、電気的接続部材15、ヒートシンク部70の順に階層的に配置されている。制御基板10には、マイクロコンピュータ11、制御素子を有するFET駆動回路12、電流検出回路13、およびマイクロコンピュータ11やFET駆動回路12の制御素子への電源供給に必要な制御回路用コンデンサ14が実装されており、制御基板10からの制御信号をスイッチング素子20a~20cに、各々のスイッチング素子20a~20cに接続された制御信号線26a~26cを介して電気信号として送るように構成されている。
 スイッチング素子20a~20cは、FETのベアチップを樹脂でモールドしたもので構成されており、また電流検出の目的として、シャント抵抗24a~24cを装備している。なお、これらスイッチング素子20a~20cに用いられる半導体素子は、電圧制御自己消弧型の高速半導体素子であり、MOSFETやIGBTが選定される。また炭化珪素(SiC)や窒化ガリウム(GaN)等のワイドギャップ半導体を用いれば、その高速スイッチング特性と高温動作特性により、より低損失で小型のモータ駆動制御装置3を構成することが可能となる。
 このスイッチング素子20a~20cは、電動モータ30に必要な電流を供給して電動モータ30を駆動する。さらにスイッチング素子20a~20cは、ヒートシンク部70に配置されている。ヒートシンク部70は、例えばアルミニウムなどの金属製で構成されており、スイッチング素子20a~20cで発生した熱を吸収し、スイッチング素子20a~20cの温度上昇を低減する働きを持っている。
 ヒートシンク部70は、スイッチング素子20a~20cを埋め込んで配置するように、スイッチング素子20a~20cの厚さ方向の長さよりも深く削り込まれた凹部70aの構造を有している。このようにヒートシンク部70にスイッチング素子20a~20cの厚さ方向の長さよりも深く削り込まれた凹部70aの構造を設けることで、スイッチング素子20a~20cは、完全にヒートシンク部70の凹部70aに埋め込むことができる。よってモータ駆動制御装置3の高さをより低くすることができると同時に、熱を効率よくヒートシンク部70に伝えることができるため、スイッチング素子20a~20cの温度上昇を抑制することができる。
 またスイッチング素子20a~20cは、アルミニウムなどの基材の上に絶縁層を配し、その上に回路形成用の銅箔を張って構成された金属基板上、あるいは高熱伝導のセラミックス材料と配線導体で構成されたセラミック基板上に実装されて、これらの基板を介してヒートシンク部70と接触してもよい。またスイッチング素子20a~20cが接着剤や半田を介してヒートシンク部70と接触していても良い。このような構成とすれば、スイッチング素子20a~20cで発生した熱を効率よくヒートシンク部70に伝えることができるため、スイッチング素子20a~20cの温度上昇を抑制することができる。
 さらには、スイッチング素子20a~20cを金属基板やセラミック基板に実装したものをヒートシンク部70の凹部70aに埋め込んで配置した後、その凹部70aにモールド樹脂やシリコーンゲルなどの高熱伝導性の絶縁材を注入した構成としても良い。このような構成とすれば、スイッチング素子20a~20cで発生した熱を効率よくヒートシンク部70に伝えることができるため、スイッチング素子20a~20cの温度上昇を抑制することができるとともに、スイッチング素子20a~20cの電気的露出部を絶縁することができるので、より信頼性を向上させることができる。
 なお、この図2には電源リレー40を構成するFET41とFET42は図示されていないが、スイッチング素子20a~20cと同様にヒートシンク部70に設けられた凹部70aに埋め込んで配置されている。
 ヒートシンク部70の凹部70aが設けられた端面(リア側)には、金属バスバーと絶縁樹脂で構成された電気的接続部材15がスイッチング素子20a~20cを完全に覆う構造となるように接触して配置されている。こうすることで電気的接続部材15のリア側に配置された平滑コンデンサ25a~25c(25cは図2では見えていない。以下同様)や、電気的接続部材15よりもリア側に取り付けられる制御基板10に配置されたマイクロコンピュータ11、FET駆動回路12を構成する制御素子に対して、スイッチング素子20a~20cやヒートシンク部70からの熱の影響を抑制することができるので、より信頼性を向上させることができる。
 ヒートシンク部70のもう一方の端面(フロント側)には、回転センサ51が設けられている。なお、回転センサ51はレゾルバを用いてもよいが、永久磁石とGMRセンサの組み合わせで構成してもよい。
 また、電気的接続部材15はスイッチング素子20a~20cと制御基板10との間に配置されており、この電気的接続部材15と制御基板10との間に形成される空間に平滑コンデンサ25a~25cを配置し、また制御基板10に搭載されている制御回路用コンデンサ14もこの空間に配置している。
 制御基板10および電気的接続部材15を覆うようにカバー60がヒートシンク部70に設けられたヒートシンク連結ネジ穴部92(図5参照)に、ネジ101でネジ止めされる。なお、ヒートシンク部70とカバー60の接続は、ネジ止めに限らず、接着剤や、ネジと接着剤の併用などの方法でもよい。
 カバー60は金属あるいは樹脂で構成され、このカバー60には、電源コネクタ7、車両側信号コネクタ8、トルクセンサ用コネクタ9、およびコイル43の配置空間が一体成型されている。
 図3は電気的接続部材15の断面図である。スイッチング素子20a~20cへの電力供給およびスイッチング素子20a~20cと平滑コンデンサ25a~25cとの電気的接続は、この電気的接続部材15を介して行われる。
 電気的接続部材15は平面状であり、その平面の大きさは制御基板10の平面的大きさと同じ、または同程度である。電気的接続部材15は、金属製のプラス側バスバー15aとマイナス側バスバー15bからなる通電用バスバーを樹脂等の絶縁部材15c上に配置するか、プラス側バスバー15aとマイナス側バスバー15bの一部、あるいは全部を樹脂等の絶縁部材15cでモールドして形成されている。
 プラス側バスバー15aとマイナス側バスバー15bは電流を供給する役目を果たし、樹脂等の絶縁部材15cは通電用バスバー15a、15bとヒートシンク部70などの他の部品との電気的絶縁の確保、通電用バスバーを支えるフレームとしての役割、さらにはスイッチング素子20a~20cからの熱やヒートシンク部70からの熱が平滑コンデンサ25a~25cに伝わりにくくする遮熱の役割を果たしている。また、樹脂等の絶縁部材15cは、制御基板10との間に空間ができるように、その平面端部である周囲には立ち上がり鍔部15cdを有している。
 図3の構造に示す電気的接続部材15を使用することにより、図2に示すように電気的接続部材15の一面がヒートシンク部70の端面と接触し、スイッチング素子20a~20cを完全に覆うので、電気的接続部材15の上面に配置された平滑コンデンサ25a~25cや、制御基板10に配置されたマイクロコンピュータ11、FET駆動回路12に及ぼすスイッチング素子20a~20cやヒートシンク部70からの熱の影響を抑制することができる。
 また図4は、電気的接続部材15の別の構造を示す図である。図4に示すように、電気的接続部材15の絶縁部材15cの端部周囲に形成された立ち上がり鍔部15cdが、制御基板10側とは反対のヒートシンク部70側に突出していても、スイッチング素子20a~20cを含む領域を覆う構造であれば、上記と同等の効果を得ることができる。
 図5は、ヒートシンク部70、スイッチング素子20a~20c、および電気的接続部材15をリア側から見た図である。
 電気的接続部材15のプラス側バスバー15aとマイナス側バスバー15bは、電源コネクタ7を介してバッテリー4に接続される。プラス側バスバー15aとマイナス側バスバー15bは、それぞれが互いに近接して並行になるように配線され、さらにループを描くように配置されており、プラス側バスバー15aとスイッチング素子20a~20cのそれぞれのP端子28a~28cが、またマイナス側バスバー15bとスイッチング素子20a~20cのそれぞれのN端子29a~29cが接続される。
 このような配線とすることで、よりバスバーのインダクタンスを下げることが可能となり、インダクタンスに起因するサージ電圧を抑制することができる。また、スイッチング素子20a~20cと電源リレー40をヒートシンク部70の全面に分散配置することが可能となるため、スイッチング素子20a~20cの温度上昇を均一化させることができる。これにより、モータ駆動制御装置3の信頼性をより向上させることができる。
 また電気的接続部材15には、スイッチング素子20a~20cによるリップル電流を低減するための平滑コンデンサ25a~25cが実装される。平滑コンデンサ25a~25cは、モータ30に流れるモータ電流のリップル成分を吸収するため大容量のアルミ電解コンデンサや、直流等価抵抗(ESR:Equivalent Series Resistance)の小さい導電性高分子ハイブリッドアルミ電解コンデンサなどを用いる。特に導電性高分子ハイブリッドアルミ電解コンデンサは、固体である導電性高分子とアルミ電解コンデンサに用いられる液体の電解液の両方の電解質の特性を有するハイブリッド電解質で構成される。
 そのため、導電性高分子コンデンサと同等レベルの低いESRと高いリップル電流特性と、アルミ電解コンデンサの特徴である低い漏れ電流特性を有する。よって、リップル電流特性を同一にした場合、導電性高分子ハイブリッドアルミ電解コンデンサの体格はアルミ電解コンデンサに比べて小さくなるため、これを用いることでモータ駆動制御装置3の高さをより低くすることができる。さらに平滑コンデンサ25a~25cの端面の長さが側面の長さよりも小さい場合には、平滑コンデンサの端面を電気的接続部材15の上平面に対して垂直になるように、横置き配置することが望ましい。このような配置にすれば、モータ駆動制御装置3の高さをより低くすることができる。
 図6は、ヒートシンク部70に取り付けられた電源リレー40、スイッチング素子20a~20bと平滑コンデンサ25a~25cの位置関係をリア側から見た図である。
 電源リレー40とスイッチング素子20a~20bと平滑コンデンサ25a~25cは、リア側から見て上下に重ならない位置に配置される。
 なお、図6は一例として平滑コンデンサ25a~25cを円周方向に並べて配置した構成を示しているが、配置方向は端面が内側、外側のいずれの方向となっていてもよく、また横置きに限らず、図7のように縦置きのいずれにしてよい。いずれの配置も平滑コンデンサ25a~25cがスイッチング素子20a~20bから発する熱の影響を受け難くなるため、より信頼性を向上させることができる。
 制御基板10は、多層(例えば4層)のガラス・エポキシ基板から構成されており、制御基板10と電気的接続部材15で平滑コンデンサ25a~25bを挟み込むように、平滑コンデンサ25a~25bは電気的接続部材15のリア側上面に取り付けられる。
 図2に示すように、制御基板10にはマイクロコンピュータ11、FET駆動回路12を構成する制御素子、電流検出回路13、および制御素子への電源供給に必要な制御回路用コンデンサ14が実装されるが、マイクロコンピュータ11、FET駆動回路12、および電流検出回路13は制御基板10のリア側の面に、制御回路用コンデンサ14は制御基板10のフロント側の面で、平滑コンデンサ25a~25cが配置されていない空隙に配置する構造とする。
 このように制御基板10と電気的接続部材15で平滑コンデンサ25a~25cと制御回路用コンデンサ14を挟み込む構造とすれば、制御基板10と電気的接続部材15との間でできる空間を有効に利用することが可能になるため、モータ駆動制御装置3を小型化することができる。さらに、平滑コンデンサ25a~25cと制御回路用コンデンサ14が、スイッチング素子20a~20b、マイクロコンピュータ11、およびFET駆動回路12からの受ける熱の影響を受け難くなるため、より信頼性を向上させることができる。 
 図8に、モータ駆動制御装置3と電動モータ30を一体化した電動パワーステアリング装置100の構造の一例を示す。電動モータ30は、固定子鉄心32(32u、32v、32w)に電機子巻線31(31u、31v、31w)が巻き回され、固定子鉄心32に対向して、回転子鉄心34と永久磁石33を備えた回転子が配置されている。
 回転子鉄心34の回転軸中心には、シャフト80が圧入され、シャフト80の一端にはギヤ軸とのカップリングであるボス81が圧入されている。シャフト80は、2つの軸受71、72によって支持され、軸受71、72はカバー62に固定されて、回転子が回転自在になるような構造となっている、また、シャフト80のもう一方の端部には回転センサ51が設けられている。カバー62と固定子鉄心32は、フレーム63に焼きばめなどで固定されている。またフレーム63は、例えばアルミニウムで構成され、ヒートシンク部70に設けられたフレーム連結ネジ穴部91(図5参照)に、ネジ102でネジ止めされる。
 電機子巻線31(31u、31v、31w)はターミナル61を介してバスバー(図示しない)に電気的に接続されており、バスバー(図示しない)とモータ駆動制御装置3とは、電気的に接続される。バスバー(図示しない)は、モータ駆動制御装置3のスイッチング素子20a~20cのそれぞれのFET出力部27a~27c(図5参照)から電流の供給を受け、電動モータ30を駆動することができる。
 モータ駆動制御装置3は電動モータ30とヒートシンク部70を介して接続する構造となっており、モータ駆動制御装置3は電動モータ30からの熱の煽りをヒートシンク部70で遮ることができる。またさらに、モータ駆動制御装置3の平滑コンデンサ25a~25cは、電気的接続部材15でヒートシンク部70およびスイッチング素子20a~20cからの熱を遮断することができるため、より信頼性を向上させることができる。
 以上のようにこの発明の実施の形態1では、電動パワーステアリング用モータ駆動制御装置において、スイッチング素子20a~20cと、制御回路用コンデンサ14と、平滑コンデンサ25a~25cと、スイッチング素子と平滑コンデンサを電気的に接続する電気的接続部材15と、制御回路素子を実装した制御基板10と、スイッチング素子20a~20cと制御基板10の制御回路素子とを電気的に接続する制御信号線26a~26cと、スイッチング素子を埋め込んで配置するための凹部を有するヒートシンク部70とを備え、スイッチング素子20a~20cがヒートシンク部70に埋め込んで配置され、電気的接続部材15をスイッチング素子と制御基板10との間に配置し、制御回路用コンデンサ14と平滑コンデンサ25a~25cを制御基板10と電気的接続部材15との間に配置したので、平滑コンデンサ25a~25cがスイッチング素子20a~20cやハウジング、ヒートシンク部70からの熱の影響を受けにくくなるため、平滑コンデンサ25a~25cの温度上昇が抑制され、信頼性が向上し、またモータ駆動制御装置3の高さ方向が小さくなるため、装置を小型化できる。
実施の形態2.
 次にこの発明の実施の形態2におけるモータ駆動制御装置3について図9に基づいて説明する。
 実施の形態2の発明においては、実施の形態1と同様に各部品が実装され、電気回路も同一であり、図1および図2に示すような回路構成図と構造図は省略するが、図9は図6に相当するモータ駆動制御装置3に使用される各素子の位置関係を示した図である。
 実施の形態1では、図6において電源リレー40、スイッチング素子20a~20bを均等配置し、それらの素子の間に平滑コンデンサ25a~25cを均等に配置する構成を示したが、実施の形態2では、図9に示すようにスイッチング素子20a~20cをヒートシンク連結ネジ穴部92の近傍に配置したものである。その他の構成は実施の形態1と同じであり、同じまたは相当部分には同一符号を付している。
 ヒートシンク連結ネジ穴部92はヒートシンク部70の一部で構成され、この部分の金属厚さは周囲よりも大きいため熱容量が大きい。よってスイッチング素子20a~20cの冷却効果が大きくなるため温度上昇を抑制することができ、電気的接続部材15のリア側の面に配置した平滑コンデンサ25a~25cがスイッチング素子20a~20bから発する熱の影響を受け難くなるため、より信頼性を向上させることができる。
 さらに電気的接続部材15のリア側の面から見て、平滑コンデンサ25a~25cとスイッチング素子20a~20cを上下に重ならない位置に配置することで、スイッチング素子20a~20cからの熱の影響を受け難くなるため、より信頼性を向上させることができる。
 以上、この発明の実施の形態を記述したが、この発明は実施の形態に限定されるものではなく、種々の設計変更を行うことが可能であり、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
  3:モータ駆動制御装置、 4:バッテリー、 10:制御基板、 11:マイクロコンピュータ、 12:FET駆動回路、 13:電流検出回路、 14 制御回路用コンデンサ、 15:電気的接続部材、 15a:プラス側バスバー、 15b:マイナス側バスバー、 15c:絶縁部材、 20a、20b、20c:スイッチング素子、 25a、25b、25c:平滑コンデンサ、 26a、26b、26c:制御信号線、 30:電動モータ、 40:電源リレー、 70:ヒートシンク部、 70a:凹部、 92:ヒートシンク連結ネジ穴部、 100:電動パワーステアリング装置。

Claims (11)

  1.  電動パワーステアリング装置に用いられるモータを駆動制御する電動パワーステアリング用モータ駆動制御装置であって、
    前記モータに電流を供給する複数のスイッチング素子と、これらスイッチング素子のオンオフによるリップル電流を低減するための平滑コンデンサと、前記スイッチング素子を駆動制御する駆動回路と制御回路用コンデンサを実装した制御基板と、前記制御基板からの制御信号を前記スイッチング素子に供給する制御信号線と、前記スイッチング素子と前記平滑コンデンサを電気的に接続する電気的接続部材と、前記スイッチング素子を埋め込んで配置するヒートシンク部を備え、
    前記スイッチング素子と前記制御基板との間に前記電気的接続部材を配置すると共に、
    前記電気的接続部材と前記制御基板との間に形成される空間に前記制御回路用コンデンサと前記平滑コンデンサを配置した
    ことを特徴とする電動パワーステアリング用モータ駆動制御装置。
  2.  前記ヒートシンク部が前記スイッチング素子を埋め込んで配置するための凹部を有することを特徴とする請求項1に記載の電動パワーステアリング用モータ駆動制御装置。
  3.  前記ヒートシンク部の凹部に高熱伝導性の絶縁材を注入したことを特徴とする請求項2に記載の電動パワーステアリング用モータ駆動制御装置。
  4.  前記複数のスイッチング素子が前記ヒートシンク部に分散配置されるとともに、前記平滑コンデンサと前記スイッチング素子が、前記電気的接続部材の上面から見て重ならない位置に配置されていることを特徴とする請求項1から請求項3のいずれか1項に記載の電動パワーステアリング用モータ駆動制御装置。
  5.  前記平滑コンデンサの端面が、前記電気的接続部材の上平面に対して垂直になるように、前記平滑コンデンサを前記電気的接続部材に横置き配置したことを特徴とする請求項1から請求項4のいずれか1項に記載の電動パワーステアリング用モータ駆動制御装置。
  6.  前記電気的接続部材は、電源のプラス側電位およびマイナス側電位を接続する通電用バスバーと、この通電用バスバーを支持する絶縁部材で構成されたことを特徴とする請求項1から請求項5のいずれか1項に記載の電動パワーステアリング用モータ駆動制御装置。
  7.  前記電気的接続部材は、前記制御基板と同程度の平面部を有し、前記ヒートシンク部と当接するように配置されたことを特徴とする請求項6に記載の電動パワーステアリング用モータ駆動制御装置。
  8.  前記電動パワーステアリング用モータ駆動制御装置にバッテリーから流入する電流を遮断する電源リレーを備え、前記電源リレーが前記ヒートシンク部に埋設されて配置されていることを特徴とする請求項1から請求項7のいずれか1項に記載の電動パワーステアリング用モータ駆動制御装置。
  9.  前記複数のスイッチング素子と前記平滑コンデンサと前記電源リレーが、前記電気的接続部材の上面から見て重ならない位置に配置されていることを特徴とする請求項8に記載の電動パワーステアリング用モータ駆動制御装置。
  10.  前記スイッチング素子を配置するヒートシンク部がヒートシンク連結ネジ穴部を有し、前記ヒートシンク連結ネジ穴部の近傍に前記スイッチング素子を配置したことを特徴とする請求項1から請求項9のいずれか1項に記載の電動パワーステアリング用モータ駆動制御装置。
  11.  前記平滑コンデンサは、導電性高分子ハイブリッドアルミ電解コンデンサであることを特徴とする請求項1から請求項10のいずれか1項に記載の電動パワーステアリング用モータ駆動制御装置。
PCT/JP2015/067045 2015-01-23 2015-06-12 電動パワーステアリング用モータ駆動制御装置 WO2016117144A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016500416A JP6026048B1 (ja) 2015-01-23 2015-06-12 電動パワーステアリング用モータ駆動制御装置
DE112015006036.7T DE112015006036B4 (de) 2015-01-23 2015-06-12 Motorantriebs-steuerungseinrichtung für eine elektrische servolenkung
CN201580055079.0A CN106856667B (zh) 2015-01-23 2015-06-12 电动动力转向用马达驱动控制装置
US15/510,086 US10106189B2 (en) 2015-01-23 2015-06-12 Motor drive control device for electric power steering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015010805 2015-01-23
JP2015-010805 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016117144A1 true WO2016117144A1 (ja) 2016-07-28

Family

ID=56416708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067045 WO2016117144A1 (ja) 2015-01-23 2015-06-12 電動パワーステアリング用モータ駆動制御装置

Country Status (5)

Country Link
US (1) US10106189B2 (ja)
JP (1) JP6026048B1 (ja)
CN (1) CN106856667B (ja)
DE (1) DE112015006036B4 (ja)
WO (1) WO2016117144A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042988A1 (ja) * 2016-09-02 2018-03-08 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
WO2018042989A1 (ja) * 2016-09-02 2018-03-08 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
WO2018047516A1 (ja) * 2016-09-12 2018-03-15 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
WO2018055913A1 (ja) * 2016-09-26 2018-03-29 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
WO2018087965A1 (ja) * 2016-11-14 2018-05-17 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
WO2018143328A1 (ja) * 2017-02-03 2018-08-09 日本電産株式会社 モータ
JP2018125940A (ja) * 2017-01-31 2018-08-09 株式会社デンソー 駆動装置
WO2018207330A1 (ja) * 2017-05-11 2018-11-15 三菱電機株式会社 電動パワーステアリング装置
WO2018230211A1 (ja) * 2017-06-16 2018-12-20 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP2019004582A (ja) * 2017-06-14 2019-01-10 三菱電機株式会社 開閉モジュール用のコンデンサ基板ユニット、開閉モジュール、およびモータ駆動装置
WO2019070067A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
WO2019070065A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
WO2019070066A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
WO2019070068A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
JP2019080396A (ja) * 2017-10-23 2019-05-23 三菱電機株式会社 電源平滑用のコンデンサ回路
CN110892616A (zh) * 2017-07-13 2020-03-17 日立汽车系统株式会社 电动驱动装置及电动动力转向装置
JP2021065016A (ja) * 2019-10-11 2021-04-22 株式会社ジェイテクト 制御装置およびモータ装置
US11451119B2 (en) 2017-03-27 2022-09-20 Mitsubishi Electric Corporation Motor with a board having microcomputer and drive circuit, and air conditioning apparatus having the motor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260352B1 (en) * 2015-02-18 2020-12-09 Mitsubishi Electric Corporation Integrated electric power steering apparatus
JP6312093B2 (ja) * 2016-03-11 2018-04-18 三菱電機株式会社 回転電機
US11019756B2 (en) * 2017-04-20 2021-05-25 Mitsubishi Electric Corporation Power conversion device
DE102017218648A1 (de) * 2017-10-19 2019-04-25 Robert Bosch Gmbh Antriebsaggregat, insbesondere Hydraulikaggregat einer elektronisch schlupfregelbaren Fahrzeugbremsanlage
JP2019080471A (ja) * 2017-10-27 2019-05-23 オムロンオートモーティブエレクトロニクス株式会社 負荷駆動装置
GB201719771D0 (en) * 2017-11-28 2018-01-10 Trw Ltd Control circuit for a multi-phase motor
JP7139208B2 (ja) * 2018-09-28 2022-09-20 株式会社マキタ 電動作業機
JP2020115713A (ja) * 2019-01-17 2020-07-30 日本電産モビリティ株式会社 モータ制御装置
JP7264315B2 (ja) * 2021-02-10 2023-04-25 日本精工株式会社 電動駆動装置及び電動パワーステアリング装置
WO2022172974A1 (ja) 2021-02-10 2022-08-18 日本精工株式会社 電動駆動装置、電動パワーステアリング装置及び電子制御装置の製造方法
DE102021203801A1 (de) * 2021-04-16 2022-10-20 Molabo Gmbh Gekühltes Hochstromsystem
JP2023067204A (ja) * 2021-10-29 2023-05-16 マツダ株式会社 電気駆動ユニット
JP2023067199A (ja) * 2021-10-29 2023-05-16 マツダ株式会社 電気駆動ユニット

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080101A (ja) * 1996-09-02 1998-03-24 Toshiba Corp 駆動装置付きモータ
JP2010104212A (ja) * 2008-10-27 2010-05-06 Mitsuba Corp ブラシレスモータ
JP2011239574A (ja) * 2010-05-11 2011-11-24 Mitsubishi Electric Corp 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置
JP2013207969A (ja) * 2012-03-29 2013-10-07 Denso Corp 駆動装置
JP5414869B1 (ja) * 2012-10-03 2014-02-12 三菱電機株式会社 電動パワーステアリング装置
JP2014043122A (ja) * 2012-08-24 2014-03-13 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2014207737A (ja) * 2013-04-11 2014-10-30 日立オートモティブシステムズ株式会社 電力変換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016953A (ja) * 2008-07-02 2010-01-21 Mitsubishi Electric Corp 車両用発電電動機及びその制御方法
JP2013063689A (ja) 2011-09-16 2013-04-11 Hitachi Automotive Systems Ltd 電動パワーステアリング装置
JP2013103535A (ja) 2011-11-10 2013-05-30 Honda Elesys Co Ltd 電動パワーステアリング用電子制御ユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080101A (ja) * 1996-09-02 1998-03-24 Toshiba Corp 駆動装置付きモータ
JP2010104212A (ja) * 2008-10-27 2010-05-06 Mitsuba Corp ブラシレスモータ
JP2011239574A (ja) * 2010-05-11 2011-11-24 Mitsubishi Electric Corp 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置
JP2013207969A (ja) * 2012-03-29 2013-10-07 Denso Corp 駆動装置
JP2014043122A (ja) * 2012-08-24 2014-03-13 Mitsubishi Electric Corp 電動パワーステアリング装置
JP5414869B1 (ja) * 2012-10-03 2014-02-12 三菱電機株式会社 電動パワーステアリング装置
JP2014207737A (ja) * 2013-04-11 2014-10-30 日立オートモティブシステムズ株式会社 電力変換装置

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034330A (ko) * 2016-09-02 2019-04-01 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
WO2018042989A1 (ja) * 2016-09-02 2018-03-08 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP2018034737A (ja) * 2016-09-02 2018-03-08 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP2018038218A (ja) * 2016-09-02 2018-03-08 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
CN109643929B (zh) * 2016-09-02 2021-04-23 日立汽车系统株式会社 电动驱动装置以及电动动力转向装置
US10826355B2 (en) 2016-09-02 2020-11-03 Hitachi Automotive Systems, Ltd. Electric drive device and electric power steering device
US10797566B2 (en) 2016-09-02 2020-10-06 Hitachi Automotive Systems, Ltd. Electric drive device and electric power steering device
KR102154942B1 (ko) * 2016-09-02 2020-09-10 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
KR102143728B1 (ko) * 2016-09-02 2020-08-11 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
WO2018042988A1 (ja) * 2016-09-02 2018-03-08 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
CN109643938A (zh) * 2016-09-02 2019-04-16 日立汽车系统株式会社 电动驱动装置以及电动动力转向装置
CN109643929A (zh) * 2016-09-02 2019-04-16 日立汽车系统株式会社 电动驱动装置以及电动动力转向装置
KR20190038879A (ko) * 2016-09-02 2019-04-09 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
CN109690922A (zh) * 2016-09-12 2019-04-26 日立汽车系统株式会社 电动驱动装置以及电动动力转向装置
WO2018047516A1 (ja) * 2016-09-12 2018-03-15 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP2018046591A (ja) * 2016-09-12 2018-03-22 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
US11407443B2 (en) 2016-09-26 2022-08-09 Hitachi Astemo, Ltd. Electric drive device and electric power steering device
KR102144239B1 (ko) * 2016-09-26 2020-08-12 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
WO2018055913A1 (ja) * 2016-09-26 2018-03-29 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
KR20190034650A (ko) * 2016-09-26 2019-04-02 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
JP2018057055A (ja) * 2016-09-26 2018-04-05 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP2018082514A (ja) * 2016-11-14 2018-05-24 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
KR20190061074A (ko) * 2016-11-14 2019-06-04 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
US11577774B2 (en) 2016-11-14 2023-02-14 Hitachi Astemo, Ltd. Electric drive device and electric power steering device
WO2018087965A1 (ja) * 2016-11-14 2018-05-17 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
KR102097928B1 (ko) 2016-11-14 2020-04-06 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
CN109983674B (zh) * 2016-11-14 2021-03-09 日立汽车系统株式会社 电动驱动装置以及电动动力转向装置
CN109983674A (zh) * 2016-11-14 2019-07-05 日立汽车系统株式会社 电动驱动装置以及电动动力转向装置
JP2018125940A (ja) * 2017-01-31 2018-08-09 株式会社デンソー 駆動装置
CN110249512B (zh) * 2017-02-03 2022-07-26 日本电产株式会社 马达
CN110249512A (zh) * 2017-02-03 2019-09-17 日本电产株式会社 马达
WO2018143328A1 (ja) * 2017-02-03 2018-08-09 日本電産株式会社 モータ
JP2018126043A (ja) * 2017-02-03 2018-08-09 日本電産株式会社 モータ
US11451119B2 (en) 2017-03-27 2022-09-20 Mitsubishi Electric Corporation Motor with a board having microcomputer and drive circuit, and air conditioning apparatus having the motor
WO2018207330A1 (ja) * 2017-05-11 2018-11-15 三菱電機株式会社 電動パワーステアリング装置
JPWO2018207330A1 (ja) * 2017-05-11 2019-08-08 三菱電機株式会社 電動パワーステアリング装置
CN110612243A (zh) * 2017-05-11 2019-12-24 三菱电机株式会社 电动助力转向装置
CN110612243B (zh) * 2017-05-11 2022-02-22 三菱电机株式会社 电动助力转向装置
US11159118B2 (en) 2017-05-11 2021-10-26 Mitsubishi Electric Corporation Electric power steering device
US10305389B2 (en) 2017-06-14 2019-05-28 Mitsubishi Electric Corporation Capacitor substrate unit for opening/closing module
JP2019004582A (ja) * 2017-06-14 2019-01-10 三菱電機株式会社 開閉モジュール用のコンデンサ基板ユニット、開閉モジュール、およびモータ駆動装置
CN110710087A (zh) * 2017-06-16 2020-01-17 日立汽车系统株式会社 电动驱动装置及电动动力转向装置
WO2018230211A1 (ja) * 2017-06-16 2018-12-20 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP2019004635A (ja) * 2017-06-16 2019-01-10 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
CN110892616A (zh) * 2017-07-13 2020-03-17 日立汽车系统株式会社 电动驱动装置及电动动力转向装置
WO2019070068A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
JPWO2019070067A1 (ja) * 2017-10-06 2020-10-22 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
WO2019070066A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
WO2019070065A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
WO2019070067A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータモジュールおよび電動パワーステアリング装置
JP2019080396A (ja) * 2017-10-23 2019-05-23 三菱電機株式会社 電源平滑用のコンデンサ回路
JP2021065016A (ja) * 2019-10-11 2021-04-22 株式会社ジェイテクト 制御装置およびモータ装置
JP7415419B2 (ja) 2019-10-11 2024-01-17 株式会社ジェイテクト 制御装置およびモータ装置

Also Published As

Publication number Publication date
DE112015006036T5 (de) 2017-10-05
DE112015006036B4 (de) 2023-09-28
JPWO2016117144A1 (ja) 2017-04-27
JP6026048B1 (ja) 2016-11-16
US10106189B2 (en) 2018-10-23
CN106856667A (zh) 2017-06-16
US20170305456A1 (en) 2017-10-26
CN106856667B (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
JP6026048B1 (ja) 電動パワーステアリング用モータ駆動制御装置
US9692350B2 (en) Electrical rotating machine controller
US9045156B2 (en) Electric driving device and electric power steering system including the same
US9392732B2 (en) Electronic control unit and rotating electric machine
US9123693B2 (en) Mold module utilized as power unit of electric power steering apparatus and electric power steering apparatus
US9888613B2 (en) Power module for electric power steering and electric power steering drive control apparatus using the same
CN108137084B (zh) 一体型电动助力转向装置及其制造方法
JP5496357B2 (ja) 電動パワーステアリング用モータ駆動制御装置
KR101260577B1 (ko) 전동 파워 스티어링 장치, 및 제어 장치 일체형 전동기
KR101727392B1 (ko) 전력 변환 장치
JP6444495B2 (ja) 電動パワーステアリング駆動装置
JP2018061363A (ja) モータ駆動装置、モータシステム及び電動パワーステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016500416

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15510086

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006036

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878834

Country of ref document: EP

Kind code of ref document: A1