WO2013099961A1 - 移動車両の移載装置、及び当該移載装置に電力を供給する移動車両 - Google Patents

移動車両の移載装置、及び当該移載装置に電力を供給する移動車両 Download PDF

Info

Publication number
WO2013099961A1
WO2013099961A1 PCT/JP2012/083682 JP2012083682W WO2013099961A1 WO 2013099961 A1 WO2013099961 A1 WO 2013099961A1 JP 2012083682 W JP2012083682 W JP 2012083682W WO 2013099961 A1 WO2013099961 A1 WO 2013099961A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
pallet
electric vehicle
coil
electric
Prior art date
Application number
PCT/JP2012/083682
Other languages
English (en)
French (fr)
Inventor
素直 新妻
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP12862471.5A priority Critical patent/EP2770137A4/en
Priority to CN201280064208.9A priority patent/CN103998701B/zh
Publication of WO2013099961A1 publication Critical patent/WO2013099961A1/ja
Priority to US14/256,520 priority patent/US9669844B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C9/00Locomotives or motor railcars characterised by the type of transmission system used; Transmission systems specially adapted for locomotives or motor railcars
    • B61C9/38Transmission systems in or for locomotives or motor railcars with electric motor propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/28Constructional details, e.g. end stops, pivoting supporting members, sliding runners adjustable to load dimensions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/02Small garages, e.g. for one or two cars
    • E04H6/06Small garages, e.g. for one or two cars with means for shifting or lifting vehicles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/22Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of movable platforms for horizontal transport, i.e. cars being permanently parked on palettes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/24Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of dollies for horizontal transport, i.e. cars being permanently parked on wheeled platforms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/30Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in horizontal direction only
    • E04H6/34Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in horizontal direction only characterised by use of movable platforms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/30Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in horizontal direction only
    • E04H6/36Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in horizontal direction only characterised by use of freely-movable dollies
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/42Devices or arrangements peculiar to garages, not covered elsewhere, e.g. securing devices, safety devices, monitoring and operating schemes; centering devices
    • E04H6/422Automatically operated car-parks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a transfer device that transfers a moving vehicle in the left-right direction or the up-down direction, and a moving vehicle suitable for the device.
  • This moving vehicle includes a rechargeable storage battery (for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery), drives a motor with electric power from the storage battery, and rotates wheels with the power of the motor. It is possible to move.
  • a rechargeable storage battery for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery
  • Typical examples of such a moving vehicle include an electric vehicle (EV: Electric vehicle) and a hybrid vehicle (HV: Hybrid vehicle).
  • EV Electric vehicle
  • HV Hybrid vehicle
  • mobile vehicles other than these automobiles include an electrically driven transport vehicle and an electric wheelchair.
  • the moving vehicle described above is easy to move in the front-rear direction (traveling direction), but it is difficult to move by itself in the left-right direction (the left-right direction intersecting the traveling direction: the lateral direction) and the up-down direction. For this reason, when it is necessary to move a moving vehicle in the left-right direction or the up-down direction, for example, when parking in a narrow space or when loading and unloading articles, a movable type that can move in the left-right direction or the up-down direction. In many cases, a moving vehicle is transferred using a pallet.
  • Patent Documents 1 to 4 below disclose techniques for moving a moving vehicle in the left-right direction or the up-down direction using such a movable pallet.
  • the present invention has been made in view of the above circumstances, and provides a transfer device that does not require laying of a cable for supplying power, is easy to maintain at low cost, and a mobile vehicle suitable for the device. For the purpose.
  • the transfer device is configured such that the moving vehicle (2) placed on the pallet (30) moves in the left-right direction intersecting the traveling direction of the moving vehicle or A transfer device (1, 3) for transferring in the vertical direction, wherein the pallet includes a power receiving coil (31) that forms an electromagnetic coupling circuit together with an external feeding coil (43), and the electromagnetic coupling circuit.
  • a power receiving circuit (32) that receives power supplied from outside without contact, and an electric motor (34) that is driven by the power received by the power receiving circuit and moves the pallet in the left-right direction or the up-down direction.
  • the transfer apparatus which concerns on the 2nd aspect of this invention is a power converter device in which the said pallet converts a part of electric power received by the said receiving circuit in the said 1st aspect ( 35) and a control device (37) that operates by the electric power converted by the power conversion device and controls the operation of the electric motor.
  • the transfer apparatus which concerns on the 3rd aspect of this invention is the said 2nd aspect.
  • the said pallet operate moves with the electric power converted by the said power converter device,
  • the said moving vehicle is made into the said left-right direction or an up-down direction
  • the transfer device according to a fourth aspect of the present invention is the transfer device according to the first aspect, wherein the external power feeding coil is provided in the moving vehicle, and the power receiving coil is provided on the pallet. Is mounted at a position where it can face the feeding coil provided in the moving vehicle.
  • a mobile vehicle according to a fifth aspect of the present invention is the mobile vehicle (2) provided with a motor that generates power for movement and a storage battery (41) that supplies electric power for driving the motor.
  • a feeding coil (43) that forms an electromagnetic coupling circuit together with the power receiving coil provided on the pallet in a state of being placed on the pallet provided in the transfer device described in the aspect of the above, and storing in the storage battery
  • a power converter (42 or 45) for converting the direct-current power thus obtained into alternating-current power to be supplied to the feeding coil.
  • a mobile vehicle according to a sixth aspect of the present invention is the mobile vehicle according to the fifth aspect, wherein the mobile vehicle placed on the pallet is transferred in the left-right direction or the vertical direction.
  • An instruction output unit (44) for outputting a mounting instruction to the outside is provided.
  • the supply destination of the AC power output from the power converter (45) is either the feeding coil or the motor.
  • a power receiving coil and a power receiving circuit for receiving power supplied from the outside in a contactless manner, and an electric motor driven by the power received by the power receiving circuit are provided on the pallet, and contactless from the outside.
  • the pallet is moved in the left-right direction or the up-down direction by driving the electric motor using the electric power supplied in step S1. For this reason, there is no need to lay a cable for supplying electric power to the electric motor, and there is an effect that it can be installed at low cost and maintenance is easy.
  • the power supply to the pallet is performed in a non-contact manner, there is an effect that the power can be stably supplied without causing a contact failure or a short circuit.
  • FIG. 1A is a plan view showing a simplified mechanical configuration of a transfer apparatus according to a first embodiment of the present invention
  • FIG. 1B is a rear view.
  • the transfer device 1 according to the present embodiment includes a rail 10, stoppers 20 a and 20 b, and a pallet 30.
  • the electric vehicle 2 is moved (transferred) along the rail 10 while receiving power from the electric vehicle 2 as a moving vehicle.
  • it is assumed that the transfer device 1 is installed in a parking lot.
  • the positional relationship of each member will be described with reference to the XYZ orthogonal coordinate system set in the drawing as necessary.
  • the origin of the XYZ orthogonal coordinate system shown in each figure is not fixed, and the position thereof is changed as appropriate for each figure.
  • the X axis is in the direction along the boarding / alighting direction of the electric vehicle 2 with respect to the transfer device 1 (front-rear direction, traveling direction), and the Y axis is along the transfer direction of the electric vehicle 2.
  • the direction (left-right direction intersecting the traveling direction) and the Z axis are set in the direction along the vertical direction.
  • the ⁇ Y direction is sometimes referred to as “left direction” or “left side”
  • the + Y direction is sometimes referred to as “right direction” or “right side”.
  • the rail 10 enables the pallet 30 to move along the Y direction while supporting the weight of the pallet 30 (when the electric vehicle 2 is placed, the weight of the electric vehicle 2 in addition to the pallet 30). It is.
  • the rail 10 has a length similar to the length of a range (movable range) in which the movement of the pallet 30 is allowed, and extends along the Y direction with a smaller interval than the length of the pallet 30 in the X direction. Are laid in parallel.
  • the stopper 20a is a columnar member provided on the left end side of the rail 10, and is installed to prevent the pallet 30 from moving to the left side of the movable range.
  • the stopper 20b is a columnar member provided on the right end side of the rail 10, and is installed to prevent the pallet 30 from moving to the right side of the movable range.
  • the pallet 30 has a strength capable of supporting the weight of the electric vehicle 2 and is a flat plate-like member having a rectangular shape in plan view and configured to be movable in the Y direction with the electric vehicle 2 placed on the upper surface thereof. is there.
  • a power receiving coil 31 that is used to receive power supplied from the electric vehicle 2 in a non-contact manner is provided at the center of the upper surface of the pallet 30.
  • a metal exists in the periphery of the power receiving coil 31, the electromagnetic field is affected by the metal, and there is a possibility that the non-contact power feeding efficiency is lowered. For this reason, it is desirable to use a material other than metal (for example, plastic or FRP (fiber reinforced plastic)) or hollow out the peripheral portion of the pallet 30 where the power receiving coil 31 is provided.
  • an electric motor 34 a drive wheel W1, and a driven wheel W2 are provided at the bottom of the pallet 30.
  • the electric motor 34 is driven by the electric power received by the power receiving coil 31, and rotates the driving wheel W1 via a speed reducer (not shown). By switching the rotation direction (forward rotation, reverse rotation) of the electric motor 34, the rotation direction of the drive wheels W1 (movement direction of the pallet 30) can be switched.
  • a three-phase induction motor, a permanent magnet type synchronous motor, or the like can be used as the electric motor 34.
  • the drive wheel W1 is a wheel for moving the pallet 30 in the Y direction by being driven by the electric motor 34 while supporting the weight of the pallet 30 and the electric vehicle 2, and 2 corresponding to each of the two rails 10.
  • the driven wheel W ⁇ b> 2 is a wheel provided to support the weight of the pallet 30 and the electric vehicle 2, and two wheels are provided corresponding to each of the two rails 10.
  • Drive wheels W1 may be provided instead of the driven wheels W2, and all four wheels may be the drive wheels W1.
  • limit switches SW1 and SW2 are provided at the right end portion and the left end portion of the pallet 30, respectively.
  • Limit switch SW1 is a switch for detecting whether or not pallet 30 has reached the left end of the movable range
  • limit switch SW2 detects whether or not pallet 30 has reached the right end of the movable range. It is a switch for.
  • the limit switch SW1 comes into contact with the stopper 20a and is turned on.
  • the limit switch SW2 is stopped. It abuts on 20b and is turned on.
  • FIG. 2 is a block diagram showing an electrical configuration of the transfer device and the moving vehicle according to the first embodiment of the present invention.
  • a pallet 30 provided in the transfer device 1 includes a power receiving coil 31, a power receiving circuit 32, an inverter 33, an electric motor 34, a DC / DC converter 35 (power conversion device), and a wireless communication device 36 (instructions).
  • An input unit) and a control device 37 are provided.
  • the power receiving coil 31 is provided at the center of the upper surface of the pallet 30 and is a coil for receiving power (AC power) supplied from the power supply coil 43 provided in the electric vehicle 2 in a non-contact manner. It is. Specifically, the power receiving coil 31 is attached to a position where the electric vehicle 2 can be directly opposed to the power feeding coil 43 of the electric vehicle 2 or a position where the electric vehicle 2 can be generally opposed in a state where the electric vehicle 2 is placed on the pallet 30.
  • the feeding coil 43 of the electric vehicle 2 is close to the power receiving coil 31 and is generally directly facing (hereinafter, these states are simply referred to as “facing”), an electromagnetic coupling circuit is formed.
  • the power feeding coil 43 and the power receiving coil 31 face each other, they are parallel or substantially parallel.
  • the above-described electromagnetic coupling circuit means a circuit in which the feeding coil 43 and the receiving coil 31 are electromagnetically coupled and non-contact power feeding from the feeding coil 43 to the receiving coil 31 is performed. Any of a circuit that performs power supply and a circuit that supplies power by the “electromagnetic resonance method” may be used. If the electromagnetic coupling circuit formed by the power feeding coil 43 and the power receiving coil 31 is a circuit that feeds power by the “electromagnetic resonance method”, the power receiving coil 31 may not be directly facing the power feeding coil 43. It is possible to perform highly efficient power transmission. For this reason, when it is difficult to make the feeding coil 43 and the receiving coil 31 face each other, it is desirable to form an electromagnetic coupling circuit that feeds power by the “electromagnetic resonance method”.
  • the power receiving circuit 32 receives electric power (AC power) supplied in a contactless manner through an electromagnetic coupling circuit formed by the power feeding coil 43 and the power receiving coil 31 of the electric vehicle 2, and converts the received power into DC power. Convert.
  • the inverter 33 drives the electric motor 34 using the DC power converted by the power receiving circuit 32 under the control of the control device 37.
  • the electric motor 34 is a motor that rotates the drive wheels W ⁇ b> 1 via a reduction gear (not shown), and generates power according to the drive of the inverter 33.
  • the DC / DC converter 35 performs power conversion of a part of the DC power out of the DC power converted by the power receiving circuit 32. Specifically, the voltage of a part of the DC power converted by the power receiving circuit 32 is converted into a voltage suitable for operating the wireless communication device 36 and the control device 37.
  • the wireless communication device 36 operates by direct current power converted by the DC / DC converter 35 and can wirelessly communicate various information with the wireless communication device 44 provided in the electric vehicle 2.
  • the wireless communication device 36 transfers, for example, transfer instruction information transmitted from the wireless communication device 44 provided in the electric vehicle 2 (the electric vehicle 2 mounted on the pallet 30 is transferred in the Y direction (transfer direction). Information indicating an instruction) is received.
  • the control device 37 operates by the direct current power converted by the DC / DC converter 35 and controls the operation of the transfer device 1. Specifically, the control device 37 controls the operation of the electric motor 34 by controlling the inverter 33 when the transfer instruction information is received by the wireless communication device 36. During such control, the control device 37 constantly monitors whether or not the limit switches SW1 and SW2 are turned on, and the pallet 30 moves to the left or right side of the movable range. To prevent.
  • the control device 37 is realized by a microcomputer (microcomputer) having a memory, for example.
  • the electric vehicle 2 includes a storage battery 41, a power supply circuit 42 (power converter), a power supply coil 43, and a wireless communication device 44 (instruction output unit), and uses the power stored in the storage battery 41 via the power supply coil 43. Power can be supplied to the outside.
  • the electric vehicle 2 is provided with the motor which generate
  • the storage battery 41 is a rechargeable battery (for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery) mounted on the electric vehicle 2 and drives a motor (not shown) provided in the electric vehicle 2.
  • the power feeding circuit 42 supplies the power from the storage battery 41 to the pallet 30 in a non-contact manner through an electromagnetic coupling circuit formed by the power feeding coil 43 and the power receiving coil 31 provided on the pallet 30.
  • the power feeding circuit 42 realizes non-contact power feeding to the pallet 30 by converting power (DC power) supplied from the storage battery 41 into AC power and supplying the power to the power feeding coil 43.
  • the power feeding coil 43 is provided at the bottom of the electric vehicle 2 and is a coil for feeding power from the storage battery 41 to the pallet 30 in a non-contact manner.
  • the wireless communication device 44 can wirelessly communicate various information with the wireless communication device 36 provided on the pallet 30. For example, the wireless communication device 44 transmits the transfer instruction information described above to the wireless communication device 36.
  • ⁇ Stopping step S1> the driver operates the electric vehicle 2 and moves the electric vehicle 2 onto the pallet 30 of the transfer device 1 by moving the electric vehicle 2 into the boarding position E of the transfer device 1 while moving the electric vehicle 2 backward.
  • the driver stops the electric vehicle 2 at a position where non-contact power supply to the pallet 30 is possible.
  • the feeding coil 43 of the electric vehicle 2 and the power receiving coil 31 of the pallet 30 face each other and an electromagnetic coupling circuit is formed.
  • a method for confirming whether or not the electric vehicle 2 is stopped at a position where non-contact power feeding to the pallet 30 for example, the following methods (1) to (3) may be mentioned.
  • (1) A method of confirming whether or not the rear wheel of the electric vehicle 2 is in contact with a vehicle stop (not shown) on the pallet 30 that is disposed in a predetermined positional relationship with respect to the power receiving coil 31.
  • (2) Whether or not the vehicle is stopped at the specified position from the image processing result of the image obtained by photographing the marker (not shown) provided at the specified position on the pallet 30 with the camera provided on the electric vehicle 2. How to check.
  • (3) A method in which the driver visually confirms the positional relationship between the power receiving coil 31 and the power feeding coil 43.
  • ⁇ Power supply start step S2> when the driver instructs the electric vehicle 2 to start power supply while the electric vehicle 2 is stopped, power supply to the pallet 30 is started. Specifically, when a power supply start instruction is issued from the driver, a control device (not shown) provided in the electric vehicle 2 operates the power supply circuit 42. Then, the electric power (DC power) stored in the storage battery 41 is supplied to the power feeding circuit 42 and converted into AC power. The converted AC power is supplied to the feeding coil 43 and supplied to the pallet 30 in a non-contact manner through an electromagnetic coupling circuit formed by the feeding coil 43 and the power receiving coil 31.
  • the AC power supplied to the pallet 30 is converted into DC power by the power receiving circuit 32, and the converted DC power is supplied to the inverter 33 and the DC / DC converter 35, respectively. Then, the DC / DC converter 35 starts operation, and direct current power is supplied from the DC / DC converter 35 to the wireless communication device 36 and the control device 37. As a result, the wireless communication device 36 and the control device 37 start operating.
  • Transfer start step S3> in a state where power is supplied from the electric vehicle 2 to the pallet 30, the driver instructs the electric vehicle 2 to transfer (the electric vehicle 2 placed on the pallet 30 is moved in the Y direction (transfer direction).
  • Transfer instruction information indicating the transfer instruction (transfer instruction information) is transmitted from the wireless communication device 44 to the wireless communication device 36 provided on the pallet 30.
  • the control device 37 provided on the pallet 30 checks the state of the limit switches SW1 and SW2, and the inverter 33 control is started. Specifically, when the limit switch SW1 is in the on state, the control device 37 controls the inverter 33 so that the electric motor 34 rotates in the forward direction (so that the pallet 30 moves to the right), and the limit switch SW1. When SW2 is in the ON state, the inverter 33 is controlled so that the electric motor 34 rotates in the reverse direction (so that the pallet 30 moves to the left).
  • ⁇ Transfer completion step S4> In a state where power is supplied from the electric vehicle 2 to the pallet 30 and the electric vehicle 2 is being transferred, the control device 37 provided on the pallet 30 changes the state of the limit switches SW1 and SW2. Control of the inverter 33 is continued while confirming. Specifically, when control is performed to rotate the electric motor 34 forward (control to move the pallet 30 to the right), the control is continued until the limit switch SW2 is turned on, and the electric motor 34 is reversed. If the control to be performed (control to move the pallet 30 to the left) is performed, the control is continued until the limit switch SW1 is turned on.
  • the control device 37 controls the inverter 33 to stop the electric motor 34. Then, the control device 37 controls the wireless communication device 36 to transmit transfer completion information (information indicating that the transfer of the electric vehicle 2 mounted on the pallet 30 is completed).
  • transfer completion information information indicating that the transfer of the electric vehicle 2 mounted on the pallet 30 is completed.
  • ⁇ Power supply stop step S5> When the transfer completion information transmitted from the wireless communication device 36 of the pallet 30 is received by the wireless communication device 44 of the electric vehicle 2, the control device (not shown) provided in the electric vehicle 2 stops the power feeding circuit 42. Let Thereby, the electric power feeding from the electric vehicle 2 to the pallet 30 is stopped. Then, the supply of direct-current power from the power receiving circuit 32 provided on the pallet 30 to the inverter 33 and the DC / DC converter 35 is also stopped. Thereby, the operation of the inverter 33, the electric motor 34, the DC / DC converter 35, the wireless communication device 36, and the control device 37 provided on the pallet 30 is stopped.
  • the power receiving coil 31 and the power receiving circuit 32 that receive the power supplied from the electric vehicle 2 in a contactless manner are provided on the pallet 30, and the electric motor 34 is driven by the power received by the pallet 30.
  • the electric vehicle 2 placed on the pallet 30 is transferred by moving the 30 along the rail 10. For this reason, it is not necessary to lay a cable for supplying electric power to the electric motor 34, it can be installed at low cost, and maintenance is easy.
  • power is supplied to the pallet 30 in a non-contact manner, it is possible to stably supply power without causing a contact failure or a short circuit.
  • FIG. 3 is a diagram showing another installation example of the transfer device according to the first embodiment of the present invention.
  • a plurality of transfer devices 1 are installed along a road on a road having a plurality of vehicle lanes R1 to R3 at intervals.
  • the transfer device 1 installed in this way realizes efficient parallel parking in the vehicle lane R1 located on the leftmost side.
  • each of the transfer devices 1 is installed so that the rail 10 crosses the road, and the pallet 30 can reciprocate between the vehicle traffic zone R1 and the vehicle traffic zone R2. ing.
  • the rail 10 be installed in a state where it is buried in the ground so as not to obstruct the passage of vehicles traveling in the vehicle traffic zones R1, R2.
  • the stoppers 20 a and 20 b are also embedded in the ground like the rail 10.
  • the pallet 30 on which the electric vehicle 2 is not placed is arranged on the vehicle lane R2 side.
  • the driver of the electric vehicle 2 traveling in the vehicle traffic zone R2 stops the electric vehicle 2 on one pallet 30 disposed on the vehicle traffic zone R2 side.
  • the pallet 30 moves along the rail 10 toward the vehicle traffic zone R1, and the electric vehicle 2 is moved to the vehicle traffic zone R1. Transfer to the side.
  • the electric vehicle 2 can be moved linearly in the left-right direction across the road, even when the driver's driving skill is low, efficient parallel parking with almost no interval between the parked electric vehicles 2 is possible. Can be realized.
  • FIG. 4 is a diagram showing a modification of the transfer device according to the first embodiment of the present invention.
  • stop positions P1 to P5 are set along the rail 10.
  • Markers M1 to M5 for specifying the stop positions corresponding to each of the stop positions P1 to P5 are arranged along the rail 10, and a sensor D1 for detecting these markers M1 to M5 is attached to the pallet 30. It has been.
  • the sensor D1 as long as the markers M1 to M5 can be detected, an optical sensor, a magnetic sensor, a mechanical sensor, or any other sensor can be used.
  • the control device 37 provided on the pallet 30 controls the inverter 33 while confirming the detection result of the sensor D1 in addition to the state of the limit switches SW1 and SW2. While the pallet 30 is moving along the rail 10, the detection result is input to the control device 37 each time the sensor D1 detects the markers M1 to M5. For this reason, for example, when the transfer instruction to the stop position P3 is made from the electric vehicle 2 placed on the pallet 30 stopped at the stop position P1, the control device 37 starts to move the pallet 30. After that, when the detection result from the sensor D1 is input twice, the inverter 33 is controlled to stop the electric motor 34. As a result, the electric vehicle 2 placed on the pallet 30 is transferred to the stop position P3.
  • FIG. 5A is a plan view showing a simplified mechanical configuration of the transfer apparatus according to the second embodiment of the present invention
  • FIG. 5B is a rear view.
  • 5A and 5B show an XYZ orthogonal coordinate system similar to the XYZ orthogonal coordinate system shown in FIGS. 1A and 1B.
  • the transfer device 1 of the first embodiment described above transfers the electric vehicle 2 placed on the pallet 30 in the Y direction (left-right direction), but the transfer device 3 of the present embodiment is The electric vehicle 2 placed on the pallet 30 is transferred in the Z direction (up and down direction).
  • the outline of the transfer device 3 of this embodiment is that four racks 11a extending in the Z direction are used instead of the two rails 10 extending in the Y direction shown in FIGS. 1A and 1B.
  • the driving pinion G1 and the driven pinion G2 are provided in place of the driving wheel W1 and the driven wheel W2 provided at the bottom of the pallet 30, respectively.
  • the arrangement of the limit switches SW1 and SW2 and the stoppers 20a and 20b is changed with the change of the configuration.
  • the four racks 11a are spur gears having an infinite radius (a plate-like member with teeth arranged in a straight line), and the weight of the pallet 30 (when the electric vehicle 2 is placed on the pallet 30) In addition, the pallet 30 can be moved along the Z direction while supporting the weight of the electric vehicle 2.
  • the four racks 11a have the same length as the range in which the movement of the pallet 30 is allowed (movable range), and each of the two racks 11a is close to the left end side and the right end side of the pallet 30.
  • Each of the columns 11 is attached to each of the columns 11 with the teeth facing the pallet 30 side.
  • the drive pinion G1 is a small-diameter circular gear that is driven by the electric motor 34 to move the pallet 30 in the Z direction while supporting the weight of the pallet 30 and the electric vehicle 2, and is disposed on the left end side of the pallet 30.
  • Two racks 11a are provided corresponding to each of the two racks 11a.
  • the driven pinion G2 is a small-diameter circular gear provided to support the weight of the pallet 30 and the electric vehicle 2, and there are two corresponding to each of the two racks 11a arranged on the right end side of the pallet 30. Is provided.
  • a drive pinion G1 may be provided instead of the driven pinion G2, and all of the four pinions may be the drive pinion G1.
  • the stopper 20a is provided on the floor surface below the pallet 30, and the stopper 20b is provided above the pallet 30 (for example, the ceiling above the pallet 30). Accordingly, the limit switch SW1 is provided on the bottom surface of the pallet 30 that can contact the stopper 20a, and the limit switch SW2 is provided on the top surface of the pallet 30 that can contact the stopper 20b.
  • a mechanism for preventing the pallet 30 from dropping may be provided. For example, a friction brake that operates with a spring or a lock device that fits a pin that fits into the hole into the hole may be provided.
  • the transfer device 3 having the above-described configuration is such that the movement direction of the pallet 30 (transfer direction of the electric vehicle 2) is changed from the Y direction to the Z direction, and the basic operation is the first embodiment described above. It is the same. That is, the stop step S1, the power supply start step S2, the transfer start step S3, the transfer completion step S4, and the power supply stop step S5 described in the first embodiment are sequentially performed. For this reason, detailed description here is omitted.
  • the power receiving coil 31 and the power receiving circuit 32 that receive the power supplied from the electric vehicle 2 in a contactless manner are provided on the pallet 30, and the electric motor 34 is driven by the power received by the pallet 30.
  • the electric vehicle 2 placed on the pallet 30 is transferred.
  • it is not necessary to lay a cable for supplying electric power to the electric motor 34 it can be installed at low cost, and maintenance is easy.
  • power is supplied to the pallet 30 in a non-contact manner, it is possible to stably supply power without causing a contact failure or a short circuit.
  • a plurality of stop positions of the pallet 30 can be provided as in the modification of the first embodiment (see FIG. 4).
  • FIG. 6 is a block diagram showing an electrical configuration of the transfer device and the moving vehicle according to the third embodiment of the present invention. In FIG. 6, as in FIG. 2, only the pallet 30 is illustrated for the transfer device 1.
  • the electric vehicle 2 according to the first embodiment described above realizes power supply to a motor (not shown) as a power source and power supply to the power feeding coil 43 using different circuits, that is, for the motor described above. Electric power is supplied using an inverter (not shown), while electric power is supplied to the power supply coil 43 using a power supply circuit 42. However, the electric vehicle 4 of this embodiment supplies electric power to the feeding coil 43 and the motor 48 (see FIG. 6) by using the inverter 45 in common.
  • the transfer device 1 according to the present embodiment is the same as that of the first embodiment.
  • the electric vehicle 4 includes an inverter 45 (power converter) instead of the power feeding circuit 42 of the electric vehicle 2 illustrated in FIG. 2, and includes a first contactor 46 and a second contactor 47. It is a configuration.
  • the inverter 45 converts electric power (DC power) supplied from the storage battery 41 into three-phase or two-phase AC power based on a gate signal input from a gate drive circuit 50 (see FIG. 7), which will be described later. 4 (when connected to the motor 48 by the first contactor 46), three-phase AC power (U-phase, V-phase, W-phase AC power) is supplied to the motor 48, while the transfer device 2 is supplied with power (when connected to the power supply coil 43 by the second contactor 47), two-phase AC power (U-phase, V-phase AC power) is supplied to the power supply coil 43. Further, the inverter 45 may convert the regenerative power generated in the motor 48 into DC power and charge the storage battery 41. That is, the inverter 45 may be a bidirectional power converter.
  • the first contactor 46 is provided between the inverter 45 and the motor 48, and switches between a connected state and a disconnected state of the inverter 45 and the motor 48 under the control of a controller 51 (see FIG. 7) described later. . Specifically, the first contactor 46 is closed to connect the inverter 45 and the motor 48 when the electric vehicle 4 is traveling, and is disconnected to disconnect the inverter 45 and the motor 48 when the electric vehicle 4 is stopped. Will be open.
  • the second contactor 47 is provided between the inverter 45 and the power feeding coil 43, and is connected to and disconnected from the inverter 45 and the power feeding coil 43 under the control of a controller 51 (see FIG. 7) described later. Switch. Specifically, the second contactor 47 is closed to connect the inverter 45 and the power feeding coil 43 when power is supplied to the transfer device 1, and when the power feeding is stopped, the inverter 45 and the power feeding coil 43 are disconnected. To open.
  • the motor 48 is mounted on the electric vehicle 4 as a power generation source that generates power for moving the electric vehicle 4, and generates power according to the drive of the inverter 45.
  • a motor such as a permanent magnet type synchronous motor or an induction motor can be used.
  • FIG. 7 is a diagram illustrating details of the control system of the electric vehicle 4 and the components controlled by the control system in the third embodiment.
  • the same components as those shown in FIG. 6 are denoted by the same reference numerals.
  • the above-described inverter 45 of the electric vehicle 4 includes three switching legs L1, L2, and L3 (two transistors connected in series, and U-phase, V-phase, and W-phase AC power).
  • a circuit comprising a diode connected in parallel to each of these two transistors) is realized by a circuit connected in parallel.
  • the inverter 45 includes a smoothing circuit including a smoothing reactor and a smoothing capacitor between the switching legs L1, L2, L3 and the storage battery 41.
  • the feeding coil 43 includes a coil 43a and two capacitors 43b as shown in FIG.
  • the capacitor 43b forms a series resonance circuit together with the coil 43a.
  • One end of the coil 43a is connected to the switching leg L1 via one capacitor 43b and the second contactor 47, and the other end of the coil 43a is connected to the inverter 45 via the other capacitor 43b and the second contactor 47.
  • the electric vehicle 4 includes a rotation angle detector 49, a gate drive circuit 50, and a controller 51 in addition to the above-described configuration.
  • the gate drive circuit 50, the controller 51, the first contactor 46, and the second contactor 47 constitute power supply destination setting means in the present embodiment.
  • the rotation detector 49 is a sensor that detects the rotation of the motor 48, and outputs a detection signal to the controller 51.
  • the rotation detector 49 uses an encoder to detect a rotation angle when the motor 48 rotates, and a pulse signal (detection signal) that has a predetermined number of pulses (for example, 65536 pulses) for each rotation of the rotor of the motor 48. Is output to the controller 51.
  • the gate drive circuit 50 is provided between the inverter 45 and the controller 51, converts the voltage of the gate signal input from the controller 51, and outputs it to the inverter 45. Further, the gate drive circuit 50 is provided between the inverter 45 and the controller 51, thereby also serving to insulate the inverter 45 from the controller 51.
  • the controller 51 includes a microcontroller and controls the inverter 45, the first contactor 46, the second contactor 47, and the like based on a stored control program. For example, the controller 51 controls the first contactor 46 to connect the inverter 45 and the motor 48 when a driving instruction is input by a driver's operation from an operating device (not shown), while not shown. When a power supply start instruction is input from the operating device by the driver's operation, the second contactor 47 is controlled to bring the inverter 45 and the power supply coil 43 into a connected state.
  • the controller 51 includes three functional components corresponding to the operation of the microcontroller for controlling the inverter 45, that is, a motor control unit 51a, a non-contact power supply control unit 51b, and a gate signal selection unit 51c. ing.
  • a driving instruction is input by a driver's operation from an operating device (not shown)
  • the motor control unit 51a monitors the detection result by the rotation detector 49 and rotates the motor 48 in the inverter 45.
  • phase AC power U phase, V phase, W phase AC power
  • a gate signal corresponding to the U phase, V phase, and W phase AC power is generated and output to the gate signal selection unit 51c.
  • the non-contact power supply control unit 51b is configured to supply two-phase AC power (U-phase, V-phase AC power to be supplied to the power supply coil 43 in the inverter 45 when a power supply start instruction is input from the operation device by a driver's operation. ) Is generated, a gate signal corresponding to the U-phase and V-phase AC power is generated and output to the gate signal selector 51c. At this time, the non-contact power supply control unit 51b does not generate a gate signal corresponding to the W-phase AC power, and turns off the transistor of the switching leg L3 of the inverter 45.
  • the non-contact power supply control unit 51b is configured so that the driver instructs the electric vehicle 4 to transfer the electric vehicle 4 (electric vehicle 4 placed on the pallet 30) while the electric vehicle 4 is supplying power to the pallet 30. (Transfer instruction) is transmitted to the wireless communication device 44 toward the pallet 30 (information indicating transfer instruction). Further, when the wireless communication device 44 receives the transfer completion information transmitted from the pallet 30, the non-contact power supply control unit 51 b is necessary for generating two-phase AC power to be supplied to the power supply coil 43 in the inverter 45. The generation of the correct gate signal is stopped.
  • the gate signal selection unit 51 c selects one of the gate signals input from the motor control unit 51 a and the non-contact power supply control unit 51 b and outputs the selected gate signal to the gate drive circuit 50. That is, the gate signal selection unit 51c outputs only the gate signal from the motor control unit 51a to the gate drive circuit 50 when the driving instruction is input by the driver's operation from the operation device, and the driver from the operation device. When a power supply start instruction is input by the operation of, only the gate signal from the non-contact power supply control unit 51b is output to the gate drive circuit 50.
  • the receiving coil 31 in the transfer apparatus 1 is provided with the coil 31a and the capacitor
  • the capacitor 31 b is connected in parallel between the coil 31 a and the power receiving circuit 32.
  • FIG. 8 and 9 are diagrams for explaining the operation in the third embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the operation at the time of traveling of the electric vehicle 4
  • FIG. 9 is a diagram for explaining the operation at the time of power feeding to the transfer device 1.
  • each operation will be described in order.
  • the gate signal selection unit 51 c selects only the gate signal input from the motor control unit 51 a and outputs it to the gate drive circuit 50.
  • the gate driving circuit 50 converts the voltage of the gate signal input from the gate signal selection unit 51 c and outputs it to the inverter 45.
  • the inverter 45 generates three-phase AC power (U-phase, V-phase, W-phase AC power) from the power (DC power) stored in the storage battery 41 based on the gate signal input from the gate drive circuit 50,
  • the motor 48 is supplied.
  • the electric vehicle 4 starts traveling when electric power is supplied from the inverter 45 to the motor 48 and the motor 48 is driven.
  • ⁇ Operation at the time of feeding power to the transfer device 1> The operations of the transfer device 1 and the electric vehicle 4 are roughly divided into the following five steps (stop step S11, power supply start step S12, transfer start step S13, transfer completion step S14, power supply stop step S15). Hereinafter, the operation of each of these steps will be described in order.
  • ⁇ Stopping step S11> First, the driver operates the electric vehicle 4 and moves the electric vehicle 4 onto the pallet 30 of the transfer device 1 by moving the electric vehicle 4 into the boarding / exiting position E of the transfer device 1 while moving the electric vehicle 4 backward. When the electric vehicle 4 is placed on the pallet 30, the driver stops the electric vehicle 4 at a position where non-contact power supply to the pallet 30 is possible. In addition, about the confirmation method whether the electric vehicle 4 is stopped in the position which can be contactlessly supplied with respect to the pallet 30, it is the same as that of 1st Embodiment.
  • the inverter 33, the electric motor 34, the DC / DC converter 35, the wireless communication device 36, and the control device 37 provided on the pallet 30 are not operating.
  • ⁇ Power supply start step S12> when the driver gives a power supply start instruction to the electric vehicle 4 while the electric vehicle 4 is stopped, power supply to the transfer device 1 is started. Specifically, when an instruction to start power supply is given from the driver, the controller 51 opens the first contactor 46 to disconnect the motor 48 and the inverter 45, and switches the second contactor 47. The power feeding coil 43 and the inverter 45 are connected to each other in the closed state. And the non-contact electric power feeding control part 51b of the controller 51 produces
  • the gate signal selection unit 51 c selects only the gate signal input from the non-contact power supply control unit 51 b and outputs it to the gate drive circuit 50.
  • the gate driving circuit 50 converts the voltage of the gate signal input from the gate signal selection unit 51 c and outputs it to the inverter 45.
  • the inverter 45 generates two-phase AC power (U-phase, V-phase AC power) from the power (DC power) stored in the storage battery 41 based on the gate signal input from the gate drive circuit 50, and supplies it to the feeding coil 43. Supply.
  • AC power is supplied to the pallet 30 in a non-contact manner via an electromagnetic coupling circuit formed by the power feeding coil 43 and the power receiving coil 31.
  • the AC power supplied to the pallet 30 is converted into DC power by the power receiving circuit 32, and the converted DC power is supplied to the inverter 33 and the DC / DC converter 35, respectively. Then, the DC / DC converter 35 starts operation, and direct current power is supplied from the DC / DC converter 35 to the wireless communication device 36 and the control device 37. As a result, the wireless communication device 36 and the control device 37 start operating.
  • the non-contact power supply control unit 51b is configured so that the driver instructs the electric vehicle 4 to transfer the electric vehicle 4 while the electric vehicle 4 is supplying power to the pallet 30 (the electric vehicle 4 mounted on the pallet 30).
  • the instruction transfer instruction information
  • information indicating the transfer instruction transfer instruction information
  • the control device 37 provided on the pallet 30 confirms the state of the limit switches SW1 and SW2 and the inverter. 33 control is started. Specifically, when the limit switch SW1 is in the on state, the control device 37 controls the inverter 33 so that the electric motor 34 rotates in the forward direction (so that the pallet 30 moves to the right), and the limit switch SW1. When SW2 is in the ON state, the inverter 33 is controlled so that the electric motor 34 rotates in the reverse direction (so that the pallet 30 moves to the left).
  • ⁇ Transfer completion step S14> In a state where power is supplied from the electric vehicle 4 to the pallet 30 and the electric vehicle 4 is being transferred, the control device 37 provided on the pallet 30 changes the state of the limit switches SW1 and SW2. Control of the inverter 33 is continued while confirming. Specifically, when control is performed to rotate the electric motor 34 forward (control to move the pallet 30 to the right), the control is continued until the limit switch SW2 is turned on, and the electric motor 34 is reversed. If the control to be performed (control to move the pallet 30 to the left) is performed, the control is continued until the limit switch SW1 is turned on.
  • the control device 37 controls the inverter 33 to stop the electric motor 34. Then, the control device 37 controls the wireless communication device 36 to transmit transfer completion information (information indicating that the transfer of the electric vehicle 4 mounted on the pallet 30 has been completed).
  • transfer completion information information indicating that the transfer of the electric vehicle 4 mounted on the pallet 30 has been completed.
  • ⁇ Power supply stop step S15> In the electric vehicle 4, when the wireless communication device 44 receives the transfer completion information transmitted from the wireless communication device 36 of the pallet 30, the non-contact power supply control unit 51 b has two phases for supplying the power supply coil 43 with the inverter 45. Generation of the gate signal necessary for generating AC power (U-phase, V-phase AC power) is stopped. Thereby, the electric power feeding from the electric vehicle 4 to the pallet 30 is stopped. Then, the supply of direct-current power from the power receiving circuit 32 provided on the pallet 30 to the inverter 33 and the DC / DC converter 35 is also stopped. Thereby, the operation of the inverter 33, the electric motor 34, the DC / DC converter 35, the wireless communication device 36, and the control device 37 provided on the pallet 30 is stopped.
  • the power receiving coil 31 and the power receiving circuit 32 that receive the power supplied from the electric vehicle 4 in a contactless manner are provided on the pallet 30, and the electric motor 34 is driven by the power received by the pallet 30.
  • the electric vehicle 4 placed on the pallet 30 is transferred by moving the 30 along the rail 10. For this reason, it is not necessary to lay a cable for supplying electric power to the electric motor 34, it can be installed at low cost, and maintenance is easy.
  • power is supplied to the pallet 30 in a non-contact manner, it is possible to stably supply power without causing a contact failure or a short circuit.
  • the inverter 45 is shared and electric power is supplied to the motor 48 and the power feeding coil 43, the manufacturing cost of the electric vehicle 4 can be suppressed.
  • the transfer apparatus 1 which concerns on 3rd Embodiment demonstrated above can be installed in places other than a parking lot as shown in FIG. 3 similarly to 1st Embodiment, and the deformation
  • the transfer apparatus and the moving vehicle by embodiment of this invention were demonstrated, this invention is not restrict
  • the pallet 30 is moved by a combination of the rail 10 and the wheels (the driving wheel W1 and the driven wheel W2).
  • the second embodiment and The pallet 30 may be moved by a combination of a similar rack and pinion.
  • the power receiving coil 31 is provided on the top surface of the pallet 30 and the power feeding coil 43 is provided at the bottom of the electric vehicles 2 and 4. If the non-contact electric power feeding to the receiving coil 31 is possible, arrangement
  • FIG. 10 is a diagram illustrating another arrangement example of the feeding coil and the receiving coil.
  • the electric vehicle 2 gets on and off only from one of the front side and the rear side of the pallet 30, as shown in FIG. You may install in the state inclined with respect to or perpendicular
  • the power receiving coil 31 is provided at the center of the pallet 30.
  • the power receiving coil 43 provided at the bottom of the electric vehicles 2 and 4 can be directly opposed to the power feeding coil 43. It may not be the central part.
  • the power receiving coil 31 may be installed at a position where the X coordinate is larger than that of the upper surface of the pallet 30 in FIG. 1A, and the power feeding coil 43 may be provided behind the bottom of the electric vehicle.
  • the power receiving coil 31 may be installed at a position where the X coordinate is smaller than that of the upper surface of the pallet 30 in FIG.
  • the driver operates the electric vehicles 2 and 4 in the stop steps S1 and S11 to move the electric vehicles 2 and 4 onto the pallet 30 and stop the vehicle.
  • the driver In the power supply start steps S2 and S12, the driver In this example, the electric vehicle 2 and 4 are instructed to start feeding, and in the transfer start steps S3 and S13, the driver instructs the electric vehicles 2 and 4 to transfer.
  • these stopping steps S1, S11 to transfer start steps S3, S13 are automated so that the electric vehicle 2 is automatically operated even if the driver does not drive the electric vehicles 2, 4 or give instructions to the electric vehicles 2, 4. , 4 may be transferred by the transfer devices 1 and 3.
  • a small-capacity power source for driving the power reception circuit 32 provided in the pallet 30 shown in FIG. 2 (or FIG. 6) and the control circuit provided in the DC / DC converter 35 may be provided in advance.
  • a power generation device that generates power using natural energy such as sunlight or air volume may be used, or a small storage battery may be used.
  • a small storage battery it is desirable to charge using the electric power supplied from the electric vehicle 2.
  • the case where one moving vehicle is mounted on the pallet has been described as an example. However, when a plurality of moving vehicles are mounted on the pallet, the pallet driving power is complemented and installed. Space reduction can be ensured.
  • charging power of a certain electric vehicle can be supplied from stored power of another electric vehicle through a power receiving circuit.
  • the potential energy is converted into rotational motion using a rack and pinion mechanism, so that the drive motor 34 is used as a regenerative generator when the pallet is lowered, so that power is finally supplied to the moving vehicle. It can also be a source.
  • the moving vehicle is an electric vehicle on which the storage battery 41 is mounted has been described as an example.
  • the present invention can also be applied to a plug-in hybrid vehicle. It can also be applied to wheelchairs.
  • the present invention can be applied to an unmanned mobile vehicle.
  • a power receiving coil and a power receiving circuit for receiving power supplied from the outside in a contactless manner, and an electric motor driven by the power received by the power receiving circuit are provided on the pallet, and contactless from the outside.
  • the pallet is moved in the left-right direction or the up-down direction by driving an electric motor that uses the power supplied in step S2.
  • it is not necessary to lay a cable for supplying electric power to the electric motor, it can be installed at a low cost, and maintenance is easy.
  • the power supply to the pallet is performed in a non-contact manner, the power can be stably supplied without causing a contact failure or a short circuit.

Abstract

移載装置(1)は、パレット(30)に載置された電気自動車(2)を、電気自動車(2)の進行方向に交差する左右方向又は上下方向に移載するものであり、パレット(30)には、電気自動車(2)の給電コイル(43)とともに電磁気結合回路を形成する受電コイル(31)と、電磁気結合回路を介して外部から非接触で供給される電力を受電する受電回路(32)と、受電回路(32)で受電された電力によって駆動され、パレット(30)を左右方向又は上下方向に移動させる電動モータ(34)とが設けられている。

Description

[規則37.2に基づきISAが決定した発明の名称] 移動車両の移載装置、及び当該移載装置に電力を供給する移動車両
本発明は、移動車両を左右方向又は上下方向に移載する移載装置、及び当該装置に適した移動車両に関する。
本願は、2011年12月27日に、日本に出願された特願2011-285200号に基づき優先権を主張し、それらの内容をここに援用する。
近年、低炭素社会を実現すべく、モータの動力によって移動可能な移動車両が多くなっている。この移動車両は、再充電が可能な蓄電池(例えば、リチウムイオン電池やニッケル水素電池等の二次電池)を備えており、蓄電池からの電力によってモータを駆動し、モータの動力によって車輪を回転させることにより移動可能である。このような移動車両の代表的なものとしては、電気自動車(EV:Electric Vehicle)やハイブリッド自動車(HV:Hybrid Vehicle)が挙げられる。また、これら自動車以外の移動車両としては、電気駆動搬送車や電動車椅子等が挙げられる。
上記の移動車両は、前後方向(進行方向)への移動は容易であるが、それ自身で左右方向(進行方向に交差する左右方向:横方向)や上下方向に移動するのは困難である。このため、例えば狭隘空間に駐車する場合や物品の積み下ろしを行う場合のように、移動車両を左右方向や上下方向に移動させる必要がある場合には、左右方向或いは上下方向に移動可能な可動式のパレットを用いて移動車両を移載させることが多い。以下の特許文献1~4には、このような可動式のパレットを用いて移動車両を左右方向又は上下方向に移載する技術が開示されている。
日本国特開2001-30979号公報 日本国特開平5-239947号公報 日本国特開平5-256038号公報 日本国実開平2-130961号公報
ところで、上述した可動式のパレットは、電動モータの動力によって駆動され、或いは電動モータを動力源とする油圧によって駆動されるものが殆どである。このため、可動式のパレットが設置されている場所においては、電源に接続されたケーブルを、電動モータの設置場所まで敷設する必要がある。また、パレットを駆動するための電動モータがパレットに内蔵されている場合には、例えば上記特許文献3に開示されている通り、パレットの移動を妨げず、且つパレットの移動によってケーブルに損傷が生じないように、ケーブルを可動式にする必要がある。
ケーブルの敷設は、作業工数が多くなるとともにコストの増大を招いてしまう。このため、仮設の駐車場を設置する場合や、作業期間が限定される建設現場における積み下ろし施設を設置する場合等においては、特にケーブルの敷設に要する工数及びコストの増大が問題になる。また、上述した特許文献3に開示された通り、ケーブルを可動式にする場合には、ケーブルが痛みやすく保守の手間が増大するという問題がある。
本発明は、上記事情に鑑みてなされたものであり、電力供給のためのケーブルを敷設する必要が無く、低コストで保守が容易な移載装置、及び当該装置に適した移動車両を提供することを目的とする。
上記課題を解決するために、本発明の第1の態様に係る移載装置は、パレット(30)に載置された移動車両(2)を、該移動車両の進行方向に交差する左右方向又は上下方向に移載する移載装置(1、3)であって、前記パレットは、外部の給電コイル(43)とともに電磁気結合回路を形成する受電コイル(31)と、前記電磁気結合回路を介して外部から非接触で供給される電力を受電する受電回路(32)と、前記受電回路で受電された電力によって駆動され、前記パレットを前記左右方向又は上下方向に移動させる電動モータ(34)とを備える。
 また、本発明の第2の態様に係る移載装置は、上記第1の態様において、前記パレットが、前記受電回路で受電された電力のうちの一部の電力の変換を行う電力変換装置(35)と、前記電力変換装置で変換された電力によって動作し、前記電動モータの動作を制御する制御装置(37)とを備える。
 また、本発明の第3の態様に係る移載装置は、上記第2の態様において、前記パレットが、前記電力変換装置で変換された電力によって動作し、前記移動車両を前記左右方向又は上下方向に移載させる旨を示す外部からの移載指示が入力される指示入力部(36)を備えており、前記制御装置が、前記指示入力部に入力された前記移載指示に基づいて前記電動モータを制御することを特徴としている。
 また、本発明の第4の態様に係る移載装置は、上記第1の態様において、前記外部の給電コイルが、前記移動車両に設けられており、前記受電コイルが、前記パレットに前記移動車両が載置されている状態で、前記移動車両に設けられた給電コイルに正対可能な位置に取り付けられている。
 本発明の第5の態様に係る移動車両は、移動のための動力を発生するモータと、該モータを駆動する電力を供給する蓄電池(41)とを備える移動車両(2)において、上記第1の態様に記載された移載装置に設けられた前記パレットに載置された状態で、前記パレットに設けられた前記受電コイルとともに電磁気結合回路を形成する給電コイル(43)と、前記蓄電池に蓄えられた直流電力を交流電力に変換して前記給電コイルに供給する電力変換器(42あるいは45)とを備える。
 また、本発明の第6の態様に係る移動車両は、上記第5の態様において、前記パレットに載置された状態の前記移動車両を、前記左右方向又は上下方向に移載させる旨を示す移載指示を外部に出力する指示出力部(44)を備える。
また、本発明の第7態様に係る移動車両は、上記第5または第6の態様において、前記電力変換器(45)から出力される交流電力の供給先を前記給電コイルあるいは前記モータの何れかに設定する電力供給先設定手段(46、47、50及び51)とを備える。
本発明によれば、外部から供給される電力を非接触で受電するための受電コイル及び受電回路と、受電回路で受電された電力によって駆動されて電動モータとをパレットに設け、外部から非接触で供給される電力を用いて電動モータを駆動してパレットを左右方向又は上下方向に移動させている。このため、電動モータに電力を供給するためのケーブルを敷設する必要が無く、低コストで設置することが可能であるとともに、保守が容易であるという効果がある。また、パレットに対する給電が非接触で行われるため、接触不良やショート等が生ずることなく安定して電力を給電することができるという効果がある。
本発明の第1実施形態による移載装置の機械構成を簡略化した図である。 本発明の第1実施形態による移載装置の機械構成を簡略化した図である。 本発明の第1実施形態による移載装置及び移動車両の電気構成を示すブロック図である。 本発明の第1実施形態による移載装置の他の設置例を示す図である。 本発明の第1実施形態による移載装置の変形例を示す図である。 本発明の第2実施形態による移載装置の機械構成を簡略化した図である。 本発明の第2実施形態による移載装置の機械構成を簡略化した図である。 本発明の第3実施形態による移載装置及び移動車両の電気構成を示すブロック図である。 本発明の第3実施形態の制御系統及び該制御系統によって制御される構成要素の詳細を示す図である。 本発明の第3実施形態における動作を説明するための図である。 本発明の第3実施形態における動作を説明するための図である。 給電コイル及び受電コイルの他の配置例を示す図である。
以下、図面を参照して本発明の実施形態による移載装置及び移動車両について詳細に説明する。尚、以下では、移動車両が動力発生源としてモータのみを用いる電気自動車である場合を例に挙げて説明する。
〔第1実施形態〕
図1Aは、本発明の第1実施形態による移載装置の機械構成を簡略化した平面図であり、図1Bは背面図である。図1A及び図1Bに示す通り、本実施形態の移載装置1は、レール10、ストッパー20a,20b、及びパレット30を備えており、乗降位置Eから進入してきてパレット30上に載置された移動車両としての電気自動車2からの給電を受けつつ、電気自動車2をレール10に沿って移動させる(移載する)。尚、本実施形態では、駐車場に移載装置1が設置されているものとする。
尚、以下の説明においては、図中に設定したXYZ直交座標系を必要に応じて参照しつつ各部材の位置関係について説明する。但し、説明の便宜のため、各図に示すXYZ直交座標系の原点は固定せずに、図毎にその位置を適宜変更するものとする。図1A及び図1Bに示すXYZ直交座標系は、X軸が移載装置1に対する電気自動車2の乗降方向に沿う方向(前後方向、進行方向)、Y軸が電気自動車2の移載方向に沿う方向(進行方向に交差する左右方向)、Z軸が鉛直方向に沿う方向にそれぞれ設定されている。尚、以下では、便宜的に-Y方向を「左方向」或いは「左側」といい、+Y方向を「右方向」或いは「右側」ということもある。
レール10は、パレット30の重量(電気自動車2が載置されている場合には、パレット30に加えて電気自動車2の重量)を支えつつ、パレット30をY方向に沿って移動可能とするものである。このレール10は、パレット30の移動が許容される範囲(可動範囲)の長さと同程度の長さを有しており、パレット30のX方向の長さよりも狭い間隔を持ってY方向に沿って平行に敷設されている。
ストッパー20aは、レール10の左端側に設けられた柱状の部材であり、パレット30が可動範囲よりも左側に移動するのを防止するために設置されるものである。ストッパー20bは、レール10の右端側に設けられた柱状の部材であり、パレット30が可動範囲よりも右側に移動するのを防止するために設置されるものである。
パレット30は、電気自動車2の重量を支え得る強度を有し、その上面に電気自動車2を載置した状態でY方向に移動可能に構成された平面視形状が長方形状の平板状の部材である。このパレット30の上面の中央部には、電気自動車2から非接触で供給される電力を受電するために用いられる受電コイル31が設けられている。ここで、受電コイル31の周辺に金属が存在すると、その金属によって電磁界が影響を受けて非接触給電効率が低下する可能性が考えられる。このため、パレット30の受電コイル31が設けられる周辺部分は、金属以外の材料(例えば、プラスチックやFRP(繊維強化プラスチック))を用いるか、或いはくりぬいておくのが望ましい。
また、パレット30の底部には、電動モータ34と駆動輪W1及び従動輪W2とが設けられている。電動モータ34は、受電コイル31によって受電された電力によって駆動されて、減速機(図示省略)を介して駆動輪W1を回転させる。電動モータ34の回転方向(正転、逆転)を切り替えることで、駆動輪W1の回転方向(パレット30の移動方向)を切り替えることができる。尚、電動モータ34としては、三相誘導モータや永久磁石型同期モータ等を用いることができる。
駆動輪W1は、パレット30及び電気自動車2の重量を支えつつ、電動モータ34によって駆動されてパレット30をY方向に移動させるための車輪であり、2本のレール10の各々に対応して2つ設けられている。従動輪W2は、パレット30及び電気自動車2の重量を支えるために設けられる車輪であり、2本のレール10の各々に対応して2つ設けられている。尚、従動輪W2に代えて駆動輪W1を設け、4つの車輪の全てを駆動輪W1にしても良い。
また、パレット30の右端部及び左端部には、リミットスイッチSW1,SW2がそれぞれ設けられている。リミットスイッチSW1は、パレット30が可動範囲の左端部に達したか否かを検出するためのスイッチであり、リミットスイッチSW2は、パレット30が可動範囲の右端部に達したか否かを検出するためのスイッチである。パレット30が可動範囲の左端部に達した場合には、リミットスイッチSW1がストッパー20aに当接してオン状態になり、パレット30が可動範囲の右端部に達した場合には、リミットスイッチSW2がストッパー20bに当接してオン状態になる。
図2は、本発明の第1実施形態による移載装置及び移動車両の電気構成を示すブロック図である。尚、図2においては、移載装置1についてはパレット30のみを図示している。図2に示す通り、移載装置1に設けられるパレット30には、受電コイル31、受電回路32、インバータ33、電動モータ34、DC/DCコンバータ35(電力変換装置)、無線通信装置36(指示入力部)、及び制御装置37が設けられている。
受電コイル31は、上述した通り、パレット30の上面の中央部に設けられており、電気自動車2に設けられた給電コイル43から供給される電力(交流電力)を非接触で受電するためのコイルである。具体的に、受電コイル31は、パレット30に電気自動車2が載置されている状態で、電気自動車2の給電コイル43に正対可能な位置又はおおむね正対可能な位置に取り付けられている。電気自動車2の給電コイル43が受電コイル31に近接して正対又はおおむね正対(以下、これらの状態を単に「正対」という)することによって電磁気結合回路が形成される。尚、給電コイル43と受電コイル31とが正対した場合には、これらが平行又はほぼ平行になる。
上記の電磁気結合回路は、給電コイル43と受電コイル31とが電磁気的に結合して給電コイル43から受電コイル31への非接触の給電が行われる回路を意味し、「電磁誘導方式」で給電を行う回路と、「電磁界共鳴方式」で給電を行う回路との何れの回路であっても良い。尚、給電コイル43と受電コイル31とによって形成される電磁気結合回路が「電磁界共鳴方式」で給電を行う回路である場合には、受電コイル31が給電コイル43に対して正対していなくとも高効率の電力伝送を行うことが可能である。このため、給電コイル43と受電コイル31とを正対させるのが困難な場合には、「電磁界共鳴方式」で給電を行う電磁気結合回路を形成するのが望ましい。
受電回路32は、電気自動車2の給電コイル43と受電コイル31とによって形成される電磁気結合回路を介して非接触で供給されてくる電力(交流電力)を受電し、受電した電力を直流電力に変換する。インバータ33は、制御装置37の制御の下で、受電回路32で変換された直流電力を用いて電動モータ34を駆動する。電動モータ34は、前述した通り、不図示の減速機を介して駆動輪W1を回転させるモータであり、インバータ33の駆動に応じた動力を発生する。
DC/DCコンバータ35は、受電回路32で変換された直流電力のうちの一部の直流電力の電力変換を行う。具体的には、受電回路32で変換された直流電力のうちの一部の直流電力の電圧を、無線通信装置36及び制御装置37を動作させるために適した電圧に変換する。無線通信装置36は、DC/DCコンバータ35で変換された直流電力によって動作し、電気自動車2に設けられた無線通信装置44と各種情報の無線通信が可能である。この無線通信装置36は、例えば電気自動車2に設けられた無線通信装置44から送信された移載指示情報(パレット30に載置された電気自動車2をY方向(移載方向)に移載させる指示を示す情報)を受信する。
制御装置37は、DC/DCコンバータ35で変換された直流電力によって動作し、移載装置1の動作を制御する。具体的に、制御装置37は、無線通信装置36で上記の移載指示情報が受信された場合に、インバータ33を制御することによって電動モータ34の動作を制御する。かかる制御を行っている最中において、制御装置37は、リミットスイッチSW1,SW2がオン状態になったか否かを常時モニタしており、パレット30が可動範囲よりも左側或いは右側に移動するのを防止する。この制御装置37は、例えばメモリを備えたマイコン(マイクロコンピュータ)によって実現される。
電気自動車2は、蓄電池41、給電回路42(電力変換器)、給電コイル43、及び無線通信装置44(指示出力部)を備えており、給電コイル43を介して蓄電池41に蓄えられた電力を外部に給電可能である。尚、図示は省略しているが、電気自動車2は、移動のための動力を発生するモータを備えており、蓄電池41の電力によってモータが駆動されることによって移動が可能である。
蓄電池41は、電気自動車2に搭載された再充電が可能な電池(例えば、リチウムイオン電池やニッケル水素電池等の二次電池)であり、電気自動車2に設けられた不図示のモータを駆動するための電力を供給する。給電回路42は、蓄電池41からの電力を、給電コイル43とパレット30に設けられた受電コイル31とによって形成される電磁気結合回路を介して非接触でパレット30に供給する。具体的に、給電回路42は、蓄電池41から供給される電力(直流電力)を交流電力に変換して給電コイル43に与えることによって、パレット30に対する非接触給電を実現する。
給電コイル43は、電気自動車2の底部に設けられており、蓄電池41からの電力をパレット30に非接触で給電するためのコイルである。この給電コイル43がパレット30に設けられた受電コイル31に近接して正対することによって、前述した電磁気結合回路が形成される。無線通信装置44は、パレット30に設けられた無線通信装置36と各種情報の無線通信が可能である。この無線通信装置44は、例えば前述した移載指示情報を、無線通信装置36に向けて送信する。
尚、上述した給電回路42、給電コイル43、受電コイル31、及び受電回路32の構成と動作の詳細は、例えば日本国特開2009-225551号公報(「電力伝送システム」)或いは日本国特開2008-236916号公報(「非接触電力伝送装置」)に開示されている。
次に、上記構成における移載装置1及び電気自動車2の動作について説明する。移載装置1及び電気自動車2の動作は、以下の5つのステップ(停車ステップS1、給電開始ステップS2、移載開始ステップS3、移載完了ステップS4、給電停止ステップS5)に大別される。以下、これら各々のステップの動作について順に説明する。
〈停車ステップS1〉
まず、運転者が電気自動車2を運転して、電気自動車2を後退させながら移載装置1の乗降位置Eに進入させ、電気自動車2を移載装置1のパレット30上に移動させる。電気自動車2がパレット30上に載置されると、運転者は、パレット30に対する非接触給電が可能な位置で電気自動車2を停車させる。尚、かかる位置に電気自動車2が停車されると、電気自動車2の給電コイル43とパレット30の受電コイル31とが正対した状態になって電磁気結合回路が形成される。
ここで、電気自動車2がパレット30に対する非接触給電が可能な位置に停車されているか否かの確認方法としては、例えば以下の(1)~(3)に示す方法が挙げられる。
 (1)受電コイル31に対して予め規定された位置関係に配置されているパレット30上の車止め(図示省略)に電気自動車2の後輪が当接しているか否かを確認する方法。
 (2)パレット30上の規定位置に設けられたマーカ(図示省略)を電気自動車2に設けられたカメラで撮影して得られる画像の画像処理結果から、規定位置に停車しているか否かを確認する方法。
 (3)運転者が目視で受電コイル31と給電コイル43との位置関係を確認する方法。
尚、電気自動車2が移載装置1のパレット30上に停車された時点では、電気自動車2からパレット30に対する非接触給電が開始されていない。このため、パレット30に設けられた受電回路32からインバータ33及びDC/DCコンバータ35に対する直流電力の供給は行われない。従って、この時点では、パレット30に設けられたインバータ33、電動モータ34、DC/DCコンバータ35、無線通信装置36、及び制御装置37は動作していない状態である。
〈給電開始ステップS2〉
次に、電気自動車2が停止している状態で、運転者が電気自動車2に対して給電開始指示を行うと、パレット30に対する給電が開始される。具体的に、運転者からの給電開始指示がなされると、電気自動車2に設けられた不図示の制御装置が給電回路42を動作させる。すると、蓄電池41に蓄えられた電力(直流電力)が給電回路42に供給されて交流電力に変換される。この変換された交流電力は、給電コイル43に供給され、給電コイル43と受電コイル31とによって形成されている電磁気結合回路を介して非接触でパレット30に供給される。
パレット30に供給された交流電力は受電回路32で直流電力に変換され、変換された直流電力がインバータ33及びDC/DCコンバータ35にそれぞれ供給される。すると、DC/DCコンバータ35が動作を開始し、DC/DCコンバータ35から無線通信装置36及び制御装置37への直流電力の供給が行われる。これにより、無線通信装置36及び制御装置37が動作を開始する。
〈移載開始ステップS3〉
次いで、電気自動車2からパレット30への給電が行われている状態で、運転者が電気自動車2に対して移載指示(パレット30に載置された電気自動車2をY方向(移載方向)に移載させる指示)を行うと、この移載指示を示す情報(移載指示情報)が、無線通信装置44からパレット30に設けられた無線通信装置36に向けて送信される。
電気自動車2の無線通信装置44から送信された移載指示情報が無線通信装置36で受信されると、パレット30に設けられた制御装置37は、リミットスイッチSW1,SW2の状態を確認しつつインバータ33の制御を開始する。具体的に、制御装置37は、リミットスイッチSW1がオン状態である場合には、電動モータ34が正転するように(パレット30が右方向に移動するように)インバータ33を制御し、リミットスイッチSW2がオン状態である場合には、電動モータ34が逆転するように(パレット30が左方向に移動するように)インバータ33を制御する。
〈移載完了ステップS4〉
電気自動車2からパレット30への給電が行われており、且つ、電気自動車2の移載が行われている状態で、パレット30に設けられた制御装置37は、リミットスイッチSW1,SW2の状態を確認しつつインバータ33の制御を継続する。具体的に、電動モータ34を正転させる制御(パレット30を右方向に移動させる制御)を行っている場合には、リミットスイッチSW2がオン状態になるまで制御を継続し、電動モータ34を逆転させる制御(パレット30を左方向に移動させる制御)を行っている場合には、リミットスイッチSW1がオン状態になるまで制御を継続する。
上記の制御を行っている最中に、リミットスイッチSW1,SW2の何れかがオン状態になると、制御装置37はインバータ33を制御して電動モータ34を停止させる。そして、制御装置37は、無線通信装置36を制御して移載完了情報(パレット30に載置された電気自動車2の移載が完了した旨を示す情報)を送信させる。尚、以上の動作が完了すると、パレット30は、レール10の一端部(例えば、左端部)から他端部(例えば、右端部)に移動していることになる。
〈給電停止ステップS5〉
パレット30の無線通信装置36から送信された移載完了情報が、電気自動車2の無線通信装置44で受信されると、電気自動車2に設けられた不図示の制御装置は、給電回路42を停止させる。これにより、電気自動車2からパレット30への給電が停止される。
 すると、パレット30に設けられた受電回路32からインバータ33及びDC/DCコンバータ35に対する直流電力の供給も停止される。これにより、パレット30に設けられたインバータ33、電動モータ34、DC/DCコンバータ35、無線通信装置36、及び制御装置37の動作が停止する。
以上の通り、本実施形態では、電気自動車2から供給される電力を非接触で受電する受電コイル31及び受電回路32をパレット30に設け、これらによって受電した電力によって電動モータ34を駆動してパレット30をレール10に沿って移動させることにより、パレット30に載置された電気自動車2を移載するようにしている。このため、電動モータ34に電力を供給するためのケーブルを敷設する必要が無く、低コストで設置することが可能であるとともに、保守が容易である。また、パレット30に対する給電が非接触で行われるため、接触不良やショート等が生ずることなく安定して電力を給電することができる。
尚、以上説明した実施形態では、駐車場に設置された移載装置1を例に挙げて説明したが、移載装置1は駐車場以外にも設置することが可能である。図3は、本発明の第1実施形態による移載装置の他の設置例を示す図である。図3に示す設置例では、複数の車両通行帯R1~R3を有する道路上に、道路に沿って複数の移載装置1が間隔を詰めて設置されている。このように設置された移載装置1は、最も左側に位置する車両通行帯R1において、効率的な縦列駐車を実現するものである。
具体的に、移載装置1の各々は、レール10が道路を横切るように設置されており、車両通行帯R1と車両通行帯R2との間でパレット30が往復運動することができるようにされている。尚、レール10は、車両通行帯R1,R2を走行する車両の通行を妨げないように地中に埋設された状態で設置されるのが望ましい。また、図3においては図示を省略しているが、ストッパー20a,20bもレール10と同様に地中に埋設されているのが望ましい。
以上の通り設置された移載装置1において、電気自動車2が載置されていないパレット30は、車両通行帯R2側に配置されている。いま、車両通行帯R2を走行している電気自動車2の運転者が、車両通行帯R2側に配置されている1つのパレット30上で電気自動車2を停車させたとする。そして、運転者が電気自動車2に対して給電開始指示及び移載指示を順に行うと、このパレット30がレール10に沿って車両通行帯R1側に移動して、電気自動車2を車両通行帯R1側に移載する。これにより、道路を横切る左右方向に電気自動車2を直線的に移動させることができるため、運転者の運転技術が低くとも、駐車している電気自動車2の間隔が殆ど無い効率的な縦列駐車を実現することができる。
また、以上説明した実施形態では、パレット30の停止位置が2つ(リミットスイッチSW1がストッパー20aに当接する位置、及び、リミットスイッチSW2がストッパー20bに当接する位置)である場合を例に挙げたが、パレット30の停止位置を複数にすることも可能である。図4は、本発明の第1実施形態による移載装置の変形例を示す図である。
図4に示す通り、本変形例では、レール10に沿ってパレット30の停止位置が5つ(停止位置P1~P5)設定されている。これら停止位置P1~P5の各々に対応して停止位置を特定するためのマーカーM1~M5がレール10に沿って配列されているとともに、これらマーカーM1~M5を検出するセンサD1がパレット30に取り付けられている。センサD1は、マーカーM1~M5を検出することができれば、光学式のセンサ、磁気式のセンサ、機械式のセンサ、その他の任意のセンサを用いることができる。
以上の構成において、パレット30に設けられた制御装置37は、リミットスイッチSW1,SW2の状態に加えてセンサD1の検出結果を確認しつつインバータ33を制御する。パレット30がレール10に沿って移動している間において、センサD1がマーカーM1~M5を検出する度に、その検出結果が制御装置37に入力される。このため、例えば停止位置P1に停止しているパレット30に載置された電気自動車2から、停止位置P3への移載指示がなされた場合には、制御装置37は、パレット30の移動を開始した後で、センサD1からの検出結果が2回入力されたときに、インバータ33を制御して電動モータ34を停止させる。これにより、パレット30上に載置された電気自動車2は、停止位置P3に移載される。
〔第2実施形態〕
図5Aは、本発明の第2実施形態による移載装置の機械構成を簡略化した平面図であり、図5Bは背面図である。尚、図5A及び図5Bにおいては、図1A及び図1Bに示したXYZ直交座標系と同様のXYZ直交座標系を図示している。上述した第1実施形態の移載装置1は、パレット30上に載置された電気自動車2をY方向(左右方向)に移載するものであったが、本実施形態の移載装置3は、パレット30上に載置された電気自動車2をZ方向(上下方向)に移載するものである。
図5A及び図5Bに示す通り、本実施形態の移載装置3の概要は、図1A及び図1Bに示すY方向に延びる2本のレール10に代えてZ方向に延びる4本のラック11aを設けるとともに、パレット30の底部に設けられた駆動輪W1及び従動輪W2に代えて駆動ピニオンG1及び従動ピニオンG2をそれぞれ設けた構成である。また、この構成の変更に伴って、リミットスイッチSW1,SW2及びストッパー20a,20bの配置が変更されている。
4本のラック11aは、半径無限大の平歯車(歯が直線状に並んだ平板状の部材)であり、パレット30の重量(電気自動車2が載置されている場合には、パレット30に加えて電気自動車2の重量)を支えつつ、パレット30をZ方向に沿って移動可能とするものである。この4本のラック11aは、パレット30の移動が許容される範囲(可動範囲)の長さと同程度の長さを有しており、パレット30の左端側及び右端側に近接した状態でそれぞれ2本ずつ設置された支柱11に、歯をパレット30側に向けた状態でそれぞれ取り付けられている。
駆動ピニオンG1は、パレット30及び電気自動車2の重量を支えつつ、電動モータ34によって駆動されてパレット30をZ方向に移動させるための小口径の円形歯車であり、パレット30の左端側に配置されている2本のラック11aの各々に対応して2つ設けられている。従動ピニオンG2は、パレット30及び電気自動車2の重量を支えるために設けられる小口径の円形歯車であり、パレット30の右端側に配置されている2本のラック11aの各々に対応して2つ設けられている。尚、従動ピニオンG2に代えて駆動ピニオンG1を設け、4つのピニオンの全てを駆動ピニオンG1にしても良い。
ここで、ストッパー20aは、パレット30の下方の床面上に設けられており、ストッパー20bは、パレット30の上方(例えば、パレット30の上方の天井)に設けられている。これに伴って、リミットスイッチSW1は、ストッパー20aに当接可能なパレット30の底面に設けられており、リミットスイッチSW2は、ストッパー20bに当接可能なパレット30の上面に設けられている。尚、電動モータ34の駆動力のみではパレット30の位置を固定できない場合には、パレット30が落下するのを防止するための機構を設けても良い。例えば、スプリングで動作する摩擦式ブレーキや、穴と勘合するピンを穴にはめこむロック装置を設けても良い。
上記構成における移載装置3は、パレット30の移動方向(電気自動車2の移載方向)がY方向からZ方向に変更されているだけであり、基本的な動作は、前述した第1実施形態と同様である。つまり、第1実施形態で説明した停車ステップS1、給電開始ステップS2、移載開始ステップS3、移載完了ステップS4、及び給電停止ステップS5が順に行われる。このため、ここでの詳細な説明は省略する。
以上の通り、本実施形態では、電気自動車2から供給される電力を非接触で受電する受電コイル31及び受電回路32をパレット30に設け、これらによって受電した電力によって電動モータ34を駆動してパレット30をラック11aに沿って移動させることにより、パレット30に載置された電気自動車2を移載するようにしている。このため、電動モータ34に電力を供給するためのケーブルを敷設する必要が無く、低コストで設置することが可能であるとともに、保守が容易である。また、パレット30に対する給電が非接触で行われるため、接触不良やショート等が生ずることなく安定して電力を給電することができる。尚、本実施形態においても、第1実施形態の変形例(図4参照)と同様に、パレット30の停止位置を複数にすることが可能である。
(第3実施形態)
図6は、本発明の第3実施形態による移載装置及び移動車両の電気構成を示すブロック図である。尚、図6においては、図2と同様、移載装置1についてはパレット30のみを図示している。
前述した第1実施形態に係る電気自動車2は、不図示の動力源であるモータへの電力供給と給電コイル43への電力供給とを異なる回路を用いて実現する、つまり上述したモータに対して不図示のインバータを用いて電力を供給し、一方給電コイル43に対しては給電回路42を用いて電力を供給するものである。しかしながら、本実施形態の電気自動車4は、インバータ45を共用して給電コイル43及びモータ48(図6参照)に電力を供給する。また、本実施形態に係る移載装置1は、第1実施形態と同一のものである。
図6に示す通り、電気自動車4は、図2に示す電気自動車2の給電回路42に代えてインバータ45(電力変換器)を備えると共に、第1のコンタクタ46及び第2のコンタクタ47を備えた構成である。
インバータ45は、後述するゲート駆動回路50(図7参照)から入力されるゲート信号に基づいて蓄電池41から供給される電力(直流電力)を三相あるいは二相交流電力に変換して、電気自動車4の走行時(第1のコンタクタ46によってモータ48と接続されている場合)には、モータ48に三相交流電力(U相、V相、W相交流電力)を供給し、一方移載装置1に対する給電時(第2のコンタクタ47によって給電コイル43と接続されている場合)には、給電コイル43に二相交流電力(U相、V相交流電力)を供給する。また、インバータ45は、モータ48に発生した回生電力を直流電力に変換し、蓄電池41に充電してもよい。つまり、インバータ45は、双方向の電力変換器であってもよい。
第1のコンタクタ46は、インバータ45とモータ48との間に設けられ、後述する制御器51(図7参照)の制御の下で、インバータ45とモータ48との接続状態と切断状態とを切り替える。具体的に、第1のコンタクタ46は、電気自動車4の走行時には、インバータ45とモータ48とを接続するために閉状態となり、電気自動車4の停止時には、インバータ45とモータ48とを切断するために開状態となる。
第2のコンタクタ47は、インバータ45と給電コイル43との間に設けられ、後述する制御器51(図7参照)の制御の下で、インバータ45と給電コイル43との接続状態と切断状態とを切り替える。具体的に、第2のコンタクタ47は、移載装置1に給電する時には、インバータ45と給電コイル43とを接続するために閉状態となり、給電の停止時には、インバータ45と給電コイル43とを切断するために開状態となる。
モータ48は、電気自動車4を移動させるための動力を発生する動力発生源として電気自動車4に搭載されており、インバータ45の駆動に応じた動力を発生する。モータ48としては、永久磁石型同期モータ、誘導モータ等のモータを用いることができる。
図7は、第3実施形態における電気自動車4の制御系統及び該制御系統によって制御される構成要素の詳細を示す図である。尚、図7において、図6に示す構成と同じ構成については同一の符号を付している。図7に示す通り、上述した電気自動車4のインバータ45は、U相、V相、W相交流電力を出力するための3つのスイッチングレッグL1,L2,L3(直列接続された2つのトランジスタと、これら2つのトランジスタにそれぞれ並列接続されたダイオードとからなる回路)が並列接続された回路で実現されている。尚、トランジスタとしては、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などを使用することができる。
また、インバータ45は、スイッチングレッグL1,L2,L3と蓄電池41との間に、平滑リアクトル及び平滑コンデンサとからなる平滑回路を備えている。
また、給電コイル43は、図7に示す通り、コイル43aと、2つのコンデンサ43bとを備える。コンデンサ43bは、コイル43aとともに直列共振回路を形成する。コイル43aの一端は、一方のコンデンサ43b及び第2のコンタクタ47を介してスイッチングレッグL1に接続されており、コイル43aの他端は、他方のコンデンサ43b及び第2のコンタクタ47を介してインバータ45のスイッチングレッグL2に接続されている。
電気自動車4は、図7に示すように、上述した構成に加えて、回転角度検出器49、ゲート駆動回路50及び制御器51を備える。尚、ゲート駆動回路50、制御器51、第1のコンタクタ46及び第2のコンタクタ47は、本実施形態における電力供給先設定手段を構成している。
回転検出器49は、モータ48の回転を検出するセンサであり、検出信号を制御器51に出力する。例えば、回転検出器49は、エンコーダを用いてモータ48回転時の回転角を検出し、モータ48の回転子の1回転毎に所定のパルス数(たとえば65536パルス)となるパルス信号(検出信号)を制御器51に出力する。
ゲート駆動回路50は、インバータ45と制御器51との間に設けられ、制御器51から入力されるゲート信号の電圧を変換して、インバータ45に出力する。また、ゲート駆動回路50は、インバータ45と制御器51との間に設けられることで、インバータ45と制御器51とを絶縁する役割も果たす。
制御器51は、マイクロコントローラ等から構成され、記憶される制御プログラムに基づいてインバータ45、第1のコンタクタ46及び第2のコンタクタ47等を制御する。例えば、制御器51は、図示しない操作装置から運転者の操作によって走行指示が入力された場合には第1のコンタクタ46を制御してインバータ45とモータ48とを接続状態にし、一方、不図示の操作装置から運転者の操作によって給電開始指示が入力された場合には第2のコンタクタ47を制御してインバータ45と給電コイル43とを接続状態にする。
また、このような制御器51は、インバータ45を制御するためのマイクロコントローラの動作に応じた3つの機能構成要素、つまりモータ制御部51a、非接触給電制御部51b及びゲート信号選択部51cを備えている。
モータ制御部51aは、図示しない操作装置から運転者の操作によって走行指示が入力された場合には、回転検出器49による検出結果をモニタしつつ、インバータ45においてモータ48を回転駆動するための三相交流電力(U相、V相、W相交流電力)を生成するために、U相、V相、W相交流電力に対応したゲート信号を生成して、ゲート信号選択部51cに出力する。
非接触給電制御部51bは、操作装置から運転者の操作によって給電開始指示が入力された場合には、インバータ45において給電コイル43に供給するための二相交流電力(U相、V相交流電力)を生成するために、U相、V相交流電力に対応したゲート信号を生成してゲート信号選択部51cに出力する。この際、非接触給電制御部51bは、W相交流電力に対応したゲート信号を生成せず、インバータ45のスイッチングレッグL3のトランジスタをOFF状態にさせる。
また、非接触給電制御部51bは、電気自動車4からパレット30への給電が行われている状態で、運転者が電気自動車4に対して移載指示(パレット30に載置された電気自動車4をY方向(移載方向)に移載させる指示)を行うと、この移載指示を示す情報(移載指示情報)を、パレット30に向けて無線通信装置44に送信させる。また、非接触給電制御部51bは、パレット30から送信された移載完了情報を無線通信装置44が受信すると、インバータ45において給電コイル43に供給するための二相交流電力を生成するために必要なゲート信号の生成を停止する。
ゲート信号選択部51cは、モータ制御部51a及び非接触給電制御部51bから入力されるゲート信号のいずれかを選択して、選択したゲート信号をゲート駆動回路50に出力する。つまり、ゲート信号選択部51cは、操作装置から運転者の操作によって走行指示が入力された場合には、モータ制御部51aからのゲート信号のみをゲート駆動回路50に出力し、操作装置から運転者の操作によって給電開始指示が入力された場合には、非接触給電制御部51bからのゲート信号のみをゲート駆動回路50に出力する。
また、移載装置1における受電コイル31は、図7に示す通り、コイル31aと、コンデンサ31bとを備える。コンデンサ31bは、コイル31aと受電回路32との間に並列接続されている。
 次に、上記構成における電気自動車4の動作について説明する。図8及び図9は、本発明の第3実施形態における動作を説明するための図である。尚、図8は電気自動車4の走行時の動作を説明する図であり、図9は移載装置1に対する給電時の動作を説明する図であり、以下、各々の動作について順に説明する。
 〈走行時の動作〉
運転手が電気自動車4の運転を開始すると、制御器51は、第1のコンタクタ46を閉状態にしてモータ48とインバータ45とを接続状態にすると共に、第2のコンタクタ47を開状態にして給電コイル43とインバータ45とを切断状態にする。そして、制御器51のモータ制御部51aは、回転検出器49による検出結果をモニタしつつ、インバータ45においてモータ48を所望の回転数で回転駆動するための三相交流電力(U相、V相、W相交流電力)を生成するために必要なゲート信号を生成して、ゲート信号選択部51cに出力する。
続いて、ゲート信号選択部51cは、モータ制御部51aから入力されたゲート信号のみを選択して、ゲート駆動回路50に出力する。ゲート駆動回路50は、ゲート信号選択部51cから入力されたゲート信号の電圧を変換してインバータ45に出力する。インバータ45は、ゲート駆動回路50から入力されたゲート信号に基づいて蓄電池41に蓄えられた電力(直流電力)から三相交流電力(U相、V相、W相交流電力)を生成して、モータ48に供給する。電気自動車4は、インバータ45からモータ48に電力が供給されてモータ48が駆動されることにより走行を開始する。
〈移載装置1に対する給電時の動作〉
移載装置1及び電気自動車4の動作は、以下の5つのステップ(停車ステップS11、給電開始ステップS12、移載開始ステップS13、移載完了ステップS14、給電停止ステップS15)に大別される。以下、これら各々のステップの動作について順に説明する。
〈停車ステップS11〉
まず、運転者が電気自動車4を運転して、電気自動車4を後退させながら移載装置1の乗降位置Eに進入させ、電気自動車4を移載装置1のパレット30上に移動させる。電気自動車4がパレット30上に載置されると、運転者は、パレット30に対する非接触給電が可能な位置で電気自動車4を停車させる。なお、電気自動車4がパレット30に対する非接触給電が可能な位置に停車されているか否かの確認方法については、第1実施形態と同様である。
電気自動車4が移載装置1のパレット30上に停車された時点では、電気自動車4からパレット30に対する非接触給電が開始されていない。従って、第1実施形態と同様、この時点では、パレット30に設けられたインバータ33、電動モータ34、DC/DCコンバータ35、無線通信装置36、及び制御装置37は動作していない状態である。
〈給電開始ステップS12〉
次に、電気自動車4が停止している状態で、運転手が電気自動車4に対して給電開始指示を行うと移載装置1に対する給電が開始される。具体的に、運転手からの給電開始指示がなされると、制御器51は、第1のコンタクタ46を開状態にしてモータ48とインバータ45とを切断状態にすると共に、第2のコンタクタ47を閉状態にして給電コイル43とインバータ45とを接続状態にする。そして、制御器51の非接触給電制御部51bは、インバータ45において給電コイル43に供給するための二相交流電力(U相、V相交流電力)を生成するために必要なゲート信号を生成して、ゲート信号選択部51cに出力する。
続いて、ゲート信号選択部51cは、非接触給電制御部51bから入力されたゲート信号のみを選択して、ゲート駆動回路50に出力する。ゲート駆動回路50は、ゲート信号選択部51cから入力されたゲート信号の電圧を変換してインバータ45に出力する。インバータ45は、ゲート駆動回路50から入力されたゲート信号に基づいて蓄電池41に蓄えられた電力(直流電力)から二相交流電力(U相、V相交流電力)を生成して給電コイル43に供給する。この結果、交流電力は、給電コイル43と受電コイル31とによって形成されている電磁気結合回路を介して、パレット30に非接触で供給される。
パレット30に供給された交流電力は受電回路32で直流電力に変換され、変換された直流電力がインバータ33及びDC/DCコンバータ35にそれぞれ供給される。すると、DC/DCコンバータ35が動作を開始し、DC/DCコンバータ35から無線通信装置36及び制御装置37への直流電力の供給が行われる。これにより、無線通信装置36及び制御装置37が動作を開始する。
〈移載開始ステップS13〉
次いで、非接触給電制御部51bは、電気自動車4からパレット30への給電が行われている状態で、運転者が電気自動車4に対して移載指示(パレット30に載置された電気自動車4をY方向(移載方向)に移載させる指示)を行うと、この移載指示を示す情報(移載指示情報)を、無線通信装置44にパレット30に設けられた無線通信装置36に向けて送信させる。
電気自動車4の無線通信装置44から送信された移載指示情報が無線通信装置36で受信されると、パレット30に設けられた制御装置37は、リミットスイッチSW1,SW2の状態を確認しつつインバータ33の制御を開始する。具体的に、制御装置37は、リミットスイッチSW1がオン状態である場合には、電動モータ34が正転するように(パレット30が右方向に移動するように)インバータ33を制御し、リミットスイッチSW2がオン状態である場合には、電動モータ34が逆転するように(パレット30が左方向に移動するように)インバータ33を制御する。
〈移載完了ステップS14〉
電気自動車4からパレット30への給電が行われており、且つ、電気自動車4の移載が行われている状態で、パレット30に設けられた制御装置37は、リミットスイッチSW1,SW2の状態を確認しつつインバータ33の制御を継続する。具体的に、電動モータ34を正転させる制御(パレット30を右方向に移動させる制御)を行っている場合には、リミットスイッチSW2がオン状態になるまで制御を継続し、電動モータ34を逆転させる制御(パレット30を左方向に移動させる制御)を行っている場合には、リミットスイッチSW1がオン状態になるまで制御を継続する。
上記の制御を行っている最中に、リミットスイッチSW1,SW2の何れかがオン状態になると、制御装置37はインバータ33を制御して電動モータ34を停止させる。そして、制御装置37は、無線通信装置36を制御して移載完了情報(パレット30に載置された電気自動車4の移載が完了した旨を示す情報)を送信させる。尚、以上の動作が完了すると、パレット30は、レール10の一端部(例えば、左端部)から他端部(例えば、右端部)に移動していることになる。
〈給電停止ステップS15〉
電気自動車4において、非接触給電制御部51bは、パレット30の無線通信装置36から送信された移載完了情報を無線通信装置44が受信すると、インバータ45において給電コイル43に供給するための二相交流電力(U相、V相交流電力)を生成するために必要なゲート信号の生成を停止する。これにより、電気自動車4からパレット30への給電が停止される。
すると、パレット30に設けられた受電回路32からインバータ33及びDC/DCコンバータ35に対する直流電力の供給も停止される。これにより、パレット30に設けられたインバータ33、電動モータ34、DC/DCコンバータ35、無線通信装置36、及び制御装置37の動作が停止する。
以上の通り、本実施形態では、電気自動車4から供給される電力を非接触で受電する受電コイル31及び受電回路32をパレット30に設け、これらによって受電した電力によって電動モータ34を駆動してパレット30をレール10に沿って移動させることにより、パレット30に載置された電気自動車4を移載するようにしている。このため、電動モータ34に電力を供給するためのケーブルを敷設する必要が無く、低コストで設置することが可能であるとともに、保守が容易である。また、パレット30に対する給電が非接触で行われるため、接触不良やショート等が生ずることなく安定して電力を給電することができる。
また、本実施形態では、インバータ45を共用してモータ48及び給電コイル43に電力を供給するため、電気自動車4の製造コストを抑制できる。
尚、以上説明した第3実施形態に係る移載装置1は、第1実施形態と同様に、図3に示すように駐車場以外にも設置することが可能であり、また図4に示す変形例に適用することができる。
以上、本発明の実施形態による移載装置及び移動車両について説明したが、本発明は上記実施形態に制限されず、本発明の範囲内で自由に変更が可能である。例えば、上述した第1,3実施形態では、レール10と車輪(駆動輪W1及び従動輪W2)との組み合わせによってパレット30を移動させていたが、滑りを防止するために、第2実施形態と同様のラックとピニオンとの組み合わせによってパレット30を移動させるようにしても良い。
また、上記第1~3実施形態では、パレット30の上面に受電コイル31が設けられており、電気自動車2,4の底部に給電コイル43に設けられている例について説明したが、給電コイル43から受電コイル31への非接触給電が可能であるならば、受電コイル31及び給電コイル43の配置はこれに限られない。図10は、給電コイル及び受電コイルの他の配置例を示す図である。
電気自動車2(あるいは電気自動車4)がパレット30の正面と背面の何れか一方のみから乗降する場合には、図10に示す通り、パレット30の上面に支持台Zを設けて受電コイル31を水平面に対して傾斜した状態或いは垂直に設置しても良い。そして、かかる状態に設置された受電コイル31に対して正対可能とするために、水平面に対して傾斜した状態或いは垂直にされた給電コイル43を電気自動車2(あるいは電気自動車4)の後方底部に設けても良い。
また、上記第1~3実施形態では、パレット30の中央部に受電コイル31を設けるものとしたが、電気自動車2,4の底部に設けられた給電コイル43と正対可能な位置であれば中央部でなくてもよい。例えば、受電コイル31を図1Aにおいてパレット30の上面のよりX座標が大きい位置に設置し、給電コイル43を電気自動車の底部後方に設けてもよい。逆に、受電コイル31を図1Aにおいてパレット30の上面のよりX座標が小さい位置に設置し、給電コイル43を電気自動車の底部前方に設けてもよい。
また、上記実施形態では、電気自動車2,4については、主に給電コイル43を介して蓄電池41の電力を外部に非接触で給電するものとして説明した。しかしながら、電気自動車2,4に設けられた給電コイル43を介して外部から非接触で供給される電力を受電可能とし、この受電した電力によって蓄電池41の充電を行うようにしても良い。このような、双方向の非接触給電を実現することができる回路の詳細は、例えば日本国特開平8-19985(「ロボット装置」)に開示されている。
また、上記実施形態では、停車ステップS1,S11において運転者が電気自動車2,4を運転して電気自動車2,4をパレット30上に移動させて停車させ、給電開始ステップS2,S12において運転者が電気自動車2,4に対して給電開始指示を行い、移載開始ステップS3,S13において運転者が電気自動車2,4に対して移載指示を行う例について説明した。しかしながら、これら停車ステップS1,S11~移載開始ステップS3,S13を自動化して、運転者が電気自動車2,4の運転や電気自動車2,4に対する指示をしなくとも、自動的に電気自動車2,4が移載装置1,3によって移載されるようにしても良い。
また、図2(あるいは図6)に示すパレット30に設けられた受電回路32及びDC/DCコンバータ35の内部に設けられた制御回路を駆動するための小容量の電源を予め設けても良い。この小容量の電源として、太陽光や風量等の自然エネルギーを用いて発電する発電装置を用いても良く、小型の蓄電池を用いても良い。小型の蓄電池を用いる場合には、電気自動車2から供給される電力を用いて充電を行うのが望ましい。
また、上記実施形態では、パレットに移動車両を1台搭載した場合を例に挙げて説明したが、パレットに複数台の移動車両を搭載する場合、パレット駆動用電力を補完し合うこととともに、設置スペースの低面積化を確保することができる。
また、一つのパレット上の複数の移動車両を対象にした移載装置では、ある電気自動車の充電電力を、受電回路を通じて他の電気自動車の蓄電電力から供給することが可能となる。
さらに、第2実施形態では、位置エネルギーをラックピニオン機構を用いて回転運動に変換することで、パレットの下降時に駆動モータ34を回生発電機として用いることで、最終的に移動車両への電力供給源とすることもできる。
また、上記実施形態では、移動車両が蓄電池41を搭載した電気自動車である場合を例に挙げて説明したが、本発明はプラグイン・ハイブリッド自動車に適用することもでき、電気駆動搬送車や電動車椅子等にも適用することができる。更には、無人式移動車両にも適用することができる。
本発明によれば、外部から供給される電力を非接触で受電するための受電コイル及び受電回路と、受電回路で受電された電力によって駆動されて電動モータとをパレットに設け、外部から非接触で供給される電力を用いる電動モータを駆動してパレットを左右方向又は上下方向に移動させている。その結果、電動モータに電力を供給するためのケーブルを敷設する必要が無く、低コストで設置することが可能であるとともに、保守が容易である。また、パレットに対する給電が非接触で行われるため、接触不良やショート等が生ずることなく安定して電力を給電することができる。
1,3移載装置
 2,4電気自動車
 30 パレット
 31 受電コイル
 32 受電回路
 34 電動モータ
 35 DC/DCコンバータ
 36 無線通信装置
 37 制御装置
 41 蓄電池
 42 給電回路(電力変換器)
 43 給電コイル
 44 無線通信装置
45   インバータ(電力変換器)
46   第1のコンタクタ
47   第2のコンタクタ
48   モータ
49   回転(角度)検出器
50   ゲート駆動回路
51   制御器
51a  モータ制御部
51b  非接触給電制御部
51c  ゲート信号選択部
L1、L2、L3 スイッチングレッグ
R1、R2、R3 車両通行帯
43a  コイル
43b  コンデンサ
31a  コイル
31b コンデンサ
 
 

Claims (7)

  1. パレットに載置された移動車両を、該移動車両の進行方向に交差する左右方向又は上下方向に移載する移載装置であって、
    前記パレットは、外部の給電コイルとともに電磁気結合回路を形成する受電コイルと、
    前記電磁気結合回路を介して外部から非接触で供給される電力を受電する受電回路と、
    前記受電回路で受電された電力によって駆動され、前記パレットを前記左右方向又は上下方向に移動させる電動モータと
    を備えることを特徴とする移載装置。
  2. 前記パレットは、前記受電回路で受電された電力のうちの一部の電力の変換を行う電力変換装置と、
    前記電力変換装置で変換された電力によって動作し、前記電動モータの動作を制御する制御装置と
    を備えることを特徴とする請求項1記載の移載装置。
  3. 前記パレットは、前記電力変換装置で変換された電力によって動作し、前記移動車両を前記左右方向又は上下方向に移載させる旨を示す外部からの移載指示が入力される指示入力部を備えており、
    前記制御装置は、前記指示入力部に入力された前記移載指示に基づいて前記電動モータを制御する
    ことを特徴とする請求項2記載の移載装置。
  4. 前記外部の給電コイルは、前記移動車両に設けられており、
    前記受電コイルは、前記パレットに前記移動車両が載置されている状態で、前記移動車両に設けられた給電コイルに正対可能な位置に取り付けられている
    ことを特徴とする請求項1から請求項3の何れか一項に記載の移載装置。
  5. 移動のための動力を発生するモータと、該モータを駆動する電力を供給する蓄電池とを備える移動車両において、
    請求項1に記載された移載装置に設けられた前記パレットに載置された状態で、前記パレットに設けられた前記受電コイルとともに電磁気結合回路を形成する給電コイルと、
    前記蓄電池に蓄えられた直流電力を交流電力に変換して前記給電コイルに供給する電力変換器と
    を備えることを特徴とする移動車両。
  6. 前記パレットに載置された状態の前記移動車両を、前記左右方向又は上下方向に移載させる旨を示す移載指示を外部に出力する指示出力部を備えることを特徴とする請求項5記載の移動車両。
  7. 前記電力変換器から出力される交流電力の供給先を前記給電コイルあるいは前記モータの何れかに設定する電力供給先設定手段と
    を備えることを特徴とする請求項5又は請求項6に記載の移動車両。
     
     
     
PCT/JP2012/083682 2011-12-27 2012-12-26 移動車両の移載装置、及び当該移載装置に電力を供給する移動車両 WO2013099961A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12862471.5A EP2770137A4 (en) 2011-12-27 2012-12-26 MOBILE VEHICLE TRANSFER DEVICE, AND MOBILE VEHICLE PROVIDING ELECTRICAL POWER TO THE TRANSFER DEVICE
CN201280064208.9A CN103998701B (zh) 2011-12-27 2012-12-26 移动车辆的移放装置以及向该移放装置供给电力的移动车辆
US14/256,520 US9669844B2 (en) 2011-12-27 2014-04-18 Vehicle transfer device, and vehicle which supplies power to transfer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011285200A JP6024106B2 (ja) 2011-12-27 2011-12-27 移載装置及び移動車両
JP2011-285200 2011-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/256,520 Continuation US9669844B2 (en) 2011-12-27 2014-04-18 Vehicle transfer device, and vehicle which supplies power to transfer device

Publications (1)

Publication Number Publication Date
WO2013099961A1 true WO2013099961A1 (ja) 2013-07-04

Family

ID=48697442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083682 WO2013099961A1 (ja) 2011-12-27 2012-12-26 移動車両の移載装置、及び当該移載装置に電力を供給する移動車両

Country Status (5)

Country Link
US (1) US9669844B2 (ja)
EP (1) EP2770137A4 (ja)
JP (1) JP6024106B2 (ja)
CN (1) CN103998701B (ja)
WO (1) WO2013099961A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343638A (zh) * 2013-07-15 2013-10-09 上海东亿元城市规划设计有限公司 气动式落防装置
JP2015029387A (ja) * 2013-07-30 2015-02-12 本田技研工業株式会社 非接触給電システム
CN106320765A (zh) * 2016-10-29 2017-01-11 荆门创佳机械科技有限公司 一种可以使传动轮与传动带自动脱离的装置
CN106800014A (zh) * 2017-03-16 2017-06-06 芜湖华炬电动汽车技术有限公司 龙门式换电架及其控制方法以及自动换电池系统
CN109441186A (zh) * 2018-10-25 2019-03-08 深圳怡丰自动化科技有限公司 一种搬运小车、车辆搬运器及其充电系统
CN112172563A (zh) * 2020-10-15 2021-01-05 东营科技职业学院 一种用于新能源汽车充电线定位装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485616A (en) * 2010-11-22 2012-05-23 Bombardier Transp Gmbh Route for transferring electric energy to vehicles
JP5803475B2 (ja) * 2011-09-16 2015-11-04 株式会社Ihi 移動車両給電システム
JP5716725B2 (ja) * 2012-11-21 2015-05-13 トヨタ自動車株式会社 送電装置および電力伝送システム
JP2015012621A (ja) 2013-06-26 2015-01-19 富士電機株式会社 マルチレベル電力変換回路
NL2011132C2 (en) * 2013-07-10 2015-01-13 Stertil Bv Lifting system for lifting a vehicle and method for operating the lifting system.
US9509375B2 (en) * 2013-08-01 2016-11-29 SK Hynix Inc. Wireless transceiver circuit with reduced area
GB2521676B (en) 2013-12-31 2016-08-03 Electric Road Ltd System and method for powering an electric vehicle on a road
US10128789B2 (en) * 2014-10-10 2018-11-13 The Boeing Company Phantom electric motor system with parallel coils
JP2017180062A (ja) * 2016-03-31 2017-10-05 極東開発工業株式会社 駐車装置
DE102016215504A1 (de) * 2016-08-18 2018-02-22 Continental Automotive Gmbh Fahrzeugbordnetz und Verfahren
KR102526872B1 (ko) * 2016-11-01 2023-04-27 현대자동차주식회사 계자 권선을 이용하는 무선 전력 전송 방법과 이를 이용하는 차량 어셈블리 및 전기차
JP6766690B2 (ja) * 2017-02-28 2020-10-14 株式会社Ihi 地上側給電装置
CN107227874B (zh) * 2017-07-26 2019-07-12 广东和顺物业管理有限公司 一种立体停车用车槽传送装置
CN110588380A (zh) * 2019-08-09 2019-12-20 华为技术有限公司 可充放电的储能装置、无线充电系统及电动汽车
US11318546B2 (en) * 2020-06-24 2022-05-03 TEKFAB, Inc. Flying punch and cutoff machine with roller rack and pinion and method of using same
CN112140889B (zh) * 2020-09-15 2022-03-15 中国第一汽车股份有限公司 一种车辆上下电控制方法及车辆
CN112727180B (zh) * 2020-12-29 2022-03-08 安徽春华智能科技有限公司 一种防摇摆的平面移动车库提升架
CN117071959A (zh) * 2023-10-17 2023-11-17 石家庄菲宇科技有限公司 一种单排智能立体式电动自行车停车场装置及设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130961A (ja) 1988-11-11 1990-05-18 Canon Inc 電界効果型トランジスタ
JPH05239947A (ja) 1992-02-27 1993-09-17 Kawahara:Kk 立体駐車装置用入庫待機機構
JPH05256038A (ja) 1991-03-12 1993-10-05 Tokyu Car Corp 駐車機
JPH07139205A (ja) * 1993-11-19 1995-05-30 Shuichi Matsuoka バッテリィ動力駐車場装置
JPH0819985A (ja) 1994-07-04 1996-01-23 Mitsubishi Electric Corp ロボット装置
JP2000289587A (ja) * 1999-04-02 2000-10-17 Horitech Co Ltd 駐車装置
JP2001008380A (ja) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd 電力マネジメントシステム
JP2001030979A (ja) 1999-07-26 2001-02-06 Nippon Steel Logistics Co Ltd ロールオン・オフ船
JP2002194916A (ja) * 2000-12-25 2002-07-10 Yasunobu Kadota 自動車台車、及び、それを利用した駐車場
JP2007126835A (ja) * 2005-11-01 2007-05-24 Tokyu Car Corp 機械式立体駐車装置
JP2008236916A (ja) 2007-03-20 2008-10-02 Seiko Epson Corp 非接触電力伝送装置
JP2009225551A (ja) 2008-03-14 2009-10-01 Bridgestone Corp 電力伝送システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876085A (en) * 1970-03-05 1975-04-08 Thomas John Robert Bright Automated storage systems and apparatus therefor
US4029218A (en) * 1975-02-21 1977-06-14 Matsura Takashi Two-storied parking apparatus for automobiles
JPH09149502A (ja) * 1992-12-07 1997-06-06 Yaskawa Electric Corp 無接触給電方法および装置
US5637973A (en) 1992-06-18 1997-06-10 Kabushiki Kaisha Yaskawa Denki Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus and a control method for controlling same
JP3586955B2 (ja) * 1996-02-02 2004-11-10 住友電装株式会社 電気自動車用充電システム
DE69711963T2 (de) 1996-01-30 2002-11-28 Sumitomo Wiring Systems Verbindungssystem und -verfahren für ein elektrisch betriebenes Fahrzeug
DE69714879T2 (de) 1996-01-30 2003-05-08 Sumitomo Wiring Systems Verbindungssystem mit zugehörigem Verfahren
US20050207876A1 (en) * 2004-03-16 2005-09-22 Springwater Investments Llc Method and system for automatically parking vehicles
JP2006288034A (ja) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd 送受電装置
JP4784562B2 (ja) * 2007-06-20 2011-10-05 パナソニック電工株式会社 非接触型給電装置
JP5054113B2 (ja) * 2007-09-17 2012-10-24 秀雄 菊地 誘導電力伝送回路
EP2330716B1 (en) * 2008-09-19 2018-09-05 Toyota Jidosha Kabushiki Kaisha Noncontact power receiving apparatus and vehicle including the same
JP5559518B2 (ja) * 2009-10-30 2014-07-23 富士変速機株式会社 立体駐車装置及び電気自動車の非接触式充電装置
AU2011224345A1 (en) * 2010-03-10 2012-11-01 Witricity Corporation Wireless energy transfer converters
JP5139469B2 (ja) * 2010-04-27 2013-02-06 株式会社日本自動車部品総合研究所 コイルユニットおよび非接触給電システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130961A (ja) 1988-11-11 1990-05-18 Canon Inc 電界効果型トランジスタ
JPH05256038A (ja) 1991-03-12 1993-10-05 Tokyu Car Corp 駐車機
JPH05239947A (ja) 1992-02-27 1993-09-17 Kawahara:Kk 立体駐車装置用入庫待機機構
JPH07139205A (ja) * 1993-11-19 1995-05-30 Shuichi Matsuoka バッテリィ動力駐車場装置
JPH0819985A (ja) 1994-07-04 1996-01-23 Mitsubishi Electric Corp ロボット装置
JP2000289587A (ja) * 1999-04-02 2000-10-17 Horitech Co Ltd 駐車装置
JP2001008380A (ja) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd 電力マネジメントシステム
JP2001030979A (ja) 1999-07-26 2001-02-06 Nippon Steel Logistics Co Ltd ロールオン・オフ船
JP2002194916A (ja) * 2000-12-25 2002-07-10 Yasunobu Kadota 自動車台車、及び、それを利用した駐車場
JP2007126835A (ja) * 2005-11-01 2007-05-24 Tokyu Car Corp 機械式立体駐車装置
JP2008236916A (ja) 2007-03-20 2008-10-02 Seiko Epson Corp 非接触電力伝送装置
JP2009225551A (ja) 2008-03-14 2009-10-01 Bridgestone Corp 電力伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770137A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343638A (zh) * 2013-07-15 2013-10-09 上海东亿元城市规划设计有限公司 气动式落防装置
JP2015029387A (ja) * 2013-07-30 2015-02-12 本田技研工業株式会社 非接触給電システム
CN106320765A (zh) * 2016-10-29 2017-01-11 荆门创佳机械科技有限公司 一种可以使传动轮与传动带自动脱离的装置
CN106800014A (zh) * 2017-03-16 2017-06-06 芜湖华炬电动汽车技术有限公司 龙门式换电架及其控制方法以及自动换电池系统
CN106800014B (zh) * 2017-03-16 2023-11-10 山东新瓦特动力科技有限公司 龙门式换电架及其控制方法以及自动换电池系统
CN109441186A (zh) * 2018-10-25 2019-03-08 深圳怡丰自动化科技有限公司 一种搬运小车、车辆搬运器及其充电系统
CN109441186B (zh) * 2018-10-25 2024-02-20 深圳怡丰自动化科技有限公司 一种搬运小车、车辆搬运器及其充电系统
CN112172563A (zh) * 2020-10-15 2021-01-05 东营科技职业学院 一种用于新能源汽车充电线定位装置

Also Published As

Publication number Publication date
JP6024106B2 (ja) 2016-11-09
US20140225434A1 (en) 2014-08-14
US9669844B2 (en) 2017-06-06
EP2770137A4 (en) 2015-11-04
JP2013133659A (ja) 2013-07-08
EP2770137A1 (en) 2014-08-27
CN103998701B (zh) 2018-03-09
CN103998701A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2013099961A1 (ja) 移動車両の移載装置、及び当該移載装置に電力を供給する移動車両
US10507733B2 (en) Energy supply vehicle for supplying an electrically drivable motor vehicle with electrical energy
JP5733420B2 (ja) 移動式電力供給装置
EP2905399B1 (en) Automated parking facility
US20180141445A1 (en) Vehicle charging system
US9365104B2 (en) Parking assist device for vehicle and electrically powered vehicle including the same
CN103561994A (zh) 车辆及电力输送接受系统
CN102448764B (zh) 线性马达充电的电动车辆
US20170057789A1 (en) Elevator car power supply
JP5557618B2 (ja) 車両の充電システム
JP2011182608A (ja) 電気自動車
JP5966407B2 (ja) 移動車両及び非接触電力伝送装置
JP5906691B2 (ja) 非接触電力伝送装置及び移動車両
CN102520722B (zh) 非接触式供电自动导引车
KR20120053979A (ko) 기계식 주차장
CN104508946A (zh) 车辆供电装置
CN202394114U (zh) 非接触式供电自动导引车
CN104641532A (zh) 车辆供电装置
ES2906864T3 (es) Procedimiento y vehículo para transportar un vehículo de motor accionado eléctricamente durante su montaje
CN104782017A (zh) 车辆供电装置
JP2013169109A (ja) 移動車両及び非接触電力伝送装置
JP5974460B2 (ja) 移動車両及び非接触電力伝送装置
KR20230119509A (ko) 무인 운반 차량용 무선 충전 시스템
WO2013080861A1 (ja) 非接触給電装置
CN115257657A (zh) 一种换电系统及其换电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012862471

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE