WO2013094404A1 - 二次電池用活物質、二次電池および電子機器 - Google Patents

二次電池用活物質、二次電池および電子機器 Download PDF

Info

Publication number
WO2013094404A1
WO2013094404A1 PCT/JP2012/081479 JP2012081479W WO2013094404A1 WO 2013094404 A1 WO2013094404 A1 WO 2013094404A1 JP 2012081479 W JP2012081479 W JP 2012081479W WO 2013094404 A1 WO2013094404 A1 WO 2013094404A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
active material
covering portion
carbon
Prior art date
Application number
PCT/JP2012/081479
Other languages
English (en)
French (fr)
Inventor
貴一 廣瀬
川瀬 賢一
下位 法弘
田中 伸史
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201280061960.8A priority Critical patent/CN103988347B/zh
Priority to EP12859694.7A priority patent/EP2797144B1/en
Priority to KR1020147015658A priority patent/KR101950544B1/ko
Priority to US14/364,410 priority patent/US20140349187A1/en
Publication of WO2013094404A1 publication Critical patent/WO2013094404A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present technology relates to an active material for a secondary battery capable of inserting and extracting lithium ions, a secondary battery using the active material for the secondary battery, and an electronic device using the secondary battery.
  • the secondary battery is not limited to the above-described electronic device, but is a battery pack that is a detachable power source, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, or an electric tool such as an electric drill.
  • the secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode, and the negative electrode includes a negative electrode active material capable of occluding and releasing lithium ions and the like.
  • a carbon material such as graphite is widely used, but recently, since further improvement in battery capacity is required, the use of Si has been studied. This is because the theoretical capacity of Si (4199 mAh / g) is much larger than the theoretical capacity of graphite (372 mAh / g), so that significant improvement in battery capacity can be expected.
  • the negative electrode active material expands and contracts violently during charge and discharge, so that the negative electrode active material tends to break mainly near the surface layer.
  • the negative electrode active material is cracked, a highly reactive new surface (active surface) is generated, and the surface area (reaction area) of the negative electrode active material is increased.
  • a decomposition reaction of the electrolytic solution occurs on the new surface, and the electrolytic solution is consumed to form a coating film derived from the electrolytic solution on the new surface, so that battery characteristics such as cycle characteristics are likely to deteriorate.
  • Si and amorphous SiO 2 are simultaneously deposited using a sputtering method (see, for example, Patent Document 1).
  • an electron conductive material layer (carbon material) is provided on the surface of the SiO x particles (see, for example, Patent Document 2).
  • the negative electrode active material layer is formed so as to contain Si and O and to increase the oxygen ratio on the side close to the negative electrode current collector (for example, Patent Document 3). reference.).
  • the negative electrode active material layer contains Si and O, the total average oxygen content is 40 atomic% or less, and the average oxygen content is increased on the side closer to the negative electrode current collector.
  • the difference between the average oxygen content on the side close to the negative electrode current collector and the average oxygen content on the side far from the negative electrode current collector is 4 atomic% to 30 atomic%.
  • a nanocomposite containing a Si phase, SiO 2 and My 2 O metal oxide is used (for example, see Patent Document 5).
  • a negative electrode active material represented by Li a SiO x (0.5 ⁇ ax ⁇ 1.1, 0.2 ⁇ x ⁇ 1.2) is used (for example, (See Patent Document 7).
  • Li is deposited on an active material precursor containing Si and O.
  • the composition of SiO x is controlled (see, for example, Patent Document 8).
  • the molar ratio of the O amount to the Si amount in the negative electrode active material body is set to 0.1 to 1.2, and the O amount relative to the Si amount in the vicinity of the interface between the negative electrode active material body and the current collector is The difference between the maximum value and the minimum value of the molar ratio is set to 0.4 or less.
  • a lithium-containing porous metal oxide Li x SiO: 2.1 ⁇ x ⁇ 4
  • a hydrophobized layer such as a silane compound or a siloxane compound is formed on a thin film containing Si (see, for example, Patent Document 10).
  • a conductive powder in which the surface of SiO x (0.5 ⁇ x ⁇ 1.6) is coated with a graphite film is used (see, for example, Patent Document 11).
  • a broad peak appears at 1330 cm -1 and 1580 cm -1 in the Raman shift of the Raman spectra for graphite coating, their intensity ratio I 1330 / I 1580 and 1.5 ⁇ I 1330 / I 1580 ⁇ 3 It is said.
  • the cumulative 90% diameter (D90) of the powder is 50 ⁇ m or less, and the particle diameter of the particles is less than 2 ⁇ m.
  • SiO x (0.3 ⁇ x ⁇ 1.6) is used, and the electrode unit is pressurized at 3 kgf / cm 2 or more during charge / discharge (see, for example, Patent Document 13).
  • a Si oxide having a Si: O atomic ratio of 1: y (0 ⁇ y ⁇ 2) is used (see, for example, Patent Document 14). .
  • an amorphous metal oxide is provided on the surface of primary particles such as Si in order to accumulate or release a large amount of lithium ions electrochemically (see, for example, Patent Document 15).
  • the Gibbs free energy at the time of metal oxidation for forming this metal oxide is smaller than the Gibbs free energy at the time of oxidation of Si or the like.
  • a negative electrode active material having an alloy composition composed of two kinds of metals as a main component is used (for example, see Patent Document 16).
  • the first metal has the property of occluding and releasing Li (such as Si), and the second metal has the property of stabilizing the shape change of the first metal when occluding and releasing Li. (Such as Fe).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-185127 Patent Document 2: Japanese Patent Application Laid-Open No. 2002-042806 Patent Document 3: Japanese Patent Application Laid-Open No. 2006-164554 Patent Document 4: Japanese Patent Application Laid-Open No. 2006-114454 Patent Document 5: Japanese Patent Application Laid-Open No. 2006-114454 Japanese Patent Application Laid-Open No. 2009-070825 Patent Document 6: Japanese Patent Application Laid-Open No. 2008-282919 Patent Document 7: International Publication No. 2007/010922 Pamphlet Patent Document 8: Japanese Patent Application Laid-Open No. 2008-251369 Patent Document 9: Japanese Patent Application Laid-Open No.
  • Patent Document 10 JP 2007-234255 A Patent Document 11: JP 2009-212074 A Patent Document 12: JP 2009-205950 A Patent Document 13: JP 2009-076373 A Patent Document 14: Patent No. Patent Document 15: Japanese Patent No. 2997441: JP 2009-1 4104 JP Patent Document 16: JP 2006-100244 JP
  • An active material for a secondary battery includes a core part capable of occluding and releasing lithium ions and a low crystalline or non-crystalline substance provided on at least a part of the surface of the core part. And a covering portion.
  • the core portion includes Si and O as constituent elements, the atomic ratio x (O / Si) of O to Si satisfies 0 ⁇ x ⁇ 0.5, and the covering portion includes Si and O as constituent elements.
  • the atomic ratio y of O to (O / Si) satisfies 0.5 ⁇ y ⁇ 1.8.
  • the covering portion has a void, and a carbon-containing material is provided in at least a part of the void.
  • a secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode including an active material, and an electrolytic solution, and the negative electrode uses the active material for a secondary battery according to the embodiment of the present technology described above. It is.
  • An electronic device according to an embodiment of the present technology includes a secondary battery, and the secondary battery has a configuration similar to that of the secondary battery according to the embodiment of the present technology described above.
  • low crystallinity means a non-crystalline region and a crystalline region (crystal grain) when the cross section or surface of the coating is observed using a high-angle scattering dark field scanning transmission electron microscope (HAADF STEM) or the like. Means a crystalline state in which both exist.
  • non-crystalline is synonymous with so-called amorphous, and when a covering portion is observed using HAADF STEM or the like, only an amorphous region exists, and a crystalline region exists. It means a crystalline state that is not. Note that the magnification during observation is, for example, 1.2 ⁇ 10 6 times.
  • the surface of the core portion is provided with a low crystalline or non-crystalline covering portion, and the core portion and the covering portion are respectively While having the above-described composition, a carbon-containing material is provided in the void of the covering portion. Therefore, excellent battery characteristics can be obtained. Moreover, the same effect can be acquired also in the electronic device of one Embodiment of this technique.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII of the secondary battery shown in FIG. It is a top view which represents typically the structure of the positive electrode and negative electrode which were shown in FIG. It is sectional drawing showing the structure of the secondary battery (cylindrical type) of one Embodiment of this technique. It is sectional drawing which expands and represents a part of winding electrode body shown in FIG.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII of the spirally wound electrode body illustrated in FIG.
  • It is a block diagram showing the structure of the application example (battery pack) of a secondary battery.
  • It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery.
  • It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery.
  • FIG. 1 illustrates a cross-sectional configuration of a negative electrode using a secondary battery active material according to an embodiment of the present technology.
  • FIG. 2 illustrates a negative electrode active material that is a secondary battery active material according to an embodiment of the present technology. It represents the cross-sectional structure of the substance.
  • 3 to 6 are HAADF STEM photographs (hereinafter, simply referred to as “TEM photographs”) of the cross-sectional structure of the negative electrode active material.
  • the negative electrode has a negative electrode active material layer 2 on a negative electrode current collector 1 as shown in FIG.
  • the negative electrode active material layer 2 may be provided on both sides of the negative electrode current collector 1 or may be provided only on one side. However, the negative electrode current collector 1 may not be provided.
  • the negative electrode current collector 1 is formed of, for example, a conductive material excellent in electrochemical stability, electrical conductivity, and mechanical strength.
  • the conductive material is, for example, a metal such as Cu, Ni, or stainless steel. Material. Among these, a material that does not form an intermetallic compound with Li and is alloyed with the negative electrode active material layer 2 is preferable.
  • the negative electrode current collector 1 preferably contains C and S as constituent elements. This is because the physical strength of the negative electrode current collector 1 is improved, so that the negative electrode current collector 1 is hardly deformed even when the negative electrode active material layer 2 expands and contracts during charging and discharging.
  • a negative electrode current collector 1 is, for example, a metal foil doped with C and S.
  • the content of C and S is not particularly limited, but is preferably 100 ppm or less. This is because a higher effect can be obtained.
  • the surface of the negative electrode current collector 1 (the surface in contact with the negative electrode active material layer 2) may be roughened or may not be roughened.
  • the non-roughened negative electrode current collector 1 is, for example, a rolled metal foil, and the roughened negative electrode current collector 1 is, for example, a metal foil that has been subjected to electrolytic treatment or sandblasting. is there.
  • the electrolytic treatment is a method of providing irregularities by forming fine particles on the surface of a metal foil or the like using an electrolytic method in an electrolytic bath.
  • a metal foil produced by an electrolytic method is generally called an electrolytic foil (for example, an electrolytic Cu foil).
  • the surface of the negative electrode current collector 1 is preferably roughened. This is because the anchor effect improves the adhesion of the negative electrode active material layer 2 to the negative electrode current collector 1.
  • the surface roughness (for example, ten-point average roughness Rz) of the negative electrode current collector 1 is not particularly limited, but is preferably as large as possible in order to improve the adhesion of the negative electrode active material layer 2 by the anchor effect. However, if the surface roughness is too large, the adhesion of the negative electrode active material layer 2 may be lowered.
  • the negative electrode active material layer 2 includes one or two or more particulate negative electrode active materials 200 that can occlude and release electrode reactants (lithium ions). Furthermore, other materials such as a negative electrode binder or a negative electrode conductive agent may be included.
  • the negative electrode active material 200 includes a core part 201 capable of occluding and releasing lithium ions, and a covering part 202 provided on the surface of the core part 201.
  • the state in which the core part 201 is covered with the covering part 202 in this way can be confirmed using, for example, a scanning electron microscope (SEM). Further, the crystallinity (crystal state) of the core part 201 and the covering part 202 can be confirmed using a TEM or the like as shown in FIGS.
  • the core part 201 contains Si and O as constituent elements, and the atomic ratio x (O / Si) of O to Si satisfies 0 ⁇ x ⁇ 0.5. More specifically, the core portion 201 includes, for example, a silicon-based material (SiO x : 0 ⁇ x ⁇ 0.5). Compared to the case where the atomic ratio x is out of the range (x ⁇ 0.5), the core part 201 easily absorbs and releases lithium ions during charge and discharge, and the irreversible capacity decreases, so that a high battery capacity is obtained. Because it is.
  • the crystallinity of the core part 201 may be any of high crystallinity, low crystallinity, or non-crystallinity. Among these, high crystallinity or low crystallinity is preferable, and high crystallinity is more preferable. This is because the core part 201 easily absorbs and releases lithium ions during charging and discharging, so that a high battery capacity and the like can be obtained. Moreover, it is because the core part 201 becomes difficult to expand and contract during charging and discharging. Especially, it is preferable that the half value width (2 (theta)) of the diffraction peak resulting from the (111) crystal plane of Si obtained by X-ray diffraction is 20 degrees or less. The crystallite size resulting from the (111) crystal plane of Si is preferably 10 nm or more. This is because a higher effect can be obtained.
  • the core part 201 may contain any one type or two or more types of other elements together with Si and O.
  • the core part 201 preferably contains Fe as a constituent element. This is because the electrical resistance of the core part 201 is lowered.
  • the ratio of Fe to Si and O (Fe / (Si + O)) is not particularly limited, but is preferably 0.01% by weight to 7.5% by weight. This is because not only the electrical resistance of the core part 201 is lowered, but also the diffusibility of lithium ions is improved.
  • Fe may exist separately from Si and O (in a free state), or may form an alloy or a compound with at least one of Si and O. The same applies to Al and the like described later.
  • the state of the core portion 201 containing Fe can be confirmed using, for example, EDX.
  • the core part 201 includes Al, Cr, Ni, B, Mg, Ca, Ti, V, Mn, Co, Cu, Ge, Y, Zr, Mo, Ag, In, Sn, Sb, Ta, W, At least one element of Pb, La, Ce, Pr, Nd, and the like may be included as a constituent element.
  • at least one of Al, Ca, Mn, Cr, Mg, and Ni is preferable. This is because the electrical resistance of the core part 201 is lowered.
  • the ratio of Al or the like to Si and O is not particularly limited.
  • the diffusibility of lithium ion improves more.
  • the average particle diameter (median diameter D50) of the core part 201 is not particularly limited, but is preferably 0.1 ⁇ m to 20 ⁇ m. This is because a higher effect can be obtained. Specifically, if D50 is too small, the surface area increases, which may lead to a decrease in safety. If D50 is too large, the negative electrode active material 200 may be damaged due to expansion during charging. there is a possibility. In addition, if D50 is too small, it may be difficult to apply the slurry containing the negative electrode active material 200.
  • the covering portion 202 is provided on at least a part of the surface of the core portion 201. For this reason, the coating
  • the covering portion 202 contains Si and O as constituent elements, and the atomic ratio y (O / Si) of O to Si satisfies 0.5 ⁇ y ⁇ 1.8. More specifically, the covering portion 202 includes, for example, a silicon-based material (SiO y : 0.5 ⁇ y ⁇ 1.8). This is because deterioration of the negative electrode active material 200 is suppressed even when charging and discharging are repeated. Thereby, the core part 201 is chemically and physically protected by the coating
  • a silicon-based material SiO y : 0.5 ⁇ y ⁇ 1.8
  • the covering portion 202 when the covering portion 202 is interposed between the core portion 201 and the electrolytic solution, the highly reactive core portion 201 is difficult to come into contact with the electrolytic solution, so that the decomposition reaction of the electrolytic solution is suppressed.
  • the covering portion 202 if the covering portion 202 is formed of the same material as the core portion 201 (a material containing a common element (Si) as a constituent element), the adhesion of the covering portion 202 to the core portion 201 is also improved. Get higher.
  • the covering portion 202 has flexibility (a property of being easily deformed), even when the core portion 201 expands and contracts during charging and discharging, the covering portion 202 easily expands and contracts (expands and contracts). As a result, the covering portion 202 is less likely to be damaged (ruptured or the like) when the core portion 201 is expanded and contracted, so that the covering state of the core portion 201 by the covering portion 202 is maintained even after repeated charge and discharge. Therefore, even if the core part 201 is cracked during charging and discharging, the new surface is difficult to be exposed and the new surface is difficult to contact the electrolytic solution, so that the decomposition reaction of the electrolytic solution is remarkably suppressed.
  • the material for forming the covering portion 202 is a Si oxide (SiO y ).
  • the crystallinity of the covering portion 202 is low crystalline or non-crystalline (amorphous). Compared with the case of high crystallinity, lithium ions are more easily diffused. Therefore, even when the surface of the core part 201 is covered with the covering part 202, the core part 201 can easily occlude and release lithium ions. Because.
  • the crystallinity of the covering portion 202 is preferably lower (close to non-crystalline) than the crystalline state of the core portion 201, and more preferably non-crystalline. This is because the flexibility of the covering portion 202 is improved, so that the covering portion 202 can easily follow the expansion and contraction of the core portion 201 during charging and discharging. In addition, since the covering portion 202 is less likely to trap lithium ions, the entry and exit of lithium ions in the core portion 201 is less likely to be inhibited. Note that “the crystallinity of the covering portion 202 is lower than the crystallinity of the core portion 201” means that, for example, when the core portion 201 is highly crystalline, the covering portion 202 is low crystalline or non-crystalline. It means that there is. Or, for example, when the core part 201 is low crystalline, it means that the covering part 202 is non-crystalline.
  • FIGS. 3 and 6 show a case where the core portion 201 is made of highly crystalline Si and the covering portion 202 is made of amorphous SiO y .
  • FIGS. 4 and 5 show a case where the core portion 201 is made of high crystalline Si and the covering portion 202 is made of low crystalline SiO y .
  • “Low crystallinity” means a crystalline state including both an amorphous region and a crystalline region (crystal grain), and is different from “noncrystalline” including only an amorphous region.
  • the covering portion 202 may be observed using, for example, the above-described HAADF STEM. If it can be confirmed from the TEM photograph that a non-crystalline region and a crystalline region are mixed, the covering portion 202 has low crystallinity. Note that in the case where a non-crystalline region and a crystalline region are mixed, the crystalline region is observed as a region (crystal grain) having a granular contour. Since a stripe pattern (crystal lattice stripe) due to crystallinity is observed inside the crystal grain, the crystal grain can be identified from the amorphous region.
  • non-crystalline and low crystalline are apparent from the TEM photographs shown in FIGS.
  • the covering portion 202 is non-crystalline, as shown in FIG. 3, only the non-crystalline region is observed, and the crystalline region (crystal grains having crystal lattice stripes) is not observed.
  • the covering portion 202 has low crystallinity, as shown in FIG. 4, it is observed that crystal grains (portions indicated by arrows) are scattered in the amorphous region. Is done. Since these crystal grains have crystal lattice stripes with a predetermined interval corresponding to the lattice plane interval d of Si, they are clearly distinguished from the surrounding amorphous regions. Note that when the TEM photograph shown in FIG. 4 was Fourier transformed (a figure corresponding to an electron diffraction diagram was obtained), the spots were arranged in a ring shape, so that a large number of crystal regions existed inside the covering portion 202. It was confirmed that
  • the degree of low crystallinity of the covering portion 202 is not particularly limited, but among them, the average area occupation ratio of crystal grains due to the (111) face and the (220) face of Si is preferably 35% or less, More preferably, it is 25% or less, and more preferably 20% or less. This is because a higher effect can be obtained.
  • the area occupation ratio (%) (sum of crystal grain area / area of observation area) ⁇ 100 is calculated.
  • the drawing of the outline and the calculation of the area occupancy may be performed manually or mechanically using dedicated processing software.
  • an average value of the area occupancy rates (average area occupancy rate) calculated in each area is calculated.
  • the covering portion 202 is equally divided in the thickness direction, and the area is occupied by 20 areas in the inner portion and the outer portion. It is preferable to calculate the rate.
  • the average grain size of the crystal grains is not particularly limited, but is preferably 55 nm or less, and more preferably 50 nm or less. This is because a higher effect can be obtained.
  • This average particle size calculation procedure is to calculate the average area occupancy rate except for calculating the average particle size for each area and then calculating the average value of the average particle size (final average particle size) It is the same.
  • the diameter be the particle size.
  • the calculation of the particle size may be artificial or mechanical as in the case of calculating the average area occupancy.
  • the average area occupancy may be the same or different between the inner portion and the outer portion.
  • the average area occupation ratio of the crystal grains in the inner part is preferably equal to or larger than the average area occupation ratio of the crystal grains in the outer part (average area occupation ratio of the inner part ⁇ average of the outer part) Area occupancy). This is because a higher effect can be obtained.
  • the average thickness of the covering portion 202 is not particularly limited, but is preferably as thin as possible and more preferably 1 nm to 3000 nm. This is because the core part 201 can easily absorb and release lithium ions, and the protective function by the covering part 202 is effectively exhibited. Specifically, if the average thickness is less than 1 nm, the covering portion 202 may be difficult to protect the core portion 201. On the other hand, if the average thickness is greater than 3000 nm, the electrical resistance increases, and the core part 201 may not be able to occlude and release lithium ion ions during charging and discharging. This is because when the material for forming the covering portion 202 is SiO y , the SiO y has a property of easily occluding lithium ions but hardly releasing the lithium ions once occluded.
  • the average thickness of the covering portion 202 is calculated by the following procedure. First, one negative electrode active material 200 is observed using SEM or the like. The magnification at the time of observation is preferably such a magnification that the boundary between the core portion 201 and the covering portion 202 can be visually confirmed (determined) in order to measure the thickness T of the covering portion 202. Subsequently, after measuring the thickness T of the covering portion 202 at arbitrary 10 points, the average value (average thickness T per piece) is calculated. In this case, it is preferable to set the measurement positions so that they are widely dispersed without concentrating around a specific place as much as possible. Subsequently, the above average value calculation operation is repeated until the total number of observations by SEM reaches 100. Finally, the average value (average thickness T per one) calculated for the 100 negative electrode active materials 200 is calculated, and the average thickness of the covering portion 202 is calculated. To do.
  • the average coverage of the covering portion 202 with respect to the core portion 201 is not particularly limited, but is preferably as large as possible, and more preferably 30% or more (30% to 100%). This is because the protective function of the covering portion 202 is further improved.
  • the above-described coverage calculation operation is repeated until the total number of observations by SEM reaches 100.
  • the average value of the coverage ratio (coverage ratio per one) calculated for 100 negative electrode active materials 200 is calculated as the average coverage ratio of the covering portion 202.
  • the covering portion 202 is preferably adjacent to the core portion 201, but a natural oxide film (SiO 2 ) may be interposed between the core portion 201 and the covering portion 202.
  • the natural oxide film is formed by oxidizing the vicinity of the surface layer of the core portion 201 in the atmosphere. If the core part 201 exists in the center of the negative electrode active material 200 and the covering part 202 exists outside, the presence of the natural oxide film hardly affects the functions of the core part 201 and the covering part 202.
  • the negative electrode active material 200 includes the core portion 201 and the covering portion 202
  • XPS X-ray photoelectron spectroscopy
  • EDX energy dispersive X-ray
  • the negative electrode active material 200 may be analyzed using an analysis method (EDX) or the like.
  • the composition of the core part 201 and the covering part 202 can be confirmed by measuring the oxidation degree (atoms x, y) of the central part and the surface layer part of the negative electrode active material 200.
  • the covering part 202 may be dissolved and removed using an acid such as HF.
  • the detailed procedure for measuring the degree of oxidation is, for example, as follows. First, the negative electrode active material 200 (the core portion 201 covered with the covering portion 202) is quantified using a combustion method, and the total Si amount and O amount are calculated. Subsequently, after the covering portion 202 is washed and removed using HF or the like, the core portion 202 is quantified using a combustion method to calculate the Si amount and the O amount. Finally, the Si amount and O amount of the covering portion 202 are calculated by subtracting the Si amount and O amount of the core portion 201 from the total Si amount and O amount. Thereby, since Si amount and O amount are specified regarding the core part 201 and the coating
  • the plurality of negative electrode active materials 200 may be separated (dispersed) from each other, or two or more of them may be in contact (or connected).
  • the positional relationship of the negative electrode active materials 200 may be arbitrary.
  • coated part 202 may contain at least 1 sort (s) of elements, such as Fe, Al, and Ca, as a structural element. This is because the electrical resistance of the covering portion 202 decreases.
  • the ratio of Fe or the like to Si and O (Fe etc./(Si+O)) is not particularly limited.
  • the covering portion 202 has one or more voids therein, and a material (carbon-containing material) containing C as a constituent element is provided in at least a part of the voids. That is, the carbon-containing material is inserted into the gap, and the gap is filled with the carbon-containing material. This is because the conductivity of the negative electrode active material 200 is improved and the decomposition reaction of the electrolytic solution is suppressed without hindering the expansion / contraction properties of the covering portion 202 following the expansion / contraction of the core portion 201 described above.
  • the voids present inside the coating portion 202 are used as a space for relaxing internal stress generated when the negative electrode active material 200 expands and contracts during charging and discharging. For this reason, when the coating
  • the void exposes the highly reactive coating portion 202 therein, so that the electrolytic solution is easily decomposed on the exposed surface. In this regard, if a carbon-containing material is provided in the gap, the highly reactive coating 202 is difficult to be exposed inside the gap, so that the decomposition reaction of the electrolytic solution is suppressed.
  • the carbon-containing material since carbon is excellent in deformability (flexibility) and high conductivity, the carbon-containing material hardly inhibits the expansion / contraction property of the covering portion 202 that follows the expansion / contraction of the core portion 201 and the carbon-containing material. The electrical conductivity of the covering portion 202 containing the is improved.
  • the carbon-containing material may contain only C as a constituent element, or may contain any one kind or two or more kinds of other elements together with C.
  • the type of the “other element” is not particularly limited, and is, for example, H or O.
  • a G band peak derived from a graphite structure is detected in the vicinity of 1590 cm ⁇ 1 in the Raman spectrum, and a D band derived from a defect.
  • a peak is detected around 1350 cm ⁇ 1 .
  • the ratio IG / ID between the intensity IG of the G band peak and the intensity ID of the D band peak is also called a G / D ratio, and is an index representing the crystallinity (purity) of the carbon material.
  • the ratio IG / ID of the carbon-containing material provided in the gap of the covering portion 202 is not particularly limited, but is preferably 0.3 to 3. This is because excellent binding properties, conductivity, and deformability can be obtained.
  • the ratio IG / ID is smaller than 0.3, the binding property is increased, and thus the adhesion between the carbon-containing materials and the adhesion of the carbon-containing material to the covering portion 202 are improved.
  • the conductivity decreases and becomes hard, the carbon-containing material hardly expands and contracts following the expansion and contraction of the covering portion 202, and sufficient conductivity may not be obtained.
  • the ratio IG / ID is greater than 3, the conductivity becomes high and the softness is increased, so that the carbon-containing material easily expands and contracts following the expansion and contraction of the covering portion 202 and sufficient conductivity is obtained. .
  • the binding property is reduced, the adhesion between the carbon-containing materials and the adhesion of the carbon-containing material to the covering portion 202 may be reduced.
  • the ratio IG / ID is 0.3 to 3
  • the binding property and conductivity of the carbon-containing material are increased, and the carbon-containing material is expanded and contracted following the expansion and contraction of the covering portion 202. It becomes easy to do.
  • the formation factor of the void is not particularly limited. This is because, if a void exists in the covering portion 202 regardless of what factor is formed, the void can function as a space for stress relaxation. Further, the void distribution in the covering portion 202 is not particularly limited, but among them, the maximum peak void diameter in the void distribution of the covering portion 202 measured by the nitrogen adsorption method and the mercury intrusion method is preferably 500 nm or less. More preferably, it is 50 nm or less. This is because, if the void diameter is too large, the occupied volume of Si in the covering portion 202 decreases, so that the amount of occluded and released lithium ions decreases (battery capacity decreases).
  • any method for measuring the void distribution of the covering portion 202 any method can be used according to the size of the void diameter.
  • a nitrogen adsorption method or the like is used for a void distribution having a void diameter of 3 nm or more
  • a mercury intrusion method or the like is used for a void distribution having a void diameter of 100 nm or more.
  • This mercury porosimeter is, for example, Autopore IV9500 manufactured by Shimadzu Corporation.
  • an automatic specific surface area / pore distribution measuring device such as Tristar 3000 manufactured by Shimadzu Corporation is used.
  • the covering portion 202 may be a single layer or a multilayer, but among them, a multilayer is preferable as shown in FIG. This is because a stress relaxation space (void) is easily formed in the covering portion 202 (interlayer).
  • the broken line shown in FIG. 6 represents the standard of the boundary of each layer.
  • the covering portion 202 may be multi-layered over the entire surface, or may be partially multi-layered.
  • a carbon-containing layer may be provided on the surface of the negative electrode active material 200.
  • This carbon-containing layer is provided on at least a part of the surface of the negative electrode active material 200 and preferably has an electric resistance lower than that of the core part 201 and the covering part 202. This is because the core part 201 is less likely to come into contact with the electrolytic solution, so that the decomposition reaction of the electrolytic solution is suppressed. Moreover, it is because the electrical resistance of the negative electrode active material 200 falls more.
  • the composition of the carbon-containing layer is the same as that of the carbon-containing material described above. That is, the carbon-containing layer contains C as a constituent element, and may further contain one or more other elements (for example, H or O) as necessary. However, the material for forming the carbon-containing layer may be the same as or different from the material for forming the carbon-containing material. Specific examples of the carbon-containing layer include a carbon material described later as “another negative electrode active material”. When the material for forming the carbon-containing layer is the same as the material for forming the carbon-containing material, the gap of the covering portion 202 is filled with a part of the carbon-containing layer instead of the carbon-containing material. May be sealed. This is because the carbon-containing material and the carbon-containing layer can be formed substantially collectively.
  • the average thickness of the carbon-containing layer is not particularly limited, but is preferably 500 nm or less, and more preferably 200 nm or less. Moreover, the average coverage of the carbon-containing layer with respect to the negative electrode active material 200 is not particularly limited, but is preferably 30% or more. This is because a higher effect can be obtained. In particular, when the average thickness is greater than 500 nm, the properties of the slurry containing the negative electrode active material 200 are deteriorated, which may make it difficult to apply the slurry. Note that details regarding the calculation procedure of the average coverage and average thickness of the carbon-containing layer are the same as those of the covering portion 202.
  • the negative electrode binder contains, for example, any one kind or two kinds or more of synthetic rubber or polymer material.
  • the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • the polymer material include polyvinylidene fluoride, polyimide, polyamide, polyamideimide, polyacrylic acid, lithium polyacrylate, sodium polyacrylate, polymaleic acid, and copolymers thereof.
  • the polymer material may be, for example, carboxymethyl cellulose, styrene butadiene rubber, or polyvinyl alcohol.
  • the negative electrode conductive agent contains one or more of carbon materials such as graphite, carbon black, acetylene black, and ketjen black.
  • the negative electrode conductive agent may be a metal material or a conductive polymer as long as it is a conductive material.
  • the negative electrode active material layer 2 may contain other types of negative electrode active materials together with the negative electrode active material 200 including the core part 201 and the covering part 202 as necessary.
  • This “other negative electrode active material” is, for example, a carbon material. This is because the electrical resistance of the negative electrode active material layer 2 is lowered and the negative electrode active material layer 2 is less likely to expand and contract during charge / discharge.
  • This carbon material is, for example, graphitizable carbon, non-graphitizable carbon having a (002) plane spacing of 0.37 nm or more, or graphite having a (002) plane spacing of 0.34 nm or less.
  • pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon or carbon blacks include pitch coke, needle coke, petroleum coke and the like.
  • the organic polymer compound fired body is obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature.
  • the shape of the carbon material may be any of fibrous, spherical, granular or scale-like.
  • the other negative electrode active material may be a metal oxide or a polymer compound.
  • the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide.
  • the polymer compound include polyacetylene, polyaniline, and polypyrrole.
  • the negative electrode active material layer 2 is formed by, for example, a coating method, a firing method (sintering method), or two or more kinds thereof.
  • the application method is, for example, a method in which a negative electrode active material is mixed with a negative electrode binder and then dispersed in an organic solvent and applied.
  • the firing method is, for example, a method in which heat treatment is performed at a temperature higher than the melting point of the negative electrode binder or the like after being applied by the same procedure as the application method.
  • a known method can be used as the firing method. For example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like.
  • This negative electrode is manufactured, for example, by the following procedure.
  • the description is abbreviate
  • a particulate (powdered) core portion 201 containing Si and O as constituent elements is obtained by using, for example, a gas atomizing method, a water atomizing method, a melt pulverizing method, or the like.
  • the core part 201 contains a metal element such as Fe, the metal material is melted together with the raw materials.
  • a coating portion 202 containing Si and O as constituent elements is formed on the surface of the core portion 201 using, for example, a vapor phase growth method such as a vapor deposition method or a sputtering method.
  • a vapor phase growth method such as a vapor deposition method or a sputtering method.
  • the covering portion 202 tends to become non-crystalline.
  • the deposition process may be performed while heating, or the coating part 202 may be made low crystalline by heating after the coating part 202 is formed.
  • the degree of low crystallinity is controlled according to conditions such as temperature and time during heating, for example.
  • the core portion 201 is rotated as necessary, and an opening / closing mechanism such as a shutter is used to control whether or not the deposition process is performed. It is preferable to perform a deposition process on the surface of the portion 201. This is because the surface of the core part 201 is easily covered uniformly by the covering part 202. In addition, since the covering portion 202 has multiple layers, stress relaxation spaces (voids) are easily formed between the layers.
  • a carbon-containing material is formed in the voids of the covering portion 202 using a thermal decomposition chemical vapor deposition (CVD) method or the like.
  • CVD thermal decomposition chemical vapor deposition
  • methane, ethane, ethylene, acetylene, propane, or the like is used as the carbon source (organic gas).
  • the thermal decomposition CVD method since the carbon source reaches the inside of the fine voids and is thermally decomposed, the fine voids can be easily filled with the carbon-containing material.
  • the structure in which the carbon-containing material is embedded in the minute voids of the covering portion 202 is realized for the first time by forming the carbon-containing material separately from the covering portion 202 by using a thermal decomposition CVD method or the like as described above.
  • the forming material of the covering portion 202 and the forming material of the carbon-containing material are co-evaporated, or when the carbon-containing material is formed using the vapor deposition method after forming the covering portion 202, The characteristic structure cannot be obtained. This is because the carbon-containing material cannot be selectively formed so as to fill the voids of the covering portion 202.
  • the core part 201 is covered with the covering part 202 and the carbon-containing material is inserted into the gap of the covering part 202, so that the negative electrode active material 200 is obtained.
  • a carbon-containing layer may be formed on the surface of the covering portion 202 using a vapor deposition method or a wet coating method.
  • the vapor phase growth method include a vapor deposition method, a sputtering method, a thermal decomposition CVD method, a thermal decomposition CVD method, an electron beam evaporation method, and a sugar carbonization method.
  • the thermal decomposition CVD method is preferable. This is because the carbon-containing layer is easily formed to have a uniform thickness.
  • the voids of the covering portion 202 are sealed with a carbon-containing layer instead of the carbon-containing material, a part of the carbon-containing layer can be embedded in the fine voids.
  • the carbon-containing layer is formed by spraying steam directly on the surface of the negative electrode active material.
  • the carbon-containing layer is formed using a powder sputtering method while introducing Ar gas.
  • the CVD method for example, a gas obtained by sublimating a metal chloride and a mixed gas such as H 2 and N 2 are mixed so that the molar ratio of the metal chloride is 0.03 to 0.3. After that, it is heated to 1000 ° C. or higher to form a carbon-containing layer.
  • a metal-containing solution for example, after adding a metal-containing solution to a slurry containing a negative electrode active material to form a metal hydroxide by adding an alkali solution, reduction treatment with hydrogen at 450 ° C. is performed. A carbon-containing layer is formed on the surface of the negative electrode active material.
  • a carbon material is used as a material for forming the carbon-containing layer
  • a negative electrode active material is introduced into the chamber, an organic gas is introduced into the chamber, and then heat treatment is performed under conditions of 10,000 Pa and 1000 ° C. or higher.
  • a time is performed to form a carbon-containing layer on the surface of the negative electrode active material.
  • the type of the organic gas is not particularly limited as long as it generates carbon by thermal decomposition, and examples thereof include methane, ethane, ethylene, acetylene, and propane.
  • the negative electrode active material 200 and another material such as a negative electrode binder are mixed to form a negative electrode mixture, and then dissolved in a solvent such as an organic solvent to obtain a negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to the surface of the negative electrode current collector 1 and then dried to form the negative electrode active material layer 2. Thereafter, the negative electrode active material layer 2 may be compression-molded and heated (fired) as necessary.
  • the negative electrode active material 200 has a low crystalline or non-crystalline covering portion 202 on the surface of the core portion 201, and the core portion 201 and the covering portion 20 have the above-described composition. is doing.
  • a carbon-containing material is provided in the gap of the covering portion 202.
  • the conductivity of the negative electrode active material 200 is improved, and the decomposition reaction of the electrolytic solution due to the highly reactive coating portion 202 is suppressed. Therefore, it can contribute to the performance improvement of the secondary battery using a negative electrode active material or a negative electrode.
  • the ratio IG / ID of the carbon-containing material measured by the Raman spectrum method is 0.3 to 3, or the maximum peak void diameter in the pore distribution of the coating measured by the nitrogen adsorption method and the mercury intrusion method If it is 500 nm or less, a higher effect can be acquired.
  • the covering portion 202 is a multilayer, a stress relaxation gap is easily formed in the covering portion 202, so that a higher effect can be obtained.
  • a carbon-containing layer is provided on the surface of the negative electrode active material 200, the average thickness of the carbon-containing layer is 500 nm or less, or the average coverage of the carbon-containing layer with respect to the negative electrode active material 200 is 30% or more. If so, a higher effect can be obtained.
  • the negative electrode active material 200 provided with the carbon-containing layer can be easily formed by sealing the gap of the covering portion 202 with a part of the carbon-containing layer.
  • the covering portion 202 has low crystallinity, and the average area occupancy of crystal grains due to the Si (111) plane and (220) plane is 35% or less, or the average grain diameter of the crystal grains is 55 nm or less. Therefore, a higher effect can be obtained.
  • the average area occupancy and the average grain size in the inner part of the crystal grains are the same as the average area occupancy and the average grain diameter in the outer part, or If it is larger, a higher effect can be obtained.
  • the average coverage of the covering portion 202 with respect to the core portion 201 is 30% or more, or the average thickness of the covering portion 202 is 1 nm to 3000 nm, a higher effect can be obtained.
  • the core part 201 contains Fe as a constituent element and the ratio of Fe to Si and O (Fe / (Si + O)) is 0.01 wt% to 7.5 wt%, a higher effect can be obtained. Can do.
  • FIG. 8 shows a cross section taken along the line VIII-VIII shown in FIG.
  • FIG. 9 schematically shows a planar configuration of the positive electrode 21 and the negative electrode 22 shown in FIG.
  • the rectangular secondary battery is mainly one in which the battery element 20 is housed inside the battery can 11.
  • the battery element 20 is a wound laminate in which a positive electrode 21 and a negative electrode 22 are laminated and wound via a separator 23, and has a flat shape according to the shape of the battery can 11.
  • the battery can 11 is, for example, a square exterior member. As shown in FIG. 8, this rectangular exterior member has a rectangular or substantially rectangular shape (including a curve in part) in the longitudinal section, and is not only a rectangular shape but also an oval shape. This also applies to the square battery. That is, the square-shaped exterior member is a bottomed rectangular or bottomed oval shaped container-like member having a rectangular shape or a substantially rectangular (oval shape) opening formed by connecting arcs with straight lines. FIG. 8 shows a case where the battery can 11 has a rectangular cross-sectional shape.
  • the battery can 11 is made of a conductive material such as Fe, Al, or an alloy thereof, and may function as an electrode terminal.
  • Fe that is harder than Al is preferable in order to suppress swelling of the battery can 11 by utilizing hardness (hardness to deform) during charge and discharge.
  • the battery can 11 is made of Fe, Ni or the like may be plated on the surface.
  • the battery can 11 has a hollow structure in which one end is opened and the other end is closed, and is sealed by an insulating plate 12 and a battery lid 13 attached to the open end.
  • the insulating plate 12 is provided between the battery element 20 and the battery lid 13 and is formed of an insulating material such as polypropylene.
  • the battery lid 13 is formed of, for example, the same material as the battery can 11 and may function as an electrode terminal similarly to the battery can 11.
  • a terminal plate 14 serving as a positive electrode terminal is provided outside the battery lid 13, and the terminal plate 14 is electrically insulated from the battery lid 13 through an insulating case 16.
  • the insulating case 16 is made of an insulating material such as polybutylene terephthalate, for example.
  • a through hole is provided at substantially the center of the battery lid 13, and the through hole is electrically connected to the terminal plate 14 and is electrically insulated from the battery lid 13 through the gasket 17.
  • a positive electrode pin 15 is inserted.
  • the gasket 17 is formed of, for example, an insulating material, and asphalt may be applied to the surface of the gasket 17.
  • a cleavage valve 18 and an injection hole 19 are provided in the vicinity of the periphery of the battery lid 13.
  • the cleavage valve 18 is electrically connected to the battery lid 13 and is disconnected from the battery lid 13 when the internal pressure of the battery exceeds a certain level due to an internal short circuit or heating from the outside. Is to be released.
  • the injection hole 19 is closed by a sealing member 19A made of, for example, a stainless steel ball.
  • a positive electrode lead 24 made of a conductive material such as Al is attached to an end portion (for example, an inner terminal portion) of the positive electrode 21, and Ni or the like is attached to an end portion (for example, the outer terminal portion) of the negative electrode 22.
  • a negative electrode lead 25 made of a conductive material is attached.
  • the positive electrode lead 24 is welded to one end of the positive electrode pin 15 and electrically connected to the terminal plate 14, and the negative electrode lead 25 is welded to the battery can 11 and electrically connected to the battery can 11. It is connected.
  • the positive electrode 21 includes, for example, a positive electrode active material layer 21B on both surfaces of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may be provided only on one surface of the positive electrode current collector 21A.
  • the positive electrode current collector 21A is formed of a conductive material such as Al, Ni, or stainless steel, for example.
  • the positive electrode active material layer 21B includes one or more positive electrode materials capable of occluding and releasing lithium ions as a positive electrode active material, and a positive electrode binder or a positive electrode conductive agent is used as necessary. Other materials may be included.
  • a positive electrode binder or a positive electrode electrically conductive agent is the same as that of the negative electrode binder and negative electrode electrically conductive agent which were already demonstrated, for example.
  • a lithium-containing compound is preferable. This is because a high energy density can be obtained.
  • the lithium-containing compound include a composite oxide containing Li and a transition metal element as constituent elements, and a phosphate compound containing Li and a transition metal element as constituent elements.
  • the transition metal element is preferably one or more of Co, Ni, Mn, and Fe. This is because a higher voltage can be obtained.
  • the chemical formula is represented by, for example, Li x M11O 2 or Li y M12PO 4 . In the formula, M11 and M12 represent one or more transition metal elements.
  • x and y vary depending on the charge / discharge state, but are generally 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10. In particular, when the positive electrode material contains Ni or Mn, the volume stability tends to be improved.
  • the composite oxide containing Li and a transition metal element is, for example, Li x CoO 2 , Li x NiO 2 (x is an arbitrary value), or a lithium nickel composite oxide represented by the following formula (1) It is.
  • the phosphate compound containing Li and a transition metal element include LiFePO 4 or LiFe 1-u Mn u PO 4 (u ⁇ 1). This is because high battery capacity is obtained and excellent cycle characteristics are also obtained.
  • the positive electrode material may be a material other than the above. For example, a material represented by Li x M14 y O 2 (M14 is Ni and at least one of M13 shown in Formula (1), and x> 1 and y is arbitrary). Etc.
  • LiNi 1-x M13 x O 2 (1) (M13 is Co, Mn, Fe, Al, V, Sn, Mg, Ti, Sr, Ca, Zr, Mo, Tc, Ru, Ta, W, Re, Y, Cu, Zn, Ba, B, Cr, Si. , Ga, P, Sb and Nb, and x satisfies 0.005 ⁇ x ⁇ 0.5.)
  • examples of the positive electrode material include oxides, disulfides, chalcogenides, and conductive polymers.
  • oxides include titanium oxide, vanadium oxide, and manganese dioxide.
  • examples of the disulfide include titanium disulfide and molybdenum sulfide.
  • An example of the chalcogenide is niobium selenide.
  • examples of the conductive polymer include sulfur, polyaniline, and polythiophene.
  • the negative electrode 22 has the same configuration as the negative electrode described above.
  • the negative electrode 22 has a negative electrode active material layer 22B on both surfaces of the negative electrode current collector 22A.
  • the configurations of the negative electrode current collector 22A and the negative electrode active material layer 22B are the same as the configurations of the negative electrode current collector 1 and the negative electrode active material layer 2, respectively.
  • the chargeable capacity of the negative electrode material capable of occluding and releasing lithium ions is preferably larger than the discharge capacity of the positive electrode 21. This is to prevent Li metal from unintentionally precipitating during charge / discharge.
  • the positive electrode active material layer 21B is provided, for example, on a part of the surface of the positive electrode current collector 21A (for example, a central region in the longitudinal direction).
  • the negative electrode active material layer 22B is provided on the entire surface of the negative electrode current collector 22A, for example.
  • the negative electrode active material layer 22B is provided in a region (opposing region R1) facing the positive electrode active material layer 21B and a region not facing (non-facing region R2) of the negative electrode current collector 22A.
  • the portion provided in the facing region R1 is involved in charging / discharging, but the portion provided in the non-facing region R2 is hardly involved in charging / discharging.
  • the positive electrode active material layer 21B and the negative electrode active material layer 22B are shaded.
  • the negative electrode active material 200 (see FIG. 2) included in the negative electrode active material layer 22B includes the core portion 201 and the covering portion 202.
  • the formation state of the core part 201 and the covering part 202 is changed from the state when the negative electrode active material layer 22B is formed. Can vary. However, in the non-facing region R2, it is hardly affected by charging / discharging, and the formation state of the negative electrode active material layer 22B is maintained.
  • the negative electrode active material layer 22B in the non-facing region R2 Is preferably examined. This is because the state of the core portion 201 and the covering portion 202 can be accurately examined with good reproducibility without depending on the charge / discharge history (the presence / absence and number of times of charge / discharge).
  • the maximum utilization rate of the negative electrode 22 in a fully charged state (hereinafter, simply referred to as “negative electrode utilization rate”) is not particularly limited, and can be arbitrarily set according to the ratio between the capacity of the positive electrode 21 and the capacity of the negative electrode 22. is there.
  • X is the amount of occlusion of lithium ions per unit area when the negative electrode 22 is fully charged
  • Y is the amount of lithium ions that can be occluded electrochemically per unit area of the negative electrode 22.
  • the occlusion amount X can be obtained, for example, by the following procedure. First, after charging the secondary battery until it is fully charged, the secondary battery is disassembled, and a portion (inspection negative electrode) of the negative electrode 22 facing the positive electrode 21 is cut out. Subsequently, an evaluation battery using metal lithium as a counter electrode is assembled using the inspection negative electrode. Finally, after discharging the evaluation battery and measuring the discharge capacity at the first discharge, the storage capacity X is calculated by dividing the discharge capacity by the area of the inspection negative electrode. “Discharge” in this case means energization in the direction in which lithium ions are released from the inspection negative electrode. For example, until the battery voltage reaches 1.5 V at a current density of 0.1 mA / cm 2. Discharge constant current.
  • the charge capacity is measured, and then the charge capacity is divided by the area of the inspection negative electrode. calculate.
  • “Charging” in this case means that the inspection negative electrode is energized in the direction in which lithium ions are occluded.
  • the current density is 0.1 mA / cm 2 and the battery voltage is 0 V. The voltage charging is performed until the current density reaches 0.02 mA / cm 2 .
  • the negative electrode utilization rate is preferably 35% to 80%. This is because excellent initial charge / discharge characteristics, cycle characteristics, load characteristics, and the like can be obtained.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is a porous film made of, for example, a synthetic resin or ceramic, and may be a laminated film in which two or more kinds of porous films are laminated.
  • the synthetic resin is, for example, polytetrafluoroethylene, polypropylene, or polyethylene.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte.
  • This electrolytic solution is obtained by dissolving an electrolyte salt in a solvent, and may contain other materials such as additives as necessary.
  • the solvent includes, for example, any one or more of nonaqueous solvents such as organic solvents.
  • nonaqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2 -Methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, butyric acid Methyl, methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile
  • At least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is preferable. This is because more excellent characteristics can be obtained.
  • a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, a relative dielectric constant ⁇ ⁇ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate (for example, viscosity ⁇ 1 mPas).
  • -A combination with s is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
  • the solvent preferably contains an unsaturated carbon bond cyclic carbonate.
  • An unsaturated carbon bond cyclic ester carbonate is a cyclic ester carbonate containing one or more unsaturated carbon bonds (in which an unsaturated carbon bond is introduced at any position).
  • Examples of the unsaturated carbon-bonded cyclic carbonate include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate.
  • the content of the unsaturated carbon bond cyclic carbonate in the solvent is not particularly limited, but is, for example, 0.01 wt% to 10 wt%.
  • the solvent preferably contains at least one of a halogenated chain carbonate and a halogenated cyclic carbonate. This is because a stable coating is formed on the surface of the negative electrode 22 during charging and discharging, so that the decomposition reaction of the electrolytic solution is suppressed.
  • the halogenated chain carbonate ester is a chain carbonate ester containing halogen as a constituent element (at least one hydrogen is replaced by a halogen).
  • the halogenated cyclic carbonate is a cyclic carbonate containing halogen as a constituent element (at least one hydrogen is replaced by a halogen).
  • the kind of halogen is not particularly limited, but among them, F, Cl or Br is preferable, and F is more preferable. This is because an effect higher than that of other halogens can be obtained.
  • the number of halogens is preferably two rather than one, and may be three or more. This is because the ability to form a protective film increases and a stronger and more stable coating is formed, so that the decomposition reaction of the electrolytic solution is further suppressed.
  • the halogenated chain carbonate ester is, for example, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate or difluoromethyl methyl carbonate.
  • the halogenated cyclic carbonate is 4-fluoro-1,3-dioxolan-2-one or 4,5-difluoro-1,3-dioxolan-2-one.
  • This halogenated cyclic carbonate includes geometric isomers.
  • the content of the halogenated chain carbonate and the halogenated cyclic carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 50% by weight.
  • the solvent preferably contains sultone (cyclic sulfonate ester). This is because the chemical stability of the electrolytic solution is improved.
  • the sultone is, for example, propane sultone or propene sultone.
  • the content of sultone in the solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the solvent preferably contains an acid anhydride.
  • the acid anhydride include carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride.
  • the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride.
  • the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid.
  • the content of the acid anhydride in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
  • the electrolyte salt includes, for example, any one or more of light metal salts such as lithium salts.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiAlCl 4 , Li 2 SiF 6 , LiCl, or LiBr.
  • any one or more of LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 are preferable, LiPF 6 or LiBF 4 is preferable, and LiPF 6 is more preferable. This is because the internal resistance is reduced, so that more excellent characteristics can be obtained.
  • the content of the electrolyte salt is preferably 0.3 mol / kg or more and 3.0 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.
  • This secondary battery is manufactured by the following procedure, for example.
  • a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to form a positive electrode mixture, which is then dispersed in an organic solvent or the like and pasted.
  • a positive electrode mixture slurry is applied to the positive electrode current collector 21A using a coating device such as a doctor blade or a bar coater, and then dried to form the positive electrode active material layer 21B.
  • the positive electrode active material layer 21B is compression-molded using a roll press or the like while being heated as necessary. In this case, compression molding may be repeated a plurality of times.
  • the negative electrode active material layer 22B is formed on the negative electrode current collector 22A by the same manufacturing procedure as that of the negative electrode described above.
  • the positive electrode lead 24 is attached to the positive electrode current collector 21A and the negative electrode lead 25 is attached to the negative electrode current collector 22A by using a welding method or the like. Then, after laminating the positive electrode 21 and the negative electrode 22 via the separator 23, they are wound in the longitudinal direction. Finally, the wound body is molded so as to have a flat shape.
  • the battery element 20 When assembling the secondary battery, first, the battery element 20 is accommodated in the battery can 11, and then the insulating plate 12 is placed on the battery element 20. Subsequently, the positive electrode lead 24 is attached to the positive electrode pin 15 and the negative electrode lead 25 is attached to the battery can 11 using a welding method or the like. In this case, the battery lid 13 is fixed to the open end of the battery can 11 using a laser welding method or the like. Finally, after injecting the electrolyte into the battery can 11 from the injection hole 19 and impregnating the separator 23, the injection hole 19 is closed with a sealing member 19A.
  • Cylindrical type> 10 and 11 show a cross-sectional configuration of the cylindrical secondary battery.
  • a part of the spirally wound electrode body 40 shown in FIG. 10 is enlarged.
  • the constituent elements of the already-described prismatic secondary battery are referred to as needed.
  • the cylindrical secondary battery mainly includes a wound electrode body 40 and a pair of insulating plates 32 and 33 in a substantially hollow cylindrical battery can 31.
  • the wound electrode body 40 is a wound laminated body in which a positive electrode 41 and a negative electrode 42 are laminated and wound via a separator 43.
  • the battery can 31 has a hollow structure in which one end is closed and the other end is opened.
  • the battery can 31 is made of the same material as the battery can 11.
  • the pair of insulating plates 32 and 33 are disposed so as to sandwich the wound electrode body 40 from above and below and to extend perpendicularly to the wound peripheral surface.
  • a battery lid 34, a safety valve mechanism 35, and a heat sensitive resistance element (PTC element) 36 are caulked through a gasket 37 at the open end of the battery can 31, and the battery can 31 is sealed.
  • the battery lid 34 is formed of the same material as the battery can 31, for example.
  • the safety valve mechanism 35 and the thermal resistance element 36 are provided inside the battery lid 34, and the safety valve mechanism 35 is electrically connected to the battery lid 34 via the thermal resistance element 36.
  • the disk plate 35A is reversed and the electric power between the battery lid 34 and the wound electrode body 40 is reversed. Connection is cut off.
  • the heat-sensitive resistance element 36 prevents abnormal heat generation caused by a large current by increasing resistance in response to a temperature rise.
  • the gasket 37 is made of, for example, an insulating material, and asphalt may be applied to the surface thereof.
  • a center pin 44 may be inserted in the center of the wound electrode body 40.
  • a positive electrode lead 45 formed of a conductive material such as Al is connected to the positive electrode 41, and a negative electrode lead 46 formed of a conductive material such as Ni is connected to the negative electrode 42.
  • the positive electrode lead 45 is welded to the safety valve mechanism 35 and is electrically connected to the battery lid 34.
  • the negative electrode lead 46 is welded to the battery can 31.
  • the positive electrode 41 has, for example, a positive electrode active material layer 41B on both surfaces of the positive electrode current collector 41A.
  • the negative electrode 42 has the same configuration as the negative electrode described above, and includes, for example, a negative electrode active material layer 42B on both surfaces of the negative electrode current collector 42A.
  • the configurations of the positive electrode current collector 41A, the positive electrode active material layer 41B, the negative electrode current collector 42A, the negative electrode active material layer 42B, and the separator 43 are the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode, respectively.
  • the configurations of the active material layer 22B and the separator 23 are the same.
  • the composition of the electrolytic solution impregnated in the separator 43 is the same as the composition of the electrolytic solution in the square secondary battery.
  • This cylindrical secondary battery is manufactured, for example, by the following procedure.
  • the positive electrode active material layer 41B is formed on both surfaces of the positive electrode current collector 41A to produce the positive electrode 41 by the same production procedure as that of the positive electrode 21 and the negative electrode 22, and the negative electrode is formed on both surfaces of the negative electrode current collector 42A.
  • the active material layer 42B is formed to produce the negative electrode 42.
  • the positive electrode lead 45 is attached to the positive electrode 41 and the negative electrode lead 46 is attached to the negative electrode 42.
  • the positive electrode 41 and the negative electrode 42 are stacked and wound through the separator 43 to produce the wound electrode body 40, and then the center pin 44 is inserted into the winding center.
  • the wound electrode body 40 is accommodated in the battery can 31 while being sandwiched between the pair of insulating plates 32 and 33.
  • the positive electrode lead 45 is attached to the safety valve mechanism 35 using a welding method or the like, and the tip of the negative electrode lead 46 is attached to the battery can 31.
  • an electrolytic solution is injected into the battery can 31 and impregnated in the separator 43.
  • the battery lid 34, the safety valve mechanism 35, and the heat sensitive resistance element 36 are crimped via the gasket 37.
  • FIG. 12 shows an exploded perspective configuration of a laminated film type secondary battery
  • FIG. 13 is an enlarged cross section taken along line XIII-XIII of the spirally wound electrode body 50 shown in FIG.
  • the laminated film type secondary battery is mainly one in which a wound electrode body 50 is housed inside a film-shaped exterior member 60.
  • the wound electrode body 50 is a wound laminated body in which a positive electrode 53 and a negative electrode 54 are laminated and wound via a separator 55 and an electrolyte layer 56.
  • a positive electrode lead 51 is attached to the positive electrode 53, and a negative electrode lead 52 is attached to the negative electrode 54.
  • the outermost peripheral portion of the wound electrode body 50 is protected by a protective tape 57.
  • the positive electrode lead 51 and the negative electrode lead 52 are led out in the same direction from the inside of the exterior member 60 to the outside, for example.
  • the positive electrode lead 51 is formed of, for example, a conductive material such as Al
  • the negative electrode lead 52 is formed of, for example, a conductive material such as Cu, Ni, or stainless steel. These materials have, for example, a thin plate shape or a mesh shape.
  • the exterior member 60 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • the outer peripheral edge portions of the fusion layers of the two films are bonded together by an adhesive or the like so that the fusion layer faces the wound electrode body 50.
  • the fusing layer is, for example, a film of polyethylene or polypropylene.
  • the metal layer is, for example, an Al foil.
  • the surface protective layer is, for example, a film such as nylon or polyethylene terephthalate.
  • the exterior member 60 an aluminum laminated film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order is preferable.
  • the exterior member 60 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • An adhesion film 61 is inserted between the exterior member 60 and the positive electrode lead 51 and the negative electrode lead 52 to prevent intrusion of outside air.
  • the adhesion film 61 is formed of a material having adhesion to the positive electrode lead 51 and the negative electrode lead 52.
  • a material is, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.
  • the positive electrode 53 has, for example, a positive electrode active material layer 53B on both surfaces of the positive electrode current collector 53A.
  • the negative electrode 54 has the same configuration as the above-described negative electrode, and includes, for example, a negative electrode active material layer 54B on both surfaces of the negative electrode current collector 54A.
  • the configurations of the positive electrode current collector 53A, the positive electrode active material layer 53B, the negative electrode current collector 54A, and the negative electrode active material layer 54B are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode active material layer.
  • the configuration is the same as 22B.
  • the configuration of the separator 55 is the same as the configuration of the separator 23.
  • the electrolyte layer 56 is one in which an electrolytic solution is held by a polymer compound, and may contain other materials such as additives as necessary.
  • the electrolyte layer 56 is a so-called gel electrolyte.
  • a gel electrolyte is preferable because high ion conductivity (for example, 1 mS / cm or more at room temperature) is obtained and leakage of the electrolyte is prevented.
  • polymer compound examples include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl. Contains one or more of methyl acid, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, polycarbonate, or a copolymer of vinylidene fluoride and hexafluoropyrene It is out. It is. Among these, polyvinylidene fluoride or a copolymer of vinylidene fluoride and hexafluoropyrene is preferable. This is because it is electrochemically stable.
  • the composition of the electrolytic solution is, for example, the same as the composition of the electrolytic solution in a square secondary battery.
  • the solvent of the electrolytic solution is a wide concept including not only a liquid solvent but also a material having ion conductivity capable of dissociating the electrolyte salt. For this reason, when using the high molecular compound which has ion conductivity, the high molecular compound is also contained in a solvent.
  • electrolytic solution may be used instead of the gel electrolyte layer 56.
  • the separator 55 is impregnated with the electrolytic solution.
  • the laminate film type secondary battery provided with the gel electrolyte layer 56 is manufactured, for example, by the following three types of procedures.
  • the positive electrode 53 and the negative electrode 54 are manufactured by the same manufacturing procedure as that of the positive electrode 21 and the negative electrode 22.
  • the positive electrode active material layer 53B is formed on both surfaces of the positive electrode current collector 53A to produce the positive electrode 53
  • the negative electrode active material layer 54B is formed on both surfaces of the negative electrode current collector 54A to produce the negative electrode 54.
  • the precursor solution is applied to the positive electrode 53 and the negative electrode 54 to form a gel electrolyte layer 56.
  • the positive electrode lead 51 is attached to the positive electrode current collector 53A, and the negative electrode lead 52 is attached to the negative electrode current collector 54A.
  • the positive electrode 53 and the negative electrode 54 on which the electrolyte layer 56 is formed are stacked and wound via a separator 55 to produce a wound electrode body 50, and then a protective tape 57 is bonded to the outermost periphery.
  • the outer peripheral edges of the exterior member 60 are bonded to each other by using a heat fusion method or the like, and the exterior member 60
  • the wound electrode body 50 is encapsulated.
  • the adhesion film 61 is inserted between the positive electrode lead 51 and the negative electrode lead 52 and the exterior member 60.
  • the positive electrode lead 51 is attached to the positive electrode 53 and the negative electrode lead 52 is attached to the negative electrode 54.
  • the positive electrode 53 and the negative electrode 54 are stacked and wound through the separator 55 to produce a wound body that is a precursor of the wound electrode body 50, and then a protective tape 57 is bonded to the outermost peripheral portion thereof.
  • the remaining outer peripheral edge portion excluding the outer peripheral edge portion on one side is adhered by using a heat fusion method or the like, and the bag A wound body is accommodated in the interior of the outer package member 60.
  • an electrolyte composition containing an electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary is prepared to form a bag-shaped exterior member.
  • the opening of the exterior member 60 is sealed using a heat fusion method or the like.
  • the monomer is thermally polymerized to obtain a polymer compound, and the gel electrolyte layer 56 is formed.
  • a wound body is prepared in the interior of the bag-shaped exterior member 60 in the same manner as in the second procedure described above except that the separator 55 coated with the polymer compound on both sides is used.
  • the polymer compound applied to the separator 55 is, for example, a polymer (such as a homopolymer, a copolymer, or a multi-component copolymer) containing vinylidene fluoride as a component.
  • a binary copolymer comprising polyvinylidene fluoride, vinylidene fluoride and hexafluoropropylene as components, or a ternary copolymer comprising vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components.
  • Etc. In addition to the polymer containing vinylidene fluoride as a component, one or more other polymer compounds may be used. Subsequently, after the electrolytic solution is prepared and injected into the exterior member 60, the opening of the exterior member 60 is sealed using a thermal fusion method or the like.
  • the exterior member 60 is heated while applying a load, and the separator 55 is brought into close contact with the positive electrode 53 and the negative electrode 54 through the polymer compound.
  • the electrolytic solution is impregnated into the polymer compound, the polymer compound is gelled to form the electrolyte layer 56.
  • the secondary battery can be used as long as it is a machine, device, instrument, device or system (an assembly of multiple devices) that can be used as a power source for driving or a power storage source for power storage.
  • a secondary battery may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of or switched from the main power source).
  • the type of the main power source in the latter case is not limited to the secondary battery.
  • Examples of uses of the secondary battery include the following uses. It is a portable electronic device such as a video camera, a digital still camera, a mobile phone, a notebook computer, a cordless phone, a headphone stereo, a portable radio, a portable TV, or a portable information terminal. However, the use of the electronic device is not limited to portable use. It is a portable living device such as an electric shaver. A storage device such as a backup power supply or a memory card. An electric tool such as an electric drill or an electric saw. A battery pack used as a power source for a notebook computer or the like. Medical electronic devices such as pacemakers or hearing aids. An electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in case of an emergency. Of course, applications other than those described above may be used.
  • a portable electronic device such as a video camera, a digital still camera, a mobile phone, a notebook computer, a cordless phone, a headphone stereo
  • the battery pack is a power source using a secondary battery, and is a so-called assembled battery.
  • the electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above.
  • the power storage system is a system that uses a secondary battery as a power storage source.
  • An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source.
  • An electronic device is a device that exhibits various functions using a secondary battery as a driving power source.
  • FIG. 14 shows a block configuration of the battery pack.
  • the battery pack includes a control unit 61, a power source 62, a switch unit 63, a current measuring unit 64, a temperature, and the like inside a housing 60 formed of a plastic material or the like.
  • a detection unit 65, a voltage detection unit 66, a switch control unit 67, a memory 68, a temperature detection element 69, a current detection resistor 70, a positive electrode terminal 71, and a negative electrode terminal 72 are provided.
  • the control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62), and includes, for example, a central processing unit (CPU).
  • the power source 62 includes one or more secondary batteries (not shown).
  • the power source 62 is, for example, an assembled battery including two or more secondary batteries, and the connection form thereof may be in series, in parallel, or a mixture of both.
  • the power source 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the usage state of the power source 62 (whether or not the power source 62 can be connected to an external device) according to an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode (all not shown), and the like.
  • the charge control switch and the discharge control switch are semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor, for example.
  • the current measurement unit 64 measures current using the current detection resistor 70 and outputs the measurement result to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detector 66 measures the voltage of the secondary battery in the power source 62, converts the measured voltage analog / digital conversion (A / D), and supplies the converted voltage to the controller 61.
  • the switch control unit 67 controls the operation of the switch unit 63 in accordance with signals input from the current measurement unit 66 and the voltage measurement unit 66.
  • the switch control unit 67 disconnects the switch unit 67 (charge control switch) and controls the charging current not to flow through the current path of the power source 62. It is like that. As a result, the power source 62 can only discharge through the discharging diode.
  • the switch control unit 67 is configured to cut off the charging current when a large current flows during charging, for example.
  • the switch control unit 67 controls the switch unit 67 (discharge control switch) to be disconnected so that the discharge current does not flow in the current path of the power source 62 when the battery voltage reaches the overdischarge detection voltage, for example. It is supposed to be. As a result, the power source 62 can only be charged via the charging diode.
  • the switch control unit 67 is configured to cut off the discharge current when a large current flows during discharging.
  • the overcharge detection voltage is 4.20V ⁇ 0.05V
  • the overdischarge detection voltage is 2.4V ⁇ 0.1V.
  • the memory 68 is, for example, an EEPROM which is a nonvolatile memory.
  • the memory 68 stores, for example, numerical values calculated by the control unit 61 and information (for example, internal resistance in an initial state) of the secondary battery measured in the manufacturing process stage. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 10 can grasp information such as the remaining capacity.
  • the temperature detection element 69 measures the temperature of the power source 62 and outputs the measurement result to the control unit 61, and is, for example, a thermistor.
  • the positive electrode terminal 71 and the negative electrode terminal 72 are connected to an external device (for example, a notebook personal computer) operated using a battery pack or an external device (for example, a charger) used to charge the battery pack. Terminal. Charging / discharging of the power source 62 is performed via the positive terminal 71 and the negative terminal 72.
  • an external device for example, a notebook personal computer
  • an external device for example, a charger
  • FIG. 15 illustrates a block configuration of a hybrid vehicle that is an example of an electric vehicle.
  • the electric vehicle includes a control unit 74, an engine 75, a power source 76, a drive motor 77, and a differential device 78 in a metal housing 73. , A generator 79, a transmission 80 and a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78 that is a driving unit, a transmission 80, and a clutch 81.
  • the rotational force of the engine 75 is also transmitted to the generator 79.
  • the generator 79 generates AC power by the rotational force, and the AC power is converted into DC power via the inverter 83 and stored in the power source 76. Is done.
  • the motor 77 serving as a conversion unit when used as a power source, the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and the motor 77 is driven by the AC power.
  • the driving force (rotational force) converted from electric power by the motor 77 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78, a transmission 80, and a clutch 81, which are driving units.
  • the resistance force at the time of deceleration may be transmitted as a rotational force to the motor 77, and the motor 77 may generate AC power by the rotational force.
  • This AC power is preferably converted into DC power via the inverter 82, and the DC regenerative power is preferably stored in the power source 76.
  • the control unit 74 controls the operation of the entire electric vehicle and includes, for example, a CPU.
  • the power source 76 includes one or more secondary batteries (not shown).
  • the power source 76 may be connected to an external power source and can store power by receiving power supply from the external power source.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 75 or to control the opening (throttle opening) of a throttle valve (not shown).
  • the various sensors 84 include, for example, a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the hybrid vehicle has been described as the electric vehicle.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
  • FIG. 16 shows a block configuration of the power storage system.
  • the power storage system includes a control unit 90, a power source 91, a smart meter 92, and a power hub 93 inside a house 89 such as a general house or a commercial building. Yes.
  • the power source 91 is connected to, for example, an electric device 94 installed inside the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89.
  • the power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and can be connected to an external centralized power system 97 via the smart meter 92 and the power hub 93. It has become.
  • the electric device 94 includes one or more home appliances such as a refrigerator, an air conditioner, a television, or a water heater.
  • the private power generator 95 is, for example, one type or two or more types such as a solar power generator or a wind power generator.
  • the electric vehicle 96 is, for example, one type or two or more types such as an electric vehicle, an electric motorcycle, or a hybrid vehicle.
  • the centralized power system 97 is, for example, one type or two or more types such as a thermal power plant, a nuclear power plant, a hydroelectric power plant, or a wind power plant.
  • the control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91), and includes, for example, a CPU.
  • the power source 91 includes one or more secondary batteries (not shown).
  • the smart meter 92 is, for example, a network-compatible power meter installed in a house 89 on the power demand side, and can communicate with the power supply side. Accordingly, for example, the smart meter 92 controls the balance between supply and demand in the house 89 while communicating with the outside as necessary, thereby enabling efficient and stable energy supply.
  • the power storage system for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and the power hub 93 is connected from the solar power generator 95 that is an independent power source. Power is accumulated in the power source 91 through the power source 91.
  • the electric power stored in the power source 91 is supplied to the electric device 94 or the electric vehicle 96 as required in accordance with an instruction from the control unit 91, so that the electric device 94 can be operated and the electric vehicle 96. Can be charged.
  • the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
  • the power stored in the power supply 91 can be used arbitrarily. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the amount of electricity used is low, and the power stored in the power source 91 is used during the day when the amount of electricity used is high. it can.
  • the power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
  • FIG. 17 shows a block configuration of the electric power tool.
  • the electric power tool is an electric drill, and includes a control unit 99 and a power source 100 inside a tool main body 98 formed of a plastic material or the like.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100), and includes, for example, a CPU.
  • the power supply 100 includes one or more secondary batteries (not shown). This controlled object 99 is moved by supplying electric power from the power supply 100 to the drill unit 101 as necessary in accordance with operation of an operation switch (not shown).
  • Example 1-1 to 1-21 The laminate film type secondary battery shown in FIGS. 12 and 13 was produced by the following procedure.
  • the positive electrode 53 In producing the positive electrode 53, first, 91 parts by mass of a positive electrode active material (LiCoO 2 ), 6 parts by mass of a positive electrode conductive agent (graphite), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride: PVDF), Were mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector 53A (12 ⁇ m thick strip-like Al foil) using a coating apparatus, and then dried to form the positive electrode active material layer 53B. Finally, the positive electrode active material layer 53B was compression molded using a roll press. In this case, the thickness of the positive electrode active material layer 53B was adjusted so that Li metal did not deposit on the negative electrode 54 during full charge.
  • a positive electrode active material LiCo
  • the composition (atomic ratio x) was controlled by adjusting the amount of O 2 introduced during the melting and solidification of the raw material (Si).
  • a non-crystalline covering portion (SiO y ) was formed on the surface of the core portion using a powder vapor deposition method.
  • the composition (atomic ratio y) was controlled by adjusting the amount of O 2 or H 2 introduced during deposition of the raw material (Si).
  • the layer structure of the coating part was made multilayer by repeating the deposition process from multiple directions while rotating the core part using a shutter mechanism.
  • a carbon-containing material (C) was formed in the voids of the covering portion using a thermal decomposition CVD method (the carbon source gas was methane gas).
  • the configurations of the core portion, the covering portion, and the carbon-containing material are as shown in Table 1.
  • the negative electrode active material and the negative electrode binder precursor were mixed at a dry weight ratio of 90:10, and then diluted with NMP to obtain a paste-like negative electrode mixture slurry.
  • NMP N-dimethylacetamide
  • the negative electrode binder precursor polyamic acid containing NMP and N, N-dimethylacetamide (DMAC) was used.
  • the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector 54A (15 ⁇ m-thick rolled Cu foil) using a coating apparatus, and then dried. Finally, in order to enhance the binding property, the coating film was hot-pressed and then fired in a vacuum atmosphere (400 ° C. ⁇ 1 hour).
  • the negative electrode binder polyamideimide
  • the negative electrode active material layer 54B containing a negative electrode active material and a negative electrode binder was formed. Note that the thickness of the negative electrode active material layer 54B was adjusted so that the negative electrode utilization rate was 65%.
  • the electrolyte salt (LiPF 6 ) was dissolved in a solvent (ethylene carbonate (EC) and diethyl carbonate (DEC)).
  • a solvent ethylene carbonate (EC) and diethyl carbonate (DEC)
  • the positive electrode lead 51 made of Al was welded to one end of the positive electrode current collector 53A, and the negative electrode lead 52 made of Ni was welded to one end of the negative electrode current collector 54A.
  • the positive electrode 53, the separator 55, the negative electrode 54, and the separator 55 are laminated in this order and then wound in the longitudinal direction to form a wound body that is a precursor of the wound electrode body 50.
  • the winding end portion was fixed with a protective tape 57 (adhesive tape).
  • a laminated film (thickness: 20 ⁇ m) in which a film mainly composed of porous polyethylene was sandwiched between films mainly composed of porous polypropylene.
  • the outer peripheral edge portions except for one side were heat-sealed, and the wound body was housed inside the bag-shaped exterior member 60.
  • an aluminum laminate film in which a nylon film (30 ⁇ m thickness), an Al foil (40 ⁇ m thickness), and an unstretched polypropylene film (30 ⁇ m thickness) were laminated from the outside was used as the exterior member 60.
  • an electrolytic solution was injected from the opening of the exterior member 60 and impregnated in the separator 55 to produce the wound electrode body 50. Finally, the opening of the exterior member 60 was heat-sealed in a vacuum atmosphere.
  • the atomic ratio x of the core portion satisfies 0 ⁇ x ⁇ 0.5 and the atomic ratio y of the covering portion is 0.5 ⁇ y ⁇ 1.
  • 8 When 8 was satisfied, higher initial efficiency and capacity maintenance ratio were obtained.
  • Example 2 (Experimental examples 2-1 to 2-10) As shown in Table 2, a secondary battery was fabricated in the same manner as in Experimental Example 1-5, except that the crystallinity (specific IG / ID) of the carbon-containing material was changed, and various characteristics were examined. In this case, the ratio IG / ID was adjusted by changing the pressure, decomposition temperature, and gas type during the formation of the carbon-containing material.
  • the void diameter was 500 nm or less, and further 50 nm or less, high initial efficiency and capacity retention were obtained, and high battery capacity was also obtained.
  • Example 4 As shown in Table 4, a secondary battery was fabricated in the same manner as in Experimental Example 1-5, except that the median diameter (D50) of the core portion was changed, and various characteristics were examined. In this case, the median diameter (D50) of the core part was adjusted using raw materials (Si) having different median diameters (D50).
  • Example 5 As shown in Table 5, a secondary battery was fabricated in the same manner as in Experimental Example 1-5, except that the average coverage and average thickness of the coating portion were changed, and various characteristics were examined. In this case, when forming the covering portion, the average coverage was adjusted by changing the input power and the deposition time, and the average thickness was adjusted by changing the deposition rate and the deposition time.
  • Example 6 As shown in Table 6, a secondary battery was prepared in the same manner as in Experimental Example 1-5, except that the crystallinity of the covering portion was changed, and various characteristics were examined. In this case, the depositing while heating the SiO y to form a low-crystalline coating section in an atmosphere of Ar gas. The temperature and time during the heating were adjusted to adjust the physical properties (average area occupancy, average particle size, and size relationship) of the coating as shown in Table 6. This “magnitude relationship” is a size relationship between the average area occupancy ratio and the average particle diameter in the inner part and the outer part when the coating portion is divided into two equal parts in the thickness direction.
  • the average area occupancy was 35% or less
  • the average particle size was 50 nm or less
  • the average area occupancy and the average particle size were inside ⁇ outside, a higher capacity retention rate was obtained.
  • Example 7 As shown in Table 7, a secondary battery was fabricated in the same manner as in Experimental Example 1-5, except that a carbon-containing layer was formed on the surface of the negative electrode active material, and various characteristics were examined.
  • the procedure for forming the carbon-containing layer is the same as the procedure for forming the carbon-containing material. In this case, by adjusting the pressure during pyrolysis as necessary, a part of the carbon-containing layer is embedded in the voids of the covering portion instead of the carbon-containing material, and the voids are part of the carbon-containing layer. Sealed with.
  • the initial efficiency and the capacity maintenance rate were further increased.
  • the average thickness was 500 nm or less and the average coverage was 30% to 100%, higher initial efficiency and capacity retention were obtained, and higher battery capacity was also obtained.
  • Example 8-1 to 8-17, 9-1 to 9-5) As shown in Tables 8 and 9, a secondary battery was fabricated in the same manner as in Experimental Example 1-5, except that a metal element was contained in the core part and the covering part, and various characteristics were examined. In this case, co-evaporation was performed using SiO x powder and metal powder as raw materials.
  • the initial efficiency and the capacity maintenance rate were further increased.
  • Fe when the metal element was contained in the core part and the covering part, the initial efficiency and the capacity maintenance rate were further increased.
  • a high cycle maintenance ratio and initial efficiency were obtained when the Fe content was 0.01 wt% to 7.5 wt%.
  • Example 10-1 to 10-3 As shown in Table 10, a secondary battery was fabricated in the same manner as in Experimental Example 1-5, except that C and S were contained in the anode current collector 54A, and various characteristics were examined. In this case, a rolled Cu foil containing C and S was used as the negative electrode current collector 54A.
  • Example 11-1 to 11-9 As shown in Table 11, a secondary battery was prepared in the same manner as in Experimental Example 1-5, except that the type of the negative electrode binder was changed, and various characteristics were examined.
  • a negative electrode binder polyimide (PI), polyvinylidene fluoride (PVDF), polyamide (PA), polyacrylic acid (PAA), polyacrylic acid lithium (PAAL), polyimide carbide (carbonized PI), Polyethylene (PE), polymaleic acid (PMA), or aramid (AR) was used.
  • PAA, PAAL, etc. while preparing the negative mix slurry using the 17 volume% aqueous solution in which they were melt
  • Example 12 As shown in Table 12, a secondary battery was prepared in the same manner as in Experimental Example 1-5, except that the type of the positive electrode active material was changed, and various characteristics were examined.
  • the capacity of the negative electrode includes a capacity due to insertion and extraction of lithium ions and a capacity due to precipitation and dissolution of lithium metal, and a secondary capacity in which the battery capacity is represented by the sum of these capacities.
  • a negative electrode material capable of occluding and releasing lithium ions is used, and the chargeable capacity of the negative electrode material is set to be smaller than the discharge capacity of the positive electrode.
  • the secondary battery of the present technology can be similarly applied to a case where it has another battery structure such as a coin type or a button type, and a case where the battery element has another structure such as a laminated structure.
  • the electrode reactant may be another group 1 element such as Na or K, a group 2 element such as Mg or Ca, or another light metal such as Al. Since the effect of the present technology should be obtained without depending on the type of the electrode reactant, the same effect can be obtained even if the type of the electrode reactant is changed.
  • the appropriate ranges derived from the results of the examples are described with respect to the atomic ratios x and y of the core portion and the covering portion.
  • the explanation does not completely deny the possibility that the atomic ratio x, y is outside the above range. That is, the appropriate range described above is a particularly preferable range for obtaining the effects of the present technology. Therefore, the atomic ratios x and y may slightly deviate from the above ranges as long as the effects of the present technology can be obtained. .
  • a positive electrode, a negative electrode containing an active material, and an electrolyte solution The active material includes a core part capable of occluding and releasing lithium ions, and a low crystalline or non-crystalline covering part provided on at least a part of the surface of the core part,
  • the core portion includes Si and O as constituent elements, and an atomic ratio x (O / Si) of O to Si satisfies 0 ⁇ x ⁇ 0.5
  • the covering portion includes Si and O as constituent elements, and an atomic ratio y (O / Si) of O to Si satisfies 0.5 ⁇ y ⁇ 1.8,
  • the covering portion has a void, and a carbon-containing material is provided in at least a part of the void.
  • the ratio IG / ID between the G band peak intensity IG and the D band peak intensity ID of the carbon-containing material measured by the Raman spectrum method is 0.3 to 3.
  • (3) The maximum peak void diameter in the void distribution of the covering portion measured by a nitrogen adsorption method and a mercury intrusion method is 500 nm or less.
  • (4) The covering portion is multilayer.
  • a carbon-containing layer is provided on at least a part of the surface of the active material; The average thickness of the carbon-containing layer is 500 nm or less, The average coverage of the carbon-containing layer with respect to the active material is 30% or more.
  • the median diameter (D50) of the core is 0.1 ⁇ m to 20 ⁇ m
  • the covering part has an average thickness of 1 nm to 3000 nm
  • the average coverage of the covering portion with respect to the core portion is 30% or more.
  • the crystallinity of the covering portion is lower than the crystallinity of the core portion,
  • the covering portion has a low crystallinity including a non-crystalline region and a crystal region (crystal grains), and the crystal grains are scattered in the non-crystalline region.
  • the average area occupation ratio of the crystal grains due to the (111) plane and the (220) plane of Si is 35% or less, and the average grain size of the crystal grains is 50 nm or less,
  • the covering portion is divided into two equal parts in the thickness direction, the average area occupancy and the average grain size in the inner part of the crystal grains due to the (111) face and the (220) face of Si are the average area in the outer part. Equal to or greater than the occupancy and average particle size,
  • the covering is non-crystalline, The secondary battery according to any one of (1) to (7) above.
  • the core portion contains Fe as a constituent element, and the ratio of Fe to Si and O (Fe / (Si + O)) is 0.01 wt% to 7.5 wt%.
  • the core portion includes at least one of Fe, Al, Ca, Mn, Cr, Mg and Ni as a constituent element,
  • the covering portion includes at least one of Fe, Al, and Ca as a constituent element.
  • the negative electrode has an active material layer on a current collector, and the active material layer includes the active material,
  • the current collector contains C and S as constituent elements and their content is 100 ppm or less.
  • the active material includes a core part capable of occluding and releasing lithium ions, and a low crystalline or non-crystalline covering part provided on at least a part of the surface of the core part,
  • the core portion includes Si and O as constituent elements, and an atomic ratio x (O / Si) of O to Si satisfies 0 ⁇ x ⁇ 0.5
  • the covering portion includes Si and O as constituent elements, and an atomic ratio y (O / Si) of O to Si satisfies 0.5 ⁇ y ⁇ 1.8
  • the covering portion has a void, and a carbon-containing material is provided in at least a part of the void. Secondary battery electrode.
  • the core portion includes Si and O as constituent elements, and an atomic ratio x (O / Si) of O to Si satisfies 0 ⁇ x ⁇ 0.5
  • the covering portion includes Si and O as constituent elements, and an atomic ratio y (O / Si) of O to Si satisfies 0.5 ⁇ y ⁇ 1.8
  • the covering portion has a void, and a carbon-containing material is provided in at least a part of the void. Active material for secondary batteries.
  • the secondary battery according to any one of (1) to (13) is provided as a power supply source. Electronics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 優れた電池特性を得ることが可能な二次電池を提供する。本技術の二次電池は、正極と、活物質を含む負極と、電解液とを備える。活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた低結晶性または非結晶性の被覆部とを含む。コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5を満たし、被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8を満たす。被覆部は空隙を有し、その空隙のうちの少なくとも一部に炭素含有材料が設けられている。

Description

二次電池用活物質、二次電池および電子機器
 本技術は、リチウムイオンを吸蔵放出可能である二次電池用活物質、その二次電池用活物質を用いた二次電池、およびその二次電池を用いた電子機器に関する。
 近年、携帯電話機または携帯情報端末機器(PDA)などに代表される電子機器が広く普及しており、そのさらなる小型化、軽量化および長寿命化が強く求められている。これに伴い、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、最近では、上記した電子機器に限らず、着脱可能な電源である電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、または電動ドリルなどの電動工具に代表される多様な用途への適用も検討されている。
 二次電池としては、さまざまな充放電原理を利用するものが広く提案されているが、中でも、リチウムイオンなどの吸蔵放出を利用するものが有望視されている。鉛電池およびニッケルカドミウム電池などよりも高いエネルギー密度が得られるからである。
 二次電池は、正極および負極と共に電解液を備えており、その負極は、リチウムイオンなどを吸蔵放出可能である負極活物質を含んでいる。負極活物質としては、黒鉛などの炭素材料が広く用いられているが、最近では、電池容量のさらなる向上が求められていることから、Siを用いることが検討されている。Siの理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも格段に大きいため、電池容量の大幅な向上を期待できるからである。
 ところが、負極活物質としてSiを用いると、充放電時において負極活物質が激しく膨張収縮するため、その負極活物質が主に表層近傍で割れやすくなる。負極活物質が割れると、高反応性の新生面(活性面)が生じるため、その負極活物質の表面積(反応面積)が増加する。これにより、新生面において電解液の分解反応が生じると共に、その新生面に電解液由来の被膜を形成するために電解液が消費されるため、サイクル特性などの電池特性が低下しやすくなる。
 そこで、サイクル特性などの電池特性を向上させるために、二次電池の構成に関してさまざまな検討がなされている。
 具体的には、サイクル特性および安全性を向上させるために、スパッタ法を用いてSiおよび非晶質SiO2 を同時に堆積させている(例えば、特許文献1参照。)。優れた電池容量および安全性能を得るために、SiOx 粒子の表面に電子伝導性材料層(炭素材料)を設けている(例えば、特許文献2参照。)。ハイレート充放電特性およびサイクル特性を向上させるために、SiおよびOを含有すると共に負極集電体に近い側において酸素比率が大きくなるように負極活物質層を形成している(例えば、特許文献3参照。)。サイクル特性を向上させるために、SiおよびOを含有し、全体の平均酸素含有量が40原子%以下になると共に負極集電体に近い側において平均酸素含有量が大きくなるように負極活物質層を形成している(例えば、特許文献4参照。)。この場合には、負極集電体に近い側における平均酸素含有量と遠い側における平均酸素含有量との差を4原子%~30原子%としている。
 また、初回充放電特性などを向上させるために、Si相、SiO2 およびMy O金属酸化物を含むナノ複合体を用いている(例えば、特許文献5参照。)。サイクル特性を向上させるために、粉末状のSiOx (0.8≦x≦1.5,粒径範囲=1μm~50μm)と炭素質材料とを混合して、800℃~1600℃×3時間~12時間の条件で焼成している(例えば、特許文献6参照。)。初回充電時間を短縮するために、Lia SiOx (0.5≦a-x≦1.1,0.2≦x≦1.2)で表される負極活物質を用いている(例えば、特許文献7参照。)。この場合には、SiおよびOを含む活物質前駆体にLiを蒸着させている。充放電サイクル特性を向上させるために、SiOx の組成を制御している(例えば、特許文献8参照。)。この場合には、負極活物質体におけるSi量に対するO量のモル比を0.1~1.2にしていると共に、負極活物質体と集電体との界面近傍におけるSi量に対するO量のモル比の最大値と最小値との差を0.4以下にしている。負荷特性を向上させるために、リチウム含有多孔質金属酸化物(Lix SiO:2.1≦x≦4)を用いている(例えば、特許文献9参照。)。
 さらに、充放電サイクル特性を向上させるために、Siを含む薄膜の上に、シラン化合物またはシロキサン化合物などの疎水化層を形成している(例えば、特許文献10参照。)。サイクル特性を向上させるために、SiOx (0.5≦x<1.6)の表面が黒鉛被膜により被覆された導電性粉末を用いている(例えば、特許文献11参照。)。この場合には、黒鉛被膜に関するラマンスペクトルのラマンシフトにおいて1330cm-1および1580cm-1にブロードなピークが現れると共に、それらの強度比I1330/I1580を1.5<I1330/I1580<3としている。電池容量およびサイクル特性を向上させるために、Siの微結晶(結晶の大きさ=1nm~500nm)がSiO2 に分散された構造を有する粒子を1質量%~30質量%含む粉末を用いている(例えば、特許文献12参照。)。この場合には、レーザ回折散乱式粒度分布測定法により測定される粒度分布において、粉末の累積90%径(D90)を50μm以下、粒子の粒子径を2μm未満にしている。サイクル特性を向上させるために、SiOx (0.3≦x≦1.6)を用いると共に、充放電時において電極ユニットを3kgf/cm2 以上で加圧している(例えば、特許文献13参照。)。過充電特性および過放電特性などを向上させるために、SiとOの原子数比が1:y(0<y<2)であるSi酸化物を用いている(例えば、特許文献14参照。)。
 この他、電気化学的に多量のリチウムイオンを蓄積または放出するために、Siなどの一次粒子の表面に非晶質の金属酸化物を設けている(例えば、特許文献15参照。)。この金属酸化物を形成するための金属酸化時におけるギブスの自由エネルギーは、Siなどの酸化時におけるギブスの自由エネルギーよりも小さい。充放電サイクル特性などを向上させるために、2種類の金属からなる合金組成を主成分とする負極活物質を用いている(例えば、特許文献16参照。)。この2種類金属のうち、第1金属はLiを吸蔵放出する性質を有するもの(Si等)であり、第2金属はLiの吸蔵放出時の第1金属の形状変化を安定化させる性質を有するもの(Fe等)である。
特許文献1:特開2001-185127号公報
特許文献2:特開2002-042806号公報
特許文献3:特開2006-164954号公報
特許文献4:特開2006-114454号公報
特許文献5:特開2009-070825号公報
特許文献6:特開2008-282819号公報
特許文献7:国際公開第2007/010922号パンフレット
特許文献8:特開2008-251369号公報
特許文献9:特開2008-177346号公報
特許文献10:特開2007-234255号公報
特許文献11:特開2009-212074号公報
特許文献12:特開2009-205950号公報
特許文献13:特開2009-076373号公報
特許文献14:特許第2997741号明細書
特許文献15:特開2009-164104号公報
特許文献16:特開2006-100244号公報
 電子機器などは益々高性能化および多機能化しており、その使用頻度も増加しているため、二次電池は頻繁に充放電される傾向にある。そこで、二次電池の電池特性に関してより一層の向上が望まれている。
 したがって、優れた電池特性を得ることが可能な二次電池用活物質、二次電池および電子機器を提供することが望まれている。
 本技術の一実施形態の二次電池用活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた低結晶性または非結晶性の被覆部とを含むものである。コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5を満たし、被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8を満たす。被覆部は空隙を有し、その空隙のうちの少なくとも一部に炭素含有材料が設けられている。
 本技術の一実施形態の二次電池は、正極と、活物質を含む負極と、電解液とを備え、その負極が上記した本技術の一実施形態の二次電池用活物質を用いたものである。本技術の一実施形態の電子機器は、二次電池を備え、その二次電池が上記した本技術の一実施形態の二次電池と同様の構成を有するものである。
 ここで、「低結晶性」とは、高角散乱暗視野走査型透過電子顕微鏡(HAADF STEM)などを用いて被覆部の断面あるいは表面を観察した場合に、非結晶領域および結晶領域(結晶粒)の双方が存在している結晶状態を意味する。これに対して、「非結晶性」とは、いわゆる非晶質と同義であり、HAADF STEMなどを用いて被覆部を観察した場合に、非結晶領域だけが存在しており、結晶領域が存在していない結晶状態を意味する。なお、観察時の倍率は、例えば、1.2×106 倍とする。
 本技術の一実施形態の二次電池用活物質または二次電池によれば、コア部の表面に低結晶性または非結晶性の被覆部が設けられており、そのコア部および被覆部がそれぞれ上記した組成を有していると共に、その被覆部の空隙に炭素含有材料が設けられている。よって、優れた電池特性を得ることができる。また、本技術の一実施形態の電子機器でも同様の効果を得ることができる。
本技術の一実施形態の二次電池用活物質を用いた負極の構成を表す断面図である。 本技術の一実施形態の二次電池用活物質である負極活物質の構成を模式的に表す断面図である。 負極活物質(被覆部=非結晶性)の断面構造を拡大して表すHAADF STEM写真である。 負極活物質(被覆部=低結晶性)の断面構造を拡大して表すHAADF STEM写真である。 負極活物質(被覆部=低結晶性)の断面構造を拡大して表す他のHAADF STEM写真である。 負極活物質(被覆部=非結晶性)の断面構造を拡大して表すHAADF STEM写真である。 本技術の一実施形態の二次電池(角型)の構成を表す断面図である。 図7に示した二次電池のVIII-VIII線に沿った断面図である。 図8に示した正極および負極の構成を模式的に表す平面図である。 本技術の一実施形態の二次電池(円筒型)の構成を表す断面図である。 図10に示した巻回電極体の一部を拡大して表す断面図である。 本技術の一実施形態の二次電池(ラミネートフィルム型)の構成を表す分解斜視図である。 図12に示した巻回電極体のXIII-XIII線に沿った断面図である。 二次電池の適用例(電池パック)の構成を表すブロック図である。 二次電池の適用例(電動車両)の構成を表すブロック図である。 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。 二次電池の適用例(電動工具)の構成を表すブロック図である。
 以下、本技術の実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
 
 1.二次電池用活物質
 2.二次電池
  2-1.角型
  2-2.円筒型
  2-3.ラミネートフィルム型
 3.二次電池の用途
  3-1.電池パック
  3-2.電動車両
  3-3.電力貯蔵システム
  3-4.電動工具
 
<1.二次電池用活物質>
 図1は、本技術の一実施形態の二次電池用活物質を用いた負極の断面構成を表しており、図2は、本技術の一実施形態の二次電池用活物質である負極活物質の断面構成を表している。図3~図6は、負極活物質の断面構造のHAADF STEM写真(以下、単に「TEM写真」という。)である。
[負極の全体構成]
 負極は、例えば、図1に示したように、負極集電体1の上に負極活物質層2を有している。この負極活物質層2は、負極集電体1の両面に設けられていてもよいし、片面だけに設けられていてもよい。ただし、負極集電体1はなくてもよい。
[負極集電体]
 負極集電体1は、例えば、電気化学的安定性、電気伝導性および機械的強度に優れた導電性材料により形成されており、その導電性材料は、例えば、Cu、Niまたはステンレスなどの金属材料である。中でも、Liと金属間化合物を形成しないと共に負極活物質層2と合金化する材料が好ましい。
 この負極集電体1は、CおよびSを構成元素として含んでいることが好ましい。負極集電体1の物理的強度が向上するため、充放電時において負極活物質層2が膨張収縮しても負極集電体1が変形しにくくなるからである。このような負極集電体1は、例えば、CおよびSがドープされた金属箔などである。CおよびSの含有量は、特に限定されないが、中でも、100ppm以下であることが好ましい。より高い効果が得られるからである。
 負極集電体1の表面(負極活物質層2と接する面)は、粗面化されていてもよいし、粗面化されていなくてもよい。粗面化されていない負極集電体1は、例えば、圧延金属箔などであり、粗面化された負極集電体1は、例えば、電解処理またはサンドブラスト処理などが施された金属箔などである。電解処理とは、電解槽中において電解法を用いて金属箔などの表面に微粒子を形成して凹凸を設ける方法である。電解法により作製された金属箔は、一般的に、電解箔(例えば電解Cu箔など)と呼ばれている。
 中でも、負極集電体1の表面は、粗面化されていることが好ましい。アンカー効果により負極集電体1に対する負極活物質層2の密着性が向上するからである。負極集電体1の表面粗さ(例えば十点平均粗さRz)は、特に限定されないが、アンカー効果により負極活物質層2の密着性を向上させるためにできるだけ大きいことが好ましい。ただし、表面粗さが大きすぎると、かえって負極活物質層2の密着性が低下する可能性がある。
[負極活物質層]
 負極活物質層2は、図2に示したように、電極反応物質(リチウムイオン)を吸蔵放出可能である1または2以上の粒子状の負極活物質200を含んでおり、必要に応じて、さらに負極結着剤または負極導電剤などの他の材料を含んでいてもよい。
 負極活物質200は、リチウムイオンを吸蔵放出可能であるコア部201と、そのコア部201の表面に設けられた被覆部202とを含んでいる。このようにコア部201が被覆部202により被覆されている様子は、例えば、走査型電子顕微鏡(SEM)などを用いて確認可能である。また、コア部201および被覆部202の結晶性(結晶状態)は、図3~図5に示したように、TEMなどを用いて確認可能である。
[コア部]
 コア部201は、SiおよびOを構成元素として含んでおり、そのSiに対するOの原子比x(O/Si)は、0≦x<0.5を満たしている。より具体的には、コア部201は、例えば、ケイ素系材料(SiOx :0≦x<0.5)を含んでいる。原子比xが範囲外である場合(x≧0.5)と比較して、充放電時においてコア部201がリチウムイオンを吸蔵放出しやすくなると共に不可逆容量が減少するため、高い電池容量が得られるからである。
 コア部201の形成材料は、上記した組成(原子比x)から明らかなように、Siの単体(x=0)でもよいし、Siの酸化物(SiOx :0<x<0.5)でもよい。ただし、xはできるだけ小さいことが好ましく、x=0であること(Siの単体)がより好ましい。高いエネルギー密度が得られるため、電池容量がより高くなるからである。また、コア部201の劣化が抑制されるため、充放電サイクルの初期から放電容量が低下しにくくなるからである。ただし、「単体」とは、あくまで一般的な意味での単体であり、必ずしも純度100%を意味しているわけではない。すなわち、ケイ素径材料は、微量の不純物(O以外の元素)を含んでいてもよい。
 コア部201の結晶性は、高結晶性、低結晶性または非結晶性のいずれでもよいが、中でも、高結晶性または低結晶性であることが好ましく、高結晶性であることがより好ましい。充放電時においてコア部201がリチウムイオンを吸蔵放出しやすくなるため、高い電池容量などが得られるからである。また、充放電時においてコア部201が膨張収縮しにくくなるからである。中でも、X線回折により得られるSiの(111)結晶面に起因する回折ピークの半値幅(2θ)は、20°以下であることが好ましい。また、Siの(111)結晶面に起因する結晶子サイズは、10nm以上であることが好ましい。より高い効果が得られるからである。
 なお、コア部201は、SiおよびOと共に、それ以外の元素のいずれか1種類または2種類以上を含んでいてもよい。
 具体的には、コア部201は、Feを構成元素として含んでいることが好ましい。コア部201の電気抵抗が低下するからである。SiおよびOに対するFeの割合(Fe/(Si+O))は、特に限定されないが、中でも、0.01重量%~7.5重量%であることが好ましい。コア部201の電気抵抗が低下するだけでなく、リチウムイオンの拡散性が向上するからである。
 コア部201中において、Feは、SiおよびOとは別個に(遊離状態で)存在していてもよいし、SiおよびOのうちの少なくとも一方と合金または化合物を形成していてもよい。このことは、後述するAl等についても同様である。このFeを含んでいるコア部201の状態(Feの結合状態など)は、例えば、EDXなどを用いて確認可能である。
 この他、コア部201は、Al、Cr、Ni、B、Mg、Ca、Ti、V、Mn、Co、Cu、Ge、Y、Zr、Mo、Ag、In、Sn、Sb、Ta、W、Pb、La、Ce、PrおよびNdなどのうちの少なくとも1種の元素を構成元素として含んでいてもよい。中でも、Al、Ca、Mn、Cr、MgおよびNiのうちの少なくとも1種が好ましい。コア部201の電気抵抗が低下するからである。SiおよびOに対するAl等の割合(Al等/(Si+O))は、特に限定されない。なお、コア部201がAlを含んでいると低結晶化するため、そのコア部201が充放電時において膨張収縮しにくくなると共に、リチウムイオンの拡散性がより向上する。
 コア部201の平均粒径(メジアン径D50)は、特に限定されないが、中でも、0.1μm~20μmであることが好ましい。より高い効果が得られるからである。詳細には、D50が小さすぎると、表面積が増加するため、安全性の低下を招く可能性があると共に、D50が大きすぎると、充電時の膨張に起因して負極活物質200の破損を招く可能性がある。この他、D50が小さすぎると、負極活物質200を含むスラリーを塗布しにくくなる可能性がある。
[被覆部]
 被覆部202は、コア部201の表面のうちの少なくとも一部に設けられている。このため、被覆部202は、コア部201の表面の一部だけを被覆していてもよいし、全部を被覆していてもよい。前者の場合には、被覆部202がコア部201の表面において複数箇所に点在していてもよい。
 この被覆部202は、SiおよびOを構成元素として含んでおり、そのSiに対するOの原子比y(O/Si)は、0.5≦y≦1.8を満たしている。より具体的には、被覆部202は、例えば、ケイ素系材料(SiOy :0.5≦y≦1.8)を含んでいる。充放電を繰り返しても負極活物質200の劣化が抑制されるからである。これにより、コア部201におけるリチウムイオンの出入りを確保しつつ、被覆部202によりコア部201が化学的および物理的に保護される。
 詳細には、コア部201と電解液との間に被覆部202が介在すると、高反応性のコア部201が電解液と接触しにくくなるため、その電解液の分解反応が抑制される。この場合には、被覆部202がコア部201と同系統の材料(共通の元素(Si)を構成元素として含む材料)により形成されていれば、そのコア部201に対する被覆部202の密着性も高くなる。
 また、被覆部202が柔軟性(変形しやすい性質)を有するため、充放電時においてコア部201が膨張収縮しても、それに追随して被覆部202も膨張収縮(伸縮)しやすくなる。これにより、コア部201の膨張収縮時において被覆部202が破損(断裂等)しにくくなるため、被覆部202によるコア部201の被覆状態が充放電を繰り返しても維持される。よって、充放電時においてコア部201が割れても新生面が露出しにくくなると共に、その新生面が電解液と接触しにくくなるため、電解液の分解反応が著しく抑制される。
 被覆部202の形成材料は、上記した組成(原子比y)から明らかなように、Siの酸化物(SiOy )である。中でも、原子比yは、0.7≦y≦1.3を満たしていることが好ましく、y=1.2であることがより好ましい。より高い効果が得られるからである。
 被覆部202の結晶性は、低結晶性または非結晶性(非晶質)である。高結晶性である場合と比較して、リチウムイオンが拡散されやすいため、コア部201の表面が被覆部202により被覆されていても、そのコア部201がリチウムイオンを円滑に吸蔵放出しやすくなるからである。
 中でも、被覆部202の結晶性は、コア部201の結晶状態よりも低い(非結晶性に近い)ことが好ましく、非結晶性であることがより好ましい。被覆部202の柔軟性が向上するため、その被覆部202が充放電時においてコア部201の膨張収縮に追随しやすくなるからである。また、被覆部202がリチウムイオンをトラップしにくくなるため、コア部201におけるリチウムイオンの出入りがより阻害されにくくなるからである。なお、「被覆部202の結晶性がコア部201の結晶性よりも低い」とは、例えば、コア部201が高結晶性である場合には、被覆部202が低結晶性または非結晶性であることを意味している。または、例えば、コア部201が低結晶性である場合には、被覆部202が非結晶性であることを意味している。
 なお、図3および図6では、コア部201が高結晶性のSiであると共に被覆部202が非結晶性のSiOy である場合を示している。一方、図4および図5では、コア部201が高結晶性のSiであると共に被覆部202が低結晶性のSiOy である場合を示している。
 「低結晶性」とは、非結晶領域および結晶領域(結晶粒)の双方を含む結晶状態を意味しており、非結晶領域だけを含む「非結晶性」とは異なる。被覆部202が低結晶性であるかどうかを確認するためには、例えば、上記したHAADF STEMなどを用いて被覆部202を観察すればよい。TEM写真から非結晶領域と結晶領域とが混在している様子を確認できれば、その被覆部202は低結晶性である。なお、非結晶領域と結晶領域とが混在している場合、その結晶領域は、粒状の輪郭を有する領域(結晶粒)として観察される。この結晶粒の内部には、結晶性に起因する縞状の模様(結晶格子縞)が観察されるため、その結晶粒を非結晶領域から識別できる。
 非結晶性と低結晶性との違いは、図3および図4に示したTEM写真から明らかである。被覆部202が非結晶性である場合には、図3に示したように、非結晶領域だけが観察され、結晶領域(結晶格子縞を有する結晶粒)が観察されない。これに対して、被覆部202が低結晶性である場合には、図4に示したように、非結晶領域の中に結晶粒(矢印で指した部分)が点在している様子が観察される。この結晶粒は、Siの格子面間隔dに応じた所定の間隔の結晶格子縞を有しているため、その周辺の非結晶領域から明確に区別される。なお、図4に示したTEM写真をフーリエ変換した(電子回折図に相当する図を得た)ところ、スポットがリング状に並んでいたため、被覆部202の内部に多数の結晶領域が存在していることが確認された。
 なお、HAADF STEMによる被覆部202の観察手順は、例えば、以下の通りである。最初に、Cu製のTEM用グリッドの表面に接着剤を塗布したのち、その接着剤の上にサンプル(負極活物質200)をふりかける。続いて、真空蒸着法を用いて粉体サンプルの表面に炭素材料(黒鉛)を堆積させる。続いて、集束イオンビーム(FIB)法を用いて炭素材料の表面に薄膜(Pt/W)を堆積させたのち、さらに薄膜加工(加速電圧=30kV)する。最後に、HAADF STEM(加速電圧=200kV)を用いて負極活物質200の断面を観察する。この観察方法は、サンプルの組成に敏感な手法であり、一般に、原子番号のほぼ2乗に比例した明るいコントラストの画像が得られる。
 図3および図4に示したTEM写真では、線Lを境界として結晶状態の異なる領域が観察される。この結晶状態の異なる領域をEDXで分析したところ、線Lよりも内側に位置する領域は高結晶性のコア部(Si)であると共に、線Lよりも外側に位置する領域は低結晶性または非結晶性の被覆部(SiOy )であることが確認された。
 被覆部202の低結晶性の程度は、特に限定されないが、中でも、Siの(111)面および(220)面に起因する結晶粒の平均面積占有率は、35%以下であることが好ましく、25%以下、さらに20%以下であることがより好ましい。より高い効果が得られるからである。図4に示したように、「(111)面に起因する結晶粒」とは、格子面間隔d=0.31nmの結晶格子縞を有する結晶領域であり、「(220)面に起因する結晶粒」とは、格子面間隔d=0.19nmの結晶格子縞を有する結晶領域である。
 この平均面積占有率の算出手順は、以下の通りである。最初に、図5に示したように、HAADF STEMを用いて被覆部202の断面を観察してTEM写真を得る。この場合には、観察倍率=1.2×106 倍、観察エリア=65.6nm×65.7nmとする。なお、図5は、図4と同じ領域を観察したTEM写真である。続いて、結晶格子縞の有無および格子面間隔dの値などを調べて、Siの(111)面に起因する結晶粒および(220)面に起因する結晶粒が存在する範囲を特定したのち、それらの結晶粒の輪郭をTEM写真中に描画する。続いて、各結晶粒の面積を算出したのち、面積占有率(%)=(結晶粒の面積の和/観察エリアの面積)×100を算出する。これらの輪郭の描画および面積占有率の算出に関しては、人為的に行ってもよいし、専用の処理ソフトなどを用いて機械的に行ってもよい。最後に、面積占有率の算出作業を40エリアで繰り返したのち、各エリアにおいて算出した面積占有率の平均値(平均面積占有率)を算出する。この場合には、結晶粒の分布傾向を加味して平均面積占有率を算出するために、被覆部202を厚さ方向において二等分して、その内側部分および外側部分において20エリアずつ面積占有率を算出することが好ましい。
 また、上記した結晶粒の平均粒径は、特に限定されないが、中でも、55nm以下であることが好ましく、50nm以下であることがより好ましい。より高い効果が得られるからである。この平均粒径の算出手順は、エリアごとに平均粒径を算出したのち、その平均粒径の平均値(最終的な平均粒径)を算出することを除き、平均面積占有率を算出した場合と同様である。なお、結晶粒の粒径を測定する場合には、例えば、結晶粒の輪郭を円に変換(結晶粒の輪郭により画定される形状と同等の面積を有する円を特定)したのち、その円の直径を粒径とする。この粒径の算出は、平均面積占有率を算出した場合と同様に、人為的でも機械的でもよい。
 また、上記したように被覆部202を厚さ方向において二等分したとき、平均面積占有率は、内側部分と外側部分とで同じでもよいし、異なってもよい。中でも、内側部分における結晶粒の平均面積占有率は、外側部分における結晶粒の平均面積占有率と同じであるか、それよりも大きいことが好ましい(内側部分の平均面積占有率≧外側部分の平均面積占有率)。より高い効果が得られるからである。このことは、平均粒径に関しても同様である。なお、内側部分および外側部分における平均面積占有率および平均粒径は、上記したように、それぞれ20エリアずつ算出されることとする。
 この被覆部202の平均厚さは、特に限定されないが、中でも、できるだけ薄いことが好ましく、1nm~3000nmであることがより好ましい。コア部201がリチウムイオンを吸蔵放出しやすくなると共に、被覆部202による保護機能が効果的に発揮されるからである。詳細には、平均厚さが1nmよりも小さいと、被覆部202がコア部201を保護しにくくなる可能性がある。一方、平均厚さが3000nmよりも大きいと、電気抵抗が高くなると共に、充放電時においてコア部201がリチウムイオンイオンを吸蔵放出しにくくなる可能性がある。被覆部202の形成材料がSiOy である場合、そのSiOy はリチウムイオンを吸蔵しやすい一方で、いったん吸蔵したリチウムイオンを放出しにくい性質を有するからである。
 被覆部202の平均厚さは、以下の手順により算出される。まず、SEMなどを用いて1個の負極活物質200を観察する。この観察時の倍率は、被覆部202の厚さTを測定するために、コア部201と被覆部202との境界を目視で確認(決定)できるような倍率であることが好ましい。続いて、任意の10点において被覆部202の厚さTを測定したのち、その平均値(1個当たりの平均厚さT)を算出する。この場合には、できるだけ特定の場所周辺に集中せずに広く分散されるように測定位置を設定することが好ましい。続いて、SEMによる観察個数の総数が100個になるまで、上記した平均値の算出作業を繰り返す。最後に、100個の負極活物質200に関して算出された平均値(1個当たりの平均厚さT)の平均値(平均厚さTの平均値)を算出して、被覆部202の平均厚さとする。
 また、コア部201に対する被覆部202の平均被覆率は、特に限定されないが、できるだけ大きいことが好ましく、中でも、30%以上(30%~100%)であることがより好ましい。被覆部202の保護機能がより向上するからである。
 被覆部202の平均被覆率は、以下の手順により算出される。まず、平均厚さを算出した場合と同様に、SEMなどを用いて1個の負極活物質200を観察する。この観察時の倍率は、コア部201のうち、被覆部202により被覆されている部分と被覆されていない部分とを目視で識別できるような倍率であることが好ましい。続いて、コア部201の外縁(輪郭)のうち、被覆部202により被覆されている部分の長さと被覆されていない部分の長さとを測定する。そして、被覆率(1個当たりの被覆率:%)=(被覆部202により被覆されている部分の長さ/コア部201の外縁の長さ)×100を算出する。続いて、SEMによる観察個数の総数が100個になるまで、上記した被覆率の算出作業を繰り返す。最後に、100個の負極活物質200に関して算出された被覆率(1個当たりの被覆率)の平均値を算出して、被覆部202の平均被覆率とする。
 なお、被覆部202はコア部201に隣接していることが好ましいが、コア部201と被覆部202との間に自然酸化膜(SiO2 )が介在していてもよい。この自然酸化膜は、例えば、コア部201の表層近傍が大気中において酸化されたものである。負極活物質200の中心にコア部201が存在すると共に外側に被覆部202が存在すれば、自然酸化膜の存在はコア部201および被覆部202の機能にほとんど影響を及ぼさない。
 ここで、負極活物質200がコア部201および被覆部202を含んでいることを確認するためには、上記したSEM観察の他、例えば、X線光電子分光法(XPS)またはエネルギー分散型X線分析法(EDX)などを用いて負極活物質200を分析してもよい。
 この場合には、負極活物質200の中心部および表層部の酸化度(原子x,y)などを測定すれば、コア部201および被覆部202の組成を確認できる。なお、被覆部202により被覆されているコア部201の組成を調べるためには、HFなどの酸を用いて被覆部202を溶解除去すればよい。
 酸化度の測定に関する詳細な手順は、例えば、下記の通りである。最初に、燃焼法を用いて負極活物質200(被覆部202により被覆されたコア部201)を定量して、全体のSi量およびO量を算出する。続いて、HFなどを用いて被覆部202を洗浄除去したのち、燃焼法を用いてコア部202を定量してSi量およびO量を算出する。最後に、全体のSi量およびO量からコア部201のSi量およびO量を差し引いて、被覆部202のSi量およびO量を算出する。これにより、コア部201および被覆部202に関してSi量およびO量が特定されるため、それぞれの酸化度を特定できる。なお、被覆部202を洗浄除去する代わりに、被覆部202により被覆されたコア部201と共に未被覆のコア部201を用いて酸化度を測定してもよい。
 なお、負極活物質層2中において、複数の負極活物質200は互いに離間(分散)されていてもよいし、そのうちの2つ以上が接触(または連結)されていてもよい。2つ以上の負極活物質200が接触する場合、その負極活物質200の位置関係は任意でよい。また、被覆部202は、Fe、AlおよびCaなどのうちの少なくとも1種の元素を構成元素として含んでいてもよい。被覆部202の電気抵抗が低下するからである。SiおよびOに対するFe等の割合(Fe等/(Si+O))は、特に限定されない。
[炭素含有材料]
 特に、被覆部202は、その内部に1または2以上の空隙を有しており、その空隙のうちの少なくとも一部に、Cを構成元素として含む材料(炭素含有材料)が設けられている。すなわち、炭素含有材料は空隙に挿入されており、その空隙は炭素含有材料により埋められている。上記したコア部201の膨張収縮に追随する被覆部202の膨張収縮性を阻害せずに、負極活物質200の導電性が向上すると共に電解液の分解反応が抑制されるからである。
 詳細には、被覆部202の内部に存在する空隙は、充放電時において負極活物質200が膨張収縮した際に生じる内部応力を緩和するためのスペースとして利用される。このため、被覆部202が空隙を有していると、負極活物質200が充放電時において破損しにくくなる。その一方で、空隙は、その内部に高反応性の被覆部202を露出させることになるため、その露出面において電解液が分解しやすくなる。この点に関して、空隙に炭素含有材料が設けられていると、その空隙の内部に高反応性の被覆部202が露出しにくくなるため、電解液の分解反応が抑制される。しかも、炭素は変形性(柔軟性)および高導電性に優れているため、炭素含有材料はコア部201の膨張収縮に追随する被覆部202の膨張収縮性を阻害しにくいと共に、その炭素含有材料を含む被覆部202の導電性が向上する。
 なお、炭素含有材料は、Cだけを構成元素として含んでいてもよいし、Cと共にそれ以外の元素のいずれか1種類または2種類以上を含んでいてもよい。この「他の元素」の種類は、特に限定されないが、例えば、HまたはOなどである。
 ここで、一般的に、ラマンスペクトル法を用いて炭素材料を測定すると、そのラマンスペクトルには、黒鉛構造に由来するGバンドピークが1590cm-1近傍に検出されると共に、欠陥に由来するDバンドピークが1350cm-1近傍に検出される。このGバンドピークの強度IGとDバンドピークの強度IDとの比IG/IDは、G/D比とも呼ばれており、炭素材料の結晶性(純度)を表す指標である。
 被覆部202の空隙に設けられている炭素含有材料の比IG/IDは、特に限定されないが、中でも、0.3~3であることが好ましい。優れた結着性、導電性および変形性が得られるからである。
 詳細には、比IG/IDが0.3よりも小さいと、結着性が高くなるため、炭素含有材料同士の密着性および被覆部202に対する炭素含有材料の密着性が向上する。しかしながら、導電性が低下すると共に硬くなるため、被覆部202の膨張収縮に追随して炭素含有材料が膨張収縮しにくくなると共に十分な導電性が得られない可能性がある。一方、比IG/IDが3よりも大きいと、導電性が高くなると共に軟らかくなるため、被覆部202の膨張収縮に追随して炭素含有材料が膨張収縮しやすくなると共に十分な導電性が得られる。しかしながら、結着性が低下するため、炭素含有材料同士の密着性および被覆部202に対する炭素含有材料の密着性が低下する可能性がある。これに対して、比IG/IDが0.3~3であると、炭素含有材料の結着性および導電性が高くなると共に、被覆部202の膨張収縮に追随して炭素含有材料が膨張収縮しやすくなる。
 空隙の形成要因は、特に限定されない。いかなる要因で形成されたかを問わず、被覆部202中に空隙が存在していれば、その空隙は応力緩和用のスペースとして機能し得るからである。また、被覆部202中の空隙分布は、特に限定されないが、中でも、窒素吸着法および水銀圧入法により測定される被覆部202の空隙分布における最大ピークの空隙径は、500nm以下であることが好ましく、50nm以下であることがより好ましい。空隙径が大きすぎると、被覆部202中におけるSiの占有体積が減少するため、リチウムイオンの吸蔵放出量が低下する(電池容量が減少する)からである。
 この被覆部202の空隙分布の測定方法は、その空隙径の大きさに応じて任意の方法を用いることができる。例えば、空隙径が3nm以上である空隙分布に関しては、窒素吸着法などを用いると共に、空隙径が100nm以上である空隙分布に関しては、水銀圧入法などを用いる。この水銀圧入法では、水銀ポロシメータを用いると共に、水銀の表面張力=485mN/m、接触角=130°とし、空隙径と圧力との間の関係を180/圧力=空隙径と近似する。この水銀ポロシメータは、例えば、島津製作所製のオートポアIV9500である。また、窒素吸着法では、例えば、島津製作所製のトライスター3000などの自動比表面積/細孔分布測定装置を用いる。
 なお、被覆部202は、単層でもよいし、多層でもよいが、中でも、図6に示したように、多層であることが好ましい。被覆部202中(層間)に応力緩和用のスペース(空隙)が形成されやすいからである。図6に示した破線は、各層の境界の目安を表している。ただし、被覆部202は、全体に渡って多層でもよいし、一部だけ多層でもよい。
[炭素含有層]
 負極活物質200の表面に炭素含有層が設けられていてもよい。この炭素含有層は、負極活物質200の表面のうちの少なくとも一部に設けられており、コア部201および被覆部202よりも低い電気抵抗を有していることが好ましい。コア部201が電解液とより接触しにくくなるため、その電解液の分解反応が抑制されるからである。また、負極活物質200の電気抵抗がより低下するからである。
 この炭素含有層の組成は、上記した炭素含有材料の組成と同様である。すなわち、炭素含有層は、Cを構成元素として含んでおり、必要に応じて、さらに他の1種類または2種類以上の元素(例えばHまたはOなど)を含んでいてもよい。ただし、炭素含有層の形成材料は、炭素含有材料の形成材料と同じでもよいし、異なっていてもよい。この炭素含有層の具体例は、「他の負極活物質」として後述する炭素材料などである。なお、炭素含有層の形成材料が炭素含有材料の形成材料と同じである場合には、その炭素含有材料の代わりに炭素含有層の一部により被覆部202の空隙が埋められており、その空隙が封孔されていてもよい。炭素含有材料と炭素含有層とを実質的に一括して形成できるからである。
 炭素含有層の平均厚さは、特に限定されないが、中でも、500nm以下であることが好ましく、200nm以下であることがより好ましい。また、負極活物質200に対する炭素含有層の平均被覆率は、特に限定されないが、中でも、30%以上であることが好ましい。より高い効果が得られるからである。特に、平均厚さが500nmよりも大きいと、負極活物質200を含むスラリーの性状が悪化するため、そのスラリーを塗布しにくくなる可能性がある。なお、炭素含有層の平均被覆率および平均厚さの算出手順に関する詳細は、被覆部202と同様である。
 負極結着剤は、例えば、合成ゴムまたは高分子材料などのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、ポリマレイン酸またはこれらの共重合体などである。この他、高分子材料は、例えば、カルボキシメチルセルロース、スチレンブタジエンゴムまたはポリビニルアルコールなどでもよい。
 負極導電剤は、例えば、黒鉛、カーボンブラック、アセチレンブラックまたはケチェンブラックなどの炭素材料のいずれか1種類または2種類以上を含んでいる。なお、負極導電剤は、導電性を有する材料であれば、金属材料または導電性高分子などでもよい。
 なお、負極活物質層2は、必要に応じて、上記したコア部201および被覆部202を含む負極活物質200と共に、他の種類の負極活物質を含んでいてもよい。
 この「他の負極活物質」は、例えば、炭素材料である。負極活物質層2の電気抵抗が低下すると共に、その負極活物質層2が充放電時において膨張収縮しにくくなるからである。この炭素材料は、例えば、易黒鉛化性炭素、(002)面の面間隔が0.37nm以上の難黒鉛化性炭素、または(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭またはカーボンブラック類などがある。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭素化したものである。炭素材料の形状は、繊維状、球状、粒状または鱗片状のいずれでもよい。
 また、他の負極活物質は、金属酸化物または高分子化合物でもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンまたはポリピロールなどである。
 負極活物質層2は、例えば、塗布法、焼成法(焼結法)またはそれらの2種類以上の方法により形成されている。塗布法とは、例えば、負極活物質を負極結着剤などと混合したのち、有機溶剤などに分散させて塗布する方法である。焼成法とは、例えば、塗布法と同様の手順により塗布したのち、負極結着剤などの融点よりも高い温度で熱処理する方法である。焼成法としては、公知の手法を用いることができる。例えば、雰囲気焼成法、反応焼成法またはホットプレス焼成法などである。
[負極の製造方法]
 この負極は、例えば、以下の手順により製造される。なお、負極集電体1および負極活物質層2の形成材料に関しては既に詳細に説明したので、その説明を省略する。
 最初に、例えば、ガスアトマイズ法、水アトマイズ法または溶融粉砕法などを用いて、SiおよびOを構成元素として含む粒子状(粉末状)のコア部201を得る。なお、コア部201にFeなどの金属元素を含有させる場合には、原材料と一緒に金属材料を溶融させる。
 続いて、例えば、蒸着法またはスパッタ法などの気相成長法を用いて、コア部201の表面に、SiおよびOを構成元素として含む被覆部202を形成する。このように気相成長法を用いると、被覆部202が非結晶性になりやすい傾向がある。この場合には、加熱しながら堆積処理を行い、または被覆部202の形成後に加熱することで、その被覆部202を低結晶性にしてもよい。低結晶性の程度は、例えば、加熱時の温度および時間などの条件に応じて制御される。この加熱処理により、被覆部202中の水分が除去されると共に、コア部201に対する被覆部202の密着性が向上する。
 被覆部202を形成する場合には、必要に応じて、コア部201を回転させながら、シャッタなどの開閉機構を用いて堆積処理の可否を制御することで、多方向から複数回に渡ってコア部201の表面に堆積処理を施すことが好ましい。コア部201の表面が被覆部202により均一に覆われやすいからである。また、被覆部202が多層になるため、層間に応力緩和用のスペース(空隙)が形成されやすくなるからである。
 続いて、熱分解化学蒸着(CVD)法などを用いて、被覆部202の空隙に炭素含有材料を形成する。この場合には、炭素源(有機ガス)として、例えば、メタン、エタン、エチレン、アセチレンまたはプロパンなどを用いる。熱分解CVD法を用いることで、微細な空隙の内部まで炭素源が到達して熱分解されるため、その微細な空隙を炭素含有材料で容易に埋めることができる。このように被覆部202の微細な空隙に炭素含有材料が埋め込まれる構造は、上記したように、熱分解CVD法などを用いて炭素含有材料を被覆部202とは別個に形成することで初めて実現される特徴的な構造である。これに対して、被覆部202の形成材料と炭素含有材料の形成材料とを共蒸着したり、被覆部202を形成してから蒸着法を用いて炭素含有材料を形成した場合などには、上記した特徴的な構造が得られない。被覆部202の空隙を埋めるように炭素含有材料を選択的に形成することができないからである。これにより、被覆部202によりコア部201が被覆されると共に、その被覆部202の空隙に炭素含有材料が挿入されるため、負極活物質200が得られる。
 なお、負極活物質200を形成する場合には、気相成長法または湿式コート法などを用いて、被覆部202の表面に炭素含有層を形成してもよい。この気相成長法は、例えば、蒸着法、スパッタ法、熱分解CVD法、熱分解CVD法、電子ビーム蒸着法または糖炭化法などである。中でも、熱分解CVD法が好ましい。炭素含有層が均一な厚さとなるように形成されやすいからである。また、炭素含有材料の代わりに炭素含有層により被覆部202の空隙を封孔する場合には、その微細な空隙に炭素含有層の一部を埋め込むことができるからである。
 蒸着法を用いる場合には、例えば、負極活物質の表面に蒸気を直接吹き付けて炭素含有層を形成する。スパッタ法を用いる場合には、例えば、Arガスを導入しながら粉体スパッタ法を用いて炭素含有層を形成する。CVD法を用いる場合には、例えば、金属塩化物を昇華させたガスとH2 およびN2 などの混合ガスとを、金属塩化物のモル比が0.03~0.3となるように混合したのち、1000℃以上に加熱して炭素含有層を形成する。湿式コート法を用いる場合には、例えば、負極活物質を含むスラリーに含金属溶液を添加しながらアルカリ溶液を添加して金属水酸化物を形成したのち、450℃で水素による還元処理を行って負極活物質の表面に炭素含有層を形成する。なお、炭素含有層の形成材料として炭素材料を用いる場合には、負極活物質をチャンバ内に投入し、そのチャンバ内に有機ガスを導入したのち、10000Paおよび1000℃以上の条件で加熱処理を5時間行って負極活物質の表面に炭素含有層を形成する。この有機ガスの種類は、加熱分解により炭素を生じさせるものであれば特に限定されないが、例えば、メタン、エタン、エチレン、アセチレンまたはプロパンなどである。
 続いて、負極活物質200と負極結着剤などの他の材料とを混合して負極合剤としたのち、有機溶剤などの溶媒に溶解させて負極合剤スラリーとする。最後に、負極集電体1の表面に負極合剤スラリーを塗布してから乾燥させて負極活物質層2を形成する。こののち、必要に応じて負極活物質層2を圧縮成型および加熱(焼成)してもよい。
[負極活物質の作用および効果]
 この負極活物質によれば、負極活物質200がコア部201の表面に低結晶性または非結晶性の被覆部202を有しており、そのコア部201および被覆部20が上記した組成を有している。また、被覆部202の空隙に炭素含有材料が設けられている。これにより、上記したように、コア部201がリチウムイオンを円滑に吸蔵放出しやすくなると共に、そのコア部201が充放電時において破損しにくくなる。また、コア部201の円滑な吸蔵放出を維持したまま、被覆部202の存在に起因して不可逆容量が生じることが抑制される。しかも、負極活物質200の導電性が向上すると共に、高反応性の被覆部202に起因する電解液の分解反応が抑制される。よって、負極活物質または負極を用いた二次電池の性能向上に寄与できる。
 特に、ラマンスペクトル法により測定される炭素含有材料の比IG/IDが0.3~3であり、または窒素吸着法および水銀圧入法により測定される被覆部の細孔分布における最大ピークの空隙径が500nm以下であれば、より高い効果を得ることができる。
 また、被覆部202が多層であれば、その被覆部202に応力緩和用の空隙が形成されやすくなるため、より高い効果を得ることができる。
 また、負極活物質200の表面に炭素含有層が設けられており、その炭素含有層の平均厚さが500nm以下であり、または負極活物質200に対する炭素含有層の平均被覆率が30%以上であれば、より高い効果を得ることができる。この場合には、炭素含有層の一部により被覆部202の空隙を封孔すれば、炭素含有層が設けられた負極活物質200を容易に形成できる。
 また、被覆部202が低結晶性であり、Siの(111)面および(220)面に起因する結晶粒の平均面積占有率が35%以下、または結晶粒の平均粒径が55nm以下であれば、より高い効果を得ることができる。
 また、被覆部202を厚さ方向において二等分したとき、結晶粒の内側部分における平均面積占有率および平均粒径が外側部分における平均面積占有率および平均粒径と同じであるか、それよりも大きくなっていれば、より高い効果を得ることができる。
 また、コア部201に対する被覆部202の平均被覆率が30%以上であり、または被覆部202の平均厚さが1nm~3000nmであれば、より高い効果を得ることができる。
 また、コア部201がFeを構成元素として含み、そのSiおよびOに対するFeの割合(Fe/(Si+O))が0.01重量%~7.5重量%であれば、より高い効果を得ることができる。
<2.二次電池>
 次に、上記した二次電池用活物質を用いた二次電池について説明する。
<2-1.角型>
 図7および図8は、角型の二次電池の断面構成を表しており、図8では、図7に示したVIII-VIII線に沿った断面を示している。また、図9は、図8に示した正極21および負極22の平面構成を模式的に表している。
[二次電池の全体構成]
 角型の二次電池は、主に、電池缶11の内部に電池素子20が収納されたものである。この電池素子20は、セパレータ23を介して正極21と負極22とが積層および巻回された巻回積層体であり、電池缶11の形状に応じて扁平状になっている。
 電池缶11は、例えば、角型の外装部材である。この角型の外装部材は、図8に示したように、長手方向における断面が矩形型または略矩形型(一部に曲線を含む)の形状を有しており、矩形状だけでなくオーバル形状の角型電池にも適用される。すなわち、角型の外装部材とは、矩形状または円弧を直線で結んだ略矩形状(長円形状)の開口部を有する有底矩形型または有底長円形状型の器状部材である。なお、図8では、電池缶11が矩形型の断面形状を有する場合を示している。
 この電池缶11は、例えば、Fe、Alまたはそれらの合金などの導電性材料により形成されており、電極端子としての機能を有している場合もある。中でも、充放電時において固さ(変形しにくさ)を利用して電池缶11の膨れを抑えるためには、Alよりも固いFeが好ましい。なお、電池缶11がFe製である場合、その表面にNiなどが鍍金されていてもよい。
 また、電池缶11は、一端部が開放されると共に他端部が閉鎖された中空構造を有しており、その開放端部に取り付けられた絶縁板12および電池蓋13により密閉されている。絶縁板12は、電池素子20と電池蓋13との間に設けられていると共に、例えば、ポリプロピレンなどの絶縁性材料により形成されている。電池蓋13は、例えば、電池缶11と同様の材料により形成されており、その電池缶11と同様に電極端子として機能してもよい。
 電池蓋13の外側には、正極端子となる端子板14が設けられており、その端子板14は、絶縁ケース16を介して電池蓋13から電気的に絶縁されている。この絶縁ケース16は、例えば、ポリブチレンテレフタレートなどの絶縁性材料により形成されている。電池蓋13のほぼ中央には貫通孔が設けられており、その貫通孔には、端子板14と電気的に接続されると共にガスケット17を介して電池蓋13から電気的に絶縁されるように正極ピン15が挿入されている。このガスケット17は、例えば、絶縁性材料により形成されており、そのガスケット17の表面には、アスファルトが塗布されていてもよい。
 電池蓋13の周縁付近には、開裂弁18および注入孔19が設けられている。開裂弁18は、電池蓋13と電気的に接続されており、内部短絡、または外部からの加熱などに起因して電池の内圧が一定以上となった場合に、電池蓋13から切り離されて内圧を開放するようになっている。注入孔19は、例えば、ステンレス鋼球からなる封止部材19Aにより塞がれている。
 正極21の端部(例えば内終端部)には、Alなどの導電性材料により形成された正極リード24が取り付けられていると共に、負極22の端部(例えば外終端部)には、Niなどの導電性材料により形成された負極リード25が取り付けられている。正極リード24は、正極ピン15の一端に溶接されていると共に端子板14と電気的に接続されており、負極リード25は、電池缶11に溶接されていると共にその電池缶11と電気的に接続されている。
[正極]
 正極21は、例えば、正極集電体21Aの両面に正極活物質層21Bを有している。ただし、正極活物質層21Bは、正極集電体21Aの片面だけに設けられていてもよい。
 正極集電体21Aは、例えば、Al、Niまたはステンレスなどの導電性材料により形成されている。
 正極活物質層21Bは、正極活物質として、リチウムイオンを吸蔵放出可能である正極材料のいずれか1種類または2種類以上を含んでおり、必要に応じて正極結着剤または正極導電剤などの他の材料を含んでいてもよい。なお、正極結着剤または正極導電剤に関する詳細は、例えば、既に説明した負極結着剤および負極導電剤と同様である。
 正極材料としては、リチウム含有化合物が好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物は、例えば、Liと遷移金属元素とを構成元素として含む複合酸化物や、Liと遷移金属元素とを構成元素として含むリン酸化合物などである。中でも、遷移金属元素は、Co、Ni、MnおよびFeのいずれか1種類または2種類以上であることが好ましい。より高い電圧が得られるからである。その化学式は、例えば、Lix M11O2 またはLiy M12PO4 で表される。式中、M11およびM12は、1種類以上の遷移金属元素を表している。xおよびyの値は、充放電状態に応じて異なるが、通常、0.05≦x≦1.10、0.05≦y≦1.10である。特に、正極材料がNiまたはMnを含んでいると、体積安定率が向上する傾向にある。
 Liと遷移金属元素とを含む複合酸化物は、例えば、Lix CoO2 、Lix NiO2 (xは任意の値)、または下記の式(1)で表されるリチウムニッケル系複合酸化物などである。Liと遷移金属元素とを含むリン酸化合物は、例えば、LiFePO4 またはLiFe1-u Mnu PO4 (u<1)などである。高い電池容量が得られると共に、優れたサイクル特性も得られるからである。なお、正極材料は、上記以外の材料でもよい。例えば、Lix M14y 2 (M14はNiと式(1)に示したM13のうちの少なくとも1種とであると共に、x>1であり、yは任意である。)で表される材料などである。
 LiNi1-x M13x 2 …(1)
(M13はCo、Mn、Fe、Al、V、Sn、Mg、Ti、Sr、Ca、Zr、Mo、Tc、Ru、Ta、W、Re、Y、Cu、Zn、Ba、B、Cr、Si、Ga、P、SbおよびNbのうちの少なくとも1種であり、xは0.005<x<0.5を満たす。)
 この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子などである。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンまたは硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンまたはポリチオフェンなどである。
[負極]
 負極22は、上記した負極と同様の構成を有しており、例えば、負極集電体22Aの両面に負極活物質層22Bを有している。負極集電体22Aおよび負極活物質層22Bの構成は、それぞれ負極集電体1および負極活物質層2の構成と同様である。リチウムイオンを吸蔵放出可能である負極材料の充電可能な容量は、正極21の放電容量よりも大きくなっていることが好ましい。充放電時に意図せずにLi金属が析出することを防止するためである。
 図9に示したように、正極活物質層21Bは、例えば、正極集電体21Aの表面の一部(例えば長手方向における中央領域)に設けられている。これに対して、負極活物質層22Bは、例えば、負極集電体22Aの全面に設けられている。これにより、負極活物質層22Bは、負極集電体22Aのうち、正極活物質層21Bと対向する領域(対向領域R1)および対向しない領域(非対向領域R2)に設けられている。この場合には、負極活物質層22Bのうち、対向領域R1に設けられている部分が充放電に関与するが、非対向領域R2に設けられている部分は充放電にほとんど関与しない。なお、図9では、正極活物質層21Bおよび負極活物質層22Bに網掛けしている。
 上記したように、負極活物質層22Bに含まれる負極活物質200(図2参照)は、コア部201および被覆部202を含んでいる。しかしながら、充放電時の膨張収縮に起因して負極活物質層22Bが変形または破損する可能性があるため、コア部201および被覆部202の形成状態が負極活物質層22Bの形成時の状態から変動し得る。しかしながら、非対向領域R2では、充放電の影響をほとんど受けず、負極活物質層22Bの形成状態が維持される。このため、コア部201および被覆部202の有無、組成(原子x,y)、および空隙(炭素含有材料)の有無など、上記した一連の条件に関しては、非対向領域R2の負極活物質層22Bにおいて調べることが好ましい。充放電の履歴(充放電の有無および回数など)に依存せずに、コア部201および被覆部202の状態を再現性よく正確に調べることができるからである。
 この負極22の満充電状態における最大利用率(以下、単に「負極利用率」という。)は、特に限定されず、正極21の容量と負極22の容量との割合に応じて任意に設定可能である。
 上記した「負極利用率」は、利用率Z(%)=(X/Y)×100で表される。ここで、Xは、負極22の満充電状態における単位面積当たりのリチウムイオンの吸蔵量であり、Yは、負極22の単位面積当たりにおける電気化学的に吸蔵可能なリチウムイオンの量である。
 吸蔵量Xについては、例えば、以下の手順で求めることができる。最初に、満充電状態になるまで二次電池を充電させたのち、その二次電池を解体して、負極22のうちの正極21と対向している部分(検査負極)を切り出す。続いて、検査負極を用いて、金属リチウムを対極とした評価電池を組み立てる。最後に、評価電池を放電させて初回放電時の放電容量を測定したのち、その放電容量を検査負極の面積で割って吸蔵量Xを算出する。この場合の「放電」とは、検査負極からリチウムイオンが放出される方向へ通電することを意味しており、例えば、0.1mA/cm2 の電流密度で電池電圧が1.5Vに達するまで定電流放電する。
 一方、吸蔵量Yに関しては、例えば、上記した放電済みの評価電池を電池電圧が0Vになるまで定電流定電圧充電して充電容量を測定したのち、その充電容量を検査負極の面積で割って算出する。この場合の「充電」とは、検査負極にリチウムイオンが吸蔵される方向へ通電することを意味しており、例えば、電流密度が0.1mA/cm2 であると共に電池電圧が0Vである定電圧充電において、電流密度が0.02mA/cm2 に達するまで行う。
 中でも、負極利用率は、35%~80%であることが好ましい。優れた初回充放電特性、サイクル特性および負荷特性などが得られるからである。
[セパレータ]
 セパレータ23は、正極21と負極22とを隔離して、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させるものである。このセパレータ23は、例えば、合成樹脂またはセラミックからなる多孔質膜であり、2種類以上の多孔質膜が積層された積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンまたはポリエチレンなどである。
[電解液]
 セパレータ23には、液状の電解質である電解液が含浸されている。この電解液は、溶媒に電解質塩が溶解されたものであり、必要に応じて添加剤などの他の材料を含んでいてもよい。
 溶媒は、例えば、有機溶剤などの非水溶媒のいずれか1種類または2種類以上を含んでいる。この非水溶媒は、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチル、またはジメチルスルホキシドなどである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのうちの少なくとも1種が好ましい。より優れた特性が得られるからである。この場合には、炭酸エチレンまたは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルまたは炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
 特に、溶媒は、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時において負極22の表面に安定な被膜が形成されるため、電解液の分解反応が抑制されるからである。不飽和炭素結合環状炭酸エステルとは、1または2以上の不飽和炭素結合を含む(いずれかの箇所に不飽和炭素結合が導入された)環状炭酸エステルである。この不飽和炭素結合環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンまたは炭酸メチレンエチレンなどである。溶媒中における不飽和炭素結合環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。
 また、溶媒は、ハロゲン化鎖状炭酸エステルおよびハロゲン化環状炭酸エステルのうちの少なくとも一方を含んでいることが好ましい。充放電時において負極22の表面に安定な被膜が形成されるため、電解液の分解反応が抑制されるからである。ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として含む(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として含む(少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
 ハロゲンの種類は、特に限定されないが、中でも、F、ClまたはBrが好ましく、Fがより好ましい。他のハロゲンよりも高い効果が得られるからである。ただし、ハロゲンの数は、1つよりも2つが好ましく、さらに3つ以上でもよい。保護膜を形成する能力が高くなると共に、より強固で安定な被膜が形成されるため、電解液の分解反応がより抑制されるからである。
 ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)または炭酸ジフルオロメチルメチルなどである。ハロゲン化環状炭酸エステルは、4-フルオロ-1,3-ジオキソラン-2-オンまたは4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。このハロゲン化環状炭酸エステルには、幾何異性体も含まれる。溶媒中におけるハロゲン化鎖状炭酸エステルおよびハロゲン化環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~50重量%である。
 また、溶媒は、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電解液の化学的安定性が向上するからである。スルトンは、例えば、プロパンスルトンまたはプロペンスルトンなどである。溶媒中におけるスルトンの含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物は、例えば、例えば、カルボン酸無水物、ジスルホン酸無水物またはカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸または無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸または無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸または無水スルホ酪酸などである。溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類または2種類以上を含んでいる。リチウム塩は、例えば、LiPF6 、LiBF4 、LiClO4 、LiAsF6 、LiB(C6 5 4 、LiCH3 SO3 、LiCF3 SO3 、LiAlCl、Li2 SiF6 、LiClまたはLiBrなどであり、その他の種類のリチウム塩でもよい。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 中でも、LiPF6 、LiBF4 、LiClO4 およびLiAsF6 のいずれか1種類または2種類以上が好ましく、LiPF6 またはLiBF4 が好ましく、LiPF6 がより好ましい。内部抵抗が低下するため、より優れた特性が得られるからである。
 電解質塩の含有量は、溶媒に対して0.3mol/kg以上3.0mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[二次電池の動作]
 この角型の二次電池では、例えば、充電時において、正極21から放出されたリチウムイオンが電解液を介して負極22に吸蔵されると共に、放電時において、負極22から放出されたリチウムイオンが電解液を介して正極21に吸蔵される。
[二次電池の製造方法]
 この二次電池は、例えば、以下の手順により製造される。
 正極21を作製する場合には、最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合して正極合剤としたのち、有機溶剤などに分散させてペースト状の正極合剤スラリーとする。続いて、ドクタブレードまたはバーコータなどのコーティング装置を用いて正極集電体21Aに正極合剤スラリーを塗布してから乾燥させて正極活物質層21Bを形成する。最後に、必要に応じて加熱しながら、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、圧縮成型を複数回繰り返してもよい。
 負極22を作製する場合には、例えば、上記した負極と同様の作製手順により、負極集電体22Aに負極活物質層22Bを形成する。
 電池素子20を作製する場合には、最初に、溶接法などを用いて、正極集電体21Aに正極リード24を取り付けると共に、負極集電体22Aに負極リード25を取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層させたのち、それらを長手方向において巻回させる。最後に、扁平な形状となるように巻回体を成型する。
 二次電池を組み立てる場合には、最初に、電池缶11の内部に電池素子20を収納したのち、その電池素子20の上に絶縁板12を載せる。続いて、溶接法などを用いて、正極リード24を正極ピン15に取り付けると共に、負極リード25を電池缶11に取り付ける。この場合には、レーザ溶接法などを用いて電池缶11の開放端部に電池蓋13を固定する。最後に、注入孔19から電池缶11の内部に電解液を注入してセパレータ23に含浸させたのち、その注入孔19を封止部材19Aで塞ぐ。
[二次電池の作用および効果]
 この角型の二次電池によれば、負極22が上記した負極と同様の構成を有しているので、優れた電池特性を得ることができる。これ以外の効果は、負極と同様である。
<2-2.円筒型>
 図10および図11は、円筒型二次電池の断面構成を表しており、図11では、図10に示した巻回電極体40の一部を拡大している。以下では、既に説明した角型の二次電池の構成要素を随時引用する。
[二次電池の構成]
 円筒型の二次電池は、主に、ほぼ中空円柱状の電池缶31の内部に巻回電極体40および一対の絶縁板32,33が収納されたものである。この巻回電極体40は、セパレータ43を介して正極41と負極42とが積層および巻回された巻回積層体である。
 電池缶31は、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、例えば、電池缶11と同様の材料により形成されている。一対の絶縁板32,33は、巻回電極体40を上下から挟むと共にその巻回周面に対して垂直に延在するように配置されている。
 電池缶31の開放端部には、電池蓋34、安全弁機構35および熱感抵抗素子(PTC素子)36がガスケット37を介してかしめられており、その電池缶31は密閉されている。電池蓋34は、例えば、電池缶31と同様の材料により形成されている。安全弁機構35および熱感抵抗素子36は、電池蓋34の内側に設けられており、その安全弁機構35は、熱感抵抗素子36を介して電池蓋34と電気的に接続されている。この安全弁機構35では、内部短絡、または外部からの加熱などに起因して内圧が一定以上となった場合に、ディスク板35Aが反転して電池蓋34と巻回電極体40との間の電気的接続を切断するようになっている。熱感抵抗素子36は、温度上昇に応じた抵抗増加により、大電流に起因する異常な発熱を防止するものである。ガスケット37は、例えば、絶縁材料により形成されており、その表面にはアスファルトが塗布されていてもよい。
 巻回電極体40の中心には、センターピン44が挿入されていてもよい。正極41には、Alなどの導電性材料により形成された正極リード45が接続されていると共に、負極42には、Niなどの導電性材料により形成された負極リード46が接続されている。正極リード45は、安全弁機構35に溶接などされていると共に、電池蓋34と電気的に接続されている。負極リード46は、電池缶31に溶接などされている。
 正極41は、例えば、正極集電体41Aの両面に正極活物質層41Bを有している。負極42は、上記した負極と同様の構成を有しており、例えば、負極集電体42Aの両面に負極活物質層42Bを有している。正極集電体41A、正極活物質層41B、負極集電体42A、負極活物質層42Bおよびセパレータ43の構成は、それぞれ正極集電体21A、正極活物質層21B、負極集電体22A、負極活物質層22Bおよびセパレータ23の構成と同様である。また、セパレータ43に含浸されている電解液の組成は、角型の二次電池における電解液の組成と同様である。
[二次電池の動作]
 この円筒型の二次電池では、例えば、充電時において、正極41から放出されたリチウムイオンが電解液を介して負極42に吸蔵されると共に、放電時において、負極42から放出された電解液を介して正極41に吸蔵される。
[二次電池の製造方法]
 この円筒型の二次電池は、例えば、以下の手順により製造される。最初に、例えば、正極21および負極22と同様の作製手順により、正極集電体41Aの両面に正極活物質層41Bを形成して正極41を作製すると共に、負極集電体42Aの両面に負極活物質層42Bを形成して負極42を作製する。続いて、溶接法などを用いて、正極41に正極リード45を取り付けると共に、負極42に負極リード46を取り付ける。続いて、セパレータ43を介して正極41と負極42とを積層および巻回させて巻回電極体40を作製したのち、その巻回中心にセンターピン44を挿入する。続いて、一対の絶縁板32,33で挟みながら巻回電極体40を電池缶31の内部に収納する。この場合には、溶接法などを用いて、正極リード45を安全弁機構35に取り付けると共に、負極リード46の先端部を電池缶31に取り付ける。続いて、電池缶31の内部に電解液を注入してセパレータ43に含浸させる。最後に、電池缶31の開口端部に電池蓋34、安全弁機構35および熱感抵抗素子36を取り付けたのち、それらをガスケット37を介してかしめる。
[二次電池の作用および効果]
 この円筒型の二次電池によれば、負極42が上記した負極と同様の構成を有しているので、角型の二次電池と同様の効果を得ることができる。
<2-3.ラミネートフィルム型>
 図12は、ラミネートフィルム型二次電池の分解斜視構成を表しており、図13は、図12に示した巻回電極体50のXIII-XIII線に沿った断面を拡大している。
[二次電池の構成]
 ラミネートフィルム型の二次電池は、主に、フィルム状の外装部材60の内部に巻回電極体50が収納されたものである。この巻回電極体50は、セパレータ55および電解質層56を介して正極53と負極54とが積層および巻回された巻回積層体である。正極53には正極リード51が取り付けられていると共に、負極54には負極リード52が取り付けられている。巻回電極体50の最外周部は、保護テープ57により保護されている。
 正極リード51および負極リード52は、例えば、外装部材60の内部から外部に向かって同一方向に導出されている。正極リード51は、例えば、Alなどの導電性材料により形成されていると共に、負極リード52は、例えば、Cu、Niまたはステンレスなどの導電性材料により形成されている。これらの材料は、例えば、薄板状または網目状になっている。
 外装部材60は、例えば、融着層、金属層および表面保護層がこの順に積層されたラミネートフィルムである。このラミネートフィルムでは、例えば、融着層が巻回電極体50と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、または接着剤などにより貼り合わされている。融着層は、例えば、ポリエチレンまたはポリプロピレンなどのフィルムである。金属層は、例えば、Al箔などである。表面保護層は、例えば、ナイロンまたはポリエチレンテレフタレートなどのフィルムである。
 中でも、外装部材60としては、ポリエチレンフィルム、アルミニウム箔およびナイロンフィルムがこの順に積層されたアルミラミネートフィルムが好ましい。ただし、外装部材60は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルムまたは金属フィルムでもよい。
 外装部材60と正極リード51および負極リード52との間には、外気の侵入を防止するための密着フィルム61が挿入されている。この密着フィルム61は、正極リード51および負極リード52に対して密着性を有する材料により形成されている。このような材料は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂である。
 正極53は、例えば、正極集電体53Aの両面に正極活物質層53Bを有している。負極54は、上記した負極と同様の構成を有しており、例えば、負極集電体54Aの両面に負極活物質層54Bを有している。正極集電体53A、正極活物質層53B、負極集電体54Aおよび負極活物質層54Bの構成は、それぞれ正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bの構成と同様である。また、セパレータ55の構成は、セパレータ23の構成と同様である。
 電解質層56は、高分子化合物により電解液が保持されたものであり、必要に応じて添加剤などの他の材料を含んでいてもよい。この電解質層56は、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に電解液の漏液が防止されるので好ましい。
 高分子化合物は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、ポリカーボネート、またはフッ化ビニリデンとヘキサフルオロピレンとの共重合体などのいずれか1種類または2種類以上を含んでいる。である。中でも、ポリフッ化ビニリデン、またはフッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましい。電気化学的に安定だからである。
 電解液の組成は、例えば、角型の二次電池における電解液の組成と同様である。ただし、ゲル状の電解質である電解質層56において、電解液の溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。このため、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
 なお、ゲル状の電解質層56に代えて、電解液を用いてもよい。この場合には、電解液がセパレータ55に含浸される。
[二次電池の動作]
 このラミネートフィルム型の二次電池では、例えば、充電時において、正極53から放出されたリチウムイオンが電解質層56を介して負極54に吸蔵される。また、例えば、放電時において、負極54から放出されたリチウムイオンが電解質層56を介して正極53に吸蔵される。
[二次電池の製造方法]
 このゲル状の電解質層56を備えたラミネートフィルム型の二次電池は、例えば、以下の3種類の手順により製造される。
 第1手順では、最初に、正極21および負極22と同様の作製手順により、正極53および負極54を作製する。この場合には、正極集電体53Aの両面に正極活物質層53Bを形成して正極53を作製すると共に、負極集電体54Aの両面に負極活物質層54Bを形成して負極54を作製する。続いて、電解液と、高分子化合物と、有機溶剤などとを含む前駆溶液を調製したのち、その前駆溶液を正極53および負極54に塗布してゲル状の電解質層56を形成する。続いて、溶接法などを用いて、正極集電体53Aに正極リード51を取り付けると共に、負極集電体54Aに負極リード52を取り付ける。続いて、電解質層56が形成された正極53と負極54とをセパレータ55を介して積層および巻回させて巻回電極体50を作製したのち、その最外周部に保護テープ57を接着させる。最後に、2枚のフィルム状の外装部材60の間に巻回電極体50を挟み込んだのち、熱融着法などを用いて外装部材60の外周縁部同士を接着させて、その外装部材60に巻回電極体50を封入する。この場合には、正極リード51および負極リード52と外装部材60との間に密着フィルム61を挿入する。
 第2手順では、最初に、正極53に正極リード51を取り付けると共に、負極54に負極リード52を取り付ける。続いて、セパレータ55を介して正極53と負極54とを積層および巻回させて、巻回電極体50の前駆体である巻回体を作製したのち、その最外周部に保護テープ57を接着させる。続いて、2枚のフィルム状の外装部材60の間に巻回体を挟み込んだのち、熱融着法などを用いて一辺の外周縁部を除いた残りの外周縁部を接着させて、袋状の外装部材60の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を調製して袋状の外装部材60の内部に注入したのち、熱融着法などを用いて外装部材60の開口部を密封する。最後に、モノマーを熱重合させて高分子化合物とし、ゲル状の電解質層56を形成する。
 第3手順では、最初に、高分子化合物が両面に塗布されたセパレータ55を用いることを除き、上記した第2手順と同様に、巻回体を作製して袋状の外装部材60の内部に収納する。このセパレータ55に塗布する高分子化合物は、例えば、フッ化ビニリデンを成分とする重合体(単独重合体、共重合体または多元共重合体など)などである。具体的には、ポリフッ化ビニリデン、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体、またはフッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体などである。なお、フッ化ビニリデンを成分とする重合体と一緒に、他の1種類または2種類以上の高分子化合物を用いてもよい。続いて、電解液を調製して外装部材60の内部に注入したのち、熱融着法などを用いて外装部材60の開口部を密封する。最後に、外装部材60に加重をかけながら加熱して、高分子化合物を介してセパレータ55を正極53および負極54に密着させる。これにより、電解液が高分子化合物に含浸するため、その高分子化合物がゲル化して電解質層56が形成される。
 この第3手順では、第1手順よりも電池膨れが抑制される。また、第2手順よりも高分子化合物の原料であるモノマーまたは有機溶剤などが電解質層56中にほとんど残らないため、高分子化合物の形成工程が良好に制御される。これにより、正極53、負極54およびセパレータ55と電解質層56との間において十分な密着性が得られる。
[二次電池の作用および効果]
 このラミネートフィルム型の二次電池では、負極54が上記した負極と同様の構成を有しているので、角型の二次電池と同様の効果を得ることができる。
<3.二次電池の用途>
 次に、上記した二次電池の適用例について説明する。
 二次電池の用途は、それを駆動用の電源または電力蓄積用の電力貯蔵源などとして用いることが可能な機械、機器、器具、装置またはシステム(複数の機器などの集合体)などであれば、特に限定されない。二次電池が電源として用いられる場合、それは主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。後者の場合における主電源の種類は、二次電池に限られない。
 二次電池の用途としては、例えば、以下の用途などが挙げられる。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビまたは携帯用情報端末などの携帯用電子機器である。ただし、電子機器の用途は携帯用に限られない。電気シェーバなどの携帯用生活器具である。バックアップ電源またはメモリーカードなどの記憶用装置である。電動ドリルまたは電動のこぎりなどの電動工具である。ノート型パソコンなどの電源として用いられる電池パックである。ペースメーカーまたは補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、上記以外の用途でもよい。
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具または電子機器などに適用されることが有効である。優れた電池特性が要求されるため、本技術の二次電池を用いることにより、有効に特性向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源であり、いわゆる組電池などである。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源も併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されており、その電力が必要に応じて消費されるため、家庭用の電気製品などが使用可能になる。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源として各種機能を発揮する機器である。
 ここで、二次電池のいくつかの適用例について具体的に説明する。なお、以下で説明する各適用例の構成はあくまで一例であるため、適宜変更可能である。
<3-1.電池パック>
 図14は、電池パックのブロック構成を表している。この電池パックは、例えば、図14に示したように、プラスチック材料などにより形成された筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御するものであり、例えば、中央演算処理装置(CPU)などを含んでいる。電源62は、1または2以上の二次電池(図示せず)を含んでいる。この電源62は、例えば、2以上の二次電池を含む組電池であり、それらの接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの二次電池を含んでいる。
 スイッチ部63は、制御部61の指示に応じて電源62の使用状態(電源62と外部機器との接続の可否)を切り換えるものである。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオード(いずれも図示せず)などを含んでいる。充電制御スイッチおよび放電制御スイッチは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。
 電流測定部64は、電流検出抵抗70を用いて電流を測定して、その測定結果を制御部61に出力するものである。温度検出部65は、温度検出素子69を用いて温度を測定して、その測定結果を制御部61に出力するようになっている。この温度測定結果は、例えば、異常発熱時に制御部61が充放電制御を行う場合や、制御部61が残容量の算出時に補正処理を行うために用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定して、その測定電圧アナログ/デジタル変換(A/D)変換して制御部61に供給するものである。
 スイッチ制御部67は、電流測定部66および電圧測定部66から入力される信号に応じて、スイッチ部63の動作を制御するものである。
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達した場合に、スイッチ部67(充電制御スイッチ)を切断して、電源62の電流経路に充電電流が流れないように制御するようになっている。これにより、電源62では、放電用ダイオードを介して放電のみが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れた場合に、充電電流を遮断するようになっている。
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達した場合に、スイッチ部67(放電制御スイッチ)を切断して、電源62の電流経路に放電電流が流れないように制御するようになっている。これにより、電源62では、充電用ダイオードを介して充電のみが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れた場合に、放電電流を遮断するようになっている。
 なお、二次電池では、例えば、過充電検出電圧は4.20V±0.05Vであり、過放電検出電圧は2.4V±0.1Vである。
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどである。このメモリ68には、例えば、制御部61により演算された数値や、製造工程段階で測定された二次電池の情報(例えば、初期状態の内部抵抗など)が記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部10が残容量などの情報を把握できる。
 温度検出素子69は、電源62の温度を測定して、その測定結果を制御部61に出力するものであり、例えば、サーミスタなどである。
 正極端子71および負極端子72は、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)または電池パックを充電するために用いられる外部機器(例えば充電器など)に接続される端子である。電源62の充放電は、正極端子71および負極端子72を介して行われる。
<3-2.電動車両>
 図15は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、例えば、図15に示したように、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。
 この電動車両は、エンジン75またはモータ77のいずれか一方を駆動源として走行可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合、エンジン75の駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。なお、エンジン75の回転力は発電機79にも伝達され、その回転力により発電機79が交流電力を発生させると共に、その交流電力はインバータ83を介して直流電力に変換され、電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換され、その交流電力によりモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。
 なお、図示しない制動機構により電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達され、その回転力によりモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換され、その直流回生電力は電源76に蓄積されることが好ましい。
 制御部74は、電動車両全体の動作を制御するものであり、例えば、CPUなどを含んでいる。電源76は、1または2以上の二次電池(図示せず)を含んでいる。この電源76は、外部電源と接続され、その外部電源から電力供給を受けることで電力を蓄積可能になっていてもよい。各種センサ84は、例えば、エンジン75の回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサ、エンジン回転数センサなどを含んでいる。
 なお、上記では電動車両としてハイブリッド自動車について説明したが、電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。
<3-3.電力貯蔵システム>
 図16は、電力貯蔵システムのブロック構成を表している。この電力貯蔵システムは、例えば、図16に示したように、一般住宅または商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続可能になっている。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続可能になっている。
 なお、電気機器94は、例えば、冷蔵庫、エアコン、テレビまたは給湯器などの1または2以上の家電製品を含んでいる。自家発電機95は、例えば、太陽光発電機または風力発電機などの1種類または2種類以上である。電動車両96は、例えば、電気自動車、電気バイクまたはハイブリッド自動車などの1種類または2種類以上である。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所または風力発電所などの1種類または2種類以上である。
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源91は、1または2以上の二次電池(図示せず)を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信可能になっている。これに伴い、スマートメータ92は、例えば、必要に応じて外部と通信しながら、家屋89における需要・供給のバランスを制御し、効率的で安定したエネルギー供給を可能にするようになっている。
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である太陽光発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部91の指示に応じて、必要に応じて電気機器94または電動車両96に供給されるため、その電気機器94が稼働可能になると共に、電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。
 電源91に蓄積された電力は、任意に利用可能である。このため、例えば、電気使用量が安い深夜に集中型電力系統97から電源91に電力を蓄積しておき、その電源91に蓄積しておいた電力を電気使用量が高い日中に用いることができる。
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。
<3-4.電動工具>
 図17は、電動工具のブロック構成を表している。この電動工具は、例えば、図17に示したように、電動ドリルであり、プラスチック材料などにより形成された工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。
 制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源100は、1または2以上の二次電池(図示せず)を含んでいる。この制御物99は、図示しない動作スイッチの操作に応じて、必要に応じて電源100からドリル部101に電力を供給して可動させるようになっている。
 本技術の実施例について、詳細に説明する。
(実施例1-1~1-21)
 以下の手順により、図12および図13に示したラミネートフィルム型の二次電池を作製した。
 正極53を作製する場合には、最初に、正極活物質(LiCoO2 )91質量部と、正極導電剤(グラファイト)6質量部と、正極結着剤(ポリフッ化ビニリデン:PVDF)3質量部とを混合して正極合剤とした。続いて、正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体53A(12μm厚の帯状Al箔)の両面に正極合剤スラリーを塗布してから乾燥させて正極活物質層53Bを形成した。最後に、ロールプレス機を用いて正極活物質層53Bを圧縮成型した。この場合には、満充電時において負極54にLi金属が析出しないように正極活物質層53Bの厚さを調整した。
 負極54を作製する場合には、最初に、ガスアトマイズ法を用いて高結晶性のコア部(SiOx :メジアン径D50=4μm)を得た。この場合には、原材料(Si)の溶融凝固時にO2 導入量を調整して組成(原子比x)を制御した。このコア部の物性は、半値幅=0.6°、結晶子サイズ=90nmである。続いて、必要に応じて、粉体蒸着法を用いてコア部の表面に非結晶性の被覆部(SiOy )を形成した。この場合には、原材料(Si)の堆積時にO2 またはH2 の導入量を調整して組成(原子比y)を制御した。粉体蒸着法では、抵抗加熱および誘導加熱蒸着源を用いると共に、堆積速度=2nm/秒とし、ターボ分子ポンプを用いて真空状態(圧力=1×10-3Pa)とした。特に、必要に応じて、シャッタ機構を用いてコア部を回転させながら多方向から蒸着処理を断続的に繰り返して、被覆部の層構造を多層にした。続いて、熱分解CVD法(炭素源ガスはメタンガス)を用いて、被覆部の空隙に炭素含有材料(C)を形成した。コア部、被覆部および炭素含有材料の構成は、表1に示した通りである。
 続いて、負極活物質と負極結着剤の前駆体とを90:10の乾燥重量比で混合したのち、NMPで希釈してペースト状の負極合剤スラリーとした。この負極結着剤の前駆体としては、NMPとN,N-ジメチルアセトアミド(DMAC)とを含むポリアミック酸を用いた。続いて、コーティング装置を用いて負極集電体54A(15μm厚の圧延Cu箔)の両面に負極合剤スラリーを塗布してから乾燥させた。最後に、結着性を高めるために塗膜を熱プレスしたのち、真空雰囲気中において焼成(400℃×1時間)した。これにより、負極結着剤(ポリアミドイミド)が形成されたため、負極活物質および負極結着剤を含む負極活物質層54Bが形成された。なお、負極利用率が65%となるように負極活物質層54Bの厚さを調整した。
 電解液を調製する場合には、溶媒(炭酸エチレン(EC)および炭酸ジエチル(DEC))に電解質塩(LiPF6 )を溶解させた。この場合には、溶媒の組成を重量比でEC:DEC=50:50、電解質塩の含有量を溶媒に対して1mol/kgとした。
 二次電池を組み立てる場合には、最初に、正極集電体53Aの一端にAl製の正極リード51を溶接すると共に、負極集電体54Aの一端にNi製の負極リード52を溶接した。続いて、正極53と、セパレータ55と、負極54と、セパレータ55とをこの順に積層してから長手方向に巻回させて、巻回電極体50の前駆体である巻回体を形成したのち、その巻き終わり部分を保護テープ57(粘着テープ)で固定した。このセパレータ55としては、多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムが挟まれた積層フィルム(20μm厚)を用いた。続いて、外装部材60の間に巻回体を挟み込んだのち、一辺を除く外周縁部同士を熱融着して、袋状の外装部材60の内部に巻回体を収納した。この場合には、外装部材60として、外側からナイロンフィルム(30μm厚)と、Al箔(40μm厚)と、無延伸ポリプロピレンフィルム(30μm厚)とが積層されたアルミラミネートフィルムを用いた。続いて、外装部材60の開口部から電解液を注入してセパレータ55に含浸させて巻回電極体50を作製した。最後に、真空雰囲気中において外装部材60の開口部を熱融着した。
 二次電池の初回充放電特性およびサイクル特性を調べたところ、表1に示した結果が得られた。
 初回充放電特性を調べる場合には、最初に、電池状態を安定化させるために、常温雰囲気中(23℃)において二次電池を1サイクル充放電させた。続いて、同雰囲気中において二次電池を再び充電させて充電容量を測定したのち、放電させて放電容量を測定した。最後に、初回効率(%)=(放電容量/充電容量)×100を算出した。充電時には、3mA/cm2 の定電流密度で電圧が4.2Vに達するまで充電したのち、4.2Vの定電圧で電流密度が0.3mA/cm2 に達するまでさらに充電した。放電時には、3mA/cm2 の定電流密度で電圧が2.5Vに達するまで放電した。
 サイクル特性を調べる場合には、最初に、電池状態を安定化させるために二次電池を1サイクル充放電させたのち、再び充放電させて放電容量を測定した。続いて、サイクル数の総数が100サイクルになるまで二次電池を充放電させて放電容量を測定した。最後に、容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。雰囲気温度および充放電条件は、充放電特性を調べた場合と同様にした。
Figure JPOXMLDOC01-appb-T000001
 コア部の表面に単層の被覆部を形成すると(実験例1-21)、その被覆部を形成しない場合(実験例1-20)と比較して、高い初回効率が維持されたまま、容量維持率が著しく増加した。また、被覆部を形成した場合には、その被覆部を多層にすると共に炭素含有材料を形成すると(実験例1-1~1-19)、同様に高い初回効率が維持されたまま、容量維持率がより著しく増加した。
 また、コア部の表面に多層の被覆部を形成した場合には、コア部の原子比xが0≦x<0.5を満たすと共に被覆部の原子比yが0.5≦y≦1.8を満たすと、より高い初回効率および容量維持率が得られた。
(実験例2-1~2-10)
 表2に示したように、炭素含有材料の結晶性(比IG/ID)を変更したことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この場合には、炭素含有材料の形成時における圧力、分解温度およびガス種を変更して比IG/IDを調整した。
Figure JPOXMLDOC01-appb-T000002
 比IG/IDが0.3~3であると、より高い初回効率および容量維持率が得られた。
(実験例3-1~3-10)
 表3に示したように、被覆部の空隙径を変更したことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この場合には、被覆部の形成時において、蒸着流に対するコア部の角度を不連続的に変化させることで空隙径を調整した。
Figure JPOXMLDOC01-appb-T000003
 空隙径が500nm以下、さらに50nm以下であると、高い初回効率および容量維持率が得られると共に、高い電池容量も得られた。
(実験例4-1~4-11)
 表4に示したように、コア部のメジアン径(D50)を変更したことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この場合には、メジアン径(D50)が異なる原材料(Si)を用いてコア部のメジアン径(D50)を調整した。
Figure JPOXMLDOC01-appb-T000004
 D50が0.1μm~20μmであると、より高い初回効率および容量維持率が得られた。
(実験例5-1~5-12)
 表5に示したように、被覆部の平均被覆率および平均厚さを変更したことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この場合には、被覆部を形成する際に、投入電力および堆積時間を変化させて平均被覆率を調整すると共に、堆積速度および堆積時間を変化させて平均厚さを調整した。
Figure JPOXMLDOC01-appb-T000005
 平均被覆率が30%~100%であると、より高い容量維持率が得られると共に、平均厚さが1nm~3000nmであると、より高い初回効率が得られた。
(実験例6-1~6-18)
 表6に示したように、被覆部の結晶性を変更したことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この場合には、Arガスの雰囲気中においてSiOy を加熱しながら堆積させて低結晶性の被覆部を形成した。この加熱時の温度および時間を調整して、表6に示したように被覆部の物性(平均面積占有率、平均粒径および大小関係)を調整した。この「大小関係」とは、被覆部を厚さ方向において二等分したときの内側部分および外側部分における平均面積占有率および平均粒径の大小関係である。
Figure JPOXMLDOC01-appb-T000006
 平均面積占有率が35%以下、平均粒径が50nm以下であると共に、平均面積占有率および平均粒径が内側≧外側であると、より高い容量維持率が得られた。
(実験例7-1~7-12)
 表7に示したように、負極活物質の表面に炭素含有層を形成したことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この炭素含有層の形成手順は、炭素含有材料の形成手順と同様である。この場合には、必要に応じて熱分解時の圧力を調整することで、被覆部の空隙に炭素含有材料の代わりに炭素含有層の一部を埋め込んで、その空隙を炭素含有層の一部で封孔した。
Figure JPOXMLDOC01-appb-T000007
 炭素含有層を形成すると、初回効率および容量維持率がより増加した。この場合には、平均厚さが500nm以下、平均被覆率が30%~100%であると、より高い初回効率および容量維持率が得られると共に、高い電池容量も得られた。
(実験例8-1~8-17,9-1~9-5)
 表8および表9に示したように、コア部および被覆部に金属元素を含有させたことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この場合には、原材料としてSiOx 粉および金属粉を用いて共蒸着した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 コア部および被覆部に金属元素を含有させると、初回効率および容量維持率がより増加した。特に、コア部にFeを含有させる場合には、そのFeの含有量が0.01重量%~7.5重量%であると、高いサイクル維持率および初回効率が得られた。
(実験例10-1~10-3)
 表10に示したように、負極集電体54AにCおよびSを含有させたことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この場合には、負極集電体54AとしてCおよびSが含有された圧延Cu箔を用いた。
Figure JPOXMLDOC01-appb-T000010
 負極集電体54AがCおよびSを含有していると、初回効率および容量維持率がより増加した。この場合には、CおよびSの含有量が100ppm以下であると、より高い容量維持率が得られた。
(実験例11-1~11-9)
 表11に示したように、負極結着剤の種類を変更したことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。この場合には、負極結着剤として、ポリイミド(PI)、ポリフッ化ビニリデン(PVDF)、ポリアミド(PA)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAAL)、炭化ポリイミド(炭化PI)、ポリエチレン(PE)、ポリマレイン酸(PMA)、またはアラミド(AR)を用いた。なお、PAAおよびPAALなどを用いる場合には、それらが溶解された17体積%の水溶液を用いて負極合剤スラリーを準備すると共に、熱プレスしてから焼成しないで負極活物質層54Bを形成した。
Figure JPOXMLDOC01-appb-T000011
 負極結着剤の種類を変更しても、高い初回効率および容量維持率が得られた。
(実験例12-1~12-12)
 表12に示したように、正極活物質の種類を変更したことを除き、実験例1-5と同様の手順により二次電池を作製して諸特性を調べた。
Figure JPOXMLDOC01-appb-T000012
 正極活物質の種類を変更しても、高い初回効率および容量維持率が得られた。
 表1~表12の結果から、負極活物質が上記した組成のコア部および被覆部を含むと共に、その被覆部の空隙に炭素含有材料が設けられていると、優れた初回充放電特性およびサイクル特性が得られた。
 以上、実施形態および実施例を挙げて本技術について説明したが、本技術は実施形態および実施例で説明した態様に限定されず、種々の変形が可能である。例えば、本技術の二次電池は、負極の容量がリチウムイオンの吸蔵放出による容量とリチウム金属の析出溶解に伴う容量とを含み、かつ、それらの容量の和により電池容量が表される二次電池についても同様に適用可能である。この場合には、リチウムイオンを吸蔵放出可能である負極材料が用いられると共に、その負極材料の充電可能な容量は正極の放電容量よりも小さくなるように設定される。
 また、例えば、本技術の二次電池は、コイン型またはボタン型などの他の電池構造を有する場合や、電池素子が積層構造などの他の構造を有する場合についても同様に適用可能である。
 また、例えば、電極反応物質は、NaまたはKなどの他の1族元素や、MgまたはCaなどの2族元素や、Alなどの他の軽金属でもよい。本技術の効果は、電極反応物質の種類に依存せずに得られるはずであるため、その電極反応物質の種類を変更しても同様の効果を得ることができる。
 また、実施形態および実施例では、コア部および被覆部の原子比x,yに関して、実施例の結果から導き出された適正範囲を説明している。しかしながら、その説明は、原子比x,yが上記した範囲外となる可能性を完全に否定するものではない。すなわち、上記した適正範囲は、あくまで本技術の効果を得る上で特に好ましい範囲であるため、本技術の効果が得られるのであれば、上記した範囲から原子比x,yが多少外れてもよい。このことは、比IG/IDおよび被覆部の空隙径などに関しても同様である。
 なお、本技術は以下のような構成を取ることも可能である。
(1)
 正極と、活物質を含む負極と、電解液とを備え、
 前記活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた低結晶性または非結晶性の被覆部とを含み、
 前記コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5を満たし、
 前記被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8を満たし、
 前記被覆部は空隙を有し、その空隙のうちの少なくとも一部に炭素含有材料が設けられている、
 二次電池。
(2)
 ラマンスペクトル法により測定される前記炭素含有材料のGバンドピーク強度IGとDバンドピーク強度IDとの比IG/IDは0.3~3である、
 上記(1)に記載の二次電池。
(3)
 窒素吸着法および水銀圧入法により測定される前記被覆部の空隙分布における最大ピークの空隙径は500nm以下である、
 上記(1)または(2)に記載の二次電池。
(4)
 前記被覆部は多層である、
 上記(1)ないし(3)のいずれかに記載の二次電池。
(5)
 前記活物質の表面のうちの少なくとも一部に炭素含有層が設けられており、
 前記炭素含有層の平均厚さは500nm以下であり、
 前記活物質に対する前記炭素含有層の平均被覆率は30%以上である、
 上記(1)ないし(4)のいずれかに記載の二次電池。
(6)
 前記コア部のメジアン径(D50)は0.1μm~20μmであり、
 前記被覆部の平均厚さは1nm~3000nmであり、
 前記コア部に対する前記被覆部の平均被覆率は30%以上である、
 上記(1)ないし(5)のいずれかに記載の二次電池。
(7)
 前記被覆部の結晶性は前記コア部の結晶性よりも低い、
 上記(1)ないし(6)のいずれかに記載の二次電池。
(8)
 前記被覆部は非結晶領域および結晶領域(結晶粒)を含む低結晶性であり、その結晶粒は前記非結晶領域の中に点在する、
 上記(1)ないし(7)のいずれかに記載の二次電池。
(9)
 Siの(111)面および(220)面に起因する前記結晶粒の平均面積占有率は35%以下であり、その結晶粒の平均粒径は50nm以下であり、
 前記被覆部を厚さ方向において二等分したとき、Siの(111)面および(220)面に起因する前記結晶粒の内側部分における平均面積占有率および平均粒径は、外側部分における平均面積占有率および平均粒径と同じであるか、それらよりも大きい、
 上記(8)に記載の二次電池。
(10)
 前記被覆部は非結晶性である、
 上記(1)ないし(7)のいずれかに記載の二次電池。
(11)
 前記コア部はFeを構成元素として含み、そのSiおよびOに対するFeの割合(Fe/(Si+O))は0.01重量%~7.5重量%である、
 上記(1)ないし(10)のいずれかに記載の二次電池。
(12)
 前記コア部はFe、Al、Ca、Mn、Cr、MgおよびNiのうちの少なくとも1種を構成元素として含み、
 前記被覆部はFe、AlおよびCaのうちの少なくとも1種を構成元素として含む、
 上記(1)ないし(10)のいずれかに記載の二次電池。
(13)
 前記負極は集電体の上に活物質層を有し、その活物質層は前記活物質を含み、
 前記集電体はCおよびSを構成元素として含むと共にそれらの含有量は100ppm以下である、
 上記(1)ないし(12)のいずれかに記載の二次電池。
(14)
 活物質を含み、
 前記活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた低結晶性または非結晶性の被覆部とを含み、
 前記コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5を満たし、
 前記被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8を満たし、
 前記被覆部は空隙を有し、その空隙のうちの少なくとも一部に炭素含有材料が設けられている、
 二次電池用電極。
(15)
 リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた低結晶性または非結晶性の被覆部とを含み、
 前記コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5を満たし、
 前記被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8を満たし、
 前記被覆部は空隙を有し、その空隙のうちの少なくとも一部に炭素含有材料が設けられている、
 二次電池用活物質。
(16)
 上記(1)ないし(13)のいずれかに記載の二次電池と、
 その二次電池の使用状態を制御する制御部と、
 その制御部の指示に応じて前記二次電池の使用状態を切り換えるスイッチ部と
 を備えた、電池パック。
(17)
 上記(1)ないし(13)のいずれかに記載の二次電池と、
 その二次電池から供給された電力を駆動力に変換する変換部と、
 その駆動力に応じて駆動する駆動部と、
 前記二次電池の使用状態を制御する制御部と
 を備えた、電動車両。
(18)
 上記(1)ないし(13)のいずれかに記載の二次電池と、
 その二次電池から電力を供給される1または2以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(19)
 上記(1)ないし(13)のいずれかに記載の二次電池と、
 その二次電池から電力を供給される可動部と
 を備えた、電動工具。
(20)
 上記(1)ないし(13)のいずれかに記載の二次電池を電力供給源として備えた、
 電子機器。
 本出願は、日本国特許庁において2011年12月20日に出願された日本特許出願番号第2011-278527号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲の趣旨やその均等物の範囲に含まれるものであることが理解される。

Claims (15)

  1.  正極と、活物質を含む負極と、電解液とを備え、
     前記活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた低結晶性または非結晶性の被覆部とを含み、
     前記コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5を満たし、
     前記被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8を満たし、
     前記被覆部は空隙を有し、その空隙のうちの少なくとも一部に炭素含有材料が設けられている、
     二次電池。
  2.  ラマンスペクトル法により測定される前記炭素含有材料のGバンドピーク強度IGとDバンドピーク強度IDとの比IG/IDは0.3~3である、
     請求項1記載の二次電池。
  3.  窒素吸着法および水銀圧入法により測定される前記被覆部の空隙分布における最大ピークの空隙径は500nm以下である、
     請求項1記載の二次電池。
  4.  前記被覆部は多層である、
     請求項1記載の二次電池。
  5.  前記活物質の表面のうちの少なくとも一部に炭素含有層が設けられており、
     前記炭素含有層の平均厚さは500nm以下であり、
     前記活物質に対する前記炭素含有層の平均被覆率は30%以上である、
     請求項1記載の二次電池。
  6.  前記コア部のメジアン径(D50)は0.1μm~20μmであり、
     前記被覆部の平均厚さは1nm~3000nmであり、
     前記コア部に対する前記被覆部の平均被覆率は30%以上である、
     請求項1記載の二次電池。
  7.  前記被覆部の結晶性は前記コア部の結晶性よりも低い、
     請求項1記載の二次電池。
  8.  前記被覆部は非結晶領域および結晶領域(結晶粒)を含む低結晶性であり、その結晶粒は前記非結晶領域の中に点在する、
     請求項1記載の二次電池。
  9.  Siの(111)面および(220)面に起因する前記結晶粒の平均面積占有率は35%以下であり、その結晶粒の平均粒径は50nm以下であり、
     前記被覆部を厚さ方向において二等分したとき、Siの(111)面および(220)面に起因する前記結晶粒の内側部分における平均面積占有率および平均粒径は、外側部分における平均面積占有率および平均粒径と同じであるか、それらよりも大きい、
     請求項8記載の二次電池。
  10.  前記被覆部は非結晶性である、
     請求項1記載の二次電池。
  11.  前記コア部はFeを構成元素として含み、そのSiおよびOに対するFeの割合(Fe/(Si+O))は0.01重量%~7.5重量%である、
     請求項1記載の二次電池。
  12.  前記コア部はFe、Al、Ca、Mn、Cr、MgおよびNiのうちの少なくとも1種を構成元素として含み、
     前記被覆部はFe、AlおよびCaのうちの少なくとも1種を構成元素として含む、
     請求項1記載の二次電池。
  13.  前記負極は集電体の上に活物質層を有し、その活物質層は前記活物質を含み、
     前記集電体はCおよびSを構成元素として含むと共にそれらの含有量は100ppm以下である、
     請求項1記載の二次電池。
  14.  リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた低結晶性または非結晶性の被覆部とを含み、
     前記コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5を満たし、
     前記被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8を満たし、
     前記被覆部は空隙を有し、その空隙のうちの少なくとも一部に炭素含有材料が設けられている、
     二次電池用活物質。
  15.  二次電池を電力供給源として備え、
     前記二次電池は、正極と、活物質を含む負極と、電解液とを備え、
     前記活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた低結晶性または非結晶性の被覆部とを含み、
     前記コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5を満たし、
     前記被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8を満たし、
     前記被覆部は空隙を有し、その空隙のうちの少なくとも一部に炭素含有材料が設けられている、
     電子機器。
PCT/JP2012/081479 2011-12-20 2012-12-05 二次電池用活物質、二次電池および電子機器 WO2013094404A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280061960.8A CN103988347B (zh) 2011-12-20 2012-12-05 二次电池用活性物质、二次电池和电子装置
EP12859694.7A EP2797144B1 (en) 2011-12-20 2012-12-05 Active material for secondary batteries, secondary battery, and electronic device
KR1020147015658A KR101950544B1 (ko) 2011-12-20 2012-12-05 이차 전지용 활물질, 이차 전지 및 전자 기기
US14/364,410 US20140349187A1 (en) 2011-12-20 2012-12-05 Secondary battery-use active material, secondary battery, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011278527A JP5982811B2 (ja) 2011-12-20 2011-12-20 二次電池用活物質、二次電池および電子機器
JP2011-278527 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013094404A1 true WO2013094404A1 (ja) 2013-06-27

Family

ID=48668303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081479 WO2013094404A1 (ja) 2011-12-20 2012-12-05 二次電池用活物質、二次電池および電子機器

Country Status (6)

Country Link
US (1) US20140349187A1 (ja)
EP (1) EP2797144B1 (ja)
JP (1) JP5982811B2 (ja)
KR (1) KR101950544B1 (ja)
CN (1) CN103988347B (ja)
WO (1) WO2013094404A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160190560A1 (en) * 2013-09-30 2016-06-30 Tdk Corporation Negative electrode active material, and negative electrode and lithium ion secondary battery using the negative electrode active material
WO2019017029A1 (ja) * 2017-07-18 2019-01-24 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
WO2015046394A1 (ja) * 2013-09-30 2015-04-02 Tdk株式会社 負極活物質、それを用いた負極、及びリチウムイオン二次電池
US10587006B2 (en) 2013-10-29 2020-03-10 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery, and manufacturing method for rechargeable lithium ion battery
JP6445758B2 (ja) * 2013-10-29 2018-12-26 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. リチウムイオン(Lithiumion)二次電池及びリチウムイオン二次電池の製造方法
KR102272267B1 (ko) * 2013-10-29 2021-07-02 삼성에스디아이 주식회사 리튬이온 이차전지 및 리튬이온 이차전지의 제조 방법
JP6416214B2 (ja) * 2014-03-17 2018-10-31 株式会社東芝 非水電解質二次電池用活物質、非水電解質二次電池用電極、非水電解質二次電池、電池パックおよび非水電解質二次電池用活物質の製造方法
WO2015140983A1 (ja) 2014-03-20 2015-09-24 株式会社 東芝 非水電解質電池用活物質、非水電解質電池用電極、非水電解質二次電池、電池パック及び非水電解質電池用活物質の製造方法
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101550781B1 (ko) 2014-07-23 2015-09-08 (주)오렌지파워 2 차 전지용 실리콘계 활물질 입자의 제조 방법
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
KR101614016B1 (ko) 2014-12-31 2016-04-20 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
KR101726037B1 (ko) * 2015-03-26 2017-04-11 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
JP2017152126A (ja) * 2016-02-23 2017-08-31 Tdk株式会社 負極活物質、負極活物質を含有する負極及びリチウムイオン二次電池
KR102244058B1 (ko) 2016-08-24 2021-04-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
GB2563455B (en) 2017-06-16 2019-06-19 Nexeon Ltd Particulate electroactive materials for use in metal-ion batteries
KR102148509B1 (ko) * 2017-09-22 2020-08-26 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN112310352B (zh) * 2019-07-29 2021-11-02 宁德时代新能源科技股份有限公司 负极活性材料及二次电池
KR20210044117A (ko) * 2019-10-14 2021-04-22 주식회사 엘지화학 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
CN116053452A (zh) * 2019-12-31 2023-05-02 华为技术有限公司 硅基负极材料及其制备方法、电池和终端
TWI749650B (zh) * 2020-07-20 2021-12-11 中鋼碳素化學股份有限公司 鋰離子電池的極板材料
KR102471250B1 (ko) * 2022-09-16 2022-11-25 주식회사 비츠로셀 Ipl을 이용하여 분말 재료를 균등 처리하는 장치 및 방법

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2004327190A (ja) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法
JP2005085717A (ja) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd 非水電解質電池
JP2006100244A (ja) 2004-09-06 2006-04-13 Pionics Co Ltd リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2006196447A (ja) * 2004-12-16 2006-07-27 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
WO2007010922A1 (ja) 2005-07-21 2007-01-25 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2007242590A (ja) * 2006-02-13 2007-09-20 Hitachi Maxell Ltd 非水二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009076373A (ja) 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
JP2009164104A (ja) 2007-09-06 2009-07-23 Canon Inc 負極用電極材料、その製造方法ならびに該材料を用いた電極構造体及び蓄電デバイス
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2011233497A (ja) * 2009-12-24 2011-11-17 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP2011238585A (ja) * 2010-05-06 2011-11-24 Samsung Sdi Co Ltd エネルギー貯蔵装置用負極およびこれを含むエネルギー貯蔵装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP3992708B2 (ja) * 2003-10-31 2007-10-17 日立マクセル株式会社 非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池
JP4401984B2 (ja) * 2004-03-08 2010-01-20 三星エスディアイ株式会社 リチウム二次電池用負極活物質、リチウム二次電池用負極活物質、およびリチウム二次電池

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2004327190A (ja) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法
JP2005085717A (ja) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd 非水電解質電池
JP2006100244A (ja) 2004-09-06 2006-04-13 Pionics Co Ltd リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2006196447A (ja) * 2004-12-16 2006-07-27 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
WO2007010922A1 (ja) 2005-07-21 2007-01-25 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007242590A (ja) * 2006-02-13 2007-09-20 Hitachi Maxell Ltd 非水二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2009164104A (ja) 2007-09-06 2009-07-23 Canon Inc 負極用電極材料、その製造方法ならびに該材料を用いた電極構造体及び蓄電デバイス
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009076373A (ja) 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2011233497A (ja) * 2009-12-24 2011-11-17 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP2011238585A (ja) * 2010-05-06 2011-11-24 Samsung Sdi Co Ltd エネルギー貯蔵装置用負極およびこれを含むエネルギー貯蔵装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797144A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160190560A1 (en) * 2013-09-30 2016-06-30 Tdk Corporation Negative electrode active material, and negative electrode and lithium ion secondary battery using the negative electrode active material
US10658657B2 (en) * 2013-09-30 2020-05-19 Tdk Corporation Negative electrode active material, and negative electrode and lithium ion secondary battery using the negative electrode active material
WO2019017029A1 (ja) * 2017-07-18 2019-01-24 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Also Published As

Publication number Publication date
JP2013131325A (ja) 2013-07-04
JP5982811B2 (ja) 2016-08-31
US20140349187A1 (en) 2014-11-27
EP2797144A1 (en) 2014-10-29
KR101950544B1 (ko) 2019-02-20
EP2797144A4 (en) 2015-08-19
KR20140105460A (ko) 2014-09-01
EP2797144B1 (en) 2017-02-15
CN103988347A (zh) 2014-08-13
CN103988347B (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
JP5982811B2 (ja) 二次電池用活物質、二次電池および電子機器
JP5861444B2 (ja) 二次電池用活物質、二次電池および電子機器
JP5935246B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5659696B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP6003015B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6237859B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、リチウムイオン二次電池用負極活物質、電動工具、電気自動車および電力貯蔵システム
JP5807749B2 (ja) 非水電解液二次電池用正極、非水電解液二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2013008586A (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6208957B2 (ja) 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6332258B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6413766B2 (ja) 活物質、活物質の製造方法、電極および二次電池
JP5521523B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP2013008585A (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6183443B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6288062B2 (ja) 二次電池用活物質、二次電池、電子機器、電動車両および電動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859694

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012859694

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147015658

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14364410

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE