WO2013105284A1 - 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法 - Google Patents

導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法 Download PDF

Info

Publication number
WO2013105284A1
WO2013105284A1 PCT/JP2012/061865 JP2012061865W WO2013105284A1 WO 2013105284 A1 WO2013105284 A1 WO 2013105284A1 JP 2012061865 W JP2012061865 W JP 2012061865W WO 2013105284 A1 WO2013105284 A1 WO 2013105284A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
silver alloy
grain size
sputtering target
pass
Prior art date
Application number
PCT/JP2012/061865
Other languages
English (en)
French (fr)
Inventor
小見山 昌三
真一 船木
慎也 小池
聖 奥田
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to SG11201403319RA priority Critical patent/SG11201403319RA/en
Priority to KR1020137004502A priority patent/KR101342331B1/ko
Priority to EP12864833.4A priority patent/EP2803754B1/en
Priority to CN201280003192.0A priority patent/CN103298970B/zh
Publication of WO2013105284A1 publication Critical patent/WO2013105284A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7515Means for applying permanent coating, e.g. in-situ coating
    • H01L2224/7518Means for blanket deposition
    • H01L2224/75186Means for sputtering, e.g. target
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers

Definitions

  • the present invention relates to a silver alloy sputtering target for forming a conductive film such as a reflective electrode of an organic EL element or a wiring film of a touch panel, and a method for producing the same.
  • organic EL element In the organic EL element, a voltage is applied between an anode and a cathode formed on both sides of the organic EL light emitting layer, and holes are injected from the anode and electrons are injected from the cathode into the organic EL film. Light is emitted when holes and electrons are combined in the organic EL light emitting layer.
  • An organic EL element is a light-emitting element that uses this light-emitting principle, and has attracted much attention in recent years for use in display devices.
  • the active matrix method is advantageous for high contrast ratio and high definition, and is a driving method capable of exhibiting the characteristics of the organic EL element.
  • a top emission method with a high aperture ratio increases the brightness. It is advantageous.
  • the reflective electrode film in this top emission structure desirably has high reflectivity and high corrosion resistance in order to efficiently reflect the light emitted from the organic EL layer. It is also desirable that the electrode has a low resistance.
  • a material an Ag alloy and an Al alloy are known. However, in order to obtain an organic EL element with higher luminance, the Ag alloy is excellent because of its high visible light reflectance.
  • a sputtering method is employed for forming the reflective electrode film on the organic EL element, and a silver alloy target is used (Patent Document 1).
  • Patent Document 2 In order to solve such a problem, in Patent Document 2 and Patent Document 3, formation of a reflective electrode film of an organic EL element capable of suppressing splash even when a large amount of power is applied to the target with an increase in size of the target. Silver alloy targets and methods for producing the same have been proposed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a silver alloy sputtering target for forming a conductive film that can further suppress arc discharge and splash and a method for manufacturing the same.
  • the present inventors have further refined the crystal grains to an average grain size of less than 150 ⁇ m in order to suppress an increase in the number of arc discharges due to target consumption, and the variation is 20% of the average grain size.
  • the knowledge that it is effective to keep below was obtained.
  • the first aspect of the silver alloy sputtering target for forming a conductive film of the present invention has a component composition containing 0.1 to 1.5% by mass of In and the balance of Ag and inevitable impurities.
  • the average grain size of the alloy crystal grains is 30 ⁇ m or more and less than 150 ⁇ m, and the grain size variation of the crystal grains is 20% or less of the average grain size.
  • the average particle size is 150 ⁇ m or more, the tendency of abnormal discharge to increase with the consumption of the target during sputtering becomes significant. If the variation in average particle diameter exceeds 20%, the tendency of abnormal discharge to increase with the consumption of the target during sputtering becomes significant.
  • the second aspect of the silver alloy sputtering target for forming a conductive film of the present invention has a component composition containing 0.1 to 1.5% by mass of In and Sn in total, the balance being made of Ag and inevitable impurities.
  • the average grain size of the crystal grains of the alloy is 30 ⁇ m or more and less than 150 ⁇ m, and the grain size variation of the crystal grains is 20% or less of the average grain size.
  • Sn like In, dissolves in Ag and suppresses the growth of the target crystal grains, and is effective in making the crystal grains finer. Since In and Sn improve the hardness of the target, warpage during machining is suppressed. In and Sn improve the corrosion resistance and heat resistance of the film formed by sputtering. If the total content of In and Sn is less than 0.1% by mass, the above effect cannot be obtained. If the total content of In and Sn exceeds 1.5% by mass, the reflectance of the film and the electrical Resistance decreases.
  • the third aspect of the silver alloy sputtering target for forming a conductive film of the present invention contains 0.1 to 1.5% by mass of In, and further includes one or both of Sb and Ga in a total amount of 0.1. -2.5% by mass, the balance is composed of Ag and inevitable impurities, the alloy crystal grains have an average grain size of 30 ⁇ m or more and less than 150 ⁇ m, and variations in the grain size of the crystal grains are average grains It is 20% or less of the diameter.
  • the fourth aspect of the silver alloy sputtering target for forming a conductive film of the present invention contains 0.1 to 1.5 mass% of In and Sn in total, and further contains either or both of Sb and Ga.
  • the total content is 0.1 to 2.5% by mass, the balance is composed of Ag and inevitable impurities, the average grain size of the alloy crystal grains is 30 ⁇ m or more and less than 150 ⁇ m, and the grain size of the crystal grains Variation of 20% or less of the average particle size.
  • Sb and Ga have an effect of solid solution in Ag and further suppressing crystal grain growth.
  • Sb and Ga further improve the corrosion resistance and heat resistance of the film formed by sputtering.
  • Ga improves the chloride resistance of the film. If the total content of Sb and Ga is less than 0.1% by mass, the above effect cannot be obtained. When the total content of Sb and Ga exceeds 2.5% by mass, not only the reflectance and electric resistance of the film are lowered, but also a tendency of cracking during hot rolling appears.
  • the average grain size of the crystal grains may be less than 120 ⁇ m.
  • the average grain size of the crystal grains is less than 120 ⁇ m, arc discharge and splash can be further suppressed.
  • the first aspect of the method for producing a silver alloy sputtering target for forming a conductive film of the present invention is a melt casting having a component composition containing 0.1 to 1.5% by mass of In and the balance of Ag and inevitable impurities.
  • a silver alloy sputtering target is manufactured by subjecting the ingot to a hot rolling step, a cooling step, and a machining step in this order.
  • the hot rolling step the rolling reduction per pass is 20 to 50%, the strain rate.
  • Is finished hot rolling for one pass or more under the conditions of 3 to 15 / sec and the post-pass temperature is 400 to 650 ° C.
  • rapid cooling is performed at a cooling rate of 200 to 1000 ° C./min.
  • the second aspect of the method for producing a silver alloy sputtering target for forming a conductive film of the present invention is a component composition containing In and Sn in a total amount of 0.1 to 1.5% by mass, with the balance being Ag and inevitable impurities.
  • a silver alloy sputtering target is manufactured by performing a hot rolling step, a cooling step, and a machining step in this order on the melt cast ingot having the above-mentioned, and in the hot rolling step, the rolling reduction per pass is 20 to Finishing hot rolling for 1 pass or more is performed under the conditions of 50%, strain rate of 3 to 15 / sec, and temperature after pass of 400 to 650 ° C. In the cooling step, a cooling rate of 200 to 1000 ° C / min. Quickly cool at.
  • a third aspect of the method for producing a silver alloy sputtering target for forming a conductive film of the present invention includes 0.1 to 1.5% by mass of In, and further includes one or both of Sb and Ga in total.
  • a silver alloy is obtained by subjecting a melt casting ingot containing 0.1 to 2.5% by mass and the balance of Ag and inevitable impurities to a molten cast ingot in this order, in this order, a hot rolling step, a cooling step, and a machining step.
  • a sputtering target is manufactured, and in the hot rolling process, the rolling reduction per pass is 20 to 50%, the strain rate is 3 to 15 / sec, and the temperature after the pass is 400 to 650 ° C.
  • a fourth aspect of the method for producing a silver alloy sputtering target for forming a conductive film of the present invention contains 0.1 to 1.5 mass% of In and Sn in total, and further includes either one of Sb and Ga.
  • a hot-rolling step, a cooling step, and a machining step are performed in this order on a molten cast ingot containing a total of 0.1 to 2.5% by mass of the both, and the balance being a composition of Ag and inevitable impurities.
  • a silver alloy sputtering target is manufactured.
  • the rolling reduction per pass is 20 to 50%
  • the strain rate is 3 to 15 / sec
  • the temperature after the pass is 400 to 650 ° C.
  • Finishing hot rolling of 1 pass or more is performed under conditions, and in the cooling step, rapid cooling is performed at a cooling rate of 200 to 1000 ° C./min.
  • the reason why the rolling reduction per pass of the finish hot rolling is set to 20 to 50% is shown below. If the rolling reduction is less than 20%, the crystal grains are not sufficiently refined. If it is attempted to obtain a reduction ratio of more than 50%, the load of the rolling mill becomes excessive, which is not realistic.
  • the reason why the strain rate is 3 to 15 / sec is shown below. When the strain rate is less than 3 / sec, the crystal grains are not sufficiently refined, and a tendency to generate a mixture of fine grains and coarse grains appears. A strain rate exceeding 15 / sec is not realistic because the load of the rolling mill is excessive. When the temperature after each pass is less than 400 ° C., dynamic recrystallization becomes insufficient, and the tendency of variation in crystal grain size becomes remarkable.
  • a target capable of further suppressing arc discharge and splash is obtained.
  • the reflectance is high and excellent.
  • a conductive film having high durability can be obtained.
  • This target has an area of 0.25 m 2 or more on the target surface (the surface on the side subjected to sputtering of the target).
  • the upper limit of the length is preferably 3000 mm from the viewpoint of handling of the target.
  • the upper limit of the width is preferably 1700 mm from the viewpoint of the upper limit of the size that can be generally rolled by a rolling mill used in the hot rolling process.
  • the thickness of the target is preferably 6 mm or more, and from the viewpoint of discharge stability of magnetron sputtering, it is preferably 25 mm or less.
  • the silver alloy sputtering target for forming a conductive film according to the first embodiment is composed of a silver alloy containing 0.1 to 1.5% by mass of In and the balance being composed of Ag and inevitable impurities.
  • the average grain size of the alloy is 30 ⁇ m or more and less than 150 ⁇ m, and the variation in grain size is 20% or less of the average grain size.
  • Ag has the effect of giving high reflectivity and low resistance to the reflective electrode film of the organic EL element and the wiring film of the touch panel formed by sputtering.
  • In improves the hardness of the target and suppresses warpage during machining. In particular, warping during machining of a large target having a target surface with an area of 0.25 m 2 or more can be suppressed.
  • In has an effect of improving the corrosion resistance and heat resistance of the reflective electrode film of the organic EL element formed by sputtering. This effect is brought about by the following actions. In refines crystal grains in the film and reduces the surface roughness of the film. Further, In is dissolved in Ag to increase the strength of the crystal grains and suppress the coarsening of the crystal grains due to heat. For this reason, In has an effect of suppressing an increase in the surface roughness of the film or suppressing a decrease in reflectance due to the corrosion of the film.
  • this silver alloy sputtering target for conductive film formation contributes to the improvement in the brightness of organic EL elements and the reliability of wiring such as a touch panel.
  • the reason why the In content is limited to the above range is shown below.
  • the In content is less than 0.1% by mass, the effect obtained by adding In described above cannot be obtained.
  • the In content exceeds 1.5% by mass, the electrical resistance of the film increases, or the reflectance and corrosion resistance of the film formed by sputtering decrease. For this reason, it is not preferable. Therefore, since the composition of the film depends on the target composition, the content of In contained in the silver alloy sputtering target is set to 0.1 to 1.5 mass%.
  • the In content is more preferably 0.2 to 1.0% by mass.
  • the silver alloy sputtering target for forming a conductive film of the second embodiment is composed of a silver alloy containing 0.1 to 1.5% by mass of In and Sn, with the balance being composed of Ag and inevitable impurities. Is done.
  • the average grain size of the alloy is 30 ⁇ m or more and less than 150 ⁇ m, and the variation in grain size is 20% or less of the average grain size.
  • Sn like In, dissolves in Ag and suppresses the growth of crystal grains of the target, and is effective in refining crystal grains. Since In and Sn improve the hardness of the target, warpage during machining is suppressed. In and Sn improve the corrosion resistance and heat resistance of the film formed by sputtering. If the total content of In and Sn is less than 0.1% by mass, the above effect cannot be obtained. If the total content of In and Sn exceeds 1.5% by mass, the reflectance of the film and the electrical Resistance decreases.
  • the silver alloy sputtering target for forming a conductive film according to the third embodiment contains 0.1 to 1.5% by mass of In, and further contains one or both of Sb and Ga in a total amount of 0.1 to 2. Containing 5% by mass, the balance is composed of a silver alloy having a component composition composed of Ag and inevitable impurities.
  • the average grain size of the alloy is 30 ⁇ m or more and less than 150 ⁇ m, and the variation in grain size is 20% or less of the average grain size.
  • the alloy sputtering target for forming a conductive film according to the fourth embodiment contains 0.1 to 1.5 mass% of In and Sn in total, and further includes one or both of Sb and Ga in total.
  • the silver alloy is contained in an amount of 0.1 to 2.5% by mass, and the balance is composed of Ag and inevitable impurities.
  • the average grain size of the alloy is 30 ⁇ m or more and less than 150 ⁇ m, and the variation in grain size is 20% or less of the average grain size.
  • Sb and Ga have an effect of solid solution in Ag and further suppressing crystal grain growth. Corrosion resistance and heat resistance of the film formed by sputtering are further improved. In particular, Ga improves the chloride resistance of the film.
  • a film formed by sputtering is used as a lead wiring film of a touch panel, the touch panel is operated by touching with a finger, and thus the wiring film needs to be resistant to chlorine components contained in sweat from the human body. By adding Ga, a film having excellent chlorination resistance can be formed. If the total content of these Sb and Ga is less than 0.1% by mass, the above effect cannot be obtained. When the total content of Sb and Ga exceeds 2.5% by mass, not only the reflectance and electric resistance of the film are lowered, but also a tendency of cracking to occur during hot rolling appears.
  • the average particle diameter of the silver alloy crystal grains in the silver alloy sputtering target is 30 ⁇ m or more and less than 150 ⁇ m, preferably 30 ⁇ m or more and less than 120 ⁇ m.
  • an average particle diameter of less than 30 ⁇ m is not practical and causes an increase in manufacturing cost.
  • the average grain size is 150 ⁇ m or more
  • the unevenness of the sputtering surface increases due to the difference in sputtering rate due to the difference in crystal orientation of each crystal grain as the target is consumed by sputtering. For this reason, abnormal discharge is likely to occur during sputtering with high power, and splash is likely to occur.
  • the average crystal grain size is set to less than 120 ⁇ m, arc discharge and splash can be further suppressed.
  • the average particle diameter of the silver alloy crystal grains is measured as follows.
  • a rectangular parallelepiped sample having a side of about 10 mm is collected from 16 points evenly within the sputtering surface of the target.
  • the target is divided into 16 vertical 4 ⁇ horizontal 4 locations and collected from the central part of each part.
  • a large target having a sputter surface of 500 ⁇ 500 (mm) or more that is, a target surface having an area of 0.25 m 2 or more is taken into consideration
  • a rectangular target generally used as a large target is used. The method of collecting the sample is described.
  • the present invention is naturally effective in suppressing the occurrence of splash on the round target.
  • the sample is equally divided into 16 places on the sputtering surface of the target and collected.
  • the sputter surface side of each sample piece is polished.
  • polishing is performed with water resistant paper of # 180 to # 4000, and then buffed with abrasive grains of 3 ⁇ m to 1 ⁇ m.
  • etching is performed to such an extent that the grain boundary can be seen with an optical microscope.
  • a mixed liquid of hydrogen peroxide water and ammonia water is used as an etchant, and the mixture is immersed for 1 to 2 seconds at room temperature to reveal grain boundaries.
  • a photograph with a magnification of 60 times or 120 times is taken with an optical microscope for each sample.
  • the magnification of the photograph is selected so that the crystal grains can be easily counted.
  • a total of four 60 mm line segments are drawn vertically and horizontally at intervals of 20 mm (as indicated by symbol #), and the number of crystal grains cut along each straight line is counted.
  • the number of crystal grains at the end of the line segment is counted as 0.5.
  • the average value of the average particle diameter of the sample sampled from 16 places be the average particle diameter of the silver alloy crystal grains of the target.
  • the variation in particle size is calculated as follows. Of the 16 average particle diameters obtained at 16 locations, the absolute value of deviation from the average value of the average particle sizes (
  • ) is specified.
  • the variation in particle size is calculated by the following formula. ⁇
  • the manufacturing method of the silver alloy sputtering target for conductive film formation of this embodiment is demonstrated.
  • Ag of purity: 99.99% by mass or more and In: purity of 99.9% by mass or more are used as raw materials.
  • Ag is dissolved in a high vacuum or an inert gas atmosphere, and a predetermined content of In is added to the resulting molten metal. Thereafter, it is melted in a vacuum or in an inert gas atmosphere to produce a melt-cast ingot of a silver alloy containing In: 0.1 to 1.5% by mass and the balance of Ag and inevitable impurities.
  • Ag purity 99.99% by mass or more, and In, Sn 99.5% by mass or more are used as raw materials.
  • Sn is added so that the sum of In and Sn is 0.1 to 1.5 mass%.
  • Ag is dissolved in a high vacuum or an inert gas atmosphere, In and Sn having a predetermined content are added to the obtained molten metal, and then dissolved in a vacuum or an inert gas atmosphere.
  • purity: 99.99 mass% or more of Ag and purity: 99.9 mass% or more of In, Sb, Ga are used as a raw material. .
  • 0.1 to 1.5% by mass of In: one or both of Sb and Ga is added in a total amount of 0.1 to 3.0% by mass.
  • Ag is melted in a high vacuum or an inert gas atmosphere, and a predetermined content of In, Sb, and Ga is added to the resulting molten metal, and then melted in a vacuum or an inert gas atmosphere.
  • purity: 99.99 mass% or more of Ag, purity: 99.9 mass% or more of In, Sn, Sb, and Ga are used as raw materials. .
  • In and Sn are added to the molten Ag so that the total amount is 0.1 to 1.5% by mass, and one or both of Sb and Ga is 0.1 to 3.0% by mass in total.
  • Ag is dissolved in a high vacuum or an inert gas atmosphere, and a predetermined content of In, Sn, Sb, Ga is added to the resulting molten metal, and then dissolved in a vacuum or an inert gas atmosphere. To do.
  • the melting / casting described above is preferably performed in a vacuum or in an atmosphere of inert gas replacement, but an atmospheric melting furnace can also be used.
  • an inert gas is blown on the surface of the molten metal, or it is melted and cast while covering the molten metal surface with a carbon-based solid sealing material such as charcoal. Thereby, the content of oxygen and nonmetallic inclusions in the ingot can be reduced.
  • the melting furnace is preferably an induction heating furnace in order to make the components uniform. Further, it is efficient and desirable to obtain a rectangular parallelepiped ingot by casting with a rectangular mold, but it is also possible to obtain a roughly rectangular ingot by processing a cylindrical ingot cast on a round mold.
  • the obtained rectangular parallelepiped ingot is heated and hot-rolled to a predetermined thickness, and then rapidly cooled.
  • the condition of the final hot rolling in the final stage of hot rolling is important.
  • the rolling reduction per pass is 20 to 50%
  • the strain rate is 3 to 15 / sec
  • the rolling temperature after each rolling pass is 400 to 650 ° C.
  • This finish hot rolling is performed for one or more passes.
  • the total rolling rate as the whole hot rolling is, for example, 70% or more.
  • the finish hot rolling is a rolling pass that strongly influences the crystal grain size of the plate material after rolling, including the final rolling pass, and, if necessary, from the final rolling pass to the third pass. You may think. After this final rolling, rolling with a rolling reduction of 7% or less may be added in the rolling temperature range for adjusting the plate thickness. Further, the strain rate ⁇ (sec ⁇ 1 ) is given by the following equation.
  • H 0 sheet thickness (mm) on the entry side with respect to the rolling roll
  • n rolling roll rotation speed (rpm)
  • R rolling roll radius (mm)
  • r rolling reduction (%)
  • r ' R / 100.
  • the strain rate is less than 3 / sec, the crystal grains are not sufficiently refined and a mixture of fine grains and coarse grains tends to appear. If an attempt is made to obtain a strain rate exceeding 15 / sec, the load of the rolling mill becomes excessive, which is not realistic.
  • the rolling temperature after each pass is 400 to 650 ° C., which is a low temperature for hot rolling. Thereby, coarsening of crystal grains is suppressed.
  • the rolling temperature is less than 400 ° C., dynamic recrystallization becomes insufficient, and the tendency of variation in crystal grain size becomes remarkable.
  • the rolling temperature exceeds 650 ° C. crystal grain growth proceeds and the average crystal grain size exceeds 150 ⁇ m.
  • This final finish hot rolling is performed from one pass to multiple passes as necessary. More preferable conditions for the finish hot rolling are a rolling reduction rate of 25 to 50% per pass, a strain rate of 5 to 15 / sec, and a rolling temperature after the pass of 500 to 600 ° C. It is preferable to carry out three or more passes.
  • the rolling start temperature does not have to be 400 to 650 ° C., and the rolling start temperature and the pass schedule are set so that the temperature at the end of each pass in the final hot rolling at the final stage is 400 to 650 ° C.
  • rapid cooling is performed at a cooling rate of 200 to 1000 ° C./min from a temperature of 400 to 650 ° C. to a temperature of 200 ° C. or less.
  • a cooling rate of 200 to 1000 ° C./min from a temperature of 400 to 650 ° C. to a temperature of 200 ° C. or less.
  • the rolled plate thus obtained is corrected by a correction press, a roller leveler or the like, and then finished to a desired dimension by machining such as milling or electric discharge machining.
  • the arithmetic average surface roughness (Ra) of the sputtering surface of the finally obtained sputtering target is preferably 0.2 to 2 ⁇ m.
  • the silver alloy sputtering target for forming a conductive film of the present embodiment obtained in this way can suppress abnormal discharge and suppress the occurrence of splash even when high power is applied during sputtering.
  • a conductive film having high reflectivity and excellent durability can be obtained.
  • a conductive film having good corrosion resistance and heat resistance and having a lower electric resistance can be obtained. This is particularly effective when the target size is a large target having a width of 500 mm, a length of 500 mm, and a thickness of 6 mm or more.
  • Example 1 Ag having a purity of 99.99% by mass or more and In having a purity of 99.9% by mass or more were prepared as additive materials, and loaded into a high-frequency induction melting furnace constructed with a graphite crucible. The total mass at the time of dissolution was about 1100 kg. At the time of dissolution, Ag was first dissolved, and after the Ag had melted off, additional raw materials were added so that the target composition shown in Table 1 was obtained. The molten alloy was sufficiently stirred by the stirring effect by induction heating, and then cast into a cast iron mold.
  • the shrinkage nest portion of the ingot obtained by this casting was excised, the surface that was in contact with the mold was removed, and a rectangular parallelepiped ingot having a rough dimension of 640 ⁇ 640 ⁇ 180 (mm) was obtained as a healthy portion.
  • the ingot was heated to 770 ° C., and rolled in one direction to extend from 640 mm to 1700 mm. This was rotated 90 degrees, and then rolled in the other direction of 640 mm repeatedly to obtain a plate material having a size of approximately 1700 ⁇ 2100 ⁇ 20 (mm).
  • a total of 12 passes were repeated.
  • the conditions of the pass from the final pass to the third pass strain rate per pass, rolling reduction, plate material temperature after pass
  • the total rolling ratio of the entire hot rolling was 89%.
  • the rolled plate was cooled under the conditions shown in Table 3. After cooling, the plate material was passed through a roller leveler to correct distortion caused by rapid cooling, and machined to a size of 1600 ⁇ 2000 ⁇ 15 (mm) to obtain a target.
  • Examples 2 to 10, Comparative Examples 1 to 10 In the same manner as in Example 1, the heating temperature of the ingot before hot rolling was 510 to 880 ° C., the plate thickness after final rolling was 9.0 to 24.2 mm, the total number of passes was 10 to 14, and the total rolling rate In the range of 87-95%. And the target was produced on the conditions of the target composition shown in Table 3, the conditions of the pass from the last pass shown in Table 1 to the 3rd pass, and the conditions of the cooling rate after hot rolling shown in Table 3. In Table 3, the cooling rate is indicated by cooling with a water shower, and “no water cooling” is simply allowed to cool. However, the thickness of the target after machining was in the range of 6 to 21 mm.
  • Examples 11 to 13, Comparative Example 11 It melt-cast in the same manner as in Example 1 to produce an ingot having an approximate size of 640 ⁇ 640 ⁇ 60 (mm). This ingot was heated to 700 ° C. and then hot-rolled to obtain a plate material having a size of approximately 1200 ⁇ 1300 ⁇ 16 (mm). In this hot rolling, a total of 6 passes were repeated. Among them, the conditions of the pass from the final pass to the third pass (strain rate per pass, rolling reduction, plate material temperature after pass) are as shown in Table 2. The total rolling rate of the entire hot rolling was 73%. After completion of hot rolling, the rolled plate was cooled under the conditions shown in Table 3. After cooling, the plate material was passed through a roller leveler to correct distortion caused by rapid cooling, and machined to a size of 1000 ⁇ 1200 ⁇ 12 (mm) to obtain a target.
  • Example 14 Ag having a purity of 99.99% by mass or more and In and Sn having a purity of 99.9% by mass or more were prepared as additive raw materials.
  • a high frequency induction melting furnace constructed with a graphite crucible, Ag was first melted, and after the Ag had melted, the additive raw material was added so that the target composition shown in Table 3 was obtained.
  • the molten alloy was sufficiently stirred by the stirring effect by induction heating, and then cast into a cast iron mold.
  • Example 15 to 22, Comparative Examples 13 to 15 Ag having a purity of 99.99% by mass or more and In, Sb, and Ga having a purity of 99.9% by mass or more were prepared as additive raw materials.
  • a high frequency induction melting furnace constructed with a graphite crucible Ag was first melted, and after the Ag had melted, the additive raw material was added so that the target composition shown in Table 3 was obtained.
  • the molten alloy was sufficiently stirred by the stirring effect by induction heating, and then cast into a cast iron mold.
  • Example 23 Ag having a purity of 99.99% by mass or more and In, Sn, Sb, and Ga having a purity of 99.9% by mass or more were prepared as additive materials.
  • a high frequency induction melting furnace constructed with a graphite crucible Ag was first melted, and after the Ag had melted, the additive raw material was added so that the target composition shown in Table 3 was obtained.
  • the molten alloy was sufficiently stirred by the stirring effect by induction heating, and then cast into a cast iron mold.
  • Example 14 to 23 and Comparative Examples 12 to 15 after casting, in the same manner as in Examples 11 to 13 and Comparative Example 11, the ingots obtained by casting had an approximate size of 640 ⁇ 640 ⁇ 60 (mm).
  • An ingot was produced.
  • the ingot was heated to 700 ° C. and then hot-rolled in the same manner as described above to obtain a plate material having a size of approximately 1200 ⁇ 1300 ⁇ 16 (mm).
  • a total of 6 passes were repeated.
  • the conditions of the pass from the last pass to the third pass strain rate per pass, rolling reduction, plate material temperature after pass
  • the total rolling rate of the entire hot rolling was 73%.
  • the plate material was passed through a roller leveler to correct distortion caused by rapid cooling, and machined to a size of 1000 ⁇ 1200 ⁇ 12 (mm) to obtain a target.
  • variation were measured.
  • the target was attached to a sputtering apparatus, and the number of abnormal discharges during sputtering was measured. Furthermore, the surface roughness, reflectance, chlorination resistance, and specific resistance of the conductive film obtained by sputtering were measured.
  • Warpage after machining The amount of warpage per 1 m length of the silver alloy sputtering target after machining was measured, and Table 4 shows the results.
  • (2) Average particle diameter and its variation The particle diameter of silver alloy crystal grains was measured by the method described in the embodiment for carrying out the invention.
  • samples were collected uniformly from 16 points of the target manufactured as described above, and the average particle diameter of the surface of each sample viewed from the sputtering surface was measured. And the dispersion
  • the target was consumed by repeating the sputter
  • the silver alloy film was held for 100 hours in a constant temperature and high humidity bath at a temperature of 80 ° C. and a humidity of 85%. Then, the absolute reflectance in wavelength 550nm of the silver alloy film was measured with the spectrophotometer. (4-3) Chlorination resistance
  • a silver alloy film was formed in the same manner as described above using a target to which Ga was added (Examples 19 to 23, Comparative Examples 14 and 15). did. Next, a 5 wt% NaCl aqueous solution was sprayed on the film surface of the silver alloy film.
  • Spraying was performed in a direction parallel to the film surface from a position 20 cm in height from the film surface and a distance of 10 cm from the edge of the substrate, so that the NaCl aqueous solution sprayed on the film dropped as freely as possible and adhered to the film. Spraying was repeated 5 times every minute and then rinsed with pure water 3 times. Drying was performed by blowing dry air to blow off moisture. After spraying the salt water, the surface of the silver alloy film was visually observed to evaluate the surface state. As an evaluation standard of chlorination resistance, a sample in which white turbidity or spots could not be confirmed or only partially confirmed was evaluated as “good”. Those in which white turbidity or spots could be confirmed on the entire surface were evaluated as “bad”.
  • the average particle diameter of the silver alloy crystal grains is in the range of 30 ⁇ m or more and less than 150 ⁇ m, and the variation in the particle diameter of the silver alloy crystal grains is within 20% of the average particle diameter of the silver alloy crystal grains.
  • the warpage after machining was small, and the number of abnormal discharges during sputtering was small not only at the beginning of use but also after consumption.
  • the average crystal grain size is 120 ⁇ m or less and the variation in grain size is within 20%
  • the number of abnormal discharges is 2 times after the consumption of Example 6, and all are 1 time or less. It is running low.
  • the target to which Sb and Ga were added had a tendency that the average crystal grain size tends to be small, and the number of abnormal discharges was as small as 1 or less.
  • the target with too much addition of Sb and Ga (more than 2.5% by mass in total) was cracked during machining.
  • the conductive film obtained from the target material of the example was excellent in reflectance and specific resistance, and the surface roughness was as small as 2 ⁇ m or less.
  • the conductive film obtained from the Ga-added target has excellent chlorination resistance and is effective for a conductive film such as a touch panel.
  • the target of this embodiment When sputtering the target of this embodiment, the occurrence of arc discharge and splash is suppressed. Moreover, the conductive film obtained by sputtering the target of this embodiment is excellent in reflectance and specific resistance, and has a small surface roughness. For this reason, the target of this embodiment can be suitably applied as a target for forming a conductive film such as a reflective electrode layer of an organic EL element or a wiring film of a touch panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Metal Rolling (AREA)

Abstract

 このスパッタリングターゲットの一態様は、Inを0.1~1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有し、合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下である。このスパッタリングターゲットの製造方法の一態様は、前記成分組成を有する溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施し、前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、前記冷却工程では、200~1000℃/minの冷却速度にて急冷する。

Description

導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
 本発明は、有機EL素子の反射電極やタッチパネルの配線膜などの導電性膜を形成するための銀合金スパッタリングターゲットおよびその製造方法に関する。
 本願は、2012年1月10日に、日本に出願された特願2012-002072号に基づき優先権を主張し、その内容をここに援用する。
 有機EL素子では、有機EL発光層の両側に形成された陽極と陰極の間に電圧を印加し、陽極より正孔を、陰極より電子をそれぞれ有機EL膜に注入する。そして有機EL発光層で正孔と電子が結合する際に発光する。有機EL素子は、この発光原理を使用する発光素子であり、ディスプレイデバイス用として近年非常に注目されている。この有機EL素子の駆動方式には、パッシブマトリックス方式と、アクティブマトリックス方式とがある。このアクティブマトリックス方式は、画素一つに、一つ以上の薄膜トランジスタを設けることにより高速でスイッチングすることができる。このため、アクティブマトリックス方式は、高コントラスト比、高精細化に有利となり、有機EL素子の特徴を発揮できる駆動方式である。
 また、光の取り出し方式には、透明基板側から光を取り出すボトムエミッション方式と、基板とは反対側に光を取り出すトップエミッション方式とがあり、開口率の高いトップエミッション方式が、高輝度化に有利である。
 このトップエミッション構造における反射電極膜は、有機EL層で発光した光を効率よく反射するために、高反射率で耐食性の高いことが望ましい。また、電極として低抵抗であることも望ましい。そのような材料として、Ag合金およびAl合金が知られているが、より高輝度の有機EL素子を得るためには、可視光反射率が高いことからAg合金が優れている。ここで、有機EL素子への反射電極膜の形成には、スパッタリング法が採用されており、銀合金ターゲットが用いられている(特許文献1)。
 ところで、有機EL素子製造時のガラス基板の大型化に伴い、反射電極膜の形成に使用される銀合金ターゲットも大型のものが使われるようになってきている。ここで、大型のターゲットに高い電力を投入してスパッタを行う際には、ターゲットの異常放電によって発生する「スプラッシュ」と呼ばれる現象が発生する。この現象が発生すると、溶融した微粒子が基板に付着して配線や電極間をショートさせたりする。これにより、有機EL素子の歩留りが低下するという問題がある。トップエミッション方式の有機EL素子の反射電極層は、有機発光層の下地層となるため、より高い平坦性が求められており、よりスプラッシュを抑制する必要がある。
 このような課題を解決するため、特許文献2および特許文献3では、ターゲットの大型化に伴い、ターゲットに大電力が投入されてもスプラッシュを抑制することができる有機EL素子の反射電極膜の形成用銀合金ターゲットおよびその製造方法が提案されている。
 これら特許文献2および特許文献3に記載の反射電極膜形成用銀合金ターゲットにより、大電力が投入されてもスプラッシュを抑制することができるようになった。しかし、大型の銀合金ターゲットでは、ターゲットの消耗に伴って、アーク放電回数が増加し、アーク放電によるスプラッシュが増加する傾向にあり、さらなる改善が求められている。
 また、有機EL素子用の反射電極膜の他に、タッチパネルの引き出し配線などの導電性膜にも、銀合金膜の使用が検討されている。このような配線膜として、例えば純Agを用いると、マイグレーションが生じて短絡不良が発生しやすくなる。このため、銀合金膜の採用が検討されている。
国際公開第2002/077317号 特開2011-100719号公報 特開2011-162876号公報
 本発明は、このような事情に鑑みてなされたもので、アーク放電およびスプラッシュをより一層抑制することができる導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法を提供することを目的とする。
 本発明者らは鋭意研究の結果、ターゲットの消耗に伴うアーク放電回数の増加を抑制するためには、結晶粒を平均粒径で150μm未満にさらに微細化し、そのばらつきを平均粒径の20%以下に抑えることが有効であるとの知見を得た。
 かかる知見に基づいて、本発明の導電性膜形成用銀合金スパッタリングターゲットの第1の態様は、Inを0.1~1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有し、合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下である。
 Inは、Agに固溶してターゲットの結晶粒成長を抑制し、結晶粒の微細化に効果がある。Inは、ターゲットの硬さを向上させるので、機械加工時の反りを抑制する。Inは、スパッタにより形成された膜の耐食性および耐熱性を向上させる。In含有量が0.1質量%未満では、上記効果が得られず、In含有量が1.5質量%を超えると、膜の反射率や電気抵抗が低下する。
 平均粒径を30μm以上150μm未満とする理由を以下に示す。30μm未満の平均粒径は、現実的でなく製造コストの増加を招く。また、平均粒径が150μm以上であると、スパッタ時にターゲットの消耗に伴って異常放電が増加する傾向が顕著になる。
 平均粒径のばらつきが20%を超えると、スパッタ時にターゲットの消耗に伴って異常放電が増加する傾向が顕著になる。
 本発明の導電性膜形成用銀合金スパッタリングターゲットの第2の態様は、InおよびSnを合計で0.1~1.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有し、合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下である。
 Snは、Inと同様、Agに固溶してターゲットの結晶粒成長を抑制し、結晶粒の微細化に効果がある。In及びSnは、ターゲットの硬さを向上させるので、機械加工時の反りを抑制する。In及びSnは、スパッタにより形成された膜の耐食性および耐熱性を向上させる。InとSnとの合計の含有量が0.1質量%未満では、上記効果が得られず、InとSnとの合計の含有量が1.5質量%を超えると、膜の反射率や電気抵抗が低下する。
 本発明の導電性膜形成用銀合金スパッタリングターゲットの第3の態様は、Inを0.1~1.5質量%含み、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有し、合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下である。
 本発明の導電性膜形成用銀合金スパッタリングターゲットの第4の態様は、InおよびSnを合計で0.1~1.5質量%含有し、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有し、合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下である。
 SbおよびGaは、Agに固溶して更に結晶粒成長を抑制する効果を有する。SbおよびGaは、スパッタにより形成された膜の耐食性および耐熱性をよりいっそう向上させる。特にGaは、膜の耐塩化性を向上させる。SbおよびGaの含有量の合計が0.1質量%未満では、上記効果が得られない。SbおよびGaの含有量の合計が2.5質量%を超えると、膜の反射率や電気抵抗が低下するだけでなく、熱間圧延の際に割れが発生する傾向が現れる。
 本発明の導電性膜形成用銀合金スパッタリングターゲットの第1~4の態様において、前記結晶粒の平均粒径は120μm未満であってもよい。
 結晶粒の平均粒径が120μm未満であると、アーク放電およびスプラッシュをさらに抑制することができる。
 本発明の導電性膜形成用銀合金スパッタリングターゲットの製造方法の第1の態様は、Inを0.1~1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造し、前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、前記冷却工程では、200~1000℃/minの冷却速度にて急冷する。
 本発明の導電性膜形成用銀合金スパッタリングターゲットの製造方法の第2の態様は、InおよびSnを合計で0.1~1.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造し、前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、前記冷却工程では、200~1000℃/minの冷却速度にて急冷する。
 本発明の導電性膜形成用銀合金スパッタリングターゲットの製造方法の第3の態様は、Inを0.1~1.5質量%含み、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造し、前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、前記冷却工程では、200~1000℃/minの冷却速度にて急冷する。
 本発明の導電性膜形成用銀合金スパッタリングターゲットの製造方法の第4の態様は、InおよびSnを合計で0.1~1.5質量%含有し、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造し、前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、前記冷却工程では、200~1000℃/minの冷却速度にて急冷する。
 仕上げ熱間圧延の1パス当りの圧下率を20~50%とする理由を以下に示す。圧下率が20%未満では、結晶粒の微細化が不十分となる。50%超の圧下率を得ようとすると、圧延機の負荷荷重が過大となり現実的ではない。
 また、ひずみ速度を3~15/secとする理由を以下に示す。ひずみ速度が3/sec未満では、結晶粒の微細化が不十分となり、微細粒と粗大粒の混粒が発生する傾向が現れる。15/secを超えるひずみ速度は、圧延機の負荷荷重が過大となり現実的ではない。
 各パス後の温度が400℃未満では、動的再結晶が不十分となり、結晶粒径のばらつきが増大する傾向が顕著になる。各パス後の温度が650℃を超えると、結晶粒成長が進行し平均結晶粒径が150μm以上となる。
 そして、この熱間圧延後に急冷することによって結晶粒の成長を抑制し、微細な結晶粒のターゲットを得ることができる。冷却速度が200℃/min未満では、結晶粒の成長を抑制する効果に乏しい。冷却速度が1000℃/minを超えても、それ以上の微細化には寄与しない。
 本発明の態様によれば、スパッタ中に大電力を投入しても、アーク放電およびスプラッシュをより一層抑制することができるターゲットが得られ、このターゲットをスパッタすることにより、反射率が高く、優れた耐久性を有する導電性膜を得ることができる。
 以下、本発明の導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法の実施形態を説明する。なお、“%”は、特に示さない限り、また数値固有の場合を除いて質量%である。
 このターゲットは、ターゲット表面(ターゲットのスパッタリングに供される側の面)が、0.25m以上の面積を有する。矩形ターゲットの場合には、少なくとも一辺が500mm以上であり、長さの上限は、ターゲットのハンドリングの観点から、3000mmが好ましい。一方、幅の上限は、熱間圧延工程で使用する圧延機で一般的に圧延可能なサイズの上限の観点から、1700mmが好ましい。また、ターゲットの交換頻度の観点から、ターゲットの厚さは、6mm以上が好ましく、マグネトロンスパッタの放電安定性の観点から、25mm以下が好ましい。
 第1実施形態の導電性膜形成用銀合金スパッタリングターゲットは、Inを0.1~1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成される。その合金の結晶粒の平均粒径が30μm以上150μm未満であり、結晶粒の粒径のばらつきが平均粒径の20%以下である。
 Agは、スパッタにより形成された有機EL素子の反射電極膜やタッチパネルの配線膜に、高反射率と低抵抗を与える効果を有する。
 Inは、ターゲットの硬さを向上させるので、機械加工時の反りを抑制する。特に、ターゲット表面が0.25m以上の面積を有した大型ターゲットの機械加工時の反りを抑制することができる。加えて、Inは、スパッタにより形成された有機EL素子の反射電極膜の耐食性、および耐熱性を向上させる効果がある。この効果は、以下の作用によってもたらされる。Inは、膜中の結晶粒を微細化すると共に膜の表面粗さを小さくする。また、Inは、Agに固溶して結晶粒の強度を高め、熱による結晶粒の粗大化を抑制する。このため、Inは、膜の表面粗さの増大を抑制したり、膜の腐食による反射率の低下を抑制したりする効果を有する。したがって、この導電性膜形成用銀合金スパッタリングターゲットを用いて成膜した反射電極膜または配線膜では、膜の耐食性および耐熱性が向上する。このため、この導電性膜形成用銀合金スパッタリングターゲットは、有機EL素子の高輝度化やタッチパネル等の配線における信頼性の改善に寄与する。
 Inの含有量を上記範囲に限定した理由を以下に示す。In含有量が0.1質量%未満では、上記に記載したInを添加することによる効果が得られない。In含有量が1.5質量%を超えると、膜の電気抵抗が増大したり、スパッタにより形成された膜の反射率や耐食性がかえって低下する。このため、好ましくない。したがって、膜の組成は、ターゲット組成に依存するので、銀合金スパッタリングターゲットに含まれるInの含有量は、0.1~1.5質量%に設定される。In含有量は、より好ましくは0.2~1.0質量%である。
 第2実施形態の導電性膜形成用銀合金スパッタリングターゲットは、InおよびSnを合計で0.1~1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成される。その合金の結晶粒の平均粒径が30μm以上150μm未満であり、結晶粒の粒径のばらつきが平均粒径の20%以下である。
 この実施形態において、Snは、Inと同様、Agに固溶してターゲットの結晶粒成長を抑制し、結晶粒の微細化に効果がある。In及びSnは、ターゲットの硬さを向上させるので、機械加工時の反りを抑制する。In及びSnは、スパッタにより形成された膜の耐食性および耐熱性を向上させる。InとSnとの合計の含有量が0.1質量%未満では、上記効果が得られず、InとSnとの合計の含有量が1.5質量%を超えると、膜の反射率や電気抵抗が低下する。
 第3実施形態の導電性膜形成用銀合金スパッタリングターゲットは、Inを0.1~1.5質量%含み、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成される。その合金の結晶粒の平均粒径が30μm以上150μm未満であり、結晶粒の粒径のばらつきが平均粒径の20%以下である。
 また、第4実施形態の導電性膜形成用合金スパッタリングターゲットは、InおよびSnを合計で0.1~1.5質量%含有し、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成される。その合金の結晶粒の平均粒径が30μm以上150μm未満であり、結晶粒の粒径のばらつきが平均粒径の20%以下である。
 これら第3および第4実施形態において、SbおよびGaは、Agに固溶して更に結晶粒成長を抑制する効果を有する。スパッタにより形成された膜の耐食性および耐熱性をよりいっそう向上させる。特にGaは、膜の耐塩化性を向上させる。スパッタにより形成された膜をタッチパネルの引き出し配線膜に用いる場合、タッチパネルは指で触れて操作されるため、人体からの汗に含まれる塩素成分への耐性が配線膜には必要である。Gaを添加することにより、耐塩化性に優れる膜を形成できる。
 これらSb及びGaの含有量の合計が0.1質量%未満では、上記効果が得られない。Sb及びGaの含有量の合計が2.5質量%を超えると、膜の反射率や電気抵抗が低下するだけでなく、熱間圧延の際に割れが発生する傾向が現れる。
 以上の各組成の実施形態において、銀合金スパッタリングターゲット中の銀合金結晶粒の平均粒径は、30μm以上150μm未満であり、好ましくは30μm以上120μm未満である。銀合金結晶粒の平均粒径に関して、30μm未満の平均粒径は、現実的でなく製造コストの増加を招く。また、均一な結晶粒を製造することが難しく、粒径のばらつきが大きくなる。これにより、大電力のスパッタ中に、異常放電が発生しやすくなり、スプラッシュが発生するようになる。一方、平均粒径が150μm以上であると、ターゲットがスパッタにより消耗することに伴い、各々の結晶粒の結晶方位の違いによるスパッタレートの差に起因して、スパッタ表面の凹凸が大きくなる。このため、大電力でのスパッタ中に、異常放電が発生し易くなり、スプラッシュが発生し易くなる。この平均結晶粒径を120μm未満とすることにより、さらにアーク放電およびスプラッシュを抑制することができる。
 ここで、銀合金結晶粒の平均粒径は、以下のようにして測定する。
 ターゲットのスパッタ面内で均等に16カ所の地点から、一辺が10mm程度の直方体の試料を採取する。具体的には、ターゲットを縦4×横4の16カ所に区分し、各部の中央部から採取する。なお、本実施形態では、500×500(mm)以上のスパッタ面、すなわちターゲット表面が0.25m以上の面積を有する大型ターゲットを念頭に置いているので、大型ターゲットとして一般に用いられる矩形ターゲットからの試料の採取法を記載する。しかし本発明は、当然に、丸形ターゲットのスプラッシュ発生の抑制にも効果を発揮する。このときには、大型の矩形ターゲットでの試料の採取法に準じて、ターゲットのスパッタ面内で均等に16カ所に区分し、採取することとする。
 次に、各試料片のスパッタ面側を研磨する。この際、#180~#4000の耐水紙で研磨を行い、次いで3μm~1μmの砥粒でバフ研磨をする。
 さらに、光学顕微鏡で粒界が見える程度にエッチングする。ここで、エッチング液には、過酸化水素水とアンモニア水との混合液を用い、室温で1~2秒間浸漬し、粒界を現出させる。次に、各試料について、光学顕微鏡で倍率60倍もしくは120倍の写真を撮影する。写真の倍率は結晶粒を計数し易い倍率を選択する。
 各写真において、60mmの線分を、井げた状に(記号#のように)20mm間隔で縦横に合計4本引き、それぞれの直線で切断された結晶粒の数を数える。なお、線分の端の結晶粒は、0.5個とカウントする。平均切片長さ:L(μm)を、L=60000/(M・N)(ここで、Mは実倍率、Nは切断された結晶粒数の平均値である)で求める。
 次に、求めた平均切片長さ:L(μm)から、試料の平均粒径:d(μm)を、d=(3/2)・Lで算出する。
 このように16カ所からサンプリングした試料の平均粒径の平均値をターゲットの銀合金結晶粒の平均粒径とする。
 この銀合金結晶粒の粒径のばらつきが、銀合金結晶粒の平均粒径の20%以下であると、スパッタ時のスプラッシュを、より確実に抑制することができる。ここで、粒径のばらつきは、以下のようにして算出される。16カ所で求めた16個の平均粒径のうち、平均粒径の平均値との偏差の絶対値(|〔(ある1個の箇所の平均粒径)-(16カ所の平均粒径の平均値)〕|)が最大となるものを特定する。次いで、その特定した平均粒径(特定平均粒径)を用いて、下記の式により粒径のばらつきを算出する。
{|〔(特定平均粒径)-(16カ所の平均粒径の平均値)〕|/(16カ所の平均粒径の平均値)}×100(%)
 次に、本実施形態の導電性膜形成用銀合金スパッタリングターゲットの製造方法について説明する。
 第1実施形態の導電性膜形成用銀合金スパッタリングターゲットの製造方法では、原料として純度:99.99質量%以上のAg、純度:99.9質量%以上のInを用いる。
 まず、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のInを添加する。その後、真空または不活性ガス雰囲気中で溶解して、In:0.1~1.5質量%含み、残部がAgおよび不可避不純物からなる銀合金の溶解鋳造インゴットを作製する。
 ここで、Agの溶解とInの添加を以下のように行うことが好ましい。雰囲気を一度真空にし、次いでアルゴンで置換し、この雰囲気でAgの溶解を行う。次いでAgの溶解後にアルゴン雰囲気の中でAgの溶湯にInを添加する。これにより、AgとInの組成比率が安定する。
 第2実施形態の導電性膜形成用銀合金スパッタリングターゲットの製造方法では、原料として純度:99.99質量%以上のAg、純度:99.9質量%以上のIn、Snを用いる。Agの溶湯に、Inを溶解するとともに、InとSnの合計が0.1~1.5質量%となるようにSnを添加する。その場合も、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のInおよびSnを添加し、その後、真空または不活性ガス雰囲気中で溶解する。
 また、第3実施形態の導電性膜形成用銀合金スパッタリングターゲットの製造方法では、原料として純度:99.99質量%以上のAg、純度:99.9質量%以上のIn、Sb、Gaを用いる。Agの溶湯に、In:0.1~1.5質量%、Sb、Gaのうちいずれか一方又は両方を合計で0.1~3.0質量%添加する。その場合も、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のIn、Sb、Gaを添加し、その後、真空または不活性ガス雰囲気中で溶解する。
 第4実施形態の導電性膜形成用銀合金スパッタリングターゲットの製造方法では、原料として純度:99.99質量%以上のAg、純度:99.9質量%以上のIn、Sn、Sb、Gaを用いる。Agの溶湯に、InとSnを合計で0.1~1.5質量%となるように添加するとともに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~3.0質量%添加する。その場合も、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のIn、Sn、Sb、Gaを添加し、その後、真空または不活性ガス雰囲気中で溶解する。
 また、以上の溶解・鋳造は、真空中または不活性ガス置換の雰囲気中で行うのが望ましいが、大気中溶解炉を用いることも可能である。大気中溶解炉を用いる場合は、溶湯表面に不活性ガスを吹き付けるか、木炭等の炭素系固体シール材により溶湯表面を覆いながら溶解、鋳造する。これにより、インゴット中の酸素や非金属介在物の含有量を低減することができる。
 溶解炉は、成分を均一化するため誘導加熱炉が好ましい。
 また、角型の鋳型で鋳造し直方体のインゴットを得るのが効率的で望ましいが、丸型の鋳型に鋳造した円柱状のインゴットを加工して概略直方体のインゴットを得ることもできる。
 得られた直方体状のインゴットを加熱して所定の厚さまで熱間圧延し、次いで急冷する。
 この場合、熱間圧延の最終段階の仕上げ熱間圧延の条件が重要であり、この仕上げ熱間圧延条件を適切に設定することにより、結晶粒が微細で均一な銀合金板を製造することができる。
 具体的には、仕上げ熱間圧延においては、1パス当りの圧下率が20~50%でひずみ速度が3~15/sec、各圧延パス後の圧延温度が400~650℃とする。この仕上げ熱間圧延を1パス以上行う。熱間圧延全体としての総圧延率は、例えば70%以上とする。
 ここで、仕上げ熱間圧延とは、圧延後の板材の結晶粒径に強く影響を及ぼす圧延パスであり、最終圧延パスを含み、必要に応じて、最終圧延パスから3回目までのパスであると考えてよい。この最終圧延より後に、板厚の調整のために前記圧延温度範囲で、圧下率7%以下の圧延を加えてもかまわない。
 また、ひずみ速度ε(sec-1)は次式で与えられる。
Figure JPOXMLDOC01-appb-M000001
 上式において、H:圧延ロールに対する入側での板厚(mm)、n:圧延ロール回転速度(rpm)、R:圧延ロール半径(mm)、r:圧下率(%)であり、r’=r/100である。
 1パス当りの圧下率を20~50%とし、ひずみ速度を3~15/secとすることにより、比較的低温で大きなエネルギーによって強加工することになる。これにより粗大結晶粒の混在を防止し、動的再結晶により全体として微細で均一な結晶粒を生成することができる。1パス当りの圧下率が20%未満では、結晶粒の微細化が不十分となる。50%を超える圧下率を得ようとすると、圧延機の負荷荷重が過大となり現実的ではない。また、ひずみ速度が3/sec未満では、結晶粒の微細化が不十分となり、微細粒と粗大粒の混粒が発生する傾向が現れる。15/secを超えるひずみ速度を得ようとすると、圧延機の負荷荷重が過大となり現実的ではない。
 各パス後の圧延温度は、熱間圧延としては低温の400~650℃とする。これにより、結晶粒の粗大化を抑制する。圧延温度が400℃未満では、動的再結晶が不十分となり、結晶粒径のばらつきが増大する傾向が顕著になる。圧延温度が650℃を超えると、結晶粒成長が進行し平均結晶粒径が150μmを超えるようになる。
 この最終の仕上げ熱間圧延を1パスから必要に応じて複数パス行う。
 仕上げ熱間圧延のより好ましい条件は、1パス当りの圧下率が25~50%、ひずみ速度が5~15/sec、パス後の圧延温度が500~600℃であり、この仕上げ熱間圧延を3パス以上実施するのが好ましい。
 なお、圧延開始温度は400~650℃でなくともよく、最終段階の仕上げ熱間圧延での各パス終了時の温度が400~650℃となるように、圧延開始温度、パススケジュールを設定する。
 そして、このような熱間圧延加工後に、400~650℃の温度から例えば200℃以下の温度になるまで、200~1000℃/minの冷却速度で急冷する。この急冷により結晶粒の成長を抑制し、微細な結晶粒の圧延板を得ることができる。冷却速度が200℃/min未満では、結晶粒の成長を抑制する効果に乏しい。冷却速度が1000℃/minを超えても、それ以上の微細化には寄与しない。急冷の方法としては、1分間程度、水シャワーするとよい。
 このようにして得た圧延板を矯正プレス、ローラレベラー等により矯正し、次いでフライス加工、放電加工等の機械加工で所望の寸法に仕上げる。最終的に得られるスパッタリングターゲットのスパッタ表面の算術平均面粗さ(Ra)は0.2~2μmであることが好ましい。
 このようにして得られた本実施形態の導電性膜形成用銀合金スパッタリングターゲットは、スパッタ中に大電力を投入しても、異常放電を抑制し、スプラッシュの発生を抑制することができる。このターゲットをスパッタすることにより、反射率が高く、優れた耐久性を有する導電性膜が得られる。また、この導電性膜形成用銀合金スパッタリングターゲットを用いてスパッタすることで、良好な耐食性および耐熱性を有し、さらに低い電気抵抗の導電性膜を得ることができる。特に、ターゲットサイズが、幅:500mm、長さ:500mm、厚さ6mm以上の大型ターゲットである場合に有効である。
(実施例1)
 純度99.99質量%以上のAgと、添加原料として純度99.9質量%以上のInを用意し、黒鉛るつぼで築炉した高周波誘導溶解炉に装填した。溶解時の総質量は約1100kgとした。
 溶解に際しては、まずAgを溶解し、Agが溶け落ちた後、表1に示すターゲット組成となるように添加原料を投入した。合金溶湯を誘導加熱による攪拌効果により十分に攪拌し、次いで鋳鉄製の鋳型に鋳造した。
 この鋳造により得られたインゴットの引け巣部分を切除し、鋳型に接していた表面を面削除去し、健全部として概略寸法640×640×180(mm)の直方体状のインゴットを得た。
 このインゴットを770℃まで加熱して、一方向に圧延を繰り返して640mmから1700mmまで伸ばした。これを90度回転させ、次いで、更にもう一方の640mmの方向の圧延を繰り返し行い、概略1700×2100×20(mm)の寸法の板材とした。
 この熱間圧延では、全部で12回のパスを繰り返した。そのうち、最終パスから3回目までのパスの条件(1パス当りのひずみ速度、圧下率、パス後の板材温度)を表1の通りとした。熱間圧延全体の総圧延率は89%であった。
 熱間圧延終了後、圧延後の板材を表3に示す条件で冷却した。
 冷却後、板材をローラレベラーに通して、急冷によって生じたひずみを矯正し、1600×2000×15(mm)の寸法に機械加工してターゲットとした。
(実施例2~10、比較例1~10)
 実施例1と同様にして、熱間圧延前のインゴットの加熱温度を510~880℃、最終圧延後の板厚を9.0~24.2mm、総パス回数を10~14回、総圧延率を87~95%の範囲で変化させた。そして、表3に示すターゲット組成、表1に示す最終パスから3回目までのパスの条件、および表3に示す熱間圧延後の冷却速度の条件でターゲットを作製した。表3中、冷却速度を表記したものは水シャワーにより冷却したものであり、“水冷無し”は、単に放冷したものである。但し、機械加工後のターゲットの厚さは6~21mmの範囲とした。
(実施例11~13、比較例11)
 実施例1と同様にして溶解鋳造して、概略寸法640×640×60(mm)のインゴットを作製した。このインゴットを700℃に加熱し、次いで熱間圧延して、概略1200×1300×16(mm)の寸法の板材とした。
 この熱間圧延では、全部で6回のパスを繰り返した。そのうち、最終パスから3回目までのパスの条件(1パス当りのひずみ速度、圧下率、パス後の板材温度)を表2の通りとした。熱間圧延全体の総圧延率は73%であった。
 熱間圧延終了後、圧延後の板材を表3に示す条件で冷却した。
 冷却後、板材をローラレベラーに通して、急冷によって生じたひずみを矯正し、1000×1200×12(mm)の寸法に機械加工してターゲットとした。
(実施例14、比較例12)
 純度99.99質量%以上のAgと、添加原料として純度99.9質量%以上のIn、Snを用意した。黒鉛るつぼで築炉した高周波誘導溶解炉にて、まずAgを溶解し、Agが溶け落ちた後、表3に示すターゲット組成となるように添加原料を投入した。合金溶湯を誘導加熱による攪拌効果により十分に攪拌し、次いで鋳鉄製の鋳型に鋳造した。
(実施例15~22、比較例13~15)
 純度99.99質量%以上のAgと、添加原料として純度99.9質量%以上のIn、Sb、Gaを用意した。黒鉛るつぼで築炉した高周波誘導溶解炉にて、まずAgを溶解し、Agが溶け落ちた後、表3に示すターゲット組成となるように添加原料を投入した。合金溶湯を誘導加熱による攪拌効果により十分に攪拌し、次いで鋳鉄製の鋳型に鋳造した。
(実施例23)
 純度99.99質量%以上のAgと、添加原料として純度99.9質量%以上のIn、Sn,Sb、Gaを用意した。黒鉛るつぼで築炉した高周波誘導溶解炉にて、まずAgを溶解し、Agが溶け落ちた後、表3に示すターゲット組成となるように添加原料を投入した。合金溶湯を誘導加熱による攪拌効果により十分に攪拌し、次いで鋳鉄製の鋳型に鋳造した。
 これら実施例14~23、比較例12~15では、鋳造後、上記実施例11~13、比較例11と同様にして、鋳造により得られたインゴットから概略寸法640×640×60(mm)のインゴットを作製した。そしてインゴットを700℃まで加熱し、次いで上記と同様に熱間圧延して、概略1200×1300×16(mm)の寸法の板材とした。
 この熱間圧延では、全部で6回のパスを繰り返した。そのうち、最終パスから3回目までのパスの条件(1パス当りのひずみ速度、圧下率、パス後の板材温度)を表2に示す通りとした。熱間圧延全体の総圧延率は73%であった。そして、表3に示す条件で冷却した。次いで、板材をローラレベラーに通して、急冷によって生じたひずみを矯正し、1000×1200×12(mm)の寸法に機械加工してターゲットとした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 得られたターゲットについて、機械加工後の反り、平均粒径、そのばらつきを測定した。また、ターゲットをスパッタ装置に取り付けてスパッタ時の異常放電回数を測定した。さらに、スパッタにより得られた導電性膜について、表面粗さ、反射率、耐塩化性、比抵抗を測定した。
(1)機械加工後の反り
 機械加工後の銀合金スパッタリングターゲットについて、長さ1m当りの反り量を測定し、表4に、この結果を示した。
(2)平均粒径、そのばらつき
 発明を実施するための形態に記載した方法により、銀合金結晶粒の粒径測定を行った。詳細には、上記のように製造したターゲットの16カ所の地点から均等に試料を採取して、各試料のスパッタ面から見た表面の平均粒径を測定した。そして各試料の平均粒径の平均値である銀合金結晶粒の平均粒径と、銀合金結晶粒の平均粒径のばらつきを計算した。
(3)スパッタ時の異常放電回数
 上記のように製造したターゲットの任意の部分から、直径:152.4mm、厚さ:6mmの円板を切り出し、銅製バッキングプレートにはんだ付けした。このはんだ付けしたターゲットを、スパッタ時のスプラッシュ評価用ターゲットとして用い、スパッタ中の異常放電回数の測定を行った。
 この場合、はんだ付けしたターゲットを通常のマグネトロンスパッタ装置に取り付け、1×10-4Paまで排気した。次いで、Arガス圧:0.5Pa、投入電力:DC1000W、ターゲット基板間距離:60mmの条件で、スパッタを行った。使用初期の30分間に生じた異常放電の回数を測定した。また4時間の空スパッタと防着板の交換とを繰り返して、断続的に20時間スパッタすることによりターゲットを消耗させた。その後に更にスパッタを行い、消耗(20時間のスパッタ)後の30分間に生じた異常放電の回数を測定した。これら異常放電の回数は、MKSインスツルメンツ社製DC電源(型番:RPDG-50A)のアークカウント機能により計測した。
(4)導電膜としての基本特性評価
(4-1)膜の表面粗さ
 前記評価用ターゲットを用いて、前記と同様の条件でスパッタを行い、20×20(mm)のガラス基板上に100nmの膜厚を有する銀合金膜を成膜した。さらに、耐熱性の評価のため、この銀合金膜に対して250℃、10分間の熱処理を施した。この後、銀合金膜の平均面粗さ(Ra)を原子間力顕微鏡によって測定した。
(4-2)反射率
 30×30(mm)のガラス基板上に前記と同様にして銀合金膜を成膜した。そして銀合金膜の波長550nmにおける絶対反射率を、分光光度計によって測定した。
 さらに、耐食性の評価のため、銀合金膜を温度80℃、湿度85%の恒温高湿槽にて100時間保持した。その後、銀合金膜の波長550nmにおける絶対反射率を、分光光度計によって測定した。
(4-3)耐塩化性
 Ga添加の効果を確認するため、Gaを添加したターゲット(実施例19~23、比較例14,15)を使用して前記と同様にして銀合金膜を成膜した。次いで、銀合金膜の膜面に5重量%のNaCl水溶液を噴霧した。噴霧は、膜面から高さ20cm、基板端からの距離10cmの位置から、膜面と平行方向に行い、膜上に噴霧されたNaCl水溶液が極力自由落下して膜に付着するようにした。1分おきに噴霧を5回繰り返し、次いで純水ですすぎ洗浄を3回繰り返した。乾燥空気を噴射して水分を吹き飛ばし乾燥した。
 上記の塩水噴霧後に銀合金膜面を目視で観察し、表面の状態を評価した。耐塩化性の評価基準としては、白濁又は斑点が確認できない又は一部のみに確認できるものを“良好”と評価した。白濁又は斑点が全面に確認できるものを“不良”と評価した。以上により、2段階で表面の状態を評価した。Gaを添加していないターゲットについては評価していないので、表中では“-”と表記した。
(4-4)膜の比抵抗
 前記と同様にして成膜した銀合金膜の比抵抗を測定した。
 これらの各評価結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例のターゲット材においては、銀合金結晶粒の平均粒径は30μm以上150μm未満の範囲内にあり、銀合金結晶粒の粒径のばらつきは銀合金結晶粒の平均粒径の20%以内であった。機械加工後の反りも小さく、スパッタ時の異常放電回数も使用初期だけでなく消耗後においても少ないものであった。特に、平均結晶粒径が120μm以下であり、かつ粒径のばらつきが20%以内の場合は、異常放電回数も実施例6の消耗後で2回となっている他は、すべて1回以下と少なくなっている。また、Sb、Gaを添加したターゲットは、平均結晶粒径が小さくなる傾向にあり、異常放電回数も1回以下と少ないものであった。ただし、Sb、Gaの添加量が多過ぎる(合計で2.5質量%を超える)ターゲットは、機械加工時に割れが発生した。
 また、実施例のターゲット材により得た導電性膜は、反射率、比抵抗に優れており、表面粗さもRaが2μm以下と小さいものであった。
 また、Gaを添加したターゲットから得られた導電性膜は、耐塩化性にも優れており、タッチパネル等の導電性膜に有効であることがわかる。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の要件を逸脱しない範囲において種々の変更を加えることが可能である。
 本実施形態のターゲットをスパッタする際には、アーク放電およびスプラッシュの発生が抑制される。また、本実施形態のターゲットをスパッタすることによって得られる導電性膜は、反射率、比抵抗に優れており、表面粗さも小さい。このため、本実施形態のターゲットは、有機EL素子の反射電極層やタッチパネルの配線膜などの導電性膜を形成するためのターゲットとして好適に適用できる。
 

Claims (9)

  1.  Inを0.1~1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有し、
     合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下であることを特徴とする導電性膜形成用銀合金スパッタリングターゲット。
  2.  InおよびSnを合計で0.1~1.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有し、
     合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下であることを特徴とする導電性膜形成用銀合金スパッタリングターゲット。
  3.  Inを0.1~1.5質量%含み、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有し、
     合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下であることを特徴とする導電性膜形成用銀合金スパッタリングターゲット。
  4.  InおよびSnを合計で0.1~1.5質量%含有し、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有し、
     合金の結晶粒の平均粒径が30μm以上150μm未満であり、前記結晶粒の粒径のばらつきが平均粒径の20%以下であることを特徴とする導電性膜形成用銀合金スパッタリングターゲット。
  5.  前記結晶粒の平均粒径は120μm未満であることを特徴とする請求項1~4のいずれか一項に記載の導電性膜形成用銀合金スパッタリングターゲット。
  6.  Inを0.1~1.5質量%含み、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造し、
     前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、
     前記冷却工程では、200~1000℃/minの冷却速度にて急冷することを特徴とする導電性膜形成用銀合金スパッタリングターゲットの製造方法。
  7.  InおよびSnを合計で0.1~1.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造し、
     前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、
     前記冷却工程では、200~1000℃/minの冷却速度にて急冷することを特徴とする導電性膜形成用銀合金スパッタリングターゲットの製造方法。
  8.  Inを0.1~1.5質量%含み、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造し、
     前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、
     前記冷却工程では、200~1000℃/minの冷却速度にて急冷することを特徴とする導電性膜形成用銀合金スパッタリングターゲットの製造方法。
  9.  InおよびSnを合計で0.1~1.5質量%含有し、さらに、Sb、Gaのうちいずれか一方又は両方を合計で0.1~2.5質量%含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットに、熱間圧延工程、冷却工程、機械加工工程をこの順に施すことにより、銀合金スパッタリングターゲットを製造し、
     前記熱間圧延工程では、1パス当りの圧下率が20~50%、ひずみ速度が3~15/sec、及びパス後の温度が400~650℃の条件で1パス以上の仕上げ熱間圧延を行い、
     前記冷却工程では、200~1000℃/minの冷却速度にて急冷することを特徴とする導電性膜形成用銀合金スパッタリングターゲットの製造方法。
PCT/JP2012/061865 2012-01-10 2012-05-09 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法 WO2013105284A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201403319RA SG11201403319RA (en) 2012-01-10 2012-05-09 Silver-alloy sputtering target for conductive-film formation, and method for producing same
KR1020137004502A KR101342331B1 (ko) 2012-01-10 2012-05-09 도전성 막 형성용 은 합금 스퍼터링 타깃 및 그 제조 방법
EP12864833.4A EP2803754B1 (en) 2012-01-10 2012-05-09 Silver-alloy sputtering target for conductive-film formation, and method for producing same
CN201280003192.0A CN103298970B (zh) 2012-01-10 2012-05-09 导电性膜形成用银合金溅射靶及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-002072 2012-01-10
JP2012002072A JP5159962B1 (ja) 2012-01-10 2012-01-10 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2013105284A1 true WO2013105284A1 (ja) 2013-07-18

Family

ID=48013557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061865 WO2013105284A1 (ja) 2012-01-10 2012-05-09 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法

Country Status (7)

Country Link
EP (1) EP2803754B1 (ja)
JP (1) JP5159962B1 (ja)
KR (1) KR101342331B1 (ja)
CN (1) CN103298970B (ja)
SG (1) SG11201403319RA (ja)
TW (1) TWI429762B (ja)
WO (1) WO2013105284A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974707B2 (en) 2012-04-04 2015-03-10 Heraeus Deutschland GmbH & Co. KG Planar or tubular sputtering target and method for the production thereof
CN105378140A (zh) * 2013-07-19 2016-03-02 三菱综合材料株式会社 Ag合金溅射靶
JP2016089215A (ja) * 2014-11-04 2016-05-23 三菱マテリアル株式会社 Ag合金スパッタリングターゲット
EP2937444B1 (en) 2012-12-21 2017-08-16 Mitsubishi Materials Corporation Ag-in alloy sputtering target
CN114574822A (zh) * 2022-03-02 2022-06-03 基迈克材料科技(苏州)有限公司 一种银合金靶材制备工艺及应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720816B2 (ja) * 2011-06-24 2015-05-20 三菱マテリアル株式会社 導電性膜
JP5590258B2 (ja) * 2013-01-23 2014-09-17 三菱マテリアル株式会社 Ag合金膜形成用スパッタリングターゲットおよびAg合金膜、Ag合金反射膜、Ag合金導電膜、Ag合金半透過膜
JP2015079739A (ja) * 2013-09-13 2015-04-23 三菱マテリアル株式会社 有機el用反射電極膜、積層反射電極膜、及び、反射電極膜形成用スパッタリングターゲット
CN105316630B (zh) * 2014-06-04 2020-06-19 光洋应用材料科技股份有限公司 银合金靶材、其制造方法及应用该靶材的有机发光二极管
JP6375829B2 (ja) * 2014-09-25 2018-08-22 三菱マテリアル株式会社 Ag合金スパッタリングターゲット
JP6398594B2 (ja) * 2014-10-20 2018-10-03 三菱マテリアル株式会社 スパッタリングターゲット
CN106893989B (zh) * 2016-12-29 2019-10-01 昆山全亚冠环保科技有限公司 一种银钛合金靶材防开裂轧制工艺
US11939653B2 (en) * 2018-11-30 2024-03-26 Tanaka Kikinzoku Kogyo K.K. Electrically-conductive material having excellent wear resistance and heat resistance
WO2022038795A1 (ja) * 2020-08-17 2022-02-24 松田産業株式会社 貴金属スパッタリングターゲット
CN113088749A (zh) * 2021-03-11 2021-07-09 先导薄膜材料(广东)有限公司 一种银合金及其制备方法
CN113913761B (zh) * 2021-10-11 2022-08-12 芜湖映日科技股份有限公司 一种Ag基合金靶材及其制备方法
CN114395749B (zh) * 2021-11-13 2023-06-02 丰联科光电(洛阳)股份有限公司 一种大尺寸、多元Ag基合金溅射靶材的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077317A1 (fr) 2001-03-16 2002-10-03 Ishifuku Metal Industry Co., Ltd. Materiau de cible de pulverisation
JP2004002929A (ja) * 2001-08-03 2004-01-08 Furuya Kinzoku:Kk 銀合金、スパッタリングターゲット、反射型lcd用反射板、反射配線電極、薄膜、その製造方法、光学記録媒体、電磁波遮蔽体、電子部品用金属材料、配線材料、電子部品、電子機器、金属膜の加工方法、電子光学部品、積層体及び建材ガラス
JP2005036291A (ja) * 2003-07-16 2005-02-10 Kobe Steel Ltd Ag系スパッタリングターゲット及びその製造方法
JP2005314717A (ja) * 2004-04-27 2005-11-10 Hitachi Metals Ltd Ag合金スパッタリングターゲット材およびAg合金膜
JP2006054032A (ja) * 2004-07-15 2006-02-23 Kobe Steel Ltd 光情報記録用Ag合金反射膜、光情報記録媒体および光情報記録用Ag合金反射膜の形成用のAg合金スパッタリングターゲット
JP2011100719A (ja) 2009-10-06 2011-05-19 Mitsubishi Materials Corp 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法
WO2011078188A1 (ja) * 2009-12-22 2011-06-30 三菱伸銅株式会社 純銅板の製造方法及び純銅板
JP2011162876A (ja) 2010-01-12 2011-08-25 Mitsubishi Materials Corp 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030052000A1 (en) * 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
US6569270B2 (en) 1997-07-11 2003-05-27 Honeywell International Inc. Process for producing a metal article
JP3982793B2 (ja) 2001-09-14 2007-09-26 日立金属株式会社 表示装置用Ag合金反射膜
KR100568392B1 (ko) * 2002-06-24 2006-04-05 가부시키가이샤 코베루코 카겐 은 합금 스퍼터링 타겟 및 그의 제조 방법
JP4305809B2 (ja) 2002-07-10 2009-07-29 日立金属株式会社 Ag合金系スパッタリングターゲット材
JP2004192702A (ja) * 2002-12-10 2004-07-08 Tanaka Kikinzoku Kogyo Kk 光記録媒体の反射膜用の銀合金
JP3993530B2 (ja) * 2003-05-16 2007-10-17 株式会社神戸製鋼所 Ag−Bi系合金スパッタリングターゲットおよびその製造方法
DE10327336A1 (de) 2003-06-16 2005-01-27 W. C. Heraeus Gmbh & Co. Kg Legierung und deren Verwendung
US7413618B2 (en) * 2003-12-10 2008-08-19 Tanaka Kikinzoku Kogyo K.K. Silver alloy for reflective film
DE102009015638A1 (de) * 2009-03-24 2010-09-30 Wieland Dental + Technik Gmbh & Co. Kg Rohrförmiges Sputtertarget und Verfahren zu seiner Herstellung
JP5472353B2 (ja) * 2012-03-27 2014-04-16 三菱マテリアル株式会社 銀系円筒ターゲット及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077317A1 (fr) 2001-03-16 2002-10-03 Ishifuku Metal Industry Co., Ltd. Materiau de cible de pulverisation
JP2004002929A (ja) * 2001-08-03 2004-01-08 Furuya Kinzoku:Kk 銀合金、スパッタリングターゲット、反射型lcd用反射板、反射配線電極、薄膜、その製造方法、光学記録媒体、電磁波遮蔽体、電子部品用金属材料、配線材料、電子部品、電子機器、金属膜の加工方法、電子光学部品、積層体及び建材ガラス
JP2005036291A (ja) * 2003-07-16 2005-02-10 Kobe Steel Ltd Ag系スパッタリングターゲット及びその製造方法
JP2005314717A (ja) * 2004-04-27 2005-11-10 Hitachi Metals Ltd Ag合金スパッタリングターゲット材およびAg合金膜
JP2006054032A (ja) * 2004-07-15 2006-02-23 Kobe Steel Ltd 光情報記録用Ag合金反射膜、光情報記録媒体および光情報記録用Ag合金反射膜の形成用のAg合金スパッタリングターゲット
JP2011100719A (ja) 2009-10-06 2011-05-19 Mitsubishi Materials Corp 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法
WO2011078188A1 (ja) * 2009-12-22 2011-06-30 三菱伸銅株式会社 純銅板の製造方法及び純銅板
JP2011162876A (ja) 2010-01-12 2011-08-25 Mitsubishi Materials Corp 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2803754A1

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974707B2 (en) 2012-04-04 2015-03-10 Heraeus Deutschland GmbH & Co. KG Planar or tubular sputtering target and method for the production thereof
EP2937444B1 (en) 2012-12-21 2017-08-16 Mitsubishi Materials Corporation Ag-in alloy sputtering target
CN105378140A (zh) * 2013-07-19 2016-03-02 三菱综合材料株式会社 Ag合金溅射靶
JP2016089215A (ja) * 2014-11-04 2016-05-23 三菱マテリアル株式会社 Ag合金スパッタリングターゲット
CN114574822A (zh) * 2022-03-02 2022-06-03 基迈克材料科技(苏州)有限公司 一种银合金靶材制备工艺及应用
CN114574822B (zh) * 2022-03-02 2024-01-30 基迈克材料科技(苏州)有限公司 一种银合金靶材制备工艺及应用

Also Published As

Publication number Publication date
EP2803754A4 (en) 2015-11-11
JP5159962B1 (ja) 2013-03-13
KR101342331B1 (ko) 2013-12-16
EP2803754B1 (en) 2017-03-08
EP2803754A1 (en) 2014-11-19
JP2013142163A (ja) 2013-07-22
CN103298970B (zh) 2015-04-15
CN103298970A (zh) 2013-09-11
SG11201403319RA (en) 2014-09-26
KR20130091337A (ko) 2013-08-16
TWI429762B (zh) 2014-03-11
TW201329257A (zh) 2013-07-16

Similar Documents

Publication Publication Date Title
JP5612147B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5159962B1 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5159963B1 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
US8821769B2 (en) Silver alloy target for forming reflection electrode film for organic EL element, and method for manufacturing the silver alloy target
WO2012137461A1 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5533545B2 (ja) 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法
JP2012162768A (ja) Al基合金スパッタリングターゲット、及びCu基合金スパッタリングターゲット
JP5669014B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5830907B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5830908B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5669015B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP2011106025A (ja) Al基合金スパッタリングターゲット
JP2016065290A (ja) Ag合金スパッタリングターゲット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137004502

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864833

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012864833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012864833

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE