WO2013088799A1 - 電力供給システムおよび充放電用パワーコンディショナ - Google Patents

電力供給システムおよび充放電用パワーコンディショナ Download PDF

Info

Publication number
WO2013088799A1
WO2013088799A1 PCT/JP2012/073051 JP2012073051W WO2013088799A1 WO 2013088799 A1 WO2013088799 A1 WO 2013088799A1 JP 2012073051 W JP2012073051 W JP 2012073051W WO 2013088799 A1 WO2013088799 A1 WO 2013088799A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
conditioner
supply path
voltage
Prior art date
Application number
PCT/JP2012/073051
Other languages
English (en)
French (fr)
Inventor
田村 秀樹
小新 博昭
和憲 木寺
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12856950.6A priority Critical patent/EP2793352B1/en
Publication of WO2013088799A1 publication Critical patent/WO2013088799A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a power supply system and a charge / discharge power conditioner capable of switching between interconnection operation with a power system and independent operation.
  • a power supply system that includes a power conditioner having a power converter that converts DC power from a power source such as a solar battery into AC power, and that can supply power to a load from not only the power system of a commercial power supply but also from the power conditioner. It has been proposed (see, for example, Japanese Patent Publication No. 9-135577; hereinafter referred to as Patent Document 1).
  • the system (distributed power supply system) described in Patent Literature 1 is configured to be able to switch between a linked operation in which a power conditioner is linked to a power system and a stand-alone operation separated from the power system.
  • the power conditioner converts the output of the solar cell into AC power by a power converter (inverter) and supplies this AC power to a load (interconnection load) during the interconnection operation.
  • a power converter inverter
  • the shortage of power that cannot be covered by the output power from the power conditioner is supplied from the commercial power grid.
  • the power conditioner shifts to a self-sustained operation in the event of a power failure, etc., and converts the power from the solar cell into AC power with a power converter in a state disconnected from the power system and supplies it to a load (self-supporting load).
  • a general power conditioner is limited in the maximum output during independent operation (for example, 1.5 kVA), and the load that can be used during independent operation (independent load) is less than the maximum output of the power conditioner. Therefore, the degree of freedom in load selection is low. Moreover, even when using a load whose power consumption is less than the maximum output of the inverter, if the solar cell generated power falls below the load power consumption due to a decrease in the amount of solar radiation (power generation ⁇ power consumption) Conditioner output may stop.
  • the present invention has been made in view of the above reasons, and a power supply system and a charge / discharge power conditioner capable of continuing power supply to the load even when the generated power of the solar cell is lower than the power consumption of the load during the self-sustaining operation.
  • the purpose is to provide.
  • the power supply system of the present invention includes a power conditioner for power generation that can switch between a grid operation that converts power from a solar cell and interconnects with a power system, and a self-sustained operation that is disconnected from the power system.
  • a voltage detection unit that detects the voltage of the self-supporting power supply path; and a control unit that controls the charge / discharge circuit so that a detection voltage of the voltage detection unit becomes a predetermined target value during the self-sustained operation,
  • the control unit charges the storage battery with electric power from the self-contained power supply path if the detected voltage is larger than the target value, and stores the power storage if the detected voltage is smaller than the target value. Power from and controls the charging and discharging circuit to supply to the self-supporting feed line.
  • the power supply system of the present invention includes a power feed path including a grid feed path connected to a power grid and a self-sustained feed path disconnected from the power grid; and the grid feed by converting power from a solar cell.
  • a power conditioner for power generation capable of switching between a grid operation that outputs to a road and a self-sustained operation that is connected to the self-contained power supply path and is disconnected from the power system;
  • the charge / discharge power conditioner includes a charge / discharge circuit that charges and discharges a storage battery, a voltage detection unit that detects the voltage of the self-supporting power supply path, and a detection voltage of the voltage detection unit during the self-sustaining operation.
  • a control unit that controls the charge / discharge circuit such that the detected voltage is larger than the target value. Charging the battery with electric power, the detection voltage and controls the charging and discharging circuit to supply power from the battery is smaller than the target value to the self-supporting feed line.
  • the power conditioner for power generation performs maximum power point tracking control for extracting the maximum output from the solar cell during the self-sustaining operation.
  • the power conditioner for power generation performs constant voltage control for maintaining the output voltage to the independent power supply path at a first target value during the independent operation, and the power conditioner for charge and discharge is
  • the charge / discharge circuit is controlled to maintain the detection voltage of the voltage detection unit at the second target value as the target value, and the second target value is set to be smaller than the first target value. It is more desirable.
  • the target value has a predetermined width
  • the control unit charges the storage battery with power from the self-contained power supply path if the detection voltage is larger than the upper limit of the target value, If the detected voltage is smaller than the lower limit of the target value, power from the storage battery is supplied to the self-contained power supply path, and if the detected voltage is within the range between the upper limit and lower limit of the target value, the charge / discharge circuit It is more desirable to control the charge / discharge circuit so that the operation stops.
  • the charge / discharge power conditioner stops output from the power generation power conditioner to the independent power supply path when the remaining capacity of the storage battery exceeds a predetermined upper limit during the independent operation. It is more desirable.
  • the charge / discharge power conditioner further includes a switching unit that switches the target value between a first set value and a second set value.
  • the switching unit sets the target value to the first set value and the second set according to the output from the power generator for power generation to the stand-alone power supply path at the start of the stand-alone operation. It is more desirable to automatically switch between values.
  • the power conditioner for charging / discharging according to the present invention is connected to a power conditioner for power generation that can switch between a grid-operated operation that converts power from a solar cell and interconnects with the power system and a self-sustained operation that is disconnected from the power system.
  • a power supply path that is connected to a self-supporting power supply path that serves as a power supply path from the power generator for power generation during the self-sustained operation, and that detects a voltage of the self-supporting power supply path;
  • the storage battery If it is larger than the target value, the storage battery is charged with power from the self-contained power supply path, and if the detected voltage is smaller than the target value, power from the storage battery is supplied to the self-contained power supply path. And controlling the charging and discharging circuit.
  • the charging / discharging power conditioner of the present invention is a charging / discharging power conditioner applied to the power supply system of the present invention, and is connected to a self-supporting power supply path.
  • the power conditioner for charge / discharge detects the voltage of the charge / discharge circuit that charges and discharges the storage battery connected to the power conditioner and the voltage of the self-supporting power supply path.
  • control unit that controls the charge / discharge circuit so that the detection voltage of the voltage detection unit becomes a predetermined target value during the independent operation.
  • the control unit charges the storage battery with power from the independent power supply path if the detected voltage is greater than the target value, and supplies power from the storage battery to the independent power supply path if the detected voltage is less than the target value.
  • the charge / discharge circuit is controlled so as to be supplied.
  • the charging / discharging power conditioner further includes a switching unit that switches the target value between a first set value and a second set value, and the switching unit is configured to generate the power condition for power generation at the start of the autonomous operation. It is desirable that the target value is automatically switched between the first set value and the second set value in accordance with the output from the power source to the self-contained power supply path.
  • the present invention has an advantage that the power supply to the load can be continued even when the generated power of the solar cell is lower than the power consumption of the load during the self-sustaining operation.
  • FIG. 1 is a circuit diagram illustrating a configuration of a power supply system according to Embodiment 1.
  • FIG. 1 is a block diagram illustrating a configuration of a power supply system according to a first embodiment. It is explanatory drawing of the characteristic of the solar cell of the electric power supply system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the electric power supply system which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the structure of the electric power supply system which concerns on Embodiment 3.
  • FIG. It is a circuit diagram which shows the structure of the electric power supply system which concerns on Embodiment 3.
  • FIG. It is a circuit diagram which shows the structure of the electric power supply system which concerns on Embodiment 4.
  • the power supply system 1 of the present embodiment includes a solar battery 2, a power conditioner 3 for power generation connected to the solar battery 2, a storage battery 4, and a charge / discharge connection connected to the storage battery 4.
  • a power conditioner 5 is provided.
  • an interconnection feed path 7 connected to the power grid 6 and a self-supporting feed path 8 disconnected from the power grid 6 are provided.
  • the storage battery 4 is made of, for example, a lead storage battery or a lithium ion battery.
  • the power conditioner 3 for power generation and the power conditioner 5 for charging / discharging are both “connected operation” connected to the power system (commercial system) 6 of the commercial power source and “independent operation” disconnected from the power system 6. These two operation states can be switched. Furthermore, the power conditioner 3 for power generation has a first output end 31 and a second output end 32 individually. Similarly, the charge / discharge power conditioner 5 has a first output end 51 and a second output end 52 individually. The configuration of each power conditioner will be described later.
  • the power conditioner 3 for power generation and the power conditioner 5 for charge / discharge are both directly connected to the power feed path 7 to which the power system 6 is connected.
  • the second output ends 32 and 52 are directly connected to the self-sustained power supply path 8 disconnected from 6. Therefore, in the present embodiment, the first output terminals 31 and 51 serve as power output terminals during the interconnected operation, and the second output terminals 32 and 52 serve as power output terminals during the independent operation. That is, in the present embodiment, the power conditioner 3 for power generation and the power conditioner 5 for charging / discharging are connected to each other between the first output terminals 31 and 51 via the interconnection power supply path 7 and via the self-supporting power supply path 8. The second output ends 32 and 52 are connected to each other.
  • the power conditioner 3 for power generation and the power conditioner 5 for charging / discharging according to the present embodiment are in two operation states, that is, a connected operation that is connected to the power system 6 and a self-supporting operation that is disconnected from the power system 6 (
  • the connection state is switchable.
  • a load 9 is connected to each of the interconnection power supply path 7 and the independent power supply path 8.
  • the load 9 is a variety of electric devices such as a lighting device, a refrigerator, a television, a medical device, and a mobile phone terminal charger.
  • the load 9 operates with AC power supplied from the power conditioner or the power system 6. Consists of drive-type electrical equipment.
  • it is not indispensable that the interconnection power supply path 7 and the self-supporting power supply path 8 are directly connected to a load 9 made of electrical equipment, and are connected to an outlet (not shown) to which the load 9 can be detachably connected. It may be.
  • an outlet that can be used during the interconnection operation of each power conditioner is connected to the interconnection power supply path 7, and an independent dedicated outlet that can be used during the independent operation of each power conditioner is connected to the independent power supply path 8.
  • the power conditioner 3 for power generation includes a DCDC converter 33 connected to the solar cell 2, a DCAC converter 34 that converts DC power into AC power, a control unit 35 that controls each unit, and a relay that includes a relay.
  • a first switch 36 and a second switch 37 are provided.
  • a DCAC converter 34 is connected to a terminal of the DCDC converter 33 opposite to the solar cell 2.
  • An output terminal of AC power in the DCAC converter 34 is connected to the first output end 31 via the first switch 36 and is connected to the second output end 32 via the second switch 37. Therefore, in the present embodiment, the output terminal of AC power in the power converter 30 is connected to the interconnection power supply path 7 via the first switch 36 and connected to the self-sustained power supply path 8 via the second switch 37. Has been.
  • the DCDC converter 33 boosts the DC power from the solar cell 2 and outputs it to the DCAC converter 34.
  • the DCAC converter 34 is a unidirectional converter (inverter) that converts DC power from the DCDC converter 33 into AC power and outputs the AC power to the first output terminal 31 or the second output terminal 32. That is, the DCDC converter 33 and the DCAC converter 34 constitute a power converter 30 that converts the power from the solar cell 2 and outputs it to the interconnection feed path 7 or the independent feed path 8.
  • the control unit 35 connects the first switch 36 and shuts off the second switch 37 during the interconnection operation, and connects the second switch 37 and shuts off the first switch 36 during the independent operation.
  • the control unit 35 of the present embodiment switches between the connected operation connected to the power system 6 and the independent operation disconnected from the power system 6 by switching the connection state of the first switch 36 and the second switch 37. . Further, the control unit 35 shuts off the disconnector (not shown) provided on the interconnection power supply path 7 when switching from the interconnection operation to the independent operation.
  • an abnormality detection unit (not shown) that detects whether there is an abnormality in the power system 6 such as a power failure is provided on the interconnection power supply path 7, and the control unit 35 responds to the detection result of the abnormality detection unit.
  • the control unit 35 selects the interconnected operation (state connected to the power system 6) when the power system 6 is normal, and operates independently (state disconnected from the power system 6) when the power system 6 is abnormal such as a power failure. Switch to.
  • the power conditioner 3 for power generation generally incorporates a power failure detection unit (not shown) that detects whether there is an abnormality in the power system 6 such as a power failure for preventing isolated operation
  • the control unit 35 includes Depending on the detection result of the power failure detection unit, the grid operation / independent operation may be switched.
  • the charge / discharge power conditioner 5 includes a DCDC converter 53 connected to the storage battery 4, a DCAC converter 54 that converts DC power into AC power, a control unit 55 that controls each unit, and a first switch 56 that includes a relay. And a second switch 57.
  • a DCAC converter 54 is connected to a terminal of the DCDC converter 53 opposite to the storage battery 4.
  • the output terminal of AC power in the DCAC converter 54 is connected to the first output end 51 via the first switch 56 and is connected to the second output end 52 via the second switch 57. That is, in the present embodiment, the output terminal of AC power in the charge / discharge circuit 50 is connected to the interconnection power supply path 7 via the first switch 56 and connected to the self-sustained power supply path 8 via the second switch 57.
  • the DCDC converter 53 boosts the direct current power from the storage battery 4 when the storage battery 4 is discharged and outputs it to the DCAC converter 54.
  • the DCDC converter 53 reduces the direct current power from the DCAC converter 54 and outputs it to the storage battery 4. It is a converter.
  • the DCAC converter 54 converts the DC power from the DCDC converter 53 into AC power when the storage battery 4 is discharged, and outputs the AC power to the first output terminal 51 or the second output terminal 52.
  • the DCAC converter 54 is a bidirectional converter that converts AC power from the first output terminal 51 or the second output terminal 52 into DC power and outputs the DC power to the DCDC converter 53 when the storage battery 4 is charged.
  • the DCDC converter 53 and the DCAC converter 54 constitute a charging / discharging circuit 50 that performs bi-directional conversion of power between the storage battery 4 and the interconnection power supply path 7 or the independent power supply path 8 to charge / discharge the storage battery 4.
  • the operation of the charge / discharge circuit 50 when the output of the storage battery 4 is converted into AC power and supplied to the interconnection feed path 7 or the independent feed path 8 is the discharge mode, and conversely the interconnection feed path 7 or the independent feed path
  • the operation when power from 8 is converted to DC power and supplied to the storage battery 4 is referred to as a charging mode.
  • the control unit 55 connects the first switch 56 to shut off the second switch 57 during the interconnected operation, and connects the second switch 57 to shut off the first switch 56 during the independent operation.
  • the control unit 55 according to the present embodiment switches between the connected operation connected to the power system 6 and the independent operation disconnected from the power system 6 by switching the connection state of the first switch 56 and the second switch 57. .
  • the control unit 55 automatically switches between interconnection operation and independent operation according to the detection result of the abnormality detection unit provided on the interconnection power supply path 7. That is, the control unit 55 selects the grid operation when the power system 6 is normal, and switches to the independent operation when the power system 6 is abnormal such as a power failure.
  • the DC / DC converter 33 of the power conditioner 3 for power generation includes a step-up chopper circuit including a series circuit of an inductor 331 and a switching element 332 connected to the solar battery 2 and a series circuit of a diode 333 and a capacitor 334.
  • the inductor 331 and the switching element 332 are connected to the solar cell 2 such that the inductor 331 is on the positive electrode side of the solar cell 2 and the switching element 332 is on the negative electrode side of the solar cell 2.
  • the anode of the diode 333 is connected to the connection point between the inductor 331 and the switching element 332.
  • a terminal of the capacitor 334 opposite to the diode 333 is connected to a connection point between the negative electrode side of the solar cell 2 and the switching element 332.
  • the switching element 332 includes an insulated gate bipolar transistor (IGBT), and a diode 335 is connected in antiparallel.
  • the DC-DC converter 33 generates a boosted DC voltage at both ends of the capacitor 334 when the control unit 35 performs on / off control of the switching element 332 at a high frequency while power is supplied from the solar cell 2.
  • the DCAC converter 34 of the power conditioner 3 for power generation is composed of a full-bridge type inverter circuit in which four switching elements 341 to 344 are connected to the output ends (both ends of the capacitor 334) of the DCDC converter 33.
  • the DCAC converter 34 includes an LC filter including a series circuit of an inductor 345, a capacitor 346, and an inductor 347 between a connection point between the switching elements 341 and 342 and a connection point between the switching elements 343 and 344.
  • Each of the switching elements 341 to 344 is made of an IGBT here, and a diode 348 is connected in antiparallel with each other.
  • the DCAC converter 34 generates an AC voltage across the capacitor 346 when the control unit 35 performs on / off control of the switching elements 341 to 344 while power is supplied from the DCDC converter 33.
  • the output terminals of the DCAC converter 34 (both ends of the capacitor 346) are connected to the second output terminal 32 via a two-point second switch 37.
  • the power conditioner 3 for power generation has a function of maximum power point tracking (MPPT: Maximum ⁇ ⁇ PowerPoint Tracking) control.
  • MPPT Maximum ⁇ ⁇ PowerPoint Tracking
  • the horizontal axis is the output voltage of the solar cell 2
  • the vertical axis is the generated power of the solar cell 2
  • the characteristic when the solar radiation intensity is relatively small is “A1”
  • the characteristic when the solar radiation intensity is relatively large is represented by “A2”
  • the black circles indicate the optimum points at which the generated power is maximum.
  • the power conditioner 3 for power generation performs maximum power point tracking control at least during a self-sustained operation (a state where the power conditioner 3 is disconnected from the power system 6).
  • the power conditioner 3 for power generation includes a voltage detection unit 351 that detects the output voltage of the solar cell 2 and a current detection unit 352 that detects the output current of the DCAC converter 34, and the voltage detection unit 351 and The output of the current detection unit 352 is input to the control unit 35.
  • the voltage detection unit 351 detects the voltage at the connection point of the solar cell 2 in the DCDC converter 33
  • the current detection unit 352 is between the connection point of the switching elements 341 and 342 in the DCAC converter 34 and the inductor 345. Is provided.
  • the control unit 35 controls the power converter (DCDC converter 33 and DCAC converter 34) 30 based on the detection results of the voltage detection unit 351 and the current detection unit 352, and realizes maximum power point tracking control.
  • the control unit 35 has a microcomputer as a main component, and implements each function for controlling the operation of the power converter 30 by executing a program stored in a memory (not shown). To do.
  • the power conditioner 3 for power generation performs maximum power point tracking control in a state where the second switch 37 is connected (turned on) and connected to the self-contained power supply path 8.
  • the first output end 31 of the power generation power conditioner 3 is connected to the output end of the DCAC converter 34 (both ends of the capacitor 346) via the first switch 36 cut off at two points. (See FIG. 2).
  • the power conditioner 3 for electric power generation of this embodiment is comprised so that the maximum power point tracking control may be performed even in the state where the first switch 36 is connected (turned on) and connected to the interconnection feed path 7. Yes.
  • the DC / DC converter 53 of the charge / discharge power conditioner 5 includes a series circuit of an inductor 531 and a switching element 532 connected to the storage battery 4, and a series circuit of a diode 533 and a capacitor 534.
  • the inductor 531 and the switching element 532 are connected to the storage battery 4 such that the inductor 531 is on the positive electrode side of the storage battery 4 and the switching element 532 is on the negative electrode side of the storage battery 4.
  • the diode 533 and the capacitor 534 are configured to connect the anode of the diode 533 to the connection point between the inductor 531 and the switching element 532.
  • a terminal of the capacitor 534 opposite to the diode 533 is connected to a connection point between the negative electrode side of the storage battery 4 and the switching element 532.
  • the switching element 532 is made of an IGBT, and a diode 535 is connected in antiparallel.
  • a charging switching element 536 made of IGBT is connected to the diode 533 in parallel.
  • the control unit 55 when the storage battery 4 is discharged (discharge mode), the control unit 55 performs on / off control of the switching element 532 at a high frequency, thereby generating a boosted DC voltage across the capacitor 534. Further, when the storage battery 4 is charged (charging mode), the DCDC converter 53 controls the switching element 532 to be turned off and the charging switching element 536 to be turned on and off at a high frequency, thereby receiving the input from the DCAC converter 54 and reducing the direct current. The storage battery 4 is charged with voltage.
  • the DCAC converter 54 of the charge / discharge power conditioner 5 includes a full-bridge inverter circuit in which four switching elements 541 to 544 are connected to both ends of a capacitor 534 of the DCDC converter 53.
  • the DCAC converter 54 includes an LC filter including a series circuit of an inductor 545, a capacitor 546, and an inductor 547 between a connection point between the switching elements 541 and 542 and a connection point between the switching elements 543 and 544.
  • Each of the switching elements 541 to 544 is made of an IGBT here, and a diode 548 is connected in antiparallel with each other.
  • the control unit 55 when the storage battery 4 is discharged (discharge mode), the control unit 55 performs on / off control of the switching elements 541 to 544 to generate an AC voltage across the capacitor 546. Both ends of the capacitor 546 are connected to the second output end 52 via a two-point second switch 57.
  • the DCAC converter 54 outputs a DC voltage to the DCDC converter 53 by turning off the switching elements 541 to 544 by the control unit 55 when the storage battery 4 is charged (charging mode).
  • the charging / discharging power conditioner 5 of the present embodiment performs constant voltage control for maintaining the voltage (effective value) of the independent power supply path 8 constant by switching charging / discharging of the storage battery 4 during the independent operation.
  • the charge / discharge power conditioner 5 includes a voltage detection unit 551 that detects the voltage of the second output terminal 52, and the output of the voltage detection unit 551 is input to the control unit 55.
  • the voltage detection unit 551 is connected to the connection point of the inductor 545 to the capacitor 546 and the connection point of the capacitor 546 to the inductor 547 in the DCAC converter 54 and detects the voltage across the capacitor 546.
  • the control unit 55 controls the charge / discharge circuit (DCDC converter 53 and DCAC converter 54) 50 based on the detection result of the voltage detection unit 551, and realizes constant voltage control for maintaining the voltage of the second output terminal 52 constant. . That is, the control unit 55 operates the charging / discharging circuit 50 in the discharge mode to detect the detection voltage (detection result) so as to maintain the detection voltage (detection result) of the voltage detection unit 551 at a predetermined target value. If the voltage is larger than the target value, the charge / discharge circuit 50 is operated in the charge mode. At this time, the control unit 55 changes the magnitude of the output power according to the magnitude of the difference between the detected voltage and the target value.
  • the control unit 55 has a microcomputer as a main component, and implements each function for controlling the operation of the charge / discharge circuit 50 by executing a program stored in a memory (not shown). To do.
  • the first output end 51 of the charge / discharge power conditioner 5 is connected to the output end of the DCAC converter 54 (both ends of the capacitor 546) via the first switch 56 cut off at two points. ) (See FIG. 2).
  • the charge / discharge power conditioner 5 according to this embodiment performs constant voltage control even in a state where the first switch 56 is connected (turned on) and connected to the interconnection power supply path 7.
  • the power conditioner 3 for power generation and the power conditioner 5 for charging / discharging of the present embodiment detect an abnormality in the power system 6, the second switches 37 and 57 are connected to each other via the independent power supply path 8. Connected and automatically switches to autonomous operation.
  • the power conditioner 3 for power generation performs maximum power point tracking control so that the generated power of the solar cell 2 is maximized, and the power conditioner 5 for charge / discharge is set so that the voltage of the self-sustained power supply path 8 becomes constant. Constant voltage control is performed.
  • the output power (hereinafter referred to as “generated power”) from the power conditioner 3 for power generation to the self-sustained power supply path 8 is the power consumption (hereinafter referred to as “load power”) at the load 9 connected to the self-supported power supply path 8. Is greater than the load power, all generated power is covered by the generated power.
  • load power the power consumption
  • the voltage of the self-supporting power supply path 8 rises from the rating, and the voltage detection unit The detection voltage 551 becomes larger than the target value.
  • the charging / discharging power conditioner 5 operates the charging / discharging circuit 50 in the charging mode, converts the AC power input from the self-contained power supply path 8 into DC power, and outputs it to the storage battery 4, thereby generating generated power.
  • the storage battery 4 is charged using surplus power that is the difference from the load power. That is, the control unit 55 controls the charge / discharge circuit 50 so as to charge the storage battery 4 with the power from the self-contained power supply path 8 if the detected voltage is larger than the target value.
  • the charging / discharging power conditioner 5 has a magnitude of the difference between the detected voltage and the target value so that the output to the storage battery 4 increases as the difference between the detected voltage of the voltage detector 551 and the target value increases. The magnitude of the output power is changed according to.
  • the load power is covered by the generated power and the output power from the charge / discharge power conditioner 5.
  • the voltage of the self-supporting power supply path 8 falls below the rating, and the voltage detection unit 551. The detected voltage becomes smaller than the target value.
  • the power conditioner 5 for charging / discharging operates the charging / discharging circuit 50 in the discharge mode, converts the DC power input from the storage battery 4 into AC power, and outputs the AC power to the independent power supply path 8, thereby Insufficient power, which is a difference from the generated power, is supplemented by the discharged power of the storage battery 4. That is, if the detected voltage is smaller than the target value, the control unit 55 controls the charge / discharge circuit 50 so as to supply the electric power from the storage battery 4 to the independent power supply path 8.
  • the charging / discharging power conditioner 5 has a difference between the detection voltage and the target value so that the output to the self-contained power supply path 8 increases as the difference between the detection voltage of the voltage detection unit 551 and the target value increases. The magnitude of the output power is changed according to the magnitude.
  • the load power is all covered by the generated power.
  • the power supply from the power conditioner 3 for power generation is balanced with the power supply to the load 9 in the self-supporting power supply path 8, the voltage of the self-supporting power supply path 8 is rated, and the detection voltage of the voltage detecting unit 551 is the target value. Is approximately the same. Therefore, the charge / discharge power conditioner 5 stops the operation of the charge / discharge circuit 50 and stops charging and discharging of the storage battery 4.
  • the output power (generated power) from the power conditioner 3 for generation is not affected, Power can be supplied stably to the load 9.
  • the charge / discharge power conditioner 5 may be set with a target value having a certain width, for example, “100 V ⁇ 2 V”. In this case, the charge / discharge power conditioner 5 operates the charge / discharge circuit 50 in the charge mode when the detected voltage exceeds the upper limit of target value (here, 102V), and the detected voltage is lower limit of target value (here, 98V). If the value is less than, the charge / discharge circuit 50 is operated in the discharge mode. The charge / discharge power conditioner 5 stops the operation of the charge / discharge circuit 50 if the detected voltage is within the range between the upper limit and the lower limit of the target value.
  • target value having a certain width
  • the power generator for power generation 3 performs maximum power point tracking control.
  • the charge / discharge power conditioner 5 is configured to perform constant voltage control.
  • the charge / discharge power conditioner 5 may operate the charge / discharge circuit 50 in the charge mode and charge the storage battery 4 using the power supplied from the power system 6.
  • the power conditioner 3 for power generation can reversely flow surplus power to the power system 6 and sell the power. Good.
  • the solar battery 2 is compared with the case where the constant voltage control is applied.
  • the generated power can be used effectively without waste. That is, since the power conditioner 3 for power generation follows the optimum point (maximum power point) at which the generated power of the solar cell 2 is maximum, the solar power conditioner 3 can be operated regardless of the state of the load 9 connected to the independent power supply path 8. The generated power of the battery 2 can be taken out efficiently.
  • the charge / discharge power conditioner 5 performs constant voltage control that maintains the voltage of the self-sustained power supply path 8 at the time of self-sustained operation, so that the output power (generated power) from the power generator for power generation 3 varies.
  • a stable power supply to the load 9 becomes possible without being affected. That is, although the output power from the power conditioner 3 for power generation fluctuates when the power conditioner 3 for power generation performs the maximum power point tracking control, this fluctuation can be absorbed by the power conditioner 5 for charge / discharge. . Therefore, the load 9 connected to the self-supporting power supply path 8 can receive a stable power supply from the self-supporting power supply path 8.
  • the power conditioner 5 for charging / discharging charges the storage battery 4 using surplus power at the time of a self-sustained operation
  • the load 9 can be operated. Therefore, the load 9 that can be used during the self-sustained operation may be a load whose power consumption exceeds the maximum output of the power conditioner 3 for power generation, and the degree of freedom in selecting the load increases.
  • the charge / discharge power conditioner 5 The power supply to the load 9 can be continued, and the power can be stably supplied to the load 9.
  • the power supply system 1 includes a connection switch 10 between the first output end 31 of the power generator for power generation 3 and the interconnection power supply path 7 and the independent power supply path 8.
  • the power conditioner 3 for power generation according to the present embodiment is configured to perform maximum power point tracking control in a mode in which power is output from the first output end 31.
  • the configurations of the voltage detection unit 351, the current detection unit 352, etc. for performing the maximum power point tracking control are the same as those in the first embodiment. That is, in the power conditioner 3 for power generation of this embodiment, the 1st output terminal 31 is connected to the output terminal (both ends of the capacitor
  • the structure of the power conditioner 5 for charging / discharging of this embodiment is the same as that of Embodiment 1.
  • FIG. Hereinafter, the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof will be omitted as appropriate.
  • connection switch 10 includes a first connection switch (connection-side switch) 101 inserted between the first output end 31 and the connection power supply path 7, And the 2nd connection switch (self-standing side switch) 102 inserted between the 1st output end 31 and the self-supporting electric power feeding path 8 is provided. That is, the output terminal of the AC power in the power converter 30 is connected to the interconnection power supply path 7 via the first connection switch 101 and is connected to the independent power supply path 8 via the second connection switch 102. ing.
  • connection switch 10 selectively connects the first and second connection switches 101 and 102 in response to a switching signal from the control unit 55 of the charge / discharge power conditioner 5, and the first output terminal
  • the connection destination of 31 is switched between the interconnection power supply path 7 and the independent power supply path 8.
  • connection switching unit 10 switches between the grid operation (the state linked to the power system 6) and the self-sustained operation (the state disconnected from the power system 6) of the power conditioner 3 for power generation.
  • the control unit 35 connects the first switch 36 and shuts off the second switch 37 regardless of whether the operation is the interconnection operation or the independent operation. That is, the power conditioner 3 for power generation outputs only from the first output end 31 and supplies the output to the interconnection feed path 7 via the first connection switch 101 during the interconnection operation.
  • the power is supplied to the self-sustaining power supply path 8 via the second connection switch 102.
  • a general power conditioner provided on the market performs maximum power point tracking control in the mode in which power is output from the first output terminal (interconnection output terminal), and the second output terminal (independent output).
  • constant voltage control is performed to maintain the output voltage at a predetermined target value in order to ensure the operating voltage of the load. Therefore, according to the configuration of the present embodiment shown in FIG. 4, the power supply system 1 can use a general power conditioner as the power generation power conditioner 3.
  • the power conditioner 3 for power generation since the power conditioner 3 for power generation always uses the first output end 31, the maximum power point is maintained regardless of whether the connection switcher 10 is switched to the connected operation or the independent operation.
  • follow-up control is performed.
  • connection switch 10 is not limited to a configuration that receives a switching signal from the outside, and includes an abnormality detection unit (not shown) that detects whether there is an abnormality in the power system 6 such as a power failure, for example.
  • a configuration may be employed in which the linked operation / independent operation is switched according to the detection result.
  • the power generation power conditioner 3 applies the maximum power point tracking control during the self-sustained operation, so that the generated power of the solar cell 2 is higher than that when the constant voltage control is applied. Can be used effectively without waste.
  • the charge / discharge power conditioner 5 performs constant voltage control that maintains the voltage of the independent power supply path 8 at the time of self-sustained operation, so that the output power (generated power) from the power conditioner 3 for power generation varies.
  • a stable power supply to the load 9 becomes possible without being affected. Therefore, the load 9 connected to the self-supporting power supply path 8 can receive a stable power supply from the self-supporting power supply path 8.
  • the load 9 that can be used during the self-sustained operation may be a load whose power consumption exceeds the maximum output of the power conditioner 3 for power generation, and the degree of freedom in selecting the load increases.
  • the charge / discharge power conditioner 5 The power supply to the load 9 can be continued, and the power can be stably supplied to the load 9.
  • the power conditioner 3 for power generation according to this embodiment may not include the second output end 32.
  • the power supply system 1 of this embodiment is provided with the switch board 11 connected to the electric power grid
  • the same configurations as those of the second embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a distribution board 12 is further provided.
  • the power system 6, the power generation power conditioner 3, and the charge / discharge power conditioner 5 include a switching board 11 and a power distribution board. It is connected to the load 9 via the panel 12.
  • the distribution board 12 has a main breaker (not shown) and a plurality of branch breakers (not shown), and one or more loads 9 can be connected to each branch breaker.
  • the interconnection power supply path and the independent power supply path are not provided separately, but the power system 6 and the power for power generation are provided to one power supply path 13 connected to the distribution board 12.
  • the conditioner 3 and the charge / discharge power conditioner 5 are connected via a switching board 11.
  • the switching board 11 includes a system-side switch 111 inserted between the power system 6 and the power supply path 13, and a power generation inserted between the power conditioner 3 for power generation and the power supply path 13. And a side switch 112. That is, the power supply path 13 is connected to the power system 6 via the system side switch 111.
  • the power conditioner 3 for power generation is connected to the power supply path 13 via the power generation side switch 112.
  • the charge / discharge power conditioner 5 is always connected to the power supply path 13 via the switching board 11.
  • connection state between the power supply path 13 and the power system 6 is switched by the system side switch 111 of the switching board 11, and the power supply path 13 is connected to the system side switch 111 in the connected state (on).
  • the power supply path and the system side switch 111 are cut off (off)
  • the power supply path functions as a self-supporting power supply path. Therefore, if the power generation side switch 112 is connected (turned on), the power generation power conditioner 3 performs the interconnection operation in a state where the system side switch 111 is connected, and the system side switch 111 is shut off. In this state, it will operate independently.
  • the charging / discharging power conditioner 5 performs a grid-connected operation when the system-side switch 111 is connected, and performs a self-supporting operation when the system-side switch 111 is disconnected.
  • connection operation and “self-sustained operation” in this specification do not represent the operation mode of the power conditioner 3 for power generation but represent the connection state between the power conditioner 3 for power generation and the power system 6. ing.
  • connection operation the state in which the power conditioner 3 for power generation is connected to the power system 6 and connected to the power system 6
  • self-sustaining operation the state in which the power conditioner 3 for power generation is disconnected from the power system 6.
  • the general power conditioner 3 for power generation has two operation modes: a connected operation mode in which output is performed from the first output end 31, and a self-sustained operation mode in which output is performed from the second output end 32.
  • the operation mode is different from “interconnection operation” and “self-sustaining operation” indicating the connection state with the power system 6. That is, even if the power conditioner 3 for power generation is in the “self-sustaining operation” state disconnected from the power system 6, for example, any operation mode of the interconnection operation mode and the self-sustaining operation mode can be selected.
  • the power conditioner 3 for power generation of this embodiment is provided with the switch (not shown) for switching an operation mode, and when this switch is operated, it is connected operation mode (1st switch 36). Are connected and the second switch 37 is shut off) and the self-sustained operation mode (the state where the first switch 36 is shut off and the second switch 37 is connected) are manually switched. Therefore, for example, when the remaining capacity of the storage battery 4 is exhausted during the independent operation (in a state where the storage battery 4 is disconnected), the operation mode of the power conditioner 3 for power generation is switched from the interconnection operation mode to the independent operation mode. Can secure power. That is, the power conditioner 3 for power generation can supply power to a dedicated independent power supply path (not shown) connected to the second output end 32 by operating in the autonomous operation mode (this point is the second The same applies to the power conditioner 3 for power generation according to the embodiment).
  • the power conditioner 3 for power generation always connects the first switch 36 and connects the second switch 37 when the power generation side switch 112 is connected, regardless of whether it is connected operation or independent operation. Assume that it operates in the disconnected operation mode. That is, the power generator for power generation 3 outputs the power supply path 13 only from the first output end 31, and the first output end 31 is always connected to the power generation side switch 112. Similarly, the charge / discharge power conditioner 5 outputs the power supply path 13 only from the first output end 51, and the first output end 51 is always connected to the power supply path 13.
  • the charge / discharge power conditioner 5 has a communication function with the switching board 11, and at least the system side switch 111 and the power generation side switch 112 are controlled by a control signal. Opening and closing control is possible.
  • the control unit 55 (see FIG. 1) of the charge / discharge power conditioner 5 automatically switches between the grid operation and the independent operation depending on whether there is an abnormality in the power system 6 such as a power failure. That is, the control unit 55 connects (turns on) the system-side switch 111 when the power system 6 is normal and performs a grid connection operation, and shuts off (off) the system-side switch 111 when the power system 6 is abnormal such as a power failure. And perform autonomous operation.
  • the power conditioner 5 for charging / discharging has a built-in power failure detection unit (not shown) that detects the presence or absence of an abnormality in the power system 6 such as a power failure for preventing isolated operation.
  • the system-side switch 111 In response to the detection result (abnormality) from the power failure detection unit, the system-side switch 111 is shut off and switched to the independent operation. In addition, on the upstream side (the power system 6 side) of the system side switch 111 in the switching panel 11, so that the recovery (recovery) of the power system 6 can be detected even if the system side switch 111 is shut off.
  • a power recovery detection unit 113 that detects power recovery is provided. The detection result of the power recovery detection unit 113 is output to the charge / discharge power conditioner 5, and the control unit 55 receives the detection result (power recovery) of the power recovery detection unit 113 and connects the system side switch 111. Switch to grid operation.
  • the charge / discharge power conditioner 5 has a remaining capacity monitoring unit 59 that monitors the remaining capacity (charge amount) of the storage battery 4 connected thereto.
  • the remaining capacity monitoring unit 59 monitors the remaining capacity of the storage battery 4 by measuring the voltage of the storage battery 4, for example.
  • the remaining capacity of the storage battery 4 when the storage battery 4 is fully charged is referred to as an “upper limit value”.
  • the control unit 55 (see FIG. 1) of the charge / discharge power conditioner 5 always connects (turns on) the power generation side switch 112 during the grid operation, and generates power according to the remaining capacity of the storage battery 4 during the independent operation.
  • the side switch 112 is controlled to open and close.
  • the control unit 55 connects the power generation side switch 112 if the remaining capacity monitored by the remaining capacity monitoring unit 59 is less than the upper limit value during self-sustained operation, and generates power when the remaining capacity exceeds the upper limit value.
  • the side switch 112 is shut off (turned off).
  • the charge / discharge power conditioner 5 is connected from the power generator for power generation 3 to the power supply path (self-supporting power supply path) 13 when the storage battery 4 is fully charged when the power system 6 is abnormal (during independent operation). The output is forcibly stopped.
  • the charge / discharge power conditioner 5 temporarily stops the output to the power supply path 13 and shuts off the system side switch 111. Constant voltage control for maintaining the voltage (effective value) of the power supply path 13 constant is started. Therefore, when an abnormality occurs in the power system 6, at least power supply from the charge / discharge power conditioner 5 and the power system 6 to the power supply path 13 is temporarily stopped. Further, when the power recovery detector 113 detects that the power system 6 is restored (power recovery), the charging / discharging power conditioner 5 temporarily stops the output to the power supply path 13 and connects the system side switch 111. After that, the grid operation is resumed.
  • the power conditioner 3 for power generation performs maximum power point tracking control
  • the power conditioner 5 for charge / discharge performs constant voltage control. Yes.
  • the power generator for power generation 3 detects the voltage of the power supply path 13 and performs current control to output a current in accordance with the voltage.
  • the current control (maximum power point tracking control) cannot be continued if the voltage used as the reference for the power supply disappears. Therefore, when an abnormality occurs in the power system 6 and power supply from the charging / discharging power conditioner 5 and the power system 6 to the power supply path 13 is stopped, the power generation power conditioner 3 supplies the voltage of the power supply path 13 serving as a reference. Therefore, the output to the power feeding path 13 is stopped.
  • the power conditioner 3 for electric power generation is preventing the independent operation at the time of the abnormality of the electric power grid
  • the power supply from the charging / discharging power conditioner 5 and the power system 6 to the power supply path 13 is temporarily stopped, so that the power generation power conditioner 3 is connected to the power supply path 13.
  • the output of is temporarily stopped.
  • FIG. 6 an example of a specific circuit configuration of the power supply system 1 of the present embodiment is shown in FIG.
  • illustration of the second output ends 32 and 52 (see FIG. 1) and the second switches 37 and 57 (see FIG. 1) is omitted, and the distribution board 12 (see FIG. 5) is also shown. Omitted.
  • the power supply system 1 of FIG. 6 includes a point that the first output end 31 of the power conditioner 3 for power generation is connected to the power supply path 13 via the power generation side switch 112, and the power conditioner 5 of the charge / discharge power conditioner 5. It differs from the second embodiment in that one output end 51 is connected to the power feed path 13.
  • the charging / discharging power conditioner 5 has a remaining capacity monitoring unit 59, and the control unit 55 opens and closes the power generation side switch 112 based on the output of the remaining capacity monitoring unit 59.
  • the point of control is also different from the second embodiment.
  • the remaining capacity monitoring unit 59 is connected between the input terminals on the storage battery 4 side in the DCDC converter 53, monitors the remaining capacity of the storage battery 4 by measuring the voltage across the storage battery 4, and the result is a control unit It is configured to output to 55.
  • the switching board 11 has both the system side switch 111 and the power generation side switch 112 connected.
  • the power system 6, the power generator for power generation 3, and the power conditioner for charging / discharging 5 are all connected to the distribution board 12 via the feeding path 13, and the power generator for power generation 3 and the charging / discharging for power generation are charged.
  • the power conditioner 5 for the operation is connected.
  • the charge / discharge power conditioner 5 receives the detection result (abnormality) of the power failure detection unit and stops the output to the power supply path 13.
  • the power conditioner 3 for power generation also stops output to the power supply path 13.
  • the charging / discharging power conditioner 5 outputs a control signal to the switching board 11, shuts off the system side switch 111, and disconnects the power system 6 and the distribution board 12.
  • the charge / discharge power conditioner 5 switches to a self-sustaining operation and starts constant voltage control for maintaining the voltage (effective value) of the power supply path 13 constant, and supplies an AC waveform having substantially the same frequency and amplitude as the power system 6.
  • the power conditioner 3 for power generation regards the output voltage of the power conditioner 5 for charging / discharging as a pseudo system (reference voltage) in a state where the power system 6 is cut off from the power supply path 13 and Similarly, output to the power feeding path 13 is started by maximum power point tracking control. That is, the power conditioner 3 for power generation also operates in the grid operation mode (the mode in which power is output from the first output end 31) in the self-sustaining operation in which the power system 6 is disconnected from the power supply path 13, as in the grid operation. ).
  • the power conditioner 3 for power generation performs maximum power point tracking control so that the power generated by the solar battery 2 is maximized, and the power conditioner 5 for charge / discharge is supplied with the voltage of the power supply path 13. Constant voltage control is performed so as to be constant. In other words, when the output power (generated power) from the power conditioner 3 for power generation is larger than the power consumption (load power) at the load 9, the charge / discharge power conditioner 5 determines the difference between the generated power and the load power. The storage battery 4 is charged using the surplus power.
  • the charge / discharge amount power conditioner 5 can use all the generated power for charging the storage battery 4 even when the load power is zero during the self-sustaining operation.
  • the charging / discharging power conditioner 5 supplements the insufficient power, which is the difference between the load power and the generated power, with the discharge power of the storage battery 4.
  • the charge / discharge power conditioner 5 shuts off the power generation side switch 112 by the control signal when the remaining capacity of the storage battery 4 monitored by the remaining capacity monitoring unit 59 exceeds the upper limit value. Then, the power conditioner 3 for power generation and the power supply path 13 are disconnected. As a result, the generated power that is the output from the power generator for power generation 3 to the power supply path 13 becomes zero, so that the power conditioner for charge / discharge 5 supplements all the load power with the discharge power of the storage battery 4.
  • the charge / discharge power conditioner 5 connects (turns on) the power generation side switch 112 and outputs from the power generation power conditioner 3 to the power supply path 13. To resume.
  • the charge / discharge power conditioner 5 receives the detection result (recovery) of the power recovery detection unit 113 and stops the output to the power supply path 13.
  • the power conditioner 3 for power generation also stops output to the power supply path 13.
  • the power conditioner 5 for charging / discharging outputs a control signal to the switching board 11, connects (turns on) the system side switch 111, and connects the power system 6 and the distribution board 12.
  • the charge / discharge power conditioner 5 also returns the power generation side switch 112 to the connected state.
  • the charging / discharging power conditioner 5 switches to the grid operation and starts constant voltage control for maintaining the voltage (effective value) of the power supply path 13 constant, and generates an AC waveform having substantially the same frequency and amplitude as the power system 6.
  • the power conditioner 3 for power generation is based on the supply voltage from the power system 6 to the power supply path 13 and is in the interconnected operation mode (the mode in which power is output from the first output end 31) in the same manner as in the independent operation. Operates and starts output to the feed path 13 by maximum power point tracking control.
  • the switching between the interconnection operation and the independent operation is performed by the switching panel 11, and the control unit 35 of the power conditioner 3 for power generation performs the interconnection operation and the autonomous operation. Regardless of the case, it can always operate in the interconnected operation mode (a mode in which electric power is output from the first output end 31).
  • power conditioners that are in circulation perform maximum power point tracking control in the interconnected operation mode, and secure an operating voltage of the load in the self-sustaining operation mode (a mode in which power is output from the second output end 32). Therefore, constant voltage control for maintaining the output voltage at a predetermined target value is performed. Therefore, according to the configuration of the present embodiment, the power supply system 1 can use a generally distributed power conditioner as the power generation power conditioner 3.
  • the power conditioner 3 for power generation can always operate in the interconnected operation mode, the maximum power point tracking control is performed regardless of whether the switching panel 11 is switched to the interconnected operation or the independent operation. Will do. Therefore, while using a power conditioner having an output terminal (first output terminal 31) for maximum power point tracking control and an output terminal (second output terminal 32) for constant voltage control, always use this power conditioner. Maximum power point tracking control can be performed.
  • the charging / discharging power conditioner 5 stops the output from the power generation power conditioner 3 to the power supply path 13 when the remaining capacity of the storage battery 4 exceeds the upper limit value. Charging can be prevented. That is, if the storage battery 4 is in a fully charged state, output from the power conditioner 3 for power generation to the power supply path 13 is stopped. Therefore, the power conditioner 5 for charge / discharge further increases the storage battery 4 from the fully charged state by surplus power. Charging can be prevented.
  • the configuration in which the charge / discharge power conditioner 5 stops the output from the power generation power conditioner 3 to the self-contained power supply path when the remaining capacity of the storage battery 4 exceeds a predetermined upper limit value during the self-sustaining operation is as follows.
  • the present invention can also be applied to the first and second embodiments.
  • the control unit 35 of the power conditioner 3 for power generation and the control unit 55 of the power conditioner 5 for charge / discharge are configured to be communicable.
  • the remaining capacity monitoring part 59 which monitors the remaining capacity of the storage battery 4 is provided in the power conditioner 5 for charging / discharging.
  • the control unit 55 of the charge / discharge power conditioner 5 receives the first switch 36 and the first switch 36 of the power generation power conditioner 3 via the control unit 35. 2
  • the switch 37 is shut off (turned off). Thereby, the output from the power conditioner 3 for power generation to the power supply path (the interconnected power supply path 7 and the self-supporting power supply path 8) is stopped.
  • the charge / discharge power conditioner 5 is provided with a remaining capacity monitoring unit 59 that monitors the remaining capacity of the storage battery 4.
  • the control unit 55 of the charge / discharge power conditioner 5 shuts off (turns off) the first connection switch 101 and the second connection switch 102 when the remaining capacity of the storage battery 4 exceeds the upper limit during the self-sustaining operation. . Thereby, the output from the power conditioner 3 for power generation to the power supply path (the interconnected power supply path 7 and the self-supporting power supply path 8) is stopped.
  • the power supply system 1 is not limited to one power generation power conditioner 3 and may include a plurality of power conditioners 3 for power generation.
  • the power generation device connected to each of the power conditioners 3 for power generation is not limited to the solar cell 2, and a power generation device other than the solar cell 2 such as a fuel cell may be included.
  • the power generation side switch 112 is provided for each power conditioner 3 for power generation, and the charge / discharge power conditioner 5 has a predetermined remaining capacity of the storage battery 4 during the self-sustaining operation. When the upper limit value is exceeded, all the power generation side switches 112 are shut off.
  • the maximum allowable power at the time of charging is the maximum value of the total sum of output power (generated power) from the power conditioner 3 for power generation to the power supply path 13. It is desirable to use the above storage battery. Thereby, even if the power consumption (load power) in the load 9 is zero during the self-sustained operation, the power conditioner 5 for charging / discharging uses the generated power as long as the storage battery 4 is not fully charged. Can be used for charging.
  • the power supply system 1 it is not essential for the power supply system 1 to house the system side switch 111 and the power generation side switch 112 in the switching panel 11 as described above, and may be provided individually as a switching device. Furthermore, the system side switch 111 and the power generation side switch 112 may be provided in the distribution board 12. In this case, the power system 6, the power conditioner 3 for power generation, and the power conditioner 5 for charge / discharge are as follows. The power supply path 13 connected to the distribution board 12 is directly connected.
  • the charge / discharge power conditioner 5 detects a power outage (abnormality of the power system 6) by a built-in power failure detection unit, and detects power recovery by an external power recovery detection unit 113. Not only the configuration but both power failure and power recovery may be detected by the external power recovery detection unit 113.
  • the power supply system 1 according to the present embodiment is different from the power supply system 1 according to the first embodiment in that the power conditioner 3 for power generation performs constant voltage control for maintaining the output voltage from the second output end 32 constant during the self-sustaining operation. Is different.
  • the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof will be omitted as appropriate.
  • the power generation power conditioner 3 includes a voltage detection unit 353 that detects the voltage of the second output end 32 as shown in FIG. 7, and the output of the voltage detection unit 353 is input to the control unit 35. Yes.
  • the voltage detection unit 353 detects a voltage between the connection point of the switching elements 341 and 342 and the connection point of the switching elements 343 and 344 in the DCAC converter 34.
  • the control unit 35 of the power generator for power generation 3 controls the power converter (DCDC converter 33 and DCAC converter 34) 30 based on the detection voltage (detection result) of the voltage detection unit 353, and the voltage of the second output terminal 32
  • the constant voltage control that keeps the constant is realized. That is, the control unit 35 increases the output if the detection voltage is smaller than the target value and maintains the output if the detection voltage is larger than the target value so that the detection voltage of the voltage detection unit 353 is maintained at the predetermined target value.
  • the power converter 30 is operated so as to be reduced.
  • the power detection conditioner 3 also includes the voltage detection unit 351 and the current detection unit 352 described in the first embodiment although not shown in FIG. .
  • the charging / discharging power conditioner 5 makes the voltage (effective value) of the self-sustained power supply path 8 constant by switching charging / discharging of the storage battery 4 during the self-sustaining operation as in the first embodiment. Maintain constant voltage control.
  • the target value for constant voltage control of the power conditioner 5 for charging / discharging (hereinafter referred to as “second target value”) is the target value for constant voltage control of the power conditioner 3 for power generation (hereinafter referred to as “first target value”). (Referred to as “1 target value”) (second target value ⁇ first target value).
  • the power conditioner 3 for power generation and the power conditioner 5 for charge / discharge detect an abnormality in the power system 6, they are connected to each other via the independent power supply path 8 by connecting the second switches 37 and 57, and automatically Switch to autonomous operation.
  • the power conditioner 3 for power generation performs constant voltage control so that the output voltage from the second output terminal 32 becomes the first target value
  • the power conditioner 5 for charging / discharging is the voltage of the self-sustained power supply path 8. Is controlled so that becomes the second target value.
  • the output power (hereinafter referred to as “generated power”) from the power conditioner 3 for power generation to the self-sustained power supply path 8 is the power consumption (hereinafter referred to as “load power”) at the load 9 connected to the self-supported power supply path 8. Is greater than the load power, all generated power is covered by the generated power.
  • the power conditioner 3 for power generation operates so as to maintain the voltage of the self-sustained power supply path 8 at the first target value by performing constant voltage control, so that the voltage detection of the power conditioner 5 for charge / discharge is detected.
  • the detection voltage of the unit 551 is larger than the second target value ( ⁇ first target value).
  • the charging / discharging power conditioner 5 operates the charging / discharging circuit 50 in the charging mode, converts the AC power input from the self-contained power supply path 8 into DC power, and outputs the DC power to the storage battery 4. Charge.
  • the charging / discharging power conditioner 5 is configured such that the output to the storage battery 4 increases as the difference between the detection voltage of the voltage detection unit 551 and the second target value increases. The magnitude of the output power is changed according to the magnitude of the difference.
  • the power generator for power generation 3 performs constant voltage control, but becomes overloaded and cannot maintain the voltage of the self-contained power supply path 8 at the first target value.
  • the voltage of the self-sustained power supply path 8 is reduced from the first target value.
  • the charging / discharging power conditioner 5 operates the charging / discharging circuit 50 in the discharging mode, and converts the DC power input from the storage battery 4 to AC.
  • the electric power is converted into electric power and output to the self-contained power supply path 8 to discharge the storage battery 4.
  • the charging / discharging power conditioner 5 is configured such that the output to the self-contained power supply path 8 increases as the difference between the detection voltage of the voltage detection unit 551 and the second target value increases. The magnitude of the output power is changed according to the magnitude of the difference from the target value.
  • the charging / discharging power conditioner 5 stops the operation of the charging / discharging circuit 50 and stops charging and discharging of the storage battery 4. .
  • the second target value is set to be smaller than the first target value, so that the generated power of the solar cell 2 is generated when the power system 6 is abnormal.
  • the charge / discharge power conditioner 5 basically charges the storage battery 4.
  • the charge / discharge power conditioner 5 is stored in the storage battery. By discharging 4, power can be stably supplied to the load 9.
  • the charge / discharge power conditioner 5 may be set with a second target value having a certain width, for example, “97 V ⁇ 2 V”.
  • the charging / discharging power conditioner 5 operates the charging / discharging circuit 50 in the charging mode, and the detected voltage reaches the second target value.
  • the charge / discharge circuit 50 is operated in the discharge mode.
  • the charge / discharge power conditioner 5 stops the operation of the charge / discharge circuit 50 if the detected voltage is within the range between the upper limit and the lower limit of the second target value.
  • the upper limit value of the second target value in this case is set smaller than the first target value (for example, 100 V).
  • the charge / discharge power conditioner 5 has the second target value set to be smaller than the first target value. If the generated power is sufficient, the storage battery 4 is basically charged. Therefore, when the power consumption of the load 9 exceeds the generated power of the solar battery 2, the charge / discharge power conditioner 5 can operate the load 9 using the power stored in the storage battery 4. Therefore, the load 9 that can be used during the self-sustained operation may be a load whose power consumption exceeds the maximum output of the power conditioner 3 for power generation, and the degree of freedom in selecting the load increases.
  • the charge / discharge power conditioner 5 The power supply to the load 9 can be continued, and the power can be stably supplied to the load 9.
  • power conditioners that are generally distributed perform maximum power point tracking control in the mode in which power is output from the first output end, and ensure the operating voltage of the load in the mode in which power is output from the second output end. Therefore, constant voltage control is performed to maintain the output voltage at a predetermined target value. Therefore, in the power supply system 1 of the present embodiment, a generally available power conditioner can be used as the power generation power conditioner 3.
  • the above-described power supply system 1 is realized by adding the storage battery 4 and the charge / discharge power conditioner 5 to an existing power supply system provided with a general power conditioner as a power generation power conditioner. Can do.
  • the configuration in which the charge / discharge power conditioner 5 stops the output from the power generation power conditioner 3 to the self-contained power supply path when the remaining capacity of the storage battery 4 exceeds a predetermined upper limit value during the self-sustaining operation is as follows.
  • This embodiment can also be applied.
  • the control part 35 of the power conditioner 3 for electric power generation and the control part 55 of the power conditioner 5 for charging / discharging are comprised so that communication is possible, and the remaining capacity which monitors the remaining capacity of the storage battery 4 in the power conditioner 5 for charging / discharging.
  • a monitoring unit 59 is provided.
  • control part 55 of the power conditioner 5 for charging / discharging is the 1st switch 36 of the power conditioner 3 for electric power generation via the control part 35, when the remaining capacity of the storage battery 4 becomes more than an upper limit at the time of self-supporting operation.
  • the 2nd switch 37 is interrupted
  • Embodiments 1 to 3 in which the power conditioner 3 for power generation performs maximum power point tracking control during self-sustained operation and Embodiment 4 in which the power conditioner 3 for power generation performs constant voltage control during self-sustained operation The configuration itself of the inverter 5 is common.
  • the constant voltage control target value (second target value) of the charge / discharge power conditioner 5 is equal to the constant voltage control target value (first target value) of the power generation power conditioner 3. (Target value) needs to be set smaller.
  • the charge / discharge power conditioner 5 includes, for example, an operation unit (not shown) formed of a dip switch and a switching unit 58 (see FIG. 7) that switches the set value of the target value in accordance with the operation of the operation unit.
  • the target value may be switched by operation of the operation unit.
  • the power conditioner 5 for charging / discharging can respond
  • the charge / discharge power conditioner 5 includes the power generation power conditioner 3 that performs the maximum power point tracking control during the independent operation by setting the first set value determined according to the load 9 as the target value.
  • the power supply system 1 can be handled.
  • the charge / discharge power conditioner 5 performs constant voltage control during the independent operation by setting the second set value (second target value) set smaller than the first target value as the target value. It becomes possible to correspond to the power supply system 1 including the power conditioner 3 for power generation.
  • the switching unit 58 may be configured to automatically switch the target value according to the output from the power conditioner 3 for power generation to the independent power supply path 8 at the start of the independent operation.
  • the charge / discharge power conditioner 5 includes a detector (not shown) that detects a voltage at a connection point between the second switch 57 and the second output terminal 52, and at the time of starting a self-sustaining operation.
  • the control method of the power conditioner 3 for power generation is determined according to the detection voltage (detection result) of the detector.
  • the switching unit 58 performs constant voltage control when the voltage is detected by the detector when the second switch 57 is shut off (opened) at the start of the self-sustained operation, and follows the maximum power point if no voltage is detected. If it is control, the control method of the power conditioner 3 for power generation is determined.
  • the power generator for power generation 3 searches for the optimum point (maximum power point) at the start of independent operation, and gradually increases the voltage applied to the independent power supply path 8. It works to keep going.
  • the power generator for power generation 3 applies a predetermined voltage (first target value) to the independent power supply path 8 from the start of independent operation. Therefore, the control method of the power generation power conditioner 3 can be determined by the presence / absence of the voltage applied from the power generation power conditioner 3 to the independent power supply path 8 at the start of the independent operation.

Abstract

 自立運転時、発電用パワーコンディショナは太陽電池の発電電力が最大となるように最大電力点追従制御を行い、充放電用パワーコンディショナは電圧検出部で検出される自立給電路の電圧が目標値となるように定電圧制御を行う。発電用パワーコンディショナの出力電力が負荷の消費電力より大きい場合、電圧検出部の検出電圧が目標値より大きくなるので、充放電用パワーコンディショナの制御部は、蓄電池を充電するように充放電回路を制御する。発電用パワーコンディショナの出力電力が負荷の消費電力より小さい場合、検出電圧が目標値より小さくなるので、制御部は、蓄電池を放電するように充放電回路を制御する。

Description

電力供給システムおよび充放電用パワーコンディショナ
 本発明は、電力系統との連系運転と自立運転とを切替可能な電力供給システムおよび充放電用パワーコンディショナに関する。
 太陽電池等の発電源からの直流電力を交流電力に変換する電力変換器を有するパワーコンディショナを備え、商用電源の電力系統だけでなく、パワーコンディショナからも負荷に電力供給できる電力供給システムが提案されている(たとえば日本国特許公開平9-135577号公報参照;以下特許文献1と称する)。特許文献1に記載のシステム(分散型電源システム)は、パワーコンディショナを電力系統に連系させた連系運転と、電力系統から切り離した自立運転とを切替可能に構成されている。
 そのため、パワーコンディショナは、連系運転時には太陽電池の出力を電力変換器(インバータ)にて交流電力に変換し、この交流電力を負荷(連系負荷)に供給する。このとき、パワーコンディショナからの出力電力で賄えない不足分の電力は、商用電力の電力系統から供給される。また、パワーコンディショナは、停電時等には自立運転に移行し、電力系統と切り離された状態で太陽電池からの電力を電力変換器で交流電力に変換して負荷(自立負荷)に供給する。
 ところで、一般的なパワーコンディショナは自立運転時の最大出力が制限されており(たとえば1.5kVA)、自立運転時に使用可能な負荷(自立負荷)は、消費電力がパワーコンディショナの最大出力以下となる負荷に制限されるため、負荷の選択の自由度は低くなる。しかも、消費電力がパワーコンディショナの最大出力以下となる負荷を使用していたとしても、日射量の低下により太陽電池の発電電力が負荷の消費電力を下回る(発電電力<消費電力)と、パワーコンディショナの出力は停止することがある。
 本発明は上記事由に鑑みて為されており、自立運転時に、太陽電池の発電電力が負荷の消費電力を下回った場合でも負荷への電力供給を継続できる電力供給システムおよび充放電用パワーコンディショナを提供することを目的とする。
 本発明の電力供給システムは、太陽電池からの電力を変換して電力系統と連系する連系運転および前記電力系統から切り離される自立運転を切替可能な発電用パワーコンディショナと、前記自立運転時に前記発電用パワーコンディショナからの電力供給路になる自立給電路に接続される充放電用パワーコンディショナとを備え、前記充放電用パワーコンディショナは、蓄電池の充放電を行う充放電回路と、前記自立給電路の電圧を検出する電圧検出部と、前記自立運転時において前記電圧検出部の検出電圧が所定の目標値となるように前記充放電回路を制御する制御部とを有し、前記制御部は、前記検出電圧が前記目標値より大きければ前記自立給電路からの電力で前記蓄電池を充電し、前記検出電圧が前記目標値より小さければ前記蓄電池からの電力を前記自立給電路に供給するように前記充放電回路を制御することを特徴とする。
 言い換えれば、本発明の電力供給システムは、電力系統に接続される連系給電路および前記電力系統から切り離される自立給電路を含む給電路と;太陽電池からの電力を変換して前記連系給電路に出力する連系運転および前記自立給電路に接続されて前記電力系統から切り離される自立運転を切替可能な発電用パワーコンディショナと;前記自立給電路に接続される充放電用パワーコンディショナと、を備え、前記充放電用パワーコンディショナは、蓄電池の充放電を行う充放電回路と、前記自立給電路の電圧を検出する電圧検出部と、前記自立運転時において前記電圧検出部の検出電圧が所定の目標値となるように前記充放電回路を制御する制御部とを有し、前記制御部は、前記検出電圧が前記目標値より大きければ前記自立給電路からの電力で前記蓄電池を充電し、前記検出電圧が前記目標値より小さければ前記蓄電池からの電力を前記自立給電路に供給するように前記充放電回路を制御することを特徴とする。
 この電力供給システムにおいて、前記発電用パワーコンディショナは、前記自立運転時において前記太陽電池から最大出力を取り出す最大電力点追従制御を行うことが望ましい。
 この電力供給システムにおいて、前記発電用パワーコンディショナは、前記自立運転時において前記自立給電路への出力電圧を第1の目標値に維持する定電圧制御を行い、前記充放電用パワーコンディショナは前記電圧検出部の検出電圧を前記目標値としての第2の目標値に維持するように前記充放電回路を制御し、前記第2の目標値は前記第1の目標値より小さく設定されていることがより望ましい。
 この電力供給システムにおいて、前記目標値は所定の幅を有しており、前記制御部は、前記検出電圧が前記目標値の上限より大きければ前記自立給電路からの電力で前記蓄電池を充電し、前記検出電圧が前記目標値の下限より小さければ前記蓄電池からの電力を前記自立給電路に供給し、前記検出電圧が前記目標値の上限と下限との間の範囲内にあれば前記充放電回路が動作を停止するように、前記充放電回路を制御することがより望ましい。
 この電力供給システムにおいて、前記充放電用パワーコンディショナは、前記自立運転時において前記蓄電池の残容量が所定の上限値以上になると、前記発電用パワーコンディショナから前記自立給電路への出力を停止させることがより望ましい。
 この電力供給システムにおいて、前記充放電用パワーコンディショナは、前記目標値を第1の設定値と第2の設定値とで切り替える切替部をさらに有することがより望ましい。
 この電力供給システムにおいて、前記切替部は、前記自立運転開始時における前記発電用パワーコンディショナから前記自立給電路への出力に応じて前記目標値を前記第1の設定値と前記第2の設定値とで自動的に切り替えることがより望ましい。
 本発明の充放電用パワーコンディショナは、太陽電池からの電力を変換して電力系統と連系する連系運転および電力系統から切り離される自立運転を切替可能な発電用パワーコンディショナが接続された給電路であって、前記自立運転時に前記発電用パワーコンディショナからの電力供給路になる自立給電路に接続され、蓄電池の充放電を行う充放電回路と、前記自立給電路の電圧を検出する電圧検出部と、前記自立運転時において前記電圧検出部の検出電圧が所定の目標値となるように前記充放電回路を制御する制御部とを有し、前記制御部は、前記検出電圧が前記目標値より大きければ前記自立給電路からの電力で前記蓄電池を充電し、前記検出電圧が前記目標値より小さければ前記蓄電池からの電力を前記自立給電路に供給するように前記充放電回路を制御することを特徴とする。
 言い換えれば、本発明の充放電用パワーコンディショナは、本発明の電力供給システムに適用される充放電用パワーコンディショナであって、自立給電路に接続されており、当該自立給電路は、太陽電池からの電力を変換して電力系統と連系する連系運転および前記電力系統から切り離される自立運転を切替可能なように発電用パワーコンディショナが接続された給電路において、前記自立運転時に前記発電用パワーコンディショナからの電力供給路になる給電路であり、当該充放電用パワーコンディショナは、自身に接続された蓄電池の充放電を行う充放電回路と、前記自立給電路の電圧を検出する電圧検出部と、前記自立運転時において前記電圧検出部の検出電圧が所定の目標値となるように前記充放電回路を制御する制御部とを有し、前記制御部は、前記検出電圧が前記目標値より大きければ前記自立給電路からの電力で前記蓄電池を充電し、前記検出電圧が前記目標値より小さければ前記蓄電池からの電力を前記自立給電路に供給するように前記充放電回路を制御することを特徴とする。
 この充放電用パワーコンディショナにおいて、前記目標値を第1の設定値と第2の設定値とで切り替える切替部をさらに有し、当該切替部は、前記自立運転開始時における前記発電用パワーコンディショナから前記自立給電路への出力に応じて前記目標値を前記第1の設定値と前記第2の設定値とで自動的に切り替えることが望ましい。
 本発明は、自立運転時に、太陽電池の発電電力が負荷の消費電力を下回った場合でも負荷への電力供給を継続できるという利点がある。
実施形態1に係る電力供給システムの構成を示す回路図である。 実施形態1に係る電力供給システムの構成を示すブロック図である。 実施形態1に係る電力供給システムの太陽電池の特性の説明図である。 実施形態2に係る電力供給システムの構成を示すブロック図である。 実施形態3に係る電力供給システムの構成を示すブロック図である。 実施形態3に係る電力供給システムの構成を示す回路図である。 実施形態4に係る電力供給システムの構成を示す回路図である。
 (実施形態1)
 本実施形態の電力供給システム1は、図2に示すように、太陽電池2と、太陽電池2に接続された発電用パワーコンディショナ3と、蓄電池4と、蓄電池4に接続された充放電用パワーコンディショナ5とを備えている。また、電力系統6に接続された連系給電路7と、電力系統6から切り離された自立給電路8とを備えている。なお、本実施形態では、電力供給システム1が一般的な戸建住宅に用いられる場合を例として説明するが、これに限らず、電力供給システム1は集合住宅の各住戸や施設、事業所等に用いられてもよい。蓄電池4は、たとえば鉛蓄電池やリチウムイオン電池などからなる。
 発電用パワーコンディショナ3および充放電用パワーコンディショナ5は、いずれも商用電源の電力系統(商用系統)6と連系する「連系運転」と、電力系統6から切り離される「自立運転」との2つの運転状態を切替可能に構成されている。さらに、発電用パワーコンディショナ3は、第1出力端31と、第2出力端32とを個別に有している。同様に、充放電用パワーコンディショナ5は、第1出力端51と、第2出力端52とを個別に有している。各パワーコンディショナの構成については後述する。
 本実施形態では、発電用パワーコンディショナ3および充放電用パワーコンディショナ5は、いずれも電力系統6が接続された連系給電路7に第1出力端31,51を直接接続し、電力系統6から切り離された自立給電路8に第2出力端32,52を直接接続している。したがって本実施形態では、第1出力端31,51は、連系運転時に電力の出力端となり、第2出力端32,52は、自立運転時に電力の出力端となる。つまり、本実施形態では、発電用パワーコンディショナ3と充放電用パワーコンディショナ5とは、連系給電路7を介して第1出力端31,51同士が接続され、自立給電路8を介して第2出力端32,52同士が接続されている。これにより、本実施形態の発電用パワーコンディショナ3および充放電用パワーコンディショナ5は、電力系統6と連系する連系運転と、電力系統6から切り離される自立運転との2つの運転状態(接続状態)を切替可能に構成されている。
 連系給電路7と自立給電路8とのそれぞれには負荷9が接続されている。負荷9は、照明器具や冷蔵庫、テレビ、医療器具、携帯電話端末の充電器など様々な電気機器であって、ここでは、パワーコンディショナあるいは電力系統6から交流電力の供給を受けて動作する交流駆動型の電気機器からなる。なお、連系給電路7および自立給電路8は、電気機器からなる負荷9に直接接続されていることは必須ではなく、負荷9を着脱可能に接続可能なコンセント(図示せず)に接続されていてもよい。この場合、連系給電路7には各パワーコンディショナの連系運転時に使用可能なコンセントが接続され、自立給電路8には各パワーコンディショナの自立運転時に使用可能な自立専用コンセントが接続される。
 本実施形態の発電用パワーコンディショナ3は、太陽電池2に接続されたDCDCコンバータ33と、直流電力を交流電力に変換するDCACコンバータ34と、各部を制御する制御部35と、リレーからなる第1開閉器36および第2開閉器37とを備えている。DCDCコンバータ33における太陽電池2と反対側の端子にはDCACコンバータ34が接続されている。DCACコンバータ34における交流電力の出力端子は、第1開閉器36を介して第1出力端31に接続され、第2開閉器37を介して第2出力端32に接続されている。したがって、本実施形態では、電力変換器30における交流電力の出力端子は、第1開閉器36を介して連系給電路7に接続され、第2開閉器37を介して自立給電路8に接続されている。
 DCDCコンバータ33は、太陽電池2からの直流電力を昇圧してDCACコンバータ34に出力する。DCACコンバータ34は、DCDCコンバータ33からの直流電力を交流電力に変換して第1出力端31または第2出力端32に出力する単方向のコンバータ(インバータ)である。つまり、DCDCコンバータ33およびDCACコンバータ34は、太陽電池2からの電力を変換して連系給電路7または自立給電路8に出力する電力変換器30を構成する。
 制御部35は、連系運転時には第1開閉器36を接続して第2開閉器37を遮断し、自立運転時には第2開閉器37を接続して第1開閉器36を遮断する。本実施形態の制御部35は、第1開閉器36および第2開閉器37の接続状態を切り替えることで、電力系統6に接続される連系運転と電力系統6から切り離される自立運転とを切り替える。さらに、制御部35は、連系運転から自立運転に切り替える際、連系給電路7上に設けられた解列器(図示せず)を遮断する。なお、連系給電路7上には、停電等の電力系統6の異常の有無を検知する異常検知部(図示せず)が設けられており、制御部35は異常検知部の検知結果に応じて連系運転・自立運転を自動的に切り替える。つまり、制御部35は、電力系統6の正常時には連系運転(電力系統6に接続される状態)を選択し、停電などの電力系統6の異常時に自立運転(電力系統6から切り離される状態)に切り替える。また、発電用パワーコンディショナ3は、一般的に単独運転防止用に停電等の電力系統6の異常の有無を検知する停電検知部(図示せず)を内蔵しているので、制御部35は、この停電検知部の検知結果に応じて連系運転・自立運転を切り替えてもよい。
 充放電用パワーコンディショナ5は、蓄電池4に接続されたDCDCコンバータ53と、直流電力を交流電力に変換するDCACコンバータ54と、各部を制御する制御部55と、リレーからなる第1開閉器56および第2開閉器57とを備えている。DCDCコンバータ53における蓄電池4と反対側の端子にはDCACコンバータ54が接続されている。DCACコンバータ54における交流電力の出力端子は、第1開閉器56を介して第1出力端51に接続され、第2開閉器57を介して第2出力端52に接続されている。つまり、本実施形態では、充放電回路50における交流電力の出力端子は、第1開閉器56を介して連系給電路7に接続され、第2開閉器57を介して自立給電路8に接続されている。
 DCDCコンバータ53は、蓄電池4の放電時には蓄電池4からの直流電力を昇圧してDCACコンバータ54に出力し、蓄電池4の充電時にはDCACコンバータ54からの直流電力を降圧して蓄電池4に出力する双方向のコンバータである。DCACコンバータ54は、蓄電池4の放電時にはDCDCコンバータ53からの直流電力を交流電力に変換して第1出力端51または第2出力端52に出力する。また、このDCACコンバータ54は、蓄電池4の充電時には第1出力端51または第2出力端52からの交流電力を直流電力に変換してDCDCコンバータ53に出力する双方向のコンバータである。
 つまり、DCDCコンバータ53およびDCACコンバータ54は、蓄電池4と連系給電路7または自立給電路8との間で双方向に電力を変換し、蓄電池4の充放電を行う充放電回路50を構成する。以下では、蓄電池4の出力を交流電力に変換して連系給電路7または自立給電路8へ供給するときの充放電回路50の動作を放電モード、反対に連系給電路7または自立給電路8からの電力を直流電力に変換して蓄電池4へ供給するときの動作を充電モードという。
 制御部55は、連系運転時には第1開閉器56を接続して第2開閉器57を遮断し、自立運転時には第2開閉器57を接続して第1開閉器56を遮断する。本実施形態の制御部55は、第1開閉器56および第2開閉器57の接続状態を切り替えることで、電力系統6に接続される連系運転と電力系統6から切り離される自立運転とを切り替える。なお、制御部55は、連系給電路7上に設けられた異常検知部の検知結果に応じて連系運転・自立運転を自動的に切り替える。つまり、制御部55は、電力系統6の正常時には連系運転を選択し、停電などの電力系統6の異常時に自立運転に切り替える。
 上記構成により、電力系統6の正常時には、発電用パワーコンディショナ3と充放電用パワーコンディショナ5と電力系統6との少なくとも一つからの電力が、連系給電路7を通して負荷9に供給される。また、電力系統6の異常時には、発電用パワーコンディショナ3と充放電用パワーコンディショナ5との少なくとも一方からの電力が、自立給電路8を通して負荷9に供給される。なお、連系給電路7および自立給電路8のいずれにおいても、発電用パワーコンディショナ3よりも充放電用パワーコンディショナ5の方が負荷9寄りに接続されている。
 次に、本実施形態における発電用パワーコンディショナ3および充放電用パワーコンディショナ5のより具体的な構成について、図1を参照して説明する。
 発電用パワーコンディショナ3のDCDCコンバータ33は、太陽電池2に接続されたインダクタ331およびスイッチング素子332の直列回路と、ダイオード333およびコンデンサ334の直列回路とを備えた昇圧チョッパ回路からなる。インダクタ331およびスイッチング素子332は、インダクタ331を太陽電池2の正極側、スイッチング素子332を太陽電池2の負極側とするように、太陽電池2に接続されている。ダイオード333およびコンデンサ334は、インダクタ331とスイッチング素子332との接続点にダイオード333のアノードが接続されている。また、コンデンサ334におけるダイオード333と反対側の端子が、太陽電池2の負極側とスイッチング素子332との接続点に接続されている。スイッチング素子332は、ここでは絶縁ゲートバイポーラトランジスタ(IGBT)からなり、逆並列にダイオード335が接続されている。このDCDCコンバータ33は、太陽電池2から電力が供給されている状態で、制御部35がスイッチング素子332を高周波でオンオフ制御することにより、コンデンサ334の両端に昇圧後の直流電圧を発生する。
 発電用パワーコンディショナ3のDCACコンバータ34は、DCDCコンバータ33の出力端(コンデンサ334の両端)に4つのスイッチング素子341~344が接続されたフルブリッジ型のインバータ回路からなる。DCACコンバータ34は、スイッチング素子341,342の接続点と、スイッチング素子343,344の接続点との間に、インダクタ345、コンデンサ346、インダクタ347の直列回路からなるLCフィルタを有している。各スイッチング素子341~344は、ここではIGBTからなり、それぞれ逆並列にダイオード348が接続されている。このDCACコンバータ34は、DCDCコンバータ33から電力が供給されている状態で、制御部35がスイッチング素子341~344をオンオフ制御することにより、コンデンサ346の両端に交流電圧を発生する。DCACコンバータ34の出力端(コンデンサ346の両端)は、2点切りの第2開閉器37を介して第2出力端32に接続されている。
 ところで、太陽電池2は、発電電力が一定ではなく図3に示すように出力電圧に応じて発電電力が変化する特性を持つので、発電電力が最大となる最適点(最大電力点)で動作することが望ましい。そこで、本実施形態の発電用パワーコンディショナ3は、最大電力点追従(MPPT:Maximum PowerPoint Tracking)制御の機能を有している。最大電力点追従制御は、太陽電池2の温度変化や日射強度の変化に伴う出力電圧や出力電流の変動に対し、太陽電池2の動作点が常に最大電力点を追従して、太陽電池2の出力を最大限に引き出す制御であって周知の技術であるから、詳しい説明は省略する。なお、図3では、横軸を太陽電池2の出力電圧、縦軸を太陽電池2の発電電力として日射強度が比較的小さいときの特性を「A1」、日射強度が比較的大きいときの特性を「A2」で表しており、黒丸は発電電力が最大となる最適点を示している。
 ここで、本実施形態の発電用パワーコンディショナ3は、少なくとも自立運転時(電力系統6から切り離された状態)においては、最大電力点追従制御を行う。具体的には、発電用パワーコンディショナ3は、太陽電池2の出力電圧を検出する電圧検出部351と、DCACコンバータ34の出力電流を検出する電流検出部352とを備え、電圧検出部351および電流検出部352の出力が制御部35に入力されている。図1の例では、電圧検出部351はDCDCコンバータ33における太陽電池2の接続点の電圧を検出し、電流検出部352はDCACコンバータ34におけるスイッチング素子341,342の接続点とインダクタ345との間に設けられている。
 制御部35は、これら電圧検出部351、電流検出部352の検出結果に基づいて電力変換器(DCDCコンバータ33およびDCACコンバータ34)30を制御し、最大電力点追従制御を実現する。なお、制御部35はマイコン(マイクロコンピュータ)を主構成としており、メモリ(図示せず)に記憶されているプログラムを実行することによって、電力変換器30の動作を制御するための各機能を実現する。
 このような構成により、本実施形態の発電用パワーコンディショナ3は、第2開閉器37が接続(オン)されて自立給電路8に接続された状態において、最大電力点追従制御を行う。
 なお、図1には示していないが、発電用パワーコンディショナ3の第1出力端31は、2点切りの第1開閉器36を介して、DCACコンバータ34の出力端(コンデンサ346の両端)に接続されている(図2参照)。そして、本実施形態の発電用パワーコンディショナ3は、第1開閉器36が接続(オン)されて連系給電路7に接続された状態においても、最大電力点追従制御を行うよう構成されている。
 充放電用パワーコンディショナ5のDCDCコンバータ53は、蓄電池4に接続されたインダクタ531およびスイッチング素子532の直列回路と、ダイオード533およびコンデンサ534の直列回路とを備えている。インダクタ531およびスイッチング素子532は、インダクタ531を蓄電池4の正極側、スイッチング素子532を蓄電池4の負極側とするように、蓄電池4に接続されている。ダイオード533およびコンデンサ534は、インダクタ531とスイッチング素子532との接続点にダイオード533のアノードを接続するように構成されている。また、コンデンサ534におけるダイオード533と反対側の端子が、蓄電池4の負極側とスイッチング素子532との接続点に接続されている。スイッチング素子532は、ここではIGBTからなり、逆並列にダイオード535が接続されている。さらにダイオード533にはIGBTからなる充電用スイッチング素子536が並列に接続されている。
 このDCDCコンバータ53は、蓄電池4の放電時(放電モード)においては、制御部55がスイッチング素子532を高周波でオンオフ制御することにより、コンデンサ534の両端に昇圧後の直流電圧を発生する。また、DCDCコンバータ53は、蓄電池4の充電時(充電モード)には、スイッチング素子532をオフ、充電用スイッチング素子536を高周波でオンオフ制御することにより、DCACコンバータ54から入力を受け降圧後の直流電圧で蓄電池4を充電する。
 充放電用パワーコンディショナ5のDCACコンバータ54は、DCDCコンバータ53のコンデンサ534の両端に4つのスイッチング素子541~544が接続されたフルブリッジ型のインバータ回路からなる。DCACコンバータ54は、スイッチング素子541,542の接続点と、スイッチング素子543,544の接続点との間に、インダクタ545、コンデンサ546、インダクタ547の直列回路からなるLCフィルタを有している。各スイッチング素子541~544は、ここではIGBTからなり、それぞれ逆並列にダイオード548が接続されている。
 このDCACコンバータ54は、蓄電池4の放電時(放電モード)においては、制御部55がスイッチング素子541~544をオンオフ制御することにより、コンデンサ546の両端に交流電圧を発生する。コンデンサ546の両端は、2点切りの第2開閉器57を介して第2出力端52に接続されている。また、DCACコンバータ54は、蓄電池4の充電時(充電モード)においては、制御部55がスイッチング素子541~544をオフにすることにより、DCDCコンバータ53に直流電圧を出力する。
 ここで、本実施形態の充放電用パワーコンディショナ5は、自立運転時において、蓄電池4の充放電を切り替えることにより、自立給電路8の電圧(実効値)を一定に維持する定電圧制御を行う。具体的には、充放電用パワーコンディショナ5は、第2出力端52の電圧を検出する電圧検出部551を備え、電圧検出部551の出力が制御部55に入力されている。図1の例では、電圧検出部551はDCACコンバータ54におけるインダクタ545-コンデンサ546の接続点とコンデンサ546-インダクタ547の接続点とに接続され、コンデンサ546の両端電圧を検出している。
 制御部55は、電圧検出部551の検出結果に基づいて充放電回路(DCDCコンバータ53およびDCACコンバータ54)50を制御し、第2出力端52の電圧を一定に維持する定電圧制御を実現する。つまり、制御部55は、所定の目標値に電圧検出部551の検出電圧(検出結果)を維持するように、検出電圧が目標値よりも小さければ放電モードで充放電回路50を動作させ、検出電圧が目標値よりも大きければ充電モードで充放電回路50を動作させる。このとき、制御部55は、検出電圧と目標値との差分の大きさに応じて、出力電力の大きさを変化させる。なお、制御部55はマイコン(マイクロコンピュータ)を主構成としており、メモリ(図示せず)に記憶されているプログラムを実行することによって、充放電回路50の動作を制御するための各機能を実現する。
 なお、図1には示していないが、充放電用パワーコンディショナ5の第1出力端51は、2点切りの第1開閉器56を介して、DCACコンバータ54の出力端(コンデンサ546の両端)に接続されている(図2参照)。そして、本実施形態の充放電用パワーコンディショナ5は、第1開閉器56が接続(オン)されて連系給電路7に接続された状態においても、定電圧制御を行う。
 次に、電力系統6の異常時(自立運転時)における本実施形態の電力供給システム1の動作について説明する。
 すなわち、本実施形態の発電用パワーコンディショナ3および充放電用パワーコンディショナ5は、電力系統6の異常を検知すると、第2開閉器37,57を接続して自立給電路8を介して互いに接続され、自動的に自立運転に切り替わる。この状態で、発電用パワーコンディショナ3は太陽電池2の発電電力が最大となるように最大電力点追従制御を行い、充放電用パワーコンディショナ5は自立給電路8の電圧が一定となるように定電圧制御を行う。
 発電用パワーコンディショナ3から自立給電路8への出力電力(以下、「生成電力」という)が、自立給電路8に接続されている負荷9での消費電力(以下、「負荷電力」という)よりも大きい場合、負荷電力は全て生成電力で賄われる。このとき、自立給電路8においては発電用パワーコンディショナ3からの電力供給が負荷9への電力供給に対して過剰になるので、自立給電路8の電圧が定格より上昇して、電圧検出部551の検出電圧が目標値より大きくなる。
 そのため、充放電用パワーコンディショナ5は、充放電回路50を充電モードで動作させ、自立給電路8から入力される交流電力を直流電力に変換して蓄電池4に出力することにより、生成電力と負荷電力との差分である余剰電力を用いて蓄電池4を充電する。つまり制御部55は、検出電圧が目標値より大きければ、自立給電路8からの電力で蓄電池4を充電するように充放電回路50を制御する。ここでは、充放電用パワーコンディショナ5は、電圧検出部551の検出電圧と目標値との差分が大きいほど蓄電池4への出力が大きくなるように、検出電圧と目標値との差分の大きさに応じて出力電力の大きさを変化させる。
 一方、生成電力が負荷電力よりも小さい場合、負荷電力は生成電力と充放電用パワーコンディショナ5からの出力電力とで賄われる。このとき、自立給電路8においては発電用パワーコンディショナ3からの電力供給が負荷9への電力供給に対して不足するので、自立給電路8の電圧が定格より低下して、電圧検出部551の検出電圧が目標値より小さくなる。
 そのため、充放電用パワーコンディショナ5は、充放電回路50を放電モードで動作させ、蓄電池4から入力される直流電力を交流電力に変換して自立給電路8に出力することにより、負荷電力と生成電力との差分である不足電力を蓄電池4の放電電力で補う。つまり制御部55は、検出電圧が目標値より小さければ、蓄電池4からの電力を自立給電路8に供給するように充放電回路50を制御する。ここでは、充放電用パワーコンディショナ5は、電圧検出部551の検出電圧と目標値との差分が大きいほど自立給電路8への出力が大きくなるように、検出電圧と目標値との差分の大きさに応じて出力電力の大きさを変化させる。
 また、生成電力が負荷電力と略等しい場合、負荷電力は全て生成電力で賄われる。このとき、自立給電路8においては発電用パワーコンディショナ3からの電力供給が負荷9への電力供給とつり合うので、自立給電路8の電圧は定格となり、電圧検出部551の検出電圧が目標値と略一致する。そのため、充放電用パワーコンディショナ5は、充放電回路50の動作を停止し、蓄電池4の充電、放電をいずれも停止する。
 このように、本実施形態の電力供給システム1においては、電力系統6の異常時(自立運転時)、発電用パワーコンディショナ3からの出力電力(生成電力)の変動に影響されることなく、負荷9へ安定して電力供給可能になる。
 なお、充放電用パワーコンディショナ5は、たとえば「100V±2V」というように、ある程度の幅を有する目標値が設定されていてもよい。この場合、充放電用パワーコンディショナ5は、検出電圧が目標値の上限(ここでは102V)を超えると充放電回路50を充電モードで動作させ、検出電圧が目標値の下限(ここでは98V)を下回ると充放電回路50を放電モードで動作させる。充放電用パワーコンディショナ5は、検出電圧が目標値の上限と下限との間の範囲内にあれば充放電回路50の動作を停止する。
 なお、本実施形態の電力供給システム1は、電力系統6の異常時だけでなく、電力系統6の正常時(連系運転時)においても、発電用パワーコンディショナ3が最大電力点追従制御を行い、充放電用パワーコンディショナ5が定電圧制御を行う構成となっている。これにより、連系運転時において、生成電力(発電用パワーコンディショナ3からの出力電力)が負荷電力よりも小さい場合、不足電力は充放電用パワーコンディショナ5からの出力電力と電力系統6からの供給電力とで賄われる。つまり、蓄電池4の残容量が十分でない場合には電力系統6から負荷9へ電力供給する。このとき、充放電用パワーコンディショナ5は、充放電回路50を充電モードで動作させ、電力系統6からの供給電力を用いて蓄電池4を充電してもよい。また、連系運転時において生成電力が負荷電力よりも大きい場合、蓄電池4が満充電状態にあれば、発電用パワーコンディショナ3は余剰電力を電力系統6へ逆潮流して売電してもよい。
 以上説明した構成の電力供給システム1によれば、自立運転時、発電用パワーコンディショナ3は最大電力点追従制御を適用しているので、定電圧制御を適用する場合に比べて、太陽電池2の発電電力を無駄なく有効に利用することができる。つまり、発電用パワーコンディショナ3は、太陽電池2の発電電力が最大となる最適点(最大電力点)を追従するので、自立給電路8に接続されている負荷9の状態にかかわらず、太陽電池2の発電電力を効率的に取り出すことができる。
 しかも、充放電用パワーコンディショナ5は、自立運転時、自立給電路8の電圧を一定に維持する定電圧制御を行うので、発電用パワーコンディショナ3からの出力電力(生成電力)の変動に影響されることなく、負荷9へは安定した電力供給が可能になる。つまり、発電用パワーコンディショナ3が最大電力点追従制御を行うことで発電用パワーコンディショナ3からの出力電力は変動するものの、この変動分を充放電用パワーコンディショナ5によって吸収することができる。したがって、自立給電路8に接続されている負荷9においては、自立給電路8から安定した電力供給を受けることが可能になる。
 また、充放電用パワーコンディショナ5は、自立運転時に余剰電力を用いて蓄電池4を充電するので、負荷9の消費電力が太陽電池2の発電電力を上回るときには、蓄電池4に蓄えた電力を用いて負荷9を動作させることができる。そのため、自立運転時に使用可能な負荷9は、消費電力が発電用パワーコンディショナ3の最大出力を超える負荷であってもよく、負荷の選択の自由度が高くなる。さらに、日射量の低下や消費電力の大きな負荷9が接続されたことに起因して太陽電池2の発電電力が負荷9の消費電力を下回ることがあっても、充放電用パワーコンディショナ5により負荷9への電力供給を継続可能であり、負荷9へ安定して電力供給できる。
 (実施形態2)
 本実施形態の電力供給システム1は、図4に示すように、発電用パワーコンディショナ3の第1出力端31と、連系給電路7および自立給電路8との間に、接続切替器10を設けている。また、本実施形態の発電用パワーコンディショナ3は、第1出力端31から電力を出力するモードにおいて、最大電力点追従制御を行うよう構成されている。なお、最大電力点追従制御を行うための電圧検出部351、電流検出部352などの構成は、実施形態1と同様である。つまり、本実施形態の発電用パワーコンディショナ3では、第1出力端31が、図1における電力変換器30の出力端(コンデンサ346の両端)に接続されている。なお、本実施形態の充放電用パワーコンディショナ5の構成は、実施形態1と同様である。以下、実施形態1と同様の構成については共通の符号を付して適宜説明を省略する。
 図4に示す本実施形態の構成では、接続切替器10は、第1出力端31と連系給電路7との間に挿入された第1の連結開閉器(連系側開閉器)101、および第1出力端31と自立給電路8との間に挿入された第2の連結開閉器(自立側開閉器)102を有している。つまり、電力変換器30における交流電力の出力端子は、第1の連結開閉器101を介して連系給電路7に接続され、第2の連結開閉器102を介して自立給電路8に接続されている。この接続切替器10は、充放電用パワーコンディショナ5の制御部55からの切替信号に応じて、第1および第2の連結開閉器101,102を択一的に接続し、第1出力端31の接続先を連系給電路7と自立給電路8とで切り替える。
 この構成では、発電用パワーコンディショナ3の連系運転(電力系統6と連係する状態)・自立運転(電力系統6から切り離された状態)の切替が接続切替器10によって行われるのであって、制御部35は、連系運転・自立運転の別にかかわらず第1開閉器36を接続して第2開閉器37を遮断する。すなわち、発電用パワーコンディショナ3は、第1出力端31のみから出力を行うのであって、その出力を、連系運転時には第1の連結開閉器101を介して連系給電路7に供給し、自立運転時には第2の連結開閉器102を介して自立給電路8に供給する。
 ここで、市場に提供されている一般的なパワーコンディショナは、第1出力端(連系出力端)から電力を出力するモードでは、最大電力点追従制御を行い、第2出力端(自立出力端)から電力を出力するモードでは、負荷の動作電圧を確保するために、出力電圧を所定の目標値に維持する定電圧制御を行うよう構成されている。したがって、図4に示す本実施形態の構成によれば、電力供給システム1は、一般的なパワーコンディショナを発電用パワーコンディショナ3として用いることができる。要するに、図4の構成では、発電用パワーコンディショナ3は、常に第1出力端31が使用されるので、接続切替器10にて連系運転・自立運転のどちらに切り替わっても、最大電力点追従制御を行うことになる。したがって、最大電力点追従制御用の出力端(第1出力端)および定電圧制御用の出力端(第2出力端)を備えたパワーコンディショナを用いながらも、このパワーコンディショナに常に最大電力点追従制御を行わせることができる。なお、接続切替器10は、外部からの切替信号を受ける構成に限らず、たとえば停電等の電力系統6の異常の有無を検知する異常検知部(図示せず)を具備し、異常検知部の検知結果に応じて連系運転・自立運転を切り替える構成であってもよい。
 本実施形態の電力供給システム1でも、自立運転時、発電用パワーコンディショナ3は最大電力点追従制御を適用しているので、定電圧制御を適用する場合に比べて、太陽電池2の発電電力を無駄なく有効に利用することができる。
 また、充放電用パワーコンディショナ5は、自立運転時、自立給電路8の電圧を一定に維持する定電圧制御を行うので、発電用パワーコンディショナ3からの出力電力(生成電力)の変動に影響されることなく、負荷9へは安定した電力供給が可能になる。したがって、自立給電路8に接続されている負荷9においては、自立給電路8から安定した電力供給を受けることが可能になる。
 また、充放電用パワーコンディショナ5は、自立運転時において、余剰電力を用いて蓄電池4を充電するので、負荷9の消費電力が太陽電池2の発電電力を上回るときには、蓄電池4に蓄えた電力を用いて負荷9を動作させることができる。そのため、自立運転時に使用可能な負荷9は、消費電力が発電用パワーコンディショナ3の最大出力を超える負荷であってもよく、負荷の選択の自由度が高くなる。さらに、日射量の低下や消費電力の大きな負荷9が接続されたことに起因して太陽電池2の発電電力が負荷9の消費電力を下回ることがあっても、充放電用パワーコンディショナ5により負荷9への電力供給を継続可能であり、負荷9へ安定して電力供給できる。
 なお、本実施形態の発電用パワーコンディショナ3は、第2出力端32を備えていなくてもよい。
 (実施形態3)
 本実施形態の電力供給システム1は、図5に示すように電力系統6と発電用パワーコンディショナ3と充放電用パワーコンディショナ5とに接続された切替盤11を備えている。以下、実施形態2と同様の構成については共通の符号を付して適宜説明を省略する。
 本実施形態においては、図5に示すようにさらに分電盤12が設けられており、電力系統6と発電用パワーコンディショナ3と充放電用パワーコンディショナ5とは、切替盤11および分電盤12を介して負荷9に接続される。分電盤12は主幹ブレーカ(図示せず)および複数の分岐ブレーカ(図示せず)を有しており、分岐ブレーカごとに1以上の負荷9が接続可能に構成されている。
 ここで、本実施形態では、連系給電路と自立給電路とが個別に設けられるのではなく、分電盤12に接続された一つの給電路13に対して、電力系統6と発電用パワーコンディショナ3と充放電用パワーコンディショナ5とが切替盤11を介して接続されている。切替盤11は、図5に示すように電力系統6と給電路13との間に挿入された系統側開閉器111と、発電用パワーコンディショナ3と給電路13との間に挿入された発電側開閉器112とを有している。つまり、給電路13は、系統側開閉器111を介して電力系統6と接続されている。また、発電用パワーコンディショナ3は、発電側開閉器112を介して給電路13と接続されている。また、充放電用パワーコンディショナ5は、切替盤11を介して給電路13に常時接続されている。
 すなわち、給電路13と電力系統6との接続状態は、切替盤11の系統側開閉器111にて切り替えられ、給電路13は、系統側開閉器111が接続(オン)された状態で連系給電路、系統側開閉器111が遮断(オフ)された状態では自立給電路として機能する。そのため、発電側開閉器112が接続(オン)されていれば、発電用パワーコンディショナ3は、系統側開閉器111が接続された状態では連系運転を行い、系統側開閉器111が遮断された状態では自立運転を行う。同様に、充放電用パワーコンディショナ5は、系統側開閉器111が接続された状態では連系運転を行い、系統側開閉器111が遮断された状態では自立運転を行う。
 ここで、本願明細書における「連系運転」、「自立運転」は、発電用パワーコンディショナ3の動作モードを表すのではなく、発電用パワーコンディショナ3と電力系統6との接続状態を表している。要するに、本願明細書では、発電用パワーコンディショナ3が電力系統6に繋がれて電力系統6と連系する状態を「連系運転」といい、発電用パワーコンディショナ3が電力系統6から切り離された状態を「自立運転」という。一般的な発電用パワーコンディショナ3は、第1出力端31から出力を行う連系運転モードと、第2出力端32から出力を行う自立運転モードとの2つの動作モードを有しているが、動作モードは、電力系統6との接続状態を表す「連系運転」、「自立運転」とは別である。つまり、発電用パワーコンディショナ3は、たとえば電力系統6から切り離された「自立運転」の状態にあっても、連系運転モードと自立運転モードとのいずれの動作モードも選択可能である。
 なお、本実施形態の発電用パワーコンディショナ3は、動作モードを切り替えるためのスイッチ(図示せず)を備えており、このスイッチが操作されることにより、連系運転モード(第1開閉器36が接続されて第2開閉器37が遮断された状態)と自立運転モード(第1開閉器36が遮断されて第2開閉器37が接続された状態)とが手動で切り替わる。そのため、たとえば自立運転時(電力系統6から切り離された状態)において蓄電池4の残容量がなくなった場合、発電用パワーコンディショナ3は、動作モードが連系運転モードから自立運転モードに切り替えられることにより電力を確保できる。つまり、発電用パワーコンディショナ3は、自立運転モードで動作することにより、第2出力端32に接続された専用の自立給電路(図示せず)に電力を供給できる(この点は、第2実施形態の発電用パワーコンディショナ3も同様である)。
 ただし以下では、発電用パワーコンディショナ3は、連系運転・自立運転の別にかかわらず、発電側開閉器112が接続された状態では常に第1開閉器36を接続して第2開閉器37を遮断した連系運転モードで動作すると仮定する。すなわち、発電用パワーコンディショナ3は、給電路13に対しては第1出力端31のみから出力を行うのであって、第1出力端31が発電側開閉器112に常時接続される。同様に、充放電用パワーコンディショナ5は、給電路13に対しては第1出力端51のみから出力を行うのであって、第1出力端51が給電路13に常時接続される。
 ところで、本実施形態の電力供給システム1は、充放電用パワーコンディショナ5が、切替盤11との通信機能を有しており、少なくとも制御信号により系統側開閉器111および発電側開閉器112の開閉制御を可能に構成されている。
 すなわち、充放電用パワーコンディショナ5の制御部55(図1参照)は、停電等の電力系統6の異常の有無に応じて連系運転・自立運転を自動的に切り替える。つまり、制御部55は、電力系統6の正常時には系統側開閉器111を接続(オン)して連系運転を行い、停電などの電力系統6の異常時に系統側開閉器111を遮断(オフ)して自立運転を行う。具体的には、充放電用パワーコンディショナ5は、単独運転防止用に停電等の電力系統6の異常の有無を検知する停電検知部(図示せず)を内蔵しており、制御部55は、この停電検知部から検知結果(異常)を受けて系統側開閉器111を遮断し、自立運転に切り替える。また、系統側開閉器111が遮断されていても電力系統6の復旧(復電)を検知できるように、切替盤11内における系統側開閉器111の上流側(電力系統6側)には、復電を検知する復電検知部113が設けられている。復電検知部113の検知結果は充放電用パワーコンディショナ5に出力されており、制御部55は、この復電検知部113の検知結果(復電)を受けて系統側開閉器111を接続し、連系運転に切り替える。
 また、充放電用パワーコンディショナ5は、図5に示すように、自身に接続されている蓄電池4の残容量(充電量)を監視する残容量監視部59を有している。残容量監視部59は、たとえば蓄電池4の電圧を計測することにより、蓄電池4の残容量を監視する。以下では、蓄電池4が満充電状態となるときの蓄電池4の残容量を「上限値」という。
 充放電用パワーコンディショナ5の制御部55(図1参照)は、連系運転時には発電側開閉器112を常時接続(オン)し、自立運転時においては、蓄電池4の残容量に応じて発電側開閉器112を開閉制御する。ここでは、制御部55は、自立運転時において、残容量監視部59で監視されている残容量が上限値未満であれば発電側開閉器112を接続し、残容量が上限値以上になると発電側開閉器112を遮断(オフ)する。つまり、充放電用パワーコンディショナ5は、電力系統6の異常時(自立運転時)において、蓄電池4が満充電状態になると、発電用パワーコンディショナ3から給電路(自立給電路)13への出力を強制的に停止させる。
 また、充放電用パワーコンディショナ5は、停電検知部で停電などの電力系統6の異常が検知されると、給電路13への出力を一旦停止し、系統側開閉器111を遮断した後で給電路13の電圧(実効値)を一定に維持する定電圧制御を開始する。そのため、電力系統6の異常が発生すると、少なくとも充放電用パワーコンディショナ5および電力系統6から給電路13への電力供給は一時的に停止する。さらに、充放電用パワーコンディショナ5は、復電検知部113で電力系統6の復旧(復電)が検知されると、給電路13への出力を一旦停止し、系統側開閉器111を接続した後で連系運転を再開する。
 さらに本実施形態では、電力系統6の正常時(連系運転時)においても、発電用パワーコンディショナ3が最大電力点追従制御を行い、充放電用パワーコンディショナ5が定電圧制御を行っている。
 ここで、発電用パワーコンディショナ3は、最大電力点追従制御時においては、給電路13の電圧を検出し当該電圧に合わせて電流を出力する電流制御を行うことになるので、給電路13上の基準となる電圧がなくなると電流制御(最大電力点追従制御)を継続できない。したがって、電力系統6の異常が発生して充放電用パワーコンディショナ5および電力系統6から給電路13への電力供給が停止すると、発電用パワーコンディショナ3は、基準となる給電路13の電圧がなくなるため給電路13への出力を停止する。これにより、発電用パワーコンディショナ3は、電力系統6の異常時(自立運転時)における単独運転を防止している。同様に、電力系統6の復旧時にも、充放電用パワーコンディショナ5および電力系統6から給電路13への電力供給が一時的に停止するので、発電用パワーコンディショナ3は、給電路13への出力を一時的に停止する。
 ここで、本実施形態の電力供給システム1の具体的な回路構成の一例を図6に示す。図6の例では、第2出力端32,52(図1参照)および第2開閉器37,57(図1参照)の図示を省略し、また分電盤12(図5参照)の図示も省略している。
 図6の電力供給システム1は、発電用パワーコンディショナ3の第1出力端31が発電側開閉器112を介して給電路13に接続されている点、および充放電用パワーコンディショナ5の第1出力端51が給電路13に接続されている点で実施形態2と相違する。また、図6に示す電力供給システム1は、充放電用パワーコンディショナ5が残容量監視部59を有し、制御部55が残容量監視部59の出力に基づいて発電側開閉器112を開閉制御する点でも、実施形態2とは相違する。図6においては、残容量監視部59は、DCDCコンバータ53における蓄電池4側の入力端間に接続され、蓄電池4の両端電圧を計測することにより蓄電池4の残容量を監視し、結果を制御部55に出力するよう構成されている。
 次に、本実施形態の電力供給システム1の動作について説明する。
 まず、電力系統6の正常時(非停電時)においては、切替盤11は系統側開閉器111と発電側開閉器112との両方が接続状態にある。このとき、電力系統6と発電用パワーコンディショナ3と充放電用パワーコンディショナ5とはいずれも給電路13を介して分電盤12に接続されており、発電用パワーコンディショナ3および充放電用パワーコンディショナ5は連系運転を行う。
 一方、電力系統6に停電等の異常が発生すると、充放電用パワーコンディショナ5は、停電検知部の検知結果(異常)を受けて給電路13への出力を停止し、これに伴って、発電用パワーコンディショナ3も給電路13への出力を停止する。このとき、充放電用パワーコンディショナ5は、切替盤11に制御信号を出力して、系統側開閉器111を遮断(オフ)し、電力系統6と分電盤12とを解列する。
 その後、充放電用パワーコンディショナ5は、自立運転に切り替わり給電路13の電圧(実効値)を一定に維持する定電圧制御を開始し、電力系統6と略同じ周波数且つ振幅の交流波形を給電路13に出力する。これにより、発電用パワーコンディショナ3は、給電路13から電力系統6が遮断された状態で、充放電用パワーコンディショナ5の出力電圧を擬似系統(基準電圧)とみなし、連系運転時と同様に最大電力点追従制御により給電路13への出力を開始する。つまり、発電用パワーコンディショナ3は、給電路13から電力系統6が遮断された自立運転時においても、連系運転時と同様に連系運転モード(第1出力端31から電力を出力するモード)にて動作する。
 この状態(自立運転時)において、発電用パワーコンディショナ3は太陽電池2の発電電力が最大となるように最大電力点追従制御を行い、充放電用パワーコンディショナ5は給電路13の電圧が一定となるように定電圧制御を行う。すなわち、発電用パワーコンディショナ3からの出力電力(生成電力)が、負荷9での消費電力(負荷電力)よりも大きい場合、充放電用パワーコンディショナ5は、生成電力と負荷電力との差分である余剰電力を用いて蓄電池4を充電する。ここで、生成電力および負荷電力は変動するので、負荷電力がゼロの場合を考慮して、蓄電池4としては、充電時の最大許容電力が生成電力の最大値以上である蓄電池を用いることが望ましい。これにより、充放電量パワーコンディショナ5は、自立運転時において負荷電力がゼロであったとしても、生成電力を全て蓄電池4の充電に使用することができる。一方、生成電力が負荷電力よりも小さい場合、充放電用パワーコンディショナ5は、負荷電力と生成電力との差分である不足電力を蓄電池4の放電電力で補う。
 さらに自立運転時、充放電用パワーコンディショナ5は、残容量監視部59で監視されている蓄電池4の残容量が上限値以上になると、制御信号により発電側開閉器112を遮断(オフ)して発電用パワーコンディショナ3と給電路13とを解列する。これにより、発電用パワーコンディショナ3から給電路13への出力である生成電力がゼロになるので、充放電用パワーコンディショナ5は、負荷電力を全て蓄電池4の放電電力で補う。放電により蓄電池4の残容量が減って上限値未満になると、充放電用パワーコンディショナ5は、発電側開閉器112を接続(オン)して発電用パワーコンディショナ3から給電路13への出力を再開させる。
 また、電力系統6が復旧(復電)すると、充放電用パワーコンディショナ5は、復電検知部113の検知結果(復電)を受けて給電路13への出力を停止し、これに伴って、発電用パワーコンディショナ3も給電路13への出力を停止する。このとき、充放電用パワーコンディショナ5は、切替盤11に制御信号を出力して、系統側開閉器111を接続(オン)し、電力系統6と分電盤12とを接続する。さらに、充放電用パワーコンディショナ5は、発電側開閉器112が遮断されている場合には、発電側開閉器112についても接続状態に戻す。
 その後、充放電用パワーコンディショナ5は、連系運転に切り替わり給電路13の電圧(実効値)を一定に維持する定電圧制御を開始し、電力系統6と略同じ周波数且つ振幅の交流波形を給電路13に出力する。また、発電用パワーコンディショナ3は、電力系統6から給電路13への供給電圧を基準とし、自立運転時と同様に連系運転モード(第1出力端31から電力を出力するモード)にて動作し最大電力点追従制御により給電路13への出力を開始する。
 以上説明した本実施形態の構成によれば、連系運転・自立運転の切替が切替盤11によって行われるのであって、発電用パワーコンディショナ3の制御部35は、連系運転・自立運転の別にかかわらず常に連系運転モード(第1出力端31から電力を出力するモード)にて動作できる。ここで、一般に流通しているパワーコンディショナは、連系運転モードでは最大電力点追従制御を行い、自立運転モード(第2出力端32から電力を出力するモード)では負荷の動作電圧を確保するために、出力電圧を所定の目標値に維持する定電圧制御を行うよう構成されている。したがって、本実施形態の構成によれば、電力供給システム1は、一般に流通しているパワーコンディショナを発電用パワーコンディショナ3として用いることができる。要するに、本実施形態の構成では、発電用パワーコンディショナ3は、常に連系運転モードで動作できるので、切替盤11にて連系運転・自立運転のどちらに切り替わっても、最大電力点追従制御を行うことになる。したがって、最大電力点追従制御用の出力端(第1出力端31)および定電圧制御用の出力端(第2出力端32)を備えたパワーコンディショナを用いながらも、常にこのパワーコンディショナに最大電力点追従制御を行わせることができる。
 また、自立運転時において、充放電用パワーコンディショナ5は、蓄電池4の残容量が上限値以上になると、発電用パワーコンディショナ3から給電路13への出力を停止させるので、蓄電池4の過充電を防止することができる。すなわち、蓄電池4が満充電状態にあれば、発電用パワーコンディショナ3から給電路13への出力は停止するので、充放電用パワーコンディショナ5は、余剰電力によって蓄電池4を満充電状態からさらに充電することを防止できる。
 なお、自立運転時において蓄電池4の残容量が所定の上限値以上になったときに、充放電用パワーコンディショナ5が発電用パワーコンディショナ3から自立給電路への出力を停止させる構成は、実施形態1,2にも適用可能である。
 例えば、実施形態1においては、発電用パワーコンディショナ3の制御部35と充放電用パワーコンディショナ5の制御部55とを通信可能に構成する。そして、充放電用パワーコンディショナ5に、蓄電池4の残容量を監視する残容量監視部59を設ける。充放電用パワーコンディショナ5の制御部55は、自立運転時において蓄電池4の残容量が上限値以上になると、制御部35を介して、発電用パワーコンディショナ3の第1開閉器36および第2開閉器37を遮断(オフ)する。これにより、発電用パワーコンディショナ3から給電路(連系給電路7および自立給電路8)への出力を停止させる。
 また、実施形態2においては、充放電用パワーコンディショナ5に、蓄電池4の残容量を監視する残容量監視部59を設ける。充放電用パワーコンディショナ5の制御部55は、自立運転時において蓄電池4の残容量が上限値以上になると、第1の連結開閉器101および第2の連結開閉器102を遮断(オフ)する。これにより、発電用パワーコンディショナ3から給電路(連系給電路7および自立給電路8)への出力を停止させる。
 また、電力供給システム1は、発電用パワーコンディショナ3を1台に限らず複数台備えていてもよい。この場合、発電用パワーコンディショナ3の各々に接続される発電装置としては、太陽電池2に限らず、燃料電池など太陽電池2以外の発電装置が含まれていてもよい。発電用パワーコンディショナ3が複数台ある場合、発電側開閉器112は各発電用パワーコンディショナ3ごとに設けられ、充放電用パワーコンディショナ5は、自立運転時に蓄電池4の残容量が所定の上限値以上になると全ての発電側開閉器112を遮断する。
 さらに、発電用パワーコンディショナ3が複数台ある場合、蓄電池4としては、充電時の最大許容電力が、発電用パワーコンディショナ3から給電路13への出力電力(生成電力)の総和の最大値以上である蓄電池を用いることが望ましい。これにより、充放電用パワーコンディショナ5は、自立運転時において、負荷9での消費電力(負荷電力)がゼロであったとしても、蓄電池4が満充電状態にない限りは生成電力を蓄電池4の充電に使用することができる。
 また、電力供給システム1は、系統側開閉器111と発電側開閉器112とを上述したように切替盤11に収納することは必須ではなく、個々別々に切替装置として備えていてもよい。さらに、系統側開閉器111および発電側開閉器112は分電盤12内に設けられていてもよく、この場合、電力系統6と発電用パワーコンディショナ3と充放電用パワーコンディショナ5とは、分電盤12に接続された給電路13に対して直接接続される。
 なお、充放電用パワーコンディショナ5は、停電(電力系統6の異常)については内蔵の停電検知部で検知し、復電については外付けの復電検知部113で検知しているが、この構成に限らず、停電と復電との両方を外付けの復電検知部113で検知してもよい。
 その他の構成および機能は実施形態2と同様である。
 (実施形態4)
 本実施形態の電力供給システム1は、発電用パワーコンディショナ3が自立運転時に第2出力端32からの出力電圧を一定に維持する定電圧制御を行う点で実施形態1の電力供給システム1と相違する。以下、実施形態1と同様の構成については共通の符号を付して適宜説明を省略する。
 本実施形態では、発電用パワーコンディショナ3は、図7に示すように第2出力端32の電圧を検出する電圧検出部353を備え、電圧検出部353の出力が制御部35に入力されている。図7の例では、電圧検出部353はDCACコンバータ34におけるスイッチング素子341,342の接続点と、スイッチング素子343,344の接続点との間の電圧を検出している。
 発電用パワーコンディショナ3の制御部35は、電圧検出部353の検出電圧(検出結果)に基づいて電力変換器(DCDCコンバータ33およびDCACコンバータ34)30を制御し、第2出力端32の電圧を一定に維持する定電圧制御を実現する。つまり、制御部35は、所定の目標値に電圧検出部353の検出電圧を維持するように、検出電圧が目標値よりも小さければ出力を大きくし、検出電圧が目標値よりも大きければ出力を小さくするように電力変換器30を動作させる。
 なお、発電用パワーコンディショナ3は、連系運転時には最大電力点追従制御を行うので、図7では図示を省略するが実施形態1で説明した電圧検出部351および電流検出部352も備えている。
 また、本実施形態では、充放電用パワーコンディショナ5は実施形態1と同様に、自立運転時において、蓄電池4の充放電を切り替えることにより、自立給電路8の電圧(実効値)を一定に維持する定電圧制御を行う。ただし、充放電用パワーコンディショナ5の定電圧制御用の目標値(以下、「第2の目標値」という)は、発電用パワーコンディショナ3の定電圧制御用の目標値(以下、「第1の目標値」という)よりも小さく(第2の目標値<第1の目標値)設定されている。
 次に、電力系統6の異常時(自立運転時)における本実施形態の電力供給システム1の動作について説明する。
 すなわち、発電用パワーコンディショナ3および充放電用パワーコンディショナ5は、電力系統6の異常を検知すると、第2開閉器37,57を接続して自立給電路8を介して互いに接続され、自動的に自立運転に切り替わる。この状態で、発電用パワーコンディショナ3は第2出力端32からの出力電圧が第1の目標値となるように定電圧制御を行い、充放電用パワーコンディショナ5は自立給電路8の電圧が第2の目標値となるように定電圧制御を行う。
 発電用パワーコンディショナ3から自立給電路8への出力電力(以下、「生成電力」という)が、自立給電路8に接続されている負荷9での消費電力(以下、「負荷電力」という)よりも大きい場合、負荷電力は全て生成電力で賄われる。このとき、発電用パワーコンディショナ3は、定電圧制御を行うことにより、自立給電路8の電圧を第1の目標値に維持するように動作するので、充放電用パワーコンディショナ5の電圧検出部551の検出電圧は第2の目標値(<第1の目標値)より大きくなる。
 そのため、充放電用パワーコンディショナ5は、充放電回路50を充電モードで動作させ、自立給電路8から入力される交流電力を直流電力に変換して蓄電池4に出力することにより、蓄電池4を充電する。ここでは、充放電用パワーコンディショナ5は、電圧検出部551の検出電圧と第2の目標値との差分が大きいほど蓄電池4への出力が大きくなるように、検出電圧と第2の目標値との差分の大きさに応じて出力電力の大きさを変化させる。
 一方、生成電力が負荷電力よりも小さくなると、発電用パワーコンディショナ3は、定電圧制御を行うものの、過負荷状態となり自立給電路8の電圧を第1の目標値に維持することができず、自立給電路8の電圧が第1の目標値から低下する。これにより、電圧検出部551の検出電圧が第2の目標値より小さくなると、充放電用パワーコンディショナ5は、充放電回路50を放電モードで動作させ、蓄電池4から入力される直流電力を交流電力に変換して自立給電路8に出力し、蓄電池4を放電する。ここでは、充放電用パワーコンディショナ5は、電圧検出部551の検出電圧と第2の目標値との差分が大きいほど自立給電路8への出力が大きくなるように、検出電圧と第2の目標値との差分の大きさに応じて出力電力の大きさを変化させる。
 また、電圧検出部551の検出電圧が第2の目標値と一致するときには、充放電用パワーコンディショナ5は、充放電回路50の動作を停止し、蓄電池4の充電、放電をいずれも停止する。
 このように、本実施形態の電力供給システム1においては、第2の目標値が第1の目標値よりも小さく設定されていることにより、電力系統6の異常時、太陽電池2の発電電力が十分にあれば、基本的に充放電用パワーコンディショナ5は蓄電池4を充電する。また、日射量の低下や消費電力の大きな負荷9が接続されたことに起因して太陽電池2の発電電力が負荷9の消費電力を下回った場合には、充放電用パワーコンディショナ5は蓄電池4を放電することで、負荷9へ安定して電力供給できる。
 なお、充放電用パワーコンディショナ5は、たとえば「97V±2V」というように、ある程度の幅を有する第2の目標値が設定されていてもよい。この場合、充放電用パワーコンディショナ5は、検出電圧が第2の目標値の上限(ここでは99V)を超えると充放電回路50を充電モードで動作させ、検出電圧が第2の目標値の下限(ここでは95V)を下回ると充放電回路50を放電モードで動作させる。充放電用パワーコンディショナ5は、検出電圧が第2の目標値の上限と下限との間の範囲内にあれば充放電回路50の動作を停止する。ただし、この場合の第2の目標値は、上限値が第1の目標値(たとえば100V)よりも小さく設定される。
 以上説明した構成の電力供給システム1によれば、充放電用パワーコンディショナ5は、第2の目標値が第1の目標値よりも小さく設定されていることにより、自立運転時、太陽電池2の発電電力が十分にあれば、基本的に蓄電池4を充電する。したがって、充放電用パワーコンディショナ5は、負荷9の消費電力が太陽電池2の発電電力を上回るときには、蓄電池4に蓄えた電力を用いて負荷9を動作させることができる。そのため、自立運転時に使用可能な負荷9は、消費電力が発電用パワーコンディショナ3の最大出力を超える負荷であってもよく、負荷の選択の自由度が高くなる。さらに、日射量の低下や消費電力の大きな負荷9が接続されたことに起因して太陽電池2の発電電力が負荷9の消費電力を下回ることがあっても、充放電用パワーコンディショナ5により負荷9への電力供給を継続可能であり、負荷9へ安定して電力供給できる。
 しかも、一般に流通しているパワーコンディショナは、第1出力端から電力を出力するモードでは最大電力点追従制御を行い、第2出力端から電力を出力するモードでは、負荷の動作電圧を確保するために、出力電圧を所定の目標値に維持する定電圧制御を行う。そのため、本実施形態の電力供給システム1では、一般に流通しているパワーコンディショナを発電用パワーコンディショナ3として用いることができる。要するに、一般的なパワーコンディショナを発電用パワーコンディショナとして備えた既設の電力供給システムに、蓄電池4および充放電用パワーコンディショナ5を付加することにより、上述した電力供給システム1を実現することができる。
 なお、自立運転時において蓄電池4の残容量が所定の上限値以上になったときに、充放電用パワーコンディショナ5が発電用パワーコンディショナ3から自立給電路への出力を停止させる構成は、本実施形態にも適用可能である。例えば、発電用パワーコンディショナ3の制御部35と充放電用パワーコンディショナ5の制御部55とを通信可能に構成し、充放電用パワーコンディショナ5に蓄電池4の残容量を監視する残容量監視部59を設ける。そして、充放電用パワーコンディショナ5の制御部55は、自立運転時において蓄電池4の残容量が上限値以上になると、制御部35を介して、発電用パワーコンディショナ3の第1開閉器36および第2開閉器37を遮断(オフ)する。これにより、発電用パワーコンディショナ3から給電路(連系給電路7および自立給電路8)への出力を停止させる。
 その他の構成および機能は実施形態1と同様である。
 ところで、発電用パワーコンディショナ3が自立運転時に最大電力点追従制御を行う実施形態1~3と、発電用パワーコンディショナ3が自立運転時に定電圧制御を行う実施形態4とでは、充放電用パワーコンディショナ5の構成自体は共通である。ただし、実施形態4においては、充放電用パワーコンディショナ5の定電圧制御用の目標値(第2の目標値)は、発電用パワーコンディショナ3の定電圧制御用の目標値(第1の目標値)よりも小さく設定される必要がある。
 そこで、充放電用パワーコンディショナ5は、たとえばディップスイッチからなる操作部(図示せず)と、操作部の操作に応じて目標値の設定値を切り替える切替部58(図7参照)とを備え、操作部の操作により目標値を切替可能に構成されていてもよい。これにより、充放電用パワーコンディショナ5は、発電用パワーコンディショナ3に合わせて目標値を切り替えることにより、いずれの発電用パワーコンディショナ3にも対応可能となる。つまり、充放電用パワーコンディショナ5は、負荷9に合わせて決められた第1の設定値を目標値とすることにより、自立運転時に最大電力点追従制御を行う発電用パワーコンディショナ3を備えた電力供給システム1に対応可能となる。一方、充放電用パワーコンディショナ5は、第1の目標値よりも小さく設定された第2の設定値(第2の目標値)を目標値とすることにより、自立運転時に定電圧制御を行う発電用パワーコンディショナ3を備えた電力供給システム1に対応可能となる。
 また、切替部58は、自立運転開始時における自立給電路8への発電用パワーコンディショナ3からの出力に応じて目標値を自動的に切り替えるように構成されていてもよい。具体的には、充放電用パワーコンディショナ5は、第2開閉器57における第2出力端52との接続点の電圧を検出する検出器(図示せず)を有し、自立運転開始時の検出器の検出電圧(検出結果)に応じて発電用パワーコンディショナ3の制御方式を判断する。ここで、切替部58は、自立運転開始時、第2開閉器57を遮断(開放)した状態で検出器にて電圧が検出されれば定電圧制御、電圧が検出されなければ最大電力点追従制御であると発電用パワーコンディショナ3の制御方式を判断する。
 すなわち、発電用パワーコンディショナ3は、最大電力点追従制御を行う場合には、自立運転開始時、最適点(最大電力点)をサーチするため、自立給電路8への印加電圧を徐々に上げていくよう動作する。これに対し、定電圧制御を行う場合には、発電用パワーコンディショナ3は、自立運転開始時から自立給電路8に所定の電圧(第1の目標値)を印加する。そのため、発電用パワーコンディショナ3の制御方式は、自立運転開始時における発電用パワーコンディショナ3から自立給電路8への印加電圧の有無により判断可能である。

Claims (9)

  1.  太陽電池からの電力を変換して電力系統と連系する連系運転および前記電力系統から切り離される自立運転を切替可能な発電用パワーコンディショナと、前記自立運転時に前記発電用パワーコンディショナからの電力供給路になる自立給電路に接続される充放電用パワーコンディショナとを備え、
     前記充放電用パワーコンディショナは、蓄電池の充放電を行う充放電回路と、前記自立給電路の電圧を検出する電圧検出部と、前記自立運転時において前記電圧検出部の検出電圧が所定の目標値となるように前記充放電回路を制御する制御部とを有し、
     前記制御部は、前記検出電圧が前記目標値より大きければ前記自立給電路からの電力で前記蓄電池を充電し、前記検出電圧が前記目標値より小さければ前記蓄電池からの電力を前記自立給電路に供給するように前記充放電回路を制御することを特徴とする電力供給システム。
  2.  前記発電用パワーコンディショナは、前記自立運転時において前記太陽電池から最大出力を取り出す最大電力点追従制御を行うことを特徴とする請求項1に記載の電力供給システム。
  3.  前記発電用パワーコンディショナは、前記自立運転時において前記自立給電路への出力電圧を第1の目標値に維持する定電圧制御を行い、
     前記充放電用パワーコンディショナは前記電圧検出部の検出電圧を前記目標値としての第2の目標値に維持するように前記充放電回路を制御し、
     前記第2の目標値は前記第1の目標値より小さく設定されていることを特徴とする請求項1に記載の電力供給システム。
  4.  前記目標値は所定の幅を有しており、
     前記制御部は、前記検出電圧が前記目標値の上限より大きければ前記自立給電路からの電力で前記蓄電池を充電し、前記検出電圧が前記目標値の下限より小さければ前記蓄電池からの電力を前記自立給電路に供給し、前記検出電圧が前記目標値の上限と下限との間の範囲内にあれば前記充放電回路が動作を停止するように、前記充放電回路を制御することを特徴とする請求項1~3のいずれか1項に記載の電力供給システム。
  5.  前記充放電用パワーコンディショナは、前記自立運転時において前記蓄電池の残容量が所定の上限値以上になると、前記発電用パワーコンディショナから前記自立給電路への出力を停止させることを特徴とする請求項1~4のいずれか1項に記載の電力供給システム。
  6.  前記充放電用パワーコンディショナは、前記目標値を第1の設定値と第2の設定値とで切り替える切替部をさらに有することを特徴とする請求項1~5のいずれか1項に記載の電力供給システム。
  7.  前記切替部は、前記自立運転開始時における前記発電用パワーコンディショナから前記自立給電路への出力に応じて、前記目標値を前記第1の設定値と前記第2の設定値とで自動的に切り替えることを特徴とする請求項6に記載の電力供給システム。
  8.  太陽電池からの電力を変換して電力系統と連系する連系運転および電力系統から切り離される自立運転を切替可能な発電用パワーコンディショナが接続された給電路であって、前記自立運転時に前記発電用パワーコンディショナからの電力供給路になる自立給電路に接続され、
     蓄電池の充放電を行う充放電回路と、前記自立給電路の電圧を検出する電圧検出部と、前記自立運転時において前記電圧検出部の検出電圧が所定の目標値となるように前記充放電回路を制御する制御部とを有し、
     前記制御部は、前記検出電圧が前記目標値より大きければ前記自立給電路からの電力で前記蓄電池を充電し、前記検出電圧が前記目標値より小さければ前記蓄電池からの電力を前記自立給電路に供給するように前記充放電回路を制御することを特徴とする充放電用パワーコンディショナ。
  9.  前記目標値を第1の設定値と第2の設定値とで切り替える切替部をさらに有し、当該切替部は、前記自立運転開始時における前記発電用パワーコンディショナから前記自立給電路への出力に応じて前記目標値を前記第1の設定値と前記第2の設定値とで自動的に切り替えることを特徴とする請求項8に記載の充放電用パワーコンディショナ。
PCT/JP2012/073051 2011-12-15 2012-09-10 電力供給システムおよび充放電用パワーコンディショナ WO2013088799A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12856950.6A EP2793352B1 (en) 2011-12-15 2012-09-10 Power supply system and power conditioner for charging and discharging

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-275024 2011-12-15
JP2011275024 2011-12-15
JP2012-018159 2012-01-31
JP2012018159A JP5903622B2 (ja) 2011-12-15 2012-01-31 電力供給システムおよび充放電用パワーコンディショナ

Publications (1)

Publication Number Publication Date
WO2013088799A1 true WO2013088799A1 (ja) 2013-06-20

Family

ID=48612258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073051 WO2013088799A1 (ja) 2011-12-15 2012-09-10 電力供給システムおよび充放電用パワーコンディショナ

Country Status (3)

Country Link
EP (1) EP2793352B1 (ja)
JP (1) JP5903622B2 (ja)
WO (1) WO2013088799A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046594A1 (ja) * 2013-09-30 2015-04-02 日本電気株式会社 電源回路および電力供給方法
JP2015186427A (ja) * 2014-03-26 2015-10-22 大和ハウス工業株式会社 電力供給システム
US9607565B2 (en) 2013-12-26 2017-03-28 Lg Display Co., Ltd Display device and method of initializing gate shift register of the same
JP2017208353A (ja) * 2017-07-06 2017-11-24 京セラ株式会社 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
CN111670083A (zh) * 2018-01-30 2020-09-15 伊利诺斯工具制品有限公司 用于焊接发电机的能量存储系统中的双向3电平转换器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029138A1 (ja) * 2013-08-27 2015-03-05 東芝三菱電機産業システム株式会社 太陽光発電システム
JP6296383B2 (ja) * 2013-09-30 2018-03-20 パナソニックIpマネジメント株式会社 蓄電池パワーコンディショナ
CN103986173B (zh) * 2014-04-08 2016-06-29 广西电网公司电力科学研究院 一种电力电子变压器的控制方法及系统
JP6257453B2 (ja) * 2014-06-10 2018-01-10 大阪瓦斯株式会社 電力需給システム
JP2016039759A (ja) * 2014-08-11 2016-03-22 株式会社椿本チエイン 電力供給システム及び電力変換装置
JP6210952B2 (ja) * 2014-08-19 2017-10-11 株式会社椿本チエイン 電力供給システム
JP6494252B2 (ja) * 2014-11-14 2019-04-03 シャープ株式会社 パワーコンディショナ、電力システム、パワーコンディショナの制御方法
JP6415260B2 (ja) * 2014-11-14 2018-10-31 シャープ株式会社 パワーコンディショナ、その制御装置および電力システム
JP6415259B2 (ja) * 2014-11-14 2018-10-31 シャープ株式会社 パワーコンディショナ、およびその制御装置
JP2016123241A (ja) * 2014-12-25 2016-07-07 株式会社村田製作所 パワーコンディショナ
JP6445869B2 (ja) * 2015-01-05 2018-12-26 積水化学工業株式会社 充放電システム
JP6427044B2 (ja) * 2015-03-11 2018-11-21 積水化学工業株式会社 充放電システム
JP6386401B2 (ja) * 2015-03-18 2018-09-05 積水化学工業株式会社 充放電システム
JP6423746B2 (ja) * 2015-03-20 2018-11-14 積水化学工業株式会社 充放電システム
WO2017094179A1 (ja) * 2015-12-04 2017-06-08 東芝三菱電機産業システム株式会社 電力変換システム
JP6675091B2 (ja) * 2016-03-25 2020-04-01 パナソニックIpマネジメント株式会社 切換盤、配電システム、コントローラ
JP6656085B2 (ja) * 2016-05-26 2020-03-04 京セラ株式会社 蓄電装置、パワーコンディショナ及び分散電源システム
CN107437823B (zh) 2016-05-27 2022-03-08 松下知识产权经营株式会社 电力传送系统
JP6762456B1 (ja) * 2019-12-25 2020-09-30 三菱電機株式会社 充放電システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135577A (ja) 1995-11-06 1997-05-20 Omron Corp パワーコンディショナおよび分散型電源システム
JPH11127546A (ja) * 1997-10-23 1999-05-11 Mitsubishi Electric Corp 太陽光発電システム
JP2007330057A (ja) * 2006-06-08 2007-12-20 Kawasaki Plant Systems Ltd 二次電池付太陽光システムの充電制御方法
JP2010061495A (ja) * 2008-09-05 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 電力制御方法および電力制御装置
JP2010142076A (ja) * 2008-12-15 2010-06-24 Shimizu Corp 蓄電・非常用発電電源装置を活用した自立運転システム
JP4638554B1 (ja) * 2010-09-07 2011-02-23 積水化学工業株式会社 通信システム
JP2011211885A (ja) * 2010-03-11 2011-10-20 Sanyo Electric Co Ltd 蓄電システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208374B2 (ja) * 2006-04-18 2013-06-12 シャープ株式会社 系統連系パワーコンディショナおよび系統連系電源システム
JP4369450B2 (ja) * 2006-07-07 2009-11-18 三菱電機株式会社 電力供給システム
JP5124114B2 (ja) * 2006-08-28 2013-01-23 シャープ株式会社 蓄電機能を有するパワーコンディショナ
TWI320626B (en) * 2006-09-12 2010-02-11 Ablerex Electronics Co Ltd Bidirectional active power conditioner
KR100902508B1 (ko) * 2007-04-23 2009-06-15 삼성전자주식회사 전력 조절장치 및 그 운영방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135577A (ja) 1995-11-06 1997-05-20 Omron Corp パワーコンディショナおよび分散型電源システム
JPH11127546A (ja) * 1997-10-23 1999-05-11 Mitsubishi Electric Corp 太陽光発電システム
JP2007330057A (ja) * 2006-06-08 2007-12-20 Kawasaki Plant Systems Ltd 二次電池付太陽光システムの充電制御方法
JP2010061495A (ja) * 2008-09-05 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 電力制御方法および電力制御装置
JP2010142076A (ja) * 2008-12-15 2010-06-24 Shimizu Corp 蓄電・非常用発電電源装置を活用した自立運転システム
JP2011211885A (ja) * 2010-03-11 2011-10-20 Sanyo Electric Co Ltd 蓄電システム
JP4638554B1 (ja) * 2010-09-07 2011-02-23 積水化学工業株式会社 通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2793352A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046594A1 (ja) * 2013-09-30 2015-04-02 日本電気株式会社 電源回路および電力供給方法
US9607565B2 (en) 2013-12-26 2017-03-28 Lg Display Co., Ltd Display device and method of initializing gate shift register of the same
JP2015186427A (ja) * 2014-03-26 2015-10-22 大和ハウス工業株式会社 電力供給システム
JP2017208353A (ja) * 2017-07-06 2017-11-24 京セラ株式会社 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
CN111670083A (zh) * 2018-01-30 2020-09-15 伊利诺斯工具制品有限公司 用于焊接发电机的能量存储系统中的双向3电平转换器
CN111670083B (zh) * 2018-01-30 2023-06-16 伊利诺斯工具制品有限公司 用于焊接发电机的能量存储系统中的双向3电平转换器

Also Published As

Publication number Publication date
EP2793352A1 (en) 2014-10-22
JP5903622B2 (ja) 2016-04-13
EP2793352B1 (en) 2016-02-03
EP2793352A4 (en) 2014-10-22
JP2013146171A (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5903622B2 (ja) 電力供給システムおよび充放電用パワーコンディショナ
EP2793345B1 (en) Electric power supply system
US8907522B2 (en) Grid-connected power storage system and method for controlling grid-connected power storage system
KR101243909B1 (ko) 전력 저장 시스템 및 그 제어 방법
JP5076024B2 (ja) 再生可能エネルギーの利用を最大限にする貯蔵システム
KR101156533B1 (ko) 에너지 저장 시스템 및 이의 제어 방법
WO2011065375A1 (ja) 電力変換装置、発電システム、及び充放電制御方法
US20110210694A1 (en) Power storage system
US10177586B2 (en) Electric energy storage apparatus
JP5756903B2 (ja) 配電システム
JP2011250608A (ja) 太陽電池システム
JP2012175864A (ja) 蓄電システム
WO2013015097A1 (ja) 蓄電システム、及びそれを利用した系統連系システム
JP2017118598A (ja) 電力供給システム
JP2013165624A (ja) 蓄電装置用パワーコンディショナ、蓄電装置
JP2014131422A (ja) 電力供給システムおよびパワーコンディショナ
JP2007288932A (ja) 太陽光発電設備の充電制御装置
US10916946B2 (en) Energy storage apparatus
EP3487034B1 (en) Power conversion system, power supply system, and power conversion apparatus
KR101476337B1 (ko) 에너지 저장 시스템 및 그 제어 방법
KR101162221B1 (ko) 에너지 저장장치의 과충전/과방전 방지장치 및 방법
WO2018155442A1 (ja) 直流給電システム
US20210091563A1 (en) Power supply system and power synthesis device
US11233403B2 (en) Grid interconnection system
JP2013090456A (ja) パワーコンディショナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012856950

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE