WO2013094233A1 - 太陽電池およびその製造方法、太陽電池モジュール - Google Patents

太陽電池およびその製造方法、太陽電池モジュール Download PDF

Info

Publication number
WO2013094233A1
WO2013094233A1 PCT/JP2012/061640 JP2012061640W WO2013094233A1 WO 2013094233 A1 WO2013094233 A1 WO 2013094233A1 JP 2012061640 W JP2012061640 W JP 2012061640W WO 2013094233 A1 WO2013094233 A1 WO 2013094233A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
electrode
collector electrode
solar cell
surface side
Prior art date
Application number
PCT/JP2012/061640
Other languages
English (en)
French (fr)
Inventor
祐樹 津田
博文 小西
努 松浦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/359,193 priority Critical patent/US9123861B2/en
Priority to JP2013550140A priority patent/JP5710024B2/ja
Publication of WO2013094233A1 publication Critical patent/WO2013094233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • H01L31/1888Manufacture of transparent electrodes, e.g. TCO, ITO methods for etching transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a solar cell, a manufacturing method thereof, and a solar cell module, and more particularly to a solar cell including a transparent electrode and a collecting electrode on a light incident surface side in a photoelectric conversion layer, a manufacturing method thereof, and a solar cell module.
  • a crystalline silicon solar cell using a crystalline silicon substrate has high photoelectric conversion efficiency, and has already been widely put into practical use as a photovoltaic power generation system.
  • a crystalline silicon solar cell in which an amorphous silicon thin film having a band gap different from that of single crystal silicon is formed on the surface of a single crystal silicon substrate to form a diffusion potential is called a heterojunction solar cell.
  • a solar cell in which a thin intrinsic amorphous silicon layer is interposed between a conductive amorphous silicon thin film for forming a diffusion potential and a crystalline silicon surface is a crystalline silicon solar cell having the highest photoelectric conversion efficiency. It is known as one of the forms.
  • a thin intrinsic amorphous silicon layer between the crystalline silicon surface and the conductive amorphous silicon thin film the surface of the crystalline silicon is reduced while reducing the generation of new defect levels due to the deposition. Can be terminated with hydrogen (mainly dangling bonds of silicon).
  • Patent Document 1 includes a transparent electrode formed on the surface of the photoelectric conversion layer and a collector electrode formed in a predetermined region on the transparent electrode, and the transparent electrode is in the vicinity of the interface with the photoelectric conversion layer and A solar cell is described in which a portion corresponding to the region where the collector electrode is formed is formed as a high conductivity region, and the other portion is formed as a high light transmission region.
  • a solar cell is described in which a portion corresponding to the region where the collector electrode is formed is formed as a high conductivity region, and the other portion is formed as a high light transmission region.
  • there is a high conductivity region with a high light absorption coefficient in the optical path light absorption increases, the improvement in photoelectric conversion efficiency is small, and oxygen plasma is used to form a high light transmission region. Since the treatment is performed, there is a problem in that the conductivity is lowered by the oxidation of silver as a collecting electrode.
  • a layer having a high light transmission and conductivity in the optical path is formed by providing a region having a high carrier concentration only in a region directly under the collector electrode that is not exposed to incident light.
  • a crystalline silicon solar cell in which a layer having a high carrier concentration exists. In this crystalline silicon solar cell, the junction between the transparent electrode layer and the collector electrode is good, and the photoelectric conversion efficiency is improved.
  • Patent Document 2 it is necessary to form a high-carrier-concentration transparent electrode having the same shape as the collector electrode, and then to form a collector electrode on the electrode. Therefore, accurate alignment is required when the collector electrode is formed. In this case, there is a possibility that the position of the collector electrode and the width in which the electrode is formed may be shifted.
  • the high carrier concentration transparent electrode is exposed from the collector electrode, light absorption by the exposed high carrier concentration transparent electrode is possible. There is a risk of loss.
  • the possibility increases as the current collector becomes narrower with the aim of increasing the current. Such a problem is a common problem in solar cells including a transparent electrode and a collecting electrode on the light incident surface side in the photoelectric conversion layer.
  • the present invention has been made in view of the above, and in a solar cell including a transparent electrode and a collecting electrode on a light incident surface side in a photoelectric conversion layer, a light absorption loss due to the transparent electrode is suppressed, and the battery.
  • An object of the present invention is to obtain a solar cell with reduced series resistance and excellent photoelectric conversion efficiency, a method for producing the solar cell, and a solar cell module.
  • a solar cell according to the present invention is a solar cell having a transparent electrode and a collecting electrode in this order on the light incident surface side surface of the photoelectric conversion layer.
  • the collector electrode is formed in a predetermined region on the photoelectric conversion layer, and the first transparent electrode of the transparent electrode is in contact with the photoelectric conversion layer and the collector electrode only in the region immediately below the collector electrode.
  • a second transparent electrode of the transparent electrode is formed in contact with the photoelectric conversion layer or the collector electrode on the photoelectric conversion layer and the region where the collector electrode is not formed on the collector electrode, The carrier concentration of the first transparent electrode is higher than the carrier concentration of the second transparent electrode.
  • FIG. 1 is a perspective view of a principal part showing a schematic configuration of a crystalline silicon solar cell according to a first embodiment of the present invention.
  • FIG. 2-1 is a cross-sectional view illustrating an example of the procedure of the method for manufacturing the crystalline silicon solar cell according to the first embodiment.
  • FIG. 2-2 is a cross-sectional view illustrating an example of the procedure of the method for manufacturing the crystalline silicon-based solar cell according to the first embodiment.
  • FIG. 2-3 is a cross-sectional view illustrating an example of the procedure of the method for manufacturing the crystalline silicon-based solar cell according to the first embodiment.
  • FIG. 2-4 is a cross-sectional view illustrating an example of the procedure of the method for manufacturing the crystalline silicon-based solar cell according to the first embodiment.
  • FIGS. 2-5 is sectional drawing which shows an example of the procedure of the manufacturing method of the crystalline silicon type solar cell concerning this Embodiment 1.
  • FIGS. FIGS. 2-6 is sectional drawing which shows an example of the procedure of the manufacturing method of the crystalline silicon type solar cell concerning this Embodiment 1.
  • FIGS. FIG. 3 is a cross-sectional view of a principal part showing a schematic configuration of the crystalline silicon-based solar cell according to the second embodiment of the present invention.
  • FIG. 4 is a perspective view showing a schematic configuration of a crystalline silicon-based solar cell module according to Embodiment 3 of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing a connection portion between solar cells in a crystalline silicon solar cell module according to a third embodiment of the present invention.
  • FIG. 1 is a perspective view of a principal part showing a schematic configuration of a crystalline silicon solar cell according to a first embodiment of the present invention.
  • the crystalline silicon solar cell according to the present embodiment includes an intrinsic i-type amorphous silicon thin film layer 2 and a p-type amorphous material on one surface of an n-type single crystal silicon substrate 1 constituting a photoelectric conversion layer.
  • the porous silicon-based thin film layer 3 is laminated in this order, and the substantially intrinsic i-type amorphous silicon-based thin film layer 4 and the n-type amorphous silicon-based thin film are formed on the other surface of the n-type single crystal silicon substrate 1.
  • Layer 5 is laminated in this order.
  • the light receiving surface side transparent electrode 6 and the light receiving surface side collector electrode 7 are provided in a predetermined region on the p-type amorphous silicon thin film layer 3.
  • a back-side transparent electrode 8 is formed on the entire surface of the n-type amorphous silicon thin film layer 5, and a back-side collector electrode 9 is formed in a predetermined region on the back-side transparent electrode 8.
  • a concavo-convex structure called a texture is formed on the surface on one side of the n-type single crystal silicon substrate 1.
  • the light-receiving surface side transparent electrode 6 includes a first transparent electrode 6a and a second transparent electrode 6b.
  • a light receiving surface side collector electrode 7 is provided in a predetermined region on the p-type amorphous silicon-based thin film layer 3 as an electrode on the one surface side that is the light incident surface side.
  • the first transparent electrode 6a is in contact with the p-type amorphous silicon thin film layer 3 and the light receiving surface side collector electrode 7 only in the region immediately below the light receiving surface side collector electrode 7 on the crystalline silicon thin film layer 3.
  • the light-receiving surface side collector electrode 7 is stacked only on the entire surface of the region directly above the first transparent electrode 6 a, and the first transparent electrode 6 a and the light-receiving surface side collector electrode 7 in the surface direction of the n-type single crystal silicon substrate 1.
  • the shape is substantially the same.
  • the second transparent electrode 6 b is provided on the region where the light receiving surface side collector electrode 7 is not provided and on the light receiving surface side collector electrode 7.
  • the second transparent electrode 6b is in contact with the p-type amorphous silicon-based thin film layer 3, the light-receiving surface side collector electrode 7 and the first transparent electrode 6a, and receives the light-receiving surface side collector electrode 7 and the first transparent electrode. 6a is provided.
  • the first transparent electrode 6a and the second transparent electrode 6b are both light transmissive and conductive, but the first transparent electrode 6a has a higher carrier concentration than the second transparent electrode 6b. Yes. Accordingly, the first transparent electrode 6a has higher conductivity than the second transparent electrode 6b, and the second transparent electrode 6b has higher light transmittance than the first transparent electrode 6a.
  • a single crystal silicon substrate in the crystalline silicon solar cell contains an impurity that supplies electric charge to silicon (Si) in order to provide conductivity.
  • single crystal silicon substrates are classified into an n-type supplied with phosphorus atoms for introducing electrons into Si atoms and a p-type supplied with boron atoms for introducing holes.
  • the electron-hole pair is made efficient by providing a strong electric field with the heterojunction on the light incident side where the most incident light is absorbed as the reverse junction. Can be separated and recovered. Therefore, the heterojunction on the light incident side is preferably a reverse junction.
  • the single crystal silicon semiconductor substrate used in this embodiment is preferably an n-type single crystal silicon semiconductor substrate.
  • a p-type amorphous silicon thin film layer is formed on the light incident surface, and a back surface is formed on the back surface.
  • An n-type amorphous silicon thin film layer is preferable. Therefore, in this embodiment, the case where n-type single crystal silicon substrate 1 is used as the single crystal silicon substrate will be described.
  • the reflection layer means a layer that adds a function of reflecting light to the solar cell.
  • a metal layer such as silver (Ag) or aluminum (Al) may be used, and particles such as titanium oxide (TiO 2 ), barium sulfate (BaSO 4 ), and magnesium oxide (MgO) are included. You may form using a white highly reflective material.
  • the n-type single crystal silicon substrate 1 is preferably cut out so that the light incident surface (light receiving surface) is a (100) surface.
  • the texture size increases as the etching of the surface of the single crystal silicon substrate proceeds.
  • the texture size is increased by increasing the etching time of the surface of the single crystal silicon substrate.
  • the texture size can be increased by increasing the etchant concentration, the etchant supply rate, the etchant temperature, etc. so as to increase the etching reaction rate.
  • isotropic etching with low selectivity of the (100) plane and the (111) plane is performed as a process of relaxing the shape of the valley (concave portion) and the crest (convex portion) of the formed texture after etching for texture formation. Preferably it is done.
  • the substantially intrinsic i-type amorphous silicon-based thin film layer 2 is provided between the n-type single crystal silicon substrate 1 and the p-type amorphous silicon-based thin film layer 3, and is composed of, for example, silicon and hydrogen.
  • An i-type hydrogenated amorphous silicon layer is preferred. In this case, it is possible to effectively perform passivation of the surface of the n-type single crystal silicon substrate 1 while suppressing impurity diffusion into the n-type single crystal silicon substrate 1 during the CVD film formation of the i-type hydrogenated amorphous silicon layer. it can.
  • the p-type amorphous silicon thin film layer 3 is preferably, for example, a p-type hydrogenated amorphous silicon layer or a p-type oxidized amorphous silicon layer. From the viewpoint of impurity diffusion and series resistance, it is preferable to use a p-type hydrogenated amorphous silicon layer for the p-type amorphous silicon thin film layer 3. On the other hand, from the viewpoint of reducing optical loss as a wide-gap low refractive index layer, a p-type oxidized amorphous silicon layer can be used for the p-type amorphous silicon-based thin film layer 3.
  • the substantially intrinsic i-type amorphous silicon-based thin film layer 4 is provided between the n-type single crystal silicon substrate 1 and the n-type amorphous silicon-based thin film layer 5 and is composed of, for example, silicon and hydrogen.
  • An i-type hydrogenated amorphous silicon layer is preferred.
  • the n-type amorphous silicon thin film layer 5 it is preferable to use n-type hydrogenated amorphous silicon.
  • the i-type amorphous silicon thin film layer 4 that is the i-type silicon thin film layer and the n-type silicon thin film layer n on the back surface of the n-type single crystal silicon substrate 1.
  • the so-called BSF (Back Surface Field) structure is formed by forming the type amorphous silicon-based thin film layer 5.
  • the role of the light-receiving surface side transparent electrode 6 (first transparent electrode 6a, second transparent electrode 6b) and back surface side transparent electrode 8 is the function of carriers from the photoelectric conversion layer (n-type single crystal silicon substrate 1) to the collector electrode. It is transport, and conductivity for this is required.
  • the first transparent electrode 6a is formed in the shadow area of the light-receiving-surface-side collector electrode 7, even if the first transparent electrode 6a is a highly conductive transparent electrode having a high carrier concentration, the light absorption loss does not increase.
  • the carrier transport property between the transparent electrode 6a and the light receiving surface side collector electrode 7 can be improved.
  • the second transparent electrode 6b is partly located in the optical path of the incident light to the photoelectric conversion layer (n-type single crystal silicon substrate 1), it is set to the carrier concentration and the film thickness in consideration of light transmittance. Need to be done.
  • the second transparent electrode 6b formed so as to cover the light receiving surface side collector electrode 7 reduces the contact resistance by increasing the contact area between the entire light receiving surface side transparent electrode 6 and the light receiving surface side collector electrode 7. Thus, there is an effect of improving the conductivity from the light receiving surface side transparent electrode 6 to the light receiving surface side collecting electrode 7.
  • the second transparent electrode 6b has an effect of improving the adhesion between the light receiving surface side transparent electrode 6 and the light receiving surface side collector electrode 7, and the light receiving surface side collector electrode 7 is not exposed to the outside. There is an effect of protecting the electrode 7.
  • the first transparent electrode 6a, the second transparent electrode 6b, and the back surface side transparent electrode 8 may be any conductive film having optical transparency.
  • conductive oxide materials such as indium oxide, zinc oxide, and tin oxide. Can be used alone or in combination.
  • a conductive doping material can be added to these materials. Examples of the doping material added to indium oxide include zinc, tin, titanium, tungsten, molybdenum, silicon, and cerium. Examples of the doping material added to zinc oxide include aluminum, gallium, boron, silicon, and carbon. Examples of the doping material added to tin oxide include fluorine.
  • Examples of film forming methods for the first transparent electrode 6a, the second transparent electrode 6b, and the back-side transparent electrode 8 include a sputtering method and an MOCVD method, and the sputtering method is particularly preferable from the viewpoint of mass productivity.
  • the substrate temperature during the production of the transparent electrode is preferably 150 ° C. or lower. When the substrate temperature at the time of manufacturing the transparent electrode is higher than this, hydrogen is desorbed from the amorphous silicon layer, a dangling bond is generated in the Si atom, and it may become a carrier recombination center.
  • the carrier concentrations of the conductive oxide materials used for the first transparent electrode 6a and the second transparent electrode 6b are different.
  • the carrier concentration of a conductive oxide used as a transparent electrode of a photoelectric conversion device is about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
  • the carrier concentration of the second transparent electrode 6b is in this range.
  • the carrier concentration is less than this range, it is difficult to develop sufficient conductivity as an electrode, and when the carrier concentration exceeds this range, transparency may be deteriorated due to absorption or reflection by free electrons.
  • the carrier concentration of the metal used for the light receiving surface side collector electrode 7 is about 1 ⁇ 10 29 cm ⁇ 3
  • the carrier concentration of the first transparent electrode 6a is the same as the carrier concentration of the second transparent electrode 6b. It is preferably between the carrier concentration of the collector electrode 7.
  • the carrier concentration of the first transparent electrode 6a is preferably 1 ⁇ 10 21 to 5 ⁇ 10 23 cm ⁇ 3 , more preferably 3 ⁇ 10 21 to 1 ⁇ 10 23 cm ⁇ 3 . is there.
  • the carrier concentration is within these ranges, the loss of carrier transport at the bonding interface between the first transparent electrode 6a and the second transparent electrode 6b is suppressed, and the light receiving surface side transparent electrode 6 to the light receiving surface side collector electrode 7 are suppressed. Carrier transport characteristics can be improved, and the series resistance of the solar cell can be reduced and the photoelectric conversion efficiency associated therewith can be improved.
  • silver (Ag), copper (Cu), or the like is used from the conductive surface.
  • These collector electrodes are formed in a comb shape by, for example, a method of printing a paste electrode composed of a fine metal powder and a thermosetting resin, a plating method, or the like.
  • covering the collector electrode with a transparent electrode can prevent deterioration of electrical characteristics due to metal migration or the like of the collector electrode.
  • Cu is more easily oxidized in the atmosphere than Ag, but the present embodiment can suppress oxidation of the collector electrode.
  • the collector electrode by covering the collector electrode with a transparent electrode made of an inorganic material having a moisture permeability lower than that of the organic material, it is possible to realize a module with less deterioration due to moisture than a module in which a resin material is sealed in contact with the collector electrode. it can.
  • FIGS. 2-1 to 2-6 are cross-sectional views showing an example of the procedure of the method for manufacturing the crystalline silicon solar cell according to the first embodiment.
  • an n-type single crystal silicon substrate 1 having an uneven structure called texture is formed on the surface. That is, after slicing a crystalline silicon substrate from an n-type single crystal silicon ingot so that the main surface becomes a (100) plane, the crystalline silicon substrate is wet-etched using an alkaline aqueous solution such as an aqueous NaOH solution or an aqueous KOH solution. An uneven structure is formed on the surface. Silicon substrates have different etching rates with an aqueous alkali solution depending on the plane orientation.
  • an i-type hydrogenated amorphous silicon layer is formed on one surface side (light incident surface side) of the n-type single crystal silicon substrate 1 as a substantially intrinsic i-type amorphous silicon thin film layer 2.
  • a p-type hydrogenated amorphous silicon layer is formed as the p-type amorphous silicon thin film layer 3 on the i-type amorphous silicon thin film layer 2 (FIG. 2-1).
  • an i-type hydrogenated amorphous silicon layer is formed as the substantially intrinsic i-type amorphous silicon thin film layer 4 on the other surface side (back surface side) of the n-type single crystal silicon substrate 1.
  • an n-type hydrogenated amorphous silicon layer is formed as an n-type amorphous silicon thin film layer 5 on the i-type amorphous silicon thin film layer 4 to form a BSF structure (FIG. 2). 2).
  • a method for forming an amorphous silicon thin film on such an n-type single crystal silicon substrate it is particularly preferable to use a plasma CVD method.
  • a substrate temperature of 100 to 300 ° C., a pressure of 5 to 100 Pa, and a high frequency power density of 1 m to 500 mW / cm 2 are preferable.
  • a silicon-containing gas such as silane (SiH 4 ) or disilane (Si 2 H 6 ), or a mixture of these gases and hydrogen (H 2 ) is used. Used.
  • Examples of the dopant for forming the p-type amorphous silicon thin film include group III elements such as boron (B), aluminum (Al), gallium (Ga), and indium (In).
  • Examples of the dopant for forming the n-type amorphous silicon thin film include group V elements such as nitrogen (N), phosphorus (P), arsenic (As), and antimony (Sb). It is possible to form a desired p-type or n-type amorphous silicon thin film by mixing a compound gas containing at least one of the above-mentioned dopants into the source gas during the formation of the amorphous silicon thin film. It is.
  • a zinc oxide film is formed as the first transparent electrode 6a on the entire surface on the p-type amorphous silicon thin film layer 3, and the back side transparent electrode is formed on the entire surface on the n-type amorphous silicon thin film layer 5.
  • a zinc oxide film is formed as 8 (FIG. 2-3).
  • a film forming method of the first transparent electrode 6a and the back side transparent electrode 8 for example, a sputtering method, an MOCVD method, or the like can be used.
  • the light receiving surface side collector electrode 7 is formed at a predetermined position on the first transparent electrode 6a, and the back surface side collector electrode 9 is formed at a predetermined position on the back surface side transparent electrode 8 (FIG. 2-4).
  • known techniques such as ink jet, screen printing, conductive wire bonding, and spraying can be used, but screen printing is more preferable from the viewpoint of productivity.
  • the light-receiving surface side collector electrode 7 and the back surface side collector electrode 9 are, for example, a finger portion and a bus bar portion (not shown) by screen printing using a silver (Ag) paste in which fine powder of silver (Ag) is kneaded into an epoxy resin.
  • a silver (Ag) paste in which fine powder of silver (Ag) is kneaded into an epoxy resin.
  • Ag silver
  • the finger portion a plurality of lines are formed in parallel to each other at intervals of 1 mm to 10 mm.
  • the bus bar portion is connected to the finger portion and collects current flowing in the finger portion.
  • the central portion is thick in the cross section perpendicular to the longitudinal direction, and the edge portion is widened and thinned.
  • the first transparent electrode 6a is patterned by anisotropically etching the first transparent electrode 6a using the light receiving surface side collector electrode 7 as a mask (FIG. 2-5).
  • the light receiving surface side collector electrode is accurately placed directly below the light receiving surface side collector electrode 7 without requiring alignment or the like. It is possible to form the first transparent electrode 6 a having the same shape as the electrode 7.
  • Such etching methods include a dry etching method using a reactive gas or the like and a wet etching method using a solution.
  • the wet etching method is used when an acid-soluble conductive oxide is used as the material of the first transparent electrode 6a.
  • an acid-soluble conductive oxide for example, indium oxide, zinc oxide, and these conductive oxides do not significantly impair the acid solubility.
  • a small amount of metal oxide added in a range for example, tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO)), a mixture of indium oxide and zinc oxide (IZO), etc. Used for.
  • an aqueous solution containing hydrochloric acid, oxalic acid, sulfuric acid, hydrobromic acid, or a mixed acid thereof is mainly used.
  • the region on the p-type amorphous silicon thin film layer 3 where the light-receiving surface side collector electrode 7 is not formed and the light-receiving surface A second transparent electrode 6b is formed on the side collector electrode 7 (FIGS. 2-6). Since the second transparent electrode 6b is located on the optical path of the incident light, the film thickness is preferably 50 nm to 200 nm from the viewpoint of conductivity and light transmittance. At this time, if the first transparent electrode 6a is thinner than the second transparent electrode 6b, the first transparent electrode 6a is thinner than the first transparent electrode 6b as shown in FIG.
  • the transparent electrode 6a and the light receiving surface side collector electrode 7 are formed to be covered. As a result, the adhesion between the light-receiving surface side transparent electrode 6 and the light-receiving surface side collector electrode 7 is improved, and the contact area between the light-receiving surface-side transparent electrode 6 and the light-receiving surface side collector electrode 7 is increased. This has the effect of reducing the contact resistance.
  • the film thickness of the first transparent electrode 6a at this time is preferably 10 nm to 100 nm, and more preferably 10 nm to 50 nm.
  • a film such as ethylene vinyl acetate (EVA) resin as a protective layer on these layers.
  • EVA ethylene vinyl acetate
  • it can also serve to prevent deterioration of the silicon layer and electrode layer due to oxygen and moisture.
  • the second transparent electrode 6b having high light transmittance and conductivity is formed in the optical path of the incident light.
  • the first transparent electrode 6a having a high carrier concentration and high conductivity is formed only in a region directly under the light receiving surface side collector electrode 7 which is a shadow of the surface side collector electrode 7.
  • the second transparent electrode 6b formed on the light receiving surface side collecting electrode 7 reduces the resistance by increasing the cross-sectional area of the entire light receiving surface side transparent electrode 6 and reduces the resistance from the light receiving surface side transparent electrode 6 to the light receiving surface. There is an effect of improving the conductivity to the side collector electrode 7, and it is possible to reduce the series resistance component of the crystalline silicon solar cell and improve the photoelectric conversion efficiency.
  • the second transparent electrode 6b formed on the light receiving surface side collector electrode 7 is separated from the second transparent electrode 6b formed in a region where the light receiving surface side collector electrode 7 is not provided.
  • the second transparent electrode 6b formed on the light receiving surface side collector electrode 7 functions as a part of the light receiving surface side collector electrode 7 and reduces the resistance by increasing the cross-sectional area of the entire light receiving surface side collector electrode 7. Thus, there is an effect of improving the conductivity of the light receiving surface side collector electrode 7.
  • the first transparent electrode 6a formed on the entire surface of the p-type amorphous silicon-based thin film layer 3 is etched using the light receiving surface side collector electrode 7 as a mask, thereby requiring processing such as alignment.
  • the first transparent electrode 6a having the same width as the light receiving surface side collector electrode 7 can be easily formed immediately below the light receiving surface side collector electrode 7.
  • the first transparent electrode 6a exposed from the light receiving surface side collector electrode 7 is generated. There is a risk of light absorption loss due to.
  • the first transparent electrode 6a is etched and patterned using the light-receiving surface side collector electrode 7 as a mask, so that the positional deviation between the light-receiving surface side collector electrode 7 and the first transparent electrode 6a is reduced. There is no deviation in the electrode width, and no deterioration in performance due to a positional deviation between the light receiving surface side collecting electrode 7 and the first transparent electrode 6a or a deviation in the electrode width occurs, and a good photoelectric conversion efficiency is obtained.
  • the first transparent electrode 6a and the second transparent electrode 6b are formed separately, it is possible to form the first transparent electrode 6a and the second transparent electrode 6b with different film thicknesses. .
  • the second transparent electrode 6b is formed so as to cover the light receiving surface side collector electrode 7.
  • the adhesion between the light-receiving surface side transparent electrode 6 and the light-receiving surface side collector electrode 7 is improved, and the contact area between the light-receiving surface-side transparent electrode 6 and the light-receiving surface side collector electrode 7 is increased. This has the effect of reducing the contact resistance.
  • Embodiment 1 a crystalline silicon solar cell excellent in photoelectric conversion efficiency can be obtained by reducing light absorption loss due to the transparent electrode and reducing the series resistance component in current extraction.
  • FIG. FIG. 3 is a cross-sectional view of a principal part showing a schematic configuration of the crystalline silicon-based solar cell according to the second embodiment of the present invention.
  • the film thickness of the first transparent electrode 6a is sufficiently larger than the film thickness of the second transparent electrode 6b in the crystalline silicon solar cell described in the first embodiment. Since the other configuration of the crystalline silicon solar cell according to the second embodiment is the same as that of the crystalline silicon solar cell according to the first embodiment, detailed description thereof is omitted.
  • the film thickness of the first transparent electrode 6a is sufficiently thicker than the film thickness of the second transparent electrode 6b.
  • the second transparent electrode 6b is formed on the p-type amorphous silicon-based thin film layer 3 on the region where the light receiving surface side collector electrode 7 does not exist and on the light receiving surface side collector electrode 7, so that the first transparent electrode It is formed in contact with the side portion of 6a.
  • the second transparent electrode 6b is formed by a highly anisotropic film forming method such as vapor deposition, the second transparent electrode 6b is separated into a region where the light receiving surface side collector electrode 7 does not exist and the light receiving surface side collector electrode 7.
  • the film is formed by a film forming method having a weak anisotropy such as a sputtering method, it is formed so as to cover the entire side surface of the first transparent electrode 6a, and as in the first embodiment, the contact area is increased. Effects such as reduction of contact resistance, improvement of adhesion, and protection of metal electrodes can be obtained.
  • the thick transparent electrode is easy to roughen. That is, the surface of the first transparent electrode 6a can be easily roughened by increasing the thickness of the first transparent electrode 6a, which is a high carrier concentration layer. As a result, the surface of the first transparent electrode 6a can be roughened to easily increase the contact area between the first transparent electrode 6a and the light-receiving surface side collector electrode 7, and the first transparent electrode 6a. And the contact resistance between the light receiving surface side collector electrode 7 can be reduced.
  • the film thickness of the second transparent electrode 6b is preferably 50 nm to 200 nm as in the first embodiment, and the film thickness of the first transparent electrode 6a is preferably 200 nm to 500 nm.
  • the crystalline silicon solar cell according to the second embodiment is the same as the crystal according to the first embodiment except that the film thickness of the first transparent electrode 6a is sufficiently larger than the film thickness of the second transparent electrode 6b. It is produced in the same manner as a silicon solar cell.
  • the film thickness of the first transparent electrode 6a is formed sufficiently thicker than the film thickness of the second transparent electrode 6b, and the first transparent electrode 6a and the second transparent electrode 6b are formed.
  • the contact area between the first transparent electrode 6a and the second transparent electrode 6b is improved due to a decrease in contact resistance, and the photoelectric conversion efficiency can be improved.
  • FIG. 4 is a perspective view showing a schematic configuration of a crystalline silicon-based solar cell module according to Embodiment 3 of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing a connection portion between solar cells in the crystalline silicon-based solar cell module according to Embodiment 3 of the present invention.
  • the crystalline silicon solar cell module according to the third embodiment two or more crystalline silicon solar cells described in the first embodiment or the second embodiment are electrically connected in series or in parallel as solar cells.
  • a conductive film and a pressure bonding method are used to form a joint portion between the tab wire and the collector electrode.
  • a crystalline silicon solar cell module in which the solar cells 10 are connected in series will be described.
  • the solar cells 10 are connected to each other using tab wires 11 using Ag, Cu, or the like. That is, the collector electrode on the light-receiving surface side of one solar cell 10 and the collector electrode on the back surface side of the solar cell 10 adjacent to one of the solar cells 10 are connected. Further, the collector electrode on the back surface side of the solar battery cell 10 and the collector electrode on the light receiving surface side of the solar battery cell 10 adjacent to the other of the solar battery cells 10 are connected. And the same connection is performed about a several photovoltaic cell, and one crystalline silicon type solar cell module is comprised.
  • solder joint is used for joining with the wire 11.
  • a good joint is obtained when the solder diffuses on the metal and forms an alloy.
  • peeling and a contact defect may arise in the interface of a transparent electrode and the tab wire 11.
  • the conductive film 12 in which the conductive particles are dispersed in the thermosetting resin is conducted by heating and pressurization, and at the same time, the resin is thermally cured to obtain a reliable conduction equivalent to solder bonding.
  • the thermosetting resin can be bonded to the transparent electrode in the same manner as the metal. Therefore, in the crystalline silicon-based solar cell module according to the present embodiment, the conductive film 12 is sandwiched between the collector electrode of the solar battery cell 10 and the tab wire 11, and the tab wire 11 is crimped. Mechanical and electrical joints are formed. Note that the photoelectric conversion layer 13 in FIG.
  • FIG. 5 includes the n-type single crystal silicon substrate 1, the i-type amorphous silicon thin film layer 2, the p-type amorphous silicon thin film layer 3, and the i-type non-layer in FIG.
  • a crystalline silicon thin film layer 4 and an n-type amorphous silicon thin film layer 5 are shown together.
  • the transparent electrode connecting the solar cells 10 and the tab wire 11 are well bonded, and the solar cell module having high efficiency and excellent reliability is obtained. can get.
  • Example 1 As an example of the present invention, a crystalline silicon solar cell having the structure shown in FIG. 1 was manufactured according to the method described in the above embodiment. First, the n-type single crystal silicon substrate 1 has a pyramid-like unevenness for light confinement having a thickness of about 200 ⁇ m, a main surface having a (100) surface, and a height of several ⁇ m to several tens of ⁇ m on the surface. A formed substrate was prepared.
  • An i-type hydrogenated amorphous silicon layer having a thickness of about 5 nm is formed on one surface side (incident surface side) of the n-type single crystal silicon substrate 1 as a substantially intrinsic i-type amorphous silicon thin film layer 2.
  • a plasma CVD method was formed using a plasma CVD method.
  • a p-type hydrogenated amorphous silicon layer having a thickness of about 7 nm was formed as a p-type amorphous silicon-based thin film layer 3 on the i-type amorphous silicon-based thin film layer 2 by using a plasma CVD method. .
  • an i-type hydrogenated amorphous film having a thickness of about 5 nm is formed as a substantially intrinsic i-type amorphous silicon thin film layer 4 on the other surface side (back surface side) of the n-type single crystal silicon substrate 1.
  • a silicon layer was formed using a plasma CVD method.
  • an n-type hydrogenated amorphous silicon layer having a thickness of about 10 nm is formed as an n-type amorphous silicon thin film layer 5 on the i-type amorphous silicon thin film layer 4 using a plasma CVD method.
  • a BSF structure was formed.
  • the first transparent electrode 6a was formed to a thickness of 50 nm on the entire surface of the p-type amorphous silicon thin film layer 3 by using a sputtering method.
  • zinc oxide doped with 3 wt% of aluminum (3 wt% AZO) was used as the target material, and the film was formed at a substrate temperature of 150 degrees.
  • the carrier concentration of 3 wt% AZO formed on the glass substrate under the same conditions as those for forming the first transparent electrode 6a was 1 ⁇ 10 21 cm ⁇ 3 .
  • the back-side transparent electrode 8 was formed with a thickness of 110 nm on the entire surface of the n-type amorphous silicon thin film layer 5 by a sputtering method.
  • tin-doped indium oxide containing 3 wt% ITO: 3 wt% tin oxide
  • the film was formed at a substrate temperature of 150 degrees.
  • the carrier concentration of 3 wt% ITO formed on the glass substrate under the same conditions as those for forming the back-side transparent electrode 8 was 3 ⁇ 10 20 cm ⁇ 3 .
  • a silver paste was screen-printed at a predetermined position on the first transparent electrode 6 a to form a comb-shaped electrode, thereby forming a light receiving surface side collector electrode 7. Further, a silver paste was screen-printed at a predetermined position on the back surface side transparent electrode 8 to form a comb-shaped electrode, and the back surface side collecting electrode 9 was obtained.
  • the electrode width was 500 ⁇ m, and the interval between the finger portions was 5 mm.
  • the first transparent electrode 6 a was removed by wet-etching the first transparent electrode 6 a using the light-receiving surface side collector electrode 7 as a mask to remove the first transparent electrode 6 a other than the region immediately below the light-receiving surface side collector electrode 7.
  • a 0.3% hydrochloric acid aqueous solution was used as the etching solution.
  • the second transparent electrode 6b was formed on the entire surface on the incident surface side of the n-type single crystal silicon substrate 1 so as to cover the light receiving surface side collector electrode 7 and the first transparent electrode 6a.
  • the target material was zinc oxide doped with 0.5 wt% aluminum (0.5 wt% AZO), and the film was formed at a substrate temperature of 150 degrees.
  • the carrier concentration of 0.5 wt% AZO formed on the glass substrate under the same conditions as those for forming the back-side transparent electrode 8 was 3 ⁇ 10 20 cm ⁇ 3 .
  • the second transparent electrode 6b is formed on the p-type amorphous silicon thin film layer 3 in the region where the light-receiving surface side collector electrode 7 is not provided and on the light-receiving surface side collector electrode 7, and the p-type non-electrode. It is in contact with the crystalline silicon-based thin film layer 3, the light-receiving surface side collector electrode 7, and the first transparent electrode 6a.
  • the film thickness of the second transparent electrode 6b in consideration of the difference in refractive index between the EVA resin laminated on the upper part and the second transparent electrode 6b in addition to achieving both conductivity and light transmittance.
  • the lens By designing the lens, an antireflection effect due to optical interference can be obtained.
  • the reflected light from the light-receiving surface side collector electrode 7 can be efficiently re-reflected and incident into the n-type single crystal silicon substrate 1.
  • the refractive index of EVA resin was 1.5
  • the refractive index of the second transparent electrode 6b was 1.9
  • the film thickness of the second transparent electrode 6b was 110 nm.
  • an EVA resin film was coated on these layers as a protective layer to obtain a crystalline silicon solar cell of Example 1.
  • Example 2 A 50 nm thick tin-doped indium oxide (10 wt% ITO: containing 10 wt% tin oxide) layer is used for the first transparent electrode 6a, and a 100 nm thick tin-doped indium oxide (3 wt%) is used for the second transparent electrode 6b. ITO: 3% by weight of tin oxide) layer was used.
  • the laminated structure of the first transparent electrode 6a and the light receiving surface side collector electrode 7 was formed by reactive ion etching (RIE) in a vacuum chamber.
  • RIE reactive ion etching
  • As the etching gas a mixed gas of methane gas and hydrogen was used.
  • Example 2 a crystalline silicon solar cell of Example 2 was fabricated in the same manner as Example 1 except for the first transparent electrode 6a and the second transparent electrode 6b.
  • Tin-doped indium oxide (containing 3 wt% ITO: 3 wt% tin oxide) is formed as a transparent electrode on the entire surface of the p-type amorphous silicon thin film layer 3 to a thickness of 100 nm, and a light receiving surface side collector electrode 7 is formed thereon.
  • a crystalline silicon solar cell of Comparative Example was produced in the same manner as Example 1 except that it was formed.
  • Example 1 The photoelectric conversion characteristics of the solar cells of Example 1, Example 2, and Comparative Example produced as described above were evaluated using a solar simulator. Table 1 shows the short-circuit current (mA / cm 2 ), open-circuit voltage (V), fill factor, and photoelectric conversion efficiency (%) of each crystalline silicon solar cell.
  • Example 1 and Example 2 higher photoelectric conversion characteristics were obtained than in the comparative example. That is, according to the structure of the present invention, the carrier concentration is increased only in the region immediately below the light receiving surface side collector electrode 7 in the vicinity of the junction between the light receiving surface side transparent electrode 6 and the light receiving surface side collector electrode 7. It was found that by providing the second transparent electrode 6b having a low carrier concentration on the solar cell 7, it is possible to improve the curve factor among the solar cell characteristics. Further, at this time, it was found that the first transparent electrode 6a does not impair the light transmittance of the transparent electrode on the optical path of the low carrier incident light, so that there is no decrease in the short circuit current.
  • the photoelectric conversion efficiency is improved.
  • An excellent solar cell module can be realized.
  • one light receiving surface side collector electrode 7 and the other back surface side collector electrode 9 of the adjacent crystalline silicon solar cells may be electrically connected.
  • the present invention is not limited to this and includes a transparent electrode and a collector electrode on a light incident surface. It can be applied to solar cells with different structures.
  • the solar cell according to the present invention is useful for realizing a solar cell with reduced series resistance in the battery and excellent photoelectric conversion efficiency.

Abstract

 光電変換層の光入射面側の表面上に透明電極と集電極とをこの順で有する太陽電池であって、前記光電変換層上における所定の領域に前記集電極が形成されるとともに前記集電極の直下領域のみに前記透明電極のうち第1の透明電極が前記光電変換層および前記集電極に接触して形成され、前記光電変換層上における前記集電極が形成されていない領域および前記集電極上に前記透明電極のうち第2の透明電極が前記光電変換層または前記集電極と接触して形成され、前記第1の透明電極のキャリア濃度が、前記第2の透明電極のキャリア濃度よりも高い。

Description

太陽電池およびその製造方法、太陽電池モジュール
 本発明は、太陽電池およびその製造方法、太陽電池モジュールに関し、特に、光電変換層における光の入射面側に透明電極と集電極とを備えた太陽電池およびその製造方法、太陽電池モジュールに関する。
 太陽光を直接電気エネルギーに変換することのできる太陽電池は、石油代替エネルギー源として期待されている。このうち、結晶シリコン基板を用いた結晶シリコン太陽電池は、光電変換効率が高く、既に太陽光発電システムとして広く一般に実用化されている。その中でも、単結晶シリコンとはバンドギャップの異なる非晶質シリコン系薄膜を単結晶シリコン基板表面へ成膜して拡散電位を形成した結晶シリコン太陽電池は、ヘテロ接合太陽電池と呼ばれている。
 さらに、拡散電位を形成するための導電型非晶質シリコン系薄膜と結晶シリコン表面との間に薄い真性の非晶質シリコン層を介在させる太陽電池は、光電変換効率の最も高い結晶シリコン太陽電池の形態の一つとして知られている。結晶シリコン表面と導電型非晶質シリコン系薄膜との間に、薄い真性な非晶質シリコン層を成膜することで、成膜による新たな欠陥準位の生成を低減しつつ結晶シリコンの表面に存在する欠陥(主にシリコンの未結合手)を水素で終端化処理することができる。また、導電型非晶質シリコン系薄膜を成膜する際の、キャリア導入不純物の結晶シリコン表面への拡散を防止することもできる。
 近年、結晶シリコン太陽電池の原料問題やコストの観点から、使用する単結晶シリコン基板の厚みを低減する必要性が高まっている。このため、この単結晶シリコン基板の厚みの低減に応じて、光を基板内へ効率良く閉じ込める技術が重要となっている。また、透明電極における光吸収ロスを減らす必要性が高まっている。しかし、透明電極での光吸収ロスを減らすために透明電極のキャリア濃度を低減すると透明電極の導電性が低くなる。このため、透明電極の光透過性と導電性との両立が課題となっている。
 特許文献1には、光電変換層の表面上に形成された透明電極と、前記透明電極上の所定領域に形成された集電極とを備え、前記透明電極が、光電変換層との界面近傍および前記集電極が形成されている領域に対応する部分を高導電率領域、それ以外の部分を高光透過領域として形成される太陽電池が記載されている。しかし、この形態では光路に光吸収係数の高い高導電率領域が存在することになり、光の吸収が増加し、光電変換効率の向上が小さく、また、高光透過領域を形成するために酸素プラズマ処理を行うため、集電極である銀の酸化により導電率が低下するという問題点がある。
 特許文献2には、集電極直下の実質的に入射光の当たらない領域にのみキャリア濃度の高い領域を設けることで光路では光透過性が高く且つ導電性がある層が形成され、さらに集電極の下にはキャリア濃度が高い層が存在する結晶シリコン系太陽電池が示されている。この結晶シリコン系太陽電池では、透明電極層から集電極の接合が良好となり、光電変換効率が向上している。
特開2004-214442号公報 特開2011-77454号公報
 しかしながら、上記特許文献2の技術では集電極の影となる領域のみを高キャリア濃度透明電極とすることにより、高キャリア濃度透明電極での光吸収ロスを無くし、透明電極から集電極への接合の改善により直列抵抗を低減することを実現しているが、その効果は十分とはいえない。
 また、特許文献2では集電極と同様の形状の高キャリア濃度透明電極を形成後、その上に集電極を形成する必要があるため、集電極形成時に正確な位置合わせが必要となる。この場合は、集電極との位置や電極の形成される幅にずれが生じる可能性があり、高キャリア濃度透明電極が集電極から露出した場合には該露出した高キャリア濃度透明電極による光吸収ロスが生じるおそれがある。さらに、高電流化を目指して集電極の狭幅化が進むことで、その可能性は高まる。このような問題は、光電変換層における光の入射面側に透明電極と集電極とを備えた太陽電池において共通の課題である。
 本発明は、上記に鑑みてなされたものであって、光電変換層における光の入射面側に透明電極と集電極とを備えた太陽電池において、透明電極による光吸収ロスが抑制されるとともに電池内の直列抵抗が低減され光電変換効率に優れた太陽電池およびその製造方法、太陽電池モジュールを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池は、光電変換層の光入射面側の表面上に透明電極と集電極とをこの順で有する太陽電池であって、前記光電変換層上における所定の領域に前記集電極が形成されるとともに前記集電極の直下領域のみに前記透明電極のうち第1の透明電極が前記光電変換層および前記集電極に接触して形成され、前記光電変換層上における前記集電極が形成されていない領域および前記集電極上に前記透明電極のうち第2の透明電極が前記光電変換層または前記集電極と接触して形成され、前記第1の透明電極のキャリア濃度が、前記第2の透明電極のキャリア濃度よりも高いこと、を特徴とする。
 本発明によれば、透明電極による光吸収ロスが抑制されるとともに電池内の直列抵抗が低減された光電変換効率に優れた結晶シリコン系太陽電池が得られる、という効果を奏する。
図1は、本発明の実施の形態1にかかる結晶シリコン系太陽電池の概略構成を示す要部斜視図である。 図2-1は、本実施の形態1にかかる結晶シリコン系太陽電池の製造方法の手順の一例を示す断面図である。 図2-2は、本実施の形態1にかかる結晶シリコン系太陽電池の製造方法の手順の一例を示す断面図である。 図2-3は、本実施の形態1にかかる結晶シリコン系太陽電池の製造方法の手順の一例を示す断面図である。 図2-4は、本実施の形態1にかかる結晶シリコン系太陽電池の製造方法の手順の一例を示す断面図である。 図2-5は、本実施の形態1にかかる結晶シリコン系太陽電池の製造方法の手順の一例を示す断面図である。 図2-6は、本実施の形態1にかかる結晶シリコン系太陽電池の製造方法の手順の一例を示す断面図である。 図3は、本発明の実施の形態2にかかる結晶シリコン系太陽電池の概略構成を示す要部断面図である。 図4は、本発明の実施の形態3にかかる結晶シリコン系太陽電池モジュールの概略構成を示す要部斜視図である。 図5は、本発明の実施の形態3にかかる結晶シリコン系太陽電池モジュールにおける太陽電池セル同士の接続部を示す断面拡大図である。
 以下に、本発明にかかる太陽電池およびその製造方法、太陽電池モジュールの実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
 図1は、本発明の実施の形態1にかかる結晶シリコン系太陽電池の概略構成を示す要部斜視図である。本実施の形態にかかる結晶シリコン系太陽電池は、光電変換層を構成するn型単結晶シリコン基板1の一面上に実質的に真性なi型非晶質シリコン系薄膜層2とp型非晶質シリコン系薄膜層3とがこの順で積層され、n型単結晶シリコン基板1の他面上に実質的に真性なi型非晶質シリコン系薄膜層4とn型非晶質シリコン系薄膜層5とがこの順で積層されている。また、p型非晶質シリコン系薄膜層3上の所定の領域には、受光面側透明電極6および受光面側集電極7を備える。n型非晶質シリコン系薄膜層5上の全面には裏面側透明電極8が形成され、該裏面側透明電極8上の所定の領域に裏面側集電極9が形成されている。n型単結晶シリコン基板1の一面側の表面には、テクスチャと呼ばれる凹凸構造が形成されている。受光面側透明電極6は、第1の透明電極6aと第2の透明電極6bとからなる。
 この結晶シリコン系太陽電池では、光の入射面側である一面側における電極として、p型非晶質シリコン系薄膜層3上における所定の領域に受光面側集電極7が設けられ、p型非晶質シリコン系薄膜層3上における該受光面側集電極7の直下の領域のみに第1の透明電極6aがp型非晶質シリコン系薄膜層3および受光面側集電極7に接触して設けられる。すなわち、受光面側集電極7は、第1の透明電極6aの直上領域の全面のみに積層され、n型単結晶シリコン基板1の面方向において第1の透明電極6aと受光面側集電極7との形状は略同じとされている。
 また、p型非晶質シリコン系薄膜層3上において、受光面側集電極7が設けられていない領域および受光面側集電極7上に第2の透明電極6bが設けられている。第2の透明電極6bは、p型非晶質シリコン系薄膜層3と受光面側集電極7と第1の透明電極6aとに接触して、受光面側集電極7と第1の透明電極6aとを覆って設けられている。ここで、第1の透明電極6aおよび第2の透明電極6bは、ともに光透過性および導電性を有するが、第1の透明電極6aは第2の透明電極6bより高いキャリア濃度を有している。したがって、第1の透明電極6aは第2の透明電極6bよりも高い導電性を有し、第2の透明電極6bは第1の透明電極6aよりも高い光透過性を有する。
 まず、本実施の形態にかかる結晶シリコン系太陽電池における単結晶シリコン基板について説明する。一般的に単結晶シリコン基板は、導電性を持たせるためにシリコン(Si)に対して電荷を供給する不純物を含有させる。一般に単結晶シリコン基板には、Si原子に対して電子を導入するリン原子等を供給したn型と、ホール(正孔)を導入するボロン原子等を供給したp型とがある。へテロ接合太陽電池を構成する場合には、単結晶シリコン基板へ入射した光が最も多く吸収される光入射側のへテロ接合を逆接合として強い電場を設けることで、電子正孔対を効率的に分離回収することができる。したがって、光入射側のヘテロ接合は、逆接合とすることが好ましい。
 一方で、正孔と電子とを比較した場合、有効質量及び散乱断面積の小さい電子の方が一般的に移動度は大きくなる。以上の観点から、本実施の形態において使用する単結晶シリコン半導体基板は、n型単結晶シリコン半導体基板であることが好ましく、この場合光入射面にp型非晶質シリコン系薄膜層、裏面にn型非晶質シリコン系薄膜層とすることが好ましい。したがって、本実施の形態においては、単結晶シリコン基板としてn型単結晶シリコン基板1を使用する場合について説明する。
 また、光閉じ込めの観点から、単結晶シリコン基板の裏面側の裏面側透明電極8上および裏面側集電極9上に反射層を形成することが好ましい。反射層とは、光を反射する機能を太陽電池に付加する層を意味する。反射層としては、例えば銀(Ag)やアルミニウム(Al)などの金属層を用いてもよく、酸化チタン(TiO)や硫酸バリウム(BaSO)、酸化マグネシウム(MgO)などの粒子を含んだ白色高反射材料を用いて形成してもよい。
 n型単結晶シリコン基板1は、光入射面(受光面)が(100)面であるように切り出されていることが好ましい。これは、単結晶シリコン基板をエッチングする場合に、(100)面と(111)面のエッチングレートが異なる異方性エッチングによって容易にテクスチャ構造を形成できるためである。一般的にテクスチャサイズは、単結晶シリコン基板表面のエッチングが進行するほど大きくなる。例えば、単結晶シリコン基板表面のエッチング時間を長くすることにより、テクスチャサイズは大きくなる。また、エッチングの反応速度が大きくなるように、エッチャント濃度やエッチャント供給速度の増加、エッチング液温の上昇等を図ることによってもテクスチャサイズを大きくすることができる。
 また、単結晶シリコン基板表面に形成されたテクスチャの鋭い谷部(凹部)では、薄膜を成膜する際の圧縮応力によって欠陥が発生しやすい。このため、テクスチャ形成のエッチング後に、形成したテクスチャの谷(凹部)や山(凸部)の形状を緩和する工程として、(100)面と(111)面の選択性の低い等方性エッチングを行うことが好ましい。
 実質的に真性なi型非晶質シリコン系薄膜層2は、n型単結晶シリコン基板1とp型非晶質シリコン系薄膜層3との間に設けられ、例えばシリコンと水素で構成されるi型水素化非晶質シリコン層であることが好ましい。この場合は、i型水素化非晶質シリコン層のCVD成膜時に、n型単結晶シリコン基板1への不純物拡散を抑えつつ、n型単結晶シリコン基板1表面のパッシベーションを有効に行うことができる。
 p型非晶質シリコン系薄膜層3は、例えばp型水素化非晶質シリコン層やp型酸化非晶質シリコン層であることが好ましい。不純物拡散や直列抵抗の観点からは、p型非晶質シリコン系薄膜層3にp型水素化非晶質シリコン層を用いることが好ましい。一方で、ワイドギャップの低屈折率層として光学的なロスを低減できる観点からは、p型非晶質シリコン系薄膜層3にp型酸化非晶質シリコン層を用いることもできる。
 実質的に真性なi型非晶質シリコン系薄膜層4は、n型単結晶シリコン基板1とn型非晶質シリコン系薄膜層5との間に設けられ、例えばシリコンと水素で構成されるi型水素化非晶質シリコン層であることが好ましい。
 n型非晶質シリコン系薄膜層5としては、n型水素化非晶質シリコンを用いることが好ましい。本実施の形態の結晶シリコン系太陽電池では、n型単結晶シリコン基板1の裏面にi型シリコン系薄膜層であるi型非晶質シリコン系薄膜層4およびn型シリコン系薄膜層であるn型非晶質シリコン系薄膜層5が形成されることにより、いわゆるBSF(Back Surface Field)構造が形成されている。
 受光面側透明電極6(第1の透明電極6a、第2の透明電極6b)および裏面側透明電極8の役割は、光電変換層(n型単結晶シリコン基板1)から集電極へのキャリアの輸送であり、このための導電性が必要となる。
 第1の透明電極6aは、受光面側集電極7の影となる領域に形成されるため、高いキャリア濃度を有した導電性の高い透明電極としても光吸収ロスが増加することなく、第1の透明電極6aと受光面側集電極7間のキャリア輸送特性を改善することができる。一方、第2の透明電極6bは、一部が光電変換層(n型単結晶シリコン基板1)への入射光の光路に位置するため、光透過性を考慮したキャリア濃度と膜厚とに設定される必要がある。また、受光面側集電極7を覆うように形成された第2の透明電極6bは、受光面側透明電極6全体と受光面側集電極7との接触面積を増加させることによりコンタクト抵抗を低減して受光面側透明電極6から受光面側集電極7への導電性を向上させる効果がある。加えて、第2の透明電極6bは、受光面側透明電極6と受光面側集電極7との密着性を向上させる効果、受光面側集電極7が外部に曝されなくなるため受光面側集電極7を保護する効果がある。
 第1の透明電極6a、第2の透明電極6bおよび裏面側透明電極8は、光透過性を有した導電膜であればよく、例えば酸化インジウム、酸化亜鉛、酸化錫などの導電性酸化物材料を単独もしくは混合して用いることができる。さらに、これらの材料に導電性のドーピング材料を添加することができる。酸化インジウムに添加するドーピング材料には、例えば亜鉛や錫、チタン、タングステン、モリブデン、ケイ素、セリウムなどが挙げられる。酸化亜鉛に添加するドーピング材料には、例えばアルミニウムやガリウム、ホウ素、ケイ素、炭素などが挙げられる。酸化錫に添加するドーピング材料には、例えばフッ素などが挙げられる。
 第1の透明電極6a、第2の透明電極6bおよび裏面側透明電極8の成膜方法としては、例えばスパッタリング法やMOCVD法などが挙げられ、特に量産性の観点からスパッタリング法が好ましい。透明電極作製時の基板温度は、150℃以下が好ましい。透明電極作製時の基板温度がこれよりも高い高温となると、非晶質シリコン層から水素が脱離し、Si原子にダングリングボンドが発生し、キャリアの再結合中心となりうる場合がある。
 本発明では、第1の透明電極6aおよび第2の透明電極6bに用いられる導電性酸化物材料のキャリア濃度が異なることが重要である。一般的に光電変換装置の透明電極として用いられる導電性酸化物のキャリア濃度は、1×1018~1×1021cm-3程度であり、第2の透明電極6bのキャリア濃度はこの範囲にあることが好ましい。この範囲未満のキャリア濃度では電極として十分な導電性を発現することが困難となり、これを超えるキャリア濃度では、自由電子による吸収や反射によって透明性が悪くなる場合がある。
 一方、受光面側集電極7に用いられる金属のキャリア濃度は1×1029cm-3程度であり、第1の透明電極6aのキャリア濃度は第2の透明電極6bのキャリア濃度と受光面側集電極7のキャリア濃度との間にあることが好ましい。具体的には、第1の透明電極6aのキャリア濃度は、1×1021~5×1023cm-3であることが好ましく、さらに好ましくは3×1021~1×1023cm-3である。キャリア濃度がこれら範囲にあることで、第1の透明電極6aおよび第2の透明電極6bの接合界面でのキャリア輸送ロスを抑えながら、受光面側透明電極6から受光面側集電極7へのキャリア輸送特性を向上することが可能となり、太陽電池の直列抵抗の低減とそれに伴う光電変換効率の向上が可能となる。
 受光面側集電極7および裏面側集電極9には、導電性の面から銀(Ag)や銅(Cu)などが用いられる。これらの集電極は、例えば金属の微粉末と熱硬化性樹脂とによって構成されるペースト電極を印刷する方法やめっき法などにより櫛型状に形成される。本実施の形態では集電極を透明電極で覆うことで、集電極の金属のマイグレーション等による電気特性の悪化を防ぐことができる。特に、CuはAgと比較し大気中で酸化しやすいが、本実施の形態により集電極の酸化を抑制することが可能である。また、有機材料よりも水分透過性の低い無機材料の透明電極によって集電極を覆うことにより、樹脂材料が集電極に接して封止されたモジュールよりも水分による劣化が少ないモジュールを実現することができる。
 つぎに、上記のように構成された実施の形態1にかかる結晶シリコン系太陽電池の製造方法について図2-1~図2-6を参照して説明する。図2-1~図2-6は、本実施の形態1にかかる結晶シリコン系太陽電池の製造方法の手順の一例を示す断面図である。
 まず、表面にテクスチャと呼ばれる凹凸構造を有するn型単結晶シリコン基板1を形成する。すなわち、n型単結晶シリコンのインゴットから主面が(100)面となるように結晶シリコン基板をスライスした後、アルカリ水溶液、例えばNaOH水溶液やKOH水溶液などを用いたウェットエッチングにより該結晶シリコン基板の表面に凹凸構造を形成する。シリコン基板は面方位によってアルカリ水溶液によるエッチング速度が異なる。このため、例えば面方位が(100)のシリコン基板をエッチングするとエッチングされにくい(111)面が斜め方向に現れ、最終的にはピラミッド形状の凹凸構造がシリコン基板上に施される。これにより、表面にテクスチャを有するn型単結晶シリコン基板1が得られる。なお、図中においては、テクスチャの記載は省略する。
 つぎに、このn型単結晶シリコン基板1の1面側(光入射面側)に、実質的に真性なi型非晶質シリコン系薄膜層2として例えばi型水素化非晶質シリコン層を形成する。つぎに、i型非晶質シリコン系薄膜層2上に、p型非晶質シリコン系薄膜層3として例えばp型水素化非晶質シリコン層を形成する(図2-1)。
 つぎに、n型単結晶シリコン基板1の他面側(裏面側)に、実質的に真性なi型非晶質シリコン系薄膜層4として例えばi型水素化非晶質シリコン層を形成する。つぎに、i型非晶質シリコン系薄膜層4上に、n型非晶質シリコン系薄膜層5として例えばn型水素化非晶質シリコン層を形成してBSF構造を形成する(図2-2)。
 このようなn型単結晶シリコン基板1への非晶質シリコン系薄膜の成膜方法としては、特にプラズマCVD法を用いることが好ましい。プラズマCVD法を用いた場合のシリコン系薄膜の形成条件としては、例えば、基板温度100~300℃、圧力5~100Pa、高周波パワー密度1m~500mW/cmが好ましい。非晶質シリコン系薄膜の形成に使用する原料ガスとしては、シラン(SiH)、ジシラン(Si)等のシリコン含有ガス、またはそれらのガスと水素(H)を混合したものが用いられる。
 p型の非晶質シリコン系薄膜を形成するためのドーパントとしては、例えばIII族元素であるボロン(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)が挙げられる。n型の非晶質シリコン系薄膜を形成するためのドーパントとしては、例えばV族元素である窒素(N)、リン(P)、砒素(As)、アンチモン(Sb)が挙げられる。非晶質シリコン系薄膜の成膜時に原料ガスに上記のドーパントの少なくとも一つを含む化合物ガスを混合することによって、所望のp型またはn型の非晶質シリコン系薄膜を形成することが可能である。
 つぎに、p型非晶質シリコン系薄膜層3上の全面に第1の透明電極6aとして例えば酸化亜鉛膜を形成し、n型非晶質シリコン系薄膜層5上の全面に裏面側透明電極8として例えば酸化亜鉛膜を形成する(図2-3)。第1の透明電極6aおよび裏面側透明電極8の成膜方法としては、例えばスパッタリング法やMOCVD法などを用いることができる。
 つぎに、第1の透明電極6a上の所定の位置に受光面側集電極7を形成し、また裏面側透明電極8上の所定の位置に裏面側集電極9を形成する(図2-4)。受光面側集電極7および裏面側集電極9の形成には、インクジェット、スクリーン印刷、導線接着、スプレー等の公知技術を用いることができるが、生産性の観点からスクリーン印刷がより好ましい。
 受光面側集電極7および裏面側集電極9は、例えばエポキシ樹脂に銀(Ag)の微粉末を練りこんだ銀(Ag)ペーストを用いて、スクリーン印刷法によりフィンガー部とバスバー部(図示せず)とを高さ約10μm~30μm、幅100μm~500μmの寸法に形成され、100℃~250℃で焼成硬化して形成される。フィンガー部は、1mm~10mm間隔で複数のラインが互いに平行に形成される。バスバー部は、フィンガー部に接続されてフィンガー部に流れる電流を集合させる。このような受光面側集電極7および裏面側集電極9をスクリーン印刷法により形成した場合は、長手方向に垂直な断面において中央部が厚く、縁の部分は広がって薄くなる。
 つぎに、受光面側集電極7をマスクとして第1の透明電極6aを異方性エッチングして第1の透明電極6aをパターニングする(図2-5)。この方法により、受光面側集電極7直下以外の領域の第1の透明電極6aを除去することにより、位置合わせ等を必要とせずに正確に受光面側集電極7直下に該受光面側集電極7と同様の形状の第1の透明電極6aを形成することが可能である。
 このようなエッチング方法には、反応性のガスなどを用いるドライエッチング法と、溶液を用いるウェットエッチング法とが挙げられる。ウェットエッチング法は、第1の透明電極6aの材料に酸可溶性の導電性酸化物を使用する場合に用いられ、例えば酸化インジウム、酸化亜鉛、これらの導電性酸化物にその酸可溶性を大きく損なわない範囲で少量の金属酸化物が添加されたもの(例えば錫ドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO))、酸化インジウムと酸化亜鉛の混合物(IZO)などに用いられる。この中でも、特に、第1の透明電極6aとして酸化亜鉛を含む金属酸化物層を用いる場合のパターン加工に好適である。エッチング液としては主に、塩酸、シュウ酸、硫酸、臭化水素酸、またはこれらの混合酸を含む水溶液が用いられる。
 つぎに、n型単結晶シリコン基板1の1面側(光入射面側)において、p型非晶質シリコン系薄膜層3上における受光面側集電極7が形成されていない領域上と受光面側集電極7上とに第2の透明電極6bを形成する(図2-6)。第2の透明電極6bは、入射光の光路上に位置するため、その膜厚は導電性と光透過性との点から50nm~200nmであることが好ましい。このとき、第1の透明電極6aが第2の透明電極6bより薄い場合は、受光面側集電極7の縁の部分が薄いという形状に起因して、図2-6に示すように第1の透明電極6aおよび受光面側集電極7を覆うように形成される。これにより、受光面側透明電極6と受光面側集電極7との密着性が改善され、さらに受光面側透明電極6と受光面側集電極7との接触面積が増加することでこれらの間のコンタクト抵抗が低下する効果がある。このときの第1の透明電極6aの膜厚は10nm~100nmであることが好ましく、より好ましくは10nm~50nmである。以上の工程を実施することにより、図1に示される構造の結晶シリコン系太陽電池が得られる。
 また、これらの層の上に、例えばエチレン・ビニル・アセテート(EVA)樹脂のようなフィルムを保護層としてコーティングすることで、結晶シリコン系太陽電池の物理的な強度を向上することが可能である。さらに、酸素や水分によるシリコン層や電極層の劣化を防ぐ役割を果たすこともできる。
 以上のような実施の形態1にかかる結晶シリコン系太陽電池は、光入射面側において、入射光の光路には光透過性が高く且つ導電性を有する第2の透明電極6bが形成され、受光面側集電極7の影となる受光面側集電極7の直下の領域のみにキャリア濃度が高く導電性の高い第1の透明電極6aが形成される。これにより、透明電極による光吸収ロスが増加することなく、受光面側透明電極6と受光面側集電極7との電気接合が良好となり、結晶シリコン系太陽電池の直列抵抗成分を低減して、光電変換効率を向上させることが可能となる。
 さらに、受光面側集電極7上に形成された第2の透明電極6bは、受光面側透明電極6全体の断面積を増加させることにより抵抗を低減して受光面側透明電極6から受光面側集電極7への導電性を向上させる効果があり、結晶シリコン系太陽電池の直列抵抗成分を低減して、光電変換効率を向上させることが可能となる。また、受光面側集電極7上に形成された第2の透明電極6bが、受光面側集電極7が設けられていない領域に形成された第2の透明電極6bと分断されている場合は、受光面側集電極7上に形成された第2の透明電極6bは受光面側集電極7の一部として機能し、受光面側集電極7全体の断面積を増加させることにより抵抗を低減して受光面側集電極7の導電性を向上させる効果がある。
 また、p型非晶質シリコン系薄膜層3上の全面に形成された第1の透明電極6aを、受光面側集電極7をマスクとしてエッチングすることにより、位置合わせ等の処理を必要することなく受光面側集電極7直下に該受光面側集電極7と同じ幅の第1の透明電極6aを容易に形成することができる。受光面側集電極7と高キャリア濃度層である第1の透明電極6aとの位置ずれや電極幅のずれが生じた場合には、受光面側集電極7から露出した第1の透明電極6aによる光吸収ロスが生じるおそれがある。
 しかし、実施の形態1においては、受光面側集電極7をマスクとして第1の透明電極6aをエッチングしてパターニングするため、受光面側集電極7と第1の透明電極6aとの位置ずれや電極幅のずれが無く、受光面側集電極7と第1の透明電極6aとの位置ずれや電極幅のずれに起因した性能低下が発生せず、良好な光電変換効率が得られる。
 また、第1の透明電極6aと第2の透明電極6bとを別々に成膜するため、第1の透明電極6aと第2の透明電極6bとを異なる膜厚で形成することが可能である。第1の透明電極6aを第2の透明電極6bより薄く形成することで第2の透明電極6bが受光面側集電極7を覆うように形成される。これにより、受光面側透明電極6と受光面側集電極7との密着性が改善され、さらに受光面側透明電極6と受光面側集電極7との接触面積が増加することでこれらの間のコンタクト抵抗が低下する効果がある。
 したがって、実施の形態1によれば、透明電極による光吸収ロスを低減するとともに電流取り出しにおける直列抵抗成分を低減して、光電変換効率に優れた結晶シリコン系太陽電池が得られる。
実施の形態2.
 図3は、本発明の実施の形態2にかかる結晶シリコン系太陽電池の概略構成を示す要部断面図である。実施の形態2では、実施の形態1で説明した結晶シリコン系太陽電池において第1の透明電極6aの膜厚を第2の透明電極6bの膜厚よりも十分に厚く形成する場合について説明する。実施の形態2にかかる結晶シリコン系太陽電池におけるこれ以外の構成は実施の形態1にかかる結晶シリコン系太陽電池と同じであるので、詳細な説明は省略する。
 実施の形態2にかかる結晶シリコン系太陽電池では、図3に示すように第1の透明電極6aの膜厚が第2の透明電極6bの膜厚よりも十分に厚く形成される。そして、第2の透明電極6bが、p型非晶質シリコン系薄膜層3上において受光面側集電極7が存在しない領域および受光面側集電極7上に形成されて、第1の透明電極6aの側部に接触して形成される。これにより、第1の透明電極6aと第2の透明電極6bとの接触面積が大きくなるためコンタクト抵抗を低下でき、第1の透明電極6aと第2の透明電極6bとの電気接続が良好となり、光電変換効率を向上させることが可能となる。このとき、第2の透明電極6bを蒸着等の異方性の強い製膜法で製膜した場合は、受光面側集電極7が存在しない領域と受光面側集電極7上とに分離されるが、スパッタリング法などの異方性の弱い製膜法で製膜した場合は、第1の透明電極6aの側面全面を覆うように形成され、実施の形態1と同様に接触面積の増加によるコンタクト抵抗の低減や密着性の向上、金属電極の保護といった効果が得られる。
 また、厚膜の透明電極は粗面化が容易である。すなわち、高キャリア濃度層である第1の透明電極6aを厚膜化したことにより第1の透明電極6aの表面を容易に粗面化することができる。これにより、第1の透明電極6aの表面を粗面化して第1の透明電極6aと受光面側集電極7との接触面積を容易に増加させることが可能であり、第1の透明電極6aと受光面側集電極7間のコンタクト抵抗を低下できる効果がある。
 第2の透明電極6bの膜厚は、実施の形態1と同様に50nm~200nmであり、第1の透明電極6aの膜厚は200nm~500nmであることが好ましい。
 実施の形態2にかかる結晶シリコン系太陽電池は、第1の透明電極6aの膜厚が第2の透明電極6bの膜厚よりも十分に厚く形成されること以外は実施の形態1にかかる結晶シリコン系太陽電池と同様にして作製される。
 したがって、実施の形態2によれば、実施の形態1の場合と同様に電流取り出しにおける直列抵抗成分を低減して、光電変換効率に優れた結晶シリコン系太陽電池が得られる。
 また、実施の形態2によれば、第1の透明電極6aの膜厚が第2の透明電極6bの膜厚よりも十分に厚く形成され、第1の透明電極6aと第2の透明電極6bとの接触面積が大きくなるため、コンタクト抵抗の低下により第1の透明電極6aと第2の透明電極6bとの電気接続が良好となり、光電変換効率を向上させることが可能となる。
実施の形態3.
 図4は、本発明の実施の形態3にかかる結晶シリコン系太陽電池モジュールの概略構成を示す斜視図である。また、図5は、本発明の実施の形態3にかかる結晶シリコン系太陽電池モジュールにおける太陽電池セル同士の接続部を示す断面拡大図である。実施の形態3にかかる結晶シリコン系太陽電池モジュールは、太陽電池セルとして実施の形態1、もしくは実施の形態2で説明した結晶シリコン系太陽電池セルが2つ以上電気的に直列または並列に接続されており、タブ線と集電極との接合部の形成に導電フィルムと圧着法を用いている。以下、太陽電池セル10が直列接続された結晶シリコン系太陽電池モジュールについて説明する。
 太陽電池セル10同士の接続はAgやCuなどを用いたタブ線11を用いて行われている。すなわち、ある1つの太陽電池セル10の受光面側の集電極と、該太陽電池セル10の一方に隣接する太陽電池セル10の裏面側の集電極とが接続される。また、該太陽電池セル10の裏面側の集電極と、該太陽電池セル10の他方に隣接する太陽電池セル10の受光面側の集電極とが接続される。そして、複数の太陽電池セルについて同様の接続が行われることにより、一つの結晶シリコン系太陽電池モジュールが構成されている。
 ここで、太陽電池セル10の集電極上にタブ線11を接合することで太陽電池セル10の光電変換層13で発電された電気を外部に取り出す必要があり、一般的には集電極とタブ線11との接合には、はんだ接合が用いられる。しかし、はんだ接合では、はんだが金属上で拡散して合金化することで良好な接合を得る。このため、上記の実施の形態の太陽電池のように受光面側集電極7上に透明電極を有している構造では、透明電極とタブ線11との界面で剥離や接触不良が生じる可能性がある。
 一方、熱硬化型樹脂の中に導電粒子を分散させた導電フィルム12は、加熱・加圧によって導通し、同時に樹脂が熱硬化することではんだ接合と同等レベルの確実な導通を得られる。また、熱硬化型樹脂は、透明電極に対しても金属と同様に接合することが可能である。そこで、本実施の形態にかかる結晶シリコン系太陽電池モジュールでは、太陽電池セル10の集電極とタブ線11との間に導電フィルム12を挟んで圧着することにより、集電極とタブ線11との機械的電気的な接合部が形成されている。なお、図5における光電変換層13は、図1または図2におけるn型単結晶シリコン基板1、i型非晶質シリコン系薄膜層2、p型非晶質シリコン系薄膜層3、i型非晶質シリコン系薄膜層4、n型非晶質シリコン系薄膜層5をまとめて示している。
 したがって、実施の形態3にかかる結晶シリコン系太陽電池モジュールによれば、太陽電池セル10同士を接続する透明電極とタブ線11の接合が良好となり、高効率で信頼性に優れた太陽電池モジュールが得られる。
(実施例)
 つぎに、具体的な実施例に基づいて本発明を説明する。なお、本発明は以下の記載に限定されるものではない。
実施例1.
 本発明の実施例として、図1に示す構造の結晶シリコン系太陽電池を上述した実施の形態において説明した方法に従って製造した。まずn型単結晶シリコン基板1として、約200μmの厚みを有するとともに主面が(100)面を有し、表面に数μmから数十μmの高さを有する光閉じ込めのためのピラミッド状凹凸が形成されている基板を用意した。
 このn型単結晶シリコン基板1の一面側(入射面側)に、実質的に真性なi型非晶質シリコン系薄膜層2として、約5nmの厚みを有するi型水素化非晶質シリコン層をプラズマCVD法を用いて形成した。そして、i型非晶質シリコン系薄膜層2上に、p型非晶質シリコン系薄膜層3として約7nmの厚みを有するp型水素化非晶質シリコン層をプラズマCVD法を用いて形成した。
 つぎに、n型単結晶シリコン基板1の他面側(裏面側)に、実質的に真性なi型非晶質シリコン系薄膜層4として、約5nmの厚みを有するi型水素化非晶質シリコン層をプラズマCVD法を用いて形成した。そして、i型非晶質シリコン系薄膜層4上に、n型非晶質シリコン系薄膜層5として約10nmの厚みを有するn型水素化非晶質シリコン層をプラズマCVD法を用いて形成してBSF構造を形成した。
 つぎに、p型非晶質シリコン系薄膜層3上の全面に、第1の透明電極6aを50nmの厚みでスパッタリング法を用いて形成した。第1の透明電極6aの成膜において、ターゲット材料にはアルミニウムを3重量%ドープした酸化亜鉛(3wt%AZO)を使用し、基板温度150度として成膜した。このとき、第1の透明電極6aの成膜と同条件でガラス基板上に成膜した3wt%AZOのキャリア濃度は、1×1021cm-3であった。
 つぎに、n型非晶質シリコン系薄膜層5上の全面に、裏面側透明電極8を110nmの厚みでスパッタリング法を用いて形成した。裏面側透明電極8の成膜において、ターゲット材料には錫ドープ酸化インジウム(3wt%ITO:酸化錫3重量%含有)を使用し、基板温度150度として成膜した。このとき、裏面側透明電極8の成膜と同条件でガラス基板上に成膜した3wt%ITOのキャリア濃度は、3×1020cm-3であった。
 つぎに、第1の透明電極6a上における所定の位置に銀ペーストをスクリーン印刷して櫛形形状の電極を形成し、受光面側集電極7とした。また、裏面側透明電極8上における所定の位置に銀ペーストをスクリーン印刷して櫛形形状の電極を形成し、裏面側集電極9とした。それぞれの電極において、電極の幅は500μm、フィンガー部の間隔は5mmとした。
 つぎに、受光面側集電極7をマスクとして第1の透明電極6aをウェットエッチングして、受光面側集電極7の直下領域以外の第1の透明電極6aを除去した。エッチング液には、0.3%塩酸水溶液を用いた。
 つぎに、受光面側集電極7と第1の透明電極6aとを覆うようにn型単結晶シリコン基板1の入射面側の全面に、第2の透明電極6bを成膜した。第2の透明電極6bの成膜において、ターゲット材料にはアルミニウムを0.5重量%ドープした酸化亜鉛(0.5wt%AZO)を使用し、基板温度150度として成膜した。このとき、裏面側透明電極8の成膜と同条件でガラス基板上に成膜した0.5wt%AZOのキャリア濃度は、3×1020cm-3であった。これにより、第2の透明電極6bは、p型非晶質シリコン系薄膜層3上における受光面側集電極7が設けられていない領域および受光面側集電極7上に形成され、p型非晶質シリコン系薄膜層3と受光面側集電極7と第1の透明電極6aとに接触している。
 このとき、導電性と光透過性とを両立させることに加え、その上部に積層されるEVA樹脂と第2の透明電極6bとの屈折率差を考慮して第2の透明電極6bの膜厚を設計することで、光学干渉による反射防止効果が得られる。これにより、受光面側集電極7による反射光を効率良く再反射させてn型単結晶シリコン基板1内へ入射させることが可能である。本実施例ではEVA樹脂の屈折率が1.5、第2の透明電極6bの屈折率を1.9とし、第2の透明電極6bの膜厚を110nmとした。最後に、これらの層の上にEVA樹脂フィルムを保護層としてコーティングして、実施例1の結晶シリコン系太陽電池セルを得た。
実施例2.
 第1の透明電極6aに厚さ50nmの錫ドープ酸化インジウム(10wt%ITO:酸化錫10重量%含有)層を使用し、第2の透明電極6bに厚さ100nmの錫ドープ酸化インジウム(3wt%ITO:酸化錫3重量%含有)層を使用した。第1の透明電極6aと受光面側集電極7との積層構造は、真空チャンバー内で反応性イオンエッチング(RIE)により形成した。エッチングガスとしては、メタンガスと水素の混合ガスを用いた。このとき、同条件でガラス基板上に成膜した10wt%ITO、3wt%ITOのキャリア濃度はそれぞれ8×1020cm-3、3×1020cm-3となっていた。そして、第1の透明電極6aおよび第2の透明電極6b以外は、実施例1と同様にして実施例2の結晶シリコン系太陽電池セルを作製した。
(比較例)
 p型非晶質シリコン系薄膜層3上の全面に透明電極として錫ドープ酸化インジウム(3wt%ITO:酸化錫3重量%含有)を厚み100nmで形成し、その上に受光面側集電極7を形成した以外は、実施例1と同様にして比較例の結晶シリコン系太陽電池セルを作製した。
 上記のようにして作製した実施例1、実施例2および比較例の太陽電池セルの光電変換特性を、ソーラーシミュレータを用いて評価した。各結晶シリコン系太陽電池セルの短絡電流(mA/cm)、開放電圧(V)、曲線因子、光電変換効率(%)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1、実施例2では、比較例に比べて高い光電変換特性が得られることがわかった。すなわち、本発明の構造により、受光面側透明電極6と受光面側集電極7との接合部付近のうち受光面側集電極7の直下領域のみキャリア濃度を高くし、さらに受光面側集電極7上にキャリア濃度の低い第2の透明電極6bを備えることで、太陽電池特性のうち特に曲線因子を向上させることが可能であることがわかった。またこのとき、第1の透明電極6aが低キャリア入射光の光路上の透明電極の光透過性を損なわないため、短絡電流の低下がないことがわかった。
 また、上記の実施の形態で説明した構成を有する結晶シリコン系太陽電池セルを複数形成し、隣接する結晶シリコン系太陽電池セル同士を電気的に直列または並列に接続することにより、光電変換効率に優れた太陽電池モジュールが実現できる。この場合は、例えば隣接する結晶シリコン系太陽電池セルの一方の受光面側集電極7と他方の裏面側集電極9とを電気的に接続すればよい。
 なお、上記の実施の形態および実施例は単結晶シリコン基板を用いたヘテロ接合太陽電池について説明しているが、本発明はこれに限定されず光の入射面に透明電極と集電極とを備えた構造の太陽電池について適用できる。
 以上のように、本発明にかかる太陽電池は、電池内の直列抵抗が低減され光電変換効率に優れた太陽電池の実現に有用である。
 1 n型単結晶シリコン基板
 2 i型非晶質シリコン系薄膜層
 3 p型非晶質シリコン系薄膜層
 4 i型非晶質シリコン系薄膜層
 5 n型非晶質シリコン系薄膜層
 6 受光面側透明電極
 6a 第1の透明電極
 6b 第2の透明電極
 7 受光面側集電極
 8 裏面側透明電極
 9 裏面側集電極
 10 太陽電池セル
 11 タブ線
 12 導電フィルム
 13 光電変換層

Claims (7)

  1.  光電変換層の光入射面側の表面上に透明電極と集電極とをこの順で有する太陽電池であって、
     前記光電変換層上における所定の領域に前記集電極が形成されるとともに前記集電極の直下領域のみに前記透明電極のうち第1の透明電極が前記光電変換層および前記集電極に接触して形成され、
     前記光電変換層上における前記集電極が形成されていない領域および前記集電極上に前記透明電極のうち第2の透明電極が前記光電変換層または前記集電極と接触して形成され、
     前記第1の透明電極のキャリア濃度が、前記第2の透明電極のキャリア濃度よりも高いこと、
     を特徴とする太陽電池。
  2.  前記第1の透明電極の膜厚が、前記第2の透明電極の膜厚より薄く、
     前記第2の透明電極が、前記集電極に接触して前記集電極を覆って形成されていること、
     を特徴とする請求項1に記載の太陽電池。
  3.  前記第1の透明電極の膜厚が、前記第2の透明電極の膜厚より厚く、
     前記第2の透明電極が、前記光電変換層上における前記集電極が形成されていない領域および前記集電極上に形成され、前記第1の透明電極の側部に接触して形成されていること、
     を特徴とする請求項1に記載の太陽電池。
  4.  光電変換層上の全面に、光透過性および導電性を有する第1の透明電極を形成する第1工程と、
     前記第1の透明電極上の所定の領域に集電極を形成する第2工程と、
     前記集電極をマスクとして前記第1の透明電極をエッチングすることにより前記光電変換層の面方向における前記集電極に対応する領域以外の前記第1の透明電極を除去する第3工程と、
     前記光電変換層上における前記集電極が設けられていない領域および前記集電極上に、光透過性および導電性を有するとともに前記第1の透明電極よりもキャリア濃度が低い第2の透明電極を形成する第4工程と、
     を含むことを特徴とする太陽電池の製造方法。
  5.  前記第4工程では、前記第2の透明電極の膜厚を前記第1の透明電極の膜厚よりも厚くして、前記第2の透明電極が前記集電極に接触して前記集電極を覆うように前記第2の透明電極を形成すること、
     を特徴とする請求項4に記載の太陽電池の製造方法。
  6.  前記第4工程では、前記第2の透明電極の膜厚を前記第1の透明電極の膜厚よりも薄くして、前記光電変換層上における前記集電極が形成されていない領域と前記集電極上とに分離するとともに前記第1の透明電極の側部に接触するように前記第2の透明電極を形成すること、
     を特徴とする請求項4に記載の太陽電池の製造方法。
  7.  請求項1~3のいずれか1つに記載の太陽電池の少なくとも2つ以上がタブ線により電気的に直列または並列に接続されており、前記タブ線と前記太陽電池の集電極とが導電フィルムを介して圧着により接続されていること、
     を特徴とする太陽電池モジュール。
PCT/JP2012/061640 2011-12-21 2012-05-07 太陽電池およびその製造方法、太陽電池モジュール WO2013094233A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/359,193 US9123861B2 (en) 2011-12-21 2012-05-07 Solar battery, manufacturing method thereof, and solar battery module
JP2013550140A JP5710024B2 (ja) 2011-12-21 2012-05-07 太陽電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-280068 2011-12-21
JP2011280068 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094233A1 true WO2013094233A1 (ja) 2013-06-27

Family

ID=48668142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061640 WO2013094233A1 (ja) 2011-12-21 2012-05-07 太陽電池およびその製造方法、太陽電池モジュール

Country Status (3)

Country Link
US (1) US9123861B2 (ja)
JP (1) JP5710024B2 (ja)
WO (1) WO2013094233A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050161A1 (ja) * 2013-10-04 2015-04-09 長州産業株式会社 光発電素子
JP2016111357A (ja) * 2014-12-09 2016-06-20 三菱電機株式会社 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
WO2019054239A1 (ja) * 2017-09-15 2019-03-21 ソーラーフロンティア株式会社 光電変換モジュール及び光電変換モジュールを製造する方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972294B1 (fr) * 2011-03-02 2013-04-26 Commissariat Energie Atomique Procede de gravure chimique selective
US9824899B2 (en) * 2014-01-07 2017-11-21 Mitsubishi Gas Chemical Company, Inc. Etching liquid for oxide containing zinc and tin, and etching method
US9530921B2 (en) * 2014-10-02 2016-12-27 International Business Machines Corporation Multi-junction solar cell
KR101821394B1 (ko) * 2016-01-14 2018-01-23 엘지전자 주식회사 태양전지
CN114600255A (zh) * 2020-09-09 2022-06-07 株式会社东芝 透明电极、透明电极的制造方法和电子器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263731A (ja) * 1994-03-22 1995-10-13 Canon Inc 多結晶シリコンデバイス
JPH10275926A (ja) * 1997-03-28 1998-10-13 Sanyo Electric Co Ltd 光起電力装置及びモジュール
JP2000058888A (ja) * 1998-08-03 2000-02-25 Sanyo Electric Co Ltd 太陽電池及びその製造方法
JP2001102603A (ja) * 1999-09-28 2001-04-13 Sharp Corp 薄膜太陽電池およびその製造方法
JP2004214442A (ja) * 2003-01-06 2004-07-29 Sanyo Electric Co Ltd 光起電力装置およびその製造方法
JP2005191026A (ja) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd 光起電力装置
JP2006100522A (ja) * 2004-09-29 2006-04-13 Sanyo Electric Co Ltd 光起電力装置
JP2006222320A (ja) * 2005-02-14 2006-08-24 Sanyo Electric Co Ltd 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法
WO2011024662A1 (ja) * 2009-08-27 2011-03-03 三洋電機株式会社 太陽電池ストリング及びそれを用いた太陽電池モジュール
JP2011077454A (ja) * 2009-10-01 2011-04-14 Kaneka Corp 結晶シリコン系太陽電池とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203078B2 (ja) * 1992-12-09 2001-08-27 三洋電機株式会社 光起電力素子
JP3443198B2 (ja) 1995-01-26 2003-09-02 三洋電機株式会社 太陽電池及びその製造方法
US6177711B1 (en) * 1996-09-19 2001-01-23 Canon Kabushiki Kaisha Photoelectric conversion element
JP2000299483A (ja) 1999-04-14 2000-10-24 Sanyo Electric Co Ltd 太陽電池の製造方法
JP2014241310A (ja) * 2011-10-18 2014-12-25 三菱電機株式会社 光電変換装置およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263731A (ja) * 1994-03-22 1995-10-13 Canon Inc 多結晶シリコンデバイス
JPH10275926A (ja) * 1997-03-28 1998-10-13 Sanyo Electric Co Ltd 光起電力装置及びモジュール
JP2000058888A (ja) * 1998-08-03 2000-02-25 Sanyo Electric Co Ltd 太陽電池及びその製造方法
JP2001102603A (ja) * 1999-09-28 2001-04-13 Sharp Corp 薄膜太陽電池およびその製造方法
JP2004214442A (ja) * 2003-01-06 2004-07-29 Sanyo Electric Co Ltd 光起電力装置およびその製造方法
JP2005191026A (ja) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd 光起電力装置
JP2006100522A (ja) * 2004-09-29 2006-04-13 Sanyo Electric Co Ltd 光起電力装置
JP2006222320A (ja) * 2005-02-14 2006-08-24 Sanyo Electric Co Ltd 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法
WO2011024662A1 (ja) * 2009-08-27 2011-03-03 三洋電機株式会社 太陽電池ストリング及びそれを用いた太陽電池モジュール
JP2011077454A (ja) * 2009-10-01 2011-04-14 Kaneka Corp 結晶シリコン系太陽電池とその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050161A1 (ja) * 2013-10-04 2015-04-09 長州産業株式会社 光発電素子
JP2015073057A (ja) * 2013-10-04 2015-04-16 長州産業株式会社 光発電素子
JP2016111357A (ja) * 2014-12-09 2016-06-20 三菱電機株式会社 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
WO2019054239A1 (ja) * 2017-09-15 2019-03-21 ソーラーフロンティア株式会社 光電変換モジュール及び光電変換モジュールを製造する方法
JPWO2019054239A1 (ja) * 2017-09-15 2020-10-22 出光興産株式会社 光電変換モジュール及び光電変換モジュールを製造する方法
JP7127042B2 (ja) 2017-09-15 2022-08-29 出光興産株式会社 光電変換モジュール及び光電変換モジュールを製造する方法

Also Published As

Publication number Publication date
US20140322861A1 (en) 2014-10-30
US9123861B2 (en) 2015-09-01
JPWO2013094233A1 (ja) 2015-04-27
JP5710024B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5710024B2 (ja) 太陽電池の製造方法
EP2434548B1 (en) Solar cell and method for manufacturing the same
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
JP5705968B2 (ja) 光電変換装置及びその製造方法
WO2012020682A1 (ja) 結晶シリコン系太陽電池
US20140017850A1 (en) Method for producing photoelectric conversion element
JP6785427B2 (ja) 太陽電池素子および太陽電池モジュール
JPWO2011065571A1 (ja) 光電変換モジュールおよびその製造方法ならびに発電装置
KR20130067208A (ko) 광기전력소자 및 그 제조 방법
JP5675476B2 (ja) 結晶シリコン系太陽電池
JP6976101B2 (ja) 結晶シリコン系太陽電池
US20200313010A1 (en) Solar cell and solar cell module
JP5884030B2 (ja) 光電変換装置の製造方法
US9184320B2 (en) Photoelectric conversion device
JP5307688B2 (ja) 結晶シリコン系太陽電池
JP2014072416A (ja) 太陽電池およびその製造方法、太陽電池モジュール
CN103066133A (zh) 光电装置
JP2015133341A (ja) 裏面接合型太陽電池及びその製造方法
JP2011077454A (ja) 結晶シリコン系太陽電池とその製造方法
JP6143520B2 (ja) 結晶シリコン系太陽電池およびその製造方法
JP6294694B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP2010258167A (ja) 太陽電池の製造方法
US20140020741A1 (en) Solar cell and method for producing solar cell
US20200168751A1 (en) Solar cell and solar cell module
JP2014072276A (ja) 光起電力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550140

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14359193

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858717

Country of ref document: EP

Kind code of ref document: A1