JP2016039759A - 電力供給システム及び電力変換装置 - Google Patents

電力供給システム及び電力変換装置 Download PDF

Info

Publication number
JP2016039759A
JP2016039759A JP2014163682A JP2014163682A JP2016039759A JP 2016039759 A JP2016039759 A JP 2016039759A JP 2014163682 A JP2014163682 A JP 2014163682A JP 2014163682 A JP2014163682 A JP 2014163682A JP 2016039759 A JP2016039759 A JP 2016039759A
Authority
JP
Japan
Prior art keywords
power
voltage
output
conversion device
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014163682A
Other languages
English (en)
Inventor
晋吾 小山
Shingo Koyama
晋吾 小山
岡田 直樹
Naoki Okada
直樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP2014163682A priority Critical patent/JP2016039759A/ja
Publication of JP2016039759A publication Critical patent/JP2016039759A/ja
Priority to JP2017138404A priority patent/JP2017189112A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】自然エネルギーを利用する標準的な発電装置と蓄電装置を用いて自立運転を行う電力変換装置とを組み合わせた場合に、発電装置による過剰な発電を抑制することが可能な電力供給システム及び該電力供給システムに用いられる電力変換装置を提供する。
【解決手段】電力変換装置1は、自立運転における交流電力の入出力方向及び大きさを検出しており、第1電力より大きい交流電力が入力された場合は、系統連系保護機能のうちの過電圧保護機能が太陽光発電装置8にて発揮される電圧より低い電圧を上限電圧として、自立運転にて出力する交流電圧を設定値だけ上昇させる。これにより、太陽光発電装置8で交流電圧の上昇が検出されて発電電力の低減機能が発揮された場合に、太陽光発電装置8から供給される交流電力が低減される。
【選択図】図1

Description

本発明は、直流電力を交流電力に変換して自立運転を行う電力変換装置と、交流電力を発電して前記電力変換装置の自立運転に連系する連系運転を行う発電装置とを備える電力供給システム、及び該電力供給システムに用いられる電力変換装置に関する。
近年、二酸化炭素の排出を伴わずに電力を発生させる手段として、太陽光、風力等の自然エネルギーを利用した発電装置が活用されている。自然エネルギーによる発電では、発電量が日射、気候、天候等の気象条件に左右されることが多いのに加えて、電力需要に合わせた発電量の調整が難しいという側面がある。このため、自然エネルギーを利用した発電装置(以下、単に発電装置という)だけでは、非常用電源として活用することは難しい。
一方では、車両に搭載された蓄電池からの直流電力を交流電力に変換して家庭内の非常用電源として利用するいわゆるV2H(Vehicle to Home )を行う電力変換装置が実用化されつつある。このような電力変換装置及び上記の発電装置を組み合わせて電力供給システムを構築した場合、発電装置の余剰電力で車両の蓄電池を充電可能にしておくことにより、気象条件に左右され難く、且つ比較的長時間にわたって非常用電源として利用することが可能になる。
ところで、上述の電力供給システムにおける発電装置の余剰電力で車両の蓄電池が充電される場合、蓄電池が満充電に近い状態にあるときは、発電装置からの余剰電力に行き場がなく、電力変換装置に過大な電圧が印加されたり、蓄電池が無理に充電されて過充電になったりする虞がある。
このような不都合に対し、特許文献1には、発電装置としての複数の太陽光発電ユニットが出力抑制信号を受け付けて出力を低減するようにしてあり、全太陽光発電ユニットの総合出力が系統連系保護装置の定格容量を超える場合に、系統連系保護装置から各太陽光発電ユニットに対して出力抑制信号を送るように構成した太陽光発電システムが開示されている。
特開2002−199589号公報
しかしながら、特許文献1に開示された技術では、出力抑制信号なる特殊な信号を受け付ける太陽光発電ユニットを用意した上で適時出力抑制信号が出力されるように制御する必要があり、システムが煩雑、且つ高価になるという問題がある。
本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、自然エネルギーを利用する標準的な発電装置と蓄電装置を用いて自立運転を行う電力変換装置とを組み合わせた場合に、発電装置による過剰な発電を抑制することが可能な電力供給システム及び該電力供給システムに用いられる電力変換装置を提供することにある。
本発明に係る電力供給システムは、蓄電装置からの直流電力を交流電力に変換して自立運転を行う電力変換装置と、系統連系保護機能を有しており、自然エネルギーを利用して交流電力を発電して前記電力変換装置の自立運転に連系する連系運転を行う発電装置とを備える電力供給システムであって、前記電力変換装置は、前記連系運転による交流電圧が前記自立運転にて出力すべき基準電圧を上回る場合、前記発電装置からの交流電力を入力して変換した直流電力で前記蓄電装置を充電するようにしてあり、交流電力の入出力方向及び大きさを検出する手段と、該手段が検出した方向が入力方向であり、且つ大きさが所定電力より大きいか否かを判定する手段と、該手段が入力方向であり且つ所定電力より大きいと判定した場合、前記系統連系保護機能のうち過電圧保護機能が発揮される電圧より低い電圧を上限として、出力する交流電圧を設定された値だけ上昇させる手段とを有することを特徴とする。
本発明に係る電力供給システムは、蓄電装置からの直流電力を交流電力に変換して自立運転を行う電力変換装置と、系統連系保護機能を有しており、自然エネルギーを利用して交流電力を発電して前記電力変換装置の自立運転に連系する連系運転を行う発電装置とを備える電力供給システムであって、前記電力変換装置は、前記連系運転による交流電圧が前記自立運転にて出力すべき基準電圧を上回る場合、前記発電装置からの交流電力を入力して変換した直流電力で前記蓄電装置を充電するようにしてあり、前記蓄電装置に含まれる蓄電池のSOCを取得する手段と、該手段が取得したSOCが所定の閾値より大きいか否かを判定する手段と、該手段が大きいと判定した場合、出力する交流電力の周波数又は電圧を、前記発電装置における系統連系保護機能が発揮される周波数又は電圧に変更する手段とを有することを特徴とする。
本発明に係る電力変換装置は、蓄電装置からの直流電力を交流電力に変換して自立運転を行う電力変換装置において、前記自立運転に連系して外部から与えられた交流電圧が前記自立運転にて出力すべき基準電圧を上回る場合、外部からの交流電力を入力して変換した直流電力で前記蓄電装置を充電するようにしてあり、交流電力の入出力方向及び大きさを検出する手段と、該手段が検出した方向が入力方向であり、且つ大きさが所定電力より大きいか否かを判定する判定手段と、該判定手段が入力方向であり且つ所定電力より大きいと判定した場合、所定電圧を上限として、出力する交流電圧を設定された値だけ上昇させる手段とを備えることを特徴とする。
本発明に係る電力変換装置は、前記判定手段が入力方向ではない又は所定電力より大きくないと判定した場合、前記基準電圧を下限として、出力する交流電圧を設定された値だけ低下させる手段を備えることを特徴とする。
本発明に係る電力変換装置は、蓄電装置からの直流電力を交流電力に変換して自立運転を行う電力変換装置において、前記自立運転に連系して外部から与えられた交流電圧が前記自立運転にて出力すべき基準電圧を上回る場合、外部からの交流電力を入力して変換した直流電力で前記蓄電装置を充電するようにしてあり、前記蓄電装置に含まれる蓄電池のSOCを取得する取得手段と、該取得手段が取得したSOCが所定の閾値より大きいか否かを判定する手段と、該手段が大きいと判定した場合、出力する交流電力の周波数又は電圧を、所定範囲外の周波数又は電圧に変更する変更手段とを備えることを特徴とする。
本発明に係る電力変換装置は、前記変更手段が周波数又は電圧を変更した場合、前記取得手段が取得したSOCが前記所定の閾値より小さい第2の閾値以下であるか否かを判定する手段と、該手段が以下であると判定した場合、前記変更手段による変更を禁止する手段とを備えることを特徴とする。
本発明に係る電力変換装置は、各アームに含まれるスイッチング素子に寄生ダイオード又は転流ダイオードが並列接続されたHブリッジ回路を有しており、直流電力及び交流電力を双方向に変換するインバータを備えることを特徴とする。
本発明にあっては、電力変換装置が自立運転を行い、その自立運転に連系する連系運転を発電装置が行う。これらの装置から供給される交流電力は、例えば外部の負荷に供給される。このような接続構成にて外部で消費される電力に対して発電装置からの交流電力の一部が余剰電力となる場合、電力変換装置の出力端の交流電圧が自立運転における基準電圧を上回ることとなる。この場合、電力変換装置は、発電装置からの交流電力を取り込んで直流電力に変換し、変換した直流電力で蓄電装置を充電する。これにより、発電装置からの余剰電力が蓄電装置に取り込まれるため、電力変換装置の出力端における交流電圧が基準電圧に維持される。
電力変換装置は、自立運転における交流電力の入出力方向及び大きさを検出しており、所定電力より大きい交流電力が入力された場合、系統連系保護機能のうちの過電圧保護機能が外部の発電装置等にて発揮される電圧より低い電圧を上限電圧として、自立運転にて出力する交流電圧を設定された電圧値だけ上昇させる。これにより、発電装置で交流電圧の上昇が検出されて発電電力の低減機能が発揮された場合に、発電装置から供給される交流電力が低減される。
本発明にあっては、電力変換装置が自立運転を行い、その自立運転に連系する連系運転を発電装置が行う。これらの装置から供給される交流電力は、例えば外部の負荷に供給される。このような接続構成にて外部で消費される電力に対して発電装置からの交流電力の一部が余剰電力となる場合、電力変換装置の出力端の交流電圧が自立運転における基準電圧を上回ることとなる。この場合、電力変換装置は、発電装置からの交流電力を取り込んで直流電力に変換し、変換した直流電力で蓄電装置を充電する。これにより、発電装置からの余剰電力が蓄電装置に取り込まれるため、電力変換装置の出力端における交流電圧が基準電圧に維持される。
自立運転中に蓄電装置に対する充電が継続することにより、蓄電装置に含まれる蓄電池のSOCが所定の閾値より大きくなった場合、電力変換装置は、自立運転にて出力する交流電圧の周波数又は電圧を、系統連系保護機能が発揮されるような所定範囲外の周波数又は電圧に変更する。これにより、発電装置にて系統連系保護機能が発揮された場合に、発電装置からの交流電力が遮断される。
本発明にあっては、所定電力より大きい交流電力が入力されていない場合は、基準電圧を下限として、自立運転にて出力する交流電力の電圧を設定された電圧値だけ低下させる。
これにより、外部の発電装置等から供給される余剰電力が減少した場合に、自立運転で出力する交流電力の電圧が、外部の発電装置等で発電電力の低減機能が発揮されない電圧に戻される。
本発明にあっては、自立運転における交流電力の周波数又は電圧を変更した後に、取得した蓄電池のSOCが上記所定の閾値より小さい第2の閾値以下になった場合、それまで変更していた交流電力の周波数又は電圧を基準の周波数又は基準電圧に戻す。
これにより、蓄電装置にて充電が受け入れ可能になるまで放電が進んだときに、外部の発電装置等における連系保護機能が発揮されなくなって発電が再開される。
本発明にあっては、各アームに含まれるスイッチング素子に寄生ダイオード又は転流(還流)ダイオードが並列接続されたHブリッジ(フルブリッジ)を用いたインバータにより、直流電力及び交流電力を双方向に変換する。
これにより、直流電力を交流電力に変換しているときにインバータが出力しようとする交流電圧よりも、外部の発電装置等から印加される交流電圧の方が高い場合は、外部からの交流電力が上記寄生ダイオード又は転流ダイオードで整流されて直流電力に変換され、変換された直流電力で蓄電装置が充電される。
本発明によれば、発電装置からの余剰電力で蓄電装置が蓄電されるため、電力変換装置の出力端における交流電圧が基準電圧となるように調整される。そして、所定電力より大きい交流電力が電力変換装置に入力された場合は、発電装置からの交流電力が低減される。また、蓄電装置の蓄電量が閾値を超えるまで余剰電力が発生し続けた場合に、発電装置からの交流電力が遮断される。
従って、自然エネルギーを利用する標準的な発電装置と蓄電装置を用いて自立運転を行う電力変換装置とを組み合わせた場合、発電装置による過剰な発電を抑制することが可能となる。
本発明の実施の形態1に係る電力供給システムの構成例を示すブロック図である。 非停電時における給電の流れを示す説明図である。 停電時における給電の流れを示す説明図である。 停電時における給電の流れを示す説明図である。 インバータ3の構成例を示す回路図である。 本発明の実施の形態1に係る電力変換装置の変換動作を制御するCPUの処理手順を示すフローチャートである。 本発明の実施の形態1における第1,第2電力算出のサブルーチンに係るCPUの処理手順を示すフローチャートである。 本発明の実施の形態1の変形例における第1,第2電力算出のサブルーチンに係るCPUの処理手順を示すフローチャートである。 本発明の実施の形態2に係る電力変換装置の変換動作を制御するCPUの処理手順を示すフローチャートである。
以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
図1は、本発明の実施の形態1に係る電力供給システムの構成例を示すブロック図である。図中1は電力変換装置であり、電力変換装置1は、電気自動車(蓄電装置に相当:以下、EV(Electric Vehicle )という)4が有する図示しない蓄電池からの直流電力を単相の交流電力に変換するインバータ3と、該インバータ3による電力の変換を制御するインバータ制御回路20に変換の内容を指示する制御部10とを備える。電力変換装置1及びEV4間のインタフェースは、例えばCHAdeMO協議会が提唱するCHAdeMO方式に準拠している。電力変換装置1が蓄電池を内蔵していてもよい。
制御部10はCPU(Central Processing Unit )11を有しており、CPU11は、プログラム等の情報を記憶するROM12、一時的に発生した情報を記憶するRAM13、及び各種の時間を計時するタイマ14と互いにバス接続されている。CPU11には、また、EV4との間でCAN(Controller Area Network )による通信を行うためのCAN通信部15、後述する各種の回路等とインタフェースするためのI/Oポート16、及び操作表示部27とインタフェースするためのパネルI/F部17がバス接続されている。操作表示部27は、ユーザによる操作を受け付けるための釦、タッチパネル及びLCDを含んでなる。
インバータ3は、交流電力を直流電力に変換することも可能な双方向タイプである。インバータ3で交流電力から変換された直流電力により、EV4の蓄電池が充電される。インバータ3の交流側は、電流トランス31が結合された電路32と、解列リレー33のリレー接点33aと、分電盤5に配された分岐ブレーカ51とを直列に介して、分電盤5内の母線50に接続されている。
電流トランス31は、該電流トランス31の二次コイルに流れる電流に基づいて電路32に流れる電流を検出する電流検出回路21に接続されている。電路32は、該電路32の交流電圧を検出する電圧検出回路22に接続されている。リレー接点33aを駆動する駆動コイル33cは、リレー駆動回路23に接続されている。インバータ制御回路20、電流検出回路21、電圧検出回路22及びリレー駆動回路23は、I/Oポート16に接続されている。電圧検出回路22は、リレー接点33a及び分岐ブレーカ51間の電路の交流電圧を検出するようにしてもよい。
母線50は、解列リレー55のリレー接点55a及び主幹ブレーカ56を介して電力系統7に接続されている。母線50には、電流トランス54が結合された電路と、分岐ブレーカ52,53夫々とを介して、電気機器を含む負荷61,62が接続されている。母線50には、また、分岐ブレーカ57を介して太陽光発電装置(発電装置に相当)8が接続されている。太陽光発電装置8は、風力、潮力、地熱等の他の自然エネルギーを利用して発電する発電装置であってもよい。
電流トランス54は、該電流トランス54の二次コイルに流れる電流に基づいて負荷61,62に流れる電流を検出する電流検出回路24に接続されている。リレー接点55aを駆動する駆動コイル55cは、リレー駆動回路25に接続されている。リレー接点55a及び主幹ブレーカ56間の電路には、停電検出器26が接続されている。電流検出回路24、リレー駆動回路25及び停電検出器26は、I/Oポート16に接続されている。
太陽光発電装置8は、太陽光を用いて発電するソーラーパネル81と、該ソーラーパネル81が発電した直流電力を交流電力に変換するインバータ82と、該インバータ82による電力の変換を制御するインバータ制御回路83とを備える。インバータ82の交流側は、解列リレー84のリレー接点84aを介して分岐ブレーカ57に接続されている。リレー接点84aを駆動する駆動コイル84cは、インバータ制御回路83に接続されている。インバータ82、インバータ制御回路83及び解列リレー84が、いわゆるパワーコンディショナを構成する。
インバータ制御回路83は、ソーラーパネル81が発電した電力がインバータ82に効率よく取り込まれるように最大電力追従制御(MPPT:Maximum Power Point Tracking )を行う。インバータ制御回路83は、また、母線50に交流電圧を印加する主体に連系して交流電圧を出力する連系運転を行うようにインバータ82を制御する。この場合、解列リレー84はインバータ制御回路83によってオンに制御される。
上述の構成において、分電盤5の主幹ブレーカ56及び分岐ブレーカ51,52,53,57が投入されて閉じており、電力系統7が停電しているか否かが停電検出器26で検出される。検出結果はCPU11に取り込まれる。電力系統7が停電していない場合、CPU11がリレー駆動回路25を用いて解列リレー55をオンに制御することにより、電力系統7からの交流電圧が母線50に印加される。そして、太陽光発電装置8が電力系統7に連系する連系運転を行って交流電力を負荷61,62に供給する。
一方、電力変換装置1は、操作表示部27からの設定により、EV4の蓄電池からの直流電力を交流電力に変換する運転を行うか、母線50からの交流電力を直流電力に変換する運転を行うか、又は何れの運転も行わないのかが選択される。何れかの運転を行う場合、CPU11は、リレー駆動回路23を用いて解列リレー33をオンにすると共に、運転内容をインバータ制御回路20に指示する。電力系統7が停電していないときに電力変換装置1が直流電力を交流電力に変換する運転は、電力系統7に連系する連系運転である。連系運転中の電路32の電圧及び電路32を流れる電流の夫々は、電圧検出回路22及び電流検出回路21からCPU11に取り込まれる。
ここで、電力系統7が停電した場合、停電の検出結果が停電検出器26からCPU11に取り込まれたときに、CPU11がリレー駆動回路25により解列リレー55をオフに制御して電力変換装置1及び太陽光発電装置8を電力系統7から切り離す。これは、電力変換装置1が後述する自立運転を行う場合に、電力系統7側に交流電力が逆潮流するのを防止するためである。その後、電力変換装置1は自立運転を行い、太陽光発電装置8が電力変換装置1の自立運転に連系する連系運転を行う。
なお、主幹ブレーカ56が手動で開放された場合、例えば主幹ブレーカ56の開閉状態を示す不図示の接点がオンとなることにより解列リレー55がオフになるようにしてもよい。このように主幹ブレーカ56に対する手動操作を契機に解列リレー55がオフになった場合と、停電の検出を契機にCPU11が解列リレー55をオフにした場合とを含めて電力変換装置1が自立運転を開始できるようにするため、解列リレー55には不図示の補助接点が設けられている。この補助接点がオンからオフに変化したことが検出された場合、解列リレー55のオフが確認されて電力変換装置1による自立運転が開始される。
電力変換装置1が自立運転を行う場合、インバータ制御回路20は、インバータ3が電路32に出力する交流電力の電圧及び周波数夫々が、CPU11から指示された目標電圧及び目標周波数となるように制御する。本実施の形態1では、標準的な目標電圧及び目標周波数夫々を基準電圧(例えば200V)及び基準周波数(例えば50.0Hz又は60.0Hz)とする。
以下では、電力供給システムにおける電力変換装置1及び太陽光発電装置8の振る舞いについて、図を用いて説明する。
図2は、非停電時における給電の流れを示す説明図であり、図3及び4は、停電時における給電の流れを示す説明図である。図中41はEV4が有する蓄電池である。特に図3と4とでは、電力変換装置1が母線50に対して入出力する交流電力の方向が異なる。図2から4では、電力系統7及び電力変換装置1からの交流電力の流れを黒い矢印で示し、太陽光発電装置からの交流電力の流れを白抜き矢印で示す。また、電力変換装置1をPCS(Power Control System )1と表示する。主幹ブレーカ56、分岐ブレーカ51,52,53,57等については図示を省略する。
図2において、太陽光発電装置8は、電力系統7に系統連系しており、ソーラーパネル81が発電した直流電力をインバータ82で交流電力に変換して定電流で母線50に供給する。電力変換装置1が変換を停止している場合(図示せず)、電気機器を含む負荷61,62で消費される交流電力に対して、太陽光発電装置8からの交流電力だけでは不足するときに、不足分の交流電力が電力系統7から供給される。
電力変換装置1が、EV4が有する蓄電池41からの直流電力を交流電力に変換する場合、電力変換装置1からの交流電力と太陽光発電装置8からの交流電力とが負荷61,62に供給されるため、電力系統7から供給される交流電力が低減される。これに対し、電力変換装置1が、母線50からの交流電力を直流電力に変換して蓄電池41に充電する場合、その分だけ電力系統7から供給される交流電力が増加する。
図3に移って、電力系統7が停電した場合、電力変換装置1は、上述したように電力系統7の停電を検出して、インバータ3を自立運転に切り替える。即ち、インバータ3が蓄電池41からの直流電力を交流電力に変換して母線50に供給するように、CPU11がインバータ制御回路20に指示を与える。この場合、インバータ3が母線50に印加する交流電圧が、上述の基準電圧及び基準周波数となるように、目標電圧及び目標周波数が設定されてインバータ制御回路20に指示される。
電力系統7が停電した後、太陽光発電装置8は、電力変換装置1の自立運転に連系する連系運転を行うことにより運転を継続する。太陽光発電装置8が母線50を介して負荷61,62に供給する交流電力だけでは、負荷61,62で消費される電力に不足が生じる間は、不足する電力が電力変換装置1から負荷61,62に供給される。
図4に移って、太陽光発電装置8が母線50を介して負荷61,62に供給すべき交流電力が、負荷61,62で消費される電力を上回る場合、その余剰電力が電力変換装置1で直流電力に変換されて蓄電池41の充電に振り向けられる。これにより、母線50の電圧上昇が抑制されるため、母線50の交流電圧は、上記の基準電圧に維持される。電力変換装置1における変換方向の切り替えは、例えばインバータ3により自律的に行われる。即ち、母線50の交流電圧が、インバータ3が目標電圧として出力する基準電圧を上回る状況になった場合、あたかも回生電力が直流側に回生されるように、インバータ3が交流電力を直流電力に変換する。
次に、上記の機能を有するインバータ3の具体例を挙げてその動作を説明する。
図5は、インバータ3の構成例を示す回路図である。インバータ3は、IGBT(Insulated Gate Bipolar Transistor )、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor )、パワートランジスタ等のスイッチング素子をHブリッジに構成してなる。本実施の形態1では、スイッチング素子としてIGBTからなるスイッチQ1,Q2,Q3,Q4を用いる。スイッチQ1,Q2,Q3,Q4夫々のコレクタ及びエミッタには転流(還流)ダイオード(以下、単にダイオードという)D1,D2,D3,D4のカソード及びアノードが接続されている。
Hブリッジの上アームの夫々に含まれるスイッチQ1及びQ3のコレクタは、平滑コンデンサC1の一端に接続されると共に、EV4と接続するための電路のプラス側にインダクタL1を介して接続されている。Hブリッジの下アームの夫々に含まれるスイッチQ2及びQ4のエミッタは、平滑コンデンサC1の他端に接続されると共に、EV4と接続するための電路のマイナス側に接続されている。
スイッチQ3のエミッタは、スイッチQ4のコレクタに接続されると共に、インダクタL2を介して平滑コンデンサC2の一端及び一対の電路32(図1では1本の線で示す)の一方に接続されている。スイッチQ1のエミッタは、スイッチQ2のコレクタに接続されると共に、インダクタL3を介して平滑コンデンサC2の他端及び一対の電路32の他方に接続されている。スイッチQ1,Q2,Q3,Q4夫々のゲートは、インバータ制御回路20に接続されている。インバータ制御回路20には、これらのスイッチQ1,Q2,Q3,Q4を駆動する駆動回路が含まれている。
図5において、EV4からの直流電力を交流電力に変換する場合、インバータ3は、例えば降圧型のDC/ACインバータとして動作する。また、電路32からの交流電力を直流電力に変換する場合、インバータ3は、例えば昇圧型のAC/DCコンバータ(即ちスイッチング電源)として動作する。以下、変換動作を具体的に説明する。なお、解列リレー33がオンであり、且つ分岐ブレーカ51が閉じている場合、電路32の交流電圧と母線50の交流電圧とは同一である。
EV4からの直流電力を交流電力に変換する場合は、
(a)スイッチQ3及びQ2をインバータ制御回路20からのPWM信号によりオン/オフに駆動することにより、正弦波をなす交流電圧の一方の半波に相当する電圧を生成し、生成した電圧をL2,L3及びC2によるフィルタで平滑する。
(b)スイッチQ1及びQ4をインバータ制御回路20からのPWM信号によりオン/オフに駆動することにより、正弦波をなす交流電圧の他方の半波に相当する電圧を生成し、生成した電圧をL3,L2及びC2によるフィルタで平滑する。
電路32からの交流電力を直流電力に変換する場合は、
(a)正弦波をなす交流電圧の一方の半波に相当する期間のうち、平滑コンデンサC2の他端に対して一端の電圧が正となる期間に、スイッチQ4をインバータ制御回路20からのPWM信号によりオンに駆動することにより、インダクタL2、スイッチQ4、ダイオードD2及びインダクタL3の経路に電流が流れてインダクタL2,L3にエネルギーが蓄積される。
(b)スイッチQ4がオフになることにより、インダクタL2、ダイオードD3、インダクタL1、EV4、ダイオードD2及びインダクタL3の経路に電流が還流して、インダクタL2,L3のエネルギーが放出される。
(c)正弦波をなす交流電圧の他方の半波に相当する期間のうち、平滑コンデンサC2の他端に対して一端の電圧が負となる期間に、スイッチQ2をインバータ制御回路20からのPWM信号によりオンに駆動することにより、インダクタL3、スイッチQ2、ダイオードD4及びインダクタL2の経路に電流が流れてインダクタL3,L2にエネルギーが蓄積される。
(d)スイッチQ2がオフになることにより、インダクタL3、ダイオードD1、インダクタL1、EV4、ダイオードD4及びインダクタL2の経路に電流が還流して、インダクタL3,L2がエネルギーを放出する。
さて、図3に示すように電力変換装置1のインバータ3が直流電圧を交流電圧に変換している間に、太陽光発電装置8からの交流電力が負荷61,62で消費される電力を上回る状態になった場合、母線50の交流電圧、即ち電路32の交流電圧は、インバータ3が目標電圧として出力する基準電圧を上回ることとなる。このため、電路32の交流電圧のうち、インバータ3が能動的に出力する基準電圧を上回る電圧が、インダクタL2、ダイオードD3、インダクタL1、EV4、ダイオードD2及びインダクタL3の経路、並びにインダクタL3、ダイオードD1、インダクタL1、EV4、ダイオードD4及びインダクタL2の経路で整流される。
これにより、太陽光発電装置8からの交流電力のうち、負荷61,62で消費されない分の交流電力、即ち余剰電力が、母線50から電路32を経てインバータ3に取り込まれて直流電力に変換される。従って、電路32及び母線50における基準電圧からの電圧上昇が抑制されて、図4に示す状態が安定的に継続する。
ところで、図4に示す状態で太陽光発電装置8からの交流電力の一部が余剰電力となる場合、電力変換装置1が余剰電力を直流電力に変換可能である間に、太陽光発電装置8に発電量を低減させることが好ましい。そこで、本実施の形態1では、電力変換装置1に入力される交流電力の大きさが第1電力を上回った場合に、太陽光発電装置8に発電量を低減させる方策を講じ、余剰電力が第1電力より大きい第2電力を上回った場合は、太陽光発電装置8に交流電力の出力を遮断させるものとする。
上記の方策が講じられる前提として、少なくとも日本国内で電力系統7に連系して運用される発電設備は、電力系統7に逆潮流する交流電圧が過大に上昇したときに発電電力を抑制し、更に、過電圧保護機能が発揮されるべき電圧(具体的には、過電圧リレー(OVR)により解列される電圧)以上になったときに、交流電力の出力を遮断する保護機能を有している。本実施の形態1では、少なくとも太陽光発電装置8が、この保護機能を有している。
以下では、電力変換装置1の自立運転中に、上記の保護機能を有する太陽光発電装置8からの交流電力を低減させる場合、及び交流電力を遮断させる場合の手順について、フローチャートを用いて説明する。
図6は、本発明の実施の形態1に係る電力変換装置1の変換動作を制御するCPU11の処理手順を示すフローチャートであり、図7は、本発明の実施の形態1における第1,第2電力算出のサブルーチンに係るCPU11の処理手順を示すフローチャートである。図6の処理は、電力変換装置1の自立運転中に一定の周期(例えば1秒毎)で起動される。図7の処理で用いられる「定格電力」は、例えばROM12に記憶されているが、RAM13に書き込まれるようにしてもよい。
CPU11の初期化処理の後で図6の処理が最初に起動される前に、「目標電圧」が「基準電圧」に、「電圧フラグ」がオフに、夫々設定される。「上限電圧」は、太陽光発電装置8にて過電圧保護機能が発揮される下限の電圧より僅かに低い電圧に設定される。電圧上昇幅の「設定値」は、操作表示部27からの設定操作により、任意に設定される。例えば、「設定値」を0.1V程度の小さな値に設定して目標電圧を上昇させたことによる効果が徐々に現れるようにしてもよい。以下では、「目標電圧」が設定される都度、設定された「目標電圧」がインバータ制御回路20に指示されるものとする。
図6の処理が起動された場合、CPU11は、電流検出回路21及び電圧検出回路22により、インバータ3に入出力される電流及び電路32の電圧を検出して、インバータ3の入出力電力を符号付きで算出する(S12:交流電力の入出力方向及び大きさを検出する手段に相当)。CPU11は、算出した入出電力の符号に基づいて、電力変換装置1の外部からの交流電力の流入があるか否かを判定し(S13:検出した方向が入力方向であるか否かを判定する手段に相当)、流入がある場合(S13:YES)、第1,第2電力算出に係るサブルーチンを呼び出して実行する(S14)。
第1,第2電力算出に係るサブルーチンからリターンした場合、CPU11は、ステップS12で算出した入力電力が、サブルーチンで設定された第1電力より大きいか否かを判定し(S15:大きさが所定電力よい大きいか否かを判定する手段に相当)、大きい場合(S15:YES)、目標電圧を上昇させていることを記憶するために、先に電圧フラグをオンにする(S16)。
その後、CPU11は、入力電力が、第1電力より大きい第2電力以上であるか否かを判定する(S17)。第2電力以上である場合(S17:YES)、CPU11は、自立運転で出力する交流電圧の目標電圧を、上限電圧プラス(+)αの電圧に設定し(S18)、更にタイマ14により計時を開始して(S19)図6の処理を終了する。ここで計時する時間は、所定の時間であってもよいし、操作表示部27から設定される時間であってもよい。計時を開始したことはタイマ14のステータスにセットされるものとする。
上述のαの値は、太陽光発電装置8にて過電圧保護機能が発揮される下限の電圧(具体的には、過電圧リレー(OVR)で解列される下限の電圧)よりも、上限電圧+αの方が高くなるようにする値である。これにより、電力変換装置1が電路32に出力する交流電圧が、太陽光発電装置8にて過電圧保護機能が発揮される下限の電圧以上になったときに、太陽光発電装置8からの交流電力が遮断される。なお、目標電圧を、太陽光発電装置8にて低電圧保護機能が発揮される上限の電圧(具体的には、不足電圧リレー(UVR)で解列される上限の電圧)より低い電圧に引き下げるようにしてもよい。また、目標電圧を変更する代わりに、目標周波数を、太陽光発電装置8にて系統連系保護機能が発揮される周波数(詳細は、後述する図9におけるステップS58参照)に変更してもよい。
ステップS17で、入力電力が第2電力以上ではない場合(S17:NO)、CPU11は、上限電圧から現在の目標電圧を減算した電圧を上昇判定値として算出し(S20)、算出した上昇判定値が電圧上昇幅の設定値以上であるか否かを判定する(S21)
上昇判定値が設定値以上である場合(S21:YES)、CPU11は、目標電圧に設定値を加算した電圧を新たな目標電圧とし(S22:交流電圧を設定された値だけ上昇させる手段に相当)、図6の処理を終了する。これにより、電力変換装置1が電路32に出力する交流電圧が設定値だけ上昇して、太陽光発電装置8にて過大な電圧上昇として検出された場合、太陽光発電装置8からの交流電力が抑制される。一方、上昇判定値が設定値以上ではない場合(S21:NO)、CPU11は、目標電圧をそれ以上に上昇させることなく図6の処理を終了する。
ステップS13で外部からの交流電力の流入がない場合(S13:NO)、又はステップS15で入力電力が第1電力より大きくない場合(S15:NO)、CPU11は、電圧フラグがオンであるか否か、即ち、目標電圧を上昇させているか否かを判定する(S23)。電圧フラグがオンではない場合(S23:NO)、CPU11は、特段の処理を行わずに図6の処理を終了する。
電圧フラグがオンである場合(S23:YES)、CPU11は、ステップS19でセットされたタイマ14のステータスにより、タイマ14による計時を開始したか否かを判定する(S24)。タイマ14による計時を開始した場合(S24:YES)、即ち目標電圧を上限電圧+αに設定している場合、CPU11は、タイマ14が計時を終了したか否かを判定し(S25)、計時を終了していない場合(S25:NO)、特段の処理を行わずに図6の処理を終了する。タイマ14が計時を終了した場合(S25:YES)、即ち目標電圧を上限電圧+αに上昇させてから所定の時間又は設定された時間が経過した場合、CPU11は、目標電圧を基準電圧に戻すために、後述するステップS29に処理を移す。
ステップS24で、タイマ14による計時を開始していない場合(S24:NO)、即ち目標電圧を設定値だけ上昇させている場合、CPU11は、現在の目標電圧から基準電圧を減算した電圧を低下判定値として算出し(S26)、算出した低下判定値が電圧上昇幅の設定値より小さいか否かを判定する(S27)。
低下判定値が電圧上昇幅の設定値より小さくない場合(S27:NO)、即ち目標電圧を基準電圧に戻す方向に低下させる余地がある場合、CPU11は、目標電圧から設定値を減算した電圧を新たな目標電圧とし(S28:交流電圧を設定された値だけ低下させる手段に相当)、図6の処理を終了する。
一方、低下判定値が電圧上昇幅の設定値より小さい場合(S27:YES)、即ち、目標電圧を基準電圧に戻す方向に低下させる余地がない場合、CPU11は、目標電圧を基準電圧に戻し(S29)、電圧フラグをオフに設定し(S30)、更にタイマ14の計時を停止して(S31)図6の処理を終了する。ステップS31では計時を開始したことを示すステータスがリセットされる。
図7に移って、第1,第2電力算出に係るサブルーチンが呼び出された場合、CPU11は、PCS(電力変換装置)1の定格電力をROM12又はRAM13から読み出し(S35)、読み出した定格電力に例えば0.8を乗じて第1電力とする(S36)。次いで、CPU11は、定格電力に例えば0.95を乗じて第2電力とし(S37)、呼び出されたルーチンにリターンする。ステップS36,37で定格電力に乗算する値は、0.8及び0.95に限定されるものではなく、設計条件に応じて適宜決定すればよい。
このように、図6の処理が周期的に起動されて実行され、図7の処理が必要に応じて呼び出されることにより、電路32からインバータ3に入力される電力が第1電力より大きい(又は第2電力以上である)場合に、太陽光発電装置8からの交流電力が抑制される(又は遮断される)。
以上にように本実施の形態1によれば、電力系統7の停電を検出して電力変換装置1が自立運転を行い、その自立運転に連系する連系運転を太陽光発電装置8が行う。これらの装置から供給される交流電力は、負荷61,62に供給される。このような接続構成にて負荷61,62で消費される電力に対して太陽光発電装置8からの交流電力の一部が余剰電力となる場合、電力変換装置1の出力端の交流電圧が自立運転における基準電圧を上回ることとなる。この場合、電力変換装置1は、太陽光発電装置8からの交流電力を取り込んで直流電力に変換し、変換した直流電力でEV(蓄電装置)4を充電する。これにより、太陽光発電装置8からの余剰電力がEV4に取り込まれるため、電力変換装置1の出力端における交流電圧が基準電圧に維持される。
電力変換装置1は、自立運転における交流電力の入出力方向及び大きさを検出しており、第1電力より大きい交流電力が入力された場合、系統連系保護機能のうちの過電圧保護機能が太陽光発電装置8にて発揮される電圧より低い電圧を上限電圧として、自立運転にて出力する交流電圧を設定値だけ上昇させる。これにより、太陽光発電装置8で交流電圧の上昇が検出されて発電電力の低減機能が発揮された場合に、太陽光発電装置8から供給される交流電力が低減される。
従って、自然エネルギーを利用する太陽光発電装置8とEV(蓄電装置)4を用いて自立運転を行う電力変換装置1とを組み合わせた場合に、太陽光発電装置8による過剰な発電を抑制することが可能となる。
また、実施の形態1によれば、電力変換装置1に第1電力より大きい交流電力が入力されていない場合は、基準電圧を下限として、自立運転にて出力する交流電力の電圧を設定値だけ低下させる。
従って、太陽光発電装置8から供給される余剰電力が減少した場合に、自立運転で出力する交流電力の電圧を、太陽光発電装置8で発電電力の低減機能が発揮されない電圧に戻すことが可能となる。
更に、実施の形態1によれば、各アームに含まれるスイッチ(スイッチング素子)Q1,Q2,Q3,Q4夫々にダイオード(転流ダイオード)D1,D2,D3,D4が並列接続されたHブリッジ(フルブリッジ)を用いたインバータ3により、直流電力及び交流電力を双方向に変換する。
従って、直流電力を交流電力に変換しているときにインバータ3が出力しようとする交流電圧よりも、太陽光発電装置8から印加される交流電圧の方が高い場合は、太陽光発電装置8からの交流電力をダイオードD1,D2,D3,D4で整流して直流電力に変換し、変換した直流電力でEV(蓄電装置)4を充電することが可能となる。
(変形例)
実施の形態1は、第1電力を固定値として算出する形態であるのに対し、実施の形態1の変形例は、負荷61,62における消費電力と、EV4の蓄電池41のSOCに応じて第1電力を算出する形態である。
実施の形態1の変形例における電力供給システムの構成、非停電時及び停電時における給電の流れ、インバータ3の構成、並びに電力変換装置1の変換動作を制御するCPU11の処理手順の夫々は、図1から6に示すものと同様であるため、実施の形態1に対応する箇所には同様の符号を付してこれらの図の記載及び説明を省略する。
図8は、本発明の実施の形態1の変形例における第1,第2電力算出のサブルーチンに係るCPU11の処理手順を示すフローチャートである。第1,第2電力算出に係るサブルーチンが呼び出された場合、CPU11は、PCS(電力変換装置)1の定格電力をROM12又はRAM13から読み出し(S41)、詠み出した定格電力に例えば0.9を乗じて仮に第1電力とし(S42)、更に、定格電力に例えば0.95を乗じて第2電力とする(S43)。
その後、CPU11は、負荷61,62に入力される電流及び電路32の電圧を検出して、負荷61,62の消費電力を算出し(S44)、算出した消費電力の小/大に応じて第1電力を低減する(S45)。つまり、消費電力が小さい(又は大きい)ほど第1電力の低減量多く(又は少なく)する。具体的には、負荷61,62で必要とされる電力が大きい場合は、第1電力も大きい値に維持されるため、太陽光発電装置8の発電電力が低減され難くなって利用効率が高まる。
次いで、CPU11は、CAN通信部15を用いてEV4の蓄電池41のSOCを取得し(S46)、取得したSOCの大/小に応じて第1電力を更に低減し(S47)、呼び出されたルーチンにリターンする。つまり、SOCが大きい(又は小さい)ほど第1電力の低減量を多く(又は少なく)する。具体的には、SOCが大きくて蓄電池41が受け入れ可能な充電電力が小さい場合は、第1電力も小さい値に低減されるため、太陽光発電装置8の発電電力が低減され易くなる。
以上のように本実施の形態1の変形例によれば、実施の形態1と同様の効果を奏するのに加えて、負荷61,62の消費電力及びEV4の蓄電池41のSOCを勘案することにより、蓄電池41が充電を許す限り太陽光発電装置8の発電電力を効率的に利用することが可能となる。
(実施の形態2)
実施の形態1が、太陽光発電装置8からの交流電力の一部が余剰電力となる場合に、電力変換装置1の目標電圧を上昇させて太陽光発電装置8からの交流電力を低減及び遮断させる形態であるのに対し、実施の形態2は、蓄電池41に充電電力を受け入れる余裕がない場合に、電力変換装置1の目標周波数を変更して太陽光発電装置8からの交流電力を遮断させる形態である。
実施の形態2における電力供給システムの構成、非停電時及び停電時における給電の流れ、インバータ3の構成、並びに電力変換装置1の変換動作を制御するCPU11の処理手順の夫々は、図1から6に示すものと同様であるため、実施の形態1に対応する箇所には同様の符号を付してこれらの図の記載及び説明を省略する。
以下では、電力変換装置1の自立運転中に太陽光発電装置8からの交流電力を遮断させる手順について、フローチャートを用いて説明する。
図9は、本発明の実施の形態2に係る電力変換装置1の変換動作を制御するCPU11の処理手順を示すフローチャートである。図9の処理は、電力変換装置1の自立運転中に一定の周期(例えば1秒毎)で起動される。
CPU11の初期化処理の後で図の処理が最初に起動される前に、「目標周波数」が「基準周波数」に、「周波数フラグ」がオフに、夫々設定される。以下では、「目標周波数」が設定及び変更される都度、設定及び変更された「目標周波数」がインバータ制御回路20に指示されるものとする。
図9の処理が起動された場合、CPU11は、CAN通信部15を用いてEV4の蓄電池41のSOCを取得した(S52:SOCを取得する手段に相当)後、周波数フラグがオンであるか否かを判定する(S53)。周波数フラグがオンではない場合(S53:NO)、即ち、自立運転で出力する交流電力の目標周波数を基準周波数から変更していない場合、CPU11は、電流検出回路21を用いてインバータ3の交流の入出力電流を符号付きで取り込む(S54)。
次いで、CPU11は、取り込んだ入出力電流の符号に基づいて、電力変換装置1の外部から交流の電流が流入しているか否かを判定し(S55)、流入していない場合(S55:NO)、特段の処理を実行せずに図9の処理を終了する。一方、外部から電流が流入している場合(S55:YES)、CPU11は、ステップS52で取得したSOCが、例えば99%より大きいか否かを判定し(S56:SOCが所定の閾値より大きいか否かを判定する手段に相当)、大きくない場合(S56:NO)、特段の処理を実行せずに図9の処理を終了する。
取得したSOCが99%より大きい場合(S56:YES)、即ち、蓄電池41に充電電力を受け入れる余裕がない場合、CPU11は、目標周波数を基準周波数から変更していることを記憶するために周波数フラグをオンにする(S57)。そして、CPU11は、基準周波数を中心にプラスマイナス(±)(3+β)%だけ変化させた周波数を目標周波数に変更して(S58:系統連系保護機能が発揮される周波数又は電圧に変更する手段に相当)、図9の処理を終了する。ステップS58で変更する目標周波数は、例えば基準周波数が50.0Hz(又は60.0Hz)の場合、基準周波数より高く(又は低く)することが好ましい。
ここでのβは、基準周波数を±(3+β)%だけ変化させた周波数が、太陽光発電装置8にて系統連系保護機能が発揮される(所定範囲外の)周波数となるようにする値である。これにより、電力変換装置1が電路32に出力する交流電力の周波数が、太陽光発電装置8にて系統連系保護機能が発揮される周波数になったときに、太陽光発電装置8からの交流電力が遮断される。この後、電力変換装置1がEV4の蓄電池41からの直流電力を交流電力に変換して負荷61,62に供給するため、時間の経過と共に蓄電池41が放電してSOCが低下する。ステップS58では、太陽光発電装置8にて系統連系保護機能が発揮される(所定範囲外の)電圧を目標電圧に設定してもよい。
ステップS53で周波数フラグがオンである場合(S53:YES)、即ち、既に目標周波数を基準周波数から変更している場合、CPU11は、ステップS52で取得したSOCが90%以下に低下しているか否か、即ち蓄電池41が充電電力を受け入れる余裕が生じるまで放電が進んだか否かを判定する(S59:第2の閾値以下であるか否かを判定する手段に相当)。
SOCが90%以下ではない場合(S59:NO)、CPU11は、目標周波数をそのままにして(変更を禁止する手段に相当)図9の処理を終了する。一方、SOCが90%以下である場合(S59:YES)、CPU11は、周波数フラグをオフに設定し(S60)、目標周波数を基準周波数に戻して(S61)図9の処理を終了する。
このように、図9の処理が周期的に起動されて実行され、インバータ3に外部から交流の電流が流入してEV4の蓄電池41が充電される場合、SOCが99%より大きいときに、太陽光発電装置8からの交流電力が遮断される。
なお、本実施の形態2では、ステップS54,S55で外部からの電流の流入がある場合にステップS56の処理を実行したが、SOCが99%より大きくなるのはインバータ3の外部から交流の電流が流入している蓋然性が高いため、ステップS54,S55の処理を省略してもよい。具体的には、周波数フラグがオンではない場合(S53:NO)、CPU11は、SOCが99%より大きいか否かを判定する(S56)。
以上のように本実施の形態2によれば、電力変換装置1が自立運転を行う間に蓄電装置に対する充電が継続して、EV4に含まれる蓄電池41のSOCが99%より大きくなった場合、電力変換装置1は、自立運転にて出力する交流電圧の周波数又は電圧を、系統連系保護機能が発揮されるような所定範囲外の周波数又は電圧に変更する。これにより、太陽光発電装置8にて系統連系保護機能が発揮された場合に、太陽光発電装置8からの交流電力が遮断される。
従って、自然エネルギーを利用する太陽光発電装置8とEV(蓄電装置)4を用いて自立運転を行う電力変換装置1とを組み合わせた場合、太陽光発電装置8による過剰な発電を抑制することが可能となる。
また、実施の形態2によれば、電力変換装置1の自立運転における交流電力の周波数又は電圧を変更した後に、取得した蓄電池41のSOCが99%より小さい90%以下になった場合、それまで変更していた交流電力の周波数又は電圧を基準の周波数又は基準電圧に戻す。
従って、EV4にて充電が受け入れ可能になるまで放電が進んだときに、太陽光発電装置8における連系保護機能が発揮されなくなり、発電を再開させることが可能となる。
更に、実施の形態1及び2によれば、電力変換装置1は、太陽光発電装置8からの余剰電力を直流電力に変換してEV4に充電し、太陽光発電装置8からの電力が不足する場合にEV4に放電させるため、余剰電力を充放電しない場合と比較して自立運転をより長く継続することが可能となる。
今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施の形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。
1 電力変換装置
10 制御部
11 CPU
12 ROM
13 RAM
15 CAN通信部
21 電流検出回路
22 電圧検出回路
3 インバータ
D1,D2,D3,D4 転流ダイオード
Q1,Q2,Q3,Q4 スイッチ
31電流トランス
33 解列リレー
4 EV
41 蓄電池
5 分電盤
55 解列リレー
56 主幹ブレーカ
61、62 負荷
7 電力系統
8 太陽光発電装置
81 ソーラーパネル
82 インバータ

Claims (7)

  1. 蓄電装置からの直流電力を交流電力に変換して自立運転を行う電力変換装置と、系統連系保護機能を有しており、自然エネルギーを利用して交流電力を発電して前記電力変換装置の自立運転に連系する連系運転を行う発電装置とを備える電力供給システムであって、
    前記電力変換装置は、
    前記連系運転による交流電圧が前記自立運転にて出力すべき基準電圧を上回る場合、前記発電装置からの交流電力を入力して変換した直流電力で前記蓄電装置を充電するようにしてあり、
    交流電力の入出力方向及び大きさを検出する手段と、
    該手段が検出した方向が入力方向であり、且つ大きさが所定電力より大きいか否かを判定する手段と、
    該手段が入力方向であり且つ所定電力より大きいと判定した場合、前記系統連系保護機能のうち過電圧保護機能が発揮される電圧より低い電圧を上限として、出力する交流電圧を設定された値だけ上昇させる手段と
    を有すること
    を特徴とする電力供給システム。
  2. 蓄電装置からの直流電力を交流電力に変換して自立運転を行う電力変換装置と、系統連系保護機能を有しており、自然エネルギーを利用して交流電力を発電して前記電力変換装置の自立運転に連系する連系運転を行う発電装置とを備える電力供給システムであって、
    前記電力変換装置は、
    前記連系運転による交流電圧が前記自立運転にて出力すべき基準電圧を上回る場合、前記発電装置からの交流電力を入力して変換した直流電力で前記蓄電装置を充電するようにしてあり、
    前記蓄電装置に含まれる蓄電池のSOCを取得する手段と、
    該手段が取得したSOCが所定の閾値より大きいか否かを判定する手段と、
    該手段が大きいと判定した場合、出力する交流電力の周波数又は電圧を、前記発電装置における系統連系保護機能が発揮される周波数又は電圧に変更する手段と
    を有すること
    を特徴とする電力供給システム。
  3. 蓄電装置からの直流電力を交流電力に変換して自立運転を行う電力変換装置において、
    前記自立運転に連系して外部から与えられた交流電圧が前記自立運転にて出力すべき基準電圧を上回る場合、外部からの交流電力を入力して変換した直流電力で前記蓄電装置を充電するようにしてあり、
    交流電力の入出力方向及び大きさを検出する手段と、
    該手段が検出した方向が入力方向であり、且つ大きさが所定電力より大きいか否かを判定する判定手段と、
    該判定手段が入力方向であり且つ所定電力より大きいと判定した場合、所定電圧を上限として、出力する交流電圧を設定された値だけ上昇させる手段と
    を備えることを特徴とする電力変換装置。
  4. 前記判定手段が入力方向ではない又は所定電力より大きくないと判定した場合、前記基準電圧を下限として、出力する交流電圧を設定された値だけ低下させる手段を備えることを特徴とする請求項3に記載の電力変換装置。
  5. 蓄電装置からの直流電力を交流電力に変換して自立運転を行う電力変換装置において、
    前記自立運転に連系して外部から与えられた交流電圧が前記自立運転にて出力すべき基準電圧を上回る場合、外部からの交流電力を入力して変換した直流電力で前記蓄電装置を充電するようにしてあり、
    前記蓄電装置に含まれる蓄電池のSOCを取得する取得手段と、
    該取得手段が取得したSOCが所定の閾値より大きいか否かを判定する手段と、
    該手段が大きいと判定した場合、出力する交流電力の周波数又は電圧を、所定範囲外の周波数又は電圧に変更する変更手段と
    を備えることを特徴とする電力変換装置。
  6. 前記変更手段が周波数又は電圧を変更した場合、前記取得手段が取得したSOCが前記所定の閾値より小さい第2の閾値以下であるか否かを判定する手段と、
    該手段が以下であると判定した場合、前記変更手段による変更を禁止する手段と
    を備えることを特徴とする請求項5に記載の電力変換装置。
  7. 各アームに含まれるスイッチング素子に寄生ダイオード又は転流ダイオードが並列接続されたHブリッジ回路を有しており、直流電力及び交流電力を双方向に変換するインバータを備えること
    を特徴とする請求項3から6の何れか1項に記載の電力変換装置。
JP2014163682A 2014-08-11 2014-08-11 電力供給システム及び電力変換装置 Pending JP2016039759A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014163682A JP2016039759A (ja) 2014-08-11 2014-08-11 電力供給システム及び電力変換装置
JP2017138404A JP2017189112A (ja) 2014-08-11 2017-07-14 電力供給システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014163682A JP2016039759A (ja) 2014-08-11 2014-08-11 電力供給システム及び電力変換装置
JP2017138404A JP2017189112A (ja) 2014-08-11 2017-07-14 電力供給システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017138404A Division JP2017189112A (ja) 2014-08-11 2017-07-14 電力供給システム

Publications (1)

Publication Number Publication Date
JP2016039759A true JP2016039759A (ja) 2016-03-22

Family

ID=60451287

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014163682A Pending JP2016039759A (ja) 2014-08-11 2014-08-11 電力供給システム及び電力変換装置
JP2017138404A Pending JP2017189112A (ja) 2014-08-11 2017-07-14 電力供給システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017138404A Pending JP2017189112A (ja) 2014-08-11 2017-07-14 電力供給システム

Country Status (1)

Country Link
JP (2) JP2016039759A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772176A (zh) * 2016-12-01 2017-05-31 国网湖南省电力公司计量中心 一种基于并联汇流的直流大电流标准源输出方法及装置
JP2018121449A (ja) * 2017-01-25 2018-08-02 三菱電機株式会社 電力制御システムおよび電力制御装置
JP2021065008A (ja) * 2019-10-11 2021-04-22 住友電気工業株式会社 自立電源システム、電源装置、及び、自立電源システムの制御方法
EP3879664A4 (en) * 2018-11-08 2021-12-22 Gree Electric Appliances, Inc. of Zhuhai PHOTOVOLTAIC ELECTRIC DEVICE SYSTEM AND METHOD AND DEVICE FOR CONTROL OF THE VOLTAGE PROTECTION VALUE THEREOF

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102582427B1 (ko) * 2021-06-09 2023-09-25 옴니시스템 주식회사 마이크로그리드 ems 운전 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215203A (ja) * 1996-01-26 1997-08-15 Toshiba Corp 太陽光発電システム
JP2008017652A (ja) * 2006-07-07 2008-01-24 Mitsubishi Electric Corp 電力供給システム
JP2013146171A (ja) * 2011-12-15 2013-07-25 Panasonic Corp 電力供給システムおよび充放電用パワーコンディショナ
WO2013118376A1 (ja) * 2012-02-10 2013-08-15 パナソニック株式会社 電力供給システムおよびそれに用いられる充放電用パワーコンディショナ
JP2014050297A (ja) * 2012-09-04 2014-03-17 Sanken Electric Co Ltd 電力供給システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330157B2 (ja) * 1992-05-15 2002-09-30 シャープ株式会社 電力供給システム
JPH10210681A (ja) * 1997-01-17 1998-08-07 Seiko Epson Corp 電力制御装置およびこれを備えた電子機器
JP2004120950A (ja) * 2002-09-27 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> 太陽電池携帯電源
JP5681069B2 (ja) * 2011-08-31 2015-03-04 ニチコン株式会社 マルチパワーコンディショナシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215203A (ja) * 1996-01-26 1997-08-15 Toshiba Corp 太陽光発電システム
JP2008017652A (ja) * 2006-07-07 2008-01-24 Mitsubishi Electric Corp 電力供給システム
JP2013146171A (ja) * 2011-12-15 2013-07-25 Panasonic Corp 電力供給システムおよび充放電用パワーコンディショナ
WO2013118376A1 (ja) * 2012-02-10 2013-08-15 パナソニック株式会社 電力供給システムおよびそれに用いられる充放電用パワーコンディショナ
JP2014050297A (ja) * 2012-09-04 2014-03-17 Sanken Electric Co Ltd 電力供給システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772176A (zh) * 2016-12-01 2017-05-31 国网湖南省电力公司计量中心 一种基于并联汇流的直流大电流标准源输出方法及装置
CN106772176B (zh) * 2016-12-01 2019-07-09 国网湖南省电力公司计量中心 一种基于并联汇流的直流大电流标准源输出方法及装置
JP2018121449A (ja) * 2017-01-25 2018-08-02 三菱電機株式会社 電力制御システムおよび電力制御装置
EP3879664A4 (en) * 2018-11-08 2021-12-22 Gree Electric Appliances, Inc. of Zhuhai PHOTOVOLTAIC ELECTRIC DEVICE SYSTEM AND METHOD AND DEVICE FOR CONTROL OF THE VOLTAGE PROTECTION VALUE THEREOF
US11831151B2 (en) 2018-11-08 2023-11-28 Gree Electric Appliances, Inc. Of Zhuhai Photovoltaic electric appliance system, method and device of controlling voltage protection value thereof
JP2021065008A (ja) * 2019-10-11 2021-04-22 住友電気工業株式会社 自立電源システム、電源装置、及び、自立電源システムの制御方法

Also Published As

Publication number Publication date
JP2017189112A (ja) 2017-10-12

Similar Documents

Publication Publication Date Title
JP2017189112A (ja) 電力供給システム
US8587251B2 (en) Switching circuit, control apparatus, and power generation system
KR101116430B1 (ko) 에너지 저장 시스템
JP5485857B2 (ja) 電力管理システム
CN106936148B (zh) 一种光伏-储能变流系统及其控制方法
JP5290349B2 (ja) 直流給電システムおよびその制御方法
WO2012144357A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
EP2983265B1 (en) Electric power conversion device, control system, and control method
JP5541982B2 (ja) 直流配電システム
KR101106413B1 (ko) 에너지 저장 시스템의 인버터
TW201406003A (zh) 充電設備
JP4098182B2 (ja) モータ駆動システム及びエレベータ駆動システム
WO2011042781A1 (ja) 電力供給システム
JP6248720B2 (ja) 電源装置及びその制御方法
JP2020010531A (ja) 蓄電装置、太陽光発電蓄電システム、及び、蓄電池の充電方法
JP6728285B2 (ja) 高圧インバータの初期充電システム及びその制御方法
Liu et al. A bidirectional dual buck-boost voltage balancer with direct coupling based on a burst-mode control scheme for low-voltage bipolar-type DC microgrids
WO2018139200A1 (ja) 電力変換装置及びパワーコンディショナ
JP2019033636A (ja) 電力供給装置
JP6076381B2 (ja) 電力供給システム
JP2015213409A (ja) 負荷平準化装置
CN103795116A (zh) 一种电源转换及控制装置、供电方法和系统
JP6210952B2 (ja) 電力供給システム
JP6078374B2 (ja) 電源装置及び充電制御方法
JP6722295B2 (ja) 電力変換システム、電力供給システムおよび電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703