WO2012144357A1 - 電力供給装置、電力供給装置の制御方法、および直流給電システム - Google Patents

電力供給装置、電力供給装置の制御方法、および直流給電システム Download PDF

Info

Publication number
WO2012144357A1
WO2012144357A1 PCT/JP2012/059603 JP2012059603W WO2012144357A1 WO 2012144357 A1 WO2012144357 A1 WO 2012144357A1 JP 2012059603 W JP2012059603 W JP 2012059603W WO 2012144357 A1 WO2012144357 A1 WO 2012144357A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
bus
power
voltage
voltage range
Prior art date
Application number
PCT/JP2012/059603
Other languages
English (en)
French (fr)
Inventor
義明 野崎
藤田 敏之
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012144357A1 publication Critical patent/WO2012144357A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the present invention relates to a power supply apparatus, a control method for the power supply apparatus, and a DC power supply system in a small-scale area that can be controlled independently from an AC system such as a home.
  • Photovoltaic power generation has been required to be connected to an AC system or connected to AC power distribution in the home, so it has been necessary to convert the generated DC output to AC power by a power conditioner.
  • the supply of AC power is suitable for household appliances and general lighting equipment using a motor such as a vacuum cleaner, a washing machine, an air conditioner, and a refrigerator.
  • a motor such as a vacuum cleaner, a washing machine, an air conditioner, and a refrigerator.
  • the progress of LED lighting, and home appliances that have been operating by performing AC-DC conversion in devices such as TV devices and audio devices. For this reason, AC distribution is not always excellent in the home.
  • a DC power supply system connected to DC home appliances operating by external DC power supply in a small area such as a general home.
  • a DC device 130 such as an air conditioner or a TV apparatus is directly connected without AC-DC conversion or via a DC-DC converter (not shown).
  • DC power is supplied to the DC bus B from the photovoltaic power generator 110 (for example, output voltage 100V to 380V) via the DC-DC converter 120 without DC-AC conversion.
  • the bus voltage of the DC bus B is controlled so as to be held at a voltage within a certain range of, for example, 380V to 400V.
  • the storage battery 111 such as a lithium ion battery, which has been developed recently, can be connected to the DC bus B via the DC-DC converter 121, so that surplus power can be stored, and direct current can be stored.
  • the power supply system 101 has been pushed to an increasingly realistic one.
  • the concept of optimizing the power network in a small-scale area such as a general home by introducing a direct current power supply system or the like is called the microgrid.
  • Patent Document 1 describes a DC power supply system that improves power efficiency when a storage battery is provided in a DC power supply path.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-048470 (published February 28, 2008)”
  • the storage battery 111 discharges the stored power to the DC bus B via the DC-DC converter 121 so as to compensate for the gradual voltage drop of the DC bus.
  • the DC-DC converter 121 boosts the output voltage (for example, 30 V to 60 V) of the storage battery 111 to the voltage of the DC bus B.
  • the DC power distribution system has a problem that more than a certain amount of power is consumed even during the load downtime period, and improvement in power efficiency is hindered.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a power supply apparatus and a power supply apparatus control method capable of obtaining high power efficiency by suppressing power consumption during a load suspension time period. And a DC power supply system.
  • the power supply device of the present invention provides A power supply device that performs DC power supply to a connected DC device, A DC bus serving as a bus for the DC power supply, A first power storage means and a second power storage means for charging and discharging with the DC bus,
  • the power supply device is one or more direct current power supply means for supplying direct current power to the direct current bus, and is operated by a first operating power source and outputs direct current in a voltage range determined for each. Power is supplied from the power supply means,
  • the power supply device is provided with a DC power generation device and a first power supply that is operated to perform voltage conversion of DC power transferred between the DC power generation device and the DC bus.
  • the first power storage means includes a first storage battery directly connected to the DC bus
  • the second power storage means is provided so as to perform voltage conversion of DC power that is operated by a second storage battery and a second operation power supply and is transferred between the second storage battery and the DC bus.
  • a second DC-DC converter The bus voltage range of the DC bus includes a voltage range of DC power supplied from the DC power supply means to the DC bus, and a voltage of DC power supplied from the second power storage means to the DC bus.
  • the operable voltage range of the DC device includes the bus voltage range
  • the chargeable / dischargeable voltage range of the first storage battery includes the bus voltage range
  • Each of the first operating power supply and the second operating power supply includes a control unit that controls turning on and off of each of the first operating power supply and the second operating power supply.
  • the DC power supply system of the present invention A DC power supply system that supplies DC power to a connected DC device, A DC bus serving as a bus for the DC power supply, One or more direct current power supply means for supplying direct current power to the direct current bus, the direct current power supply means operating by a first operating power source and performing direct current output in a voltage range determined respectively; A first power storage means and a second power storage means for charging and discharging with the DC bus, DC power generator and a first DC-DC converter provided to perform voltage conversion of DC power that is operated by the first operating power source and passed between the DC power generator and the DC bus
  • One or more DC power supply means comprising:
  • the first power storage means includes a first storage battery directly connected to the DC bus,
  • the second power storage means is provided so as to perform voltage conversion of DC power that is operated by a second storage battery and a second operation power supply and is transferred between the second storage battery and the DC bus.
  • the bus voltage range of the DC bus includes a voltage range of DC power supplied from the DC power supply means to the DC bus, and a voltage of DC power supplied from the second power storage means to the DC bus.
  • One voltage range consisting of the sum of the range The operable voltage range of the DC device includes the bus voltage range, The chargeable / dischargeable voltage range of the first storage battery includes the bus voltage range,
  • Each of the first operating power supply and the second operating power supply includes a control unit that controls turning on and off of each of the first operating power supply and the second operating power supply.
  • the chargeable / dischargeable voltage range of the first storage battery includes the bus voltage range
  • power is supplied from the first power storage means to the DC bus at an arbitrary voltage in the bus voltage range. be able to. Therefore, when the load is light, the first operating power supply and the second operating power supply can be cut off by the control unit, and the power supply from the DC power supply means and the second power storage means to the DC bus can be cut off. As a result, the power consumption can be reduced by the amount that the first operating power supply and the second operating power supply are shut off.
  • Patent Document 1 when a storage battery (battery unit) supplies power, the DC system control unit is controlled by communication to adjust the DC power consumption, thereby optimizing the power output of the storage battery. Moreover, in patent document 1, when optimizing the power output of a storage battery, a DC / DC converter is always interposed between the storage battery and the DC unit. On the other hand, the present invention is characterized in that the DC unit is not controlled, and the DC / DC converter of the large capacity storage battery is stopped when the power consumption of the direct current unit is reduced while the small capacity storage battery is directly connected. Yes.
  • FIG. 1 shows an embodiment of the present invention, is a block diagram illustrating a configuration of a DC power feeding system.
  • FIG. FIG. 3 is a graph showing an embodiment of the present invention and showing a load curve representing a change in daily power consumption in the DC power supply system of FIG. 1.
  • FIG. 4 is a graph illustrating an embodiment of the present invention and explaining a relationship between a charge amount of the first storage battery and a voltage.
  • FIG. 3 is a graph showing an embodiment of the present invention and showing the operation in the first control mode by the DC power feeding system of FIG. 1 in relation to voltage and current.
  • FIG. 5A shows a circuit block diagram showing the configuration of a DC-DC converter
  • FIG. 5B shows the control of the DC-DC converter shown in FIG. 5A.
  • FIGS. 1 to 5 Embodiments of the present invention will be described with reference to FIGS. 1 to 5 as follows.
  • FIG. 1 shows a configuration of a power supply device 2 in a DC power supply system 1 according to the present embodiment.
  • the DC power supply system 1 supplies DC power to the connected DC device 30.
  • the power supply device 2 is shown as a part of a power distribution system in a general household as an example.
  • the DC power supply system 1 includes a power supply device 2, a solar power generation device (DC power generation device: indicated as “solar” in the figure) 10, a DC-DC converter (first DC-DC converter) 20, an AC-DC A converter (DC power supply means) 23 is provided.
  • the power supply device 2 includes a DC bus (DC bus) B, a controller (control unit) 11, a storage battery (first power storage means, first storage battery) 12, a storage battery (second storage battery) 13, and a voltage sensor. 14, a current sensor 15, and a DC-DC converter (second DC-DC converter) 22.
  • the DC device 30 is a load device such as a DC home appliance that operates with DC power such as an air conditioner or a TV apparatus.
  • DC power such as an air conditioner or a TV apparatus.
  • the DC device 30 operates with a DC voltage of 350V-410V.
  • the DC device 30 is connected to the DC bus B without a DC-DC converter.
  • the DC device 30 may be connected to the DC bus B via a switch such as a power switch, even if it is not connected to the DC bus B without a DC-DC converter.
  • the DC bus B carries power supplied to the DC device 30 as a bus of the power supply device 2.
  • the bus voltage range of the DC bus B is within the operating voltage range of the DC device 30, that is, a voltage of 350 V to 410 V DC here. Within the range.
  • the bus voltage range of the DC bus B is set to the operating voltage range of the DC device 30 connected to the DC bus B without a DC-DC converter.
  • the solar power generation device 10 supplies DC power generated on the DC bus B.
  • the solar power generation device 10 outputs a DC output voltage corresponding to the number of cell arrays, for example, 100V-380V.
  • the output voltage need not be DC-AC converted when power is supplied to the DC bus B. Therefore, the output voltage is converted into the bus voltage of the DC bus B by the DC-DC converter 20 that performs voltage conversion of the DC power between the photovoltaic power generation apparatus 10 and the DC bus B.
  • the solar power generation device 10 and the DC-DC converter 20 constitute direct current power supply means for supplying direct current power to the direct current bus.
  • the DC-DC converter 20 includes a boost converter that boosts the output voltage of the photovoltaic power generation apparatus 10 to the bus voltage of the DC bus B.
  • the DC-DC converter 20 is operated by an operating power supply (first operating power supply: not shown) individually assigned to the DC-DC converter 20.
  • the operation power is turned on and off by a control signal ps1 supplied from the controller 11.
  • the DC-DC converter 20 may be a step-down converter that steps down the output voltage of the photovoltaic power generation apparatus 10 to the bus voltage of the DC bus B.
  • the output voltage 100V-380V of the photovoltaic power generation apparatus 10 is converted by the DC-DC converter 20 in the range of 400V ⁇ 10V.
  • the bus voltage of the DC bus B is controlled to a voltage range of 400V ⁇ 10V.
  • the photovoltaic power generation apparatus 10 and the DC-DC converter 20 share 390V-410V in the bus voltage range 350V-410V. According to this configuration, the DC bus B can be efficiently operated using the vicinity of the handling voltage of the general-purpose power supply source.
  • the solar power generation device 10 is provided as a DC power generation device, the solar power generation device 10 can be suitably used for the power supply device 2 without significantly reducing the use efficiency of the generated power.
  • the solar power generation device 10 may be linked to a commercial AC system so that the generated power can be sold. It is not always necessary to provide the solar power generation device 10 as the DC power supply means.
  • a direct-current power generation device that is combined with the first DC-DC converter and serves as a direct-current power supply means
  • a chemical fuel power generation device such as a fuel cell or a natural energy power generation device such as a wind power generation device (the final output is a direct current). Is possible).
  • the storage battery 12 is composed of an arbitrary secondary battery.
  • a lithium ion battery for example, a lead storage battery, a nickel cadmium battery, a nickel hydrogen battery, a sodium sulfur battery (NAS battery), or the like can be used.
  • NAS battery sodium sulfur battery
  • the rechargeable voltage range of the storage battery 12 in FIG. 1 is, for example, 350V-410V.
  • the upper limit voltage of the chargeable / dischargeable voltage range is 410 V, which is the same as the upper limit voltage of the bus voltage
  • the lower limit voltage of the chargeable / dischargeable voltage range is 350 V, which is the same as the lower limit voltage of the bus voltage. Is not limited to this.
  • the rechargeable voltage range of the storage battery 12 has an upper limit voltage that is 8% or more of 380V higher than 380V, which is the center voltage of the bus voltage range 350V-410V, and a lower limit voltage that is 8% or more of 380V lower than the center voltage 380V. You may have.
  • the chargeable voltage range of the storage battery 12 includes the bus voltage range of the DC bus B.
  • the DC bus can be efficiently operated using the vicinity of the handling voltage of a general-purpose power supply source such as a solar power generation device or a lithium ion battery.
  • the rechargeable voltage range of the storage battery 12 includes the bus voltage range of the DC bus B as described above, the chargeable / dischargeable voltage range of the storage battery 12 is a practical voltage range and the bus voltage range. Therefore, the operation margin of the first storage battery can be set appropriately with respect to changes in the bus voltage.
  • the storage battery 12 is always directly connected to the DC bus B and performs charging / discharging with the DC bus B. Since the storage battery 12 and the DC bus B are directly connected to each other, when one of the voltages is higher than the other voltage, power is supplied from the higher voltage to the lower voltage so that the voltages are equal to each other. Current flows between each other.
  • FIG. 3 shows the relationship between the charge amount of the storage battery 12 and the voltage. Since the rechargeable voltage range of the storage battery 12 includes the bus voltage range of the DC bus B (for example, 350V-410V), even if the DC bus B is at any voltage in the bus voltage range, the storage battery 12 It is possible to exchange power with B.
  • the storage battery 13 is also composed of a secondary battery similar to the storage battery 12.
  • the rechargeable voltage of the storage battery 13 is smaller than the value of the bus voltage range of the DC bus B, for example, in the range of 30V-60V. That is, in comparison with the chargeable voltage range, the storage battery 12 is a high voltage storage battery, whereas the storage battery 13 is a low voltage storage battery.
  • the storage battery 13 is a large-capacity storage battery that stores the base power of the power supply device 2, and generally has a capacity larger than that of the storage battery 12.
  • the storage battery 13 charges and discharges with the DC bus B via a DC-DC converter 22 that performs voltage conversion of electric power transferred between the storage battery 13 and the DC bus B.
  • the storage battery 13 and the DC-DC converter 22 constitute a second power storage means.
  • the output voltage 30V-60V of the storage battery 13 is converted by the DC-DC converter 22 in the range of 360V ⁇ 10V.
  • the bus voltage of the DC bus B is controlled to a voltage range of 360V ⁇ 10V.
  • the storage battery 13 and the DC-DC converter 22 share 350V-370V in the bus voltage range 350V-410V. According to this configuration, since the base power can be stored because the lowest voltage range of the DC bus B is shared, the DC bus B can be operated efficiently.
  • the storage battery 12 is a high-voltage small-capacity storage battery
  • the storage battery 13 is a low-voltage large-capacity storage battery. Since the storage battery 12 is a high-voltage, low-capacity storage battery, it is possible to provide an appropriate capacity as a power supply source at light loads such as midnight without obstructing the role of the large-capacity storage battery 13 that stores base power. it can. Further, since the storage battery 12 is a high-voltage storage battery, it is possible to suppress an increase in risk by using a small capacity.
  • the DC-DC converter 22 is a bidirectional combination of a step-down converter that operates when charging the storage battery 13 from the DC bus B and a boost converter that operates when discharging from the storage battery 13 to the DC bus B. It is a DC-DC converter.
  • the DC-DC converter 22 is operated by an operating power supply (second operating power supply: not shown) individually assigned to the DC-DC converter 22. The operation power supply is turned on and off by a control signal ps2 supplied from the controller 11.
  • the storage battery 12 is always connected to the DC bus B and used.
  • the AC-DC converter 23 converts the AC power of the AC distribution network 40 into DC power and supplies it to the DC bus B.
  • This AC power distribution network is, for example, an AC 200V power source using a single-phase three-wire drawn into a house from a commercial AC system.
  • a boost converter is used here because the bus voltage of the DC bus B is larger than the rectified voltage of the AC voltage of the AC distribution network 40, but the bus voltage of the DC bus B is used for the AC distribution network 40.
  • a step-down converter is used.
  • the AC-DC converter 23 is operated by an operating power supply (first operating power supply: not shown) individually assigned to the AC-DC converter 23.
  • the operation power supply is turned on and off by a control signal ps3 supplied from the controller 11.
  • the AC-DC converter 23 is not necessarily provided.
  • the AC voltage 200 V of the AC distribution network 40 is converted by the AC-DC converter 23 in the range of 380 V ⁇ 10 V.
  • the bus voltage of the DC bus B is controlled to a voltage range of 390V ⁇ 10V.
  • the AC-DC converter 23 shares 370V-390V in the bus voltage range 350V-410V.
  • the bus voltage range of the DC bus B includes the DC power voltage range supplied from each DC power supply means to the DC bus B and the DC power supplied from the second power storage means to the DC bus B. It is one voltage range which consists of the sum with this voltage range. Further, if the operable voltage range of the DC device 30 includes the bus voltage range, the DC device 30 can operate regardless of where the bus voltage is in the bus voltage range.
  • the voltage sensor 14 detects the bus voltage of the DC bus B and supplies a voltage detection signal s1 to the controller 11.
  • the current sensor 15 detects a load current, which is the sum of currents flowing from the DC bus B to the DC device 30, and supplies a current detection signal s 2 to the controller 11.
  • the controller 11 performs power supply control of the power supply device 2.
  • the power feeding control two types of operations are performed here: a normal load control mode (second control mode) and a light load control mode (first control mode).
  • the controller 14 may be housed in, for example, one control panel so as to accept various user operations.
  • the normal load control mode is a power supply control mode that is suitable when a normal amount of load is in operation, such as a time when a resident is active from morning to night.
  • the light load control mode is a power supply control mode suitable for a case where a light load such as a standby load is operating or no load, such as a time when a resident is not active at midnight. Whether it is a normal load or a light load is determined by the convenience of the user, so which time zone of the day to operate in the normal load control mode or the light load control mode depends on the user. It can be determined as appropriate.
  • the controller 11 causes the DC bus B to receive direct current power by means of sharing a voltage range suitable for the bus voltage of each of the power supply means and the second power storage means according to a predetermined sequence.
  • Power supply control (third power supply control) is performed so as to selectively control the turning on and off of the operation power supplies of the power supply means and the second power storage means so as to be supplied.
  • the controller 11 refers to the power generation amount information from the solar power generation device 10, and the like, and the DC-DC While the operation power supply of the converter 20 is turned on, the operation power supplies of the DC-DC converter 22 and the AC-DC converter 23 are shut off.
  • the bus voltage is controlled within a range of 400V ⁇ 10V. Further, for example, when the amount of sunlight is not sufficient during the daytime or at night, the operating power of the AC-DC converter 23 is turned on by obtaining information on the amount of power generation from the solar power generation device 10, while the DC- Each operation power supply of the DC converter 20 and the DC-DC converter 22 is cut off. At this time, the bus voltage is controlled in the range of 380V ⁇ 10V.
  • the operating power of the DC-DC converter 20 and the AC-DC converter 23 may be cut off while the operating power of the DC-DC converter 22 is turned on.
  • the storage battery 13 has a purpose of functioning as a base power storage in order to cover the base power of the power supply from the solar power generation device 10 or the AC distribution network 40. Therefore, in the normal load control mode, the operating power source of the DC-DC converter 22 is used to obtain charging power from the DC bus B while power is supplied from the solar power generation device 10 or the AC power distribution network 40. It is advantageous to be charged.
  • the storage battery 13 is also suitable for an emergency application in which discharge power is supplied from the storage battery 13 to the DC bus B when power supply from the solar power generation device 10 and the AC power distribution network 40 becomes impossible.
  • the DC bus can be efficiently operated in the voltage range shared by each DC power supply means and the second power storage means.
  • the normal load control mode may be started by supplying to the controller 11 a start instruction signal generated in response to a start instruction of the normal load control mode by the user.
  • the end of the normal load control mode can also be performed by an instruction to start the normal load control mode by the user.
  • there is no start instruction and no end instruction provided for the normal load control mode and it is inevitably in the normal load control mode unless it is a period for performing the light load control mode described below. It is supposed to work.
  • the controller 11 performs the shut-off control and the power control (first power control).
  • the shut-off control in response to the shut-off instruction signal supplied to the controller 11, one of the operating power supplies of the DC-DC converter 20, DC-DC converter 22, and AC-DC converter 23 is operating. Control to shut off.
  • the light load control mode start instruction signal is the above-described break instruction signal.
  • the break control is first started.
  • the controller 11 transmits that the bus voltage of the DC bus B is lower than the lower limit voltage 350 V of the bus voltage range by the voltage detection signal s1 from the voltage sensor 14.
  • DC-DC so as to start supplying DC power from the second power storage means sharing the voltage range including the lower limit voltage 350V of the bus voltage range of each power supply means and the second power storage means to the DC bus B.
  • Control to turn on the operating power of the converter 22 is performed.
  • DC power is then supplied to the DC bus B according to a predetermined sequence that shares a voltage range suitable for the bus voltage among the power supply means and the second power storage means. In this manner, the on / off of each operating power supply is selectively controlled. According to this configuration, in a state where each operation power supply is shut off by the controller 11, even if the bus voltage of the DC bus B drops below the lower limit voltage, the DC bus B can be operated with the minimum necessary power supply. it can.
  • the controller 11 when the controller 11 is performing power control in the light load control mode, the load current flowing from the DC bus B to the DC device 30 by the current detection signal s2 from the current sensor 15 falls below a predetermined value such as 1 A or less. It is assumed that this is transmitted to the controller 11. In such a case, the current detection signal s2 may be the interruption instruction signal, and the controller 11 may perform the interruption control again. If the shut-off control is performed, when the voltage detection signal s1 from the voltage sensor 14 informs the controller 11 that the bus voltage of the DC bus B is below the lower limit voltage 350V of the bus voltage range, the power control is performed again. Is called.
  • the power supply to the DC bus B can be efficiently interrupted when the DC device 30 hardly accompanies the load current.
  • the configuration in which the current sensor 15 supplies the cutoff control signal to the controller 11 when the load current becomes a predetermined value or less is not necessarily provided in the controller 11.
  • the first power supply control is Second power supply control that is different power supply control may be performed.
  • the second power supply control DC power is supplied to the DC bus B by means of sharing a voltage range suitable for the bus voltage of each of the power supply means and the second power storage means according to a predetermined sequence. Then, each of the operating power supplies is selectively controlled to be turned on and off. According to this configuration, when the DC device 30 requires a certain amount of load current, it is possible to efficiently resume power supply to the DC bus B.
  • the light load control mode may be started by supplying the controller 11 with a start instruction signal generated in response to a start instruction of the light load control mode by the user.
  • the end of the light load control mode can also be performed by the user's start instruction for the light load control mode.
  • FIG. 4 shows an example of the voltage change of the DC bus B in the light load control mode.
  • the power supply device 2 can stop the operation power supplies of the DC-DC converters 20 and 22 and the AC-DC converter at any time in the past. More than midnight power consumption is reduced.
  • the power supply device 2 is provided with a DC-DC converter 20 between the solar power generation device 10 and the DC bus B.
  • the output voltage of the solar power generation device 10 is not equal to the bus voltage of the DC bus B.
  • the conventional DC-AC conversion is unnecessary, and the operating power supply of the DC-DC converter 20 can be stopped during the load suspension period, so that power consumption can be suppressed as much as possible.
  • the same power consumption as before is performed in the normal load control mode, while from midnight to morning.
  • the power consumption is W1, which is smaller than the power consumption W0 in FIG.
  • the light load control mode is applied at a time other than midnight, the same reduction in power consumption is achieved.
  • FIG. 5A shows a basic configuration of a DC-DC converter used in the DC-DC converters 20 and 22.
  • the basic configuration of the DC-DC converter includes a converter unit 201 and a control unit 202.
  • the converter unit 201 includes, for example, a choke coil 201a, a switching transistor 201b, and a switching transistor 201c.
  • the choke coil 201a and the switching transistor 201c are connected in series with the choke coil 201a as an input side.
  • the switching transistor 201b is connected between a connection point between the choke coil 201a and the switching transistor 201c and a common line.
  • the control unit 202 inputs the control signal X1 shown in FIG. 5B to the gate terminal which is the control terminal of the switching transistor 201b, and controls the conduction interruption of the switching transistor 201b. Further, the control unit 202 inputs the control signal X2 shown in FIG. 5B to the gate terminal which is the control terminal of the switching transistor 201c, and controls the conduction interruption of the switching transistor 201c.
  • Each of the control signals X1 and X2 is composed of a binary voltage of an active level (here, High) and an inactive level (here, Low). The active period of the control signal X1 and the active period of the control signal X2 do not overlap each other.
  • the switching transistor 201b becomes conductive and switching is performed.
  • the transistor 201c is turned off. Therefore, a current flows through the choke coil 201a and the switching transistor 201b. At this time, the magnetic energy determined by the current value flowing at the end of the conduction period of the switching transistor 201b is accumulated in the choke coil 201a. From this state, when the control signal X1 becomes an inactive level and the control signal X2 becomes an active level, the switching transistor 201b is cut off and the switching transistor 201c is turned on. At this time, the magnetic energy accumulated in the choke coil 201a is released as electric energy by the current flowing through the switching transistor 201c, and becomes a DC output smoothed by a capacitor (not shown).
  • the current flowing through the choke coil 201a and the switching transistor 201b increases so as to have a proportional constant that depends on the input voltage and the self-inductance of the choke coil 201a when the conduction resistance of the switching transistor 201b is small. That is, the magnitude of the magnetic energy accumulated in the choke coil 201a changes according to the length of the conduction period of the switching transistor 201b. Therefore, the magnitude of the output voltage of the DC-DC converter can be controlled by adjusting the length of the conduction period of the switching transistor 201b and the length of the conduction period of the switching transistor 201c. Accordingly, the basic configuration of FIG. 5A can be used as a step-up converter or a step-down converter.
  • the DC-DC converter 20 includes only the boost converter in the above example, the DC-DC converter 20 only needs to have one basic configuration shown in FIG. Since the DC-DC converter 22 includes a step-up converter and a step-down converter, the two basic configurations shown in FIG. 5A can be combined so as to be in antiparallel with each other. At this time, when one operates as a step-up converter or a step-down converter, the other stops operating.
  • the power supply device 2 has been described above.
  • the power supply device 2 functions effectively not only in ordinary homes but also in offices such as office buildings and factories.
  • an AC-DC converter that operates by the first operating power supply, converts AC power of the AC system into DC power, and supplies the DC power to the DC bus.
  • the control unit may control turning on and off the operating power of the AC-DC converter.
  • the power supply device of the present invention includes a voltage sensor that detects the bus voltage of the DC bus,
  • the control unit is a first control mode that starts upon receiving a supplied start instruction signal and ends upon receiving a supplied end instruction signal,
  • a shutoff control for shutting off one of the first operating power supply and the second operating power supply in response to the supplied shutoff instruction signal; If the bus voltage of the DC bus detected by the voltage sensor falls below the lower limit voltage of the bus voltage range in the state where the shut-off control is performed, each of the power supply means and the second power storage means Starting supply of DC power to the DC bus from a voltage range including a lower limit voltage of the bus voltage range, the power supply means and the second power storage means according to a predetermined sequence
  • a first control unit that selectively controls turning on and off of each of the first operating power source and the second operating power source so that DC power is supplied to the DC bus by sharing a voltage range suitable for the bus voltage. It is possible to operate in a first control mode that performs power supply control of 1
  • the control unit in the state where the first operating power source and the second operating power source are cut off by the control unit, even if the bus voltage of the DC bus drops below the lower limit voltage, the necessary minimum power supply is performed. There is an effect that the DC bus can be operated.
  • the power supply device of the present invention includes a current sensor that detects a load current that is a sum of currents flowing from the DC bus to the DC device.
  • the control unit performs the first power supply control in the first control mode and detects that the load current has become equal to or less than a predetermined value
  • the current sensor outputs the cutoff instruction signal You may supply to a control part.
  • the power supply device of the present invention includes a current sensor that detects a load current that is a sum of currents flowing from the DC bus to the DC device.
  • a current sensor that detects a load current that is a sum of currents flowing from the DC bus to the DC device.
  • each of the control units is configured according to a predetermined sequence.
  • Each of the first operating power supply and the second power supply means is configured such that DC power is supplied to the DC bus by the power supply means and the second power storage means that share a voltage range suitable for the bus voltage. Second power supply control for selectively controlling the turning on and off of each of the operating power supplies may be performed.
  • the current sensor is configured such that the load current becomes a predetermined value or less when the control unit performs the second power supply control in the first control mode. May be supplied to the control unit.
  • the power supply unit when the control unit is not operating in the first control mode, the power supply unit is configured to include one of the power supply unit and the second power storage unit according to a predetermined sequence.
  • the on / off of each of the first operating power source and the second operating power source is selectively controlled so that DC power is supplied to the DC bus by a device that shares a voltage range suitable for the bus voltage. It may be possible to operate in the second control mode that performs the third power control.
  • the upper limit voltages of the bus voltage range and the chargeable / dischargeable voltage range are 410 V, and the lower limit voltages of the bus voltage range and the chargeable / dischargeable voltage range are 350V may be sufficient.
  • the DC bus can be efficiently operated using the vicinity of the handling voltage of a general-purpose power supply source such as a solar power generation device or a lithium ion battery.
  • the upper limit voltage of the bus voltage range is 410V and the lower limit voltage of the bus voltage range is 350V
  • the upper limit voltage of the chargeable / dischargeable voltage range is 8% or more of 380V higher than 380V
  • the lower limit voltage of the chargeable / dischargeable voltage range is 8% or more of 380V lower than 380V. Good.
  • the DC bus can be efficiently operated using the vicinity of the handling voltage of a general-purpose power supply source such as a solar power generation device or a lithium ion battery.
  • the operation margin of the first storage battery can be set appropriately with respect to changes in the bus voltage. There is an effect that can be done.
  • the DC power supply system of the present invention is provided with a solar power generator as the DC power generator.
  • the voltage range of the DC power supplied to the DC bus from the DC power generation device including the solar power generation device is the first range for transferring DC power between the solar power generation device and the DC bus.
  • the voltage may be controlled to 400V ⁇ 10V by a DC-DC converter.
  • the DC bus can be efficiently operated using the vicinity of the handling voltage of a general-purpose power supply source.
  • the DC power supply system of the present invention is provided with an AC-DC converter as the DC power supply means, which converts AC power of an AC system into DC power and supplies it to the DC bus.
  • the voltage range of DC power supplied from the AC-DC converter to the DC bus may be controlled to 380 V ⁇ 10 V by the AC-DC converter.
  • the voltage range of the DC power supplied from the second power storage means to the DC bus may be controlled to 360 V ⁇ 10 V by the second DC-DC converter.
  • the DC bus since the base power can be stored since the lowest voltage range of the DC bus is shared, the DC bus can be operated efficiently.
  • the DC power supply system of the present invention may be provided with a solar power generator as the DC power generator.
  • the photovoltaic power generation apparatus can be suitably used for the DC power supply system without significantly reducing the utilization efficiency of the generated power.
  • control method of the power supply apparatus of the present invention is a control method of a DC power supply system that controls the DC power supply system, Detect the bus voltage of the above DC bus, In the first control mode, the control unit starts upon receiving a start instruction signal supplied and ends upon receiving an end instruction signal supplied.
  • a shutoff control for shutting off one of the first operating power supply and the second operating power supply in response to the supplied shutoff instruction signal;
  • the lower limit voltage of the bus voltage range of the power supply means and the second power storage means Starting from the supply of direct-current power to the direct-current bus from the one sharing the voltage range including the voltage range, and in accordance with a predetermined sequence, the voltage range suitable for the bus voltage of each of the power supply means and the second power storage means
  • the first power supply control for selectively controlling the turning on and off of each of the first operating power supply and the second operating power supply is performed so that DC power is supplied to the DC bus by the one sharing Operating in the first control mode,
  • the start instruction signal in the first control mode may be the cutoff instruction signal.
  • the control unit in the state where the first operating power source and the second operating power source are cut off by the control unit, even if the bus voltage of the DC bus drops below the lower limit voltage, the necessary minimum power supply is performed. There is an effect that the DC bus can be operated.
  • control method of the power supply apparatus of the present invention detects a load current that is a sum of currents flowing from the DC bus to the DC device, When the control unit performs the first power supply control in the first control mode and detects that the load current has become a predetermined value or less, it supplies the cutoff instruction signal to the control unit. May be.
  • the control method of the power supply apparatus of the present invention detects a load current that is a sum of currents flowing from the DC bus to the DC device, When the control unit detects that the load current exceeds a predetermined value in the state where the shut-off control is performed in the first control mode, each of the power supply means and the first power supply unit according to a predetermined sequence.
  • Each of the first operating power supply and the second operating power supply is configured such that direct current power is supplied to the direct current bus by one of the two storage means that shares a voltage range that matches the bus voltage.
  • Second power supply control for selectively controlling turning on and off may be performed.
  • the method for controlling the power supply apparatus of the present invention detects that the load current has become a predetermined value or less when the control unit is performing the second power supply control in the first control mode. Then, the cutoff instruction signal may be supplied to the control unit.
  • each of the power supply means and the second power storage means when the control unit is not operating in the first control mode, each of the power supply means and the second power storage means according to a predetermined sequence.
  • the first operating power supply and the second operating power supply are turned on and off so that the DC power is supplied to the DC bus by the one sharing the voltage range suitable for the bus voltage. You may operate
  • the present invention can be suitably used for a microgrid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Secondary Cells (AREA)

Abstract

 第1の蓄電池(12)の充放電可能電圧範囲は直流バス(B)の母線電圧範囲を包含しており、各第1の動作電源および第2の動作電源のそれぞれの投入および遮断を制御する制御部(11)を備えている。

Description

電力供給装置、電力供給装置の制御方法、および直流給電システム
 本発明は、家庭などの交流系統からは独立に制御可能な小規模エリアにおける電力供給装置、電力供給装置の制御方法、および直流給電システムに関するものである。
 広域に及ぶ交流系統範囲でIT技術を駆使することにより電力需給制御を行おうとするスマートグリッドが世界中で推進されている。一方、これとは独立に、デジタル家電などの直流家電が普及した家庭内などの小規模エリアでは、当該エリア内での電力システムを最適化しようとするマイクログリッドが提唱され、その計画が商用レベルで推進されている。
 太陽光発電は、これまで交流系統に連系したり、家庭内の交流配電と接続される必要があったことから、発電直流出力をパワーコンディショナによって交流電力に変換する必要があった。また、掃除機、洗濯機、エアコンディショナ、冷蔵庫などのようにモータを用いる家電機器や一般照明器具には交流電力の供給が適していた。しかし、昨今、家電のデジタル化が進んだことや照明のLED化が進められていること、TV装置や音響機器など元々機器内で交流-直流変換を行うことにより稼動していた家電機器などがあることから、家庭内においては必ずしも交流配電が優れているとは限らなくなった。例えば、交流で給電される家電機器は、内蔵する電源回路によって交流を直流に変換するので、交流-直流変換に伴う電力損失が発生するとともに、整流回路などは本来不要な部品であった。また、パワーコンディショナはインバータによって直流-交流変換を行うので、直流電力で稼動する機器にとっては余分な設備であって、インバータ内の損失が太陽光発電出力の利用効率向上を妨げていた。
 そこで、交流系統から受ける商用の配電システムの他に、外部からの直流給電により稼動する直流家電が接続される直流給電システムを一般家庭などの小規模エリア内に敷設することが提唱された。直流配電網では、図6に示す直流給電システム101のように、エアコンディショナ、TV装置などの直流機器130が、交流-直流変換を伴うことなく直接に、あるいは図示しないDC-DCコンバータを介してDCバスBに接続される。DCバスBには、太陽光発電装置110(例えば出力電圧100V~380V)から直流-交流変換を伴うことなくDC-DCコンバータ120を介して直流電力が供給される。DCバスBの母線電圧は例えば380V~400Vの一定範囲の電圧に保持されるよう制御される。また、昨今開発が進んだリチウムイオン電池などの蓄電池111が、DC-DCコンバータ121を介してDCバスBに接続可能に存在するようになったことで、余剰電力の蓄積が可能になり、直流給電システム101がますます現実的なものに押し上げられた。このように直流給電システムなどを導入することにより一般家庭内などの小規模エリア内における電力網の最適化を行う構想は前記マイクログリッドと呼ばれる。
 特許文献1には、直流給電路に蓄電池を備える場合の電力効率を改善した直流給電システムが説明されている。
日本国公開特許公報「特開2008-048470号公報(2008年2月28日公開)」
 上記の直流給電システム101においては、深夜にはほとんどの負荷が動作を停止し、実質的に待機電力のみを消費する状態となる。このときには、図6において、例えば蓄電池111がDCバスの漸次の電圧低下を補うように、貯蔵した電力をDC-DCコンバータ121を介してDCバスBに放電する。DC-DCコンバータ121は、蓄電池111の出力電圧(例えば30V~60V)をDCバスBの電圧にまで昇圧する。
 しかしながら、このように深夜でもDC-DCコンバータを動作させる必要があるため、待機負荷にDC-DCコンバータの電力消費分が加わった電力が深夜に消費される。DC-DCコンバータの電力消費は、主にスイッチング損失である。この結果、図7に示すように、朝から夜にかけていくつかのピーク負荷を経た後に、深夜にほぼ負荷休止状態となったはずのシステムにおいても、無視できないほどの電力W0が消費される。
 このように、直流配電システムには、負荷休止時間帯でも一定以上の電力が消費されて、電力効率の向上が妨げられるという問題があった。
 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、負荷休止時間帯の電力消費を抑制して高い電力効率を得ることのできる電力供給装置、電力供給装置の制御方法、および直流給電システムを実現することにある。
 本発明の電力供給装置は、上記課題を解決するために、
 接続される直流機器に直流給電を行う電力供給装置であって、
 上記直流給電の母線となる直流バスと、
 上記直流バスとの間で充放電を行う第1の蓄電手段および第2の蓄電手段とを備えており、
 上記電力供給装置は、上記直流バスに直流電力を供給する1つ以上の直流電力供給手段であって、第1の動作電源によって動作してそれぞれに定められた電圧範囲で直流出力を行う上記直流電力供給手段から電力が供給され、
 上記電力供給装置は、直流電力発生装置と、上記第1の動作電源によって動作して上記直流電力発生装置と上記直流バスとの間に受け渡しする直流電力の電圧変換を行うように設けられた第1のDC-DCコンバータとを備えた1つ以上の上記直流電力供給手段から電力が供給され、
 上記第1の蓄電手段は、上記直流バスに直結された第1の蓄電池を備えており、
 上記第2の蓄電手段は、第2の蓄電池と、第2の動作電源によって動作して上記第2の蓄電池と上記直流バスとの間で受け渡しする直流電力の電圧変換を行うように設けられた第2のDC-DCコンバータとを備えており、
 上記直流バスの母線電圧範囲は、各上記直流電力供給手段から上記直流バスに供給される直流電力の電圧範囲のそれぞれと、上記第2の蓄電手段から上記直流バスに供給される直流電力の電圧範囲との和からなる1つの電圧範囲であり、
 上記直流機器の動作可能電圧範囲は上記母線電圧範囲を包含しており、
 上記第1の蓄電池の充放電可能電圧範囲は上記母線電圧範囲を包含しており、
 各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を制御する制御部を備えていることを特徴としている。
 さらに、本発明の直流給電システムは、上記課題を解決するために、
 接続される直流機器に直流給電を行う直流給電システムであって、
 上記直流給電の母線となる直流バスと、
 上記直流バスに直流電力を供給する1つ以上の直流電力供給手段であって、第1の動作電源によって動作してそれぞれに定められた電圧範囲で直流出力を行う上記直流電力供給手段と、
 上記直流バスとの間で充放電を行う第1の蓄電手段および第2の蓄電手段とを備えており、
 直流電力発生装置と、上記第1の動作電源によって動作して上記直流電力発生装置と上記直流バスとの間に受け渡しする直流電力の電圧変換を行うように設けられた第1のDC-DCコンバータとを備えた上記直流電力供給手段が1つ以上含まれており、
 上記第1の蓄電手段は、上記直流バスに直結された第1の蓄電池を備えており、
 上記第2の蓄電手段は、第2の蓄電池と、第2の動作電源によって動作して上記第2の蓄電池と上記直流バスとの間で受け渡しする直流電力の電圧変換を行うように設けられた第2のDC-DCコンバータとを備えており、
 上記直流バスの母線電圧範囲は、各上記直流電力供給手段から上記直流バスに供給される直流電力の電圧範囲のそれぞれと、上記第2の蓄電手段から上記直流バスに供給される直流電力の電圧範囲との和からなる1つの電圧範囲であり、
 上記直流機器の動作可能電圧範囲は上記母線電圧範囲を包含しており、
 上記第1の蓄電池の充放電可能電圧範囲は上記母線電圧範囲を包含しており、
 各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を制御する制御部を備えていることを特徴としている。
 上記の発明によれば、第1の蓄電池の充放電可能電圧範囲が母線電圧範囲を包含しているので、母線電圧範囲の任意の電圧において第1の蓄電手段から直流バスへの電力供給を行うことができる。従って、軽負荷時には、制御部によって各第1の動作電源および第2の動作電源を遮断して各直流電力供給手段および第2の蓄電手段から直流バスへの電力供給を遮断することができる。これにより、各第1の動作電源および第2の動作電源を遮断した分だけ消費電力を削減することができる。
 以上により、負荷休止時間帯の電力消費を抑制して高い電力効率を得ることのできる電力供給装置、電力供給装置の制御方法、および直流給電システムを実現することができるという効果を奏する。
 特許文献1において、蓄電池(バッテリーユニット)は電力を供給する際、直流系制御ユニットを通信により制御して直流の消費電力を調整することで、蓄電池の電力出力を最適化している。また、特許文献1において、蓄電池の電力出力を最適化する際に、蓄電池と直流ユニットの間にはDC/DCコンバータが常に介在している。一方で、本発明は、直流ユニットは制御せず、小容量の蓄電池は直結した状態で、直流ユニットの消費電力が低下した際に大容量の蓄電池のDC/DCコンバータを停止させることを特徴としている。
 この発明によれば、負荷休止時間帯の電力消費を抑制して高い電力効率を得ることのできる電力供給装置、電力供給装置の制御方法、および直流給電システムを実現することができるという効果を奏する。
本発明の実施形態を示すものであり、直流給電システムの構成を示すブロック図である。 本発明の実施形態を示すものであり、図1の直流給電システムにおける1日の電力使用量の変化を表す負荷曲線を示すグラフである。 本発明の実施形態を示すものであり、第1の蓄電池の充電量と電圧との関係を説明するグラフである。 本発明の実施形態を示すものであり、図1の直流給電システムによる第1の制御モード時の動作を電圧および電流との関係で示すグラフである。 本発明の実施形態を示すものであり、図5の(a)はDC-DCコンバータの構成を示す回路ブロック図、図5の(b)は図5の(a)のDC-DCコンバータの制御信号の波形図である。 従来技術を示すものであり、直流給電システムの構成を示すブロック図である。 従来技術を示すものであり、図6の直流給電システムにおける1日の電力使用量の変化を表す負荷曲線を示すグラフである。
 本発明の実施形態について図1ないし図5を用いて説明すれば、以下の通りである。
 図1に、本実施形態に係る直流給電システム1における電力供給装置2の構成を示す。
 直流給電システム1は、接続される直流機器30に直流給電を行うものである。電力供給装置2は、一例として一般家庭内における配電システムの一部として示されている。当該直流給電システム1は、電力供給装置2、太陽光発電装置(直流電力発生装置:図中「ソーラー」と表記)10、DC-DCコンバータ(第1のDC-DCコンバータ)20、AC-DCコンバータ(直流電力供給手段)23を備えている。また、電力供給装置2は、DCバス(直流バス)B、制御器(制御部)11、蓄電池(第1の蓄電手段、第1の蓄電池)12、蓄電池(第2の蓄電池)13、電圧センサ14、電流センサ15、およびDC-DCコンバータ(第2のDC-DCコンバータ)22を備えている。
 直流機器30は、エアコンディショナやTV装置などの直流電力で動作する、直流家電などの負荷機器である。ここでは、一例として、直流機器30が350V-410Vの直流電圧で動作するものとする。当該直流機器30は、DCバスBにDC-DCコンバータを介することなく接続される。なお、直流機器30は、DCバスBにDC-DCコンバータを介することなく接続されていなくとも、電源スイッチなどのスイッチを介してDCバスBに接続されていてよい。
 また、上記例以外に、(1)DCバスBにDC-DCコンバータを介して接続される他の直流機器が存在する、あるいは、(2)直流機器としてDCバスBにDC-DCコンバータを介して接続される直流機器のみが存在する、のいずれかであってもよい。(1)および(2)の場合には当該DC-DCコンバータが電力供給装置2の構成要素に含まれる。
 DCバスBは、電力供給装置2の母線として直流機器30に供給する電力を搬送する。ここでは、DCバスBに直結される直流機器30に電力を供給する目的があることから、DCバスBの母線電圧範囲は直流機器30の動作電圧範囲内、すなわちここでは直流350V~410Vの電圧範囲内、に設定される。また、前記(1)の場合には、DCバスBの母線電圧範囲はDCバスBにDC-DCコンバータを介することなく接続される直流機器30の動作電圧範囲に設定される。
 太陽光発電装置10は、DCバスBに発電した直流電力を供給する。太陽光発電装置10は、セルアレイ数に応じた直流の出力電圧、例えば100V-380Vを出力する。当該出力電圧はDCバスBへの電力供給に際して直流-交流変換が行われる必要がない。従って、当該出力電圧は、太陽光発電装置10とDCバスBとの直流電力の電圧変換を行うDC-DCコンバータ20によって、DCバスBの母線電圧に変換される。太陽光発電装置10とDC-DCコンバータ20とは、直流バスに直流電力を供給する直流電力供給手段を構成している。DC-DCコンバータ20は、ここでは太陽光発電装置10の出力電圧をDCバスBの母線電圧に昇圧する昇圧コンバータからなる。DC-DCコンバータ20は、DC-DCコンバータ20に個別に割り当てられた動作電源(第1の動作電源:図示せず)によって動作する。当該動作電源の投入および遮断は、制御器11から供給される制御信号ps1によって制御される。なお、DC-DCコンバータ20は、太陽光発電装置10の出力電圧をDCバスBの母線電圧に降圧する降圧コンバータからなっていてもよい。
 ここでは、太陽光発電装置10の出力電圧100V-380VはDC-DCコンバータ20によって400V±10Vの範囲で変換される。これにより、DCバスBの母線電圧は400V±10Vの電圧範囲に制御される。このように、太陽光発電装置10とDC-DCコンバータ20とは、母線電圧範囲350V-410Vのうち390V-410Vを分担する。この構成によれば、汎用の電力供給源の取り扱い電圧付近を用いて、DCバスBを効率よく運転することができる。
 太陽光発電装置10が直流電力発生装置として設けられているので、発電電力の利用効率をあまり低下させずに電力供給装置2に好適に利用することができる。また、図示しないが、太陽光発電装置10が商用交流系統に連系されて、発電した電力の売電が行えるようになっていてもよい。直流電力供給手段として、太陽光発電装置10が必ずしも備えられている必要はない。また、第1のDC-DCコンバータと組み合わされて直流電力供給手段となる直流電力発生装置として、燃料電池などの化学燃料発電装置や、風力発電装置などの自然エネルギー発電装置(最終出力を直流とする)なども可能である。
 蓄電池12は、任意の2次電池で構成される。蓄電池12として、例えば、リチウムイオン電池、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、ナトリウム硫黄電池(NAS電池)などが使用可能である。
 図1の蓄電池12の充電可能電圧範囲は、例えば350V-410Vである。ここでは、上記充放電可能電圧範囲の上限電圧は母線電圧の上限電圧と同じ410Vであり、上記充放電可能電圧範囲の下限電圧は母線電圧の下限電圧と同じ350Vであるが、充電可能電圧範囲はこれには限らない。蓄電池12の充電可能電圧範囲は、母線電圧範囲350V-410Vの中心電圧である380Vよりも380Vの8%以上だけ大きい上限電圧と、当該中心電圧380Vよりも380Vの8%以上だけ小さい下限電圧を有していてもよい。すなわち、蓄電池12の充電可能電圧範囲は、DCバスBの母線電圧範囲を包含している。これらの構成によれば、太陽光発電装置やリチウムイオン電池といった汎用の電力供給源の取り扱い電圧付近を用いて、直流バスを効率よく運転することができる。また、蓄電池12の充電可能電圧範囲は、DCバスBの母線電圧範囲を上述のように包含している場合には、蓄電池12の充放電可能電圧範囲が、実用的な電圧範囲で母線電圧範囲よりも広くなるので、母線電圧の変化に対して第1の蓄電池の動作マージンを適切に設定することができる。
 蓄電池12は、DCバスBに常時直結されており、DCバスBとの間で充放電を行う。蓄電池12とDCバスBとが互いに直結されているので、いずれか一方の電圧が他方の電圧よりも高い状態になると、電圧の高いほうから低いほうへ電力供給が行われて互いの電圧が等しくなるように互いの間で電流が流れる。図3に、蓄電池12の充電量と電圧との関係を示す。蓄電池12の充電可能電圧範囲が、DCバスBの母線電圧範囲(例えば350V-410V)を包含しているので、DCバスBが母線電圧範囲の任意の電圧にある場合でも、蓄電池12はDCバスBとの間で電力のやり取りを行うことが可能である。
 蓄電池13も蓄電池12と同様の2次電池で構成される。但し、蓄電池13の充電可能電圧は、DCバスBの母線電圧範囲の値よりも小さく、例えば30V-60Vの範囲にある。すなわち、充電可能電圧範囲で比較して、蓄電池12が高電圧蓄電池であるのに対して、蓄電池13は低電圧蓄電池である。また、蓄電池13は電力供給装置2のベース電力を貯蔵する大容量蓄電池であり、一般に、蓄電池12よりも容量が大きい。蓄電池13は、蓄電池13とDCバスBとの間で受け渡しする電力の電圧変換を行うDC-DCコンバータ22を介してDCバスBとの間で充放電を行う。蓄電池13とDC-DCコンバータ22とは第2の蓄電手段を構成している。
 ここでは、蓄電池13の出力電圧30V-60VはDC-DCコンバータ22によって360V±10Vの範囲で変換される。これにより、DCバスBの母線電圧は360V±10Vの電圧範囲に制御される。このように、蓄電池13とDC-DCコンバータ22とは、母線電圧範囲350V-410Vのうち350V-370Vを分担する。この構成によれば、DCバスBの最も低い電圧範囲を分担することからベース電力を貯蔵することができるので、DCバスBを効率よく運転することができる。
 このように、蓄電池12は高電圧小容量の蓄電池であり、蓄電池13は低電圧大容量の蓄電池である。蓄電池12が高電圧小容量の蓄電池であるので、ベース電力を貯蔵する大容量の蓄電池13の役割を阻害することなく、深夜などの軽負荷時の電力供給源として適切な容量を提供することができる。また、蓄電池12は高電圧蓄電池であるがゆえに小容量とすることで危険性の増大を抑制することが可能である。
 また、蓄電池13は低電圧蓄電池であることから、一般家庭内や限られたスペースで用いる場合の安全性が高い。DC-DCコンバータ22は、DCバスBから蓄電池13への充電を行うときに動作する降圧コンバータと、蓄電池13からDCバスBへの放電を行うときに動作する昇圧コンバータとが組み合わされた双方向DC-DCコンバータである。DC-DCコンバータ22は、DC-DCコンバータ22に個別に割り当てられた動作電源(第2の動作電源:図示せず)によって動作する。当該動作電源の投入および遮断は、制御器11から供給される制御信号ps2によって制御される。蓄電池12はDCバスBに常時接続されて使用される。
 AC-DCコンバータ23は、交流配電網40の交流電力を直流電力に変換してDCバスBに供給する。この交流配電網は、例えば商用交流系統から家屋内に引き込まれた単相3線による交流200Vの電源である。AC-DCコンバータ23として、ここではDCバスBの母線電圧が交流配電網40の交流電圧の整流電圧よりも大きいため昇圧型コンバータが用いられるが、DCバスBの母線電圧が交流配電網40の交流電圧の整流電圧よりも小さい場合には降圧型コンバータが用いられる。AC-DCコンバータ23は、AC-DCコンバータ23に個別に割り当てられた動作電源(第1の動作電源:図示せず)によって動作する。当該動作電源の投入および遮断は、制御器11から供給される制御信号ps3によって制御される。AC-DCコンバータ23は、必ずしも設けられる必要はない。
 ここでは、交流配電網40の交流電圧200VはAC-DCコンバータ23によって380V±10Vの範囲で変換される。これにより、DCバスBの母線電圧は390V±10Vの電圧範囲に制御される。このように、AC-DCコンバータ23は、母線電圧範囲350V-410Vのうち370V-390Vを分担する。
 このように、DCバスBの母線電圧範囲は、各直流電力供給手段からDCバスBに供給される直流電力の電圧範囲のそれぞれと、第2の蓄電手段からDCバスBに供給される直流電力の電圧範囲との和からなる1つの電圧範囲である。また、直流機器30の動作可能電圧範囲が上記母線電圧範囲を包含していれば、母線電圧が母線電圧範囲のどこにあっても直流機器30は動作可能である。
 なお、以上の電圧範囲の分担は一例であり、どのような機器がどのような電圧範囲を分担するかは適宜設定可能である。従って、互いに重なる電圧範囲を有する複数の機器が存在していてもよい。
 電圧センサ14はDCバスBの母線電圧を検出し、電圧検出信号s1を制御器11に供給する。電流センサ15はDCバスBから直流機器30に流れる電流の総和である負荷電流を検出し、電流検出信号s2を制御器11に供給する。
 制御器11は、電力供給装置2の給電制御を行う。給電制御として、ここでは通常負荷時制御モード(第2の制御モード)と軽負荷時制御モード(第1の制御モード)との2種類の動作を行う。制御器14は、ユーザの各種操作を受け付け可能なように、例えば1つの制御盤に収められていてもよい。
 通常負荷時制御モードは、朝から夜にかけての住人が活動する時間帯のように、通常量の負荷が稼動している場合に適合する給電制御モードである。軽負荷時制御モードは、深夜などの住人が活動を停止している時間帯のように、待機負荷程度の軽負荷が稼動しているあるいは無負荷の場合に適合する給電制御モードである。通常負荷であるか、軽負荷であるかはユーザの都合により決定されるので、1日のどの時間帯を通常負荷時制御モードで動作させるか軽負荷時制御モードで動作させるかは、ユーザによって適宜決定可能である。
 次に、制御器11の給電制御モードを詳細に説明することによって、電力供給装置2の給電制御を説明する。
 通常負荷時制御モードでは、制御器11は、予め定められたシーケンスに従って各電力供給手段および第2の蓄電手段のうちの母線電圧に適合する電圧範囲を分担するものによってDCバスBに直流電力が供給されるように、電力供給手段および第2の蓄電手段の動作電源のそれぞれの投入および遮断を選択制御する電源制御(第3の電源制御)を行う。例えば、日中に日照量が十分で太陽光発電装置10からの電力供給が可能であれば、制御器11は、太陽光発電装置10からの発電量情報を参照するなどして、DC-DCコンバータ20の動作電源を投入する一方、DC-DCコンバータ22およびAC-DCコンバータ23の各動作電源を遮断する。このとき、母線電圧は400V±10Vの範囲に制御される。また、例えば日中に日照量が十分でない場合や、夜間などには、太陽光発電装置10からの発電量情報を得るなどして、AC-DCコンバータ23の動作電源を投入する一方、DC-DCコンバータ20およびDC-DCコンバータ22の各動作電源を遮断する。このとき、母線電圧は380V±10Vの範囲に制御される。
 また、蓄電池13からDCバスBへの電力供給についても、DC-DCコンバータ22の動作電源を投入する一方、DC-DCコンバータ20およびAC-DCコンバータ23の各動作電源を遮断してもよい。しかしここでは、蓄電池13は、太陽光発電装置10や交流配電網40からの電力供給のベース電力を賄うためにベース電力貯蔵用として機能させたいという目的がある。従って、通常負荷時制御モードでは、太陽光発電装置10や交流配電網40からの電力供給が行われている間に、DCバスBから充電電力を得るためにDC-DCコンバータ22の動作電源が投入されるのが有利である。また、蓄電池13は、太陽光発電装置10および交流配電網40からの電力供給が不能になった場合には、蓄電池13からDCバスBへ放電電力を与えるという非常用途にも適している。
 通常負荷時制御モードでは、各直流電力供給手段および第2の蓄電手段によって、それぞれが分担する電圧範囲で直流バスを効率よく運転することができる。
 通常負荷時制御モードは、ユーザによる通常負荷時制御モードの開始指示に伴って発生する開始指示信号が制御器11に供給されることで開始されてもよい。通常負荷時制御モードの終了についても、ユーザによる通常負荷時制御モードの開始指示で行うことができる。本実施形態では、通常負荷時制御モード用に設けた開始指示および終了指示は存在せず、次に説明する軽負荷時制御モードを行う期間以外であれば、必然的に通常負荷時制御モードで動作するようになっている。
 次に、軽負荷時制御モードでは、制御器11は、遮断制御と電源制御(第1の電源制御)とを行う。遮断制御では、制御器11に供給される遮断指示信号を受けて、DC-DCコンバータ20、DC-DCコンバータ22、および、AC-DCコンバータ23の各動作電源のうちの動作しているものを遮断する制御を行う。軽負荷時制御モードの開始指示信号は上記遮断指示信号となり、軽負荷時制御モードが開始されるときには、まず遮断制御が開始される。電源制御では、遮断制御が行われた状態で、電圧センサ14からの電圧検知信号s1によってDCバスBの母線電圧が母線電圧範囲の下限電圧350Vを下回ることが制御器11に伝達されると、各電力供給手段および第2の蓄電手段のうちの母線電圧範囲の下限電圧350Vを含む電圧範囲を分担する第2の蓄電手段からDCバスBへの直流電力の供給を始めるように、DC-DCコンバータ22の動作電源を投入する制御を行う。そして、電源制御では、この後に、予め定められたシーケンスに従って、各電力供給手段および第2の蓄電手段のうちの母線電圧に適合する電圧範囲を分担するものによってDCバスBに直流電力が供給されるように、各動作電源のそれぞれの投入および遮断を選択制御する。この構成によれば、制御器11によって各動作電源が遮断された状態において、DCバスBの母線電圧が下限電圧より降下しても、必要最小限の電力供給によってDCバスBを運転することができる。
 また、軽負荷時制御モードにおいて制御器11が電源制御を行っているときに、電流センサ15からの電流検知信号s2によってDCバスBから直流機器30へ流れる負荷電流が1A以下といった所定値以下になったことが制御器11に伝達されるとする。このような場合に、電流検知信号s2が前記遮断指示信号となり、制御器11が再び遮断制御を行うようにしてもよい。当該遮断制御が行われれば、電圧センサ14からの電圧検知信号s1によってDCバスBの母線電圧が母線電圧範囲の下限電圧350Vを下回ることが制御器11に伝達されると、再び電源制御が行われる。この構成によれば、直流機器30がほとんど負荷電流を伴わない場合に、DCバスBへの電力供給の遮断を効率よく行うことができる。なお、負荷電流が所定値以下になったときに電流センサ15が制御器11に遮断制御信号を供給する構成は、制御器11に必ずしも備わっていなくてよい。
 さらに、制御器11は、軽負荷時制御モードにおいて遮断制御が行われた状態で、電流センサ15によって負荷電流が1Aといった所定値を超えたことが検出されると、第1の電源制御とは異なる電源制御である第2の電源制御を行ってもよい。第2の電源制御では、予め定められたシーケンスに従って各電力供給手段および第2の蓄電手段のうちの母線電圧に適合する電圧範囲を分担するものによってDCバスBに直流電力が供給されるように、各動作電源のそれぞれの投入および遮断を選択制御する。この構成によれば、直流機器30がある程度の負荷電流を必要とする場合に、DCバスBへの電力供給の再開を効率よく行うことができる。
 軽負荷時制御モードは、ユーザによる軽負荷時制御モードの開始指示に伴って発生する開始指示信号が制御器11に供給されることで開始されてもよい。軽負荷時制御モードの終了についても、ユーザによる軽負荷時制御モードの開始指示で行うことができる。
 図4に、軽負荷時制御モードによるDCバスBの電圧変化の一例を示す。
 時刻t1では、それまで負荷電流が1A以下であることから各動作電源が遮断されていたものが、負荷電流が1Aを超えたため、DC-DCコンバータ22の動作電源が投入(スタート)された例を示す。時刻t1-t2の期間には、350V-370Vの電圧範囲においてDC-DCコンバータ22の動作電源のみが投入され、370V-390Vの電圧範囲においてAC-DCコンバータ23の動作電源のみが投入され、390V-410Vの電圧範囲においてDC-DCコンバータ20の動作電源のみが投入される。時刻t2では、負荷電流が1A以下となったために、そのときに動作していたDC-DCコンバータ20の動作電源が遮断(ストップ)され、全ての動作電源が遮断された状態となった例が示されている。時刻t2-t3の期間には、負荷電流が1A以下であることから各動作電源は遮断されたままとなる。従って、直流機器30の待機負荷などに起因してDCバスBの電圧が低下していき、その電圧低下分を補うように蓄電池12からDCバスBへの放電が行われる。時刻t3では、母線電圧が下限電圧350Vを下回ったこと、あるいは、負荷電流が1Aを超えたことにより、DC-DCコンバータ22の動作電源が投入(スタート)された例を示す。期間t3-t4には期間t1-t2と同様の制御が行われる。時刻t4では、負荷電流が1A以下となったために、そのときに動作していたDC-DCコンバータ22の動作電源が遮断(ストップ)され、全ての動作電源が遮断された状態となった例が示されている。時刻t4以降は、負荷電流が1A以下であることから全ての動作電源が遮断された状態が維持される。
 以上のような軽負荷時制御モードを、深夜に適用することによって、電力供給装置2は、深夜においてDC-DCコンバータ20・22およびAC-DCコンバータの動作電源が随時停止されることで、従来よりも深夜の消費電力が削減される。電力供給装置2には、太陽光発電装置10とDCバスBとの間にDC-DCコンバータ20が設けられているが、太陽光発電装置10の出力電圧がDCバスBの母線電圧と等しくなくても、従来のような直流-交流変換が不要であるし、負荷休止期間にはDC-DCコンバータ20の動作電源を停止することができるので、消費電力を極力抑制することができる。
 これにより、1日の消費電力の変化を示す図2の負荷曲線に示すように、朝から夜にかけての期間T1では通常負荷時制御モードによって従来と同様の電力消費を行う一方、深夜から朝にかけての期間T2には消費電力がW1となり、図7の消費電力W0よりも小さくなる。軽負荷時制御モードを深夜以外に適用する場合にも、同様の消費電力の削減が達成されることはもちろんである。
 これにより、負荷休止時間帯の電力消費を抑制して高い電力効率を得ることのできる直流給電システムおよびその制御方法を実現することができる。
 次に、図5の(a)に、前記DC-DCコンバータ20・22に用いられるDC-DCコンバータの基本構成を示す。当該DC-DCコンバータの基本構成は、コンバータ部201と制御部202とを備えている。
 コンバータ部201は、例えば、チョークコイル201a、スイッチングトランジスタ201b、および、スイッチングトランジスタ201cを備えている。コンバータ部201の活性ライン上に、チョークコイル201aを入力側としてチョークコイル201aとスイッチングトランジスタ201cとが直列に接続されている。スイッチングトランジスタ201bは、チョークコイル201aとスイッチングトランジスタ201cとの接続点と、コモンラインとの間に接続されている。
 制御部202は、スイッチングトランジスタ201bの制御端子であるゲート端子に、図5の(b)で示される制御信号X1を入力して、スイッチングトランジスタ201bの導通遮断を制御する。また、制御部202は、スイッチングトランジスタ201cの制御端子であるゲート端子に、図5の(b)で示される制御信号X2を入力して、スイッチングトランジスタ201cの導通遮断を制御する。制御信号X1・X2のそれぞれはアクティブレベル(ここではHigh)と非アクティブレベル(ここではLow)との2値電圧により構成されている。制御信号X1のアクティブ期間と制御信号X2のアクティブ期間とは互いに重ならない。
 図5の(a)のDC-DCコンバータに直流電圧が入力された状態で、制御信号X1がアクティブレベルになるとともに制御信号X2が非アクティブレベルになると、スイッチングトランジスタ201bが導通状態になるとともにスイッチングトランジスタ201cが遮断状態となる。従って、チョークコイル201aとスイッチングトランジスタ201bとを通して電流が流れる。このとき、チョークコイル201aには、スイッチングトランジスタ201bの導通期間の最後に流れる電流値によって決まる磁気エネルギーが蓄積される。この状態から、制御信号X1が非アクティブレベルになるとともに、制御信号X2がアクティブレベルになると、スイッチングトランジスタ201bが遮断状態になるとともにスイッチングトランジスタ201cが導通状態となる。このとき、チョークコイル201aに蓄積されていた磁気エネルギーはスイッチングトランジスタ201cを通して流れる電流によって電気エネルギーとして放出され、図示しないキャパシタなどで平滑化された直流出力となる。
 チョークコイル201aとスイッチングトランジスタ201bとを通して流れる電流は、スイッチングトランジスタ201bの導通抵抗が小さい場合に、およそ、入力電圧とチョークコイル201aの自己インダクタンスとに依存する比例定数を有するように増大する。すなわち、チョークコイル201aに蓄積される磁気エネルギーの大きさは、スイッチングトランジスタ201bの導通期間の長さに応じて変化する。従って、スイッチングトランジスタ201bの導通期間の長さと、スイッチングトランジスタ201cの導通期間の長さとを調節することにより、DC-DCコンバータの出力電圧の大きさを制御することができる。これにより、図5の(a)の基本構成は、昇圧コンバータとしても降圧コンバータとしても使用することができる。DC-DCコンバータ20は前記例では昇圧コンバータのみからなるので、図5の(a)の基本構成を1つ備えていればよい。DC-DCコンバータ22は昇圧コンバータと降圧コンバータとからなるので、図5の(a)の基本構成が2つ、互いに逆並列になるように組み合わされた構成とすることができる。このとき、一方が昇圧コンバータまたは降圧コンバータとして動作するときには他方は動作を停止する。
 以上、電力供給装置2について説明した。なお、電力供給装置2は、一般家庭内に限らず、オフィスビルや工場などの事業所内でも有効に機能する。
 また、本発明は、以下のように表現しても良い。
 すなわち、本発明の電力供給装置は、上記直流電力供給手段として、上記第1の動作電源によって動作して交流系統の交流電力を直流電力に変換して上記直流バスに供給するAC-DCコンバータが備えられており、
 上記制御部は上記AC-DCコンバータの動作電源の投入および遮断を制御してもよい。
 上記の発明によれば、直流電力発生装置から直流バスへの電力供給を行うことができない場合に、交流系統から直流バスへ電力供給を行うことができるという効果を奏する。
 また、第1の蓄電手段から直流バスへの電力供給を行う間にAC-DCコンバータの動作を停止させることにより、交流配電網からの電力供給を止めるとともに、AC-DCコンバータの消費電力を削減することができるという効果を奏する。
 さらに、本発明の電力供給装置は、上記直流バスの母線電圧を検出する電圧センサを備えており、
 上記制御部は、供給される開始指示信号を受けて開始するとともに供給される終了指示信号を受けて終了する第1の制御モードであって、
 供給される遮断指示信号を受けて各上記第1の動作電源および上記第2の動作電源のうちの動作しているものを遮断する遮断制御と、
 上記遮断制御が行われた状態で、上記電圧センサによって検出された上記直流バスの母線電圧が上記母線電圧範囲の下限電圧を下回ると、各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧範囲の下限電圧を含む電圧範囲を分担するものから上記直流バスへの直流電力の供給を始めて、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第1の電源制御とを行う第1の制御モードで動作することが可能であり、
 上記第1の制御モードの上記開始指示信号は上記遮断指示信号となってもよい。
 上記の発明によれば、制御部によって各第1の動作電源および第2の動作電源が遮断された状態において、直流バスの母線電圧が下限電圧より降下しても、必要最小限の電力供給によって直流バスを運転することができるという効果を奏する。
 さらに、本発明の電力供給装置は、上記直流バスから上記直流機器に流れる電流の総和である負荷電流を検出する電流センサを備えており、
 上記電流センサは、上記制御部が上記第1の制御モードにおいて上記第1の電源制御を行っているときに、上記負荷電流が所定値以下になったことを検出すると、上記遮断指示信号を上記制御部に供給してもよい。
 上記の発明によれば、直流機器がほとんど負荷電流を伴わない場合に、直流バスへの電力供給の遮断を効率よく行うことができるという効果を奏する。
 さらに、本発明の電力供給装置は、上記直流バスから上記直流機器に流れる電流の総和である負荷電流を検出する電流センサを備えており、
 上記制御部は、上記第1の制御モードにおいて上記遮断制御が行われた状態で、上記電流センサによって上記負荷電流が所定値を超えたことが検出されると、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第2の電源制御を行ってもよい。
 上記の発明によれば、直流機器がある程度の負荷電流を必要とする場合に、直流バスへの電力供給の再開を効率よく行うことができるという効果を奏する。
 さらに、本発明の電力供給装置は、上記電流センサは、上記制御部が上記第1の制御モードにおいて上記第2の電源制御を行っているときに、上記負荷電流が所定値以下になったことを検出すると、上記遮断指示信号を上記制御部に供給してもよい。
 上記の発明によれば、直流機器がほとんど負荷電流を伴わない場合に、直流バスへの電力供給の遮断を効率よく行うことができるという効果を奏する。
 さらに、本発明の電力供給装置は、上記制御部は、上記第1の制御モードで動作していないときに、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第3の電源制御を行う第2の制御モードで動作することが可能であってもよい。
 上記の発明によれば、第2の制御モードでは、各直流電力供給手段および第2の蓄電手段によって、それぞれが分担する電圧範囲で直流バスを効率よく運転することができるという効果を奏する。
 さらに、本発明の電力供給装置および直流給電システムは、上記母線電圧範囲および上記充放電可能電圧範囲の各上限電圧は410Vであり、上記母線電圧範囲および上記充放電可能電圧範囲の各下限電圧は350Vであってもよい。
 上記の発明によれば、太陽光発電装置やリチウムイオン電池といった汎用の電力供給源の取り扱い電圧付近を用いて、直流バスを効率よく運転することができるという効果を奏する。
 さらに、本発明の電力供給装置および直流給電システムは、上記母線電圧範囲の上限電圧は410Vであるとともに上記母線電圧範囲の下限電圧は350Vであり、
 上記充放電可能電圧範囲の上限電圧は380Vよりも380Vの8%以上だけ大きい電圧であるとともに、上記充放電可能電圧範囲の下限電圧は380Vよりも380Vの8%以上だけ小さい電圧であってもよい。
 上記の発明によれば、太陽光発電装置やリチウムイオン電池といった汎用の電力供給源の取り扱い電圧付近を用いて、直流バスを効率よく運転することができるという効果を奏する。
 また、第1の蓄電池の充放電可能電圧範囲が、実用的な電圧範囲で母線電圧範囲よりも広くなるため、母線電圧の変化に対して第1の蓄電池の動作マージンを適切に設定することができるという効果を奏する。
 さらに、本発明の直流給電システムは、上記直流電力発生装置として太陽光発電装置が備えられており、
 上記太陽光発電装置を備える上記直流電力発生装置から上記直流バスに供給される直流電力の電圧範囲は、上記太陽光発電装置と上記直流バスとの間の直流電力の受け渡しをする上記第1のDC-DCコンバータによって400V±10Vに制御されてもよい。
 上記の発明によれば、汎用の電力供給源の取り扱い電圧付近を用いて、直流バスを効率よく運転することができるという効果を奏する。
 さらに、本発明の直流給電システムは、上記直流電力供給手段として、交流系統の交流電力を直流電力に変換して上記直流バスに供給するAC-DCコンバータが備えられており、
 上記AC-DCコンバータから上記直流バスに供給される直流電力の電圧範囲は、上記AC-DCコンバータによって380V±10Vに制御されてもよい。
 上記の発明によれば、交流電力を汎用の電力供給源の取り扱い電圧付近に変換して用いるので、直流バスを効率よく運転することができるという効果を奏する。
 さらに、本発明の電力供給装置は、上記第2の蓄電手段から上記直流バスへ供給する直流電力の電圧範囲は、上記第2のDC-DCコンバータによって360V±10Vに制御されてもよい。
 上記の発明によれば、この構成によれば、直流バスの最も低い電圧範囲を分担することからベース電力を貯蔵することができるので、直流バスを効率よく運転することができるという効果を奏する。
 さらに、本発明の直流給電システムは、上記直流電力発生装置として太陽光発電装置が備えられていてもよい。
 上記の発明によれば、太陽光発電装置を、発電電力の利用効率をあまり低下させずに直流給電システムに好適に利用することができるという効果を奏する。
 また、本発明の電力供給装置の制御方法は、上記直流給電システムを制御する直流給電システムの制御方法であって、
 上記直流バスの母線電圧を検出し、
 上記制御部に、供給される開始指示信号を受けて開始するとともに供給される終了指示信号を受けて終了する第1の制御モードであって、
 供給される遮断指示信号を受けて各上記第1の動作電源および上記第2の動作電源のうちの動作しているものを遮断する遮断制御と、
 上記遮断制御が行われた状態で、上記直流バスの母線電圧が上記母線電圧範囲の下限電圧を下回ると、各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧範囲の下限電圧を含む電圧範囲を分担するものから上記直流バスへの直流電力の供給を始めて、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第1の電源制御とを行う第1の制御モードで動作させ、
 上記第1の制御モードの上記開始指示信号は上記遮断指示信号となってもよい。
 上記の発明によれば、制御部によって各第1の動作電源および第2の動作電源が遮断された状態において、直流バスの母線電圧が下限電圧より降下しても、必要最小限の電力供給によって直流バスを運転することができるという効果を奏する。
 さらに、本発明の電力供給装置の制御方法は、上記直流バスから上記直流機器に流れる電流の総和である負荷電流を検出し、
 上記制御部が上記第1の制御モードにおいて上記第1の電源制御を行っているときに、上記負荷電流が所定値以下になったことを検出すると、上記遮断指示信号を上記制御部に供給してもよい。
 上記の発明によれば、直流機器がほとんど負荷電流を伴わない場合に、直流バスへの電力供給の遮断を効率よく行うことができるという効果を奏する。
 さらに、本発明の電力供給装置の制御方法は、上記直流バスから上記直流機器に流れる電流の総和である負荷電流を検出し、
 上記制御部に、上記第1の制御モードにおいて上記遮断制御が行われた状態で、上記負荷電流が所定値を超えたことを検出すると、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第2の電源制御を行わせてもよい。
 上記の発明によれば、直流機器がある程度の負荷電流を必要とする場合に、直流バスへの電力供給の再開を効率よく行うことができるという効果を奏する。
 さらに、本発明の電力供給装置の制御方法は、上記制御部が上記第1の制御モードにおいて上記第2の電源制御を行っているときに、上記負荷電流が所定値以下になったことを検出すると、上記遮断指示信号を上記制御部に供給してもよい。
 上記の発明によれば、直流機器がほとんど負荷電流を伴わない場合に、直流バスへの電力供給の遮断を効率よく行うことができるという効果を奏する。
 さらに、本発明の電力供給装置の制御方法は、上記制御部に、上記第1の制御モードで動作していないときに、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第2の電源制御を行う第2の制御モードで動作させてもよい。
 上記の発明によれば、第2の制御モードでは、各直流電力供給手段および第2の蓄電手段によって、それぞれが分担する電圧範囲で直流バスを効率よく運転することができるという効果を奏する。
 本発明は、マイクログリッドに好適に使用することができる。
 1      直流給電システム
 2      電力供給装置
 10     太陽光発電装置(直流電力供給手段の一部、直流電力発生手段)
 11     制御器(制御部)
 12     蓄電池(第1の蓄電手段、第1の蓄電池)
 13     蓄電池(第2の蓄電手段の一部、第2の蓄電池)
 14     電圧センサ
 15     電流センサ
 20     DC-DCコンバータ(直流電力供給手段の一部、第1のDC-DCコンバータ)
 22     DC-DCコンバータ(第2の蓄電手段の一部、第2のDC-DCコンバータ)
 23     AC-DCコンバータ(直流電力供給手段)
 30     直流機器
 40     交流配電網
 B      DCバス(直流バス)
 
 

Claims (21)

  1.  接続される直流機器に直流給電を行う電力供給装置であって、
     上記直流給電の母線となる直流バスと、
     上記直流バスとの間で充放電を行う第1の蓄電手段および第2の蓄電手段とを備えており、
     上記電力供給装置は、上記直流バスに直流電力を供給する1つ以上の直流電力供給手段であって、第1の動作電源によって動作してそれぞれに定められた電圧範囲で直流出力を行う上記直流電力供給手段から電力が供給され、
     上記電力供給装置は、直流電力発生装置と、上記第1の動作電源によって動作して上記直流電力発生装置と上記直流バスとの間に受け渡しする直流電力の電圧変換を行うように設けられた第1のDC-DCコンバータとを備えた1つ以上の上記直流電力供給手段から電力が供給され、
     上記第1の蓄電手段は、上記直流バスに直結された第1の蓄電池を備えており、
     上記第2の蓄電手段は、第2の蓄電池と、第2の動作電源によって動作して上記第2の蓄電池と上記直流バスとの間で受け渡しする直流電力の電圧変換を行うように設けられた第2のDC-DCコンバータとを備えており、
     上記直流バスの母線電圧範囲は、各上記直流電力供給手段から上記直流バスに供給される直流電力の電圧範囲のそれぞれと、上記第2の蓄電手段から上記直流バスに供給される直流電力の電圧範囲との和からなる1つの電圧範囲であり、
     上記直流機器の動作可能電圧範囲は上記母線電圧範囲を包含しており、
     上記第1の蓄電池の充放電可能電圧範囲は上記母線電圧範囲を包含しており、
     各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を制御する制御部を備えていることを特徴とする電力供給装置。
  2.  上記直流電力供給手段として、上記第1の動作電源によって動作して交流系統の交流電力を直流電力に変換して上記直流バスに供給するAC-DCコンバータが接続されており、
     上記制御部は上記AC-DCコンバータの動作電源の投入および遮断を制御することを特徴とする請求項1に記載の電力供給装置。
  3.  上記直流バスの母線電圧を検出する電圧センサを備えており、
     上記制御部は、供給される開始指示信号を受けて開始するとともに供給される終了指示信号を受けて終了する第1の制御モードであって、
     供給される遮断指示信号を受けて各上記第1の動作電源および上記第2の動作電源のうちの動作しているものを遮断する遮断制御と、
     上記遮断制御が行われた状態で、上記電圧センサによって検出された上記直流バスの母線電圧が上記母線電圧範囲の下限電圧を下回ると、各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧範囲の下限電圧を含む電圧範囲を分担するものから上記直流バスへの直流電力の供給を始めて、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第1の電源制御とを行う第1の制御モードで動作することが可能であり、
     上記第1の制御モードの上記開始指示信号は上記遮断指示信号となることを特徴とする請求項1または2に記載の電力供給装置。
  4.  上記直流バスから上記直流機器に流れる電流の総和である負荷電流を検出する電流センサを備えており、
     上記電流センサは、上記制御部が上記第1の制御モードにおいて上記第1の電源制御を行っているときに、上記負荷電流が所定値以下になったことを検出すると、上記遮断指示信号を上記制御部に供給することを特徴とする請求項3に記載の電力供給装置。
  5.  上記直流バスから上記直流機器に流れる電流の総和である負荷電流を検出する電流センサを備えており、
     上記制御部は、上記第1の制御モードにおいて上記遮断制御が行われた状態で、上記電流センサによって上記負荷電流が所定値を超えたことが検出されると、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第2の電源制御を行うことを特徴とする請求項3または4に記載の電力供給装置。
  6.  上記電流センサは、上記制御部が上記第1の制御モードにおいて上記第2の電源制御を行っているときに、上記負荷電流が所定値以下になったことを検出すると、上記遮断指示信号を上記制御部に供給することを特徴とする請求項5に記載の電力供給装置。
  7.  上記制御部は、上記第1の制御モードで動作していないときに、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第3の電源制御を行う第2の制御モードで動作することが可能であることを特徴とする請求項3から6までのいずれか1項に記載の電力供給装置。
  8.  上記母線電圧範囲および上記充放電可能電圧範囲の各上限電圧は410Vであり、上記母線電圧範囲および上記充放電可能電圧範囲の各下限電圧は350Vであることを特徴とする請求項1から7までのいずれか1項に記載の電力供給装置。
  9.  上記母線電圧範囲の上限電圧は410Vであるとともに上記母線電圧範囲の下限電圧は350Vであり、
     上記充放電可能電圧範囲の上限電圧は380Vよりも380Vの8%以上だけ大きい電圧であるとともに、上記充放電可能電圧範囲の下限電圧は380Vよりも380Vの8%以上だけ小さい電圧であることを特徴とする請求項1から7までのいずれか1項に記載の電力供給装置。
  10.  上記第2の蓄電手段から上記直流バスへ供給する直流電力の電圧範囲は、上記第2のDC-DCコンバータによって360V±10Vに制御されることを特徴とする請求項8または9に記載の電力供給装置。
  11.  請求項1または2に記載の電力供給装置を制御する電力供給装置の制御方法であって、
     上記直流バスの母線電圧を検出し、
     上記制御部に、供給される開始指示信号を受けて開始するとともに供給される終了指示信号を受けて終了する第1の制御モードであって、
     供給される遮断指示信号を受けて各上記第1の動作電源および上記第2の動作電源のうちの動作しているものを遮断する遮断制御と、
     上記遮断制御が行われた状態で、上記直流バスの母線電圧が上記母線電圧範囲の下限電圧を下回ると、各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧範囲の下限電圧を含む電圧範囲を分担するものから上記直流バスへの直流電力の供給を始めて、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第1の電源制御とを行う第1の制御モードで動作させ、
     上記第1の制御モードの上記開始指示信号は上記遮断指示信号となることを特徴とする電力供給装置の制御方法。
  12.  上記直流バスから上記直流機器に流れる電流の総和である負荷電流を検出し、
     上記制御部が上記第1の制御モードにおいて上記第1の電源制御を行っているときに、上記負荷電流が所定値以下になったことを検出すると、上記遮断指示信号を上記制御部に供給することを特徴とする請求項11に記載の電力供給装置の制御方法。
  13.  上記直流バスから上記直流機器に流れる電流の総和である負荷電流を検出し、
     上記制御部に、上記第1の制御モードにおいて上記遮断制御が行われた状態で、上記負荷電流が所定値を超えたことを検出すると、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第2の電源制御を行わせることを特徴とする請求項11または12に記載の電力供給装置の制御方法。
  14.  上記制御部が上記第1の制御モードにおいて上記第2の電源制御を行っているときに、上記負荷電流が所定値以下になったことを検出すると、上記遮断指示信号を上記制御部に供給することを特徴とする請求項13に記載の電力供給装置の制御方法。
  15.  上記制御部に、上記第1の制御モードで動作していないときに、予め定められたシーケンスに従って各上記電力供給手段および上記第2の蓄電手段のうちの上記母線電圧に適合する電圧範囲を分担するものによって上記直流バスに直流電力が供給されるように、各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を選択制御する第2の電源制御を行う第2の制御モードで動作させることを特徴とする請求項11または12に記載の電力供給装置の制御方法。
  16.  接続される直流機器に直流給電を行う直流給電システムであって、
     上記直流給電の母線となる直流バスと、
     上記直流バスに直流電力を供給する1つ以上の直流電力供給手段であって、第1の動作電源によって動作してそれぞれに定められた電圧範囲で直流出力を行う上記直流電力供給手段と、
     上記直流バスとの間で充放電を行う第1の蓄電手段および第2の蓄電手段とを備えており、
     直流電力発生装置と、上記第1の動作電源によって動作して上記直流電力発生装置と上記直流バスとの間に受け渡しする直流電力の電圧変換を行うように設けられた第1のDC-DCコンバータとを備えた上記直流電力供給手段が1つ以上含まれており、
     上記第1の蓄電手段は、上記直流バスに直結された第1の蓄電池を備えており、
     上記第2の蓄電手段は、第2の蓄電池と、第2の動作電源によって動作して上記第2の蓄電池と上記直流バスとの間で受け渡しする直流電力の電圧変換を行うように設けられた第2のDC-DCコンバータとを備えており、
     上記直流バスの母線電圧範囲は、各上記直流電力供給手段から上記直流バスに供給される直流電力の電圧範囲のそれぞれと、上記第2の蓄電手段から上記直流バスに供給される直流電力の電圧範囲との和からなる1つの電圧範囲であり、
     上記直流機器の動作可能電圧範囲は上記母線電圧範囲を包含しており、
     上記第1の蓄電池の充放電可能電圧範囲は上記母線電圧範囲を包含しており、
     各上記第1の動作電源および上記第2の動作電源のそれぞれの投入および遮断を制御する制御部を備えていることを特徴とする直流給電システム。
  17.  上記母線電圧範囲および上記充放電可能電圧範囲の各上限電圧は410Vであり、上記母線電圧範囲および上記充放電可能電圧範囲の各下限電圧は350Vであることを特徴とする請求項16に記載の直流給電システム。
  18.  上記母線電圧範囲の上限電圧は410Vであるとともに上記母線電圧範囲の下限電圧は350Vであり、
     上記充放電可能電圧範囲の上限電圧は380Vよりも380Vの8%以上だけ大きい電圧であるとともに、上記充放電可能電圧範囲の下限電圧は380Vよりも380Vの8%以上だけ小さい電圧であることを特徴とする請求項16に記載の直流給電システム。
  19.  上記直流電力発生装置として太陽光発電装置が備えられており、
     上記太陽光発電装置を備える上記直流電力発生装置から上記直流バスに供給される直流電力の電圧範囲は、上記太陽光発電装置と上記直流バスとの間の直流電力の受け渡しをする上記第1のDC-DCコンバータによって400V±10Vに制御されることを特徴とする請求項17または18に記載の直流給電システム。
  20.  上記直流電力供給手段として、交流系統の交流電力を直流電力に変換して上記直流バスに供給するAC-DCコンバータが備えられており、
     上記AC-DCコンバータから上記直流バスに供給される直流電力の電圧範囲は、上記AC-DCコンバータによって380V±10Vに制御されることを特徴とする請求項17から19までのいずれか1項に記載の直流給電システム。
  21.  上記直流電力発生装置として太陽光発電装置が備えられていることを特徴とする請求項16から20までのいずれか1項に記載の直流給電システム。
PCT/JP2012/059603 2011-04-18 2012-04-06 電力供給装置、電力供給装置の制御方法、および直流給電システム WO2012144357A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-091997 2011-04-18
JP2011091997A JP5342598B2 (ja) 2011-04-18 2011-04-18 電力変換器

Publications (1)

Publication Number Publication Date
WO2012144357A1 true WO2012144357A1 (ja) 2012-10-26

Family

ID=47041469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059603 WO2012144357A1 (ja) 2011-04-18 2012-04-06 電力供給装置、電力供給装置の制御方法、および直流給電システム

Country Status (2)

Country Link
JP (1) JP5342598B2 (ja)
WO (1) WO2012144357A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014095346A3 (de) * 2012-12-21 2014-12-24 Evonik Industries Ag Verfahren zur erbringung von regelleistung zur stabilisierung eines wechselstromnetzes
WO2016029128A1 (en) * 2014-08-22 2016-02-25 East Penn Manufacturing Co. Control of multiple battery groups
CN112134359A (zh) * 2020-09-22 2020-12-25 广东电网有限责任公司 一种交直流混合场景应用系统
TWI726590B (zh) * 2019-01-30 2021-05-01 財團法人工業技術研究院 充放電裝置和充放電方法
US11190013B2 (en) * 2019-04-16 2021-11-30 Tsinghua University System and control method of all-DC power supply and storage for building
WO2023037459A1 (ja) * 2021-09-08 2023-03-16 国立大学法人東北大学 自律協調制御システム、及び自律協調制御方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018521B2 (ja) * 2013-02-26 2016-11-02 株式会社デンソー 電力システム
JP6276506B2 (ja) * 2013-02-26 2018-02-07 株式会社デンソー 電力制御装置
JP6141213B2 (ja) * 2014-01-28 2017-06-07 Kddi株式会社 電力供給システム及び電力供給制御装置
JP6338703B2 (ja) * 2014-03-06 2018-06-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 直流小配電網のための直流電力サーバ
US10128656B2 (en) 2014-06-17 2018-11-13 Samsung Sdi Co., Ltd. Power assist unit and power assist system
JP6448225B2 (ja) 2014-06-17 2019-01-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. 電力アシストユニットおよび電力アシストシステム
WO2015198678A1 (ja) * 2014-06-26 2015-12-30 シャープ株式会社 電力供給システムおよびコントローラ
JP6344176B2 (ja) * 2014-09-22 2018-06-20 住友電気工業株式会社 給電設備及びその運転方法
JP6172868B2 (ja) * 2015-08-31 2017-08-02 興和株式会社 電源装置
JP2017195739A (ja) * 2016-04-22 2017-10-26 株式会社東芝 電源装置、電源システム、及びマイクログリッド
JP6988703B2 (ja) * 2018-06-06 2022-01-05 住友電気工業株式会社 電力変換装置、太陽光発電システム、及び、電力変換装置の制御方法
JP7357236B2 (ja) * 2019-02-06 2023-10-06 パナソニックIpマネジメント株式会社 電力システム
WO2020245951A1 (ja) * 2019-06-05 2020-12-10 三菱電機株式会社 電力供給システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241001A (ja) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp 車両用補助電源装置
JP2009142013A (ja) * 2007-12-04 2009-06-25 Sharp Corp 電力供給システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241001A (ja) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp 車両用補助電源装置
JP2009142013A (ja) * 2007-12-04 2009-06-25 Sharp Corp 電力供給システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014095346A3 (de) * 2012-12-21 2014-12-24 Evonik Industries Ag Verfahren zur erbringung von regelleistung zur stabilisierung eines wechselstromnetzes
WO2016029128A1 (en) * 2014-08-22 2016-02-25 East Penn Manufacturing Co. Control of multiple battery groups
CN106663945A (zh) * 2014-08-22 2017-05-10 东宾制造有限公司 对多个电池组的控制
TWI726590B (zh) * 2019-01-30 2021-05-01 財團法人工業技術研究院 充放電裝置和充放電方法
US11329500B2 (en) 2019-01-30 2022-05-10 Industrial Technology Research Institute Charging and discharging device and charging and discharging method
US11190013B2 (en) * 2019-04-16 2021-11-30 Tsinghua University System and control method of all-DC power supply and storage for building
CN112134359A (zh) * 2020-09-22 2020-12-25 广东电网有限责任公司 一种交直流混合场景应用系统
WO2023037459A1 (ja) * 2021-09-08 2023-03-16 国立大学法人東北大学 自律協調制御システム、及び自律協調制御方法

Also Published As

Publication number Publication date
JP2012228028A (ja) 2012-11-15
JP5342598B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5342598B2 (ja) 電力変換器
US8269374B2 (en) Solar panel power management system and method
JP5290349B2 (ja) 直流給電システムおよびその制御方法
KR101116430B1 (ko) 에너지 저장 시스템
CN102355042B (zh) 一种基于超级电容的电站直流电源装置及其供电方法
US10033190B2 (en) Inverter with at least two DC inputs, photovoltaic system comprising such an inverter and method for controlling an inverter
TWI470893B (zh) 電能供應系統
EP3087655B1 (en) Power supply system
KR100958610B1 (ko) 대체 에너지원이 접속된 무정전전원장치
EP2511999B1 (en) Reconfigurable power converters, systems and plants
WO2012115098A1 (ja) 蓄電システム
WO2014201025A1 (en) Apparatus and methods for control of load power quality in uninteruptible power systems
WO2011152249A1 (ja) 系統連系システム、及び分配器
WO2011042781A1 (ja) 電力供給システム
KR20120075970A (ko) 태양광 처리 장치 및 방법
Ryu et al. Test bed implementation of 380V DC distribution system using isolated bidirectional power converters
JP2008113500A (ja) 災害時用電力供給システム
CN103683467A (zh) 一种具有自启动功能的独立光伏供电系统
JP5841279B2 (ja) 電力充電供給装置
JP2015177631A (ja) 電源装置及びその制御方法
KR101587488B1 (ko) 계통 연계형 시스템에서의 고효율 배터리 충방전 시스템 및 방법
WO2021237818A1 (zh) 多端口储能电池
KR20130051772A (ko) 태양광 발전 장치 연계형 전력공급장치 및 이의 제어 방법
JP6722295B2 (ja) 電力変換システム、電力供給システムおよび電力変換装置
JP6076381B2 (ja) 電力供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774723

Country of ref document: EP

Kind code of ref document: A1