WO2019070065A1 - モータモジュールおよび電動パワーステアリング装置 - Google Patents

モータモジュールおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2019070065A1
WO2019070065A1 PCT/JP2018/037425 JP2018037425W WO2019070065A1 WO 2019070065 A1 WO2019070065 A1 WO 2019070065A1 JP 2018037425 W JP2018037425 W JP 2018037425W WO 2019070065 A1 WO2019070065 A1 WO 2019070065A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
motor
substrate
inverter
circuit
Prior art date
Application number
PCT/JP2018/037425
Other languages
English (en)
French (fr)
Inventor
遠藤 修司
弘光 大橋
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880062608.3A priority Critical patent/CN111164864B/zh
Publication of WO2019070065A1 publication Critical patent/WO2019070065A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P4/00Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies

Definitions

  • the present disclosure relates to a motor module and an electric power steering apparatus.
  • Patent document 1 controls a motor having a pair of winding sets, a pair of inverter circuits for supplying power to the pair of winding sets, a pair of pre-drivers connected to the pair of inverter circuits, and a pair of pre-drivers.
  • a motor module comprising a microcontroller.
  • a configuration in which a pair of inverter circuits are connected to a pair of winding sets as in Patent Document 1 is referred to as a “double inverter configuration” in the present specification.
  • the motor module of Patent Document 1 includes a power substrate and a control substrate. Passive components such as a smoothing capacitor and a choke coil are mounted on the power substrate, and control circuits such as a microcontroller and a predriver are mounted on the control substrate.
  • Patent Document 2 discloses a motor module having a double inverter configuration. Similar to Patent Document 1, the motor module of Patent Document 2 also has two substrates, on one side passive elements such as a smoothing capacitor and a choke coil are mounted, and on the other side, a microcontroller and a pre-driver etc. Control circuit is implemented.
  • Patent No. 5177711 Unexamined-Japanese-Patent No. 2017-191093
  • An embodiment of the present disclosure realizes a power supply redundancy, and a motor module capable of suppressing a reduction in motor output when at least one component of a power supply system and an inverter fails, and an electric motor including the motor module.
  • An exemplary motor module of the present disclosure is mounted on a motor having a winding of n phase (n is an integer of 3 or more), a first substrate connected to a first power source, and the first substrate, the motor A first inverter connected to one end of a winding of each phase, a power system power supply circuit mounted on the first substrate and stepping down or boosting a power supply voltage of the first power supply, the first substrate and the thermal And a second substrate connected to a second power supply, and a second inverter mounted on the second substrate and connected to the other end of the winding of each phase of the motor. .
  • a motor module capable of achieving power supply redundancy and capable of suppressing a reduction in motor output when at least one component of a power supply system and an inverter fails, and the motor
  • An electric power steering device comprising a module
  • FIG. 1 is a block diagram showing a representative block configuration of a motor module 1000 of the present disclosure.
  • FIG. 2 is a circuit diagram showing a representative FHB type circuit configuration of the power conversion device 100 of the present disclosure.
  • FIG. 3 is a block diagram showing a typical block configuration of the first motor control device 310.
  • FIG. 4 is a schematic view showing the structure of the motor module 1000 of the present disclosure.
  • FIG. 5 is a block diagram showing a block configuration of a motor control device according to an exemplary embodiment 1.
  • FIG. 6 is a block diagram showing another block configuration of the motor control device according to the exemplary embodiment 1.
  • FIG. 7 is a circuit diagram showing an example of the circuit configuration of the booster circuit.
  • FIG. 1 is a block diagram showing a representative block configuration of a motor module 1000 of the present disclosure.
  • FIG. 2 is a circuit diagram showing a representative FHB type circuit configuration of the power conversion device 100 of the present disclosure.
  • FIG. 3 is a block diagram showing a typical block configuration of the
  • FIG. 8 is a block diagram showing still another block configuration of the motor control device according to the exemplary embodiment 1.
  • FIG. 9 is a circuit diagram showing an example of the circuit configuration of the step-down circuit.
  • FIG. 10 is a schematic view showing a state of mounting of the electronic component between the substrate CB1 and the substrate CB2 in a cross section of the motor module 1000 when cut along the central axis 211.
  • FIG. 11 is a schematic view showing a state of mounting of the electronic component between the substrate CB1 and the substrate CB2 in a cross section of the motor module 1000 when cut along the central axis 211.
  • FIG. 10 is a schematic view showing a state of mounting of the electronic component between the substrate CB1 and the substrate CB2 in a cross section of the motor module 1000 when cut along the central axis 211.
  • FIG. 12 is a schematic view showing a state of mounting of the electronic component between the substrate CB1 and the substrate CB2 in a cross section of the motor module 1000 when cut along the central axis 211.
  • FIG. 13 is a circuit diagram showing a circuit configuration according to a modification of the power conversion device 100 according to the exemplary embodiment 1.
  • FIG. 14 is a block diagram showing a block configuration of a motor control device according to an exemplary embodiment 2.
  • FIG. 15 is a block diagram showing another block configuration of the motor control device according to the second embodiment.
  • FIG. 16 is a schematic view showing a state of mounting of the electronic component between the substrate CB1 and the substrate CB2 in a cross section of the motor module 1000 when cut along the central axis 211.
  • FIG. 17 is a schematic view showing a state of mounting of the electronic component between the substrate CB1 and the substrate CB2 in a cross section of the motor module 1000 when cut along the central axis 211.
  • FIG. 18A is a schematic view showing how electronic components are mounted on both sides of the substrate CB1.
  • FIG. 18B is a schematic view showing how the electronic component is mounted on both sides of the substrate CB1.
  • FIG. 19 is a schematic view showing the arrangement of the substrates CB1 and CB2 in the z-axis direction in the motor module 1000 according to the second embodiment.
  • FIG. 20 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to an exemplary embodiment 3. As shown in FIG.
  • a full H-bridge (FHB) type power conversion device for converting power from a power supply to power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings
  • FHB full H-bridge
  • a power conversion device that converts power from a power supply to power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase is also within the scope of the present disclosure.
  • n is an integer of 4 or more
  • a power conversion device provided with a double inverter configuration as in Patent Document 1 or 2 is also within the scope of the present disclosure.
  • FIG. 1 a representative block configuration of a motor module 1000 of the present disclosure will be described.
  • FIG. 1 shows a representative block configuration of a motor module 1000 of the present disclosure.
  • the motor module 1000 includes a power conversion device 100 having a first inverter 120 and a second inverter 130, a motor 200, a first motor control device 310 and a second motor control device 320.
  • the motor module 1000 is connected to an external first power supply 410 and a second power supply 420 via a harness.
  • the first motor control device 310 and the second motor control device 320 may be collectively referred to as “motor control device”.
  • the motor module 1000 can be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller.
  • the motor module 1000 is suitably used, for example, in an electric power steering (EPS) device.
  • EPS electric power steering
  • the power conversion device 100 and the motor control device other than the motor 200 can also be modularized and manufactured and sold.
  • a representative FHB type circuit configuration of the power conversion device 100 of the present disclosure will be described with reference to FIG.
  • the power conversion device 100 may have a double inverter structure.
  • FIG. 2 shows a representative FHB type circuit configuration of the power conversion device 100 of the present disclosure.
  • Power converter 100 includes a first inverter 120 and a second inverter 130.
  • Power converter 100 converts the power from first power supply 410 and second power supply 420 into power to be supplied to motor 200.
  • the first and second inverters 120, 130 can convert DC power into three-phase AC power which is pseudo-sinusoidal waves of A-phase, B-phase and C-phase.
  • the motor 200 is, for example, a three-phase alternating current motor.
  • the motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130.
  • the first inverter 120 is connected to one end of the winding of each phase of the motor 200
  • the second inverter 130 is connected to the other end of the winding of each phase.
  • “connection” between components (components) mainly means electrical connection.
  • the first inverter 120 has terminals A_L, B_L and C_L corresponding to the respective phases.
  • the second inverter 130 has terminals A_R, B_R and C_R corresponding to the respective phases.
  • the terminal A_L of the first inverter 120 is connected to one end of the A-phase winding M1
  • the terminal B_L is connected to one end of the B-phase winding M2
  • the terminal C_L is connected to one end of the C-phase winding M3.
  • the terminal A_R of the second inverter 130 is connected to the other end of the A-phase winding M1
  • the terminal B_R is connected to the other end of the B-phase winding M2
  • the terminal C_R is , C phase is connected to the other end of the winding M3.
  • the power supply includes a first power supply 410 that supplies power to the first inverter 120 and a second power supply 420 that supplies power to the second inverter 130.
  • Each power supply voltage of the first power supply 410 and the second power supply 420 is, for example, 12, 16, 24 or 48V.
  • a power supply for example, a DC power supply is used.
  • the power source may be an AC-DC converter and a DC-DC converter, or may be a battery (storage battery).
  • a single power supply common to the first and second inverters 120 and 130 may be used.
  • a coil 102 is provided between the first power supply 410 and the first inverter 120.
  • a coil 102 is provided between the second power supply 420 and the second inverter 130.
  • the coil 102 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply side.
  • a capacitor 103 is connected to the power supply terminal of each inverter.
  • the capacitor 103 is a so-called bypass capacitor, which suppresses voltage ripple.
  • the capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined depending on design specifications and the like.
  • the first inverter 120 comprises a bridge circuit having three legs. Each leg has a low side switch element and a high side switch element.
  • the A-phase leg has a low side switch element 121L and a high side switch element 121H.
  • the B-phase leg has a low side switch element 122L and a high side switch element 122H.
  • the C-phase leg has a low side switch element 123L and a high side switch element 123H.
  • a switch element for example, a field effect transistor (typically a MOSFET) or an insulated gate bipolar transistor (IGBT) can be used.
  • IGBT insulated gate bipolar transistor
  • an example using a MOSFET as a switch element will be described, and the switch element may be described as SW.
  • the low side switch elements 121L, 122L and 123L are described as SW 121L, 122L and 123L.
  • the first inverter 120 includes three shunt resistors 121R, 122R and 123R included in a current sensor 150 that detects the current flowing in the windings of the A-phase, B-phase and C-phase.
  • Current sensor 150 includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
  • the shunt resistors 121R, 122R and 123R are respectively connected between the three low side switch elements included in the three legs of the first inverter 120 and the GND.
  • shunt resistor 121R is electrically connected between SW121L and GND
  • shunt resistor 122R is electrically connected between SW122L and GND
  • shunt resistor 123R is between SW123L and GND. Electrically connected.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ .
  • the second inverter 130 includes a bridge circuit having three legs.
  • the A-phase leg has a low side switch element 131L and a high side switch element 131H.
  • the B-phase leg has a low side switch element 132L and a high side switch element 132H.
  • the C-phase leg has a low side switch element 133L and a high side switch element 133H.
  • the second inverter 130 includes three shunt resistors 131R, 132R and 133R included in the current sensor 150. The shunt resistors are connected between the three low side switch elements included in the three legs and GND.
  • the number of shunt resistors is not limited to three for each inverter. For example, it is possible to use two shunt resistors for A phase and B phase, two shunt resistors for B phase and C phase, and two shunt resistors for A phase and C phase.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
  • the number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements used for each inverter.
  • the second inverter 130 has substantially the same structure as the structure of the first inverter 120.
  • the inverter on the left side of the drawing is described as a first inverter 120 and the inverter on the right side is described as a second inverter 130 for convenience of description.
  • first and second inverters 120, 130 may be used interchangeably as components of power converter 100.
  • a block configuration around the first control circuit 314 in the first motor control device 310 will be described with reference to FIG.
  • the block configuration of the second motor control device 320 is substantially the same as that of the first motor control device 310 in that motor control is performed, and thus the description thereof will be omitted.
  • FIG. 3 shows a typical block configuration of the first motor controller 310.
  • the first motor control device 310 includes, for example, a first power supply circuit 311, an angle sensor 312, an input circuit 313, a first control circuit 314, a first drive circuit 315, and a ROM 319.
  • the angle sensor 312 is a sensor common to the first motor control device 310 and the second motor control device 320. However, as the angle sensor 312, an angle sensor used for the first motor control device 310 and an angle sensor used for the second motor control device 320 may be separately provided.
  • the first motor control device 310 is connected to the first inverter 120 of the power conversion device 100.
  • the first motor control device 310 controls the switching operation of the plurality of switch elements in the first inverter 120. Specifically, the first motor control device 310 generates a control signal (hereinafter referred to as a “gate control signal”) for controlling the switching operation of each SW and outputs the control signal to the first inverter 120.
  • the second motor control device 320 is connected to the second inverter 130. The second motor control device 320 generates a gate control signal and outputs the gate control signal to the second inverter 130.
  • the motor control device can implement closed loop control by controlling the target position, rotational speed, and current of the rotor of the motor 200.
  • the motor control device may be provided with a torque sensor instead of the angle sensor 312. In this case, the motor control device can control the target motor torque.
  • the first power supply circuit 311 generates a DC voltage (for example, 3 V or 5 V) necessary for each block in the circuit.
  • the first power supply circuit 311 is different from a power system power supply circuit described later.
  • the angle sensor 312 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 312 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet.
  • the angle sensor 312 detects the rotation angle of the rotor (hereinafter referred to as “rotation signal”), and the first control circuit 314 and the second control circuit 324 of the second motor control device 320 (see FIG. 5) Output the rotation signal to
  • the input circuit 313 receives the motor current value (hereinafter referred to as "actual current value") detected by the shunt resistors 121R, 122R and 123R of the current sensor 150, and sets the level of the actual current value to the first control circuit.
  • the input level 314 is converted as necessary, and the actual current value is output to the first control circuit 314.
  • the input circuit 313 is, for example, an analog-to-digital converter.
  • the first control circuit 314 is an integrated circuit that controls the first inverter 120, and is, for example, a microcontroller or a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the first control circuit 314 controls the switching operation (turn on or off) of each SW in the first inverter 120 of the power conversion device 100.
  • the first control circuit 314 sets a target current value in accordance with the actual current value, the rotation signal of the rotor, and the like, generates a PWM signal, and outputs the PWM signal to the first drive circuit 315.
  • the first drive circuit 315 is typically a gate driver (or predriver).
  • the first drive circuit 315 generates a gate control signal according to the PWM signal, and applies the control signal to the gate of the switch element in the first inverter 120.
  • the gate driver may not be required. In that case, the function of the gate driver may be implemented in the first control circuit 314.
  • the ROM 319 is electrically connected to the first control circuit 314.
  • the ROM 319 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory.
  • the ROM 319 stores a control program including an instruction group for causing the first control circuit 314 to control the power conversion apparatus 100.
  • the control program is temporarily expanded in a RAM (not shown) at boot time.
  • FIG. 4 is a schematic view showing the structure of the motor module 1000. As shown in FIG. FIG. 4 shows a cross section of the motor module 1000 when it is cut along the yz plane in the drawing along the central axis 211.
  • the motor module 1000 includes a stator 220, a rotor 230, a housing 212, a bearing holder 214, a bearing 215, and a bearing 216.
  • the stator 220 is also referred to as an armature.
  • the central axis 211 is a rotation axis of the rotor 230.
  • the housing 212 is a substantially cylindrical housing having a bottom, and accommodates the stator 220, the bearing 215, and the rotor 230 inside.
  • the bearing holder 214 separates a space in which the stator 220 and the rotor 230 in the motor module 1000 are accommodated and a space in which two substrates (first and second substrates) CB1 and CB2 are accommodated.
  • the bearing holder 214 is a plate-like member, and holds the bearing 216 at its central portion.
  • the stator 220 is annular and has a laminate 222 and a winding 221.
  • the laminate 222 is also referred to as a laminated annular core.
  • the windings are also referred to as coils.
  • the stator 220 generates a magnetic flux in accordance with the drive current.
  • the laminated body 222 is comprised from the laminated steel plate which laminated
  • the laminate 222 is fixed to the inner wall of the housing 212.
  • the windings 221 are made of a conductive material such as copper and are typically attached to a plurality of teeth (not shown) of the laminate 222, respectively.
  • the rotor 230 includes a rotor core 231, a plurality of permanent magnets 232 provided along the outer periphery of the rotor core 231, and a shaft 233.
  • the rotor core 231 is made of, for example, a magnetic material such as iron and has a tubular shape.
  • the rotor core 231 is formed of laminated steel plates in which a plurality of steel plates are laminated in a direction (z direction in FIG. 4) along the central axis 211.
  • the plurality of permanent magnets 232 are provided such that the N pole and the S pole appear alternately in the circumferential direction of the rotor core 231.
  • the shaft 233 is fixed to the center of the rotor core 231, and extends in the vertical direction (z direction) along the central axis 211.
  • the vertical and horizontal directions in the present specification refer to the vertical and horizontal directions when looking at the motor module 1000 shown in FIG. 4 and are described using those directions in order to explain the embodiment in an easily understandable manner. ing. It goes without saying that the vertical and horizontal directions in the present specification do not necessarily coincide with the vertical and horizontal directions when the motor module 1000 is mounted on an actual product (such as a car).
  • the bearings 215 and 216 rotatably support the shaft 233 of the rotor 230.
  • the bearings 215 and 216 are, for example, ball bearings that rotate the outer ring and the inner ring relative to each other via a ball.
  • the motor module 1000 when a drive current is applied to the winding 221 of the stator 220, a magnetic flux in the radial direction is generated on a plurality of teeth of the laminate 222.
  • the action of magnetic flux between the plurality of teeth and the permanent magnet 232 generates torque in the circumferential direction, and the rotor 230 rotates relative to the stator 220.
  • a driving force is generated in the EPS device.
  • a permanent magnet (not shown) is fixed to an end of the shaft 233 on the bearing holder 214 side.
  • the permanent magnet is rotatable with the rotor 230.
  • a magnetic sensor (not shown) corresponding to the angle sensor 312 is disposed, for example, at a position of the substrate CB1 opposite to the permanent magnet fixed to the shaft 233.
  • the magnetic sensor may be mounted on another substrate different from the substrate CB1 or the substrate CB2.
  • the magnetic sensor can detect a magnetic field generated from a permanent magnet rotating with the shaft 233, thereby detecting the rotational angle of the rotor 230.
  • Two substrates are disposed on the top of the bearing holder 214.
  • the coil 102 for the first inverter 120, the capacitor 103, the first inverter 120, the electronic components of the first motor control device 310, and the like are mounted on the substrate CB1.
  • the coil 102 for the second inverter 130, the capacitor 103, the second inverter 130, the electronic components of the second motor control device 320, and the like are mounted on the substrate CB2.
  • the component group of the motor module 1000 can be mounted on one side or both sides of each substrate.
  • the opening at the top of the housing 212 is closed by a cover 250.
  • the power supply voltages of the first power supply 410 and the second power supply 420 are equal, and the power supply voltages thereof will be described as 12V.
  • FIG. 5 shows a block configuration of the motor control device according to the present embodiment.
  • the first motor control device 310 includes a first power supply circuit 311, a first control circuit 314, and a first drive circuit 315.
  • the first power supply circuit 311, the first control circuit 314, and the first drive circuit 315 are mounted on the substrate CB1.
  • the first connector 316 is a separate component from the substrate CB1.
  • the substrate CB 1 is connected to the first power supply 410 via the first connector 316.
  • a power supply voltage of 12 V is supplied from the first power supply 410 to the first inverter 120.
  • the first power supply circuit 311 generates a DC voltage (for example, 3 V) necessary for the first control circuit 314 and the first drive circuit 315 by stepping down the power supply voltage 12 V of the first power supply 410.
  • the first control circuit 314 outputs a PWM signal to the first drive circuit 315.
  • the first drive circuit 315 generates a gate control signal in accordance with the PWM signal and supplies the gate control signal to each switch element of the first inverter 120.
  • the second motor control device 320 includes a second power supply circuit 321, a second control circuit 324, and a second drive circuit 325.
  • the second power supply circuit 321, the second control circuit 324, and the second drive circuit 325 are mounted on the substrate CB2.
  • the second connector 326 is a separate component from the substrate CB2.
  • the substrate CB2 is connected to the second power source 420 via the second connector 326.
  • a power supply voltage of 12 V is supplied from the second power supply 420 to the second inverter 130.
  • the second power supply circuit 321 generates a DC voltage (for example, 3 V) necessary for the second control circuit 324 and the second drive circuit 325 by stepping down the power supply voltage 12 V of the second power supply 420.
  • the second control circuit 324 outputs a PWM signal to the second drive circuit 325.
  • the second drive circuit 325 generates a gate control signal in accordance with the PWM signal and supplies the gate control signal to each switch element of the second inverter 130.
  • the connection between the first power supply 410 and the first connector 316 and the connection between the second power supply 420 and the second connector 326 are generally performed using a harness (not shown).
  • Power loss (or voltage drop) due to the harness occurs in the current path from the power source to the motor.
  • the resistance value of the harness used in the EPS system is about 15 to 20 m ⁇ . This is greater than the resistance of the motor or ECU and its power loss can not be ignored.
  • the voltage drop in the harness is about 1.5 to 2.0 V and can not be ignored for the 12 V power supply. Therefore, if the power loss of the harness can be improved, higher output of the motor is expected.
  • the present embodiment since two systems of the first power supply 410 and the second power supply 420 are used, it is possible to supply a necessary current to the motor 200 from two harnesses.
  • it is considered to supply the same current as the current flowing to the motor by using two power supplies.
  • the diameter of the harness can be reduced because it is sufficient to flow half the current to each harness.
  • the power loss in the harness can be improved to about 1/4.
  • the efficiency indicating the ratio of the output power to the input power can be improved, so that high output can be obtained during high-speed rotation of the motor. It becomes.
  • FIG. 6 shows another block configuration of the motor control device according to the present embodiment.
  • FIG. 7 shows a circuit configuration example of the booster circuit.
  • the switch RL and the first booster circuit 317 may be further mounted on the substrate CB1, and the switch RL and the second booster circuit 327 may be further mounted on the substrate CB2.
  • Each of the first booster circuit 317 and the second booster circuit 327 is, for example, a boost chopper circuit.
  • FIG. 7 shows a typical circuit configuration of the step-up chopper circuit.
  • the boost chopper circuit is composed of a semiconductor switch S, a diode D, a capacitor C, a coil L and the like.
  • the first booster circuit 317 can boost the power supply voltage 12 V of the first power supply 410 and output the boosted voltage (for example, 24 V) to the first inverter 120.
  • the second booster circuit 327 can boost the power supply voltage 12 V of the second power supply 420 and output the boosted voltage (for example, 24 V) to the second inverter 130.
  • the step-up chopper circuit is appropriately determined according to the power supply connected to each substrate.
  • the switch RL is, for example, a thyristor, an analog switch IC, or a semiconductor switch such as a MOSFET having a parasitic diode formed therein, or a mechanical relay.
  • the switch RL of the substrate CB1 switches the power supply path of the first inverter 120 under the control of the first control circuit 314.
  • the switch RL of the substrate CB2 switches the power supply path of the second inverter 130 under the control of the second control circuit 324.
  • a power supply path for supplying 12 V from the first power supply 410 to the first inverter 120 is selected by the switch RL, and a power supply path for supplying 12 V from the second power supply 420 to the second inverter 130 is selected by the switch RL.
  • the switch RL the power supply path for supplying the 24V boosted voltage from the first booster circuit 317 to the first inverter 120
  • the power supply for supplying the 24V boosted voltage from the second booster circuit 327 to the second inverter 130 A path is selected by the switch RL.
  • FIG. 8 shows still another block configuration of the motor control device according to the present embodiment.
  • FIG. 9 shows a circuit configuration example of the step-down circuit.
  • the power supply voltage of the first power supply 410 and the second power supply 420 is not limited to 12 V, and may be 24 V or 48 V, for example.
  • the switch RL and the first step-down circuit 318 may be further mounted on the substrate CB1, and the switch RL and the second step-down circuit 328 may be further mounted on the substrate CB2.
  • Each of the first step-down circuit 318 and the second step-down circuit 328 is, for example, a step-down chopper circuit.
  • FIG. 9 shows a typical circuit configuration of the step-down chopper circuit.
  • the step-down chopper circuit includes a semiconductor switch S, a diode D, a capacitor C, a coil L, and the like.
  • the first step-down circuit 318 can step down the power supply voltage 24 V of the first power supply 410 and output the step-down voltage 12 V to the first inverter 120.
  • the second step-down circuit 328 can step down the power supply voltage 24 V of the second power supply 420 and output the step-down voltage 12 V to the second inverter 130.
  • the step-down chopper circuit is appropriately determined according to the power supply connected to each substrate.
  • the power supply path for supplying a 12 V step-down voltage from the first step-down circuit 318 to the first inverter 120 is selected by the switch RL, and the 12 step-down voltage is supplied from the second step-down circuit 328 to the second inverter 130
  • the power supply path to be selected is selected by the switch RL.
  • the power supply path supplying 24 V from the first power supply 410 to the first inverter 120 is selected by the switch RL
  • the power supply path supplying 24 V from the second power supply 420 to the second inverter 130 is selected by the switch RL . According to such a configuration, it is possible to supply a high voltage to each inverter by dynamically switching the switch RL at high speed rotation in motor driving, so that high output can be obtained at high speed rotation. It becomes.
  • FIGS. 10 to 12 show the mounting state of the electronic component between the substrate CB1 and the substrate CB2 in the cross section of the motor module 1000 when cut along the central axis 211.
  • a first passive element group such as the capacitor 103 and the coil 102 (not shown in FIG. 10) is mounted on the substrate CB1.
  • a first motor control device 310 for controlling the switching operation of the plurality of switch elements in the first inverter 120 is further mounted.
  • the first power device group constituting the first inverter 120 is mounted on the surface of the substrate CB1 opposite to the mounting surface of the capacitor 103.
  • FIG. 10 illustrates the first control circuit 314 among the components of the first motor control device 310, and illustrates two power devices (FETs) among the components of the first power device group.
  • the power device is a switch element SW of the inverter.
  • the present invention is not limited to the illustrated example, and it is possible to arrange the components of the first power device group and the capacitor 103 in a position not overlapping when the substrate is seen through from the direction of the central axis 211.
  • the second passive element group such as the capacitor 103 and the coil 102 (not shown in FIG. 10) is mounted on the substrate CB2.
  • a second motor control device 320 for controlling the switching operation of the plurality of switch elements in the second inverter is further mounted.
  • the second power device group constituting the second inverter 130 is mounted on the surface of the substrate CB2 opposite to the mounting surface of the capacitor 103.
  • FIG. 10 illustrates the first control circuit 314 of the components of the second motor control device 320, and illustrates two power devices of the components of the second power device group.
  • the capacitor 103 in the first passive element group and the capacitor 103 in the second passive element group are disposed between the substrate CB1 and the substrate CB2 and along the central axis 211 (z direction in FIG. 10). Do not overlap each other when viewed.
  • the same capacitor can be used as the capacitor 103 mounted on the substrate CB1 and the capacitor 103 mounted on the substrate CB2. In that case, the heights of the capacitors 103 on both substrates are the same.
  • the motor module 1000 can further include a first heat sink 511 that is in thermal contact with the substrate CB1 via an insulating heat dissipating material, such as heat dissipating grease.
  • the first heat sink 511 covers the first power device group of the substrate CB1.
  • “in thermal contact with the substrate” means that the heat sink covers all or part of the plurality of electronic components mounted on one side of the substrate. The heat sink may not necessarily be in contact with the substrate surface.
  • the first heat sink 511 for example, a material having a good thermal conductivity such as aluminum can be used.
  • the first heat sink 511 may be a holder or bearing holder 214 of the housing 212.
  • the first heat sink 511 may be a member different from these members.
  • the motor module 1000 further includes a second heat sink 512 disposed between the substrate CB1 and the substrate CB2 and in thermal contact with both substrates via, for example, heat dissipation grease.
  • the second heat sink 512 has a recess that covers the capacitor 103. By covering the second heat sink 512 with a capacitor that generates particularly heat among the mounted components, heat can be dissipated efficiently. As described above, by cooling the substrate CB1 and the substrate CB2 using the second heat sink 512, the heat dissipation of the motor module 1000 can be further improved.
  • the first motor control device 310 is mounted on the surface of the substrate CB1 opposite to the mounting surface of the capacitor 103, and the substrate CB2 on the opposite side of the mounting surface of the capacitor 103.
  • the second motor control device 320 is mounted on the surface.
  • FIG. 11 illustrates the first control circuit 314 of the components of the first motor control device 310, and the second control circuit 324 of the components of the second motor control device 320.
  • the first power device group constituting the first inverter 120 is further mounted on the mounting surface of the capacitor 103 of the substrate CB1, and the mounting surface of the capacitor 103 of the substrate CB2 is , And a second power device group constituting the second inverter 130 is further mounted.
  • the first booster circuit 317 or the first step-down circuit 318 can be mounted on the surface of the substrate CB1 opposite to the mounting surface of the capacitor 103.
  • the first heat sink 511 has a recess that covers the first booster circuit 317 or the first step-down circuit 318.
  • FIG. 13 shows a circuit configuration according to a modification of the power conversion device 100 of the present embodiment.
  • power converter 100 further includes two switch elements 710 and 711.
  • the switch element 710 switches connection / disconnection between a node on the high side of the bridge circuit of the first inverter 120 and a node on the high side of the bridge circuit of the second inverter 130.
  • the switch element 711 switches connection / disconnection between a node on the low side of the bridge circuit of the first inverter 120 and a node on the low side of the bridge circuit of the second inverter 130.
  • the two switch elements 710 and 711 are, for example, thyristors, analog switch ICs, or semiconductor switches such as MOSFETs in which parasitic diodes are formed, or mechanical relays.
  • the zero-phase current it is possible to flow the zero-phase current, and for example, two-phase energization control can be performed.
  • the leg of the A phase fails, the B phase and C phase can be used to energize the two phase windings M2 and M3.
  • two-phase energization control is described in the patent application WO 2017/150638 by the applicant. All of these disclosures are incorporated herein by reference.
  • one of the first power supply 410 and the second power supply 420 fails, it is possible to continue three-phase conduction control in which the three-phase winding is energized using the other.
  • the connection of the motor can be switched to the Y connection using the first drive circuit 315 or the second drive circuit 325.
  • the connection of the motor is, for example, FHB connection shown in FIG. 2 or FIG.
  • a power supply voltage that is twice the power supply voltage used in the FHB connection.
  • a power supply voltage of 12 V is used for driving of the FHB connection
  • a power supply voltage of 24 V is used for driving of the Y connection.
  • the motor connection can be switched to the Y connection.
  • the first drive circuit 315 outputs a control signal which turns off the remaining high side switch elements 122H and 123H at all times and always turns on the three low side switch elements 121L, 122L and 123L.
  • a neutral point is formed in the first inverter 120.
  • the second motor control device 320 can perform PWM control of the switch element of the second inverter 130.
  • the second power supply 420 may be used to switch to the Y connection, or another power supply different from the first power supply 410 or the second power supply 420 may be used.
  • the present embodiment is different from the first embodiment in that the power supply voltage of the first power supply 410 is different from the power supply voltage of the second power supply 420.
  • differences from the first embodiment will be mainly described.
  • FIG. 14 shows a block configuration of the motor control device according to the present embodiment.
  • the power supply voltage of the first power supply 410 is higher than the power supply voltage of the second power supply 420.
  • the power supply voltage of the first power supply 410 is 48V
  • the power supply voltage of the second power supply 420 is 12V.
  • a power system power supply circuit that steps down or boosts the power supply voltage of the first power supply 410 is mounted on the substrate CB1.
  • FIG. 14 exemplifies a first step-down circuit 318 as a power system power supply circuit.
  • the first step-down circuit 318 steps down the power supply voltage 48 V of the first power supply 410 and outputs the step-down voltage 12 V to the first inverter 120 via the switch RL.
  • the step-down voltage 12 V output from the first step-down circuit 318 is supplied to the first inverter 120, and the second power source 420 is supplied to the second inverter 130.
  • Power supply voltage of 12 V is supplied.
  • the switch element of the first inverter 120 is PWM with the power supply voltage of 48 V of the first power supply. It becomes possible to control.
  • FIG. 15 shows another block configuration of the motor control device according to the present embodiment.
  • a second booster circuit 327 which boosts the power supply voltage 12 V of the second power supply 420 and outputs the boosted voltage 24 V to the second inverter 130 may be further mounted on the substrate CB2.
  • the first step-down circuit 318 can generate a step-down voltage of 24V or 12V.
  • the step-down voltage 24 V is supplied from the first step-down circuit 318 to the first inverter 120, and the step-up voltage 24 V is supplied from the second booster circuit 327 to the second inverter 130. It becomes possible to perform three-phase conduction control of FHB at 24V.
  • the motor drive by switching the switch RL dynamically at high speed rotation, high voltage can be supplied to each inverter, so that high output can be obtained at high speed rotation.
  • the steering force can be maintained by switching the power supply to the second power supply 420 and using the boosted voltage of the second booster circuit 327 of the substrate CB2.
  • FIGS. 16 and 17 show how the electronic components are mounted between the substrate CB1 and the substrate CB2 in the cross section of the motor module 1000 when cut along the central axis 211.
  • the first passive element is mounted on the substrate CB1, and the second passive element group is mounted on the substrate CB2.
  • the element with the highest height is typically a capacitor.
  • the first passive element having the highest height in the substrate CB1 is the capacitor 103_1H
  • the second passive element having the highest height in the substrate CB2 is the capacitor 103_2H.
  • the capacitor 103 mounted on the substrate CB1 requires a larger capacity than the capacitor 103 mounted on the substrate CB2. Therefore, the size of the capacitor 103_1H is larger than that of the capacitor 103_2H, and specifically, the height of the capacitor 103_1H is higher than that of the capacitor 103_2H.
  • the capacitor 103_1H having the highest height among the first passive element group and the capacitor 103_2H having the highest height among the second passive element group are disposed between the substrate CB1 and the substrate CB2. Also, when viewed along the direction of the central axis 211, they do not overlap each other. As a result, since the two capacitors 103_1H and 103_2H do not overlap in the direction of the central axis 211, the height of the motor module 1000 can be suppressed, and a motor module with a lower height can be realized.
  • the height of the capacitor 103_1H is h1
  • the height of the capacitor 103_2H is h2 ( ⁇ h1).
  • the motor module 1000 can further include a first heat sink 511 in thermal contact with the substrate CB1 via, for example, heat dissipation grease.
  • the first heat sink 511 may be a holder or bearing holder 214 of the housing 212.
  • the first heat sink 511 may be a member different from these members.
  • the first step-down circuit 318 can be mounted on the surface of the substrate CB1 opposite to the mounting surface of the capacitor 103_1H.
  • the rotor 230, the first heat sink 511, the substrate CB1, and the substrate CB2 are arranged in this order along the direction of the rotation axis of the rotor 230 of the motor 200, that is, the central axis 211.
  • the heat generation of the first step-down circuit 318 which is a power system power supply circuit becomes large.
  • the first step-down circuit 318 can be cooled, and the heat dissipation of the motor module 1000 can be improved.
  • the motor module 1000 further includes a second heat sink 512 disposed between the substrate CB1 and the substrate CB2 and in thermal contact with both substrates via, for example, a thermal grease. According to this configuration, by cooling the substrate CB1 and the substrate CB2 with the second heat sink 512, the heat dissipation of the motor module 1000 can be further improved.
  • the motor module 1000 further includes a second heat sink 512 that covers the surface of the substrate CB2 opposite to the mounting surface of the capacitor 103_2H.
  • the rotor 230, the first heat sink 511, the substrate CB1, the substrate CB2, and the second heat sink 512 are arranged in this order along the direction of the rotation axis of the rotor 230 of the motor 200, ie, the central axis 211. According to such an arrangement, since the second heat sink 512 is located on the cover 250 side of the motor module 1000, it can be easily exposed to the outside, and the heat dissipation of the motor module 1000 can be improved. Furthermore, as a third heat sink, as shown in FIG. 16, an additional heat sink may be disposed between the substrate CB1 and the substrate CB2.
  • the thermal resistance of the first heat sink 511 is preferably smaller than the thermal resistance of the second heat sink 512.
  • the first heat sink 511 has a larger volume than the second heat sink 512.
  • the cover 250 of the motor module 1000 may function as a second heat sink 512.
  • the second heat sink 512 may be a separate member different from the cover 250.
  • the size of the second heat sink 512 can be smaller than that of the first heat sink 511, and the number of parts of the motor module 1000 can be reduced.
  • the power supply voltage of the first power supply 410 may be lower than the power supply voltage of the second power supply 420.
  • the power supply voltage of the first power supply 410 may be 12V
  • the power supply voltage of the second power supply 420 may be 48V.
  • the first booster circuit 317 which is a power system power supply circuit may be mounted on the substrate CB1.
  • the first booster circuit 317 boosts the power supply voltage 12 V of the first power supply and outputs a boosted voltage of 24 V to the first inverter 120 via the switch RL.
  • the heat generation of the first booster circuit 317 which is a power system power supply circuit becomes large.
  • the first booster circuit 317 By covering the first booster circuit 317 with the first heat sink 511, the first booster circuit 317 can be cooled, and the heat dissipation of the motor module 1000 can be improved.
  • the second step-down voltage circuit 328 may be mounted on the substrate CB2 to step down the power supply voltage 48V of the second power supply 420 and output a step-down voltage of 24V to the second inverter 130 via the switch RL.
  • the shape of the substrate CB1 viewed from the direction of the central axis 211 is the same as the shape of the substrate CB2, and the substrate CB1 and the substrate CB2 have a common symmetry axis AS.
  • the shape of the substrate is, for example, circular, elliptical or polygonal.
  • the same substrate can be used as the substrate CB1 and the substrate CB2.
  • an example of mounting electronic components on the substrate CB1 of the two substrates will be described.
  • FIGS. 18A and 18B illustrate how electronic components are mounted on both sides of the substrate CB1.
  • FIG. 19 shows the arrangement of the substrates CB1 and CB2 in the motor module 1000 in the z-axis direction.
  • FIG. 18A shows the mounting surface S1 of the substrate CB1 on which the capacitor 103 is mounted, as viewed from the + z direction along the direction of the rotation axis of the rotor 230, ie, the central axis 211.
  • FIG. 18B shows the mounting surface S2 opposite to the mounting surface S1 of the substrate CB1 when viewed from the ⁇ z direction along the direction of the central axis 211.
  • main electronic components that can be mounted on both sides are shown in order to avoid the drawing being complicated.
  • the substrate CB1 has an axis of symmetry AS and line symmetry about it.
  • the substrate CB1 is a first area AR1 (lower area in the drawing) in which the first motor control device 310 is disposed, and a second area AR2 (upper side in the drawing) in which the first passive element group and the first power device group are arranged. Region).
  • the first drive circuit 315 of the first motor control device 310 is disposed in the first area AR1 of the mounting surface S1
  • the second area AR2 includes six FETs that constitute the capacitor 103 and the first inverter 120. There are four FETs in it.
  • the first control circuit 314 of the first motor control device 310 is disposed in the first area AR1 of the mounting surface S2, and the remaining two FETs are disposed in the second area AR2.
  • the substrate CB2 has an axis of symmetry AS and line symmetry about it. Similar to the substrate CB1, the third region AR3 of the substrate CB2 is a region on which the second motor control device 320 is mounted, and the fourth region AR4 of the substrate CB2 includes the second passive element group and the second power device group. It is an area to mount. As shown in FIG. 19, the substrate CB2 is disposed in the motor module 1000 by inverting 180 degrees with respect to the substrate CB1 with respect to the symmetry axis AS. Thus, when the motor module 1000 is viewed along the direction of the central axis 211 (z axis in FIG. 19), the first area AR1 and the fourth area AR4 of the substrate CB2 overlap, and the second area AR2 and the substrate CB2 Third regions AR3 overlap.
  • the respective substrates can be dissipated efficiently.
  • the elements can be disposed symmetrically with respect to the symmetry axis AS. Since the element arrangement of the substrate CB1 and the substrate CB2 is the same, it is only necessary to overlap the substrate CB1 on the substrate CB2 at the time of assembly. Thus, by adopting the same substrate design for the substrate CB1 and the substrate CB2, the number of design steps can be reduced.
  • the two capacitors 103_1H and 103_2H do not overlap in the direction of the central axis 211, the height of the motor module 1000 can be suppressed, and a motor module with a lower height can be realized. Furthermore, by arranging the second heat sink 512 between the substrate CB1 and the substrate CB2, it is possible to effectively dissipate the heat of each substrate.
  • the motor output can be maintained and the motor drive can be continued.
  • the configuration or arrangement of the substrate of the motor module 1000 described herein can also be suitably used for a motor module with a double inverter configuration.
  • the three-phase windings M1, M2 and M3 have a first set of windings and a second set of windings, one end of which is Y-connected.
  • the first inverter 120 is connected to the first winding set
  • the second inverter 130 is connected to the second winding set.
  • a single power supply supplies a power supply voltage of 12 V to the substrates CB1 and CB2. If the power supply fails, for example, both substrates may be connected to another power supply for backup, and the power supply may supply 12V power to both substrates.
  • a power supply system is also within the scope of the present disclosure. According to this configuration, motor driving by FHB connection can be continued.
  • the motor module 1000 may include a voltage dividing circuit (not shown) that connects the substrate CB1 and the substrate CB2. According to this configuration, even when one of the two power supplies fails, motor driving can be continued using the other. Thus, one power supply can be branched to the other power supply.
  • a plurality of three or more substrates can be used.
  • FIG. 20 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
  • Vehicles such as automobiles generally have an electric power steering device.
  • the electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
  • Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel.
  • the assist torque reduces the burden on the driver's operation.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A, 528B, and left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, and a reduction mechanism 544.
  • the steering torque sensor 541 detects a steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
  • the ECU 542 is, for example, a motor control device according to Embodiment 1 or 2.
  • an electronic control system is built around an ECU.
  • a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
  • the motor module 1000 according to Embodiment 1 or 2 can be suitably used for the unit.
  • Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

電源系およびインバータの少なくとも1つの部品が故障した場合において、モータ出力の低下を抑制することが可能なモータモジュールを提供する。本開示のモータモジュール1000は、n相(nは3以上の整数)の巻線を有するモータ200と、第1電源410に接続される第1基板CB1と、第1基板に実装され、モータの各相の巻線の一端に接続された第1インバータ120と、第1基板に実装され、第1電源の電源電圧を降圧または昇圧するパワー系電源回路と、第1基板と熱的に接触した第1ヒートシンク511と、第2電源420に接続される第2基板CB2と、第2基板に実装され、モータの各相の巻線の他端に接続された第2インバータ130とを備える。

Description

モータモジュールおよび電動パワーステアリング装置
本開示は、モータモジュールおよび電動パワーステアリング装置に関する。
近年、電動モータ(以下、単に「モータ」と表記する。)、電源からの電力をモータに供給する電力に変換する電力変換装置および電子制御ユニット(ECU)が一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。 
特許文献1は、一対の巻線組を有するモータ、一対の巻線組に電力を供給する一対のインバータ回路、一対のインバータ回路に接続された一対のプリドライバ、および、一対のプリドライバを制御するマイクロコントローラを備えるモータモジュールを開示している。特許文献1のような、一対の巻線組に一対のインバータ回路を接続する構成を本明細書では「ダブルインバータ構成」と呼ぶこととする。特許文献1のモータモジュールは、パワー基板および制御基板を備える。パワー基板には、平滑コンデンサおよびチョークコイルなどの受動素子が実装され、制御基板には、マイクロコントローラおよびプリドライバなどの制御回路が実装される。 
特許文献2は、ダブルインバータ構成を有するモータモジュールを開示している。特許文献1と同様に、特許文献2のモータモジュールも、2枚の基板を有し、一方には、平滑コンデンサおよびチョークコイルなどの受動素子が実装され、他方には、マイクロコントローラおよびプリドライバなどの制御回路が実装される。
特許第5177711号 特開2017-191093号公報
上述した従来の技術では、電源系およびインバータの少なくとも1つの部品が故障した場合において、モータ出力の低下を抑制することが求められていた。 
本開示の実施形態は、電源冗長を実現し、かつ、電源系およびインバータの少なくとも1つの部品が故障した場合において、モータ出力の低下を抑制することが可能なモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置を提供する。
本開示の例示的なモータモジュールは、n相(nは3以上の整数)の巻線を有するモータと、第1電源に接続される第1基板と、前記第1基板に実装され、前記モータの各相の巻線の一端に接続された第1インバータと、前記第1基板に実装され、前記第1電源の電源電圧を降圧または昇圧するパワー系電源回路 と、前記第1基板と熱的に接触した第1ヒートシンクと、第2電源に接続される第2基板と、前記第2基板に実装され、前記モータの各相の巻線の他端に接続された第2インバータと、を備える。
本開示の例示的な実施形態によると、電源冗長を実現し、かつ、電源系およびインバータの少なくとも1つの部品が故障した場合において、モータ出力の低下を抑制することが可能なモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。
図1は、本開示のモータモジュール1000の代表的なブロック構成を示すブロック図である。 図2は、本開示の電力変換装置100の代表的なFHB型の回路構成を示す回路図である。 図3は、第1モータ制御装置310の典型的なブロック構成を示すブロック図である。 図4は、本開示のモータモジュール1000の構造を示す模式図である。 図5は、例示的な実施形態1によるモータ制御装置のブロック構成を示すブロック図である。 図6は、例示的な実施形態1によるモータ制御装置の他のブロック構成を示すブロック図である。 図7は、昇圧回路の回路構成例を示す回路図である。 図8は、例示的な実施形態1によるモータ制御装置のさらなる他のブロック構成を示すブロック図である。 図9は、降圧回路の回路構成例を示す回路図である。 図10は、中心軸211に沿って切断した場合のモータモジュール1000の断面における、基板CB1と基板CB2の間の電子部品の実装の様子を示す模式図である。 図11は、中心軸211に沿って切断した場合のモータモジュール1000の断面における、基板CB1と基板CB2の間の電子部品の実装の様子を示す模式図である。 図12は、中心軸211に沿って切断した場合のモータモジュール1000の断面における、基板CB1と基板CB2の間の電子部品の実装の様子を示す模式図である。 図13は、例示的な実施形態1による電力変換装置100の変形例による回路構成を示す回路図である。 図14は、例示的な実施形態2によるモータ制御装置のブロック構成を示すブロック図である。 図15は、例示的な実施形態2によるモータ制御装置の他のブロック構成を示すブロック図である。 図16は、中心軸211に沿って切断した場合のモータモジュール1000の断面における、基板CB1と基板CB2の間の電子部品の実装の様子を示す模式図である。 図17は、中心軸211に沿って切断した場合のモータモジュール1000の断面における、基板CB1と基板CB2の間の電子部品の実装の様子を示す模式図である。 図18Aは、基板CB1の両面に電子部品を実装する様子を示す模式図である。 図18Bは、基板CB1の両面に電子部品を実装する様子を示す模式図である。 図19は、例示的な実施形態2によるモータモジュール1000における基板CB1および基板CB2のz軸方向の配置の様子を示す模式図である。 図20は、例示的な実施形態3による電動パワーステアリング装置3000の典型的な構成を示す模式図である。
以下、添付の図面を参照しながら、本開示のモータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。また、矛盾が生じない限り、一の実施形態と他の実施形態とを組み合わせることも可能である。 
本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換するフルHブリッジ(FHB)型の電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。さらに、特許文献1または2のようなダブルインバータ構成を備える電力変換装置も本開示の範疇である。 
先ず、図1を参照しながら、本開示のモータモジュール1000の代表的なブロック構成を説明する。 
図1は、本開示のモータモジュール1000の代表的なブロック構成を示している。モータモジュール1000は、第1インバータ120および第2インバータ130を有する電力変換装置100、モータ200、第1モータ制御装置310および第2モータ制御装置320を備える。モータモジュール1000は、外部の第1電源410および第2電源420にハーネスを介して接続される。本明細書では、第1モータ制御装置310および第2モータ制御装置320を総称して「モータ制御装置」と呼ぶ場合がある。 
モータモジュール1000はモジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。モータモジュール1000は、例えば電動パワーステアリング(EPS)装置に好適に用いられる。モータ200以外の電力変換装置100およびモータ制御装置もモジュール化されて製造および販売され得る。 
図2を参照しながら、本開示の電力変換装置100の代表的なFHB型の回路構成を説明する。ただし、上述したように、電力変換装置100は、ダブルインバータ構造を有していてもよい。 
図2は、本開示の電力変換装置100の代表的なFHB型の回路構成を示している。電力変換装置100は、第1インバータ120および第2インバータ130を備える。電力変換装置100は、第1電源410および第2電源420からの電力を、モータ200に供給する電力に変換する。例えば、第1および第2インバータ120、130は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。 
モータ200は、例えば、三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。本明細書において、部品(構成要素)同士の間の「接続」は、主に電気的な接続を意味する。 
第1インバータ120は、各相に対応した端子A_L、B_LおよびC_Lを有する。第2インバータ130は、各相に対応した端子A_R、B_RおよびC_Rを有する。第1インバータ120の端子A_Lは、A相の巻線M1の一端に接続され、端子B_Lは、B相の巻線M2の一端に接続され、端子C_Lは、C相の巻線M3の一端に接続される。第1インバータ120と同様に、第2インバータ130の端子A_Rは、A相の巻線M1の他端に接続され、端子B_Rは、B相の巻線M2の他端に接続され、端子C_Rは、C相の巻線M3の他端に接続される。 
電源は、第1インバータ120に電力を供給する第1電源410、および、第2インバータ130に電力を供給する第2電源420を備える。第1電源410および第2電源420の各電源電圧は、例えば12、16、24または48Vである。電源として、例えば直流電源が用いられる。ただし、電源は、AC-DCコンバータおよびDC-DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。また、第1および第2インバータ120、130に共通の単一電源を用いてもよい。 
第1電源410と第1インバータ120との間にコイル102が設けられている。第2電源420と第2インバータ130との間にコイル102が設けられている。コイル102は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源側に流出させないように平滑化する。 
各インバータの電源端子には、コンデンサ103が接続される。コンデンサ103は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ103は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 
第1インバータ120は、3個のレグを有するブリッジ回路を備える。各レグは、ローサイドスイッチ素子およびハイサイドスイッチ素子を有する。A相レグは、ローサイドスイッチ素子121Lおよびハイサイドスイッチ素子121Hを有する。B相レグは、ローサイドスイッチ素子122Lおよびハイサイドスイッチ素子122Hを有する。C相レグは、ローサイドスイッチ素子123Lおよびハイサイドスイッチ素子123Hを有する。スイッチ素子として、例えば電界効果トラン
ジスタ(典型的にはMOSFET)または絶縁ゲートバイポーラトランジスタ(IGBT)を用いることができる。以下、スイッチ素子としてMOSFETを用いる例を説明し、スイッチ素子をSWと表記する場合がある。例えば、ローサイドスイッチ素子121L、122Lおよび123Lは、SW121L、122Lおよび123Lと表記される。


第1インバータ120は、A相、B相およびC相の各相の巻線に流れる電流を検出する電流センサ150に含まれる3個のシャント抵抗121R、122Rおよび123Rを備える。電流センサ150は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を含む。例えば、シャント抵抗121R、122Rおよび123Rは、第1インバータ120の3個のレグに含まれる3個のローサイドスイッチ素子とGNDとの間にそれぞれ接続される。具体的には、シャント抵抗121RはSW121LとGNDとの間に電気的に接続され、シャント抵抗122RはSW122LとGNDとの間に電気的に接続され、シャント抵抗123RはSW123LとGNDとの間に電気的に接続される。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。 
第2インバータ130は、第1インバータ120と同様に、3個のレグを有するブリッジ回路を備える。A相レグは、ローサイドスイッチ素子131Lおよびハイサイドスイッチ素子131Hを有する。B相レグは、ローサイドスイッチ素子132Lおよびハイサイドスイッチ素子132Hを有する。C相レグは、ローサイドスイッチ素子133Lおよびハイサイドスイッチ素子133Hを有する。また、第2インバータ130は、電流センサ150に含まれる3個のシャント抵抗131R、132Rおよび133Rを備える。それらのシャント抵抗は、3個のレグに含まれる3個のローサイドスイッチ素子とGNDとの間に接続される。 
各インバータに対し、シャント抵抗の数は3つに限られない。例えば、A相、B相用の2つのシャント抵抗、B相、C相用の2つのシャント抵抗、および、A相、C相用の2つのシャント抵抗を用いることが可能である。使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などを考慮して適宜決定される。 
図示する例に限られず、使用するスイッチ素子の個数は、設計仕様などを考慮して適宜決定される。特に車載分野においては、安全性の観点から高い品質保証が要求されるので、各インバータに用いる複数のスイッチ素子を設けておくことが好ましい。 
上述したとおり、第2インバータ130は、第1インバータ120の構造と実質的に同じ構造を備える。図2では、説明の便宜上、紙面の左側のインバータを第1インバータ120と表記し、右側のインバータを第2インバータ130と表記している。ただし、このような表記は、本開示を限定する意図で解釈されてはならない。第1および第2インバータ120、130の用語は、電力変換装置100の構成要素として区別なく用いられ得る。 
図3を参照しながら、第1モータ制御装置310内の第1制御回路314の周辺のブロック構成を説明する。第2モータ制御装置320のブロック構成は、モータ制御を行う点で、第1モータ制御装置310のそれと実質的に等しいために、その説明は省略することとする。 
図3は、第1モータ制御装置310の典型的なブロック構成を示している。第1モータ制御装置310は、例えば、第1電源回路311と、角度センサ312と、入力回路313と、第1制御回路314と、第1駆動回路315と、ROM319とを備える。角度センサ312は、第1モータ制御装置310と第2モータ制御装置320とに共通のセンサである。ただし、角度センサ312として、第1モータ制御装置310に用いる角度センサと、第2モータ制御装置320に用いる角度センサとを個別に設けてもよい。 
第1モータ制御装置310は、電力変換装置100の第1インバータ120に接続される。第1モータ制御装置310は、第1インバータ120における複数のスイッチ素子のスイッチング動作を制御する。具体的には、第1モータ制御装置310は、各SWのスイッチング動作を制御する制御信号(以降、「ゲート制御信号」と表記する。)を生成して第1インバータ120に出力する。第2モータ制御装置320は、第2インバータ130に接続される。第2モータ制御装置320は、ゲート制御信号を生成して第2インバータ130に出力する。 
モータ制御装置は、目的とするモータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、モータ制御装置は、角度センサ312に代えてトルクセンサを備えてもよい。この場合、モータ制御装置は、目的とするモータトルクを制御することができる。 
第1電源回路311は、回路内の各ブロックに必要なDC電圧(例えば3Vまたは5V)を生成する。第1電源回路311は、後述するパワー系電源回路とは異なる。 
角度センサ312は、例えばレゾルバまたはホールICである。または、角度センサ312は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ312は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、第1制御回路314と第2モータ制御装置320の第2制御回路324(図5を参照)とに回転信号を出力する。 
入力回路313は、電流センサ150のシャント抵抗121R、122Rおよび123Rによって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取って、実電流値のレベルを第1制御回路314の入力レベルに必要に応じて変換し、実電流値を第1制御回路314に出力する。入力回路313は、例えばアナログデジタル変換回路である。 
第1制御回路314は、第1インバータ120を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。 
第1制御回路314は、電力変換装置100の第1インバータ120における各SWのスイッチング動作(ターンオンまたはターンオフ)を制御する。第1制御回路314は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを第1駆動回路315に出力する。 
第1駆動回路315は、典型的にはゲートドライバ(またはプリドライバ)である。第1駆動回路315は、ゲート制御信号をPWM信号に従って生成し、第1インバータ120におけるスイッチ素子のゲートにその制御信号を与える。駆動対象が低電圧で駆動可能なモータであるとき、ゲートドライバは必ずしも必要とされない場合がある。その場合、ゲートドライバの機能は、第1制御回路314に実装され得る。 
ROM319は、第1制御回路314に電気的に接続される。ROM319は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM319は、第1制御回路314に電力変換装置100を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 
図4は、モータモジュール1000の構造を示す模式図である。図4には、中心軸211に沿って図中のyz面切断した場合のモータモジュール1000の断面を示す。 
モータモジュール1000は、ステータ220と、ロータ230と、ハウジング212と、ベアリングホルダ214と、軸受215と、軸受216とを備える。ステータ220は電機子とも称される。中心軸211はロータ230の回転軸である。 
ハウジング212は、底を有する略円筒状の筐体であり、ステータ220、軸受215およびロータ230を内部に収納する。 
ベアリングホルダ214は、モータモジュール1000内部のステータ220およびロータ230が収納される空間と、2枚の基板(第1および第2基板)CB1、CB2が収納される空間とを隔てている。ベアリングホルダ214は、板状の部材であり、その中央部で軸受216を保持している。 
ステータ220は環状であり、積層体222および巻線221を有する。積層体222は積層環状コアとも称される。巻線はコイルとも称される。ステータ220は、駆動電流に応じて磁束を発生させる。積層体222は、複数の鋼板を中心軸211に沿う方向(図4のz方向)に積層した積層鋼板から構成される。積層体222は、ハウジング212の内壁に固定される。 
巻線221は、銅等の導電性材料によって構成され、典型的には積層体222の複数の歯(不図示)にそれぞれ取り付けられている。 
ロータ230は、ロータコア231、ロータコア231の外周に沿って設けられた複数の永久磁石232、シャフト233を備える。ロータコア231は、例えば鉄などの磁性材料で構成されており、筒状の形状を有する。本実施形態において、ロータコア231は、複数の鋼板を中心軸211に沿う方向(図4のz方向)に積層した積層鋼板から構成される。複数の永久磁石232は、N極とS極とがロータコア231の周方向に交互に現れるように設けられている。シャフト233は、ロータコア231の中心に固定されており、中心軸211に沿って上下方向(z方向)に延びている。なお、本明細書中における上下左右方向とは、図4に示されたモータモジュール1000を見たときの上下左右方向であり、実施形態を分かりやすく説明するためにそれらの方向を用いて説明している。本明細書中における上下左右方向と、モータモジュール1000が実際の製品(自動車等)に搭載された状態における上下左右方向とは必ずしも一致しないことは言うまでもない。 
軸受215および216は、ロータ230のシャフト233を回転可能に支持する。軸受215および216は、例えば、球体を介して外輪と内輪とを相対回転させるボールベアリングである。 
モータモジュール1000において、ステータ220の巻線221に駆動電流を流すと、積層体222の複数の歯に径方向の磁束が発生する。複数の歯と永久磁石232との間の磁束の作用によって周方向にトルクが発生し、ロータ230はステータ220に対して回転する。ロータ230が回転すると、例えばEPS装置に駆動力が発生する。 
例えば、シャフト233におけるベアリングホルダ214側の端部には、永久磁石(不図示)が固定されている。永久磁石は、ロータ230とともに回転可能である。角度センサ312に相当する磁気センサ(不図示)が、例えば、基板CB1の、シャフト233に固定された永久磁石に対向する位置に配置されている。磁気センサは、基板CB1または基板CB2とは異なる別基板に実装され得る。磁気センサは、シャフト233とともに回転する永久磁石から発生する磁場を検出し、これによりロータ230の回転角を検出することができる。 
ベアリングホルダ214の上部には、2枚の基板が配置されている。基板CB1には、第1インバータ120用のコイル102、コンデンサ103、第1インバータ120、第1モータ制御装置310の電子部品などが実装されている。基板CB2には、第2インバータ130用のコイル102、コンデンサ103、第2インバータ130、第2モータ制御装置320の電子部品などが実装されている。モータモジュール1000の部品群は、各基板の片面または両面に実装することが可能である。ハウジング212の上部の開口はカバー250によって閉ざされる。 
(実施形態1)



 本実施形態において、第1電源410および第2電源420の電源電圧は等しく、それらの電源電圧を12Vとして説明する。 
図5は、本実施形態によるモータ制御装置のブロック構成を示している。第1モータ制御装置310は、第1電源回路311、第1制御回路314および第1駆動回路315を備える。第1電源回路311、第1制御回路314および第1駆動回路315は基板CB1に実装される。第1コネクタ316は、基板CB1とは別部品である。基板CB1は、第1コネクタ316を介して第1電源410に接続される。


12Vの電源電圧が第1電源410から第1インバータ120に供給される。第1電源回路311は、第1制御回路314および第1駆動回路315などに必要なDC電圧(例えば3V)を、第1電源410の電源電圧12Vを降圧することによって生成する。第1制御回路314は第1駆動回路315にPWM信号を出力する。第1駆動回路315は、PWM信号に従ってゲート制御信号を生成し、第1インバータ120の各スイッチ素子に与える。 
第2モータ制御装置320は、第2電源回路321、第2制御回路324および第2駆動回路325を備える。第2電源回路321、第2制御回路324および第2駆動回路325は基板CB2に実装される。第2コネクタ326は、基板CB2とは別部品である。基板CB2は、第2コネクタ326を介して第2電源420に接続される。 
12Vの電源電圧が第2電源420から第2インバータ130に供給される。第2電源回路321は、第2制御回路324および第2駆動回路325などに必要なDC電圧(例えば3V)を、第2電源420の電源電圧12Vを降圧することによって生成する。第2制御回路324は第2駆動回路325にPWM信号を出力する。第2駆動回路325は、PWM信号に従ってゲート制御信号を生成し、第2インバータ130の各スイッチ素子に与える。 
第1電源410と第1コネクタ316との接続、および、第2電源420と第2コネクタ326との接続は、一般的にハーネス(不図示)を用いて行われる。電源からモータまでの電流経路においてハーネスによる電力損失(または電圧降下)が発生する。例えば、EPSシステムに用いられるハーネスの抵抗値は、15~20mΩ程度である。これは、モータまたはECUの抵抗値よりも大きく、その電力損失を無視することはできない。例えば、電源電流が最大100Aとすると、ハーネスでの電圧降下は、1.5~2.0V程度となり、12Vの電源に対して無視できなくなる。そのため、ハーネスの電力損失を改善できれば、モータの高出力化が期待される。 
本実施形態では、2系統の第1電源410および第2電源420を用いるため、2本のハーネスからモータ200に必要な電流を供給することが可能となる。ここで、単体の電源を用いて2枚の基板に電源を供給する場合にモータに流す電流と同じ電流を2系統の電源を用いて供給することを考える。その場合、それぞれのハーネスに半分の電流を流せばよいために、ハーネスの径を小さくすることができる。その結果、ハーネスにおける電力損失を1/4程度に改善することができる。 
モータのTN特性を見ると、単体の電源を用いる場合には、モータの高速回転時において十分な出力(またはトルク)を得ることが困難であった。一方、本実施形態によれば、ハーネスにおける電力損失を低減することにより、入力電力に対する出力電力の割合を示す効率を改善することができるので、モータの高速回転時において高出力を得ることが可能となる。 
図6は、本実施形態によるモータ制御装置の他のブロック構成を示している。図7は、昇圧回路の回路構成例を示している。 
基板CB1に、スイッチRLおよび第1昇圧回路317がさらに実装され、基板CB2に、スイッチRLおよび第2昇圧回路327がさらに実装されていてもよい。 
第1昇圧回路317および第2昇圧回路327の各々は、例えば昇圧チョッパ回路である。図7には、昇圧チョッパ回路の代表的な回路構成を示している。昇圧チョッパ回路は、半導体スイッチS、ダイオードD、コンデンサCおよびコイルLなどから構成される。 
第1昇圧回路317は、第1電源410の電源電圧12Vを昇圧し、昇圧電圧(例えば24V)を第1インバータ120に出力することができる。第2昇圧回路327は、第2電源420の電源電圧12Vを昇圧し、昇圧電圧(例えば24V)を第2インバータ130に出力することができる。昇圧チョッパ回路は、各基板に接続される電源に応じて適宜決定される。 
スイッチRLは、例えば、サイリスタ、アナログスイッチIC、もしくは寄生ダイオードが内部に形成されたMOSFETなどの半導体スイッチ、または、メカニカルリレーである。例えば、基板CB1のスイッチRLは、第1制御回路314の制御を受けて、第1インバータ120の電源パスを切替える。例えば、基板CB2のスイッチRLは、第2制御回路324の制御を受けて、第2インバータ130の電源パスを切替える。 
例えば、通常駆動時には、第1電源410から第1インバータ120に12Vを供給する電源パスがスイッチRLによって選択され、第2電源420から第2インバータ130に12Vを供給する電源パスがスイッチRLによって選択される。高速回転時には、第1昇圧回路317から第1インバータ120に24Vの昇圧電圧を供給する電源パスがスイッチRLによって選択され、第2昇圧回路327から第2インバータ130に24Vの昇圧電圧を供給する電源パスがスイッチRLによって選択される。このような構成によれば、モータ駆動において、高速回転時にスイッチRLを動的に切替えることにより、それぞれのインバータに高電圧を供給することができるので、高速回転時において高出力を得ることが可能となる。 
図8は、本実施形態によるモータ制御装置のさらなる他のブロック構成を示している。図9は、降圧回路の回路構成例を示している。 
第1電源410および第2電源420の電源電圧は、12Vに限られず、例えば24Vまたは48Vであってもよい。基板CB1には、スイッチRLおよび第1降圧回路318がさらに実装され、基板CB2には、スイッチRLおよび第2降圧回路328がさらに実装されていてもよい。 
第1降圧回路318および第2降圧回路328の各々は、例えば降圧チョッパ回路である。図9には、降圧チョッパ回路の代表的な回路構成を示している。降圧チョッパ回路は、半導体スイッチS、ダイオードD、コンデンサCおよびコイルLなどから構成される。 
例えば、第1降圧回路318は、第1電源410の電源電圧24Vを降圧し、降圧電圧12Vを第1インバータ120に出力することができる。第2降圧回路328は、第2電源420の電源電圧24Vを降圧し、降圧電圧12Vを第2インバータ130に出力することができる。降圧チョッパ回路は、各基板に接続される電源に応じて適宜決定される。 
例えば、通常駆動時には、第1降圧回路318から第1インバータ120に12Vの降圧電圧を供給する電源パスがスイッチRLによって選択され、第2降圧回路328から第2インバータ130に12Vの降圧電圧を供給する電源パスがスイッチRLによって選択される。高速回転時には、第1電源410から第1インバータ120に24Vを供給する電源パスがスイッチRLによって選択され、第2電源420から第2インバータ130に24Vを供給する電源パスがスイッチRLによって選択される。このような構成によれば、モータ駆動において、高速回転時にスイッチRLを動的に切替えることにより、それぞれのインバータに高電圧を供給することができるので、高速回転時において高出力を得ることが可能となる。 
図10から図12は、中心軸211に沿って切断した場合のモータモジュール1000の断面における、基板CB1と基板CB2の間の電子部品の実装の様子を示している。 
ある一態様において、図10に示すように、基板CB1には、コンデンサ103およびコイル102(図10には不図示)などの第1受動素子群が実装される。基板CB1のコンデンサ103の実装面には、第1インバータ120における複数のスイッチ素子のスイッチング動作を制御する第1モータ制御装置310がさらに実装される。基板CB1のコンデンサ103の実装面と反対側の面には、第1インバータ120を構成する第1パワーデバイス群が実装される。図10には、第1モータ制御装置310の構成要素のうちの第1制御回路314を例示し、第1パワーデバイス群の構成要素のうちの2個のパワーデバイス(FET)を例示する。パワーデバイスは、インバータのスイッチ素子SWである。当然に、図示する例に限られず、第1パワーデバイス群の構成要素と、コンデンサ103とは、中心軸211の方向から基板を透視したときに重ならない位置に配置することは可能である。 
基板CB2には、コンデンサ103およびコイル102(図10には不図示)などの第2受動素子群が実装されている。基板CB2のコンデンサ103の実装面には、第2インバータにおける複数のスイッチ素子のスイッチング動作を制御する第2モータ制御装置320がさらに実装されている。基板CB2のコンデンサ103の実装面と反対側の面には、第2インバータ130を構成する第2パワーデバイス群が実装されている。図10には、第2モータ制御装置320の構成要素のうちの第1制御回路314を例示し、第2パワーデバイス群の構成要素のうちの2個のパワーデバイスを例示する。 
第1受動素子群の中のコンデンサ103、および、第2受動素子群の中のコンデンサ103は、基板CB1と基板CB2の間に配置され、かつ、中心軸211(図10のz方向)に沿って見たとき、互いに重ならない。本実施形態では、第1電源410および第2電源420の電源電圧は等しいので、基板CB1に実装するコンデンサ103および基板CB2に実装するコンデンサ103として、同一のコンデンサを用いることができる。その場合、両基板のコンデンサ103の高さは同じである。 
モータモジュール1000は、絶縁性を有する放熱材、例えば放熱グリスを介して基板CB1と熱的に接触した第1ヒートシンク511をさらに備えることができる。第1ヒートシンク511は、基板CB1の第1パワーデバイス群を覆う。本明細書において、「基板に熱的に接触した」とは、基板の片側の面に実装された複数の電子部品の全部または一部をヒートシンクが覆う状態を意味する。ヒートシンクは、基板面と必ずしも接触しなくてもよい。 
第1ヒートシンク511として、例えばアルミなどの熱伝導率のよい材料を用いることができる。例えば、第1ヒートシンク511は、ハウジング212のホルダまたはベアリングホルダ214であり得る。または、第1ヒートシンク511は、これらの部材とは異なる部材であってよい。第1ヒートシンク511により基板CB1を冷却することによって、モータモジュール1000の放熱性を改善することが可能となる。 
ある一態様において、図11に示すように、モータモジュール1000は、基板CB1と基板CB2の間に配置され、例えば放熱グリスを介して両基板に熱的に接触した第2ヒートシンク512をさらに備える。第2ヒートシンク512は、コンデンサ103を覆う凹部を有する。実装部品の中で特に発熱するコンデンサを第2ヒートシンク512で覆うことにより、効率的に放熱することができる。このように、第2ヒートシンク512を用いて基板CB1および基板CB2を冷却することによって、モータモジュール1000の放熱性をさらに改善することが可能となる。 
ある一態様において、図11に示すように、基板CB1のコンデンサ103の実装面と反対側の面には、第1モータ制御装置310が実装され、基板CB2のコンデンサ103の実装面と反対側の面には、第2モータ制御装置320が実装される。図11には、第1モータ制御装置310の構成要素のうちの第1制御回路314を例示し、第2モータ制御装置320の構成要素のうちの第2制御回路324を例示する。 
ある一態様において、図12に示すように、基板CB1のコンデンサ103の実装面には、第1インバータ120を構成する第1パワーデバイス群がさらに実装され、基板CB2のコンデンサ103の実装面には、第2インバータ130を構成する第2パワーデバイス群が
さらに実装される。例えば、第1昇圧回路317または第1降圧回路318は、基板CB1のコンデンサ103の実装面と反対側の面に実装され得る。その場合、第1ヒートシンク511は、第1昇圧回路317または第1降圧回路318を覆う凹部を有する。発熱が多い第1昇圧回路317または第1降圧回路318を第1ヒートシンク511で覆い冷却することによって、モータモジュール1000の放熱性を改善することが可能となる。


図13は、本実施形態の電力変換装置100の変形例による回路構成を示している。この変形例では、電力変換装置100は、2つのスイッチ素子710、711をさらに備える。スイッチ素子710は、第1インバータ120のブリッジ回路のハイサイド側のノードと、第2インバータ130のブリッジ回路のハイサイド側のノードとの接続・非接続を切替える。スイッチ素子711は、第1インバータ120のブリッジ回路のローサイド側のノードと、第2インバータ130のブリッジ回路のローサイド側のノードとの接続・非接続を切替える。2つのスイッチ素子710、711は、例えば、サイリスタ、アナログスイッチIC、もしくは寄生ダイオードが内部に形成されたMOSFETなどの半導体スイッチ、または、メカニカルリレーである。 
この構成によれば、零相電流を流すことが可能となり、例えば二相通電制御を行うことができる。例えば、A相のレグが故障した場合、B相、C相を用いて二相の巻線M2、M3を通電することができる。例えば、二相通電制御は、本出願人による特許出願である国際公開第2017/150638号に記載されている。これらの開示内容の全てを参考のために本願明細書に援用する。さらに、第1電源410および第2電源420のうちの一方が故障した場合において、他方を用いて三相の巻線を通電する三相通電制御を継続することができる。 
例えば、モータの結線は、第1駆動回路315または第2駆動回路325を用いてY結線に切替えることが可能である。通常駆動時は、モータの結線は、例えば図2または図13に示すFHB結線である。モータ200の結線をFHB結線からY結線に切替えた後は、FHB結線で用いる電源電圧の2倍の電源電圧を用いてY結線のモータ200を駆動することが好ましい。例えば、FHB結線の駆動では12Vの電源電圧が用いられ、Y結線の駆動では24Vの電源電圧が用いられる。これにより、モータ200の結線をFHB結線からY結線に切替えた場合でも、モータ200の最大回転数を維持することができる。 
例えば、第1インバータ120のハイサイドスイッチ素子121Hがオープン故障した場合、モータの結線をY結線に切替えることができる。第1駆動回路315は、残りのハイサイドスイッチ素子122H、123Hを常時オフし、かつ、3つのローサイドスイッチ素子121L、122Lおよび123Lを常時オンする制御信号を出力する。その結果、第1インバータ120に中性点が構成される。この状態で、第2モータ制御装置320は、第2インバータ130のスイッチ素子をPWM制御することが可能である。Y結線への切替えに第2電源420を用いてもよく、第1電源410または第2電源420とは異なる他の電源を用いてもよい。 
本実施形態のように第1電源410および第2電源420の電源電圧を等しくすると、FHB結線において各相に零相電流は流れない。そのため、相互インダクタンスの大きい、例えば8ポール12スロット(8P12S)のモータをFHB型の電力変換装置100に接続して駆動する場合、第1および第2インバータ120、130のスイッチ素子のスイッチングに起因する電流ノイズを抑制することが可能となる。 
(実施形態2)



 本実施形態は、第1電源410の電源電圧が、第2電源420の電源電圧と異なる点で、実施形態1と相違する。以下、実施形態1との差異点を主に説明する。 
図14は、本実施形態によるモータ制御装置のブロック構成を示している。第1電源410の電源電圧は、第2電源420の電源電圧よりも高い。例えば、第1電源410の電源電圧は48Vであり、第2電源420の電源電圧は12Vである。第1電源410の電源電圧を降圧または昇圧するパワー系電源回路が基板CB1に実装されている。図14には、パワー系電源回路として第1降圧回路318を例示する。例えば、第1降圧回路318は、第1電源410の電源電圧48Vを降圧し、降圧電圧12VをスイッチRLを介して第1インバータ120に出力する。 
この構成によれば、FHBの三相通電制御を行う場合、第1インバータ120には、第1降圧回路318から出力される降圧電圧12Vが供給され、第2インバータ130には、第2電源420の電源電圧12Vが供給される。また、例えば、第2インバータ130側のモータ結線を、上述したように第2駆動回路325を用いてY結線に切替えることにより、第1電源の電源電圧48Vで第1インバータ120のスイッチ素子をPWM制御することが可能となる。 
図15は、本実施形態によるモータ制御装置の他のブロック構成を示している。基板CB2には、例えば、第2電源420の電源電圧12Vを昇圧し、昇圧電圧24Vを第2インバータ130に出力する第2昇圧回路327がさらに実装されていてもよい。第1降圧回路318は、24Vまたは12Vの降圧電圧を生成することができる。 
この構成例によれば、通常駆動時には、例えば、第1降圧回路318から降圧電圧12Vを第1インバータ120に供給し、かつ、第2電源の電源電圧12Vを第2インバータ130に供給することにより、12VでFHBの三相通電制御を行うことが可能となる。これに対し、高速回転時には、例えば、第1降圧回路318から降圧電圧24Vを第1インバータ120に供給し、かつ、第2昇圧回路327から昇圧電圧24Vを第2インバータ130に供給することにより、24VでFHBの三相通電制御を行うことが可能となる。モータ駆動において、高速回転時にスイッチRLを動的に切替えることにより、それぞれのインバータに高電圧を供給することができるので、高速回転時において高出力を得ることが可能となる。 
例えば、モータモジュール1000をEPSに実装する場合を考える。その場合、例えば、第1電源410が故障したとしても、電源を第2電源420に切替えて基板CB2の第2昇圧回路327の昇圧電圧を用いることにより、操舵力を維持することができる。 
図16および図17は、中心軸211に沿って切断した場合のモータモジュール1000の断面における、基板CB1と基板CB2の間の電子部品の実装の様子を示している。 
基板CB1には、第1受動素子が実装され、基板CB2には第2受動素子群が実装されている。コイル、抵抗およびコンデンサなどから構成される受動素子群の中で、高さが最も高い素子は、典型的にはコンデンサである。本実施形態では、基板CB1において高さが最も高い第1受動素子はコンデンサ103_1Hであり、基板CB2において高さが最も高い第2受動素子はコンデンサ103_2Hである。一般に、電源電圧が高くなるほど、コンデンサ103として、より大きな容量を有するコンデンサが必要とされる。その結果、基板CB1に実装されるコンデンサ103は、基板CB2に実装されるコンデンサ103よりも大きな容量を必要とする。従って、コンデンサ103_1Hのサイズは、コンデンサ103_2Hのそれよりも大きくなり、具体的には、コンデンサ103_1Hの高さは、コンデンサ103_2Hのそれよりも高くなる。 
本実施形態では、第1受動素子群の中で高さが最も高いコンデンサ103_1H、および、第2受動素子群の中で高さが最も高いコンデンサ103_2Hは、基板CB1と基板CB2の間に配置され、かつ、中心軸211の方向に沿って見たとき、互いに重ならない。その結果、中心軸211の方向において2つのコンデンサ103_1H、103_2Hが重ならないため、モータモジュール1000の高さを抑制することができ、より低背であるモータモジュールを実現することができる。コンデンサ103_1Hの高さをh1とし、コンデンサ103_2Hの高さをh2(≦h1)とする。中心軸211の方向に2つのコンデンサを従来のように積み上げると高さの合計はh1+h2になる。これに対し、図16に示すように2つのコンデンサを配置すれば、高さh1の範囲に2つのコンデンサを配置することが可能となる。 
モータモジュール1000は、例えば放熱グリスを介して基板CB1と熱的に接触した第1ヒートシンク511をさらに備えることができる。例えば、第1ヒートシンク511は、ハウジング212のホルダまたはベアリングホルダ214であり得る。または、第1ヒートシンク511は、これらの部材とは異なる部材であってよい。 
例えば、基板CB1のコンデンサ103_1Hの実装面と反対側の面に、第1降圧回路318を実装し得る。モータ200のロータ230の回転軸、つまり中心軸211の方向に沿って、ロータ230、第1ヒートシンク511、基板CB1および基板CB2は、この順番で配置される。特に、パワー系電源回路である第1降圧回路318の発熱は大きくなる。第1降圧回路318を第1ヒートシンク511で覆うことにより、第1降圧回路318を冷却でき、モータモジュール1000の放熱性を向上させることができる。 
ある一態様において、図16に示すように、モータモジュール1000は、基板CB1と基板CB2の間に配置され、例えば放熱グリスを介して両基板に熱的に接触した第2ヒートシンク512をさらに備える。この構成によれば、基板CB1および基板CB2を第2ヒートシンク512で冷却することによって、モータモジュール1000の放熱性をさらに改善できる。 
ある一態様において、図17に示すように、モータモジュール1000は、基板CB2のコンデンサ103_2Hの実装面と反対側の面を覆う第2ヒートシンク512をさらに備える。モータ200のロータ230の回転軸、つまり中心軸211の方向に沿って、ロータ230、第1ヒートシンク511、基板CB1、基板CB2および第2ヒートシンク512は、この順番で配置される。このような配置によれば、第2ヒートシンク512は、モータモジュール1000のカバー250側に位置するために、それを外部に露出させ易くなり、モータモジュール1000の放熱性を向上させることができる。さらに、第3ヒートシンクとして、図16に示すように、基板CB1と基板CB2の間にさらなるヒートシンクを配置してもよい。 
第1ヒートシンク511の熱抵抗は、第2ヒートシンク512の熱抵抗よりも小さいことが好ましい。例えば、第1ヒートシンク511は、第2ヒートシンク512よりも大きい体積を有する。 
モータモジュール1000のカバー250は、第2ヒートシンク512として機能し得る。または、第2ヒートシンク512は、カバー250とは異なる別部材であってもよい。第1ヒートシンク511よりも第2ヒートシンク512のサイズを小さくすることが可能となり、モータモジュール1000の部品点数を減らすことができる。 
ある一態様において、第1電源410の電源電圧は、第2電源420の電源電圧よりも低くてもよい。例えば、第1電源410の電源電圧は、12Vであり、第2電源420の電源電圧は、48Vであってもよい。その場合、基板CB1に、パワー系電源回路である第1昇圧回路317が実装されていてもよい。例えば、第1昇圧回路317は、第1電源の電源電圧12Vを昇圧して24Vの昇圧電圧を第1インバータ120にスイッチRLを介して出力する。この構成において、特に、パワー系電源回路である第1昇圧回路317の発熱は大きくなる。第1昇圧回路317を第1ヒートシンク511で覆うことにより、第1昇圧回路317を冷却し、モータモジュール1000の放熱性を向上させることができる。さらに、例えば、第2電源420の電源電圧48Vを降圧して24Vの降圧電圧を第2インバータ130にスイッチRLを介して出力する第2降圧回路328を基板CB2に実装してもよい。


ある一態様において、中心軸211の方向から見た基板CB1の形状は基板CB2の形状と同一であり、基板CB1および基板CB2は共通の対称軸ASを有する。基板の形状は、例えば円形、楕円形または多角形である。基板CB1および基板CB2として、同一の基板を用いることができる。以下、2枚の基板のうちの基板CB1における電子部品の実装例を説明する。 
図18Aおよび図18Bは、基板CB1の両面に電子部品を実装する様子を例示している。図19は、モータモジュール1000における基板CB1および基板CB2のz軸方向の配置の様子を示している。図18Aには、ロータ230の回転軸、つまり、中心軸211の方向に沿って+z方向から見たときの、コンデンサ103を実装する基板CB1の実装面S1を示す。図18Bには、中心軸211の方向に沿って-z方向から見たときの、基板CB1の実装面S1と反対側の実装面S2を示す。ただし、図面が煩雑になるのを避けるために両面に実装され得る主要な電子部品のみを示している。 
基板CB1は、対称軸ASを有し、それを軸とした線対称性を有する。基板CB1は、第1モータ制御装置310を配置する第1領域AR1(紙面の下側領域)、および、第1受動素子群と第1パワーデバイス群とを配置する第2領域AR2(紙面の上側領域)を有する。例えば、実装面S1の第1領域AR1には、第1モータ制御装置310の第1駆動回路315が配置され、第2領域AR2には、コンデンサ103および第1インバータ120を構成する6つのFETの内の4つのFETが配置される。例えば、実装面S2の第1領域AR1には、第1モータ制御装置310の第1制御回路314が配置され、第2領域AR2には、残りの2つのFETが配置される。 
基板CB2は、対称軸ASを有し、それを軸とした線対称性を有する。基板CB1と同様に、基板CB2の第3領域AR3は、第2モータ制御装置320を実装する領域であり、基板CB2の第4領域AR4は、第2受動素子群と第2パワーデバイス群とを実装する領域である。図19に示すように、基板CB2は、基板CB1に対して対称軸ASを基準に180°反転させてモータモジュール1000に配置する。これにより、中心軸211(図19のz軸)の方向に沿ってモータモジュール1000を見たとき、第1領域AR1および基板CB2の第4領域AR4は重なり合い、かつ、第2領域AR2および基板CB2の第3領域AR3は重なり合う。 
このような構成によれば、基板CB1および基板CB2の放熱経路は中心軸211の方向に重ならないので、各基板を効率的に放熱することが可能となる。また、基板CB1および基板CB2を中心軸211の方向に配置する場合、対称軸ASを基準に各素子を対称に配置することができる。基板CB1および基板CB2の素子配置は同じになるので、組立時には基板CB1を基板CB2に重ねるだけでよい。このように、基板CB1および基板CB2に同じ基板設計を採用することにより、設計工数を削減できる。さらに、上述したとおり、中心軸211の方向において2つのコンデンサ103_1H、103_2Hが重ならないため、モータモジュール1000の高さを抑制することができ、より低背であるモータモジュールを実現することができる。さらに、基板CB1および基板CB2の間に第2ヒートシンク512を配置することにより、各基板を効果的に放熱することが可能となる。 
本開示によれば、電源系および電力変換装置100における各スイッチ素子の少なくとも1つが故障したとしても、モータ出力を維持してモータ駆動を継続させることができる。 
(その他の変形例)



 本明細書で説明するモータモジュール1000の基板の構成または配置は、ダブルインバータ構成のモータモジュールにも好適に利用することができる。ダブルインバータ構成において、三相の巻線M1、M2およびM3は、一端同士がY結線された、第1の巻線組および第2の巻線組を有する。第1インバータ120は、第1の巻線組に接続され、第2インバータ130は、第2の巻線組に接続される。 
本明細書では、2系統の電源に接続されるモータモジュール1000を説明したが、1系統の単一電源を用いることも可能である。例えば、通常時には、単一の電源から基板CB1および基板CB2に12Vの電源電圧が供給される。その電源が故障した場合、例えば、両基板はバックアップ用の別の電源に接続されて、その電源から両基板に12Vの電源が供給されてもよい。このような電源系統も本開示の範疇である。この構成によれば、FHB結線によるモータ駆動を継続することができる。 
モータモジュール1000は、基板CB1と基板CB2とを接続する分圧回路(不図示)を備えてもよい。この構成によれば、2系統の電源のうちの一方が故障した場合でも、他方を用いてモータ駆動を継続させることができる。このように、一方の電源を他方の電源に分岐させることが可能となる。 
本明細書では、2枚の基板を用いる実施形態を説明したが、3枚以上の複数の基板を用いることができる。例えば、(1)第1電源410に接続される、第1モータ制御装置310を配置する基板CB1および第1受動素子群と第1パワーデバイス群とを配置する基板CB2、ならびに、(2)第2電源420に接続される、第2モータ制御装置320を配置する第3基板および第2受動素子群と第2パワーデバイス群とを配置する第4基板の4枚の基板を使用することができる。 
(実施形態3)



 図20は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示している。 
自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。 
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bを備える。 
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544を備える。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。 
ECU542は、例えば、実施形態1または2によるモータ制御装置である。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのユニットに、実施形態1または2によるモータモジュール1000を好適に用いることができる。
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。

Claims (12)

  1. n相(nは3以上の整数)の巻線を有するモータと、



     第1電源に接続される第1基板と、



     前記第1基板に実装され、前記モータの各相の巻線の一端に接続された第1インバータと、



     前記第1基板に実装され、前記第1電源の電源電圧を降圧または昇圧するパワー系電源回路と、



     前記第1基板と熱的に接触した第1ヒートシンクと、



     第2電源に接続される第2基板と、



     前記第2基板に実装され、前記モータの各相の巻線の他端に接続された第2インバータと、



    を備えるモータモジュール。
  2. 前記第1電源の電源電圧は、前記第2電源の電源電圧よりも高く、



     前記パワー系電源回路は、前記第1電源の電源電圧を降圧し、降圧電圧を前記第1インバータに出力する第1降圧回路を有する、請求項1に記載のモータモジュール。
  3. 前記第2基板には、前記第2電源の電源電圧を昇圧し、昇圧電圧を前記第2インバータに出力する第2昇圧回路がさらに実装されている、請求項2に記載のモータモジュール。


  4. 前記第1電源の電源電圧は、48Vであり、前記第2電源の電源電圧は、12Vである、請求項2または3に記載のモータモジュール。
  5. 前記第1電源の電源電圧は、前記第2電源の電源電圧よりも低く、



     前記パワー系電源回路は、前記第1電源の電源電圧を昇圧し、昇圧電圧を前記第1インバータに出力する第1昇圧回路を有する、請求項1に記載のモータモジュール。
  6. 前記第2基板には、前記第2電源の電源電圧を降圧し、降圧電圧を前記第2インバータに出力する第2降圧回路がさらに実装されている、請求項5に記載のモータモジュール。
  7. 前記第1基板と前記第2基板の間に配置され、両基板に熱的に接触した第2ヒートシンクをさらに備える、請求項1から6のいずれかに記載のモータモジュール。
  8. 前記第1基板には、前記第1インバータにおける複数のスイッチ素子のスイッチング動作を制御する第1モータ制御装置がさらに実装され、



     前記第2基板には、前記第2インバータにおける複数のスイッチ素子のスイッチング動作を制御する第2モータ制御装置がさらに実装されている、請求項1から7のいずれかに記載のモータモジュール。
  9. 前記第1モータ制御装置は、第1駆動回路および前記第1駆動回路を制御する第1制御回路を有し、



     前記第2モータ制御装置は、第2駆動回路および前記第2駆動回路を制御する第2制御回路を有する、請求項8に記載のモータモジュール。
  10. 前記モータの結線は、前記第1または第2駆動回路を用いてY結線に切替えることが可能である、請求項9に記載のモータモジュール。
  11. 前記モータの結線をY結線に切替えた後、モータの結線の切替え前の電源電圧の2倍の電源電圧を用いて前記モータを駆動する、請求項10に記載のモータモジュール。
  12. 第1電源と、



     第2電源と、



     請求項1から11のいずれかに記載のモータモジュールと、



    を備える電動パワーステアリング装置。
PCT/JP2018/037425 2017-10-06 2018-10-05 モータモジュールおよび電動パワーステアリング装置 WO2019070065A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880062608.3A CN111164864B (zh) 2017-10-06 2018-10-05 马达模块和电动助力转向装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762568993P 2017-10-06 2017-10-06
US62/568,993 2017-10-06
JP2018-009704 2018-01-24
JP2018009704 2018-01-24

Publications (1)

Publication Number Publication Date
WO2019070065A1 true WO2019070065A1 (ja) 2019-04-11

Family

ID=65994931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037425 WO2019070065A1 (ja) 2017-10-06 2018-10-05 モータモジュールおよび電動パワーステアリング装置

Country Status (2)

Country Link
CN (1) CN111164864B (ja)
WO (1) WO2019070065A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355431A (zh) * 2020-04-16 2020-06-30 邯郸美的制冷设备有限公司 电机驱动控制电路、线路板及空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062959A (ja) * 2011-09-14 2013-04-04 Hitachi Automotive Systems Ltd モータ駆動装置
US20140265670A1 (en) * 2013-03-14 2014-09-18 Remy Technologies, Llc L-shaped sheet metal cooling jacket with baffles and integrated power electronics
JP2016131426A (ja) * 2015-01-13 2016-07-21 株式会社日本自動車部品総合研究所 電力変換装置
WO2016117144A1 (ja) * 2015-01-23 2016-07-28 三菱電機株式会社 電動パワーステアリング用モータ駆動制御装置
JP2016152764A (ja) * 2015-02-19 2016-08-22 トヨタ自動車株式会社 電動機制御システム
WO2017017747A1 (ja) * 2015-07-27 2017-02-02 株式会社日立産機システム 回転電機
WO2017158966A1 (ja) * 2016-03-18 2017-09-21 三菱電機株式会社 電動パワーステアリング駆動装置
JP2017191093A (ja) * 2016-04-06 2017-10-19 株式会社デンソー 回転検出装置、および、これを用いた電動パワーステアリング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062959A (ja) * 2011-09-14 2013-04-04 Hitachi Automotive Systems Ltd モータ駆動装置
US20140265670A1 (en) * 2013-03-14 2014-09-18 Remy Technologies, Llc L-shaped sheet metal cooling jacket with baffles and integrated power electronics
JP2016131426A (ja) * 2015-01-13 2016-07-21 株式会社日本自動車部品総合研究所 電力変換装置
WO2016117144A1 (ja) * 2015-01-23 2016-07-28 三菱電機株式会社 電動パワーステアリング用モータ駆動制御装置
JP2016152764A (ja) * 2015-02-19 2016-08-22 トヨタ自動車株式会社 電動機制御システム
WO2017017747A1 (ja) * 2015-07-27 2017-02-02 株式会社日立産機システム 回転電機
WO2017158966A1 (ja) * 2016-03-18 2017-09-21 三菱電機株式会社 電動パワーステアリング駆動装置
JP2017191093A (ja) * 2016-04-06 2017-10-19 株式会社デンソー 回転検出装置、および、これを用いた電動パワーステアリング装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355431A (zh) * 2020-04-16 2020-06-30 邯郸美的制冷设备有限公司 电机驱动控制电路、线路板及空调器
CN111355431B (zh) * 2020-04-16 2023-06-16 邯郸美的制冷设备有限公司 电机驱动控制电路、线路板及空调器

Also Published As

Publication number Publication date
CN111164864A (zh) 2020-05-15
CN111164864B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
US9692350B2 (en) Electrical rotating machine controller
CN111149283B (zh) 马达模块和电动助力转向装置
JPWO2017150641A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2018173424A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US11081941B2 (en) Motor and electric power steering device
JP7120216B2 (ja) モータおよび電動パワーステアリング装置
JP7070420B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7063322B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JPWO2018061818A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JPWO2018180274A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019070068A1 (ja) モータモジュールおよび電動パワーステアリング装置
WO2019070064A1 (ja) モータモジュールおよび電動パワーステアリング装置
JP7010282B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
CN111164864B (zh) 马达模块和电动助力转向装置
JPWO2018180238A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019021647A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019070066A1 (ja) モータモジュールおよび電動パワーステアリング装置
WO2018056046A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US20220014136A1 (en) Motor and electric power steering device
JP7388082B2 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
JPWO2019069918A1 (ja) モータおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP