WO2013094400A1 - 基板処理システム、基板処理装置及び基板処理装置のデータ蓄積方法 - Google Patents

基板処理システム、基板処理装置及び基板処理装置のデータ蓄積方法 Download PDF

Info

Publication number
WO2013094400A1
WO2013094400A1 PCT/JP2012/081471 JP2012081471W WO2013094400A1 WO 2013094400 A1 WO2013094400 A1 WO 2013094400A1 JP 2012081471 W JP2012081471 W JP 2012081471W WO 2013094400 A1 WO2013094400 A1 WO 2013094400A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitor data
data
unit
storage unit
monitor
Prior art date
Application number
PCT/JP2012/081471
Other languages
English (en)
French (fr)
Inventor
小山 良崇
岩倉 裕幸
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to KR1020147016440A priority Critical patent/KR101549433B1/ko
Priority to JP2013550206A priority patent/JP6106606B2/ja
Publication of WO2013094400A1 publication Critical patent/WO2013094400A1/ja
Priority to US14/309,460 priority patent/US9720407B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0264Control of logging system, e.g. decision on which data to store; time-stamping measurements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2602Wafer processing

Definitions

  • the present invention relates to a substrate processing system for collecting and storing various monitor data output from a substrate processing apparatus for processing a substrate such as a semiconductor wafer, for example, monitor data such as a processing temperature and a pressure in a processing chamber, and a monitor data collecting system. Is.
  • FIG. 1 is a perspective view of a semiconductor device manufacturing apparatus (semiconductor manufacturing apparatus) as a substrate processing apparatus.
  • the substrate processing apparatus shown in FIG. 1 has a load port 114 for loading / unloading a pod 110, which is a substrate container for accommodating a plurality of wafers (substrates), a pod opener 121 for attaching / detaching a cap of the pod 110, and a pod 110 temporarily.
  • a boat elevator 115, each component of the substrate processing apparatus such as a storage unit (not shown), and a control unit (not shown) that controls each component are provided.Then, the control unit executes wafer processing such as heat treatment based on the process recipe stored in the storage unit.
  • sensor information such as a temperature measurement value and a pressure value in the heat treatment furnace 202 and a process gas supply pipe that supplies a process gas into the heat treatment furnace 202 are provided.
  • Monitor information such as actuator information such as the opening / closing operation status of the open / close valve is collected by the monitor information collection unit arranged in the substrate processing apparatus every moment or periodically, and the collected information is outside the substrate processing apparatus. Transmit to a higher-order monitor data analysis system, record and store in a database composed of a non-volatile storage medium such as an HDD (hard disk device) in the host system, and perform failure analysis and board when a failure occurs Used for data analysis of processed data.
  • HDD hard disk device
  • an increase in the number of sensors for collecting monitor data and an increase in the data collection sampling period of the sensor for example, the sampling period is increased from 1 Hz to 10 Hz or 100 Hz. Yes.
  • the amount of monitor data increases with an increase in the number of sensors for collecting monitor data and an increase in the data collection sampling period of the sensors.
  • the host system cannot flexibly cope with the control software of the host system. It took a lot of work, such as changes.
  • the object of the present invention is, for example, even if the amount of monitor data increases with an increase in the number of sensors for collecting monitor data or an increase in the sensor data collection sampling period, for example, without requiring a change in the control software of the host system.
  • Another object of the present invention is to provide a flexible substrate processing system or monitor data collection / accumulation system that can cope with the increase in the amount of monitor data and prevent data accumulation omission and system down.
  • a typical configuration of the substrate processing system of the present invention for solving the above-described problems is as follows. That is, A substrate processing apparatus for processing a substrate, a monitor data receiving unit for receiving a plurality of types of monitor data output from the substrate processing apparatus, and a plurality of types of monitor data received by the monitor data receiving unit are periodically stored.
  • Monitor data for detecting, as a monitor data rate, the total number of times that each of a plurality of types of monitor data received by the monitor data receiving unit has changed more than a predetermined change amount within a predetermined first time
  • a predetermined second time based on a rate detection unit, a data write upper limit value that is a monitor data amount that the temporary storage unit can store in one cycle, and a monitor data rate detected by the monitor data rate detection unit
  • the number of times each type of monitor data for one cycle is written to the temporary storage unit is assigned to each type of monitor data.
  • a plurality of types of monitor data received by the monitor data receiving unit based on the number of times allocated by the monitor data write allocating unit in the temporary storage unit within the second time period.
  • a monitor data writing unit ; an accumulation storage unit in which monitor data periodically written in the temporary storage unit is accumulated and stored for a plurality of cycles; and monitor data written in the temporary storage unit
  • a substrate processing system comprising: an accumulated data writing unit that reads out data every third time and writes the accumulated data in the accumulation storage unit.
  • 1 is a perspective view of a substrate processing apparatus according to an embodiment of the present invention.
  • 1 is a vertical sectional view of a substrate processing apparatus according to an embodiment of the present invention.
  • It is a structural example of the functional block diagram of the substrate processing apparatus which concerns on embodiment of this invention.
  • It is a functional block diagram of the data collection accumulation
  • It is a ticket distribution table in the 1st example of an embodiment of the present invention.
  • It is a ticket distribution table in 3rd Example of embodiment of this invention.
  • the substrate processing apparatus is configured as a semiconductor manufacturing apparatus that performs processing steps in a method of manufacturing a semiconductor device (IC: IntegratedIntegrCircuit).
  • IC IntegratedIntegrCircuit
  • a batch type vertical semiconductor manufacturing apparatus hereinafter simply referred to as a processing apparatus
  • CVD Chemical Vapor Deposition
  • FIG. 1 is a perspective view of a processing apparatus to which the present invention is applied, and is shown as a perspective view.
  • FIG. 2 is a side perspective view of the processing apparatus shown in FIG.
  • the processing apparatus 100 of this embodiment uses a pod 110 as a wafer carrier for storing a wafer (substrate) 200 made of silicon or the like, and includes a casing 111.
  • a pod loading / unloading port 112 is opened on the front wall 111a of the casing 111 so as to communicate with the inside and outside of the casing 111.
  • the pod loading / unloading port 112 is opened and closed by a front shutter 113.
  • a load port 114 is installed on the front front side of the pod loading / unloading port 112, and the pod 110 is placed on the load port 114.
  • the pod 110 is loaded onto the load port 114 by an in-process conveyance device (not shown), and also unloaded from the load port 114.
  • a rotating shelf 105 is installed at an upper portion of the casing 111 in a substantially central portion in the front-rear direction.
  • the rotating shelf 105 rotates around a support column 116 and stores a plurality of pods 110 on a shelf plate 117.
  • a pod transfer device 118 is installed between the load port 114 and the rotating shelf 105 in the casing 111.
  • the pod transfer device 118 includes a pod elevator 118 a that can move up and down while holding the pod 110, and a pod transfer mechanism 118 b as a horizontal transfer mechanism. Between the load port 114, the rotating shelf 105, and the pod opener 121. Then, the pod 110 is conveyed.
  • a sub-housing 119 is constructed across the rear end at a lower portion of the housing 111 at a substantially central portion in the front-rear direction.
  • a pair of wafer loading / unloading ports 120 for loading / unloading the wafer 200 into / from the sub housing 119 are arranged in two vertical rows in the vertical direction.
  • a pair of pod openers 121 and 121 are installed at the wafer loading / unloading ports 120 and 120 at the upper and lower stages, respectively.
  • the pod opener 121 includes mounting bases 122 and 122 for mounting the pod 110 and cap attaching / detaching mechanisms 123 and 123 for attaching and detaching caps (lids) of the pod 110.
  • the pod opener 121 opens and closes the wafer loading / unloading port of the pod 110 by attaching / detaching the cap of the pod 110 mounted on the mounting table 122 by the cap attaching / detaching mechanism 123.
  • the mounting table 122 is a transfer shelf on which a substrate container is mounted when a substrate is transferred.
  • the sub-housing 119 constitutes a transfer chamber 124 that is isolated from the atmosphere of the installation space of the pod transfer device 118 and the rotating shelf 105.
  • a wafer transfer mechanism 125 is installed in the front region of the transfer chamber 124.
  • the wafer transfer mechanism 125 includes a wafer transfer device 125a that can place the wafer 200 on the tweezer 125c and can rotate or move in the horizontal direction, and a wafer transfer device elevator 125b for moving the wafer transfer device 125a up and down. It consists of The wafers 200 are loaded and unloaded from the boat 217 by the continuous operation of the wafer transfer device elevator 125b and the wafer transfer device 125a.
  • a clean unit 134 composed of a supply fan and a dustproof filter is installed in the transfer chamber 124 so as to supply a clean atmosphere 133 which is a cleaned atmosphere or an inert gas.
  • a processing furnace 202 is provided above the boat 217.
  • the processing furnace 202 includes a substrate processing chamber (not shown) inside, and a heater (not shown) that heats the substrate processing chamber around the substrate processing chamber.
  • the lower end portion of the processing furnace 202 is opened and closed by a furnace port gate valve 147.
  • a boat elevator 115 for raising and lowering the boat 217 is installed.
  • a seal cap 219 is horizontally installed on the arm 128 connected to the boat elevator 115, and the seal cap 219 is configured to support the boat 217 vertically and to close the lower end portion of the processing furnace 202.
  • the boat 217 includes a plurality of holding members, and holds a plurality of (for example, about 50 to 125) wafers 200 horizontally, with their centers aligned and vertically aligned. It is configured as follows.
  • the pod loading / unloading port 112 is opened by the front shutter 113 and is loaded from the pod loading / unloading port 112.
  • the pod 110 carried in is automatically conveyed and delivered to the designated shelf plate 117 of the rotating shelf 105 by the pod conveying device 118.
  • the pod 110 is transferred from the shelf 117 to one pod opener 121 and transferred to the mounting table 122, or directly from the load port 114 to the pod opener 121. It is transported and transferred to the mounting table 122. At this time, the wafer loading / unloading port 120 of the pod opener 121 is closed by the cap attaching / detaching mechanism 123, and clean air 133 is circulated and filled in the transfer chamber 124.
  • the cap of the pod 110 mounted on the mounting table 122 is removed by the cap attaching / detaching mechanism 123, and the wafer loading / unloading port of the pod 110 is opened.
  • the wafer 200 is picked up from the pod 110 by the wafer transfer device 125a, transferred to the boat 217, and loaded.
  • the wafer transfer device 125 a that has transferred the wafer 200 to the boat 217 returns to the pod 110 and loads the next wafer 110 into the boat 217.
  • the other (lower or upper) pod opener 121 has the rotating shelf 105 or the load port 114.
  • the other pod 110 is transported by the pod transport device 118, and the opening operation of the pod 110 by the pod opener 121 proceeds simultaneously.
  • the lower end portion of the processing furnace 202 is opened by the furnace port gate valve 147. Subsequently, the seal cap 219 is raised by the boat elevator 115, and the boat 217 supported by the seal cap 219 is carried into the substrate processing chamber in the processing furnace 202.
  • the wafer 200 After loading, the wafer 200 is subjected to arbitrary processing in the substrate processing chamber. After the processing, the boat 217 is pulled out by the boat elevator 115, and thereafter, the wafer 200 and the pod 110 are discharged to the outside of the casing 111 in the reverse procedure described above.
  • FIG. 3 is a configuration example of a functional block diagram of the substrate processing apparatus 100 according to the present embodiment.
  • the main control unit 11 of the substrate processing apparatus 100 includes a main storage unit 12, a transfer control unit 13, a temperature control unit 14, a gas control unit 15, a PLC (Programmable Logic Controller) unit 16, data
  • the components constituting the substrate processing apparatus 100 such as the collection storage unit 30, an operation unit (not shown) that receives an instruction from the operator, and a display unit (not shown) that displays an operation screen and various data are electrically connected. Yes.
  • the main control unit 11 and the sub-control units such as the transport control unit 13, the temperature control unit 14, and the gas control unit 15, there are dedicated protocols such as SECS / HSMS, general-purpose TCP / IP, XML / SOAP. It is connected by such as.
  • dedicated protocols such as SECS / HSMS, general-purpose TCP / IP, XML / SOAP. It is connected by such as.
  • the transfer control unit 13 controls the positions of the pod transfer device 118, the wafer transfer mechanism 125, the boat elevator 115, and the like.
  • the transfer control unit 13 is electrically connected to the photo sensor 21 and the pod sensor 22, From these sensors, for example, data such as the presence / absence and position of the pod 110 containing the wafer 200 is received and transmitted to the main control unit 11. Further, the transport control unit 13 receives, for example, a transport instruction for the pod 110 from the main control unit 11 and transports the pod 110 to the instructed location or position.
  • the soot temperature control unit 14 controls the temperature of the heater that heats the reaction furnace 202, receives temperature data from the temperature sensor 23 that measures the temperature in the processing furnace 202, and transmits the temperature data to the main control unit 11. Further, the temperature control unit 14 receives, for example, a heater heating temperature instruction for increasing the temperature in the processing furnace 202 from the main control unit 11, and heats the heater to the instructed temperature.
  • the gas control unit 15 transmits the data received from the valve I / O 24 and the interlock I / O 25 to the main control unit 11 via the PLC unit 16, and the data received from the main control unit 11 is the valve I / O24 and interlock I / O25.
  • gas flow rate data is received from an MFC (mass flow controller: flow rate control device) provided in a processing gas supply pipe for supplying a processing gas into the processing furnace 202 and transmitted to the main control unit 11. .
  • a gas control instruction such as a pump drive instruction is received, and gas control is performed according to the instruction.
  • the PLC unit 16 transmits the data received from the valve I / O 24 and the interlock I / O 25 to the main control unit 11, and the data received from the main control unit 11 to the valve I / O 24 and the interlock I / O 25. May be sent.
  • the main storage unit 12 stores a processing recipe that is a substrate processing sequence of the substrate processing apparatus 100, and includes a hard disk, a semiconductor memory, and the like.
  • the main control unit 11 includes a CPU (Central Processing Unit) and a memory for storing an operation program of the main control unit 11 and the like in terms of hardware configuration.
  • the CPU stores in the main storage unit 12 according to the operation program.
  • the processing recipe is read and executed.
  • the sub-control units such as the transfer control unit 13, the temperature control unit 14, and the gas control unit 15 are each provided with a CPU and a memory for storing an operation program of each control unit. Operates according to the program.
  • the main control unit 11 collects monitor data such as the temperature indicated by the temperature sensor and the position of the actuator from each sub-control unit such as the transport control unit 13 and each component unit such as the PLC unit 16, and uses these monitor data. Each component is controlled so that the apparatus parameters such as the temperature and pressure of the processing furnace 202 become preset values.
  • the states of the pod sensor 22 and the temperature sensor 23 are transmitted to the main control unit 11 by analog signals from each sub-control unit and digital signals such as RS-232C and DeviceNet.
  • the main control unit 11 stamps the collected data with a time stamp that is the detection time of the collected data, and stores and saves it in the nonvolatile storage device that constitutes the main storage unit 12.
  • the data is transmitted to the data collection / storage unit 30.
  • the main control unit 11 is connected to a data collection / storage unit 30 constituting the substrate processing apparatus 100 by a file transfer protocol such as SECS / HSMS or FTP, a network file sharing protocol, or the like.
  • the data collection / accumulation unit 30 is electrically connected to the external I / O 26 and configured to collect the state of the external sensor via the external I / O 26.
  • the data collection / accumulation unit 30 receives monitor data collected from each component of the substrate processing apparatus 100 and the external I / O 26 from the main control unit 11, and a host computer that is an upper management computer of the substrate processing apparatus 100, The data is transferred to a group management computer that manages a plurality of substrate processing apparatuses 100.
  • the data collection / storage unit 30 is electrically connected to the database 34 as a storage unit, the data storage server 40, and the analysis application device 50 via the network 60.
  • the database 34 constitutes a part of the data collection / storage unit 30 as described later.
  • the data collection / accumulation unit 30 collects monitor data from each component constituting the processing apparatus 100 via the main control unit 11, temporarily stores the collected monitor data, and accumulates and stores it in the database 34. .
  • the data stored and stored in the database 34 can be used by an upper management computer (for example, the analysis application device 50).
  • the data collection / storage unit 30 other than the database 34 is provided in the substrate processing apparatus 100, but may be provided outside the substrate processing apparatus 100. Conversely, the database 34 may be provided in the substrate processing apparatus 100.
  • a data collection / storage unit 30 dedicated to monitor data collection is provided in the substrate processing apparatus 100 independently, and the data collection / storage unit 30 and the higher-level management are provided. Since the system (data storage server 40, analysis application device 50) is connected, detailed monitor data that could not be acquired by the conventional substrate processing control system can be acquired by the host management system and analyzed by the analysis application device 50. Can be used. Details of the data collection and storage unit 30 will be described later.
  • the data stored and stored in the database 34 is transferred to and stored in a non-volatile storage device such as the data storage server 40 as necessary, and the stored data such as the temperature, gas flow rate, and pressure data of the processing furnace 202 are:
  • the analysis application device 50 having an advanced application function is used for data processing for monitoring the substrate processing apparatus 100 such as statistical analysis and multivariate analysis.
  • the analysis application device 50 can be configured by a personal computer connected to the network 60, but may be configured as a client-server type application device or a configuration using a web browser or the like. Alternatively, the analysis application device 50 may be configured independently from the network 60.
  • FIG. 4 is a functional block diagram of the data collection / storage unit 30 according to the present embodiment.
  • the data collection / storage unit (data collection / storage unit) 30 includes a data collection unit (data collection unit) 31, a cache memory (temporary storage unit) 32 as a temporary storage unit, a data storage unit (data storage unit) 33, An operation display unit (not shown) that receives an input from the operator to the data collection storage unit 30 and input settings such as various parameters is provided.
  • the respective monitor data is transmitted. It is known that the amount of monitor data transmitted increases and decreases depending on the operating state of the substrate processing apparatus 100. For example, a larger amount of data changes during substrate processing (production) than during standby, and the amount of monitor data transmitted increases. Further, there is a timing during which the amount of monitor data to be transmitted temporarily increases depending on the processing contents even during production.
  • the amount of monitor data to be transmitted also increases due to an increase in various sensors for improving the performance of the substrate processing apparatus 100.
  • the data collection / accumulation unit 30 is flexible enough not to change the control software for the increased monitor data. It is necessary to be.
  • the data collection unit 31 is provided with a filtering function for narrowing down necessary data for a large amount of monitor data. This filtering function is realized by a ticket distribution method, as shown in the first embodiment described later.
  • the kite data collection unit 31 receives a plurality of types of monitor data from the main control unit 11 and the external I / O 26 and periodically writes the received monitor data to the cache memory 32.
  • the received monitor data includes a time stamp that is the detection time of the monitor data.
  • each type of data to be written to the cache memory 32 as a temporary storage unit according to the total received amount of received monitor data and the data write upper limit value that is the monitor data amount that the cache memory 32 can store in one cycle.
  • the amount of monitor data is adjusted and assigned to each type of monitor data, and based on the assignment, each type of monitor data is written to the cache memory 32. In this way, the data collection unit 31 has a filtering function for narrowing down necessary data for a large amount of monitor data.
  • the cache memory 32 Since the cache memory 32 is composed of a semiconductor memory and can write and read data at a higher speed than an HDD constituting the database 34 described later, the cache memory 32 functions as a cushion when accumulating and storing a large amount of monitor data in the database 34. Can be fulfilled.
  • the bag data storage unit 33 reads the monitor data written in the cache memory 32 at predetermined time intervals and writes it in the database 34 that is a storage unit.
  • the data collecting unit 31 includes a monitor data receiving unit (monitor data receiving unit) 31a, a monitor data rate detecting unit (monitor data rate detecting unit) 31b, a monitor data write assigning unit (monitor data writing).
  • the monitor data receiving unit 31a receives a plurality of types of monitor data output from the substrate processing apparatus 100, for example, temperature data and pressure data of the processing furnace 202, and detection times thereof.
  • the monitor data rate detection unit 31b uses, as the monitor data rate, the total number of times that a plurality of types of monitor data received by the monitor data reception unit 31a have changed to a predetermined change amount threshold value or more within a predetermined first time. To detect.
  • the first time and the threshold value of the change amount are set in advance by the operator from the operation display unit of the data collection storage unit 30, stored in the data collection storage unit 31e, and can be changed. For example, when the threshold value of the change amount of the pressure data is 100 Pa, when the pressure data changes gradually from 100 Pa to 1100 Pa per second, the monitor data rate of the pressure data becomes 10 times / second. Further, when the threshold value of the change amount of the temperature data is 10 ° C., when the temperature data changes gradually from 500 ° C.
  • the monitor data rate of the temperature data becomes 10 times / second. Therefore, when there are only two types of monitor data, pressure data and temperature data, the monitor data rate is 20 times / second.
  • the monitor data received by the monitor data receiving unit 31a is configured to be transmitted when the main control unit 11 or the transmission side of the external I / O 26 changes more than a predetermined change amount.
  • the transmission side can always be configured to transmit monitor data, and when the monitor data receiving unit 31a receives the monitor data, monitor data that has changed more than a predetermined change amount can be acquired.
  • the monitor data write allocating unit 31c is predetermined based on the data write upper limit value, which is the monitor data amount that the cache memory 32 can store in one write cycle, and the monitor data rate detected by the monitor data rate detecting unit 31b. In this second time, the number of times each type of monitor data for one period is written to the cache memory 32 is assigned to each type of monitor data. Further, the monitor data write assigning unit 31c has a predetermined second value based on the priority of each type of monitor data stored in the data collection storage unit 31e described later, in addition to the data write upper limit value and the monitor data rate. In this time, the number of times each type of monitor data for one cycle is written to the cache memory 32 is assigned to each type of monitor data. The second time is set in advance from the operation display unit of the data collection storage unit 30 by the operator, stored in the data collection storage unit 31e, and can be changed.
  • the monitor data write allocation unit 31c sends the high-priority type monitor data to the cache memory 32 within the second time period based on the priority of each type of monitor data stored in the data collection storage unit 31e.
  • the number of times of writing is assigned more than the number of times the low-priority type monitor data is written to the cache memory 32 within the second time.
  • the monitor data write allocation unit 31c stores the allocation count in the data collection storage unit 31e. Note that the priority of the monitor data is set in advance from the operation display unit of the data collection storage unit 30 by the operator, stored in the data collection storage unit 31e, and can be changed.
  • the monitor data amount that the cache memory 32 can store in one write cycle is 10 points / cycle, and one cycle is 1 second, that is, the data write upper limit is 10 points / second.
  • the priority of the pressure data and the temperature data is the same.
  • the monitor data write assigning unit 31c assigns the number of times of writing to the cache memory 32 for each of the pressure data and the temperature data, 5 times / second. When the priorities of the pressure data and the temperature data are different, the monitor data write assigning unit 31c assigns the number of times of writing to the cache memory 32 according to the priorities. Details will be described in an embodiment described later.
  • the monitor data writing unit 31d writes a plurality of types of monitor data received by the monitor data receiving unit 31a in the cache memory 32 within a predetermined second time based on the number of times assigned by the monitor data write assigning unit 31c. Is.
  • the data collection storage unit 31e stores a ticket distribution table that is the number of writes for one cycle in the cache memory 32 and assigned to each monitor data by the monitor data write allocation unit 31c. Is. For example, as described above, when the monitor data write allocation unit 31c allocates the number of times of writing to the cache memory 32 for each of the pressure data and the temperature data, 5 times / second, the fact is stored. Details will be described in an embodiment described later.
  • the data collection storage unit 31e stores the priority of each of a plurality of types of monitor data used when the monitor data write allocation unit 31c allocates the number of times of writing to each monitor data.
  • the data collection storage unit 31e stores the first time described above, the threshold value of the change amount of the monitor data, and the second time.
  • the data storage unit 33 includes a storage data writing unit (storage data writing unit) 33a, a monitoring unit (monitoring unit) 33b, and a data storage unit (data storage unit) 31c. .
  • the accumulated data writing unit 33a reads the monitor data periodically written in the cache memory 32, for example, for a plurality of cycles every predetermined third time, and writes and accumulates it in the accumulation storage unit 34.
  • This third time is set in advance by the operator from the operation display unit of the data collection and storage unit 30, stored in the data storage and storage unit 33c, and can be changed. For example, monitor data periodically written to the cache memory 32 every second is read out collectively for 10 cycles every 10 seconds, and written and accumulated in the accumulation storage unit 34
  • the monitoring unit 33b monitors the transmission amount of the accumulated data transmitted from the cache memory 32 to the accumulation storage unit 34. If the monitoring unit 33b determines that the transmission amount of the accumulated data exceeds a predetermined transmission amount, the accumulated data writing unit 33a However, the accumulated data writing unit 33a is controlled so as to lengthen the cycle in which the monitor data written in the cache memory 32 is read and written in the accumulation storage unit 34.
  • the bag data storage unit 33c stores a plurality of types of the above-described third time in correspondence with the transmission amount of stored data transmitted from the cache memory 32 to the storage unit 34.
  • FIG. 5 shows a monitor data write allocation table for one cycle stored in the data collection storage unit 31e in the first example of the embodiment of the present invention, in the example of FIG. 2 is a ticket distribution table for writing monitor data for 2 seconds.
  • Ticket distribution refers to write allocation.
  • priority is set for each of the 2000 sensors that transmit monitor data, and tickets are distributed, that is, write allocation to the cache memory 32 is performed.
  • Ticket distribution is indicated by a check mark. For example, for data from sensors with sensor IDs 0001 to 0100 with priority 1, tickets are distributed every 100 ms, and there are 10 tickets for one cycle.
  • tickets are distributed every 200 ms or 300 ms, respectively, and there are 4 tickets for each cycle. Tickets are distributed every 500 ms for data from priority 3 sensors, for example, sensors with ID 1999 or 2000, and there are two tickets for one cycle.
  • data from the sensor IDs 0001 to 0100, 0101, 0104, 0106,... Is written to the cache memory 32 during one cycle (one second) from 000 ms to 100 ms, and from 100 ms to 200 ms.
  • Data from the sensor IDs 0001 to 0100, 0102, 0105,... are written to the cache memory 32, and similarly, data from each sensor is written to the cache memory 32 during each 100 ms.
  • data from the sensor IDs 0001 to 0100, 0103, 0105... Is written to the cache memory 32 during 900 ms to 1000 ms.
  • the ticket distribution method is adopted to filter the monitor data written in the cache memory 32.
  • the preconditions are set as follows. (1) There are 2000 sensors that transmit monitor data, and their sensor IDs (identifiers) are 0001 to 2000. (2) The cycle of writing monitor data from 2000 sensors to the cache memory 32 is 1 second. That is, after all the monitor data for the tickets distributed based on the ticket distribution is written to the cache memory 32, the cycle from the time for writing all the monitor data for the tickets distributed based on the next ticket distribution to the cache memory 32 is one. Seconds. (3) The data write upper limit value of the cache memory 32 is 5000 points / second. That is, a maximum of 5000 data write operations per second can be performed on the cache memory 32.
  • This data write upper limit is determined by the performance of the cache memory 32 and the performance of the CPU or the like that writes data to the cache memory 32. Therefore, there are 5000 tickets for allocating monitor data write timing to the cache memory 32.
  • the data of priority 1 is data from sensor IDs 0001 to 0100, and all the changes are recorded in the cache memory 32.
  • the monitor data rate detection unit 31b uses the number of monitor data collection points per one period (one second) for every one period (one second) that is the first time.
  • a certain monitor data rate is aggregated, and based on the aggregated monitor data rate, the monitor data write allocating unit 31c performs one cycle which is the second time for each monitor data of the next one cycle (1 second). Allocate (1 second) tickets and allocate them.
  • the priority level 1 data is data from sensor IDs 0001 to 0100, and all the changes are recorded in the cache memory 32. Therefore, the priority level 1 data is updated every 100 ms, that is, Data is written to the cache memory 32 every 100 ms. Accordingly, since 10 tickets are distributed per data of priority 1, 1000 tickets are distributed throughout the data of priority 1. Note that the priority level 1 data is registered in advance in the data collection storage unit 31e by the operator from the operation display unit of the data collection storage unit 30, and the monitor data writing is performed based on the registered priority level 1 data. The allocation unit 31c distributes tickets.
  • Data other than priority 1 is data (1900) from sensor IDs 0101 to 2000, and the remaining 4000 tickets after the assignment in (2) above are equally distributed by the round robin method. Assigned at various time intervals. Accordingly, since two tickets per data can be distributed to data other than priority 1, 3800 tickets are distributed for all data other than priority 1. Up to this point, a total of 4800 points (1000 + 3800) of tickets are distributed, and the remaining is 200 points.
  • data other than priority 1 is assigned in ascending order of sensor ID so that the remaining 200 tickets after the assignment in (3) have as even time intervals as possible.
  • Data to which a surplus ticket is assigned is data of priority 2
  • data to which a surplus ticket is not assigned is data of priority 3.
  • the priority level 2 data since the remaining 200 tickets are assigned to each of the data (100 pieces) from the sensor IDs 0101 to 0200, the priority level 2 data has the sensor IDs 0101 to 0101.
  • Data from 0200 and priority 3 data are data from sensor IDs 0201 to 2000 (1800).
  • two extra tickets are assigned to data (100 pieces) from sensor IDs 0101 to 0200, but data from sensor IDs 0101 to 0300 (200 pieces) are assigned.
  • the calculated ticket distribution is stored in the data collection storage unit 31e as a ticket distribution table.
  • the monitor data writing unit 31d is based on the ticket distribution table stored in the data collection storage unit 31e.
  • the monitor data of the next cycle after the ticket distribution is written to the cache memory 32.
  • the monitor data writing unit 31 d does not write monitor data to the cache memory 32.
  • the monitor data rate in each cycle does not change abruptly. Therefore, even if the monitor data in the next cycle after ticket distribution is written to the cache memory 32, there is no major obstacle.
  • the monitor data rate is totaled from the received monitor data for one period (one second), and tickets for the next one period (one second) are allocated based on the total monitor data rate.
  • the received monitor data for one cycle (one second) is temporarily stored in the buffer memory, the monitor data rate is totaled from the monitor data stored in the buffer memory, and the totalized monitor data Based on the rate, tickets for monitor data stored in the buffer memory may be distributed. In this way, a buffer memory is required, but tickets can be distributed more accurately.
  • monitor data writing for each cycle is repeated over 10 cycles (10 seconds) continuously in time series, and monitor data for a total of 10 cycles is written to the cache memory 32.
  • the accumulated data writing unit 33a reads the monitor data for 10 cycles written in the cache memory 32 every 10 cycles that is the third time, that is, every 10 seconds, and performs data compression or the like.
  • the data is written and accumulated in the database 34 as an accumulation storage unit constituted by a nonvolatile memory such as an HDD via the network 60.
  • the monitoring unit 33b monitors the transmission amount of the accumulated data transmitted from the cache memory 32 to the database 34, and determines that the transmission amount of the accumulated data exceeds a predetermined transmission amount
  • the accumulated data writing unit 33a Control is performed so that the cycle of reading the monitor data written in the cache memory 32 and writing it in the database 34 is made longer in accordance with the amount of accumulated data transmitted to the database 34.
  • the monitor data writing for each cycle is repeated continuously for 10 cycles (10 seconds), and the data collection operation for overwriting the monitor data for a total of 10 cycles in the cache memory 32, and the cache memory 32
  • the data storage operation for reading the written monitor data for 10 cycles every 10 seconds and writing and storing it in the database 34 is repeatedly executed.
  • the accumulated data writing unit 33a reads the monitor data for 10 cycles written in the cache memory 32 every 10 cycles (10 seconds) and writes it to the database 34.
  • the accumulated data writing unit 33a reads the monitor data for one period written in the cache memory 32 every time (one second) for one period and writes it to the database 34, or an arbitrary period Minute monitor data can be read out and written into the database 34 for each arbitrary period.
  • the instructed temperature setting value or pressure is indicated together with the instructed time.
  • a device parameter such as a set value is received by the monitor data receiving unit 31a and written to a cache memory different from the cache memory 32, for example, and the device parameter instruction time and device parameter are read from the other cache memory.
  • the database 34 can be written and saved. In this way, in the analysis application device 50 or the like, the generation time of the monitor data received by the monitor data receiving unit 31a and the instruction time of the device parameter can be compared and analyzed.
  • the total number of times each monitor data has changed by a predetermined change amount or more is counted as the monitor data rate every one cycle (one second) as the first time, and the total is calculated.
  • each type of monitor data for one cycle is stored in the cache memory 32 in a second time of 1 second. Tickets are allocated and distributed as the number of times of writing, and monitor data for one cycle is written to the cache memory 32 in one second, which is the second time, based on the allocated tickets. Then, the monitor data writing for each cycle is repeated over 10 cycles (10 seconds), and the monitor data for a total of 10 cycles is written in the cache memory 32.
  • the monitor data for 10 periods continuous in time series is written in the cache memory 32 of this embodiment. Then, the monitor data for 10 cycles written in the cache memory 32 is read out every 10 cycles, which is the third time, that is, every 10 seconds, and written and accumulated in the database 34 as an accumulation storage unit.
  • FIG. 6 shows a monitor data write allocation table for one cycle stored in the data collection storage unit 31e in the second embodiment, that is, one second in the example of FIG. 6, that is, one cycle (one second) of monitor data writing. It is a ticket distribution table for inclusion.
  • a priority is set for each of 500 sensors that transmit monitor data, and tickets are distributed. Ticket distribution is indicated by a check mark.
  • tickets are distributed every 100 ms for data from all sensors of priority 1 to priority 3, and 5000 tickets for one cycle.
  • the preconditions are set as follows. (1) There are 500 sensors that transmit monitor data, and their sensor IDs (identifiers) are 0001 to 500. (2) The cycle for writing monitor data from 500 sensors to the cache memory 32 is 1 second. That is, after all the monitor data for the tickets distributed based on the ticket distribution is written to the cache memory 32, the cycle from the time for writing all the monitor data for the tickets distributed based on the next ticket distribution to the cache memory 32 is one. Seconds. (3) The data write upper limit value of the cache memory 32 is 5000 points / second. That is, a maximum of 5000 data write operations per second can be performed on the cache memory 32. This upper limit value for data writing is determined by the performance of the cache memory 32 and the CPU that writes data to the cache memory 32. Therefore, there are 5000 tickets for allocating monitor data write timing to the cache memory 32. (4) The data of priority 1 is data from sensor ID 0001, and this data records all changes in the cache memory 32.
  • monitor data rate aggregation and ticket distribution in the second embodiment are as follows.
  • the calculated ticket distribution is stored in the data collection storage unit 31e.
  • the monitor data writing unit 31d performs the ticket distribution based on the ticket distribution stored in the data collection storage unit 31e.
  • the monitor data of the next cycle is written to the cache memory 32. ⁇ ⁇ ⁇ In this way, monitor data writing for each cycle is repeated over 10 cycles (10 seconds) continuously in time series, and monitor data for a total of 10 cycles is written to the cache memory 32.
  • the accumulated data writing unit 33a reads the monitor data for 10 cycles written in the cache memory 32 every 10 cycles, that is, every 10 seconds, and performs processing such as data compression
  • the data is written and accumulated in the database 34 as an accumulation storage unit composed of a nonvolatile memory such as an HDD via the network 60.
  • FIG. 7 shows a monitor data write allocation table for one cycle stored in the data collection storage unit 31e in the third embodiment, in the example of FIG. 7, that is, a monitor data book for one cycle (1 second). It is a ticket distribution table for inclusion.
  • a priority is set for each of 1500 sensors that transmit monitor data, and tickets are distributed. Ticket distribution is indicated by a check mark.
  • tickets are distributed every 100 ms, and there are 10 tickets for one cycle.
  • tickets are distributed every 200 ms or 300 ms, respectively, and there are 4 tickets for each cycle.
  • priority 3 sensors for example, ID 1499 and sensor ID 1500, tickets are distributed every 300 ms or 400 ms, respectively, and there are 3 tickets for each cycle.
  • the preconditions are set as follows. (1) There are 1500 sensors that transmit monitor data, and their sensor IDs (identifiers) are 0001 to 1500. (2) The cycle for writing monitor data from 1500 sensors to the cache memory 32 is 1 second. That is, after all the monitor data for the tickets distributed based on the ticket distribution is written to the cache memory 32, the cycle from the time for writing all the monitor data for the tickets distributed based on the next ticket distribution to the cache memory 32 is one. Seconds. (3) The data write upper limit value of the cache memory 32 is 5000 points / second. That is, a maximum of 5000 data write operations per second can be performed on the cache memory 32. This upper limit value for data writing is determined by the performance of the cache memory 32 and the CPU that writes data to the cache memory 32. Therefore, there are 5000 tickets for allocating monitor data write timing to the cache memory 32. (4) The data of priority 1 is data from the sensor ID 0001, and this records all changes in the cache memory 32.
  • the monitor data rate detection unit 31b counts the monitor data rate, which is the number of monitor data collection points per cycle (1 second), for each cycle (1 second). Then, based on the aggregated monitor data rate, the monitor data write allocation unit 31c allocates and distributes tickets for one period (one second) to each monitor data of the next one period (one second). .
  • the priority 1 data is data from the sensor ID 0001, and since all changes are recorded in the cache memory 32, the priority 1 data is updated every 100 ms, that is, every 100 ms. It is written to the cache memory 32. Therefore, 10 tickets are distributed to the data of priority 1.
  • Data to which a surplus ticket is assigned is data of priority 2
  • data to which a surplus ticket is not assigned is data of priority 3.
  • the sensor ID is 0002 to The data from 0494 and the data of priority 3 are data (1006) from sensor ID 0495-1500.
  • the calculated ticket distribution is stored in the data collection storage unit 31e.
  • the monitor data writing unit 31d performs the ticket distribution based on the ticket distribution stored in the data collection storage unit 31e.
  • the monitor data of the next cycle is written to the cache memory 32. ⁇ ⁇ ⁇ In this way, monitor data writing for each cycle is repeated over 10 cycles (10 seconds) continuously in time series, and monitor data for a total of 10 cycles is written to the cache memory 32.
  • the accumulated data writing unit 33a reads the monitor data for 10 cycles written in the cache memory 32 every 10 cycles, that is, every 10 seconds, and performs processing such as data compression
  • the data is written and accumulated in the database 34 as an accumulation storage unit composed of a nonvolatile memory such as an HDD via the network 60.
  • the amount of data stored in the temporary storage unit is appropriate even if the amount of monitor data from the sensor increases. It can be set to a large value, and it can cope with an increase in monitor data amount from the sensor. Therefore, it is possible to prevent data accumulation and system down.
  • the number of times the high-priority type monitor data is written to the temporary storage unit can be increased more frequently than the low-priority type monitor data. Accordingly, the amount of data stored in the temporary storage unit can be set to an appropriate value.
  • the data collection and storage unit 30 is arranged in the substrate processing apparatus, but these can also be arranged outside the substrate processing apparatus, for example, connected to the substrate processing apparatus installed in the clean room via a LAN. It can also be arranged as a management device outside the clean room.
  • the present invention can be applied not only to a semiconductor manufacturing apparatus, but also to an apparatus for processing a glass substrate such as an LCD manufacturing apparatus and other substrate processing apparatuses.
  • the processing content of the substrate processing includes not only film forming processing for forming CVD, PVD, ALD, epitaxial growth film, oxide film, nitride film, metal-containing film, etc., but also annealing processing, oxidation processing, diffusion processing, etching processing, exposure processing Lithography, coating treatment, mold treatment, development treatment, dicing treatment, wire bonding treatment, inspection treatment, etc.
  • a substrate processing apparatus that processes a substrate, a monitor data receiving unit that receives a plurality of types of monitor data output from the substrate processing device, and a monitor data receiving unit
  • the temporary storage unit that periodically stores a plurality of types of received monitor data, and the plurality of types of monitor data received by the monitor data receiving unit each exceed a predetermined amount of change within a predetermined first time.
  • a monitor data rate detection unit that detects the total number of times changed as a monitor data rate, a data write upper limit that is the monitor data amount that the temporary storage unit can store in one cycle, and the monitor data rate detection unit Based on the monitor data rate, each type of monitor data for one period is written in the temporary storage unit within a predetermined second time.
  • a monitor data write assigning unit that assigns the number of data to be received for each type of monitor data, and a plurality of types of monitor data received by the monitor data receiving unit based on the number of times assigned by the monitor data write assigning unit.
  • a substrate processing system comprising: an accumulation data writing unit that reads the monitor data written in (1) every predetermined third time and writes the monitoring data in the accumulation storage unit;
  • the first time and the second time may be the same.
  • the second time and the third time may be the same, but the amount of data transmission from the temporary storage unit to the storage unit can be reduced by making the third time longer than the second time. Therefore, it is preferable.
  • a priority storage unit stores the priority of each of the plurality of types of monitor data when the plurality of types of monitor data is stored in the temporary storage unit.
  • the monitor data write allocator assigns the monitor data having a higher priority within the second time period based on the priority of each type of monitor data stored in the priority storage unit.
  • a substrate processing system in which the number of times of writing to the storage unit is assigned more than the number of times of writing the low-priority type monitor data to the temporary storage unit within the second time.
  • storage part which memorize
  • the monitor data write allocation unit is configured to execute the second time based on the data write upper limit value, the monitor data rate, and the priority of each type of monitor data stored in the priority storage unit.
  • a substrate processing system for assigning the number of times each type of monitor data is written to the temporary storage unit.
  • the substrate processing system includes a first priority, a second priority, and a third priority. Assigns the first priority monitor data to be written to the temporary storage unit for the first number of times for each second time, and determines the first number of times from the data write upper limit value. A second number of times of subtraction is assigned to the monitor data of the second and third priorities, and the third number is the number of times of subtracting the first and second times from the data writing upper limit value. Is assigned to the monitor data of the second priority.
  • the substrate processing system according to any one of supplementary notes 1 to 4, further comprising: a monitoring unit that monitors a transmission amount of accumulated data transmitted from the temporary storage unit to the accumulation storage unit; When it is determined that the transmission amount of the accumulated data exceeds a predetermined transmission amount, the accumulation data writing unit reads out the monitor data written in the temporary storage unit and lengthens the cycle for writing it in the accumulation storage unit Substrate processing system.
  • a monitor data receiving unit for receiving a plurality of types of monitor data from the outside, a temporary storage unit for periodically storing a plurality of types of monitor data received by the monitor data receiving unit, and a plurality of received by the monitor data receiving unit
  • a monitor data rate detection unit that detects the total number of times that each type of monitor data has changed more than a predetermined change amount within a predetermined first time as a monitor data rate, and the temporary storage unit can store in one cycle Based on the data writing upper limit value that is the amount of monitor data and the monitor data rate detected by the monitor data rate detector, each type of monitor data for one cycle is temporarily stored within a predetermined second time period.
  • Monitor data write allocation unit for assigning the number of times to write to each type of monitor data and the monitor data write Based on the number of times allocated by this unit, the monitor data writing unit that writes the plurality of types of monitor data received by the monitor data receiving unit to the temporary storage unit within the second time period;
  • the monitor data written in the memory is stored and stored for a plurality of periods, and the monitor data written in the temporary storage unit is read at every predetermined third time to store the stored data.
  • a storage data writing unit for writing to the monitor.
  • a monitor data receiving step for receiving a plurality of types of monitor data output from a substrate processing apparatus for processing a substrate;
  • a monitor data rate detecting step of detecting, as a monitor data rate, the total number of times that each of the plurality of types of monitor data received in the monitor data receiving step has changed more than a predetermined change amount within a predetermined first time; Based on the data write upper limit value, which is the monitor data amount that the temporary storage unit can store in one cycle, and the monitor data rate detected in the monitor data rate detection step, one cycle worth within a predetermined second time period.
  • a plurality of types of monitor data before the second time A monitor data writing step for writing to the temporary storage unit; and a storage data writing step for reading the monitor data written to the temporary storage unit every predetermined third time and writing to the storage unit.
  • a main control unit a monitor data receiving unit for receiving a plurality of types of monitor data output from the main control unit; and a temporary storage unit for periodically storing a plurality of types of monitor data received by the monitor data receiving unit
  • a monitor data rate detecting unit for detecting, as a monitor data rate, the total number of times that each of the plurality of types of monitor data received by the monitor data receiving unit has changed more than a predetermined change amount within a predetermined first time period;
  • One cycle within a predetermined second time based on the data write upper limit value, which is the monitor data amount that the temporary storage unit can store in one cycle, and the monitor data rate detected by the monitor data rate detection unit
  • Write monitor data to assign the number of times each type of monitor data is written to the temporary storage unit for each type of monitor data
  • a monitor data writing unit for writing a plurality of types of monitor data received by the monitor data receiving unit into the temporary storage unit within the second time period based on the number of times allocated by
  • a monitor memory periodically written in the temporary storage unit for a plurality of cycles to be stored and stored, and the monitor data written in the temporary storage unit for a predetermined third time.
  • a substrate processing apparatus comprising: an accumulated data writing unit that reads out each time and writes to the accumulation storage unit.
  • the substrate processing apparatus wherein priority is stored for each priority of the plurality of types of monitor data when the plurality of types of monitor data are stored in the temporary storage unit.
  • a substrate processing apparatus which assigns the number of times of writing to the temporary storage unit more than the number of times the low-priority type monitor data is written to the temporary storage unit within the second time.
  • the substrate processing apparatus (Supplementary note 10) The substrate processing apparatus according to the supplementary note 8, wherein priority is stored for each priority of the plurality of types of monitor data when the plurality of types of monitor data are stored in the temporary storage unit.
  • a substrate processing apparatus that assigns the number of times each type of monitor data is written to the temporary storage unit within the time period.
  • the substrate processing apparatus according to the invention of supplementary note 10, wherein the priority of each type of monitor data includes a first priority, a second priority, and a third priority.
  • a write allocation unit allocates the first priority monitor data so as to be written to the temporary storage unit a first number of times for each second time, and the first write value is determined from the data write upper limit value.
  • the second number of times obtained by subtracting the number of times is assigned to the monitor data of the second and third priorities, and the number of times of subtracting the first and second numbers from the data writing upper limit value.
  • a substrate processing apparatus assigning a third number of times to monitor data of the second priority.
  • the substrate processing apparatus according to any one of Supplementary notes 8 to 10, further comprising a monitoring unit that monitors a transmission amount of accumulated data transmitted from the temporary storage unit to the accumulation storage unit.
  • the storage data writing unit reads the monitor data written in the temporary storage unit and writes it in the storage unit when the transmission amount of the stored data exceeds a predetermined transmission amount. Long substrate processing equipment.
  • a substrate processing system that collects and accumulates various monitor data output from a substrate processing apparatus that processes a substrate such as a semiconductor wafer, for example, monitor data such as a processing temperature and a pressure in a processing chamber.
  • Data storage unit (database) 40 Data storage server 50 Analysis application device 60
  • Network DESCRIPTION OF SYMBOLS 100 ... Substrate processing apparatus, 105 ... Rotary shelf, 110 ... Pod, 111 ... Housing, 111a ... Front wall, 112 ... Pod loading / unloading exit, 113 ... Front shutter, 114 ... Load port, 115 ... Boat elevator, 116 ... Post DESCRIPTION OF SYMBOLS 117 ... Shelf board, 118 ... Pod conveyance apparatus, 119 ... Sub housing
  • Mounting stand 123 ... Cap attaching / detaching mechanism, 124 ... Transfer chamber, 125 ... Wafer Transfer mechanism, 128 ... arm, 133 ... clean air, 134 ... clean unit, 142 ... wafer loading / unloading opening, 147 ... furnace port shutter, 200 ... wafer (substrate), 202 ... processing furnace.

Abstract

基板処理装置から出力される複数種類のモニタデータを受信し、一時記憶部が記憶できるデータ書込上限値と、受信するモニタデータが所定の第1の時間内において所定値以上に変化した延べ回数であるモニタデータレートとに基づき、所定の第2の時間内において各種類のモニタデータを一時記憶部に書き込む回数を算出してモニタデータの種類毎に割り当て、該割り当て回数に基づき、受信したモニタデータを一時記憶部に記憶し、一時記憶部に記憶したモニタデータを、所定の第3の時間毎に読み出して、蓄積記憶部に書き込む。

Description

基板処理システム、基板処理装置及び基板処理装置のデータ蓄積方法
  本発明は、例えば半導体ウエハ等の基板を処理する基板処理装置から出力される各種モニタデータ、例えば処理温度や処理室内圧力等のモニタデータを収集し蓄積する基板処理システムや、モニタデータ収集システムに関するものである。
  図1に、基板処理装置としての、半導体装置の製造装置(半導体製造装置)の斜視図を示す。図1に示す基板処理装置は、複数のウエハ(基板)を収容する基板収容器であるポッド110を搬入出するロードポート114と、ポッド110のキャップを着脱するポッドオープナ121と、ポッド110を一時的に保管する回転棚105と、ポッド110を搬送するポッド搬送装置118と、ウエハを積層するように搭載するボート217と、ポッドオープナ121の載置台122に載置されたポッド110とボート217との間でウエハの移載を行うウエハ移載機125と、基板処理室(不図示)やヒータ(不図示)を備えた熱処理炉202と、ボート217を熱処理炉202内に搬入、及び搬出するボートエレベータ115と、記憶部(不図示)等の基板処理装置の各構成部と、各構成部を制御する制御部(不図示)とを備えている。そして、制御部が、記憶部に記憶したプロセスレシピに基づき、熱処理等のウエハ処理を実行する。
  従来の基板処理装置においては、例えばプロセスレシピ実行中などに、熱処理炉202内の温度計測値や圧力値などのセンサー情報や、熱処理炉202内へ処理ガスを供給する処理ガス供給管に設けられた開閉バルブの開閉動作状態などのアクチュエータ情報等のモニタ情報を、基板処理装置内に配置されたモニタ情報収集部で刻々と又は定期的に収集し、該収集した情報を、基板処理装置外に配置された上位のモニタデータ解析システムへ送信して、該上位システム内のHDD(ハードディスク装置)等の不揮発性記憶媒体から構成されるデータベースに記録して蓄積し、故障発生時の故障解析や基板処理データのデータ解析等に用いていた。
  一方、基板処理装置の性能向上のために、モニタデータ収集用センサー数の増加や、センサーのデータ収集サンプリング周期の増加、例えば、サンプリング周期を1Hzから10Hz、あるいは100Hzに増加させることが行われている。このとき、モニタデータ収集用センサー数の増加やセンサーのデータ収集サンプリング周期の増加に伴い、モニタデータ量が増加することになる。しかしながら、従来技術においては、モニタデータ量が増加した場合、上位システムが受信するデータ量も増加するのに対して、上位システム側で柔軟に対応することができず、上位システムの制御ソフトウエアの変更など、多くの手間を要していた。
  本発明の目的は、例えばモニタデータ収集用センサー数の増加やセンサーのデータ収集サンプリング周期の増加に伴い、モニタデータ量が増加しても、例えば上位システムの制御ソフトウエアの変更を必要とせずに、該モニタデータ量の増加に対応でき、データの蓄積漏れやシステムダウンを防止できる柔軟性のある基板処理システムあるいはモニタデータ収集蓄積システムを提供することにある。
  前記課題を解決するための、本発明の基板処理システムの代表的な構成は、次のとおりである。すなわち、 
基板を処理する基板処理装置と、  前記基板処理装置から出力される複数種類のモニタデータを受信するモニタデータ受信部と、  前記モニタデータ受信部が受信した複数種類のモニタデータが周期的に記憶される一時記憶部と、  前記モニタデータ受信部が受信する複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして検出するモニタデータレート検出部と、  前記一時記憶部が1周期において記憶できるモニタデータ量であるデータ書込上限値と、前記モニタデータレート検出部で検出されたモニタデータレートとに基づき、所定の第2の時間内において1周期分の各種類のモニタデータを前記一時記憶部に書き込む回数をモニタデータの各種類毎に割り当てるモニタデータ書込み割当部と、  前記モニタデータ書込み割当部により割り当てられた回数に基づき、前記モニタデータ受信部が受信した複数種類のモニタデータを、前記第2の時間内において前記一時記憶部に書き込むモニタデータ書込み部と、  前記一時記憶部に周期的に書き込まれたモニタデータが、複数周期分、蓄積されて記憶される蓄積記憶部と、  前記一時記憶部に書き込まれたモニタデータを、所定の第3の時間毎に読み出して、前記蓄積記憶部に書き込む蓄積データ書込み部と、  を備える基板処理システム。
  上記の構成によれば、センサーからのモニタデータ量が増加しても、データの蓄積漏れやシステムダウンを防止できる。
本発明の実施形態に係る基板処理装置の斜視図である。 本発明の実施形態に係る基板処理装置の垂直断面図である。 本発明の実施形態に係る基板処理装置の機能ブロック図の構成例である。 本発明の実施形態に係るデータ収集蓄積部の機能ブロック図である。 本発明の実施形態の第1実施例におけるチケット分配表である。 本発明の実施形態の第2実施例におけるチケット分配表である。 本発明の実施形態の第3実施例におけるチケット分配表である。
  以下、図面を参照して、本発明の実施形態における基板処理装置を説明する。本実施形態において、基板処理装置は、一例として、半導体装置(IC:Integrated Circuit)の製造方法における処理工程を実施する半導体製造装置として構成されている。なお、以下の説明では、基板処理装置として基板に酸化、拡散処理やCVD(Chemical Vapor Deposition)処理などを行うバッチ式縦型半導体製造装置(以下、単に処理装置という)を適用した場合について述べる。図1は、本発明が適用される処理装置の透視図であり、斜視図として示されている。また、図2は図1に示す処理装置の側面透視図である。
  図2に示されているように、本実施形態の処理装置100は、シリコン等からなるウエハ(基板)200を収納するウエハキャリアとしてポッド110を使用し、筐体111を備えている。筐体111の正面壁111aには、ポッド搬入搬出口112が、筐体111の内外を連通するように開設されており、ポッド搬入搬出口112は、フロントシャッタ113によって開閉される。ポッド搬入搬出口112の正面前方側には、ロードポート114が設置されており、ロードポート114は、ポッド110を載置する。ポッド110は、ロードポート114上に工程内搬送装置(図示せず)によって搬入され、かつまた、ロードポート114上から搬出される。
  筐体111内の前後方向の略中央部における上部には、回転棚105が設置されており、回転棚105は、支柱116を中心に回転し、棚板117に複数個のポッド110を保管する。  図2に示すように、筐体111内におけるロードポート114と回転棚105との間には、ポッド搬送装置118が設置されている。ポッド搬送装置118は、ポッド110を保持したまま昇降可能なポッドエレベータ118aと、水平搬送機構としてのポッド搬送機構118bとで構成されており、ロードポート114、回転棚105、ポッドオープナ121との間で、ポッド110を搬送する。
  図2に示すように、筐体111内の前後方向の略中央部における下部には、サブ筐体119が後端にわたって構築されている。サブ筐体119の正面壁119aには、ウエハ200をサブ筐体119内に対して搬入搬出するためのウエハ搬入搬出口120が1対、垂直方向に上下2段に並べられて開設されており、上下段のウエハ搬入搬出口120、120には1対のポッドオープナ121、121がそれぞれ設置されている。  ポッドオープナ121は、ポッド110を載置する載置台122、122と、ポッド110のキャップ(蓋体)を着脱するキャップ着脱機構123、123とを備えている。ポッドオープナ121は、載置台122に載置されたポッド110のキャップをキャップ着脱機構123によって着脱することにより、ポッド110のウエハ出し入れ口を開閉する。載置台122は、基板を移載する際に基板収容器が載置される移載棚である。
  図2に示すように、サブ筐体119は、ポッド搬送装置118や回転棚105の設置空間の雰囲気と隔絶された移載室124を構成している。移載室124の前側領域には、ウエハ移載機構125が設置されている。ウエハ移載機構125は、ウエハ200をツイーザ125cに載置して水平方向に回転ないし直動可能なウエハ移載装置125a、およびウエハ移載装置125aを昇降させるためのウエハ移載装置エレベータ125bとで構成されている。これら、ウエハ移載装置エレベータ125bおよびウエハ移載装置125aの連続動作により、ボート217に対して、ウエハ200を装填および脱装する。
  図1に示されているように、移載室124内には、清浄化した雰囲気もしくは不活性ガスであるクリーンエア133を供給するよう、供給フアンおよび防塵フィルタで構成されたクリーンユニット134が設置されている。  図2に示すように、ボート217の上方には、処理炉202が設けられている。処理炉202は、内部に基板処理室(不図示)を備え、該基板処理室の周囲には、基板処理室内を加熱するヒータ(不図示)を備える。処理炉202の下端部は、炉口ゲートバルブ147により開閉される。
  図1に示されているように、ボート217を昇降させるためのボートエレベータ115が設置されている。ボートエレベータ115に連結されたアーム128には、シールキャップ219が水平に据え付けられており、シールキャップ219は、ボート217を垂直に支持し、処理炉202の下端部を閉塞可能なように構成されている。  ボート217は、複数本の保持部材を備えており、複数枚(例えば、50枚~125枚程度)のウエハ200を、その中心を揃えて垂直方向に整列させた状態で、それぞれ水平に保持するように構成されている。
 次に、本実施形態の処理装置の動作について説明する。  図1、図2に示されているように、ポッド110がロードポート114に供給されると、ポッド搬入搬出口112がフロントシャッタ113によって開放され、ポッド搬入搬出口112から搬入される。  搬入されたポッド110は、回転棚105の指定された棚板117へ、ポッド搬送装置118によって、自動的に搬送されて受け渡される。
  ポッド110は回転棚105で一時的に保管された後、棚板117から一方のポッドオープナ121に搬送されて載置台122に移載されるか、もしくは、ロードポート114から直接、ポッドオープナ121に搬送されて、載置台122に移載される。この際、ポッドオープナ121のウエハ搬入搬出口120は、キャップ着脱機構123によって閉じられており、移載室124にはクリーンエア133が流通され、充満されている。
  図2に示すように、載置台122に載置されたポッド110は、そのキャップが、キャップ着脱機構123によって取り外され、ポッド110のウエハ出し入れ口が開放される。また、ウエハ200は、ポッド110からウエハ移載装置125aによってピックアップされ、ボート217へ移載されて装填される。ボート217にウエハ200を受け渡したウエハ移載装置125aは、ポッド110に戻り、次のウエハ110をボート217に装填する。
  この一方(上段または下段)のポッドオープナ121におけるウエハ移載装置125aによるウエハ200のボート217への装填作業中に、他方(下段または上段)のポッドオープナ121には、回転棚105ないしロードポート114から別のポッド110がポッド搬送装置118によって搬送され、ポッドオープナ121によるポッド110の開放作業が同時進行される。
  予め指定された枚数のウエハ200がボート217に装填されると、処理炉202の下端部が炉口ゲートバルブ147によって開放される。続いて、シールキャップ219がボートエレベータ115によって上昇されて、シールキャップ219に支持されたボート217が、処理炉202内の基板処理室へ搬入されて行く。
  ローディング後は、基板処理室内でウエハ200に任意の処理が実施される。処理後は、ボートエレベータ115によりボート217が引き出され、その後は、概上述の逆の手順で、ウエハ200およびポッド110は筐体111の外部へ払出される。
  次に、図3を参照して、基板処理装置100の機能ブロック構成について説明する。図3は、本実施形態に係る基板処理装置100の機能ブロック図の構成例である。  図3に示されるように、基板処理装置100の主制御部11には、主記憶部12、搬送制御部13、温度制御部14、ガス制御部15、PLC(Programmable Logic Controller)ユニット16、データ収集蓄積部30、オペレータの指示を受け付ける操作部(不図示)、操作画面や各種データ等を表示する表示部(不図示)等の基板処理装置100を構成する構成部が電気的に接続されている。詳しくは、主制御部11と搬送制御部13、温度制御部14、ガス制御部15等の副制御部との間は、SECS/HSMS等の専用プロトコルや、汎用のTCP/IP、XML/SOAPなどにより接続されている。
  搬送制御部13は、ポッド搬送装置118やウェハ移載機構125やボートエレベータ115等の位置を制御するもので、搬送制御部13には、フォトセンサー21やポッドセンサー22が電気的に接続され、これらのセンサーから、例えば、ウェハ200を収容するポッド110の有無や位置等のデータを受信し、主制御部11に送信する。また、搬送制御部13は、主制御部11から、例えばポッド110の搬送指示を受信し、指示された場所や位置にポッド110を搬送する。
  温度制御部14は、反応炉202を加熱するヒータの温度を制御するもので、処理炉202内の温度を計測する温度センサー23から温度データを受信し、主制御部11に送信する。また、温度制御部14は、主制御部11から、例えば処理炉202内の温度を上昇させるヒータの加熱温度指示を受信し、指示された温度になるようヒータを加熱する。
  ガス制御部15は、例えば、PLCユニット16を介し、バルブI/O24やインタロックI/O25から受信したデータを主制御部11へ送信し、また、主制御部11から受信したデータをバルブI/O24やインタロックI/O25へ送信する。具体的には、例えば、処理炉202内へ処理ガスを供給する処理ガス供給配管に設けられたMFC(マスフローコントローラ:流量制御装置)からガスの流量データを受信し、主制御部11に送信する。また、主制御部11から、例えば、処理ガス供給配管に設けられた開閉バルブや処理炉202内からガスを排気する処理ガス排気配管に設けられた圧力調整バルブやポンプ等へのバルブ開閉指示やポンプ駆動指示等のガス制御指示を受信し、該指示に従いガス制御を行う。  PLCユニット16は、バルブI/O24やインタロックI/O25から受信したデータを主制御部11へ送信し、また、主制御部11から受信したデータをバルブI/O24やインタロックI/O25へ送信することもある。  主記憶部12は、基板処理装置100の基板処理シーケンスである処理レシピを記憶しており、ハードディスクや半導体メモリ等から構成される。
  主制御部11は、ハードウエア構成としては、CPU(Central Processing Unit)と主制御部11の動作プログラム等を格納するメモリを備えており、CPUは、この動作プログラムに従って、主記憶部12に記憶した処理レシピを読み出して実行するように動作する。また、搬送制御部13、温度制御部14、ガス制御部15等の副制御部も、それぞれ、CPUと各制御部の動作プログラム等を格納するメモリを備えており、各CPUは、それぞれの動作プログラムに従って動作する。
  主制御部11は、搬送制御部13等の各副制御部やPLCユニット16等の各構成部から、温度センサーの示す温度やアクチュエータの位置などのモニタデータを収集し、これらのモニタデータ用いて、処理炉202の温度や圧力等の装置パラメータが、予め設定された値となるように各構成部を制御する。ポッドセンサー22や温度センサー23等の状態は、各副制御部からのアナログ信号やRS-232CやDeviceNetなどのデジタル信号により、主制御部11へ送信される。主制御部11は、各構成部からのモニタデータを収集すると、該収集データに該収集データの検出時刻であるタイムスタンプを刻印し、主記憶部12を構成する不揮発性記憶装置へ格納し保存し、また、データ収集蓄積部30へ送信する。
  次に、上位管理システムについて説明する。  主制御部11には、基板処理装置100を構成するデータ収集蓄積部30が、例えばSECS/HSMSやFTP等のファイル転送プロトコルやネットワークファイル共有プロトコルなどにより接続されている。また、図3の例では、データ収集蓄積部30は、外部I/O26と電気的に接続されており、外部センサーの状態を外部I/O26を介して収集できるように構成されている。データ収集蓄積部30は、基板処理装置100の各構成部や外部I/O26から収集したモニタデータを、主制御部11から受信し、基板処理装置100の上位の管理コンピュータであるホストコンピュータや、複数の基板処理装置100を管理する群管理コンピュータへ転送するものである。
  図3の例では、データ収集蓄積部30は、ネットワーク60を介し、蓄積記憶部としてのデータベース34、データ保存サーバ40、解析アプリケーション装置50と電気的に接続されている。なお、データベース34は、後述するように、データ収集蓄積部30の一部を構成する。データ収集蓄積部30は、主制御部11を介して、上記処理装置100を構成する各構成部からモニタデータを収集し、該収集したモニタデータを一時記憶した後、データベース34内に蓄積記憶する。これにより、データベース34内に蓄積記憶したデータを、上位の管理コンピュータ(例えば解析アプリケーション装置50)が用いることが可能となる。なお、本実施形態では、データベース34以外のデータ収集蓄積部30を、基板処理装置100内に設けているが、基板処理装置100外に設けてもよい。また、逆に、データベース34を基板処理装置100内に設けてもよい。
  本実施形態では、基板処理装置100の基板処理制御システムとは別に、独立して、モニタデータ収集専用のデータ収集蓄積部30を基板処理装置100内に設け、データ収集蓄積部30と上位の管理システム(データ保存サーバ40、解析アプリケーション装置50)を接続しているので、従来の基板処理制御システムでは取得できなかった詳細なモニタデータを、上位の管理システムが取得でき、解析アプリケーション装置50により解析して活用することができる。データ収集蓄積部30の詳細は、後述する。
  データベース34内に蓄積記憶されたデータは、必要に応じデータ保存サーバ40等の不揮発性記憶装置へ転送され保存され、該保存された処理炉202の温度やガス流量や圧力データなどのデータは、高度なアプリケーション機能を有する解析アプリケーション装置50により、統計解析や多変量解析など、基板処理装置100を監視するためのデータ処理に用いられる。解析アプリケーション装置50は、ネットワーク60に接続されたパーソナルコンピュータで構成することができるが、クライアントサーバ型のアプリケーション装置として構成してもよいし、ウェブブラウザ等を使用する構成としてもよい。あるいは、解析アプリケーション装置50は、ネットワーク60から独立した形で構成してもよい。
  次に、図4を参照して、本実施形態に係るデータ収集蓄積部30の機能ブロック構成について説明する。図4は、本実施形態に係るデータ収集蓄積部30の機能ブロック図である。データ収集蓄積部(データ収集蓄積手段)30は、データ収集部(データ収集手段)31と、一時記憶部であるキャッシュメモリ(一時記憶手段)32と、データ蓄積部(データ蓄積手段)33と、データ収集蓄積部30に対するオペレータからの指示や各種パラメータ等の入力設定を受け付ける操作表示部(不図示)とを備えている。
  まず、データ収集蓄積部30の概要を説明する。  主制御部11や外部I/O26は、例えば、それぞれが収集するモニタデータの値が変化した場合や、それぞれのモニタデータの変化量がそれぞれ所定の閾値以上となった場合に、データ収集部31に対し、それぞれのモニタデータを送信する。この送信されるモニタデータ量は、基板処理装置100の稼働状態によって増減することが分かっている。例えば、基板処理時(生産時)には、待機時に比べ多くのデータが変化するため、送信されるモニタデータ量が増加する。また、生産中においても処理内容によって、送信されるモニタデータ量が一時的に増加するタイミングが存在する。また、基板処理装置100の性能向上のための各種センサーの増加等によっても、送信されるモニタデータ量が増加する。  このような多量のモニタデータを、直接、データベース34やデータ保存サーバ40のHDDに記憶しようとすると、HDDのアクセス速度が追いつかず、データの蓄積漏れや、最悪の場合、システムダウンを発生させる。
  したがって、多量のモニタデータを適切な量に減じることが必要となるが、このとき、データ収集蓄積部30においては、増加するモニタデータに対して、制御ソフトウエアの変更を必要としない柔軟性のあることが必要となる。本実施形態においては、多量のモニタデータに対して必要なデータを絞り込むフィルタリング機能を、データ収集部31に付与している。このフィルタリング機能は、後述の第1実施例等で示すように、チケット分配方式により実現されている。
  データ収集部31は、主制御部11や外部I/O26から複数種類のモニタデータを受信し、該受信したモニタデータを周期的に、キャッシュメモリ32へ書き込むものである。受信したモニタデータには、そのモニタデータの検出時刻であるタイムスタンプも含まれる。詳しくは、受信したモニタデータの総受信量と、キャッシュメモリ32が1周期において記憶できるモニタデータ量であるデータ書込上限値とに応じて、一時記憶部であるキャッシュメモリ32へ書き込む各種類のモニタデータ量を調整して、モニタデータの各種類毎に割り当て、該割り当てに基づき、各種類のモニタデータをキャッシュメモリ32へ書き込むものである。このようにして、データ収集部31は、多量のモニタデータに対して、必要なデータを絞り込むフィルタリング機能を有する。
  キャッシュメモリ32は、半導体メモリで構成されており、後述のデータベース34を構成するHDDよりも高速でデータの書込みや読出しができるので、多量のモニタデータをデータベース34に蓄積保存する際のクッションの役割を果たすことができる。  データ蓄積部33は、キャッシュメモリ32へ書き込まれたモニタデータを、所定の時間毎に読み出して、蓄積記憶部であるデータベース34に書き込むものである。
  次に、データ収集部31について詳しく説明する。  データ収集部31は、図4に示すように、モニタデータ受信部(モニタデータ受信手段)31a、モニタデータレート検出部(モニタデータレート検出手段)31b、モニタデータ書込割当部(モニタデータ書込割当手段)31c、モニタデータ書込部(モニタデータ書込手段)31d、データ収集記憶部(データ収集記憶手段)31eを備えている。
  モニタデータ受信部31aは、基板処理装置100から出力される複数種類のモニタデータ、例えば処理炉202の温度データや圧力データ等とその検出時刻を受信する。
  モニタデータレート検出部31bは、モニタデータ受信部31aが受信する複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量の閾値以上に変化した延べ回数をモニタデータレートとして検出する。この第1の時間や変化量の閾値は、予めオペレータによりデータ収集蓄積部30の操作表示部から設定されてデータ収集記憶部31eに記憶され、また、変更が可能となっている。  例えば、圧力データの変化量の閾値が100Paである場合に、圧力データが1秒間に、100Paから徐々に1100Paへ変化した場合、圧力データのモニタデータレートは10回/秒となる。また、温度データの変化量の閾値が10℃である場合に、温度データが1秒間に、500℃から徐々に600℃へ変化した場合、温度データのモニタデータレートは10回/秒となる。したがって、モニタデータが、圧力データと温度データの2種類のみの場合は、モニタデータレートは20回/秒となる。  なお、本実施形態では、モニタデータ受信部31aが受信するモニタデータは、主制御部11や外部I/O26の送信側において、所定の変化量以上に変化した場合に送信するように構成しているが、送信側は常にモニタデータを送信し、モニタデータ受信部31aが受信する際に、所定の変化量以上に変化したモニタデータを取得するように構成することもできる。
  モニタデータ書込割当部31cは、キャッシュメモリ32が書込みの1周期において記憶できるモニタデータ量であるデータ書込上限値と、モニタデータレート検出部31bで検出されたモニタデータレートとに基づき、所定の第2の時間内において1周期分の各種類のモニタデータをキャッシュメモリ32に書き込む回数を、モニタデータの各種類毎に割り当てるものである。  また、モニタデータ書込み割当部31cは、データ書込上限値と、モニタデータレートに加え、更に後述のデータ収集記憶部31eに記憶された各種類のモニタデータの優先度に基づき、所定の第2の時間内において1周期分の各種類のモニタデータをキャッシュメモリ32に書き込む回数を、モニタデータの各種類毎に割り当てるものである。上記の第2の時間は、予めオペレータによりデータ収集蓄積部30の操作表示部から設定されてデータ収集記憶部31eに記憶され、また、変更が可能となっている。
  また、モニタデータ書込割当部31cは、データ収集記憶部31eに記憶された各種類のモニタデータの優先度に基づき、優先度の高い種類のモニタデータを第2の時間内においてキャッシュメモリ32に書き込む回数を、優先度の低い種類のモニタデータを第2の時間内においてキャッシュメモリ32に書き込む回数よりも多く割り当てる。  また、モニタデータ書込割当部31cは、該割り当て回数を、データ収集記憶部31eに記憶させる。なお、モニタデータの優先度は、予めオペレータによりデータ収集蓄積部30の操作表示部から設定されてデータ収集記憶部31eに記憶され、また、変更が可能となっている。
  例えば、キャッシュメモリ32が書込みの1周期において記憶できるモニタデータ量が、10点/周期であり、1周期が1秒である場合、つまり、データ書込上限値が10点/秒である場合を考える。このとき、上述のように圧力データと温度データのモニタデータレートが各10回/秒で、総モニタデータレートが20回/秒である場合、圧力データと温度データの優先度が同じであれば、モニタデータ書込割当部31cは、圧力データと温度データに対し、各5回/秒、キャッシュメモリ32に書き込む回数を割り当てる。圧力データと温度データの優先度が異なっているときは、モニタデータ書込割当部31cは、優先度に応じて、キャッシュメモリ32に書き込む回数を割り当てる。詳細は後述の実施例で説明する。
  モニタデータ書込部31dは、モニタデータ書込み割当部31cにより割り当てられた回数に基づき、モニタデータ受信部31aが受信した複数種類のモニタデータを、所定の第2の時間内においてキャッシュメモリ32に書き込むものである。
  データ収集記憶部31eは、モニタデータ書込割当部31cが各モニタデータに対し割り当てた、キャッシュメモリ32への所定の第2の時間内における1周期分の書き込み回数であるチケット分配表を記憶するものである。  例えば、上述のように、モニタデータ書込割当部31cが、圧力データと温度データに対し、各5回/秒、キャッシュメモリ32に書き込む回数を割り当てた場合は、その旨を記憶する。詳細は後述の実施例で説明する。  また、データ収集記憶部31eは、モニタデータ書込割当部31cが各モニタデータに対し書き込む回数を割り当てる際に用いる、複数種類のモニタデータのそれぞれの優先度を記憶するものである。また、データ収集記憶部31eは、上述の第1の時間、モニタデータの変化量の閾値、第2の時間を記憶するものである。
  次に、データ蓄積部33について詳しく説明する。  データ蓄積部33は、図4に示すように、蓄積データ書込部(蓄積データ書込手段)33a、監視部(監視手段)33b、データ蓄積記憶部(データ蓄積記憶手段)31cを備えている。  蓄積データ書込部33aは、キャッシュメモリ32に周期的に書き込まれたモニタデータを、例えば複数周期分、所定の第3の時間毎に読み出して、蓄積記憶部34に書き込み蓄積するものである。この第3の時間は、予めオペレータによりデータ収集蓄積部30の操作表示部から設定されてデータ蓄積記憶部33cに記憶され、また、変更が可能となっている。  例えば、キャッシュメモリ32に1秒毎に周期的に書き込まれたモニタデータを、10秒毎に、10周期分まとめて読み出して、蓄積記憶部34に書き込み蓄積する
  監視部33bは、キャッシュメモリ32から蓄積記憶部34へ伝送される蓄積データの伝送量を監視し、該蓄積データの伝送量が所定の伝送量を超えたと判断した場合、蓄積データ書込部33aが、キャッシュメモリ32に書き込まれたモニタデータを読み出して蓄積記憶部34に書き込む周期を長くするよう、蓄積データ書込部33aを制御するものである。  データ蓄積記憶部33cは、上述の第3の時間を、キャッシュメモリ32から蓄積記憶部34へ伝送される蓄積データの伝送量に対応させて、複数種類記憶するものである。
(第1実施例)  次に、第1実施例について、図5を用いて説明する。図5は、本発明の実施形態の第1実施例におけるデータ収集記憶部31eに記憶された1周期分、図5の例では1秒間のモニタデータ書込割当表、つまり、1周期分(1秒間)のモニタデータ書込のためのチケット分配表である。チケット分配とは、書込割当のことである。図5において、モニタデータを送信するセンサー2000個のそれぞれに対して、優先度が設定され、また、チケットが分配されている、つまり、キャッシュメモリ32への書込割当がなされている。チケット分配は、レ点で示されている。  例えば、優先度1のセンサーID0001~0100のセンサーからのデータに対しては、それぞれ100ms毎にチケットが分配され、1周期分のチケットはそれぞれ10点である。優先度2のセンサー、例えばセンサーID0101~0106のセンサーからのデータに対しては、それぞれ200ms毎又は300ms毎にチケットが分配され、1周期分のチケットはそれぞれ4点である。優先度3のセンサー、例えばID1999やセンサーID2000のセンサーからのデータに対しては、それぞれ500ms毎にチケットが分配され、1周期分のチケットはそれぞれ2点である。
  このチケット分配表に従って、1周期(1秒間)のうち、000msから100msの間に、センサーID0001~0100、0101、0104、0106、・・・からのデータがキャッシュメモリ32へ書き込まれ、100msから200msの間に、センサーID0001~0100、0102、0105、・・・からのデータがキャッシュメモリ32へ書き込まれ、以下同様にして各100msの間に各センサーからのデータがキャッシュメモリ32へ書き込まれ、最後に、900msから1000msの間に、センサーID0001~0100、0103、0105・・・からのデータがキャッシュメモリ32へ書き込まれる。  このように、第1実施例においては、キャッシュメモリ32に書き込まれるモニタデータをフィルタリングするために、チケット分配方式が採用されている。
  第1実施例においては、前提条件が次のように設定されている。  (1)モニタデータを送信するセンサーは2000個存在し、そのセンサーID(識別子)は、0001~2000である。  (2)2000個のセンサーからのモニタデータを、キャッシュメモリ32へ書き込む周期は1秒である。すなわち、チケット分配に基づき分配されたチケット分のモニタデータを全てキャッシュメモリ32へ書き込んだ後、次のチケット分配に基づき分配されたチケット分のモニタデータを全てキャッシュメモリ32へ書き込むまでの周期は1秒である。  (3)キャッシュメモリ32のデータ書込上限値が5000点/秒である。つまり、キャッシュメモリ32へは、1秒間に最大5000回のデータ書込み動作を行うことができる。このデータ書込上限値は、キャッシュメモリ32の性能やキャッシュメモリ32へデータ書込みを行うCPU等の性能により決定される。したがって、キャッシュメモリ32へのモニタデータ書込タイミングを配分するチケットは5000点存在する。  (4)優先度1のデータは、センサーIDが0001~0100からのデータであり、これらは、変化を全てキャッシュメモリ32へ記録する。
  以上の前提条件の下で、図5の例において、モニタデータレート検出部31bは、第1の時間である1周期(1秒間)毎に、1周期(1秒間)当たりのモニタデータ収集点数であるモニタデータレートを集計し、該集計したモニタデータレートに基づき、モニタデータ書込割当部31cは、次の1周期(1秒間)の各モニタデータに対して、第2の時間である1周期(1秒間)分のチケットを割り当てて配分する。モニタデータレート集計とチケット配分の詳細は、次のとおりである。  (1)図5の例では、2000個のセンサーからのモニタデータは、それぞれ100ms毎に、それぞれ所定の変化量以上に変化する、つまり、モニタデータレートは、2000×1秒/0.1秒=20000点/秒である。例えば、処理炉202の圧力データは、1秒間に1000Pa変化するので、所定の変化量である100Pa以上の変化を、100ms毎に繰り返す。
  (2)優先度1のデータは、センサーIDが0001~0100からのデータであり、これらは、変化を全てキャッシュメモリ32へ記録するので、優先度1のデータは、それぞれ100ms毎に更新、つまり100ms毎にキャッシュメモリ32へ書き込まれる。したがって、優先度1のデータには、1データあたり10点のチケットが分配されるので、優先度1のデータ全体で1000点のチケットが分配される。なお、優先度1のデータは、データ収集蓄積部30の操作表示部から、オペレータによりデータ収集記憶部31eに予め登録されており、該登録された優先度1のデータに基づき、モニタデータ書込割当部31cは、チケットを分配する。
  (3)優先度1以外のデータは、センサーIDが0101~2000からのデータ(1900個)であり、これらには、上記(2)の割り当て後の残りのチケット4000点がラウンドロビン方式により均等な時間間隔で割り当てられる。したがって、優先度1以外のデータには、1データあたり2点のチケットが分配可能なので、優先度1以外のデータ全体で3800点のチケットが分配される。ここまでで、チケットは、計4800点(1000+3800)分配され、残りは200点である。
  (4)さらに、優先度1以外のデータには、上記(3)の割り当て後の余りのチケット200点が、できるだけ均等な時間間隔となるように、センサーIDが小さい順に割り当てられる。余りのチケットが割り当てられるデータが優先度2のデータであり、余りのチケットが割り当てられないデータが優先度3のデータである。図5の例では、センサーIDが0101~0200からのデータ(100個)に対し、余りのチケット200点がそれぞれ2点ずつ割り当てられているので、優先度2のデータは、センサーIDが0101~0200からのデータであり、優先度3のデータは、センサーIDが0201~2000からのデータ(1800個)である。  なお、図5の例では、センサーIDが0101~0200からのデータ(100個)に対し、余りのチケットをそれぞれ2点ずつ割り当てているが、センサーIDが0101~0300からのデータ(200個)に対し、余りのチケットをそれぞれ1点ずつ割り当てるようにすることもできる。
  算出したチケット配分は、チケット分配表としてデータ収集記憶部31eに記憶され、モニタデータ書込部31dは、チケット配分が行われた場合に、データ収集記憶部31eに記憶したチケット分配表に基づき、チケット配分が行われた次の周期のモニタデータをキャッシュメモリ32へ書き込む。また、図5の例では、チケット配分が行われなかった場合には、モニタデータ書込部31dは、キャッシュメモリ32へモニタデータを書き込まない。  各周期におけるモニタデータレートは、急激には変化しないので、チケット配分が行われた次の周期のモニタデータをキャッシュメモリ32へ書き込むようにしても、大きな障害はない。なお、本実施例のように、受信した1周期(1秒間)分のモニタデータからモニタデータレートを集計し、該集計したモニタデータレートに基づき、次の1周期(1秒間)に対するチケットを配分するのではなく、受信した1周期(1秒間)分のモニタデータをバッファメモリに一時的に記憶しておき、該バッファメモリに記憶したモニタデータからモニタデータレートを集計し、該集計したモニタデータレートに基づき、バッファメモリに記憶したモニタデータに対するチケットを配分するよう構成することもできる。このようにすると、バッファメモリが必要になるが、より正確にチケット配分することができる。
  このようにして、1周期毎のモニタデータ書込みを、時系列に連続して10周期(10秒間)に亘り繰り返して、計10周期分のモニタデータを、キャッシュメモリ32に書き込む。  次に、蓄積データ書込部33aが、キャッシュメモリ32に書き込まれた10周期分のモニタデータを、第3の時間である10周期分の時間、つまり10秒毎に読み出して、データ圧縮等の処理を行った後、ネットワーク60を介し、HDD等の不揮発性メモリで構成される蓄積記憶部としてのデータベース34に書き込み蓄積する。  このとき、監視部33bが、キャッシュメモリ32からデータベース34へ伝送される蓄積データの伝送量を監視し、蓄積データの伝送量が所定の伝送量を超えたと判断した場合、蓄積データ書込み部33aがキャッシュメモリ32に書き込まれたモニタデータを読み出してデータベース34に書き込む周期を、データベース34へ伝送される蓄積データの伝送量に応じて長くするよう制御する。これにより、蓄積データの伝送量が所定の伝送量を超えることによるシステムダウン等を防止できる。  このようにして、1周期毎のモニタデータ書込みを連続して10周期(10秒間)に亘り繰り返して、計10周期分のモニタデータをキャッシュメモリ32に上書きするデータ収集動作と、キャッシュメモリ32に書き込まれた10周期分のモニタデータを10秒毎に読み出してデータベース34に書き込み蓄積するデータ蓄積動作を繰り返して実行する。
  なお、本実施例では、蓄積データ書込部33aが、キャッシュメモリ32に書き込まれた10周期分のモニタデータを、10周期分の時間(10秒)毎に読み出して、データベース34に書き込むようにしたが、蓄積データ書込部33aが、キャッシュメモリ32に書き込まれた1周期分のモニタデータを、1周期分の時間(1秒)毎に読み出して、データベース34に書き込む、あるいは、任意の周期分のモニタデータを、該任意の周期毎に読み出して、データベース34に書き込むよう構成することもできる。
  また、本実施例においては、温度設定値や圧力設定値等を指示する装置パラメータが、オペレータや処理レシピにより指示されたときに、該指示された時刻とともに、該指示された温度設定値や圧力設定値等の装置パラメータを、モニタデータ受信部31aで受信し、例えばキャッシュメモリ32とは別のキャッシュメモリへ書き込むよう構成し、該別のキャッシュメモリから装置パラメータの指示時刻と装置パラメータを読み出して、データベース34へ書き込み保存することもできる。このようにすると、解析アプリケーション装置50等において、モニタデータ受信部31aで受信したモニタデータの発生時刻と、装置パラメータの指示時刻を、対比させて解析することができる。
  上述のように本実施例では、第1の時間である1周期(1秒間)毎に、各モニタデータがそれぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして集計し、該集計したモニタデータレートとキャッシュメモリ32が1周期において記憶できるモニタデータ量であるデータ書込上限値とに基づき、1周期分の各種類のモニタデータを第2の時間である1秒間でキャッシュメモリ32に書き込む回数としてチケットを割り当て配分し、該割り当てられたチケットに基づき、第2の時間である1秒間で1周期分のモニタデータをキャッシュメモリ32に書き込む。そして、この1周期毎のモニタデータ書込みを10周期(10秒間)に亘り繰り返して、計10周期分のモニタデータを、キャッシュメモリ32に書き込む。したがって、本実施例のキャッシュメモリ32には、時系列に連続する10周期分のモニタデータが書き込まれる。  そして、キャッシュメモリ32に書き込まれた10周期分のモニタデータを、第3の時間である10周期分の時間、つまり10秒毎に読み出して、蓄積記憶部としてのデータベース34に書き込み蓄積する。
(第2実施例)  次に、第2実施例について、図6を用いて説明する。図6は、第2実施例におけるデータ収集記憶部31eに記憶された1周期分、図6の例では1秒間のモニタデータ書込割当表、つまり、1周期分(1秒間)のモニタデータ書込のためのチケット分配表である。図6において、モニタデータを送信するセンサー500個のそれぞれに対して、優先度が設定され、また、チケットが分配されている。チケット分配は、レ点で示されている。  図6の例では、優先度1~優先度3の全てのセンサーからのデータに対して、それぞれ100ms毎にチケットが分配され、1周期分のチケットは5000点である。
  第2実施例においては、前提条件が次のように設定されている。  (1)モニタデータを送信するセンサーは500個存在し、そのセンサーID(識別子)は、0001~500である。  (2)500個のセンサーからのモニタデータを、キャッシュメモリ32へ書き込む周期は1秒である。すなわち、チケット分配に基づき分配されたチケット分のモニタデータを全てキャッシュメモリ32へ書き込んだ後、次のチケット分配に基づき分配されたチケット分のモニタデータを全てキャッシュメモリ32へ書き込むまでの周期は1秒である。  (3)キャッシュメモリ32のデータ書込上限値が5000点/秒である。つまり、キャッシュメモリ32へは、1秒間に最大5000回のデータ書込み動作を行うことができる。このデータ書込上限値は、キャッシュメモリ32やキャッシュメモリ32へデータ書込みを行うCPU等の性能により決定される。したがって、キャッシュメモリ32へのモニタデータ書込タイミングを配分するチケットは5000点存在する。  (4)優先度1のデータは、センサーIDが0001からのデータであり、このデータは、変化を全てキャッシュメモリ32へ記録する。
  第2実施例におけるモニタデータレート集計とチケット配分の詳細は、次のとおりである。  図6の例では、500個のセンサーからのモニタデータは、それぞれ100ms毎に、それぞれ所定の変化量以上に変化する、つまり、モニタデータレートは、500×1秒/0.1秒=5000点/秒である。これは、キャッシュメモリ32のデータ書込上限値である5000点/秒と一致し、データ書込上限値以下である。したがって、500個のセンサーからのモニタデータを全て、キャッシュメモリ32へ書き込めることが分かる。その結果、500個のセンサーからのモニタデータに対し、1データあたり10点のチケットが分配される。
  算出したチケット配分は、データ収集記憶部31eに記憶され、モニタデータ書込部31dは、チケット配分が行われた場合に、データ収集記憶部31eに記憶したチケット配分に基づき、チケット配分が行われた次の周期のモニタデータをキャッシュメモリ32へ書き込む。  このようにして、1周期毎のモニタデータ書込みを、時系列に連続して10周期(10秒間)に亘り繰り返して、計10周期分のモニタデータを、キャッシュメモリ32に書き込む。
  次に、蓄積データ書込部33aが、キャッシュメモリ32に書き込まれた10周期分のモニタデータを、10周期分の時間、つまり10秒毎に読み出して、データ圧縮等の処理を行った後、ネットワーク60を介し、HDD等の不揮発性メモリで構成される蓄積記憶部としてのデータベース34に書き込み蓄積する。
(第3実施例)  次に、第3実施例について、図7を用いて説明する。図7は、第3実施例におけるデータ収集記憶部31eに記憶された1周期分、図7の例では1秒間のモニタデータ書込割当表、つまり、1周期分(1秒間)のモニタデータ書込のためのチケット分配表である。図7において、モニタデータを送信するセンサー1500個のそれぞれに対して、優先度が設定され、また、チケットが分配されている。チケット分配は、レ点で示されている。
  例えば、優先度1のセンサーID0001からのデータに対しては、100ms毎にチケットが分配され、1周期分のチケットは10点である。優先度2のセンサー、例えばセンサーID0002~0006からのデータに対しては、それぞれ200ms毎又は300ms毎にチケットが分配され、1周期分のチケットはそれぞれ4点である。優先度3のセンサー、例えばID1499やセンサーID1500からのデータに対しては、それぞれ300ms毎又は400ms毎にチケットが分配され、1周期分のチケットはそれぞれ3点である。
  第3実施例においては、前提条件が次のように設定されている。  (1)モニタデータを送信するセンサーは1500個存在し、そのセンサーID(識別子)は、0001~1500である。  (2)1500個のセンサーからのモニタデータを、キャッシュメモリ32へ書き込む周期は1秒である。すなわち、チケット分配に基づき分配されたチケット分のモニタデータを全てキャッシュメモリ32へ書き込んだ後、次のチケット分配に基づき分配されたチケット分のモニタデータを全てキャッシュメモリ32へ書き込むまでの周期は1秒である。  (3)キャッシュメモリ32のデータ書込上限値が5000点/秒である。つまり、キャッシュメモリ32へは、1秒間に最大5000回のデータ書込み動作を行うことができる。このデータ書込上限値は、キャッシュメモリ32やキャッシュメモリ32へデータ書込みを行うCPU等の性能により決定される。したがって、キャッシュメモリ32へのモニタデータ書込タイミングを配分するチケットは5000点存在する。  (4)優先度1のデータは、センサーIDが0001からのデータであり、これは、変化を全てキャッシュメモリ32へ記録する。
  以上の前提条件の下で、図7の例において、モニタデータレート検出部31bは、1周期(1秒間)毎に、1周期(1秒間)当たりのモニタデータ収集点数であるモニタデータレートを集計し、該集計したモニタデータレートに基づき、モニタデータ書込割当部31cは、次の1周期(1秒間)の各モニタデータに対して、1周期(1秒間)分のチケットを割り当てて配分する。モニタデータレート集計とチケット配分の詳細は、次のとおりである。  (1)図7の例では、1500個のセンサーからのモニタデータは、それぞれ100ms毎に、それぞれ所定の変化量以上に変化する、つまり、モニタデータレートは、1500×1秒/0.1秒=15000点/秒である。
  (2)優先度1のデータは、センサーIDが0001からのデータであり、これは、変化を全てキャッシュメモリ32へ記録するので、優先度1のデータは、100ms毎に更新、つまり100ms毎にキャッシュメモリ32へ書き込まれる。したがって、優先度1のデータには、10点のチケットが分配される。
  (3)優先度1以外のデータは、センサーIDが0002~1500からのデータ(1499個)であり、これらには、上記(2)の割り当て後の残りのチケット4990点がラウンドロビン方式により均等な時間間隔で割り当てられる。したがって、優先度1以外のデータには、1データあたり3点のチケットが分配可能(1499×3=4497)なので、優先度1以外のデータ全体で4497点のチケットが分配される。
  (4)さらに、優先度1以外のデータには、上記(3)の割り当て後の余りのチケット493点(5000-10-4497=493)が、できるだけ均等な時間間隔となるように、センサーIDが小さい順に割り当てられる。余りのチケットが割り当てられるデータが優先度2のデータであり、余りのチケットが割り当てられないデータが優先度3のデータである。図7の例では、センサーIDが0002~0494からのデータ(493個)に対し、余りのチケット493点がそれぞれ1点ずつ割り当てられているので、優先度2のデータは、センサーIDが0002~0494からのデータであり、優先度3のデータは、センサーIDが0495~1500からのデータ(1006個)である。
  算出したチケット配分は、データ収集記憶部31eに記憶され、モニタデータ書込部31dは、チケット配分が行われた場合に、データ収集記憶部31eに記憶したチケット配分に基づき、チケット配分が行われた次の周期のモニタデータをキャッシュメモリ32へ書き込む。  このようにして、1周期毎のモニタデータ書込みを、時系列に連続して10周期(10秒間)に亘り繰り返して、計10周期分のモニタデータを、キャッシュメモリ32に書き込む。
  次に、蓄積データ書込部33aが、キャッシュメモリ32に書き込まれた10周期分のモニタデータを、10周期分の時間、つまり10秒毎に読み出して、データ圧縮等の処理を行った後、ネットワーク60を介し、HDD等の不揮発性メモリで構成される蓄積記憶部としてのデータベース34に書き込み蓄積する。
  以上説明した実施形態によれば、少なくとも次の(1)~(4)の効果を得ることができる。 
(1)一時記憶部が記憶できるデータ書込上限値とモニタデータレートとに基づき、チケット配分をおこなうので、センサーからのモニタデータ量が増加しても、一時記憶部に記憶するデータ量を適切な値に設定でき、センサーからのモニタデータ量増加に対応することができる。したがって、データの蓄積漏れや、システムダウン発生を防止できる。  (2)各種類のモニタデータの優先度に基づき、優先度の高い種類のモニタデータを一時記憶部に書き込む回数を、優先度の低い種類のモニタデータよりも多くできるので、モニタデータの優先度に応じて、一時記憶部に記憶するデータ量を適切な値に設定できる。  (3)第1の優先度のモニタデータに対し第1の回数だけ一時記憶部に書き込むように割り当て、データ書込上限値から第1の回数を差し引いた回数のうち第2の回数を、第2及び第3の優先度のモニタデータに対し割り当て、データ書込上限値から第1及び第2の回数を差し引いた回数である第3の回数を、第2の優先度のモニタデータに対し割り当てるので、モニタデータの優先度に応じて一時記憶部に記憶するデータ量を適切な値に設定できるとともに、データ書込上限値と同じ数だけチケット配分をおこなうことができ、チケットを余らせることなく使用できる。  (4)一時記憶部から蓄積記憶部へ伝送される蓄積データの伝送量が所定の伝送量を超えた場合、一時記憶部に書き込まれたモニタデータを読み出して前記蓄積記憶部に書き込む周期を長くするので、蓄積データの伝送量が所定の伝送量を超えることによるシステムダウン等を防止できる。
  本発明は、前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であることはいうまでもない。  前記実施形態では、基板処理装置内に、データ収集蓄積部30を配置したが、これらは、基板処理装置外に配置することもでき、例えば、クリーンルーム内に設置された基板処理装置とLAN接続し、クリーンルーム外に管理装置として配置することもできる。  本発明は、半導体製造装置だけでなく、LCD製造装置のようなガラス基板を処理する装置や、他の基板処理装置にも適用できる。基板処理の処理内容は、CVD、PVD、ALD、エピタキシャル成長膜、酸化膜、窒化膜、金属含有膜等を形成する成膜処理だけでなく、アニール処理、酸化処理、拡散処理、エッチング処理、露光処理、リソグラフィ、塗布処理、モールド処理、現像処理、ダイシング処理、ワイヤボンディング処理、検査処理等であってもよい。
  本発明の好ましい態様について付記する。
(付記1)本発明の一態様によれば、  基板を処理する基板処理装置と、  前記基板処理装置から出力される複数種類のモニタデータを受信するモニタデータ受信部と、  前記モニタデータ受信部が受信した複数種類のモニタデータが周期的に記憶される一時記憶部と、  前記モニタデータ受信部が受信する複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして検出するモニタデータレート検出部と、  前記一時記憶部が1周期において記憶できるモニタデータ量であるデータ書込上限値と、前記モニタデータレート検出部で検出されたモニタデータレートとに基づき、所定の第2の時間内において1周期分の各種類のモニタデータを前記一時記憶部に書き込む回数をモニタデータの各種類毎に割り当てるモニタデータ書込み割当部と、  前記モニタデータ書込み割当部により割り当てられた回数に基づき、前記モニタデータ受信部が受信した複数種類のモニタデータを、前記第2の時間内において前記一時記憶部に書き込むモニタデータ書込み部と、  前記一時記憶部に周期的に書き込まれたモニタデータが、複数周期分、蓄積されて記憶される蓄積記憶部と、  前記一時記憶部に書き込まれたモニタデータを、所定の第3の時間毎に読み出して、前記蓄積記憶部に書き込む蓄積データ書込み部と、  を備える基板処理システム。  ここで、第1の時間と第2の時間は、同じであってもよい。第2の時間と第3の時間は、同じであってもよいが、第2の時間よりも第3の時間を長くする方が、一時記憶部から蓄積記憶部へのデータ伝送量を少なくできるので好ましい。
  (付記2)付記1における基板処理システムであって、  前記複数種類のモニタデータが前記一時記憶部に記憶される際の、前記複数種類のモニタデータのそれぞれの優先度を記憶する優先度記憶部を備え、  前記モニタデータ書込み割当部が、前記優先度記憶部に記憶された各種類のモニタデータの優先度に基づき、前記優先度の高い種類のモニタデータを前記第2の時間内において前記一時記憶部に書き込む回数を、前記優先度の低い種類のモニタデータを前記第2の時間内において前記一時記憶部に書き込む回数よりも多く割り当てる基板処理システム。
  (付記3)付記1における基板処理システムであって、  前記複数種類のモニタデータが前記一時記憶部に記憶される際の、前記複数種類のモニタデータのそれぞれの優先度を記憶する優先度記憶部を備え、  前記モニタデータ書込み割当部が、前記データ書込上限値と、前記モニタデータレートと、前記優先度記憶部に記憶された各種類のモニタデータの優先度に基づき、前記第2の時間内において各種類のモニタデータを前記一時記憶部に書き込む回数を割り当てる基板処理システム。
  (付記4)付記3における基板処理システムであって、  前記各種類のモニタデータの優先度は、第1の優先度、第2の優先度、第3の優先度を含み、  前記モニタデータ書込み割当部が、前記第1の優先度のモニタデータに対し、前記第2の時間毎に第1の回数だけ前記一時記憶部に書き込むように割り当て、前記データ書込上限値から前記第1の回数を差し引いた回数のうち第2の回数を、前記第2及び第3の優先度のモニタデータに対し割り当て、前記データ書込上限値から前記第1及び第2の回数を差し引いた回数である第3の回数を、前記第2の優先度のモニタデータに対し割り当てる、基板処理システム。
  (付記5)付記1乃至付記4のいずれかの基板処理システムであって、  前記一時記憶部から前記蓄積記憶部へ伝送される蓄積データの伝送量を監視する監視部を備え、  前記監視部で、前記蓄積データの伝送量が所定の伝送量を超えたと判断された場合、前記蓄積データ書込み部が、前記一時記憶部に書き込まれたモニタデータを読み出して前記蓄積記憶部に書き込む周期を長くする基板処理システム。
  (付記6)  本発明の他の態様によれば 
外部から複数種類のモニタデータを受信するモニタデータ受信部と、  前記モニタデータ受信部が受信した複数種類のモニタデータが周期的に記憶される一時記憶部と、  前記モニタデータ受信部が受信する複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして検出するモニタデータレート検出部と、  前記一時記憶部が1周期において記憶できるモニタデータ量であるデータ書込上限値と、前記モニタデータレート検出部で検出されたモニタデータレートとに基づき、所定の第2の時間内において1周期分の各種類のモニタデータを前記一時記憶部に書き込む回数をモニタデータの各種類毎に割り当てるモニタデータ書込み割当部と  前記モニタデータ書込み割当部により割り当てられた回数に基づき、前記モニタデータ受信部が受信した複数種類のモニタデータを、前記第2の時間内において前記一時記憶部に書き込むモニタデータ書込み部と、  前記一時記憶部に周期的に書き込まれたモニタデータが、複数周期分、蓄積されて記憶される蓄積記憶部と、  前記一時記憶部に書き込まれたモニタデータを、所定の第3の時間毎に読み出して、前記蓄積記憶部に書き込む蓄積データ書込み部と  を備えるモニタデータ収集蓄積システム。
 (付記7)  本発明のまた別の態様によれば、 
基板を処理する基板処理装置から出力される複数種類のモニタデータを受信するモニタデータ受信ステップと、 
前記モニタデータ受信ステップで受信する複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして検出するモニタデータレート検出ステップと、  前記一時記憶部が1周期において記憶できるモニタデータ量であるデータ書込上限値と、前記モニタデータレート検出ステップで検出されたモニタデータレートとに基づき、所定の第2の時間内において1周期分の各種類のモニタデータを前記一時記憶部に書き込む回数をモニタデータの各種類毎に割り当てるモニタデータ書込み割当ステップと、  前記モニタデータ書込み割当ステップにより割り当てられた回数に基づき、前記基板処理装置から出力された複数種類のモニタデータを、前記第2の時間内において前記一時記憶部に書き込むモニタデータ書込みステップと、  前記一時記憶部に書き込まれたモニタデータを、所定の第3の時間毎に読み出して、蓄積記憶部に書き込む蓄積データ書込みステップと、  を備える基板処理システムのモニタデータ収集蓄積方法、又はモニタデータ収集蓄積プログラム。
  (付記8)  本発明のまた別の態様によれば、 
主制御部と、  前記主制御部から出力される複数種類のモニタデータを受信するモニタデータ受信部と、  前記モニタデータ受信部が受信した複数種類のモニタデータが周期的に記憶される一時記憶部と、  前記モニタデータ受信部が受信する複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして検出するモニタデータレート検出部と、  前記一時記憶部が1周期において記憶できるモニタデータ量であるデータ書込上限値と、前記モニタデータレート検出部で検出されたモニタデータレートとに基づき、所定の第2の時間内において1周期分の各種類のモニタデータを前記一時記憶部に書き込む回数をモニタデータの各種類毎に割り当てるモニタデータ書込み割当部と、  前記モニタデータ書込み割当部により割り当てられた回数に基づき、前記モニタデータ受信部が受信した複数種類のモニタデータを、前記第2の時間内において前記一時記憶部に書き込むモニタデータ書込み部と、  前記一時記憶部に周期的に書き込まれたモニタデータが、複数周期分、蓄積されて記憶される蓄積記憶部と、  前記一時記憶部に書き込まれたモニタデータを、所定の第3の時間毎に読み出して、前記蓄積記憶部に書き込む蓄積データ書込み部と、  を備える基板処理装置。
  (付記9)付記8の発明における基板処理装置であって、  前記複数種類のモニタデータが前記一時記憶部に記憶される際の、前記複数種類のモニタデータのそれぞれの優先度を記憶する優先度記憶部を備え、  前記モニタデータ書込み割当部が、前記優先度記憶部に記憶された各種類のモニタデータの優先度に基づき、前記優先度の高い種類のモニタデータを前記第2の時間内において前記一時記憶部に書き込む回数を、前記優先度の低い種類のモニタデータを前記第2の時間内において前記一時記憶部に書き込む回数よりも多く割り当てる基板処理装置。
  (付記10)付記8の発明における基板処理装置であって、  前記複数種類のモニタデータが前記一時記憶部に記憶される際の、前記複数種類のモニタデータのそれぞれの優先度を記憶する優先度記憶部を備え、  前記モニタデータ書込み割当部が、前記データ書込上限値と、前記モニタデータレートと、前記優先度記憶部に記憶された各種類のモニタデータの優先度に基づき、前記第2の時間内において各種類のモニタデータを前記一時記憶部に書き込む回数を割り当てる基板処理装置。
  (付記11)付記10の発明における基板処理装置であって、  前記各種類のモニタデータの優先度は、第1の優先度、第2の優先度、第3の優先度を含み、  前記モニタデータ書込み割当部が、前記第1の優先度のモニタデータに対し、前記第2の時間毎に第1の回数だけ前記一時記憶部に書き込むように割り当て、前記データ書込上限値から前記第1の回数を差し引いた回数のうち第2の回数を、前記第2及び第3の優先度のモニタデータに対し割り当て、前記データ書込上限値から前記第1及び第2の回数を差し引いた回数である第3の回数を、前記第2の優先度のモニタデータに対し割り当てる、基板処理装置。
  (付記12)付記8乃至付記10のいずれかの発明における基板処理装置であって、  前記一時記憶部から前記蓄積記憶部へ伝送される蓄積データの伝送量を監視する監視部を備え、  前記監視部で、前記蓄積データの伝送量が所定の伝送量を超えたと判断された場合、前記蓄積データ書込み部が、前記一時記憶部に書き込まれたモニタデータを読み出して前記蓄積記憶部に書き込む周期を長くする基板処理装置。
本出願は、2011年12月20日に出願された日本出願特願2011-278569を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
 半導体ウエハ等の基板を処理する基板処理装置から出力される各種モニタデータ、例えば処理温度や処理室内圧力等のモニタデータを収集し蓄積する基板処理システムが提供される。
  11…主制御部、12…主記憶部、13…搬送制御部、14…温度制御部、15…ガス制御部、16…PLCユニット、21…フォトセンサー、22…ポッドセンサー、23…温度センサー、24…バルブI/O、25…インタロックI/O、26…外部I/O、30…データ収集蓄積部、31…データ収集部、31a…モニタデータ受信部、31b…モニタデータレート検出部、31c…モニタデータ書込割当部、31d…モニタデータ書込部、31e…データ収集記憶部、32…一時記憶部(キャッシュメモリ)、33…データ蓄積部、33a…蓄積データ書込部、33b…監視部、33c…データ蓄積記憶部、34…蓄積記憶部(データベース)、40…データ保存サーバ、50…解析アプリケーション装置、60…ネットワーク、100…基板処理装置、105…回転棚、110…ポッド、111…筐体、111a…正面壁、112…ポッド搬入搬出口、113…フロントシャッタ、114…ロードポート、115…ボートエレベータ、116…支柱、117…棚板、118…ポッド搬送装置、119…サブ筐体、120…ウェハ搬入搬出口、121…ポッドオープナ、122…載置台、123…キャップ着脱機構、124…移載室、125…ウェハ移載機構、128…アーム、133…クリーンエア、134…クリーンユニット、142…ウェハ搬入搬出開口、147…炉口シャッタ、200…ウェハ(基板)、202…処理炉。

Claims (3)

  1. 基板を処理する基板処理装置と、 
    前記基板処理装置から出力される複数種類のモニタデータを受信するモニタデータ受信部と、  前記モニタデータ受信部が受信した複数種類のモニタデータが周期的に記憶される一時記憶部と、  前記モニタデータ受信部が受信する複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして検出するモニタデータレート検出部と、  前記一時記憶部が1周期において記憶できるモニタデータ量であるデータ書込上限値と、前記モニタデータレート検出部で検出されたモニタデータレートとに基づき、所定の第2の時間内において1周期分の各種類のモニタデータを前記一時記憶部に書き込む回数をモニタデータの各種類毎に割り当てるモニタデータ書込み割当部と、  前記モニタデータ書込み割当部により割り当てられた回数に基づき、前記モニタデータ受信部が受信した複数種類のモニタデータを、前記第2の時間内において前記一時記憶部に書き込むモニタデータ書込み部と、  前記一時記憶部に周期的に書き込まれたモニタデータが、複数周期分、蓄積されて記憶される蓄積記憶部と、  前記一時記憶部に書き込まれたモニタデータを、所定の第3の時間毎に読み出して、前記蓄積記憶部に書き込む蓄積データ書込み部と、  を備える基板処理システム。
  2. 主制御部と、  前記主制御部から出力される複数種類のモニタデータを受信するモニタデータ受信部と、  前記モニタデータ受信部が受信した複数種類のモニタデータが周期的に記憶される一時記憶部と、  前記モニタデータ受信部が受信する複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして検出するモニタデータレート検出部と、  前記一時記憶部が1周期において記憶できるモニタデータ量であるデータ書込上限値と、前記モニタデータレート検出部で検出されたモニタデータレートとに基づき、所定の第2の時間内において1周期分の各種類のモニタデータを前記一時記憶部に書き込む回数をモニタデータの各種類毎に割り当てるモニタデータ書込み割当部と、  前記モニタデータ書込み割当部により割り当てられた回数に基づき、前記モニタデータ受信部が受信した複数種類のモニタデータを、前記第2の時間内において前記一時記憶部に書き込むモニタデータ書込み部と、  前記一時記憶部に周期的に書き込まれたモニタデータが、複数周期分、蓄積されて記憶される蓄積記憶部と、  前記一時記憶部に書き込まれたモニタデータを、所定の第3の時間毎に読み出して、前記蓄積記憶部に書き込む蓄積データ書込み部と、  を備える基板処理装置。
  3. 複数種類のモニタデータを受信する工程と、  受信した複数種類のモニタデータが周期的に記憶される工程と、  前記複数種類のモニタデータが、所定の第1の時間内において、それぞれ所定の変化量以上に変化した延べ回数をモニタデータレートとして検出する工程と、  1周期において記憶できるモニタデータ量であるデータ書込上限値と検出された前記モニタデータレートに基づき、所定の第2の時間内において1周期分の各種類のモニタデータを書き込む回数をモニタデータの種類毎に割り当てる工程と、  割り当てられた回数に基づき、前記モニタデータを、前記第2の時間内に書き込む工程と、  書き込まれた前記モニタデータが、複数周期分、蓄積されて記憶される工程と、 
    書き込まれた前記モニタデータを、所定の第3の時間毎に読み出して書き込む工程と、を有する基板処理装置のデータ蓄積方法。 
PCT/JP2012/081471 2011-12-20 2012-12-05 基板処理システム、基板処理装置及び基板処理装置のデータ蓄積方法 WO2013094400A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147016440A KR101549433B1 (ko) 2011-12-20 2012-12-05 기판 처리 시스템, 기판 처리 장치 및 기판 처리 장치의 데이터 축적 방법
JP2013550206A JP6106606B2 (ja) 2011-12-20 2012-12-05 基板処理システム、基板処理装置及び基板処理装置のデータ蓄積方法並びにプログラム
US14/309,460 US9720407B2 (en) 2011-12-20 2014-06-19 Substrate processing system, substrate processing apparatus and method for accumulating data for substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011278569 2011-12-20
JP2011-278569 2011-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/309,460 Continuation US9720407B2 (en) 2011-12-20 2014-06-19 Substrate processing system, substrate processing apparatus and method for accumulating data for substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2013094400A1 true WO2013094400A1 (ja) 2013-06-27

Family

ID=48668299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081471 WO2013094400A1 (ja) 2011-12-20 2012-12-05 基板処理システム、基板処理装置及び基板処理装置のデータ蓄積方法

Country Status (4)

Country Link
US (1) US9720407B2 (ja)
JP (1) JP6106606B2 (ja)
KR (1) KR101549433B1 (ja)
WO (1) WO2013094400A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006922A (ja) * 2014-06-20 2016-01-14 株式会社日立ソリューションズ ゲートウェイ装置およびセンサデータ収集システム
KR20160062809A (ko) * 2014-11-25 2016-06-03 삼성전자주식회사 재쓰기를 이용하여 로우 비트 에러 레이트를 개선하는 메모리 시스템 및 그에 따른 재쓰기 방법
WO2019070675A1 (en) * 2017-10-03 2019-04-11 Rutgers, The State University Of New Jersey TRACKING INFORMATION FLOW BASED ON VALUES IN PROGICIELS
US11664206B2 (en) * 2017-11-08 2023-05-30 Taiwan Semiconductor Manufacturing Co., Ltd. Arcing protection method and processing tool
KR20220055771A (ko) * 2020-10-27 2022-05-04 삼성전자주식회사 전자 장치, 차량용 장치 및 데이터 센터
WO2023157085A1 (ja) * 2022-02-15 2023-08-24 三菱電機株式会社 データ収集装置、データ収集方法、データ収集プログラム、監視装置及びデータ収集システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518425A (ja) * 2008-02-22 2011-06-23 ムラテックオートメーション株式会社 Vao生産性スイート
WO2011099458A1 (ja) * 2010-02-09 2011-08-18 株式会社日立国際電気 基板処理システム及び群管理装置
JP2011181666A (ja) * 2010-03-01 2011-09-15 Renesas Electronics Corp 半導体製造における装置異常の予兆検知方法およびシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584531B2 (ja) * 2002-08-02 2010-11-24 株式会社日立製作所 異物モニタリングシステム
JP5273697B2 (ja) * 2006-08-01 2013-08-28 東京エレクトロン株式会社 サーバ装置およびプログラム
JP4486692B2 (ja) * 2008-03-14 2010-06-23 株式会社日立国際電気 基板処理装置
JP5412065B2 (ja) * 2008-07-15 2014-02-12 株式会社日立国際電気 情報管理方法、情報管理装置及び基板処理システム
JP2009295906A (ja) * 2008-06-09 2009-12-17 Hitachi Kokusai Electric Inc 基板処理装置
JP5635270B2 (ja) * 2009-02-13 2014-12-03 株式会社日立国際電気 基板処理装置及び基板処理システム及び基板処理装置の表示方法及び基板処理装置のパラメータ設定方法及び記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518425A (ja) * 2008-02-22 2011-06-23 ムラテックオートメーション株式会社 Vao生産性スイート
WO2011099458A1 (ja) * 2010-02-09 2011-08-18 株式会社日立国際電気 基板処理システム及び群管理装置
JP2011181666A (ja) * 2010-03-01 2011-09-15 Renesas Electronics Corp 半導体製造における装置異常の予兆検知方法およびシステム

Also Published As

Publication number Publication date
JPWO2013094400A1 (ja) 2015-04-27
KR20140101377A (ko) 2014-08-19
KR101549433B1 (ko) 2015-09-02
US20140303769A1 (en) 2014-10-09
US9720407B2 (en) 2017-08-01
JP6106606B2 (ja) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6106606B2 (ja) 基板処理システム、基板処理装置及び基板処理装置のデータ蓄積方法並びにプログラム
US10295991B2 (en) Substrate processing apparatus and recording medium
US20120226475A1 (en) Substrate processing system, management apparatus, data analysis method
JP6069578B2 (ja) 基板処理装置、半導体装置の製造方法及び記録媒体
JP6301083B2 (ja) 基板処理装置、半導体装置の製造方法、及びレシピの作成方法
WO2014115643A1 (ja) 基板処理装置の異常判定方法、異常判定装置、及び基板処理システム並びに記録媒体
JPWO2015030047A1 (ja) 基板処理装置のメンテナンス方法、半導体装置の製造方法、基板処理装置、及び基板処理装置のメンテナンスプログラム
JP5600503B2 (ja) 統計解析方法、基板処理システムおよびプログラム
JP5394452B2 (ja) 基板処理システム、検証装置、検証装置の動作検証方法および検証プログラム
JP2010219460A (ja) 基板処理装置
JPWO2007037161A1 (ja) データ記録方法
JP2015106575A (ja) 基板処理装置、基板処理装置の制御方法、制御プログラム及び半導体装置の製造方法
JP2013033967A (ja) 基板処理装置の異常検出方法、及び基板処理装置
JP6220783B2 (ja) 基板処理システム、基板処理装置及びデータ処理方法
JP2012222080A (ja) 基板処理システム
JP2008091518A (ja) 異常検出方法
JP5016591B2 (ja) 基板処理装システム、データ収集プログラム及びデータ処理方法
JP5273961B2 (ja) 基板処理システムおよび基板処理方法
JP5474384B2 (ja) 基板処理システム及び基板処理装置及び通信制御プログラム及び基板処理装置のメッセージ処理方法
JP2017002353A (ja) 基板処理装置及び半導体装置の製造方法
JP2013045862A (ja) 基板処理システム
JP2011249387A (ja) 基板処理システム
JP2010238916A (ja) 基板処理装置
JP2011171648A (ja) 基板処理システム
JP2011181665A (ja) 基板処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550206

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147016440

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859412

Country of ref document: EP

Kind code of ref document: A1