WO2021237818A1 - 多端口储能电池 - Google Patents

多端口储能电池 Download PDF

Info

Publication number
WO2021237818A1
WO2021237818A1 PCT/CN2020/096049 CN2020096049W WO2021237818A1 WO 2021237818 A1 WO2021237818 A1 WO 2021237818A1 CN 2020096049 W CN2020096049 W CN 2020096049W WO 2021237818 A1 WO2021237818 A1 WO 2021237818A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
interface
converter
battery
module
Prior art date
Application number
PCT/CN2020/096049
Other languages
English (en)
French (fr)
Inventor
王大庆
胡跃贞
宋海生
向昌波
范先胜
Original Assignee
深圳市富兰瓦时技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市富兰瓦时技术有限公司 filed Critical 深圳市富兰瓦时技术有限公司
Publication of WO2021237818A1 publication Critical patent/WO2021237818A1/zh
Priority to US17/560,370 priority Critical patent/US20220115884A1/en
Priority to US18/355,760 priority patent/US20230361688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3372Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration of the parallel type
    • H02M3/3374Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration of the parallel type with preregulator, e.g. current injected push-pull
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This application relates to battery technology, for example, to a multi-port energy storage battery.
  • Photovoltaics can generate electricity during the day, but when the sun goes down, photovoltaics cannot continue to generate electricity and use solar energy. With the development of lithium batteries, this problem has been solved. Household battery systems, that is, household battery packs can be used with photovoltaic systems. During the day, the solar energy is stored in the battery pack by charging the battery, and then the battery pack is stored at night. The electricity is released for the user’s home use.
  • This application provides a multi-port energy storage battery to realize that the battery can adapt to different voltage levels and voltage types.
  • a multi-port energy storage battery including:
  • the battery housing includes a first port, a second port, and a third port;
  • the battery module includes a first interface connected to the first port, and the battery module is configured to be connected to an external power supply module through the first port and the first interface to charge the battery module;
  • the DC-DC converter includes a second interface and a third interface, the second interface is connected to the first interface, the third interface is connected to the second port, and the DC-DC converter is configured to boost the battery voltage Output through the second port after the voltage is DC high voltage;
  • the DC-AC converter includes a fourth interface and a fifth interface, the fourth interface is connected to the first interface, the fifth interface is connected to the third port, and the DC-AC converter is configured to connect the battery The voltage is converted into alternating current and output through the third port.
  • FIG. 1 is a schematic structural diagram of a multi-port energy storage battery provided by Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural diagram of a multi-port energy storage battery provided in Embodiment 2 of the present application;
  • Fig. 3 is a schematic structural diagram of a DC-DC converter provided in the second embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a DC-AC converter provided in the second embodiment of the present application.
  • first”, “second”, etc. may be used herein to describe various directions, actions, steps or elements, etc., but these directions, actions, steps or elements are not limited by these terms. These terms are only used to distinguish a first direction, action, step or element from another direction, action, step or element.
  • the first module may be referred to as the second module, and similarly, the second module may be referred to as the first module. Both the first module and the second module are modules, but they are not the same module.
  • the terms “first”, “second”, etc. cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • first and second may explicitly or implicitly include one or more of the features.
  • a plurality of means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first embodiment of the present application provides a multi-port energy storage battery.
  • the multi-port energy storage battery includes a battery housing 100, a battery module 200, a DC-DC converter 300, and a DC-AC converter 400 .
  • the battery housing 100 includes a first port 110, a second port 120, and a third port 130;
  • the battery module 200 includes a first interface 210, the first interface 210 is connected to the first port 110, and the battery module 200 is configured to pass through the first port 110 Connect the external power supply module to the first interface 210 for charging;
  • the DC-DC converter 300 includes a second interface 310 and a third interface 320, the second interface 310 is connected to the first interface 210, and the third interface 320 is connected to the second port 120 ,
  • the DC-DC converter 300 is configured to boost the battery voltage to a DC high voltage and then output it through the second port 120;
  • the DC-AC converter 400 includes a fourth interface 410 and a fifth interface 420, a fourth interface 410 and a first interface 210 is connected, the fifth interface 420 is connected to the third port 130, and the DC-AC converter 400 is configured to convert the battery voltage into alternating current and output it through the third port 130.
  • the battery module 200 is also configured to be connected to an external power supply module for charging through the second port 120, the DC-DC converter 300 and the first interface 210.
  • the battery module 200 is further configured to be connected to an external power supply module for charging through the third port 130, the DC-AC converter 400 and the first interface 210.
  • the multi-port energy storage battery can be used in any scenario that requires charging and discharging.
  • the charging voltage provided by the external power supply module is the same as the battery voltage of the battery module 200, for example, both are 48V DC power.
  • the external power supply module can be directly connected to the first port 110, and then the external power supply module can charge the battery module 200 through the first port 110 and the first interface 210.
  • the charging voltage provided by the external power supply module is DC high voltage, such as 400V DC power
  • the external power supply module needs to be connected to the second port 120 at this time, and the external power supply module passes through the second port 120, the third interface 320, and the second interface 310.
  • the battery module 200 is charged with the first interface 210, that is, the charging voltage provided by the external power supply module needs to be reduced by the DC-DC converter 300 to a direct current of 48V before being charged into the battery module 200.
  • the charging voltage provided by the external power supply module is alternating current, such as 220V alternating current
  • the external power supply module needs to be connected to the third port 130 at this time, and the external power supply module passes through the third port 130, the fifth interface 420, and the fourth interface 410.
  • the first interface 210 charges the battery module 200, that is, the charging voltage provided by the external power supply module needs to be converted into 48V direct current by the DC-AC converter 400 before being charged into the battery module 200.
  • the electrical appliance When discharging is required, if the user's required voltage is the same as the battery voltage of the battery module 200, for example, both are 48V DC, the electrical appliance can be directly connected to the first port 110, and then the battery module 200 can pass through the first port 210 and the first port 110 output working voltage to the electrical appliance. If the user's demand voltage is DC high voltage, such as 400V DC, the electrical appliance needs to be connected to the second port 120 at this time.
  • the battery module 200 passes through the first port 210, the second port 310, the third port 320, and the second port 120.
  • the working voltage is output to the consumer, that is, the working voltage provided by the battery module 200 needs to be boosted by the DC-DC converter 300 to a direct current of 400V before being output to the consumer.
  • the electrical appliance needs to be connected to the third port 130 at this time, and the battery module 200 outputs through the first port 210, the fourth port 410, the fifth port 420, and the third port 130
  • the working voltage is provided to the consumer, that is, the working voltage provided by the battery module 200 needs to be converted into 220V alternating current by the DC-AC converter 400 and then output to the consumer.
  • the battery housing 100 includes a first port 110, a second port 120, and a third port 130;
  • the battery module 200 includes a first interface 210, the first interface 210 is connected to the first port 110, and the battery module 200 It is configured to connect an external power supply module through the first port 110 and the first port 210 for charging;
  • the DC-DC converter 300 includes a second port 310 and a third port 320, the second port 310 is connected to the first port 210, and the third port
  • the interface 320 is connected to the second port 120, and the DC-DC converter 300 is configured to boost the battery voltage to a DC high voltage and output it through the second port 120;
  • the DC-AC converter 400 includes a fourth interface 410 and a fifth interface 420 , The fourth interface 410 is connected to the first interface 210, the fifth interface 420 is connected to the third port 130, and the DC-AC converter 400 is configured to convert the battery voltage into alternating current and output it through the third port 130, which solves the problem of battery docking
  • the second embodiment of the present application provides a multi-port energy storage battery.
  • the second embodiment of the present application is an improvement on the basis of the first embodiment of the present application. It includes a control module 500 and a wireless communication module 600.
  • the control module 500 includes a first switch 510 set at the second port 120, a second switch 520 set at the third port 130, and a microprocessor 530.
  • the microprocessor 530 is configured to control the first switch 510 and the second switch 520. Open and close.
  • the wireless communication module 600 is connected to the microprocessor 530, and the wireless communication module 600 is configured to receive wireless control instructions to control the microprocessor 530.
  • the battery housing 100 may further include a communication port 140.
  • the microprocessor 530 is configured to connect to an external host computer through the communication port 140.
  • the communication port 140 supports RS (Recommendation Standard)-485 or CAN bus (Controller Area Network) communication protocols.
  • the battery case 100 is configured to house the battery module 200, the DC-DC converter 300, and the DC-AC converter 400 inside the battery case 100.
  • the third interface 320 is also connected to the fourth interface 410, and the fourth interface 410 is connected through the third interface 320, the DC-DC converter 300, the second interface 310 and the first interface 210.
  • the DC-AC converter 400 is also configured to convert the high voltage direct current into alternating current and output it through the third port 130.
  • the battery module 200 is also configured to be connected to an external power supply module for charging through the second port 120, the DC-DC converter 300 and the first interface 210.
  • the battery module 200 is also configured to be connected to an external power supply module for charging through the third port 130, the DC-AC converter 400, the DC-DC converter 300 and the first interface 210.
  • the external power supply module includes a photovoltaic DC-AC converter.
  • the multi-port energy storage battery can be used for charging and discharging scenarios between the photovoltaic DC-AC converter of the household photovoltaic system and the battery.
  • the electric capacity requirement for household energy storage can be 10 KWh, correspondingly set the battery module 200 to a 48V low-voltage system.
  • the photovoltaic DC-AC converter When the photovoltaic DC-AC converter is used for charging during the day, if the charging voltage of the interface provided by the photovoltaic DC-AC converter is the same as the battery voltage of the battery module 200 When both are 48V direct current, the photovoltaic DC-AC converter can be directly connected to the first port 110, and then the photovoltaic DC-AC converter can charge the battery module 200 through the first port 110 and the first interface 210.
  • the photovoltaic DC-AC converter needs to be connected to the second port 120 at this time, and the photovoltaic DC-AC converter passes through the second port 120 ,
  • the third interface 320, the second interface 310, and the first interface 210 charge the battery module 200, that is, the charging voltage provided by the photovoltaic DC-AC converter needs to be reduced by the DC-DC converter 300 to 48V DC before charging Into the battery module 200.
  • the photovoltaic DC-AC converter does not provide an interface, you can directly use the utility power provided by the photovoltaic system to the user, such as 220V AC or 120/240V SPLIT AC, connect the utility power to the third port 130, and the utility power can pass through the third port 130.
  • the three ports 130, the fifth port 420, the fourth port 410, the third port 320, the DC-DC converter 300, the second port 310, and the first port 210 charge the battery module 200, that is, the charging voltage provided by the mains
  • the DC-AC converter 400 and the DC-DC converter 300 convert into 48V direct current before charging into the battery module 200.
  • the user can control the wireless communication module 600 through the mobile phone.
  • the wireless communication module 600 controls the microprocessor 530 to turn off the first switch 510 and the second switch 520, or by controlling the host computer to issue a communication signal to release the 48V DC power, the host computer then passes The communication port 140 controls the microprocessor 530 to turn off the first switch 510 and the second switch 520.
  • the user can directly connect the electrical appliance to the first port 110, and then the power module can pass through the first port 210 and the first port 110 Output working voltage to electrical appliances.
  • the user's demand voltage is DC high voltage, such as 400V DC
  • the user can control the wireless communication module 600 through the mobile phone to send a communication signal to release 400V DC
  • the wireless communication module 600 controls the microprocessor 530 to switch the first switch 510 is closed, the second switch 520 is opened, or by controlling the host computer to send a communication signal to release 400V DC power
  • the host computer controls the microprocessor 530 through the communication port 140 to close the first switch 510 and open the second switch 520 ,
  • the power module 200 outputs the operating voltage to the electrical appliance through the first interface 210, the second interface 310, the third interface 320, and the second port 120, that is, the operating voltage provided by the battery module 200 It needs to be boosted by the DC-DC converter 300 to 400V direct current and then output to the consumer.
  • the user can control the wireless communication module 600 through the mobile phone to release 220V, 230V Or 120/240V SPLIT AC power communication signal, the wireless communication module 600 then controls the microprocessor 530 to open the first switch 510 and close the second switch 520, or release 220V, 230V or 120/240V by controlling the host computer With the communication signal of SPLIT AC power, the host computer then controls the microprocessor 530 through the communication port 140 to open the first switch 510 and close the second switch 520.
  • the home power grid needs to be connected to the third port 130, and the battery module passes through the third port 130.
  • An interface 210, a second interface 310, a DC-DC converter 300, a third interface 320, a fourth interface 410, a fifth interface 420, and a third port 130 output the working voltage to the home power grid, that is, the working voltage provided by the battery module 200 It needs to be converted into 220V, 230V or 120/240V SPLIT AC power through the DC-DC converter 300 and the DC-AC converter 400 and then output to the home power grid.
  • the third port 130 includes three interfaces, a neutral wire, a live wire, and an output live wire.
  • the user can also control the first switch 510 and the second switch 520 to be closed at the same time, so as to meet the user's requirement for using AC and DC power at the same time.
  • the specific control method and current flow are the same as the above method.
  • the DC-DC converter 300 in this embodiment is composed of LLC (resonant circuit), BUCK (buck converter circuit) or BOOST (boost chopper circuit) two-stage conversion, including MOS tubes, Capacitors and inductors can convert 48V direct current into 400V direct current, and the same can reversely convert 400V direct current into 48V direct current.
  • the DC-AC converter 400 in this embodiment is a T-shaped three-level DC-AC converter 400, including a transistor, capacitor, and inductor, etc., which can convert 400V direct current into 120/240V SPLIT In the same way, the 120/240V SPLIT AC power can be reversely converted into 400V DC power.
  • the multi-port energy storage battery may also include a fourth port, a fifth port, etc., and a DC-DC converter 300 or a DC-AC converter 400 is adaptively added to provide a variety of different Input and output interface of voltage level and voltage type.
  • the battery housing 100 includes a first port 110, a second port 120, and a third port 130; the battery module 200 includes a first port 210, and the first port 210 is connected to the first port 110 The battery module 200 is configured to connect to an external power supply module through the first port 110 and the first port 210 to charge the battery module; the DC-DC converter 300 includes a second port 310 and a third port 320, so The second interface 310 is connected to the first interface 210, the third interface 320 is connected to the second port 120, and the DC-DC converter 300 is configured to boost the battery voltage to a DC high voltage and then pass through the second port 120 output; DC-AC converter 400, including a fourth interface 410 and a fifth interface 420, the fourth interface 410 and the first interface 210 are connected, the fifth interface 420 and the third port 130 are connected, the DC -The AC converter 400 is configured to convert the battery voltage into alternating current and output it through the third port 130.
  • the present application solves the problem of the adaptability of

Abstract

一种多端口储能电池包括:电池壳体(100),包括第一端口(110)、第二端口(120)和第三端口(130);电池模块(200),包括第一接口(210),第一接口(210)和第一端口(110)连接,电池模块(200)配置为通过第一端口(110)和第一接口(210)连接外部供电模块以对电池模块(200)进行充电;DC-DC转换器(300),包括第二接口(310)和第三接口(320),第二接口(310)和第一接口(210)连接,第三接口(320)和第二端口(120)连接,DC-DC转换器(300)配置为将电池电压升压为直流高压后通过第二端口(120)输出;DC-AC转换器(400),包括第四接口(410)和第五接口(420),第四接口(410)和第一接口(210)连接,第五接口(420)和第三端口(130)连接,DC-AC转换器(400)配置为将电池电压转换为交流电后通过第三端口(130)输出。

Description

多端口储能电池
本申请要求在2020年5月26日提交中国专利局、申请号为202010457131.8的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术,例如涉及一种多端口储能电池。
背景技术
近年来随着新能源的发展,光伏系统越来越多的进入家庭户用场景中,尤其是光照好的地区,光伏发电给人们带来了实实在在的好处。
白天光伏可以发电,但当太阳落山后光伏就无法继续发电使用太阳能了。随着锂电池的发展,使得这一问题得到解决,户用电池系统即户用电池包可以配合光伏系统,在白天通过给电池充电把太阳能储存至电池包中,而当夜晚时再把电池包的电释放出来给用户家庭使用。
这种方案固然可以解决太阳能储存的问题,但是由于电池所配合的光伏DC(Direct Current)-AC(Alternating Current)转换器有很多品牌和型号,投入使用较早的光伏DC-AC转换器没有电池接口,或者电池接口的电压等级不一致,比如有的是400V,有的是48V等等。这就带来很多问题,一旦用户选用了某种光伏DC-AC转换器,当希望进行储能方案对接时,可选的电池方案较少,相关的电池扩容性、替代性差,使得用户对于太阳能的投资收益下降,用户的体验受到影响。
发明内容
本申请提供一种多端口储能电池,以实现电池可适配不同的电压等级和电 压类型。
一种多端口储能电池,包括:
电池壳体,包括第一端口、第二端口和第三端口;
电池模块,包括第一接口,所述第一接口和所述第一端口连接,所述电池模块配置为通过所述第一端口和第一接口连接外部供电模块以对所述电池模块进行充电;
DC-DC转换器,包括第二接口和第三接口,所述第二接口和第一接口连接,所述第三接口和第二端口连接,所述DC-DC转换器配置为将电池电压升压为直流高压后通过所述第二端口输出;
DC-AC转换器,包括第四接口和第五接口,所述第四接口和第一接口连接,所述第五接口和第三端口连接,所述DC-AC转换器配置为将所述电池电压转换为交流电后通过所述第三端口输出。
附图说明
图1是本申请实施例一提供的一种多端口储能电池的结构示意图;
图2是本申请实施例二提供的一种多端口储能电池的结构示意图;
图3是本申请实施例二提供的一种DC-DC转换器的结构示意图;
图4是本申请实施例二提供的一种DC-AC转换器的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语 仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一模块称为第二模块,且类似地,可将第二模块称为第一模块。第一模块和第二模块两者都是模块,但其不是同一模块。术语“第一”、“第二”等不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请实施例的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
实施例一
如图1所示,本申请实施例一提供了一种多端口储能电池,该多端口储能电池包括电池壳体100、电池模块200、DC-DC转换器300和DC-AC转换器400。
电池壳体100包括第一端口110、第二端口120和第三端口130;电池模块200包括第一接口210,第一接口210和第一端口110连接,电池模块200配置为通过第一端口110和第一接口210连接外部供电模块进行充电;DC-DC转换器300包括第二接口310和第三接口320,第二接口310和第一接口210连接,第三接口320和第二端口120连接,DC-DC转换器300配置为将电池电压升压为直流高压后通过第二端口120输出;DC-AC转换器400包括第四接口410和第五接口420,第四接口410和第一接口210连接,第五接口420和第三端口130连接,DC-AC转换器400配置为将电池电压转换为交流电后通过第三端口130输出。电池模块200还配置为通过第二端口120、DC-DC转换器300和第一接口210连接外部供电模块进行充电。电池模块200还配置为通过第三端口130、DC-AC转换器400和第一接口210连接外部供电模块进行充电。
本实施例中,该多端口储能电池可用于任意需要充电和放电的场景,当需要进行充电时,若外部供电模块提供的充电电压和电池模块200的电池电压相同,例如都为48V的直流电时,可以直接将外部供电模块接入第一端口110,然后外部供电模块就可以通过第一端口110和第一接口210对电池模块200进行充电。若外部供电模块提供的充电电压为直流高压,例如为400V的直流电时,外部供电模块此时需要接入第二端口120,外部供电模块通过第二端口120、第三接口320、第二接口310和第一接口210给电池模块200进行充电,即外部供电模块提供的充电电压需要经过DC-DC转换器300降压为48V的直流电后再充入电池模块200。若外部供电模块提供的充电电压为交流电,例如为220V的交流电时,外部供电模块此时需要接入第三端口130,外部供电模块通过第三端口130、第五接口420、第四接口410和第一接口210给电池模块200进行充电,即外部供电模块提供的充电电压需要经过DC-AC转换器400转换为48V的直流电后再充入电池模块200。
当需要进行放电时,若用户的需求电压和电池模块200的电池电压相同,例如都为48V的直流电时,可以直接将用电器接入第一端口110,然后电池模块200就可以通过第一接口210和第一端口110输出工作电压给用电器。若用户的需求电压为直流高压,例如400V的直流电时,用电器此时需要接入第二端口120,电池模块200通过第一接口210、第二接口310、第三接口320、第二端口120输出工作电压给用电器,即电池模块200提供的工作电压需要经过DC-DC转换器300升压为400V的直流电后再输出给用电器。若用户的需求电压为交流电,例如220V的交流电时,用电器此时需要接入第三端口130,电池模块200通过第一接口210、第四接口410、第五接口420和第三端口130输出工作电压给用电器,即电池模块200提供的工作电压需要经过DC-AC转换器400 转换为220V的交流电后再输出给用电器。
本申请实施例通过电池壳体100,包括第一端口110、第二端口120和第三端口130;电池模块200,包括第一接口210,第一接口210和第一端口110连接,电池模块200配置为通过第一端口110和第一接口210连接外部供电模块进行充电;DC-DC转换器300,包括第二接口310和第三接口320,第二接口310和第一接口210连接,第三接口320和第二端口120连接,DC-DC转换器300配置为将电池电压升压为直流高压后通过第二端口120输出;DC-AC转换器400,包括第四接口410和第五接口420,第四接口410和第一接口210连接,第五接口420和第三端口130连接,DC-AC转换器400配置为将电池电压转换为交流电后通过第三端口130输出,解决了电池的对接适应性问题,实现了电池可适配不同的电压等级和电压类型的效果。
实施例二
如图2所示,本申请实施例二提供了一种多端口储能电池,本申请实施例二是在本申请实施例一的基础上的改进,本实施例提供的多端口储能电池还包括控制模块500和无线通信模块600。
控制模块500包括设置在第二端口120的第一开关510、设置在第三端口130的第二开关520和微处理器530,微处理器530配置为控制第一开关510和第二开关520的断开和闭合。无线通信模块600与微处理器530连接,无线通信模块600配置为接收无线控制指令以控制微处理器530。电池壳体100还可以包括通信端口140,微处理器530配置为通过通信端口140与外部上位机连接,通信端口140支持RS(Recommendation Standard)-485或CAN总线(Controller Area Network)通信协议。
本实施例中,电池壳体100配置为将电池模块200、DC-DC转换器300和DC-AC转换器400收容在电池壳体100内部。第三接口320还和第四接口410连接,第四接口410通过第三接口320、DC-DC转换器300、第二接口310和第一接口210连接。DC-AC转换器400还配置为将直流高压转换为交流电后通过第三端口130输出。电池模块200还配置为通过第二端口120、DC-DC转换器300和第一接口210连接外部供电模块进行充电。电池模块200还配置为通过第三端口130、DC-AC转换器400、DC-DC转换器300和第一接口210连接外部供电模块进行充电。
外部供电模块包括光伏DC-AC转换器,该多端口储能电池可用于家用光伏系统的光伏DC-AC转换器和电池间的充电和放电的场景,家庭储能用的电容量需求可以为10度电,相应的设置电池模块200为48V的低电压系统,当白天通过光伏DC-AC转换器进行充电时,若光伏DC-AC转换器提供的接口的充电电压和电池模块200的电池电压相同,都为48V的直流电时,可以直接将光伏DC-AC转换器接入第一端口110,然后光伏DC-AC转换器就可以通过第一端口110和第一接口210对电池模块200进行充电。若光伏DC-AC转换器提供的接口的充电电压为直流高压,例如400V的直流电时,光伏DC-AC转换器此时需要接入第二端口120,光伏DC-AC转换器通过第二端口120、第三接口320、第二接口310和第一接口210对电池模块200进行充电,即光伏DC-AC转换器提供的充电电压需要经过DC-DC转换器300降压为48V的直流电后再充入电池模块200。若光伏DC-AC转换器没有提供接口,那么可以直接使用光伏系统提供给用户的市电,例如220V的交流电或120/240V SPLIT的交流电,将市电接入第三端口130,市电通过第三端口130、第五接口420、第四接口410、第三接口320、DC-DC转换器300、第二接口310和第一接口210对电池模块200进行 充电,即市电提供的充电电压需要经过DC-AC转换器400、DC-DC转换器300转换为48V的直流电后再充入电池模块200。
当晚上光伏系统无法供电,多端口储能电池需要进行放电时,若用户的需求电压和电池模块200的电池电压相同,例如都为48V的直流电时,用户可以通过手机端控制无线通信模块600发出释放48V的直流电的通信讯号,无线通信模块600继而控制微处理器530,使第一开关510和第二开关520断开,或者通过控制上位机发出释放48V的直流电的通信讯号,上位机继而通过通信端口140控制微处理器530,使第一开关510和第二开关520断开,用户可以直接将用电器接入第一端口110,然后电源模块就可以通过第一接口210和第一端口110输出工作电压给用电器。若用户的需求电压为直流高压,例如为400V的直流电时,用户可以通过手机端控制无线通信模块600发出释放400V的直流电的通信讯号,无线通信模块600继而控制微处理器530,使第一开关510闭合、第二开关520断开,或者通过控制上位机发出释放400V的直流电的通信讯号,上位机继而通过通信端口140控制微处理器530,使第一开关510闭合、第二开关520断开,然后将用电器接入第二端口120,电源模块200通过第一接口210、第二接口310、第三接口320和第二端口120输出工作电压给用电器,即电池模块200提供的工作电压需要经过DC-DC转换器300升压为400V的直流电后再输出给用电器。
若用户的需求电压为交流电,即直接将该多端口储能电池接入家庭电网,例如220V、230V或120/240V SPLIT的交流电时,用户可以通过手机端控制无线通信模块600发出释放220V、230V或120/240V SPLIT的交流电的通信讯号,无线通信模块600继而控制微处理器530,使第一开关510断开、第二开关520闭合,或者通过控制上位机发出释放220V、230V或120/240V SPLIT的交流电 的通信讯号,上位机继而通过通信端口140控制微处理器530,使第一开关510断开、第二开关520闭合,家庭电网此时需要接入第三端口130,电池模块通过第一接口210、第二接口310、DC-DC转换器300、第三接口320、第四接口410、第五接口420和第三端口130输出工作电压给家庭电网,即电池模块200提供的工作电压需要经过DC-DC转换器300、DC-AC转换器400转换为220V、230V或120/240V SPLIT的交流电后再输出给家庭电网。第三端口130包括零线、火线和输出火线三个接口。适应性的,用户还可以控制第一开关510和第二开关520同时闭合,以满足用户需要同时使用交流电和直流电的需求,其具体的控制方式和电流的流向与上述方式相同,本申请实施例在此不再赘述。
如图3所示,本实施例中的DC-DC转换器300由LLC(谐振电路)、BUCK(降压式变换电路)或BOOST(升压斩波电路)两级变换构成,包括MOS管、电容和电感等,可以将48V的直流电转换为400V的直流电,同样的可以反向的将400V的直流电转换为48V的直流电。如图4所示,本实施例中的DC-AC转换器400为T字型三电平DC-AC转换器400,包括三极管、电容和电感等,可以将400V的直流电转换为120/240V SPLIT的交流电,同样的可以反向的将120/240V SPLIT的交流电转换为400V的直流电。
在一替代实施例中,该多端口储能电池还可以包括第四端口和第五端口等,并适应性的增加DC-DC转换器300或DC-AC转换器400,用来提供多种不同电压等级和电压类型的输入输出接口。
本申请实施例通过电池壳体100,包括第一端口110、第二端口120和第三端口130;电池模块200,包括第一接口210,所述第一接口210和所述第一端口110连接,所述电池模块200配置为通过所述第一端口110和第一接口210连接外部供电模块以对电池模块进行充电;DC-DC转换器300,包括第二接口 310和第三接口320,所述第二接口310和第一接口210连接,所述第三接口320和第二端口120连接,所述DC-DC转换器300配置为将电池电压升压为直流高压后通过所述第二端口120输出;DC-AC转换器400,包括第四接口410和第五接口420,所述第四接口410和第一接口210连接,所述第五接口420和第三端口130连接,所述DC-AC转换器400配置为将所述电池电压转换为交流电后通过所述第三端口130输出,本申请解决了电池与光伏DC-AC转换器的对接适应性问题,实现了电池可适配不同的电压等级和电压类型的效果。

Claims (10)

  1. 一种多端口储能电池,包括:
    电池壳体,包括第一端口、第二端口和第三端口;
    电池模块,包括第一接口,所述第一接口和所述第一端口连接,所述电池模块配置为通过所述第一端口和所述第一接口连接外部供电模块以对所述电池模块进行充电;
    DC-DC转换器,包括第二接口和第三接口,所述第二接口和所述第一接口连接,所述第三接口和所述第二端口连接,所述DC-DC转换器配置为将电池电压升压为直流高压后通过所述第二端口输出;
    DC-AC转换器,包括第四接口和第五接口,所述第四接口和所述第一接口连接,所述第五接口和所述第三端口连接,所述DC-AC转换器配置为将所述电池电压转换为交流电后通过所述第三端口输出。
  2. 根据权利要求1所述的多端口储能电池,还包括:
    控制模块,包括设置在所述第二端口的第一开关、设置在所述第三端口的第二开关和微处理器,所述微处理器配置为控制所述第一开关和第二开关的断开和闭合。
  3. 根据权利要求2所述的多端口储能电池,还包括:
    无线通信模块,与所述微处理器连接,所述无线通信模块配置为接收无线控制指令以控制所述微处理器。
  4. 根据权利要求2所述的多端口储能电池,其中,所述电池壳体还包括通信端口,所述微处理器配置为通过所述通信端口与外部上位机连接。
  5. 根据权利要求1至4任一项所述的多端口储能电池,其中,所述第三接口还和所述第四接口连接,所述第四接口通过所述第三接口、DC-DC转换器、第二接口和所述第一接口连接。
  6. 根据权利要求5所述的多端口储能电池,其中,所述DC-AC转换器还配置为将所述直流高压转换为交流电后通过所述第三端口输出。
  7. 根据权利要求1所述的多端口储能电池,其中,所述外部供电模块包括光伏DC-AC转换器。
  8. 根据权利要求1所述的多端口储能电池,其中,所述电池模块还配置为通过所述第二端口、DC-DC转换器和第一接口连接外部供电模块以对所述电池模块进行充电。
  9. 根据权利要求1所述的多端口储能电池,其中,所述电池模块还配置为通过所述第三端口、DC-AC转换器和第一接口连接外部供电模块以对所述电池模块进行充电。
  10. 根据权利要求1至9任一项所述的多端口储能电池,其中,所述电池壳体配置为将所述电池模块、所述DC-DC转换器和所述DC-AC转换器收容在所述电池壳体的内部。
PCT/CN2020/096049 2020-05-26 2020-06-15 多端口储能电池 WO2021237818A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/560,370 US20220115884A1 (en) 2020-05-26 2021-12-23 Multi-Port Energy Storage Battery
US18/355,760 US20230361688A1 (en) 2020-05-26 2023-07-20 Multi-port energy storage battery and multi-port energy storage battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010457131.8A CN111525672A (zh) 2020-05-26 2020-05-26 一种多端口储能电池
CN202010457131.8 2020-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/560,370 Continuation US20220115884A1 (en) 2020-05-26 2021-12-23 Multi-Port Energy Storage Battery

Publications (1)

Publication Number Publication Date
WO2021237818A1 true WO2021237818A1 (zh) 2021-12-02

Family

ID=71908269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096049 WO2021237818A1 (zh) 2020-05-26 2020-06-15 多端口储能电池

Country Status (3)

Country Link
US (1) US20220115884A1 (zh)
CN (1) CN111525672A (zh)
WO (1) WO2021237818A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11581797B2 (en) * 2021-02-25 2023-02-14 Richtek Technology Corporation Multiple outputs universal serial bus travel adaptor and control method thereof
CN114204836A (zh) * 2021-10-11 2022-03-18 华为数字能源技术有限公司 一种逆变器和逆变装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290999A (zh) * 2011-08-15 2011-12-21 南京航空航天大学 一种多端口隔离双向dc-dc变换器
US20140285020A1 (en) * 2013-03-22 2014-09-25 Zonesking Technology Co., Ltd. Portable power supply
CN204905915U (zh) * 2015-07-09 2015-12-23 王磊 一种便携式多端口输出电源
CN107508331A (zh) * 2017-07-11 2017-12-22 道县龙威盛科技有限公司 充电单元及充电装置
CN110098658A (zh) * 2019-05-28 2019-08-06 合肥工业大学智能制造技术研究院 一种多端口主动式复合电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290999A (zh) * 2011-08-15 2011-12-21 南京航空航天大学 一种多端口隔离双向dc-dc变换器
US20140285020A1 (en) * 2013-03-22 2014-09-25 Zonesking Technology Co., Ltd. Portable power supply
CN204905915U (zh) * 2015-07-09 2015-12-23 王磊 一种便携式多端口输出电源
CN107508331A (zh) * 2017-07-11 2017-12-22 道县龙威盛科技有限公司 充电单元及充电装置
CN110098658A (zh) * 2019-05-28 2019-08-06 合肥工业大学智能制造技术研究院 一种多端口主动式复合电源

Also Published As

Publication number Publication date
CN111525672A (zh) 2020-08-11
US20220115884A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
US6914418B2 (en) Multi-mode renewable power converter system
JP5342598B2 (ja) 電力変換器
Diaz et al. Intelligent dc microgrid living laboratories-a chinese-danish cooperation project
US20220158464A1 (en) Ev charger with adaptable charging protocol
JP5290349B2 (ja) 直流給電システムおよびその制御方法
CN103178553A (zh) 一种家用混合供电系统
Wu et al. Design and development of dc-distributed system with grid connection for residential applications
KR20120075970A (ko) 태양광 처리 장치 및 방법
CN209805420U (zh) 一种高兼容性楼宇直流配电系统
US20220115884A1 (en) Multi-Port Energy Storage Battery
JP4722585B2 (ja) 電力料金だけでなくco2排出量をも削減することができる、太陽電池及び/又はキュービクルを使用した集合住宅用電力削減システム
CN102832701A (zh) 太阳能智能家居供电系统
CN113746160A (zh) 一种光伏能充换电柜系统和方法
CN103281013A (zh) 光伏供电系统
Liu et al. A bidirectional dual buck-boost voltage balancer with direct coupling based on a burst-mode control scheme for low-voltage bipolar-type DC microgrids
CN105449823B (zh) 光伏充电系统及其运行方法和装置
CN202872455U (zh) 太阳能智能家居供电系统
CN113725928B (zh) 户用交直流混合双向电能交互能量路由器及能量调度方法
CN112994057B (zh) 一种模块化能量路由器系统的经济运行控制方法
TW591847B (en) Regenerated energy inverter with multiple function modes
CN212462873U (zh) 一种多端口储能电池
CN109802572B (zh) 一种功率路由器及其控制方法
CN203788036U (zh) 一种太阳能市电互补充电装置
CN112838608A (zh) 一种储能系统
CN106655273A (zh) 一种智能混合储能供电终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937757

Country of ref document: EP

Kind code of ref document: A1