WO2013094252A1 - タングステンコンデンサの陽極及びその製造方法 - Google Patents

タングステンコンデンサの陽極及びその製造方法 Download PDF

Info

Publication number
WO2013094252A1
WO2013094252A1 PCT/JP2012/071941 JP2012071941W WO2013094252A1 WO 2013094252 A1 WO2013094252 A1 WO 2013094252A1 JP 2012071941 W JP2012071941 W JP 2012071941W WO 2013094252 A1 WO2013094252 A1 WO 2013094252A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
powder
anode
mass
density
Prior art date
Application number
PCT/JP2012/071941
Other languages
English (en)
French (fr)
Inventor
内藤 一美
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201280060820.9A priority Critical patent/CN103975401B/zh
Priority to JP2013550152A priority patent/JP5752270B2/ja
Priority to US14/366,577 priority patent/US9478360B2/en
Priority to EP12859449.6A priority patent/EP2797094A4/en
Publication of WO2013094252A1 publication Critical patent/WO2013094252A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a capacitor anode made of a tungsten sintered body and a method for manufacturing the same. More specifically, it comprises a tungsten sintered body having a specific average pore diameter capable of producing an electrolytic capacitor having a low ESR (equivalent series resistance) and good characteristics, a method for producing the sintered body, and the sintered body.
  • the present invention relates to an electrolytic capacitor using an anode.
  • the electrolytic capacitor includes a conductor (anode body) as one electrode, a dielectric layer formed on the surface of the electrode, and the other electrode (semiconductor layer) provided thereon.
  • an anode body of a capacitor made of a sintered body of valve action metal powder such as tantalum capable of anodization is anodized, and a dielectric layer made of these metal oxides is formed on the surface.
  • An electrolytic capacitor has been proposed.
  • Electrolytic capacitors that use tungsten as the valve metal and have a sintered body of tungsten powder as the anode body have the same volume of anode body using tantalum powder of the same particle size, compared to electrolytic capacitors that can be obtained with the same conversion voltage. Although a large capacity can be obtained, the leakage current (LC) is large and it has not been put to practical use as an electrolytic capacitor. In order to improve this, a capacitor using an alloy of tungsten and another metal has been studied. However, although the leakage current is somewhat improved, it has not been sufficient (Japanese Patent Laid-Open No. 2004-349658 (US6876083)). : Patent Document 1).
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-272959 discloses a capacitor using a tungsten foil electrode on which a dielectric layer selected from WO 3 , W 2 N, and WN 2 is formed. This is not a solution for the leakage current.
  • Patent Document 3 International Publication No. 2004/055843 pamphlet (US7154743) discloses an electrolytic capacitor using an anode selected from tantalum, niobium, titanium, and tungsten. There is no description of specific examples using.
  • the semiconductor layer which is the other electrode of the electrolytic capacitor having the valve action metal sintered body as an anode can be generally composed of an inorganic semiconductor such as manganese dioxide or an organic semiconductor such as a conductive polymer doped with a dopant, but has a particularly low ESR.
  • an inorganic semiconductor such as manganese dioxide
  • an organic semiconductor such as a conductive polymer doped with a dopant
  • a method of forming a conductive polymer layer on a positive electrode body having a dielectric layer to form a semiconductor layer has been implemented.
  • the polymerization is performed by a chemical polymerization method, an electrolytic polymerization method in which power is supplied by an external electrode, an electrolytic polymerization method by a method of energizing the anode body, or a combination thereof.
  • the path for carrying the charge charged deep inside the pores to the outer surface of the sintered body becomes the shortest, and the electrical resistance is minimized.
  • the pores can be filled only to a certain size. Therefore, a high capacity cannot be expected when a low ESR is obtained, and a low ESR cannot be expected when a high capacity is obtained.
  • the present inventors have found that when a sintered body of tungsten powder is used as an anode of a capacitor, the ESR of a capacitor using the same does not decrease even if the anode has fine pores. In particular, in order to obtain a high capacity, even when the average pore diameter of the anode was set to 0.3 ⁇ m or less, it was confirmed that the obtained solid electrolytic capacitor had good ESR characteristics, and the present invention was completed.
  • this invention relates to the tungsten sintered compact for capacitors shown below, its manufacturing method, and the electrolytic capacitor using the said tungsten sintered compact.
  • An anode of a capacitor comprising a tungsten sintered body having an average pore diameter of 0.3 ⁇ m or less.
  • Tungsten powder is molded into a molded body having a density of 8 g / cm 3 or more, the molded body is sintered to a density of 1.15 times or more of the density, and tungsten having an average pore diameter of 0.3 ⁇ m or less.
  • a method for producing an anode of a capacitor, comprising obtaining a sintered body.
  • the tungsten powder having an average particle size of 0.5 ⁇ m or less is granulated at a temperature of 1480 ° C. or more to obtain a granulated powder, and the granulated powder is molded into a compact having a density of 8 g / cm 3 or more. Manufacturing method of anode.
  • the element content is 0.05 to 7% by mass of silicon, 0.01 to 1% by mass of nitrogen, 0.001 to 0.1% by mass of carbon, and 0.001 to 0.1% of boron. 5.
  • tungsten powder having a phosphorus element content of 1 to 500 ppm by mass is used.
  • tungsten powder having an oxygen content of 0.05 to 8% by mass is used.
  • An electrolytic capacitor using a tungsten sintered body according to the present invention having an average pore diameter of 0.3 ⁇ m or less as an anode exhibits good ESR characteristics even if it has a higher capacity than a conventional tantalum capacitor.
  • the tungsten powder used as a raw material for the tungsten sintered body used in the present invention (that is, unprocessed tungsten powder; hereinafter, sometimes referred to as “primary powder”) has a lower limit of the average particle diameter of about 0.5 ⁇ m. Things are commercially available. As the particle size of the tungsten powder is smaller, a sintered body (anode) with smaller pores can be produced. Tungsten powder with a smaller particle size than commercially available products can be reduced, for example, by pulverizing tungsten trioxide powder in a hydrogen atmosphere or by using a reducing agent such as hydrogen or sodium for tungstic acid or tungsten halide. It can obtain by selecting suitably. Moreover, it can also obtain by selecting reduction conditions directly or through several processes from a tungsten containing mineral.
  • the tungsten powder as a raw material may be granulated (hereinafter, the granulated tungsten powder may be simply referred to as “granulated powder”).
  • Granulated powder is preferable because it has good fluidity and is easy to perform operations such as molding.
  • the granulated powder described above may be one in which the pore distribution is adjusted by the same method as that disclosed in JP 2003-213302 A (WO02 / 092864) for niobium powder, for example.
  • the granulated powder may be obtained by adding at least one liquid such as water or liquid resin to the primary powder to form a granule of an appropriate size, and then heating and sintering under reduced pressure. it can.
  • Depressurization conditions for example, 10 kPa or less in a non-oxidizing gas atmosphere such as hydrogen
  • high-temperature standing conditions for example, 1100 to 2600 ° C., 0.1 to 100 hours
  • Such granulated powder can be classified by sieving to make the particle size uniform. If the average particle size is preferably in the range of 50 to 200 ⁇ m, more preferably 100 to 200 ⁇ m, it is convenient for smooth flow from the hopper of the molding machine to the mold.
  • the average primary particle size of the primary powder is in the range of 0.1 to 1 ⁇ m, preferably 0.1 to 0.3 ⁇ m, because the capacity of the electrolytic capacitor made from the granulated powder can be increased.
  • the specific surface area of the granulated powder is preferably 0.2 to 20 m 2 / g, more preferably 1 When it is set to 5 to 20 m 2 / g, the capacity of the electrolytic capacitor can be increased, which is preferable.
  • the tungsten material (including primary powder, granulated powder, and sintered body) may contain some impurities described later.
  • tungsten powder in which part of the surface is tungsten silicide so that the silicon content is in a specific range is preferably used.
  • tungsten powder having a part of its surface made of tungsten silicide is mixed with tungsten powder in an amount of 0.05 to 7% by mass, heated under reduced pressure and reacted at 1100 to 2600 ° C., or hydrogen It can be prepared by pulverizing tungsten in an air stream, further mixing silicon powder, and then reacting by heating at a temperature of 1100 to 2600 ° C. under reduced pressure.
  • tungsten powder one having at least one selected from tungsten nitride, tungsten carbide, and tungsten boride in a part of the surface is also preferably used.
  • nitriding a part of the surface of various tungsten powders there is a method in which the powder is placed at 350 to 1500 ° C. under reduced pressure and nitrogen gas is passed for several minutes to several hours. Nitriding may be performed at the time of high-temperature treatment when siliciding tungsten powder, or silicidation may be performed after nitriding first. Further, when primary powder is used, nitriding may be performed after granulated powder preparation or after sintered body preparation.
  • the content of nitrogen element is preferably 0.01 to 1% by mass at an early stage of the process. Nitriding can prevent unnecessary oxidation when the powder is handled in air. Note that the content of the nitrogen element includes nitrogen that is not chemically bonded to tungsten (for example, nitrogen in solid solution) in addition to nitrogen bonded to tungsten.
  • a method of carbonizing a part of the surface of tungsten powder there is a method of placing the powder at 300 to 1500 ° C. for several minutes to several hours in a vacuum high-temperature furnace using a carbon electrode. Carbonization is preferably performed so that the carbon element content is 0.001 to 0.5 mass% by selecting the temperature and time. The carbonization time is the same as the nitriding time described above. When nitrogen is passed in a carbon electrode furnace under predetermined conditions, carbonization and nitridation occur simultaneously, and it is also possible to produce tungsten powder having a part of the surface nitrided and carbonized.
  • a method for boring part of the surface of tungsten powder there is a method of granulating by placing boron element or a compound containing boron element as a boron source when granulating the powder. Boriding is preferably performed so that the boron element content is 0.001 to 0.1 mass%. The boriding time is the same as the nitriding time described above. When the nitrided powder is put in a carbon electrode furnace, and a boron source is placed and granulated, it is possible to produce tungsten powder having a part of the surface silicified, nitrided, carbonized and borated.
  • the content of oxygen element in the tungsten powder used in the present invention is preferably 0.05 to 8% by mass, and more preferably 0.08 to 1% by mass.
  • tungsten powder having at least a part of the surface silicided, and further, at least one of nitriding, carbonizing, and boring the part of the surface is used.
  • There is a method of oxidizing the surface of the performed tungsten powder Specifically, nitrogen gas containing oxygen is introduced at the time of taking out from the reduced-pressure high-temperature furnace at the time of producing the primary powder or granulated powder of each powder.
  • the tungsten powder preferably has a phosphorus element content of 1 to 500 ppm by mass.
  • a method for containing 1 to 500 ppm by mass of phosphorus element in tungsten powder, and further, tungsten powder having at least one of nitriding, carbonizing, boriding, and oxidizing part of its surface There is a method of preparing a powder containing phosphorus by placing phosphorus or a phosphorus compound as a phosphation source in a reduced-pressure high-temperature furnace at the time of preparing the next powder or granulated powder. It is preferable to add phosphorus so as to have the above-mentioned content by adjusting the amount of the phosphide source, because the physical breaking strength of the anode body may be increased when the anode body is produced.
  • the above tungsten powder is formed into a molded body having a density (Dg) of 8 g / cm 3 or more, and the molded body is sintered to a density (Ds) of 1.15 times or more of the density (Dg).
  • a tungsten sintered body having an average pore diameter of 0.1 to 0.3 ⁇ m uses, for example, a primary powder having an average particle diameter of 0.5 ⁇ m or less as tungsten powder, and this is used at 1480 ° C. or more.
  • Granulate by heating at a temperature to obtain a granulated powder (preferably having an average particle size of 50 to 200 ⁇ m).
  • a granulated powder for example, a fixed mass of powder is taken into a mold and pressed against one opposing surface of the mold to obtain a density.
  • Dg After molding into a molded body of 8 g / cm 3 or more, the molded body is sintered. During the sintering, the sintered body is sintered so that the density (Ds) of the sintered body is 1.15 times or more the density (Dg) of the molded body, thereby obtaining the sintered body. Can be produced.
  • the density (Ds) of the sintered body is preferably 9.2 to 14 g / cm 3 , more preferably 9.2 to 11 g / cm 3 . It is good to sinter so that it may become.
  • the density of the sintered body can be increased by higher temperature or longer time sintering, and can be decreased by lower temperature or shorter time sintering. Since the sintering temperature and time for obtaining a sintered body vary depending on impurities contained therein, it is preferably determined by preliminary experiments, but is usually in the range of 1480 to 2600 ° C. and 10 minutes to 100 hours. .
  • the average pore diameter becomes smaller, and conversely, the density (Ds) of the sintered body is decreased. If a primary powder having a larger average particle diameter is used, the average pore diameter becomes larger.
  • the average pore diameter can be adjusted to the above range by a preliminary experiment.
  • the sintered body produced by the above method is used as one electrode (anode), and an electrolytic capacitor is produced from a dielectric interposed between the counter electrode (cathode).
  • the particle diameter, pore distribution, capacity and ESR were measured by the following methods.
  • the particle size is measured by laser diffraction scattering method using HRA9320-X100 manufactured by Microtrack Co., and the average particle size is a particle size value (D 50 ; ⁇ m) corresponding to 50% by volume. It was.
  • the secondary particle diameter measured by this measurement method can be regarded as the primary particle diameter.
  • the pore distribution was measured using NOVA2200E (SYSMEX).
  • the average pore diameter was a pore diameter corresponding to a cumulative volume% of pores of 50%.
  • Capacity and ESR were measured using an Agilent LCR meter.
  • the capacity is a room temperature, 120 Hz, and a bias 2.5 V value
  • ESR is a room temperature, 100 kHz value.
  • Examples 1-12, Comparative Examples 1-9 [Production of sintered body]
  • Various tungsten primary powders having average particle diameters shown in Table 1 were obtained by adjusting the hydrogen concentration when reducing the tungsten oxide powder.
  • Each primary powder is divided into several groups, and after mixing silicon powder with an average particle diameter of 1 ⁇ m so as to be 0.5% by mass in 500 g, the pressure is reduced to 10 ⁇ 2 Pa at the granulation temperature shown in Table 1 together.
  • the mixture was allowed to stand for 30 minutes, returned to room temperature, crushed with a hammer mill, and classified to obtain granulated powder having a particle size of 20 to 180 ⁇ m.
  • Each granulated powder is further subdivided into a plurality of groups.
  • the wire is formed as a 0.29 mm ⁇ tantalum wire with a molding density (Dg) shown in Table 1 and a size of 1.
  • Dg molding density
  • Table 1 shows the average pore diameter of each of the produced sintered bodies.
  • this sintered body was immersed in a 20% by mass ethylenedioxythiophene ethanol solution. Then, stainless steel (SUS303) containing a separately prepared electropolymerization solution (a solution comprising 30 parts by mass of water and 70 parts by mass of ethylene glycol, containing 0.4% by mass ethylenedioxythiophene and 0.6% by mass anthraquinonesulfonic acid). ) The chemical conversion-treated sintered body was immersed into a predetermined position in a container, and was electropolymerized at 20 ° C. and 10 ⁇ A for 45 minutes. Next, after pulling up from the liquid, it was washed with water, washed with ethanol, and dried.
  • SUS303 stainless steel
  • electropolymerization solution a solution comprising 30 parts by mass of water and 70 parts by mass of ethylene glycol, containing 0.4% by mass ethylenedioxythiophene and 0.6% by mass anthraquinonesulfonic acid.
  • post-formation was performed in the chemical conversion solution at room temperature for 15 minutes, followed by washing with water, washing with ethanol, and drying.
  • the above-described immersion, electrolytic polymerization, and post-chemical conversion steps were repeated 9 times (total 10 times) in the 20% by mass ethylenedioxythiophene ethanol solution.
  • the current value of the electrolytic polymerization was 10 ⁇ A for the second time, 30 ⁇ A for the third time, and 50 ⁇ A for the fourth to tenth times.
  • a carbon layer and a silver paste layer were sequentially laminated on a predetermined portion of the semiconductor layer thus formed to form an electrode layer, thereby producing a capacitor element.
  • Reference Examples 1 to 3 Three kinds of primary tantalum powders having an average particle size of 0.5 ⁇ m, 0.3 ⁇ m, and 0.2 ⁇ m were prepared by adjusting the sodium concentration when reducing potassium fluorinated tantalate, and then at Example 13 at 1320 ° C. In the same manner, three types of granulated powder were obtained. A compact having a molding density of 5.6 g / cm 3 was produced from these powders in the same manner as in the Examples. Further, the compact was sintered at 1355 ° C. or higher, and each average pore diameter shown in Table 3 was obtained. A sintered body was obtained.
  • a chip-shaped tantalum solid electrolytic capacitor was produced in the same manner as in Example 1 except that the chemical conversion was performed at 65 ° C. in phosphoric acid aqueous solution and the post-chemical conversion after polymerization was performed at 65 ° C. in phosphoric acid aqueous solution.
  • Table 3 shows the average value of 64 capacitors produced in each reference example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明は、平均細孔直径が0.3μm以下のタングステン焼結体からなるコンデンサの陽極、及びタングステン粉を密度(Dg)8g/cm3以上の成形体に成形し、前記成形体を前記密度(Dg)の1.15倍以上の密度(Ds)に焼結し、平均細孔直径が0.3μm以下のタングステン焼結体を得ることを特徴においてもESR(等価直列抵抗)が良好である。

Description

タングステンコンデンサの陽極及びその製造方法
 本発明は、タングステン焼結体からなるコンデンサの陽極及びその製造方法に関する。さらに詳しく言えば、ESR(等価直列抵抗)が低く良好な特性を有する電解コンデンサを製作できる特定の平均細孔径を有するタングステン焼結体、その焼結体の製造方法、及びその焼結体からなる陽極を用いた電解コンデンサに関する。
 携帯電話やパーソナルコンピュータ等の電子機器の形状の小型化、高速化、軽量化に伴い、これらの電子機器に使用されるコンデンサは、より小型で軽く、より大きな容量、より低いESRが求められている。
 電解コンデンサは、導電体(陽極体)を一方の電極とし、その電極の表層に形成した誘電体層とその上に設けられた他方の電極(半導体層)とで構成される。
 このようなコンデンサとしては、陽極酸化が可能なタンタルなどの弁作用金属粉末の焼結体からなるコンデンサの陽極体を陽極酸化して、その表面にこれらの金属酸化物からなる誘電体層を形成した電解コンデンサが提案されている。
 弁作用金属としてタングステンを用い、タングステン粉の焼結体を陽極体とする電解コンデンサは、同一粒径のタンタル粉を用いた同体積の陽極体、同化成電圧で得られる電解コンデンサに比較して、大きな容量を得ることができるが、漏れ電流(LC)が大きく電解コンデンサとして実用に供されなかった。このことを改良するために、タングステンと他の金属との合金を用いたコンデンサが検討されているが漏れ電流は幾分改良されるものの十分ではなかった(特開2004-349658号公報(US6876083):特許文献1)。
 特許文献2(特開2003-272959号公報)には、WO3、W2N、WN2から選択される誘電体層が形成されたタングステン箔の電極を用いたコンデンサが開示されているが、前記漏れ電流について解決したものではない。
 また、特許文献3(国際公開第2004/055843号パンフレット(US7154743))には、タンタル、ニオブ、チタン、タングステンから選択される陽極を用いた電解コンデンサを開示しているが、明細書中にタングステンを用いた具体例の記載はない。
 弁作用金属焼結体を陽極とする電解コンデンサの他方の電極である半導体層は、一般に二酸化マンガンなどの無機半導体やドーパントをドープした導電性高分子などの有機半導体により構成できるが、特に低いESRを得るために、誘電体層を有する陽極体上で重合を行い導電性高分子層を形成して半導体層とする方法が実施されている。前記重合は、化学重合法、外部電極により給電する電解重合法、陽極体への通電手法による電解重合法、またはそれらの組み合わせにより行なわれている。これらの内、電解重合では、誘電体層を形成した個々の陽極体ごとに通電電流を制限して電解重合を行うことにより再現性良く安定した導電性高分子層を形成することが試みられている。
特開2004-349658号公報 特開2003-272959号公報 国際公開第2004/055843号パンフレット
 半導体層が陽極体の細孔を埋め尽くすと、細孔奥深くに充電された電荷を焼結体外表面まで運ぶ経路が最短になり、電気抵抗は最小になる。ただし、小さい細孔は、細孔の入り口で閉塞しやすい(細孔内部は空洞になりやすい)ので、細孔内を埋め尽くせるのはある程度の大きさの細孔に限られる。そのため、低ESRを得ようとすると高容量は期待できず、高容量を得ようとすると低ESRは期待できなかった。
 本発明者らは、コンデンサの陽極として、タングステン粉の焼結体を用いると、細かい細孔を有する陽極であっても、それを用いたコンデンサのESRが低下しないことを見出した。特に高容量を得るため、前記陽極の平均細孔直径を0.3μm以下にしても、得られる固体電解コンデンサはESR特性が良好であることを確認して、本発明を完成した。
 すなわち、本発明は、以下に示すコンデンサ用タングステン焼結体、その製造方法、及び前記タングステン焼結体を用いた電解コンデンサに関する。
[1]平均細孔直径が0.3μm以下のタングステン焼結体からなるコンデンサの陽極。
[2]タングステン粉を密度8g/cm3以上の成形体に成形し、前記成形体を前記密度の1.15倍以上の密度に焼結して、平均細孔直径が0.3μm以下のタングステン焼結体を得ることを特徴とするコンデンサの陽極の製造方法。
[3]平均粒径0.5μm以下のタングステン粉を1480℃以上の温度で造粒して造粒粉とし、前記造粒粉を密度8g/cm3以上の成形体に成形する前項2に記載の陽極の製造方法。
[4]表面の一部に、ケイ化タングステン、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを含有するタングステン粉を使用する前項2または3に記載の陽極の製造方法。
[5]元素の含有量として、ケイ素が0.05~7質量%、窒素が0.01~1質量%、炭素が0.001~0.1質量%及びホウ素が0.001~0.1質量%の少なくとも1つの範囲を満たすタングステン粉を使用する前項4に記載の陽極の製造方法。
[6]リン元素の含有量が1~500質量ppmであるタングステン粉を使用する前項2または3に記載の陽極の製造方法。
[7]酸素含有量が0.05~8質量%であるタングステン粉を使用する前項2または3に記載の陽極の製造方法。
[8]タングステン焼結体の密度を9.2~14g/cm3に焼結する前項2~7のいずれかに記載の陽極の製造方法。
[9]前項1に記載の陽極を一方の電極とし、対電極との間に介在する誘電体とから構成された電解コンデンサ。
 平均細孔直径が0.3μm以下の本発明によるタングステン焼結体を陽極とする電解コンデンサは、従来のタンタルコンデンサ等に比べ、高容量であっても良好なESR特性を示す。
 本発明で使用するタングステン焼結体の原料となるタングステン粉(すなわち、未加工のタングステン粉。以下、「一次粉」ということがある。)は、平均粒径の下限が約0.5μmまでのものが市販されている。タングステン粉の粒径が小さいほど細孔の小さな焼結体(陽極)を作製できる。市販品よりもさらに粒径の小さいタングステン粉は、例えば、三酸化タングステン粉を水素雰囲気下で粉砕して、あるいはタングステン酸やハロゲン化タングステンを水素やナトリウム等の還元剤を使用し、還元条件を適宜選択することによって得ることができる。
 また、タングステン含有鉱物から直接または複数の工程を経て、還元条件を選択することによっても得ることもできる。
 本発明では、原料となるタングステン粉は、造粒されたものであってもよい(以下、造粒されたタングステン粉を単に「造粒粉」ということがある。)。造粒粉は、流動性が良好で成形等の操作がしやすいので好ましい。
 前述の造粒粉は、例えばニオブ粉について特開2003-213302号公報(WO02/092864)に開示されている方法と同様の方法により細孔分布を調整されたものでもよい。
 例えば、造粒粉は、1次粉に水等の液体や液状樹脂等の少なくとも1種を加えて適当な大きさの顆粒状とした後に、減圧下に加熱し、焼結して得ることもできる。取扱いのし易い造粒された顆粒が得られる減圧条件(例えば、水素等の非酸化性ガス雰囲気中、10kPa以下)や高温放置条件(例えば、1100~2600℃,0.1~100時間)は、予備実験により求めることができる。造粒後に顆粒同士の凝集がなければ、解砕の必要はない。
 このような造粒粉は、ふるいで分級して粒径を揃えることができる。平均粒径が好ましくは50~200μm、より好ましくは100~200μmの範囲であれば、成形機のホッパーから金型にスムーズに流れるために好都合である。
 一次粉の平均1次粒子径を0.1~1μm、好ましくは0.1~0.3μmの範囲にしておくと、特にその造粒粉から作製した電解コンデンサの容量を大きくすることができ好ましい。
 このような造粒粉を得る場合、例えば、前記1次粒子径を調整して、造粒粉の比表面積(BET法による)が、好ましくは0.2~20m2/g、より好ましくは1.5~20m2/gになるようにすると、電解コンデンサの容量をより大きくすることができ好ましい。
 本発明では、得られるコンデンサの漏れ電流特性等の改善のために、タングステン材料(一次粉、造粒粉および焼結体を含む)に、後述するいくつかの不純物を含有させておいてもよい。
 例えば、ケイ素含有量が特定の範囲となるよう表面の一部をケイ化タングステンとしたタングステン粉が好ましく用いられる。表面の一部をケイ化タングステンとしたタングステン粉は、例えばタングステン粉に0.05~7質量%のケイ素粉を混合し、減圧下で加熱して1100~2600℃で反応させることにより、あるいは水素気流中でタングステンを粉砕後、さらに、ケイ素粉を混合した後、減圧下で1100~2600℃の温度にて加熱して反応させることにより調製することができる。
 タングステン粉としては、さらに、表面の一部に、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを有するものも好ましく用いられる。
 各種タングステン粉の表面の一部を窒化する方法の一例として、該粉を減圧下に350~1500℃に置き窒素ガスを数分から数時間通じる方法がある。窒化は、タングステン粉をケイ化するときの高温処理時に行ってもよいし、先に窒化を行ってからケイ化を行ってもよい。さらに1次粉のとき、造粒粉作製後、あるいは焼結体作成後に窒化を行ってもよい。このように、窒化の時期に限定はないが、好ましくは、工程の早い段階で窒素元素の含有量を0.01~1質量%にしておくとよい。窒化により、粉体を空気中で取り扱う際、必要以上の酸化を防ぐことができる。
 なお、前記窒素元素の含有量には、タングステンと結合している窒素以外に,タングステンと化学結合していない窒素(例えば、固溶している窒素)も含まれる。
 タングステン粉の表面の一部を炭化する方法の一例としては、該粉を炭素電極を使用した減圧高温炉中で300~1500℃に数分から数時間置く方法がある。温度と時間を選択することにより、炭素元素の含有量が0.001~0.5質量%になるように炭化することが好ましい。炭化の時期は、前述した窒化の時期と同様である。炭素電極炉で窒素を所定条件で通じると、炭化と窒化が同時に起こり、表面の一部を窒化及び炭化したタングステン粉を作製することも可能である。
 タングステン粉の表面の一部をホウ化する方法の一例として、該粉を造粒するときにホウ素元素やホウ素元素を有する化合物をホウ素源として置き、造粒する方法がある。ホウ素元素の含有量が0.001~0.1質量%になるようにホウ化するのが好ましい。ホウ化の時期は、前述した窒化の時期と同様である。窒化した粉を炭素電極炉に入れ、ホウ素源を置き造粒を行うと、表面の一部をケイ化、窒化、炭化、ホウ化したタングステン粉を作製することも可能である。
 本発明で使用するタングステン粉の酸素元素の含有量は、0.05~8質量%であることが好ましく、0.08~1質量%であることがより好ましい。
 酸素元素の含有量を0.05~8質量%にする方法としては、表面の少なくとも一部がケイ化されたタングステン粉、さらに、表面の一部を窒化、炭化、ホウ化の少なくとも1つを行ったタングステン粉の表面を酸化する方法がある。具体的には各粉の1次粉作製時や造粒粉作製時の減圧高温炉からの取り出し時に、酸素を含有した窒素ガスを投入する。この時、減圧高温炉からの取り出し温度が280℃未満であると窒化よりも酸化が優先して起こる。徐々にガスを投入することにより所定の酸素含有量にすることができる。前もって各タングステン粉を所定の酸素含有量にしておくことにより、該粉を使用して後々の電解コンデンサの陽極を作製する工程中での不規則な過度の酸化劣化を緩和することができる。この工程で窒化をしない場合には、窒素ガスの代わりにアルゴンやヘリウムガス等の不活性ガスを使用してもよい。
 タングステン粉はリン元素の含有量が1~500質量ppmであることが好ましい。
 タングステン粉、さらには、表面の一部を窒化、炭化、ホウ化、酸化の少なくとも1つを行ったタングステン粉に、リン元素を1~500質量ppm含有させる方法の1例として、各粉の1次粉作製時や造粒粉作製時に、減圧高温炉中にリンやリン化合物をリン化源として置いてリンを含有する粉を作製する方法がある。リン化源の量を調整するなどして、前述の含有量となるようにリンを含有させると、陽極体を作製したときの陽極体の物理的破壊強度が増加する場合があるので好ましい。
 本発明においては、上記のタングステン粉を密度(Dg)8g/cm3以上の成形体に成形し、前記成形体を前記密度(Dg)の1.15倍以上の密度(Ds)に焼結して、平均細孔直径が0.3μm以下、好ましくは0.1~0.3μmの焼結体とする。
 具体的には、平均細孔直径0.1~0.3μmを有するタングステン焼結体は、例えば、タングステン粉として平均粒径0.5μm以下の1次粉を使用し、これを1480℃以上の温度で加熱造粒して造粒粉(好ましくは、平均粒径50~200μm)とし、この造粒粉を、例えば一定質量の粉体を金型に取り、金型の1対向面を押して密度(Dg)8g/cm3以上の成形体に成形した後に、前記成形体を焼結する。焼結の際、焼結体の密度(Ds)が、成形体の密度(Dg)の1.15倍以上となるように焼結して焼結体を得ることにより本発明のコンデンサの陽極を作製することができる。さらに高容量を得ることができるコンデンサの陽極とするために、前記焼結体の密度(Ds)を、好ましくは9.2~14g/cm3、より好ましくは9.2~11g/cm3となるように焼結するとよい。焼結体の密度は、より高温または長時間の焼結により高くすることができ、より低温または短時間の焼結により低くすることができる。焼結体を得る場合の焼結温度や時間は、含まれる不純物などによっても異なるので、予備実験により決定することが好ましいが、通常、1480~2600℃、10分~100時間の範囲内である。
 焼結体の密度(Ds)を高くするか、または平均粒径のより小さい1次粉を使用すると、平均細孔径はより小さくなり、逆に、焼結体の密度(Ds)を低くするか、または平均粒径のより大きい1次粉を使用すると、平均細孔径はより大きくなる。予備実験により平均細孔径を前記範囲に調整することができる。
 本発明では、上記の方法で製造された焼結体を一方の電極(陽極)とし、対電極(陰極)との間に介在する誘電体とから電解コンデンサを作製する。
 以下に実施例及び比較例を挙げて本発明を説明するが、下記の記載により本発明は何ら限定されるものではない。
[各種測定機器と測定条件]
 粒子径、細孔分布、容量及びESRは以下の方法で測定した。
 粒子径は、マイクロトラック社製HRA9320-X100を用い、粒度分布をレーザー回折散乱法で測定し、その累積体積%が、50体積%に相当する粒径値(D50;μm)を平均粒径とした。なお、一次粉は、通常、分散性が良いので、本測定法で測定される2次粒子径をほぼ1次粒子径とみなすことができる。
 細孔分布は、NOVA2200E(SYSMEX社)を用いて測定した。平均細孔径は、細孔の累積体積%が50%に相当する細孔径とした。
 容量とESRは、アジレント製LCRメーターを用いて測定した。容量は、室温、120Hz、バイアス2.5V値であり、ESRは、室温、100kHzの値である。
実施例1~12、比較例1~9:
[焼結体の作製]
 酸化タングステン粉を還元するときの水素濃度を調節して表1に平均粒径を示す各種タングステン1次粉を得た。各一次粉それぞれを数グループに分け、各500gに0.5質量%となるように平均粒径1μmの珪素粉を混合後、10-2Paに減圧下、表1に併記した造粒温度で30分放置し、室温に戻してハンマーミルで解砕後分級し、20~180μmの粒径の造粒粉を得た。この各造粒粉を各々さらに複数グループに小分けし、精研製成形器TAP-2Rを使用し、ワイヤーを0.29mmφのタンタル線として表1に併記した成形密度(Dg)で、大きさ1.05×1.65×4.63mmの成形体(1.05×1.65面にリード線が8.0mm植立されている)を約20000個作製した。次いで、各成形体を複数グループに分け、10-2Paに減圧下、30分焼結し、表1にDs/Dg値を併記した焼結体の密度(Ds)の焼結体を各例200個得た。なお、焼結体の密度(Ds)は、焼結温度(1500℃以上)により調整した。作製した各例焼結体の平均細孔直径を表1に併記した。
[固体電解コンデンサの作製]
 各例の焼結体をWO2010/107011号公報(US2012/014036 A1)の実施例1に記載した冶具を用いて化成及び電解重合を行った。化成は0.1質量%の硝酸水溶液で室温10時間、焼結体に10Vの電圧を印加して10時間行い、水洗後エタノール洗浄して乾燥し誘電体層を形成した。電解重合により導電性高分子からなる半導体層を次のようにして形成した。3質量%のトルエンスルホン酸鉄水溶液に化成した焼結体を浸漬後乾燥する処理を5回行い1日放置した。次に、この焼結体を20質量%エチレンジオキシチオフェンエタノール溶液に浸漬した。その後、別途用意した電界重合液(0.4質量%エチレンジオキシチオフェン及び0.6質量%アントラキノンスルホン酸を含む、水30質量部とエチレングリコール70質量部からなる溶液)が入ったステンレス(SUS303)製容器に、化成処理済の焼結体を所定位置まで浸漬し、20℃、10μAで45分間電解重合した。次に、液から引き上げ後、水洗、エタノール洗浄、乾燥をした。さらに、前記化成液中、室温で15分間、後化成を行い、水洗、エタノール洗浄、乾燥を行った。前記した20質量%エチレンジオキシチオフェンエタノール溶液に浸漬、電解重合、後化成の工程をさらに9回(合計10回)繰り返し行った。電解重合の電流値は2回目10μA、3回目30μA、4回目~10回目50μAとした。このようにして形成した半導体層の所定部分にカーボン層と銀ペースト層を順次積層し電極層を形成しコンデンサ素子を作製した。別途用意した日立電線(株)製銅合金C151SH(厚さ0.1mm、錫が5μm表面メッキされている。)の端子用フレームに陽極リード線を所定長さに切断した前記コンデンサ素子を2個、方向を揃えて隙間なく配置して公知方法に従って接続後、トランスファー成形で松下電工(株)(現パナソニック電工(株))製樹脂CV3400SEを使用して封止し、150℃5時間キュワー後125℃、3V、20時間エージングして大きさ7.3×4.3×1.9mmのチップ状固体電解コンデンサを作製した。各例で得たコンデンサの内64個を任意に取り出し、容量(μF)及びESR(mΩ)を測定した。結果(各64個の平均値)を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
参考例1~3:
 フッ化タンタル酸カリを還元する時のナトリウム濃度を調節して平均粒径0.5μm、0.3μm、0.2μmの3種類のタンタル1次粉を作製し、次いで、1320℃で実施例1と同様にして造粒粉を3種得た。これらの粉から成形密度5.6g/cm3の成形体を実施例と同様にして作製し、さらに、この成形体を1355℃以上で焼結して、表3に示す平均細孔径を有する各焼結体を得た。引き続き、化成をリン酸水溶液65℃で、重合後の後化成をリン酸水溶液65℃で行った以外は実施例1と同様にしてチップ状タンタル固体電解コンデンサを作製した。表3に各参考例で作製されたコンデンサ64個の平均値を示した。
Figure JPOXMLDOC01-appb-T000003
 表1及び表2と表3とを比較することにより、タンタル焼結体を陽極体としたコンデンサでは、平均細孔直径が小さくなるほど容量は大きくなるが、ESRは大きくなってしまうのに対して、本発明のタングステン焼結体を陽極体としたコンデンサでは、平均細孔直径が小さく高容量となっても、ESRは低くなることがわかる。また、本発明のタングステン焼結体を用いた電解コンデンサの容量は、タンタルコンデンサよりも遙かに大きいことがわかる。

Claims (9)

  1.  平均細孔直径が0.3μm以下のタングステン焼結体からなるコンデンサの陽極。
  2.  タングステン粉を密度8g/cm3以上の成形体に成形し、前記成形体を前記密度の1.15倍以上の密度に焼結して、平均細孔直径が0.3μm以下のタングステン焼結体を得ることを特徴とするコンデンサの陽極の製造方法。
  3.  平均粒径0.5μm以下のタングステン粉を1480℃以上の温度で造粒して造粒粉とし、前記造粒粉を密度8g/cm3以上の成形体に成形する請求項2に記載の陽極の製造方法。
  4.  表面の一部に、ケイ化タングステン、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを含有するタングステン粉を使用する請求項2または3に記載の陽極の製造方法。
  5.  元素の含有量として、ケイ素が0.05~7質量%、窒素が0.01~1質量%、炭素が0.001~0.1質量%及びホウ素が0.001~0.1質量%の少なくとも1つの範囲を満たすタングステン粉を使用する請求項4に記載の陽極の製造方法。
  6.  リン元素の含有量が1~500質量ppmであるタングステン粉を使用する請求項2または3に記載の陽極の製造方法。
  7.  酸素含有量が0.05~8質量%であるタングステン粉を使用する請求項2または3に記載の陽極の製造方法。
  8.  タングステン焼結体の密度を9.2~14g/cm3に焼結する請求項2~7のいずれかに記載の陽極の製造方法。
  9.  請求項1に記載の陽極を一方の電極とし、対電極との間に介在する誘電体とから構成された電解コンデンサ。
PCT/JP2012/071941 2011-12-19 2012-08-30 タングステンコンデンサの陽極及びその製造方法 WO2013094252A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280060820.9A CN103975401B (zh) 2011-12-19 2012-08-30 钨电容器的阳极及其制造方法
JP2013550152A JP5752270B2 (ja) 2011-12-19 2012-08-30 タングステンコンデンサの陽極及びその製造方法
US14/366,577 US9478360B2 (en) 2011-12-19 2012-08-30 Tungsten capacitor anode and process for production thereof
EP12859449.6A EP2797094A4 (en) 2011-12-19 2012-08-30 TUNGSTEN CAPACITOR ANODE AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011276857 2011-12-19
JP2011-276857 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094252A1 true WO2013094252A1 (ja) 2013-06-27

Family

ID=48668159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071941 WO2013094252A1 (ja) 2011-12-19 2012-08-30 タングステンコンデンサの陽極及びその製造方法

Country Status (4)

Country Link
US (1) US9478360B2 (ja)
EP (1) EP2797094A4 (ja)
JP (1) JP5752270B2 (ja)
WO (1) WO2013094252A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053387A (ja) * 2012-09-05 2014-03-20 Nippon Chemicon Corp 固体電解コンデンサの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432927B2 (ja) * 2018-03-05 2024-02-19 グローバル アドバンスト メタルズ ユー.エス.エー.,インコーポレイティド 球状粉末含有陽極及びコンデンサ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162372A (ja) * 1994-12-08 1996-06-21 Nec Corp 電解コンデンサの製造方法
WO2002092864A2 (en) 2001-05-15 2002-11-21 Showa Denko K. K. Niobium powder, niobium sintered body and capacitor using the sintered body
JP2003213302A (ja) 2001-05-15 2003-07-30 Showa Denko Kk ニオブ粉、ニオブ焼結体及びニオブ焼結体を用いたコンデンサ
JP2003272959A (ja) 2002-03-15 2003-09-26 Sanyo Electric Co Ltd コンデンサ
WO2004055843A1 (ja) 2002-12-13 2004-07-01 Sanyo Electric Co.,Ltd. 固体電解コンデンサ及びその製造方法
JP2004349658A (ja) 2002-07-26 2004-12-09 Sanyo Electric Co Ltd 電解コンデンサ
US6876083B2 (en) 2002-07-26 2005-04-05 Sanyo Electric Co., Ltd. Electrolytic capacitor and a fabrication method therefor
WO2006132141A1 (ja) * 2005-06-09 2006-12-14 National University Corporation, Tokyo University Of Agriculture And Technology 電解コンデンサ素子及びその製造方法
WO2010107011A1 (ja) 2009-03-17 2010-09-23 昭和電工株式会社 固体電解コンデンサ素子、その製造方法及びその製造用冶具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308530A (en) * 1964-03-12 1967-03-14 Philips Corp Method of controlling porosity of refractory metal structures
US3393056A (en) * 1967-05-26 1968-07-16 Mallory & Co Inc P R Tungsten powder bodies
US3418106A (en) * 1968-01-31 1968-12-24 Fansteel Inc Refractory metal powder
DE2809815C3 (de) * 1978-03-07 1981-05-21 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Brennstoffzelle mit einer den Elektrolyten chemisch und physikalisch adsorbierenden Matrixschicht
JPS5834522B2 (ja) * 1979-09-10 1983-07-27 株式会社東芝 タングステン焼結体の製造方法
JPH0239417A (ja) * 1988-07-28 1990-02-08 Marcon Electron Co Ltd 電解コンデンサの製造方法
JPH07109019B2 (ja) * 1988-10-17 1995-11-22 日立粉末冶金株式会社 タングステン基焼結重合金
KR100583702B1 (ko) * 1998-05-06 2006-05-26 에이치. 씨. 스타아크 아이앤씨 가스상의 환원제로 산화물을 환원시켜 금속 분말을 제조하는 방법 및 그로부터 제조된 금속 분말
JP3196832B2 (ja) * 1998-05-15 2001-08-06 日本電気株式会社 固体電解コンデンサ及びその製造方法
US20030104923A1 (en) 2001-05-15 2003-06-05 Showa Denko K.K. Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body
JP2004076063A (ja) * 2002-08-13 2004-03-11 Kawatetsu Mining Co Ltd ニオブ合金粉末、固体電解コンデンサ用アノード及び固体電解コンデンサ
US7594937B2 (en) 2004-11-29 2009-09-29 Showa Denko K.K. Porous anode body for solid electrolytic capacitor, production method thereof and solid electrolytic capacitor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162372A (ja) * 1994-12-08 1996-06-21 Nec Corp 電解コンデンサの製造方法
WO2002092864A2 (en) 2001-05-15 2002-11-21 Showa Denko K. K. Niobium powder, niobium sintered body and capacitor using the sintered body
JP2003213302A (ja) 2001-05-15 2003-07-30 Showa Denko Kk ニオブ粉、ニオブ焼結体及びニオブ焼結体を用いたコンデンサ
JP2003272959A (ja) 2002-03-15 2003-09-26 Sanyo Electric Co Ltd コンデンサ
JP2004349658A (ja) 2002-07-26 2004-12-09 Sanyo Electric Co Ltd 電解コンデンサ
US6876083B2 (en) 2002-07-26 2005-04-05 Sanyo Electric Co., Ltd. Electrolytic capacitor and a fabrication method therefor
WO2004055843A1 (ja) 2002-12-13 2004-07-01 Sanyo Electric Co.,Ltd. 固体電解コンデンサ及びその製造方法
US7154743B2 (en) 2002-12-13 2006-12-26 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
WO2006132141A1 (ja) * 2005-06-09 2006-12-14 National University Corporation, Tokyo University Of Agriculture And Technology 電解コンデンサ素子及びその製造方法
WO2010107011A1 (ja) 2009-03-17 2010-09-23 昭和電工株式会社 固体電解コンデンサ素子、その製造方法及びその製造用冶具
US20120014036A1 (en) 2009-03-17 2012-01-19 Showa Denko K.K. Solid electrolytic capacitor element, method for manufacturing same, and jig for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797094A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053387A (ja) * 2012-09-05 2014-03-20 Nippon Chemicon Corp 固体電解コンデンサの製造方法

Also Published As

Publication number Publication date
CN103975401A (zh) 2014-08-06
JP5752270B2 (ja) 2015-07-22
US20140355178A1 (en) 2014-12-04
US9478360B2 (en) 2016-10-25
JPWO2013094252A1 (ja) 2015-04-27
EP2797094A1 (en) 2014-10-29
EP2797094A4 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP4809463B2 (ja) タンタル焼結体の製造方法及びコンデンサの製造方法
JP5283240B2 (ja) コンデンサ用ニオブ、及び該ニオブ焼結体を用いたコンデンサ
JP5266427B1 (ja) コンデンサの陽極体の製造方法
JP5752270B2 (ja) タングステンコンデンサの陽極及びその製造方法
JP5350564B1 (ja) 固体電解コンデンサ
JP4521849B2 (ja) コンデンサ用ニオブ粉と該ニオブ粉を用いた焼結体および該焼結体を用いたコンデンサ
JP4707164B2 (ja) コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
JP5412606B1 (ja) コンデンサ素子の製造方法
JP5613861B2 (ja) 固体電解コンデンサの陽極体
JP6012115B2 (ja) 固体電解コンデンサ素子の製造方法
EP2866237A1 (en) Capacitor element
JP5613863B2 (ja) タングステンコンデンサの陽極体及びその製造方法
CN103975401B (zh) 钨电容器的阳极及其制造方法
WO2015107749A1 (ja) タングステン固体電解コンデンサ素子の製造方法
JP2001307963A (ja) コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
JP2002008952A (ja) ニオブ焼結体、その製造方法及びその焼結体を用いたコンデンサ
JP2001155969A (ja) コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550152

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012859449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14366577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE