WO2013088964A1 - 樹脂組成物及び成形品 - Google Patents

樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2013088964A1
WO2013088964A1 PCT/JP2012/080913 JP2012080913W WO2013088964A1 WO 2013088964 A1 WO2013088964 A1 WO 2013088964A1 JP 2012080913 W JP2012080913 W JP 2012080913W WO 2013088964 A1 WO2013088964 A1 WO 2013088964A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
resin
resin composition
particle size
polyether ketone
Prior art date
Application number
PCT/JP2012/080913
Other languages
English (en)
French (fr)
Inventor
増田 晴久
有希 足立
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US14/362,488 priority Critical patent/US20140329968A1/en
Priority to EP12857640.2A priority patent/EP2778199B1/en
Priority to CN201280058058.0A priority patent/CN103958608B/zh
Priority to KR1020147019002A priority patent/KR20140105550A/ko
Publication of WO2013088964A1 publication Critical patent/WO2013088964A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK

Definitions

  • the present invention relates to a resin composition and a molded article.
  • thermoplastic resins such as polyamide resins, polycarbonate resins, polyacetal resins, etc.
  • Electrical and electronic parts have been put into practical use.
  • sliding applications such as gears and bearing retainers, the replacement of metal sliding members with plastic sliding members is progressing, but the sliding members are used under conditions such as high load, high temperature, and high speed rotation.
  • the above-mentioned thermoplastic resin has insufficient slidability, and problems such as wear, melting, cracking and chipping may occur.
  • fluororesins are excellent in properties such as slidability, heat resistance, chemical resistance, solvent resistance, weather resistance, flexibility, electrical properties, etc., and are widely used in automobiles, industrial machines, OA equipment, electrical and electronic equipment, etc. Used in the field.
  • the fluororesin is particularly excellent in slidability, and its low coefficient of friction is prominent among the resins.
  • it is often inferior to physical heat resistance as indicated by mechanical properties and deflection temperature under load compared to crystalline heat-resistant thermoplastic resin, and dimensions compared to amorphous heat-resistant thermoplastic resin. In some cases, the stability is inferior, and the range of use is limited.
  • Patent Document 1 discloses that a total amount of fluororesin and graphite is 1 with respect to 100 parts by weight of a resin composition comprising 60 to 99 parts by weight of a thermoplastic resin having a heat deformation temperature of 100 ° C. or higher and 40 to 1 part by weight of carbon fibers.
  • a resin composition containing ⁇ 50 parts by weight is disclosed.
  • Patent Document 2 includes a thermoplastic heat-resistant resin (A) having a molding temperature of 300 ° C. or higher and a polymer (B) obtained by polymerizing ⁇ -fluoroacrylic acid fluoroacrylic having a specific structure as essential components.
  • Patent Document 3 includes (A) 70 to 99% by mass of a polyaryl ketone resin and (B) 30 to 1% by mass of a fluororesin, and the average particle size of (B) the fluororesin dispersed in the resin composition is A resin composition having a thickness of 0.1 to 30 ⁇ m has been proposed.
  • Patent Document 4 discloses a resin composition comprising a resin other than a fluororesin (component (A)) and a fluororesin (component (B)), and a resin other than a sea phase fluororesin (component ( A)) having a sea-island structure in which the island-phase fluororesin (component (B)) is dispersed, and the average particle diameter of the island-phase fluororesin (component (B)) is 200 ⁇ m or less.
  • a resin composition is proposed.
  • Patent Document 5 discloses a melt flow index of 400 ° C.
  • Patent Document 6 proposes a modified engineering plastic characterized by cross-linking a mixture of engineering plastic and fluorine resin.
  • Patent Document 7 discloses that at least a part of carbon atoms constituting the fluororesin molecular chain has a crosslinked structure with other carbon atoms constituting the molecular chain, and at least a part of the fluororesin molecule is an active terminal.
  • a thermoplastic resin composition comprising at least 5 to 40 parts by mass of a fluororesin having a group and 95 to 60 parts by mass of another thermoplastic resin.
  • Patent Document 8 In addition to the purpose of improving the slidability, it is known to add a fluororesin to the thermoplastic resin.
  • Patent Document 8 in order to improve molding processability such as reducing extrusion pressure and extrusion torque in engineering plastic molding, the mass of the engineering plastic and the mass of the fluoropolymer are added. It is disclosed that 0.005 to 1% by mass of the total of the above is added.
  • Patent Document 9 a fine powder of PEEK resin is mixed in a PFA: PEEK weight ratio of 75:25 to 70:30 in a PFA resin aqueous dispersion, and the dispersion is roughened according to a conventional method.
  • Patent Document 10 discloses a thermoplastic resin containing a mixture of a polyaryl ketone resin and a thermoplastic fluororesin, wherein the continuous phase of the mixture is the thermoplastic fluororesin, and the dispersed phase is a polyaryl ketone resin. A composition is described.
  • Patent Document 11 aims to provide a film having a high Young's modulus, a low dielectric constant, excellent flame retardancy, heat resistance, insulation, and high rigidity, and an FPC using the film as a base material.
  • a polyaryl ketone film characterized by being stretched in the direction has been proposed.
  • Polyetheretherketone resin exhibits relatively excellent sliding properties among thermoplastic resins and has been put to practical use in sliding applications such as gears and bearing retainers. However, the slidability is still not sufficient under severe sliding conditions such as high loads, and a PEEK composition containing PTFE powder has been developed and marketed in order to improve the slidability of PEEK. Although the PTFE powder-blended PEEK composition has a reduced coefficient of dynamic friction, the sliding characteristics represented by the limit PV value are at a low level, and further improvement in sliding performance is required.
  • JP-A-8-48887 JP-A-10-195302 JP 2006-274073 A Japanese Patent Laid-Open No. 2002-235011 JP-A-9-87517 JP 2002-146202 A JP 2004-137363 A International Publication No. 2003/044093 Pamphlet JP-A-6-316686 JP 2010-189599 A JP 2003-82123 A
  • an object of this invention is to provide the resin composition which can obtain the molded article which has a low dynamic friction coefficient and a high limit PV value.
  • the present inventors diligently studied about a resin composition capable of obtaining a molded product having a low dynamic friction coefficient and a high limit PV value, and focused on a resin composition containing an aromatic polyetherketone resin and a fluororesin. .
  • the specific fluororesin is dispersed in the aromatic polyetherketone resin with a specific average dispersed particle size, and the melt viscosity ratio of the aromatic polyetherketone resin and the fluororesin is in a specific range.
  • Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • the mass ratio (I) :( II) of the aromatic polyether ketone resin (I) to the fluororesin (II) is 95: 5 to 50:50
  • the aromatic polyether ketone resin (I) Viscosity ratio (I) / (II) of styrene and fluororesin (II) is 0.3 to 5.0
  • fluororesin (II) is dispersed in the form of particles in aromatic polyetherketone resin (I)
  • the resin composition is characterized in that the average dispersed particle size of the fluororesin (II) is less than 3.0 ⁇ m.
  • the fluororesin (II) is dispersed in the form of particles in the aromatic polyetherketone resin (I), and the average dispersed particle size of the fluororesin (II) is less than 0.3 ⁇ m.
  • the maximum dispersed particle size is preferably 0.8 ⁇ m or less.
  • the fluororesin (II) preferably has a melt flow rate of 0.1 to 100 g / 10 min.
  • the aromatic polyether ketone resin (I) is preferably a polyether ether ketone.
  • the present invention is also a molded article made of the above resin composition.
  • the molded product of the present invention is preferably used as a sliding member.
  • the molded article of the present invention is preferably a sealing material, gear, actuator, piston, bearing or bush.
  • the resin composition of this invention consists of the said structure, the molded article which has a low dynamic friction coefficient and a high limit PV characteristic can be obtained. Thereby, the obtained molded article shows excellent slidability.
  • the resin composition of the present invention contains an aromatic polyether ketone resin (I) and a fluororesin (II).
  • the aromatic polyether ketone resin (I) is preferably at least one resin selected from the group consisting of polyether ketone, polyether ether ketone, polyether ketone ketone and polyether ketone ether ketone ketone. More preferred is at least one resin selected from the group consisting of polyetherketone and polyetheretherketone, and even more preferred is polyetheretherketone.
  • the aromatic polyether ketone resin (I) preferably has a melt viscosity of 0.25 to 1.50 kNsm ⁇ 2 at 60 sec ⁇ 1 and 390 ° C.
  • the melt viscosity is in the above range, the processing characteristics are improved, and a molded product having a low dynamic friction coefficient and a high limit PV characteristic is obtained.
  • a preferred lower limit for the melt viscosity is 0.80 kNsm -2 .
  • a preferred upper limit for the melt viscosity is 1.30 kNsm -2 .
  • the melt viscosity of the aromatic polyether ketone resin (I) is measured according to ASTM D3835.
  • the aromatic polyether ketone resin (I) preferably has a glass transition temperature of 130 ° C. or higher. More preferably, it is 135 degreeC or more, More preferably, it is 140 degreeC or more. When the glass transition temperature is in the above range, a resin composition having excellent heat resistance can be obtained. The glass transition temperature is measured by a differential scanning calorimetry (DSC) apparatus.
  • DSC differential scanning calorimetry
  • the aromatic polyether ketone resin (I) preferably has a melting point of 300 ° C. or higher. More preferably, it is 320 degreeC or more. When the melting point is in the above range, the heat resistance of the obtained molded product can be improved. The melting point is measured by a differential scanning calorimetry (DSC) apparatus.
  • DSC differential scanning calorimetry
  • fluororesin (II) 1 type may be used and 2 or more types may be used.
  • Rf 1 is —ORf 2
  • Rf 2 is preferably a perfluoroalkyl group having 1 to 3 carbon atoms.
  • a molded product having a lower coefficient of dynamic friction and a higher limit PV value can be obtained, so hexafluoropropylene, perfluoro (methyl vinyl ether) , Preferably at least one selected from the group consisting of perfluoro (ethyl vinyl ether) and perfluoro (propyl vinyl ether), and at least one selected from the group consisting of hexafluoropropylene and perfluoro (propyl vinyl ether) It is more preferable that
  • fluororesin (II) a perfluoropolymer is preferable because a low dynamic friction coefficient can be obtained.
  • the fluororesin (II) is preferably composed of 80 to 99 mol% of TFE and 1 to 20 mol% of a perfluoroethylenically unsaturated compound represented by the general formula (1).
  • the lower limit of the content of TFE constituting the fluororesin (II) is more preferably 85 mol%, further preferably 87 mol%, particularly preferably 90 mol%, and particularly preferably 93 mol%.
  • the upper limit of the content of TFE constituting the fluororesin (II) is more preferably 97 mol%, still more preferably 95 mol%.
  • the lower limit of the content of the perfluoroethylenically unsaturated compound represented by the general formula (1) constituting the fluororesin (II) is more preferably 3 mol%, further preferably 5 mol%.
  • the upper limit of the content of the perfluoroethylenically unsaturated compound represented by the general formula (1) constituting the fluororesin (II) is more preferably 15 mol%, further preferably 13 mol%, and more preferably 10 mol%. Is particularly preferred, with 7 mol% being even more preferred.
  • the fluororesin (II) preferably has a melt viscosity of 0.3 to 3.0 kNsm -2 at 60 sec -1 and 390 ° C.
  • the melt viscosity is in the above range, the processing characteristics are improved, and a low dynamic friction coefficient and a high limit PV characteristic can be obtained.
  • a more preferable lower limit of the melt viscosity is 0.4 kNsm ⁇ 2 .
  • the upper limit of the melt viscosity is more preferably 2.5 kNsm -2 , further preferably 2.0 kNsm -2 .
  • the melt viscosity of the fluororesin (II) is measured according to ASTM D3835.
  • the fluororesin (II) preferably has a melt flow rate (MFR) measured at 372 ° C. under a load of 5000 g of 0.1 to 100 g / 10 min, preferably 5 to 40 g / 10 min. More preferably, it is 10 to 40 g / 10 min.
  • MFR melt flow rate
  • the more preferable lower limit of MFR is 12 g / 10 minutes, and the particularly preferable lower limit is 15 g / 10 minutes.
  • the more preferable upper limit of MFR is 38 g / 10 minutes, and the particularly preferable upper limit is 35 g / 10 minutes.
  • the MFR of the fluororesin (II) is measured using a melt indexer according to ASTM D3307-01.
  • the melting point of the fluororesin (II) is not particularly limited, but it is preferable in molding that the fluororesin (II) is already melted at a temperature at which the aromatic polyetherketone resin (I) used in molding is melted.
  • the temperature is preferably not higher than the melting point of the aromatic polyether ketone resin (I).
  • the melting point of the fluororesin (II) is preferably 230 to 350 ° C.
  • the melting point of the fluororesin (II) is determined as a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) apparatus.
  • DSC differential scanning calorimetry
  • the fluororesin (II) may be treated with fluorine gas by a known method or may be treated with ammonia.
  • the resin composition of the present invention comprises a melt viscosity ratio (I) / (II) (aromatic polyetherketone resin (I) / fluororesin (II) of aromatic polyetherketone resin (I) and fluororesin (II). )) Is 0.3 to 5.0.
  • a melt viscosity ratio (I) / (II) is more preferably 0.4 to 4.0, and still more preferably 0.5 to 3.0.
  • (II) is particularly preferably 0.5 to 2.5.
  • the mass ratio (I) :( II) of the aromatic polyether ketone resin (I) to the fluororesin (II) is 95: 5 to 50:50.
  • the mass ratio (I) :( II) is in the above range, a molded product having both a low dynamic friction coefficient and a high limit PV characteristic can be produced. If the content of the fluororesin (II) exceeds 50 by mass ratio with the aromatic polyetherketone resin (I), the strength tends to be inferior, and if it is less than 5, a sufficient dynamic friction coefficient cannot be obtained.
  • a more preferred range is 90:10 to 60:40.
  • the fluororesin (II) is dispersed in the form of particles in the aromatic polyetherketone resin (I), and the average dispersed particle size of the fluororesin (II) is less than 3.0 ⁇ m. .
  • the average dispersed particle size is less than 3.0 ⁇ m, a molded product having both a low dynamic friction coefficient and a high critical PV characteristic can be produced. If the average dispersed particle size is too large, sufficient slidability cannot be obtained.
  • an aromatic polyether ketone having improved impact resistance has been demanded in order to eliminate cracking and chipping of the sliding member.
  • a method of alloying a rubber component is employed.
  • the aromatic polyether ketone is a high heat-resistant thermoplastic resin, and the molding process temperature exceeds 350 ° C., and the molding is usually performed near 400 ° C. Even if the rubber component is alloyed with the aromatic polyether ketone, the rubber component is thermally deteriorated at the time of molding and is not practical. Therefore, the present condition is that the effective means for improving the impact resistance of aromatic polyether ketone has not been found substantially.
  • the present inventors have dispersed the fluororesin (II) in the form of particles in the aromatic polyetherketone resin (I), and the average dispersed particle size of the fluororesin (II) is It has been found that by using a resin composition having a size of less than 3.0 ⁇ m, not only a molded product having a low dynamic friction coefficient and a high limit PV characteristic is obtained, but also the impact resistance of the molded product is dramatically improved. It was.
  • the average dispersed particle size of the fluororesin (II) is preferably 2.0 ⁇ m or less, More preferably, it is 0.3 ⁇ m or less.
  • the lower limit of the average dispersed particle size is not particularly limited, but may be 0.01 ⁇ m.
  • the average dispersed particle size of the fluororesin (II) is less than 0.3 ⁇ m and the maximum dispersed particle size is 0.8 ⁇ m or less.
  • the average dispersed particle size is less than 0.3 ⁇ m and the maximum dispersed particle size is 0.8 ⁇ m or less, the slidability of the dynamic friction coefficient and the limit PV value is improved, and a thin film with less fish eyes can be produced. It becomes possible. Moreover, the impact resistance of the molded article obtained from the resin composition of the present invention is dramatically improved.
  • the maximum dispersed particle size of the fluororesin (II) is preferably 0.75 ⁇ m or less, preferably 0.70 ⁇ m or less. More preferably.
  • the average dispersed particle size and the maximum dispersed particle size of the fluororesin (II) can be measured by observing the resin composition of the present invention with a confocal laser microscope or by using a press sheet prepared from the resin composition of the present invention. It can be determined by cutting out a thin slice, performing microscopic observation of the ultrathin slice with a transmission electron microscope (TEM), and binarizing the obtained image with an optical analyzer.
  • TEM transmission electron microscope
  • the resin composition of the present invention contains an aromatic polyether ketone resin (I) and a fluororesin (II), but may contain other components as necessary.
  • Fibrous reinforcement materials such as whisker, such as potassium titanate, glass fiber, asbestos fiber, carbon fiber, ceramic fiber, potassium titanate fiber, aramid fiber, and other high-strength fibers
  • Inorganic fillers such as calcium carbonate, talc, mica, clay, carbon powder, graphite and glass beads; colorants; inorganic or organic fillers usually used such as flame retardants; stabilizers such as minerals and flakes; silicone oil Lubricants such as molybdenum disulfide; pigments; conductive agents such as carbon black; impact resistance improvers such as rubber; and other additives.
  • the resin composition of the present invention is obtained by mixing the aromatic polyetherketone resin (I) and the fluororesin (II) with a twin screw extruder having a screw configuration with an L / D of 35 or more. It is preferable to be obtained.
  • Examples of the method for producing the resin composition of the present invention include a method in which the aromatic polyether ketone resin (I) and the fluororesin (II) are mixed in a molten state.
  • the resin composition of the present invention having a desired dispersion state can be obtained. Since the dispersion state affects the dynamic friction coefficient and the limit PV characteristics of the molded product, as well as the formation and moldability of the thin film, the kneading method can be used to obtain the desired dispersion state in the molded product obtained from the resin composition. Selection should be made appropriately.
  • the aromatic polyetherketone resin (I) and the fluororesin (II) are introduced into a mixer at an appropriate ratio, and the above-mentioned other components are added as desired. And a method of producing by melting and kneading the resin (I) and (II) above the melting point.
  • the other components may be added to the aromatic polyether ketone resin (I) and the fluororesin (II) in advance and mixed, or the aromatic polyether ketone resin (I) and the fluororesin (II). You may add when mix
  • the temperature at the time of the melt kneading may be appropriately set depending on the kind of the aromatic polyetherketone resin (I) and the fluororesin (II) to be used, but it is preferably, for example, 360 to 400 ° C.
  • the kneading time is usually 1 minute to 1 hour.
  • the said resin composition can make the dynamic friction coefficient of the molded object obtained from this resin composition 0.22 or less.
  • the coefficient of dynamic friction is in the above range, it can be more suitably used as a molded article for a sliding member.
  • the dynamic friction coefficient is more preferably 0.21 or less.
  • the said resin composition can make the limit PV value of the molded object obtained from this resin composition into 800 or more. More preferably, it is 1000 or more, More preferably, it is 1300 or more, Especially preferably, it is 1500 or more.
  • the resin composition can have a notched Izod strength of a molded product obtained from the resin composition of 30 kJ / m 2 or more. More preferably, it is 40 kJ / m 2 or more. In order to obtain high Izod strength, it is necessary to control the average dispersed particle size of the fluororesin (II) to less than 0.3 ⁇ m. Further, from the viewpoint of preventing cracking and chipping of the molded product, it is also preferable that the obtained molded product has a notched Izod strength of 60 kJ / m 2 or more.
  • a molded article formed from the resin composition of the present invention is also one aspect of the present invention.
  • Molded articles formed from the resin composition of the present invention have slidability and impact resistance, as well as heat resistance, chemical resistance, solvent resistance, strength, rigidity, low chemical permeability, dimensional stability, and flame resistance.
  • the electrical / electronics / semiconductor field it is a semiconductor retainer / liquid crystal manufacturing equipment component such as CMP retainer ring, etching ring, silicon wafer carrier, IC chip tray, insulation film, and small button battery.
  • Cable connectors aluminum electrolytic capacitor body cases; in the automotive field, thrust washers, oil filters, auto air conditioner control unit gears, throttle body gears, ABS parts, AT seal rings, MT shift fork pads, bearings, seals, clutches Ring; In the industrial field, compressor parts, Mass transit system cables, conveyor belt chains, connectors for oilfield development machinery, hydraulic drive system pump parts (bearings, port plates, piston ball joints); in the aerospace field, aircraft cabin interior parts, fuel pipe protection materials ; And food / beverage production equipment parts, medical equipment parts (sterilization equipment, gas / liquid chromatograph), and the like.
  • the said molded article does not specifically limit as a shape of the said molded article,
  • it can be set as various shapes, such as a sheet form; a film form; a rod form;
  • the molded article of the present invention is particularly suitable for a sheet-like or film-like molded article because it can produce a thin film with little fish eye.
  • This invention is also a molded article for sliding members which consists of the said resin composition. Since the molded product for sliding members molded using the resin composition has a low coefficient of dynamic friction, it can be suitably used as a sliding member. Moreover, since it contains a fluororesin, it is excellent in chemical resistance, weather resistance, non-adhesiveness, water repellency, electrical properties and the like. Although it does not specifically limit as said molded article for sliding members, For example, a sealing material, a gear, an actuator, a piston, a bearing, a bearing retainer, a bush, a switch, a belt, a bearing, a cam, a roller, a socket etc. are mentioned.
  • the molding temperature is preferably a temperature equal to or higher than the melting point of the aromatic polyether ketone resin (I) used.
  • the molding temperature is preferably a temperature lower than the lower one of the decomposition temperature of the fluororesin (II) and the decomposition temperature of the aromatic polyether ketone resin (I).
  • Such a molding temperature may be 250 to 400 ° C., for example.
  • the molded product of the present invention is generally a thermoplastic resin composition such as injection molding, extrusion molding, press molding, blow molding, calendar molding, casting molding, etc., depending on the type, application, shape, etc. of the target molded product. It can shape
  • the dynamic friction coefficient was calculated
  • the number of fish eyes was determined by measuring the number of fish eyes of a 12 cm ⁇ 50 cm square film having a thickness of 25 ⁇ m produced by the T-die extrusion method. ⁇ : Less than 10 ⁇ : 10 or more and less than 30 ⁇ : 30 or more
  • melt viscosity of the aromatic polyetherketone resin was measured at 60 sec ⁇ 1 and 390 ° C. according to ASTM D3835.
  • the melt viscosity of the fluororesin was measured at 60 sec ⁇ 1 and 390 ° C. in accordance with ASTM D3835.
  • Aromatic polyether ketone resin (1) Polyether ether ketone (melt viscosity; 1.48 kNsm ⁇ 2 )
  • Aromatic polyetherketone resin (2) polyetheretherketone (melt viscosity; 1.19 kNsm ⁇ 2 )
  • Aromatic polyetherketone resin (3) polyetheretherketone (melt viscosity; 0.31 kNsm ⁇ 2 )
  • Fluororesin (4) Polytetrafluoroethylene (trade name: Lubron L5, manufactured by Daikin Industries, Ltd.)
  • Fluororesin (5) ethylene / tetrafluoroethylene copolymer (trade name: NEOFLON EP541, manufactured by Daikin Industries, Ltd., melt viscosity; 2.27 kNsm ⁇ 2 )
  • a resin composition was produced by melt-kneading under conditions of a temperature of 390 ° C. and a screw rotation speed of 300 rpm.
  • a test piece was prepared by the above-described method, and the limit PV value, dynamic friction coefficient, and notched Izod strength were measured. Further, the average dispersed particle size and the maximum dispersed particle size of the fluororesin (II) were calculated with the test piece.
  • the resin composition was manufactured by melt-kneading under conditions of a temperature of 390 ° C. and a screw rotation speed of 500 rpm.
  • a test piece was prepared by the above-described method, and the limit PV value, dynamic friction coefficient, and notched Izod strength were measured. Further, the average dispersed particle size and the maximum dispersed particle size of the fluororesin (1) were calculated with the test piece.
  • a resin composition was produced by melt-kneading under conditions of a temperature of 390 ° C. and a screw rotation speed of 300 rpm.
  • a test piece was prepared by the above-described method, and the limit PV value, dynamic friction coefficient, and notched Izod strength were measured. Further, the average dispersed particle size and the maximum dispersed particle size of the fluororesin (1) were calculated with the test piece.
  • the resin composition was manufactured by melt-kneading under conditions of a temperature of 390 ° C. and a screw rotation speed of 500 rpm.
  • a test piece was prepared by the above-described method, and the limit PV value, dynamic friction coefficient, and notched Izod strength were measured. Further, the average dispersed particle size and the maximum dispersed particle size of the fluororesin (3) were calculated with the test piece.
  • the resin composition was manufactured by melt-kneading under conditions of a temperature of 390 ° C. and a screw rotation speed of 500 rpm.
  • a test piece was prepared by the above-described method, and the limit PV value, dynamic friction coefficient, and notched Izod strength were measured. Further, the average dispersed particle size and the maximum dispersed particle size of the fluororesin (1) were calculated with the test piece.
  • a press sheet was prepared by the above-described method, and a limit PV value, a dynamic friction coefficient, and a notched Izod strength were measured.
  • the ultra-thin slice was cut out from the press sheet, and the average dispersed particle size and the maximum dispersed particle size of the fluororesin (4) or (5) were calculated.
  • a resin composition was produced by melt-kneading under conditions of a temperature of 390 ° C. and a screw rotation speed of 300 rpm.
  • a press sheet was prepared by the above-described method, and a limit PV value, a dynamic friction coefficient, and a notched Izod strength were measured.
  • the ultra-thin slice was cut out from the press sheet, and the average dispersed particle size and the maximum dispersed particle size of the fluororesin (2) were calculated.
  • a slit table having a width of 500 mm
  • stretching with a take-up roll of 130 ° C. creating a film stretched to 25 ⁇ m
  • average dispersed particles of fluororesin (1) The diameter and the maximum dispersed particle diameter were calculated.
  • the resin composition of the present invention can be suitably used as a molding material used for automobile parts, industrial parts, electrical and electronic parts and the like that require high slidability.

Abstract

本発明は、低い動摩擦係数及び高い限界PV値を兼ね備えた成形品を得ることができる樹脂組成物を提供することを目的とする。 本発明は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む樹脂組成物であって、フッ素樹脂(II)は、テトラフルオロエチレン及び下記の一般式(1): CF=CF-Rf (1) (式中、Rfは、-CF又は-ORfを表す。Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロエチレン性不飽和化合物の共重合体であり、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が95:5~50:50であり、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との溶融粘度比(I)/(II)が0.3~5.0であり、フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、フッ素樹脂(II)の平均分散粒子径が3.0μm未満であることを特徴とする樹脂組成物である。

Description

樹脂組成物及び成形品
本発明は、樹脂組成物及び成形品に関する。
近年、軽量化や低コスト化を目的に、金属部品を樹脂化する検討が活発に行われ、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂等の熱可塑性樹脂を使用した自動車部品、工業部品又は電気電子部品が実用化されている。ギア、ベアリングリテーナ等の摺動用途においても、金属製摺動部材から樹脂製摺動部材への置換が進みつつあるが、高加重・高温・高速回転等の条件で使用される摺動部材には上記のような熱可塑性樹脂では摺動性が不充分であり、摩耗、溶融、割れ、欠け等の問題が発生することがあった。
一方、フッ素樹脂は、摺動性、耐熱性、耐薬品性、耐溶剤性、耐候性、柔軟性、電気的性質等の特性に優れ、自動車、産業機械、OA機器、電気電子機器等の幅広い分野で使用されている。フッ素樹脂は、とりわけ摺動性に優れており、その低い摩擦係数は樹脂の中でも突出している。しかしながら、結晶性の耐熱性熱可塑性樹脂に比べ、機械的特性や荷重たわみ温度で示されるような物理的な耐熱性に劣る場合が多く、また非晶性の耐熱性熱可塑性樹脂に比べて寸法安定性に劣っている場合があり、使用範囲が限定されているのが実情であった。
このような状況下、熱可塑性樹脂の摺動性を改良し、より広範な摺動部材への適用を図るための検討がなされている。例えば、特許文献1には、加熱変形温度が100℃以上の熱可塑性樹脂60~99重量部と炭素繊維40~1重量部からなる樹脂組成物100重量部に対し、フッ素樹脂及び黒鉛の総量1~50重量部を含有する樹脂組成物が開示されている。特許文献2には、成形温度が300℃以上である熱可塑性耐熱樹脂(A)と、特定の構造を有するα-フルオロアクリル酸フルオロアクリルを必須成分として重合して得られるポリマー(B)を含んでなる樹脂組成物が開示されている。特許文献3には、(A)ポリアリールケトン樹脂70~99質量%及び(B)フッ素樹脂30~1質量%を含有し、樹脂組成物中に分散した(B)フッ素樹脂の平均粒子径が0.1~30μmである樹脂組成物が提案されている。
また、特許文献4には、フッ素樹脂以外の樹脂(成分(A))及びフッ素樹脂(成分(B))を含んでなる樹脂組成物であって、海相のフッ素樹脂以外の樹脂(成分(A))中に島相のフッ素樹脂(成分(B))が分散する海島構造を有し、かつ、島相のフッ素樹脂(成分(B))の平均粒子直径が200μm以下であることを特徴とする樹脂組成物が提案されている。特許文献5には、特定の繰り返し単位を有するポリイミド樹脂40~95重量部とポリアリルエーテルケトン60~5重量部からなる樹脂組成物の総量100重量部に対して、メルトフローインデックスの400℃,10kgでの値が4.0~15.0g/10minであるフッ素樹脂1~40重量部を実質的に含有してなるポリイミド系樹脂組成物が提案されている。特許文献6には、エンジニアリングプラスチックと弗素樹脂との混合体を架橋して成ることを特徴とする、改質エンジニアリングプラスチックが提案されている。特許文献7には、フッ素樹脂分子鎖を構成する炭素原子の少なくとも一部が、分子鎖を構成する他の炭素原子との間に架橋構造を有すると共に、フッ素樹脂分子の少なくとも一部が活性末端基を有するフッ素樹脂5~40質量部と、他の熱可塑性樹脂95~60質量部とを少なくとも含むことを特徴とする、熱可塑性樹脂組成物が提案されている。
摺動性を改善する目的以外にも、熱可塑性樹脂に対してフッ素樹脂を添加することが知られている。例えば、特許文献8には、エンジニアリングプラスチックの成形加工において、押出圧力及び押出トルクを低下する等の成形加工性を向上させるために、含フッ素重合体をエンジニアリングプラスチックの質量及び含フッ素重合体の質量の合計の0.005~1質量%添加することが開示されている。特許文献9には、PFA樹脂水分散液中にPEEK樹脂の微粉末を、PFA:PEEK重量比で75:25~70:30の比率に混合し、この分散液を常法に従って粗面化した金属表面に直接塗着し、焼成することで、接着耐久性のあるPFA-PEEK複合塗膜を形成することが開示されている。特許文献10には、ポリアリールケトン樹脂と熱可塑性フッ素系樹脂との混合物を含有し、該混合物の連続相が前記熱可塑性フッ素系樹脂であり、分散相がポリアリールケトン樹脂である熱可塑性樹脂組成物が記載されている。特許文献11には、高ヤング率で、誘電率が小さく、難燃性、耐熱性、絶縁性に優れ、かつ剛性も高いフィルム及びそれを基材として用いたFPCを提供することを目的とした材料として、ポリアリールケトン100重量部に対し、他の熱可塑性樹脂3~30重量部を含む樹脂組成物からなるフィルムであって、該フィルムのクッション率が3~30%であり、かつ少なくとも1方向に延伸されていることを特徴とするポリアリールケトンフィルムが提案されている。
また、ポリエーテルエーテルケトン樹脂(PEEK)は熱可塑性樹脂の中でも比較的優れた摺動性を示し、ギア、ベアリングリテーナ等の摺動用途で実用化されている。しかし、高荷重等の厳しい摺動条件下では未だ摺動性は十分とは言えず、PEEKの摺動性を改良するためにPTFE粉末を配合したPEEK組成物が開発され市販されている。当該PTFE粉末配合PEEK組成物は確かに動摩擦係数は低減されているが、限界PV値に代表される摺動特性は低いレベルであり、更なる摺動性の改良が求められている。
特開平8-48887号公報 特開平10-195302号公報 特開2006-274073号公報 特開2002-235011号公報 特開平9-87517号公報 特開2002-146202号公報 特開2004-137363号公報 国際公開第2003/044093号パンフレット 特開平6-316686号公報 特開2010-189599号公報 特開2003-82123号公報
そこで本発明は、低い動摩擦係数及び高い限界PV値を兼ね備えた成形品を得ることができる樹脂組成物を提供することを目的とする。
本発明者らは、低い動摩擦係数及び高い限界PV値を兼ね備えた成形品を得ることができる樹脂組成物について鋭意検討し、芳香族ポリエーテルケトン樹脂とフッ素樹脂とを含む樹脂組成物に着目した。そして、特定のフッ素樹脂が芳香族ポリエーテルケトン樹脂中に特定の平均分散粒子径で分散しており、芳香族ポリエーテルケトン樹脂とフッ素樹脂との溶融粘度比が特定の範囲である樹脂組成物を用いると、得られる成形品の動摩擦係数や限界PV値に係る摺動性が飛躍的に向上することを見出し、本発明を完成することに至った。
すなわち、本発明は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む樹脂組成物であって、フッ素樹脂(II)は、テトラフルオロエチレン及び下記の一般式(1):
CF=CF-Rf   (1)
(式中、Rfは、-CF又は-ORfを表す。Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロエチレン性不飽和化合物の共重合体であり、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が95:5~50:50であり、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との溶融粘度比(I)/(II)が0.3~5.0であり、フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、フッ素樹脂(II)の平均分散粒子径が3.0μm未満であることを特徴とする樹脂組成物である。
本発明の樹脂組成物は、フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、フッ素樹脂(II)の平均分散粒子径が0.3μm未満であり、且つ最大分散粒子径が0.8μm以下であることが好ましい。
上記フッ素樹脂(II)は、メルトフローレートが0.1~100g/10分であることが好ましい。
上記芳香族ポリエーテルケトン樹脂(I)は、ポリエーテルエーテルケトンであることが好ましい。
本発明はまた、上記樹脂組成物からなる成形品でもある。
本発明の成形品は、摺動部材として使用されるものであることが好ましい。
本発明の成形品は、シール材、ギア、アクチュエーター、ピストン、ベアリング又はブッシュであることが好ましい。
本発明の樹脂組成物は、上記構成からなるので、低い動摩擦係数及び高い限界PV特性を有する成形品を得ることができる。これにより、得られる成形品は優れた摺動性を示す。
以下に本発明を詳述する。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む。
上記芳香族ポリエーテルケトン樹脂(I)としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン及びポリエーテルケトンエーテルケトンケトンからなる群より選択される少なくとも1種の樹脂であることが好ましく、ポリエーテルケトン及びポリエーテルエーテルケトンからなる群より選択される少なくとも1種の樹脂であることがより好ましく、ポリエーテルエーテルケトンであることが更に好ましい。
上記芳香族ポリエーテルケトン樹脂(I)は、60sec-1、390℃における溶融粘度が0.25~1.50kNsm-2であることが好ましい。溶融粘度が上記範囲であることにより、加工特性が向上し、更に、低動摩擦係数及び高い限界PV特性を有する成形品が得られる。溶融粘度の好ましい下限は0.80kNsm-2である。溶融粘度の好ましい上限は1.30kNsm-2である。
上記芳香族ポリエーテルケトン樹脂(I)の溶融粘度は、ASTM D3835に準拠して測定する。
上記芳香族ポリエーテルケトン樹脂(I)は、ガラス転移温度が130℃以上であることが好ましい。より好ましくは、135℃以上であり、更に好ましくは、140℃以上である。上記範囲のガラス転移温度であることによって、耐熱性に優れた樹脂組成物を得ることができる。上記ガラス転移温度は、示差走査熱量測定(DSC)装置によって測定される。
上記芳香族ポリエーテルケトン樹脂(I)は、融点が300℃以上であることが好ましい。より好ましくは、320℃以上である。上記範囲の融点であることによって、得られる成形品の耐熱性を向上させることができる。上記融点は、示差走査熱量測定(DSC)装置によって測定される。
上記フッ素樹脂(II)は、テトラフルオロエチレン(TFE)及び下記の一般式(1):
CF=CF-Rf   (1)
(式中、Rfは、-CF又は-ORfを表す。Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロエチレン性不飽和化合物の共重合体である。フッ素樹脂(II)としては、1種を用いてもよいし、2種以上を用いてもよい。上記Rfが、-ORfである場合、上記Rfは炭素数が1~3のパーフルオロアルキル基であることが好ましい。
上記フッ素樹脂(II)を用いることによって、低い動摩擦係数及び高い限界PV値を兼ね備えた成形品を得ることができる。例えば、非溶融加工性のポリテトラフルオロエチレンを用いた場合には、充分に低い磨耗特性を有する成形品を得ることができない。
一般式(1)で表されるパーフルオロエチレン性不飽和化合物としては、より低い動摩擦係数及び高い限界PV値を兼ね備えた成形品を得ることができることから、ヘキサフルオロプロピレン、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)及びパーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種であることが好ましく、ヘキサフルオロプロピレン及びパーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種であることがより好ましい。
フッ素樹脂(II)としては、低い動摩擦係数が得られることからパーフルオロポリマーが好ましい。
上記フッ素樹脂(II)は、80~99モル%のTFE及び1~20モル%の上記一般式(1)で表されるパーフルオロエチレン性不飽和化合物から構成されることが好ましい。上記フッ素樹脂(II)を構成するTFEの含有量の下限は、85モル%がより好ましく、87モル%が更に好ましく、90モル%が特に好ましく、93モル%が殊更に好ましい。上記フッ素樹脂(II)を構成するTFEの含有量の上限は、97モル%がより好ましく、95モル%が更に好ましい。
また、上記フッ素樹脂(II)を構成する上記一般式(1)で表されるパーフルオロエチレン性不飽和化合物の含有量の下限は、3モル%がより好ましく、5モル%が更に好ましい。上記フッ素樹脂(II)を構成する上記一般式(1)で表されるパーフルオロエチレン性不飽和化合物の含有量の上限は、15モル%がより好ましく、13モル%が更に好ましく、10モル%が特に好ましく、7モル%が殊更に好ましい。
上記フッ素樹脂(II)は、60sec-1、390℃における溶融粘度が0.3~3.0kNsm-2であることが好ましい。溶融粘度が上記範囲であることにより、加工特性が向上し、低動摩擦係数及び高い限界PV特性を得ることができる。溶融粘度のより好ましい下限は、0.4kNsm-2である。溶融粘度のより好ましい上限は2.5kNsm-2であり、更に好ましくは2.0kNsm-2である。
上記フッ素樹脂(II)の溶融粘度は、ASTM D3835に準拠して測定する。
上記フッ素樹脂(II)は、372℃、5000g荷重の条件下で測定したメルトフローレート(MFR)が0.1~100g/10分であることが好ましく、5~40g/10分であることがより好ましく、10~40g/10分であることが更に好ましい。MFRが上記範囲であることにより、本発明の樹脂組成物から製造される成形品の動摩擦係数を低くすることができ、更に限界PV値をも向上させることができる。MFRの更に好ましい下限は12g/10分であり、特に好ましい下限は15g/10分である。動摩擦係数の低減の観点から、MFRの更に好ましい上限は38g/10分であり、特に好ましい上限は35g/10分である。
上記フッ素樹脂(II)のMFRは、ASTM D3307-01に準拠し、メルトインデクサーを用いて測定する。
上記フッ素樹脂(II)の融点は特に限定されないが、成形する際に用いる芳香族ポリエーテルケトン樹脂(I)が溶融する温度で既にフッ素樹脂(II)が溶融していることが成形において好ましいため、上記芳香族ポリエーテルケトン樹脂(I)の融点以下の温度であることが好ましい。例えば、フッ素樹脂(II)の融点は、230~350℃であることが好ましい。フッ素樹脂(II)の融点は、示差走査熱量測定(DSC)装置を用いて、10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求めたものである。
上記フッ素樹脂(II)は、公知の方法によりフッ素ガス処理したものであってもよいし、アンモニア処理したものであってもよい。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との溶融粘度比(I)/(II)(芳香族ポリエーテルケトン樹脂(I)/フッ素樹脂(II))が0.3~5.0である。溶融粘度比(I)/(II)を上記範囲とすることで、低い動摩擦係数及び高い限界PV特性を有する成形品を得ることができる。溶融粘度比(I)/(II)は、0.4~4.0であることがより好ましく、0.5~3.0であることが更に好ましい。
特に、フィッシュアイの少ない薄膜を得ることができる点、及び、ノッチ付きアイゾッド強度がより優れる点、平均分散粒子径及び最大分散粒子径を小さくすることができる点から、溶融粘度比(I)/(II)は0.5~2.5であることが特に好ましい。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が95:5~50:50である。質量比(I):(II)が上記範囲であることによって、低い動摩擦係数及び高い限界PV特性を併せ持つ成形品を製造することができる。フッ素樹脂(II)の含有量が芳香族ポリエーテルケトン樹脂(I)との質量比で50を超えると、強度が劣る傾向があり、5未満であると、充分な動摩擦係数がえられない。より好ましい範囲は、90:10~60:40である。
本発明の樹脂組成物は、フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、フッ素樹脂(II)の平均分散粒子径が3.0μm未満である。平均分散粒子径が3.0μm未満であることによって、低い動摩擦係数及び高い限界PV特性を併せ持つ成形品を製造することができる。平均分散粒子径が大きすぎると充分な摺動性が得られない。
従来から、摺動部材の割れや欠けを解消するため、耐衝撃性が改良された芳香族ポリエーテルケトンが要求されてきた。一般に、熱可塑性樹脂の耐衝撃性を改良するには、ゴム成分をアロイする手法が採用される。しかし、芳香族ポリエーテルケトンは高耐熱の熱可塑性樹脂であり、その成形加工温度は350℃を超え、通常は400℃近くで成形が行われる。仮に芳香族ポリエーテルケトンにゴム成分をアロイしたとしても、成形加工時にゴム成分が熱劣化して実用的でない。従って、芳香族ポリエーテルケトンの耐衝撃性を改良するための有効な手段は実質上見出されていないのが現状であった。
このような現状のもと、本発明者らは、フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、フッ素樹脂(II)の平均分散粒子径が3.0μm未満である樹脂組成物を用いることによって、低動摩擦係数及び高い限界PV特性を有する成形品となるばかりか、意外なことに成形品の耐衝撃性が劇的に向上することを見出した。
より高い限界PV特性を有する成形品を得ることができるとともに、フィルム成形性がより優れたものとなることから、フッ素樹脂(II)の平均分散粒子径は2.0μm以下であることが好ましく、更に好ましくは0.3μm以下である。
平均分散粒子径の下限は特に限定されないが0.01μmであってよい。
本発明の樹脂組成物において、フッ素樹脂(II)の平均分散粒子径が0.3μm未満であり、且つ最大分散粒子径が0.8μm以下であることが好ましい。
平均分散粒子径が0.3μm未満であり、且つ最大分散粒子径が0.8μm以下であると、動摩擦係数や限界PV値の摺動性が向上するとともに、フィッシュアイの少ない薄膜フィルムの作成が可能となる。また、本発明の樹脂組成物から得られる成形品の耐衝撃性が劇的に向上する。
フィルム成形性がより優れたものとなり、フィッシュアイの数をより減少させることができる点から、フッ素樹脂(II)の最大分散粒子径は0.75μm以下であることが好ましく、0.70μm以下であることがより好ましい。
フッ素樹脂(II)の平均分散粒子径及び最大分散粒子径は、本発明の樹脂組成物を共焦点レーザー顕微鏡にて顕微鏡観察を行ったり、本発明の樹脂組成物から作製されるプレスシートから超薄切片を切り出し、当該超薄切片を透過型電子顕微鏡(TEM)にて顕微鏡観察を行ったりして、得られた画像を光学解析装置にて二値化処理することにより求めることができる。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含むものであるが、必要に応じて他の成分を含んでいてもよい。上記他の成分としては特に限定されないが、チタン酸カリウム等のウィスカ、ガラス繊維、アスベスト繊維、カーボン繊維、セラミック繊維、チタン酸カリウム繊維、アラミド繊維、その他の高強度繊維等の繊維状の強化材;炭酸カルシウム、タルク、マイカ、クレイ、カーボン粉末、グラファイト、ガラスビーズ等の無機充填材;着色剤;難燃剤等通常使用される無機又は有機の充填材;ミネラル、フレーク等の安定剤;シリコーンオイル、二硫化モリブデン等の潤滑剤;顔料;カーボンブラック等の導電剤;ゴム等の耐衝撃性向上剤;その他の添加剤等を用いることができる。
本発明の樹脂組成物の製造は、例えば、成形用組成物等の樹脂組成物を混合するために通常用いられる配合ミル、バンバリーミキサー、加圧ニーダー、押出機等の混合機を用いて、通常の条件により行うことができる。フッ素樹脂(II)の平均分散粒子径を小さくすることができることから、混合機としては二軸押出機が好ましく、二軸押出機のスクリュウ構成はL/D=35以上が好ましく、更に好ましくはL/D=40以上であり、特に好ましくはL/D=45以上である。なお、L/Dは、スクリューの有効長さ(L)/スクリュー直径(D)である。
上記のことから、本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を、L/Dが35以上であるスクリュウ構成の二軸押出機で混合することにより得られるものであることが好ましい。
本発明の樹脂組成物を製造する方法としては、例えば、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を、溶融状態で混合する方法が挙げられる。
芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)とを充分に混練することによって、所望の分散状態を有する本発明の樹脂組成物を得ることができる。分散状態は成形品の動摩擦係数及び限界PV特性、並びに、薄膜フィルムの作成、成形性に影響を与えるので、樹脂組成物から得られる成形品において所望の分散状態が得られるように、混練方法の選択は適切に行われるべきである。
本発明の樹脂組成物を製造する方法としては、例えば、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を適切な割合で混合機に投入し、所望により上記他の成分を添加し、樹脂(I)及び(II)の融点以上で溶融混練することにより製造する方法等が挙げられる。
上記他の成分は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)に予め添加して混合しておいてもよいし、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を配合するときに添加してもよい。
上記溶融混練時の温度としては、用いる芳香族ポリエーテルケトン樹脂(I)、フッ素樹脂(II)の種類等によって適宜設定すればよいが、例えば、360~400℃であることが好ましい。混練時間としては、通常、1分~1時間である。
上記樹脂組成物は、該樹脂組成物から得られる成形体の動摩擦係数を0.22以下とすることができる。上記範囲の動摩擦係数であることによって、摺動部材用成形品としてより好適に用いることができる。上記動摩擦係数は、0.21以下であることがより好ましい。
上記樹脂組成物は、該樹脂組成物から得られる成形体の限界PV値を800以上とすることができる。より好ましくは1000以上であり、更に好ましくは1300以上であり、特に好ましくは1500以上である。
上記樹脂組成物は、該樹脂組成物から得られる成形体のノッチ付きアイゾット強度を30kJ/m以上とすることができる。より好ましくは40kJ/m以上である。高いアイゾット強度を得るためには、フッ素樹脂(II)の平均分散粒子径を0.3μm未満に制御する必要がある。
また、成形品の割れや欠けを防止する観点からは、得られる成形体のノッチ付きアイゾット強度が60kJ/m以上であることも好ましい。
本発明の樹脂組成物から形成される成形品も本発明の1つである。
本発明の樹脂組成物から形成される成形品は、摺動性と耐衝撃性と共に、耐熱性、耐薬品性、耐溶剤性、強度、剛性、薬品低透過性、寸法安定性、難燃性、電気特性及び耐久性を兼ね備える成形品であり、電気電子・半導体分野においては、CMPリテーナリング、エッチングリング、シリコンウエハキャリア、ICチップトレイ等の半導体・液晶製造装置部品、絶縁フィルム、小型ボタン電池、ケーブルコネクタ、アルミ電解コンデンサー本体ケース; 自動車分野においては、スラストワッシャー、オイルフィルター、オートエアコンコントロールユニットのギア、スロットルボディのギア、ABSパーツ、ATシールリング、MTシフトフォークパット、ベアリング、シール、クラッチリング;産業分野においては、コンプレッサ部品、大量輸送システムのケーブル、コンベアベルトチェーン、油田開発機械用コネクタ、水圧駆動システムのポンプ部品(軸受け、ポートプレート、ピストンの玉継ぎ手);航空宇宙分野においては、航空機のキャビン内装部品、燃料パイプ保護材;及び食品・飲料製造設備部品や医療器具部品(滅菌器具、ガス・液体クロマトグラフ)などに使用することができる。
上記成形品の形状としては特に限定されず、例えば、シート状;フィルム状;ロッド状;パイプ状等の種々の形状にすることができる。本発明の成形品は、フィッシュアイの少ない薄膜を作製することができるため、シート状、フィルム状の成形品に特に好適である。
本発明は、上記樹脂組成物からなる摺動部材用成形品でもある。上記樹脂組成物を用いて成形された摺動部材用成形品は動摩擦係数が低いため、摺動部材として好適に利用することができる。また、フッ素樹脂を含有するものであるため、耐薬品性、耐候性、非粘着性、撥水性、電気特性等にも優れる。
上記摺動部材用成形品としては、特に限定されないが、例えば、シール材、ギア、アクチュエーター、ピストン、ベアリング、ベアリングリテーナ、ブッシュ、スイッチ、ベルト、軸受け、カム、ローラー、ソケット等が挙げられる。
上記成形品の製造方法における成形機に関する各種条件としては特に限定されず、例えば、従来公知のように行うことができる。成形温度は、通常、用いる上記芳香族ポリエーテルケトン樹脂(I)の融点以上の温度であることが好ましい。また、成形温度は、上記フッ素樹脂(II)の分解温度と上記芳香族ポリエーテルケトン樹脂(I)の分解温度のうち低い方の温度未満の温度であることが好ましい。このような成形温度としては、例えば250~400℃であってよい。
本発明の成形品は、目的とする成形品の種類、用途、形状などに応じて、射出成形、押出成形、プレス成形、ブロー成形、カレンダー成形、流延成形等の一般に熱可塑性樹脂組成物に対して用いられている成形方法によって成形することができる。また上記成形方法を組み合わせた成形方法を採用することもできる。更に、本発明の樹脂組成物と他のポリマーとを複合成形して成形してもよい。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
<MFRの測定>
ASTM D3307-01に従って、メルトインデクサー((株)東洋精機製作所製)を用いて、372℃、5000g荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)を求めた。
<プレスシート成形品の作製>
実施例、比較例で製造した樹脂組成物を用いて、熱プレス機により380℃、5MPaの条件下で圧縮成形し、厚さ3mmのシートを作製した。
<限界PV値の測定>
上述した方法で作成したプレスシートから、縦3cm・横3cm・厚み3mmの試験片を切り出し、JIS K7218のA法に準じて、摩擦摩耗試験機(株式会社エー・アンド・デイ製)を使用して、鋼材S45C(#240サンドペーパー仕上げ)を相手材に、速度3m/秒一定、面圧を20Nから10分毎に20Nずつ上昇させることにより、限界PV値を測定した。
<動摩擦係数の測定>
上述した方法で作製したプレスシートを用いて、ボールオンディスク型のSRV摩擦磨耗試験機(OPTIMOL社製)により、室温、50Hzの条件で、動摩擦係数を求めた。
<ノッチ付きアイゾッド強度の測定>
上述した方法で作成したプレスシートから、JIS K7110に準じて、ノッチ付きアイゾッド強度測定用の試験片を切り出し、アイゾッド衝撃試験機((株)東洋精機製作所製)を使用して、室温にてノッチ付きアイゾッド強度を測定した。
<フィッシュアイ個数の計測>
フィッシュアイ個数の判定は、Tダイ押出の方法で作製した12cm×50cm四方、厚み25μmのフィルムのフィッシュアイ個数を計測した。
○:10個未満
△:10個以上30個未満
×:30個以上
<平均分散粒子径・最大分散粒子径の算出>
上述した方法で作成したプレスシートを用いて、先端部分が1mm四方になるようトリミング用剃刀でトリミングを行い、その後、ウルトラミクロトーム(ライカ社製ULTRACUT S)の試料ホルダーに固定、チャンバー内を液体窒素で-80℃まで冷却し、厚さ90nmの超薄切片を切り出した。
得られた超薄切片を20%エタノール溶液を付着させた白金リングにて回収し、銅製シートメッシュ(応研商事(株)製200A、φ3.0mm)に付着させた。
その後、透過型電子顕微鏡((株)日立製作所製H7100FA)を用いて、銅製シートメッシュに付着させた超薄切片の観察を行った。
顕微鏡観察により得られたネガフィルムをスキャナー(EPSON(株)製GT-9400UF)にて電子画像化し、光学解析装置((株)ニレコ製LUZEX AP)を用いて電子像の二値化処理を行い、分散相の平均分散粒子径及び最大分散粒子径を求めた。
<溶融粘度の測定方法>
芳香族ポリエーテルケトン樹脂の溶融粘度は、60sec-1、390℃において、ASTM D3835に準拠して測定した。
フッ素樹脂の溶融粘度は、60sec-1、390℃において、ASTM D3835に準拠して測定した。
実施例及び比較例では、下記の材料を用いた。
芳香族ポリエーテルケトン樹脂(1):ポリエーテルエーテルケトン(溶融粘度;1.48kNsm-2。)
芳香族ポリエーテルケトン樹脂(2):ポリエーテルエーテルケトン(溶融粘度;1.19kNsm-2。)
芳香族ポリエーテルケトン樹脂(3):ポリエーテルエーテルケトン(溶融粘度;0.31kNsm-2。)
フッ素樹脂(1):テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(組成重量比;テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(プロピルビニルエーテル)=87.5/11.5/1.0。MFR;23g/10分。溶融粘度;0.55kNsm-2。)
フッ素樹脂(2):テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(組成重量比;テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(プロピルビニルエーテル)=87.5/11.5/1.0。MFR;60g/10分。溶融粘度;0.28kNsm-2。)
フッ素樹脂(3):テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(組成重量比;テトラフルオロエチレン/ヘキサフルオロプロピレン=88.5/11.5。MFR;6g/10分。溶融粘度;2.23kNsm-2。)
フッ素樹脂(4):ポリテトラフルオロエチレン(商品名:ルブロンL5、ダイキン工業(株)製。)
フッ素樹脂(5):エチレン/テトラフルオロエチレン共重合体(商品名:ネオフロンEP541、ダイキン工業(株)製。溶融粘度;2.27kNsm-2。)
<実施例1>
芳香族ポリエーテルケトン樹脂(2)及びフッ素樹脂(1)を表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度390℃、スクリュウ回転数300rpmの条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を用いて、上記した方法で試験片を作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。また、当該試験片にてフッ素樹脂(II)の平均分散粒子径及び最大分散粒子径を算出した。
<実施例2>
芳香族ポリエーテルケトン樹脂(2)及びフッ素樹脂(1)を表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度390℃、スクリュウ回転数500rpmの条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を用いて、上記した方法で試験片を作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。また、当該試験片にてフッ素樹脂(1)の平均分散粒子径及び最大分散粒子径を算出した。
<実施例3>
芳香族ポリエーテルケトン樹脂(2)及びフッ素樹脂(1)を表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度390℃、スクリュウ回転数300rpmの条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を用いて、上記した方法で試験片を作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。また、当該試験片にてフッ素樹脂(1)の平均分散粒子径及び最大分散粒子径を算出した。
<実施例4>
芳香族ポリエーテルケトン樹脂(2)及びフッ素樹脂(3)を表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度390℃、スクリュウ回転数500rpmの条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を用いて、上記した方法で試験片を作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。また、当該試験片にてフッ素樹脂(3)の平均分散粒子径及び最大分散粒子径を算出した。
<実施例5>
芳香族ポリエーテルケトン樹脂(3)及びフッ素樹脂(1)を表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度390℃、スクリュウ回転数500rpmの条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を用いて、上記した方法で試験片を作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。また、当該試験片にてフッ素樹脂(1)の平均分散粒子径及び最大分散粒子径を算出した。
<比較例1>
芳香族ポリエーテルケトン樹脂(1)のみを使用して、上記した方法で試験片を作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。
<比較例2及び3>
芳香族ポリエーテルケトン樹脂(1)と、フッ素樹脂(4)又はフッ素樹脂(5)とを表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度390℃、スクリュウ回転数300rpmの条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を用いて、上記した方法でプレスシートを作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。また、プレスシートから超薄切片を切り出し、フッ素樹脂(4)又は(5)の平均分散粒子径及び最大分散粒子径を算出した。
<比較例4>
芳香族ポリエーテルケトン樹脂(3)、フッ素樹脂(3)を表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度390℃、スクリュウ回転数500rpmの条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を用いて、上記した方法でプレスシートを作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。また、プレスシートから超薄切片を切り出し、フッ素樹脂(3)の平均分散粒子径及び最大分散粒子径を算出した。
<比較例5>
芳香族ポリエーテルケトン樹脂(1)、フッ素樹脂(2)を表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度390℃、スクリュウ回転数300rpmの条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を用いて、上記した方法でプレスシートを作製し、限界PV値、動摩擦係数、ノッチ付きアイゾッド強度の測定を行った。また、プレスシートから超薄切片を切り出し、フッ素樹脂(2)の平均分散粒子径及び最大分散粒子径を算出した。
<比較例6>
芳香族ポリエーテルケトン樹脂(2)、フッ素樹脂(1)を表1に示す割合(質量部)で予備混合を行い、ベント式押出機(φ50mm、L/D=24)を使用して、シリンダー温度390℃、スクリュウ回転数25rpmの条件下で混合し、幅500mmのスリット台から押出し、130℃の引き取りロールで延伸し、25μmに延伸したフィルムを作成し、フッ素樹脂(1)の平均分散粒子径及び最大分散粒子径を算出した。 
Figure JPOXMLDOC01-appb-T000001
本発明の樹脂組成物は、高い摺動性が要求される自動車部品、工業部品、電気電子部品等に使用する成形材料として好適に利用可能である。

Claims (7)

  1. 芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む樹脂組成物であって、
    フッ素樹脂(II)は、テトラフルオロエチレン及び下記の一般式(1):
    CF=CF-Rf   (1)
    (式中、Rfは、-CF又は-ORfを表す。Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロエチレン性不飽和化合物の共重合体であり、
    芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が95:5~50:50であり、
    芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との溶融粘度比(I)/(II)が0.3~5.0であり、
    フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、フッ素樹脂(II)の平均分散粒子径が3.0μm未満であることを特徴とする樹脂組成物。
  2. フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、
    フッ素樹脂(II)の平均分散粒子径が0.3μm未満であり、且つ最大分散粒子径が0.8μm以下である請求項1記載の樹脂組成物。
  3. フッ素樹脂(II)は、メルトフローレートが0.1~100g/10分である請求項1又は2に記載の樹脂組成物。
  4. 芳香族ポリエーテルケトン樹脂(I)は、ポリエーテルエーテルケトンである請求項1、2又は3に記載の樹脂組成物。
  5. 請求項1、2、3又は4に記載の樹脂組成物からなる成形品。
  6. 摺動部材として使用される請求項5に記載の成形品。
  7. シール材、ギア、アクチュエーター、ピストン、ベアリング又はブッシュである請求項5又は6に記載の成形品。
PCT/JP2012/080913 2011-12-13 2012-11-29 樹脂組成物及び成形品 WO2013088964A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/362,488 US20140329968A1 (en) 2011-12-13 2012-11-29 Resin composition and molded article
EP12857640.2A EP2778199B1 (en) 2011-12-13 2012-11-29 Resin composition and molded article
CN201280058058.0A CN103958608B (zh) 2011-12-13 2012-11-29 树脂组合物和成型品
KR1020147019002A KR20140105550A (ko) 2011-12-13 2012-11-29 수지 조성물 및 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011272464 2011-12-13
JP2011-272464 2011-12-13

Publications (1)

Publication Number Publication Date
WO2013088964A1 true WO2013088964A1 (ja) 2013-06-20

Family

ID=48612419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080913 WO2013088964A1 (ja) 2011-12-13 2012-11-29 樹脂組成物及び成形品

Country Status (7)

Country Link
US (1) US20140329968A1 (ja)
EP (1) EP2778199B1 (ja)
JP (1) JPWO2013088964A1 (ja)
KR (1) KR20140105550A (ja)
CN (1) CN103958608B (ja)
TW (1) TW201336931A (ja)
WO (1) WO2013088964A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024671A1 (ja) * 2012-08-06 2014-02-13 ダイキン工業株式会社 樹脂組成物及び成形品
WO2015012346A1 (ja) * 2013-07-25 2015-01-29 ダイキン工業株式会社 熱可塑性樹脂組成物および成形品
WO2016010127A1 (ja) * 2014-07-18 2016-01-21 ダイキン工業株式会社 フィルム及びその製造方法
JP2019183175A (ja) * 2019-08-01 2019-10-24 ダイキン工業株式会社 離型フィルム
WO2020196243A1 (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 樹脂組成物および成形品

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975042B2 (ja) 2011-12-14 2016-08-23 ダイキン工業株式会社 絶縁電線
JP6059233B2 (ja) * 2012-08-31 2017-01-11 ダイセル・エボニック株式会社 難燃性熱可塑性樹脂組成物
CN106062048B (zh) * 2014-03-07 2019-03-12 东丽株式会社 复合滑动件及办公自动化设备用耐热性复合滑动件
JP6639775B2 (ja) * 2014-10-21 2020-02-05 住友電工プリントサーキット株式会社 樹脂フィルム、プリント配線板用カバーレイ、プリント配線板用基板及びプリント配線板
CN104683923A (zh) * 2015-03-17 2015-06-03 歌尔声学股份有限公司 微型扬声器振膜
WO2017179542A1 (ja) * 2016-04-11 2017-10-19 旭硝子株式会社 積層体、プリント基板、および積層体の製造方法
GB2580481B (en) * 2018-10-30 2022-02-23 Victrex Mfg Ltd Polymeric materials
CN109385090A (zh) * 2018-11-20 2019-02-26 浙江歌瑞新材料有限公司 一种涂油辊和集束轮的配方及其制造工艺
JP7347964B2 (ja) * 2019-05-30 2023-09-20 エドワーズ株式会社 真空ポンプ及び該真空ポンプに備えられた保護部
JP2021014834A (ja) 2019-07-12 2021-02-12 エドワーズ株式会社 真空ポンプ、ロータ及び座金
FR3106722B1 (fr) * 2020-01-31 2024-01-19 Ste Dapplication Des Silicones Alimentaires Revêtement pour la cuisson de produits issus du secteur de la boulangerie/viennoiserie/pâtisserie

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136255A (ja) * 1992-10-27 1994-05-17 Mitsui Toatsu Chem Inc ポリエーテル芳香族ケトン樹脂組成物
JPH06316686A (ja) 1992-10-30 1994-11-15 Nikken Toso Kogyo Kk Pfa−peek複合塗膜
JPH0848887A (ja) 1994-08-04 1996-02-20 Mitsui Toatsu Chem Inc 樹脂組成物
JPH0971704A (ja) * 1995-06-28 1997-03-18 Ntn Corp 四フッ化エチレン樹脂組成物
JPH0987517A (ja) 1995-09-27 1997-03-31 Mitsui Toatsu Chem Inc ポリイミド系樹脂組成物
JPH10195302A (ja) 1997-01-14 1998-07-28 Daikin Ind Ltd 耐熱性樹脂組成物および成形体
JP2002146202A (ja) 2000-11-15 2002-05-22 Hitachi Cable Ltd 改質エンジニアリングプラスチック、その製造方法およびそれを用いた成形品
JP2002235011A (ja) 2000-12-06 2002-08-23 Mitsui Chemicals Inc ポリイミド系樹脂組成物
JP2003082123A (ja) 2001-09-14 2003-03-19 Du Pont Toray Co Ltd ポリアリールケトンフィルムおよびそれを用いた可撓性印刷回路基板
WO2003044093A1 (fr) 2001-11-21 2003-05-30 Daikin Industries, Ltd. Composition de resine et procede de fabrication de moules
JP2004137363A (ja) 2002-10-17 2004-05-13 Nissan Motor Co Ltd 樹脂組成物、樹脂材料及びこれを用いた摺動部材、内燃機関用チェーンシステム、車両用シールリング
JP2006274073A (ja) 2005-03-29 2006-10-12 Mitsubishi Plastics Ind Ltd 樹脂組成物、その樹脂成形体、及び樹脂組成物の製造方法
JP2009052028A (ja) * 2007-08-02 2009-03-12 Daikin Ind Ltd 樹脂組成物
JP2009068390A (ja) * 2007-09-12 2009-04-02 Toyota Motor Corp 摺動部材被覆組成物、摺動部材及び内燃機関用ピストン
JP2010189599A (ja) 2009-02-20 2010-09-02 Olympus Corp 熱可塑性樹脂組成物、並びに医療製品及び内視鏡操作部
CN101880436A (zh) * 2010-07-05 2010-11-10 清华大学 树脂组合物及其模塑品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155275A (ja) * 1984-01-24 1985-08-15 Sumitomo Chem Co Ltd 被覆用樹脂組成物
US4897439A (en) 1986-07-01 1990-01-30 Edlon Products, Inc. Polymer-metal bonded composite and method of producing same
DE69932426T3 (de) * 1999-08-16 2011-03-10 E.I. Du Pont De Nemours And Co., Wilmington In der Schmelze verarbeitbares Polytetrafluorethylen
CN1283717C (zh) * 1999-08-16 2006-11-08 纳幕尔杜邦公司 可熔体成型的聚四氟乙烯
US6720071B2 (en) * 2001-02-21 2004-04-13 Ntn Corporation Tip seal and seal material for scroll type compressor
GB0608560D0 (en) * 2006-05-02 2006-06-07 Victrex Mfg Ltd Polymeric materials

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136255A (ja) * 1992-10-27 1994-05-17 Mitsui Toatsu Chem Inc ポリエーテル芳香族ケトン樹脂組成物
JPH06316686A (ja) 1992-10-30 1994-11-15 Nikken Toso Kogyo Kk Pfa−peek複合塗膜
JPH0848887A (ja) 1994-08-04 1996-02-20 Mitsui Toatsu Chem Inc 樹脂組成物
JPH0971704A (ja) * 1995-06-28 1997-03-18 Ntn Corp 四フッ化エチレン樹脂組成物
JPH0987517A (ja) 1995-09-27 1997-03-31 Mitsui Toatsu Chem Inc ポリイミド系樹脂組成物
JPH10195302A (ja) 1997-01-14 1998-07-28 Daikin Ind Ltd 耐熱性樹脂組成物および成形体
JP2002146202A (ja) 2000-11-15 2002-05-22 Hitachi Cable Ltd 改質エンジニアリングプラスチック、その製造方法およびそれを用いた成形品
JP2002235011A (ja) 2000-12-06 2002-08-23 Mitsui Chemicals Inc ポリイミド系樹脂組成物
JP2003082123A (ja) 2001-09-14 2003-03-19 Du Pont Toray Co Ltd ポリアリールケトンフィルムおよびそれを用いた可撓性印刷回路基板
WO2003044093A1 (fr) 2001-11-21 2003-05-30 Daikin Industries, Ltd. Composition de resine et procede de fabrication de moules
JP2004137363A (ja) 2002-10-17 2004-05-13 Nissan Motor Co Ltd 樹脂組成物、樹脂材料及びこれを用いた摺動部材、内燃機関用チェーンシステム、車両用シールリング
JP2006274073A (ja) 2005-03-29 2006-10-12 Mitsubishi Plastics Ind Ltd 樹脂組成物、その樹脂成形体、及び樹脂組成物の製造方法
JP2009052028A (ja) * 2007-08-02 2009-03-12 Daikin Ind Ltd 樹脂組成物
JP2009068390A (ja) * 2007-09-12 2009-04-02 Toyota Motor Corp 摺動部材被覆組成物、摺動部材及び内燃機関用ピストン
JP2010189599A (ja) 2009-02-20 2010-09-02 Olympus Corp 熱可塑性樹脂組成物、並びに医療製品及び内視鏡操作部
CN101880436A (zh) * 2010-07-05 2010-11-10 清华大学 树脂组合物及其模塑品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2778199A1 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881430A4 (en) * 2012-08-06 2015-08-05 Daikin Ind Ltd RESIN COMPOSITION AND ARTICLES
US10294362B2 (en) 2012-08-06 2019-05-21 Daikin Industries, Ltd. Resin composition and molded article
WO2014024671A1 (ja) * 2012-08-06 2014-02-13 ダイキン工業株式会社 樹脂組成物及び成形品
CN105408422A (zh) * 2013-07-25 2016-03-16 大金工业株式会社 热塑性树脂组合物和成型品
JP2015042740A (ja) * 2013-07-25 2015-03-05 ダイキン工業株式会社 熱可塑性樹脂組成物および成形品
WO2015012346A1 (ja) * 2013-07-25 2015-01-29 ダイキン工業株式会社 熱可塑性樹脂組成物および成形品
US10964444B2 (en) 2013-07-25 2021-03-30 Daikin Industries, Ltd. Thermoplastic resin composition, and molded article thereof
WO2016010127A1 (ja) * 2014-07-18 2016-01-21 ダイキン工業株式会社 フィルム及びその製造方法
JP2016029164A (ja) * 2014-07-18 2016-03-03 ダイキン工業株式会社 フィルム及びその製造方法
KR20170018944A (ko) 2014-07-18 2017-02-20 다이킨 고교 가부시키가이샤 필름 및 그 제조 방법
CN106536631A (zh) * 2014-07-18 2017-03-22 大金工业株式会社 膜及其制造方法
KR101903299B1 (ko) * 2014-07-18 2018-10-01 다이킨 고교 가부시키가이샤 필름 및 그 제조 방법
US10113041B2 (en) 2014-07-18 2018-10-30 Daikin Industries, Ltd. Film and method for producing same
WO2020196243A1 (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 樹脂組成物および成形品
JP2019183175A (ja) * 2019-08-01 2019-10-24 ダイキン工業株式会社 離型フィルム

Also Published As

Publication number Publication date
EP2778199A1 (en) 2014-09-17
EP2778199A4 (en) 2015-05-20
EP2778199B1 (en) 2017-05-17
TW201336931A (zh) 2013-09-16
US20140329968A1 (en) 2014-11-06
JPWO2013088964A1 (ja) 2015-04-27
CN103958608A (zh) 2014-07-30
CN103958608B (zh) 2016-08-17
KR20140105550A (ko) 2014-09-01

Similar Documents

Publication Publication Date Title
US10611909B2 (en) Resin composition and molded article
WO2013088964A1 (ja) 樹脂組成物及び成形品
EP2881430B1 (en) Resin composition and molded article
JP6070802B2 (ja) 樹脂組成物および成形品
JP6958546B2 (ja) 含フッ素共重合体組成物、その製造方法、および成形体
JP5772981B2 (ja) シールリング
JP5751347B2 (ja) 歯車
JP3235223B2 (ja) ポリフェニレンサルファイド樹脂組成物の製法
WO2013171325A1 (en) Tribological aromatic polyimide compositions
JP5907282B2 (ja) 樹脂組成物及び成形品
JP2014129465A (ja) 組成物、成形体及び繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549202

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012857640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012857640

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019002

Country of ref document: KR

Kind code of ref document: A