WO2012115098A1 - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
WO2012115098A1
WO2012115098A1 PCT/JP2012/054114 JP2012054114W WO2012115098A1 WO 2012115098 A1 WO2012115098 A1 WO 2012115098A1 JP 2012054114 W JP2012054114 W JP 2012054114W WO 2012115098 A1 WO2012115098 A1 WO 2012115098A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
circuit
storage system
converter
Prior art date
Application number
PCT/JP2012/054114
Other languages
English (en)
French (fr)
Inventor
久保 守
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012115098A1 publication Critical patent/WO2012115098A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to a power storage system, and in particular, controls the power supply of a power storage system control device for controlling each component of the power storage system to an optimal state according to standby, charge, discharge, and power failure.
  • the present invention relates to a power storage system that can improve system efficiency, prevent over-discharge of a storage battery during a power failure, and automatically resume operation when the power failure is restored.
  • a power storage system incorporating a chargeable / dischargeable battery module is connected between a commercial power supply (system) and each load, and this power storage system is used as a backup power source for a communication system, a computer system, etc. during a power failure Things were going on.
  • electric power generated by distributed power sources with large fluctuations in power generation such as large solar cells, wind power generators, wave power generators, etc., can be stored in power storage systems, and orthogonally converted and supplied to commercial power sources. It is getting done.
  • the power generated by solar cells and micro wind power generators installed in each home is temporarily stored in a power storage system, and used as auxiliary power when large power such as air conditioners and microwave ovens are used in the home. It is also used to use or supply surplus power to the system.
  • a power storage system By adopting such a system, it is possible to suppress the instantaneous use of large power from the commercial power supply, level the amount of power used by the commercial power supply, and supply surplus power to the system. Will be able to.
  • the power storage system can be used as an emergency power source or an uninterruptible power supply device that uses the power stored in the power storage system as the power of equipment used in the home. .
  • Patent Document 1 discloses a power storage system that controls three power sources, that is, a solar battery, a storage battery, and a commercial power system, using a power conditioner.
  • the power conditioner 50 used in this power storage system is connected to a commercial power system 51 with a home load 52, and is connected to a power conditioner 50 from a DC power source 53 such as a solar battery and a power storage means 54.
  • a DC power source 53 such as a solar battery and a power storage means 54.
  • surplus power not consumed by the home load 52 is reversely flowed to the commercial power system 51 side.
  • the power conditioner 50 includes a DC-DC converter 55, an inverter circuit 56, and a charge / discharge circuit 57.
  • the direct current power of the direct current power supply 53 is boosted by the DC-DC converter 55, and the inverter circuit 56 converts the direct current power of the direct current bus 58 into the alternating current power of the commercial frequency and outputs it to the commercial power system 51 of, for example, a single phase 200V.
  • the storage means 54 is charged or discharged by a charge / discharge circuit 57 and is connected to a DC bus 58 to which the DC-DC converter 55 and the charge / discharge circuit 57 are connected.
  • charging power is supplied from the commercial power system 51 to the power storage means 54 via the inverter circuit 56 and the charging / discharging circuit 57 at night when there is no power generation by the solar battery.
  • the inverter circuit 56 is a bidirectional inverter circuit capable of converting in either DC / AC or AC / DC direction.
  • the power supply selection circuit 59 receives drive power from the first power supply circuit 60 to which drive power is supplied from the DC power supply 53, the second power supply circuit 61 to which drive power is supplied from the power storage means 54, and the commercial power system 51. At least one power supply circuit is selected from the supplied third power supply circuit 62 and the drive power is supplied to the control circuit 63.
  • the power conditioner 50 is connected via the switch Sb in order to realize a self-sustaining operation mode in which the power conditioner 50 operates as an emergency power source independent of the commercial power system 51 when the commercial power system 51 fails.
  • the self-sustained operation output 64 is provided as an output terminal of the inverter circuit 56.
  • the present invention reviews the configuration of a conventional power storage system, and controls the power supply of the power storage system control device for controlling each component of the power storage system to an optimum state according to standby, charge, discharge, and power failure
  • the battery can be prevented from being over-discharged at the time of a power failure, and the power storage system can be automatically restarted when the power failure is restored.
  • the power storage system of the present invention comprises: A power converter having a storage battery, a charge mode for charging the storage battery using power from a system, and a discharge mode for converting power discharged from the storage battery and supplying the power to the system and a load; and
  • a power storage system controller for controlling selection of the mode
  • the power storage system controller is: Power for operation is fed from the system during standby and in the charging mode, which is neither the charging mode nor the discharging mode, In the discharge mode, when power for operation is supplied directly from the storage battery without passing through the power converter, and when the storage battery is in a state immediately before reaching the overdischarge state, The power is switched to a state in which the electric power is supplied, and the discharge of the storage battery is stopped.
  • FIG. 1 is a schematic circuit diagram of a power storage system according to an embodiment. It is a circuit diagram of the electrical storage system controller of FIG. It is a circuit diagram of the bidirectional
  • the configuration of the power storage system 10 of the embodiment will be described with reference to FIG.
  • a household general load 12 is connected to a system 11 connected to commercial power.
  • the power storage system 10 prevents AC power output from the storage battery 13 via the power conversion device 14 from generating surplus power that is not consumed by the general load 12, that is, so as not to flow backward to the grid 11 side. It is configured.
  • the storage battery 13 charges the storage battery 13 using the electric power of a specific time zone at night, charging power is supplied from the system 11 via the power conversion device 14. That is, the power conversion device 14 can generate not only AC power that can be supplied from the storage battery 13 to the grid 11 but also can generate DC power for charging the storage battery 13 from the grid 11. It is also called a bidirectional power conditioner.
  • an opening / closing part 15 is disposed between the storage battery 13 and the power conversion device 14, and an opening / closing piece 16 is disposed between the power conversion device 14 and the system 11.
  • a relay or a power semiconductor element is used as the opening / closing section 15 and the opening / closing section 16.
  • the power converter 14 can be operated as a so-called uninterruptible power supply device using the power charged in the storage battery 13 at the time of a power failure of the system 11, it is greatly affected if a power failure of the computer or the like occurs in the power converter 14 You may connect the specific load 12a which leaves.
  • a power storage system controller 17 is connected in parallel with the power conversion device 14 between the grid 11 and the storage battery 13.
  • the power storage system controller 17 performs charging control of the storage battery 13 using the above-described nighttime power according to a command from the outside as appropriate, and appropriately controls discharge of the power stored in the storage battery 13 during the daytime, thereby It has a peak cut function of input power from.
  • the power storage system controller 17 includes an AC / DC converter 18, a switch means 19, a DC / DC converter 20 and a control circuit 21.
  • the input side of the AC / DC converter 18 is connected to the system 11 side upstream of the switching piece 16, and the output side of the AC / DC converter 18 is connected to one terminal of the switch means 19.
  • the output of the storage battery 13 is directly connected to the other terminal of the switch means 19.
  • the terminal connected to the movable piece of the switch means 19 is connected to the input side of the DC / DC converter 20, and the output side of the DC / DC converter 20 is connected to the power supply terminal 22 of the control circuit 21.
  • DC power from the storage battery 13 and AC / DC converted DC power from the AC / DC converter 18 are selected by the switch means 19 and supplied to the DC / DC converter 20 at the power supply terminal 22 of the control circuit 21.
  • the current supplied to the DC / DC converter 20 is converted to a constant voltage by the DC / DC converter 20 so as to be an optimum driving voltage for the control circuit 21 and supplied to the power supply terminal 22 of the control circuit 21.
  • the control circuit 21 controls the operations of the power conversion device 14, the opening / closing unit 15, the opening / closing piece 16, and the switch unit 19.
  • the AC input side of the power storage system controller 17 is connected to the bridge rectifier circuit 18a.
  • the + terminal (positive output) of the bridge clear current circuit 18a is connected to one terminal of the switch means 19 via a smoothing circuit 18b composed of a reactor and a capacitor.
  • One terminal of the switch means 19 is connected to the minus terminal (negative output) of the bridge rectifier circuit 18a through a parallel circuit of the input coil of the transformer 24, the switching element 23a and the diode 23b.
  • the bridge rectification circuit 18a and the smoothing circuit 18b correspond to the rectification / smoothing circuit of the present invention, and correspond to the AC / DC converter 18 in FIG.
  • the other terminal of the switch means 19 is connected to the + terminal of the storage battery 13.
  • One output coil of the transformer 24 is supplied as power of the power supply control circuit 25 through a rectifying / smoothing circuit 24a composed of a diode and a capacitor.
  • the other output coil of the transformer 24 is supplied as electric power for the control circuit 21 via a rectifying / smoothing circuit 24b composed of a diode and a capacitor.
  • the coil is turned on by the output of the control circuit 21, and the intercept of the switch means 19 is switched to one side or the other side.
  • the transformer 19, the switching element 23a, the diode 23b, the transformer 24, and the rectifier circuits 24a and 24b correspond to the adjustment circuit of the present invention, and form the DC / DC converter 20 in FIG.
  • the DC / DC converter 20 controls the ON / OFF of the switching element 23a by the power supply control circuit 25 to convert the DC power input to the transformer 24 to AC.
  • the DC / DC converter 20 also includes a DC voltage E1 supplied to the power supply terminal 22 of the control circuit 21 on the first output side of the transformer 24 and a DC voltage supplied to the power supply terminal 26 of the power supply control circuit 25 on the second output side.
  • E2 is simultaneously varied and stabilized. For example, when the output of E1 becomes lower than a predetermined value in the comparison circuit 24c using PUT, the output is output to the power supply control circuit 25 via the output transistor of the light emitting diode of the photocoupler 24d, and the power supply control circuit 25 turns on / off the switching element 23a.
  • Variable control of OFF or ON duty That is, it forms a feedback type switching power supply by the photocoupler 24d.
  • the comparison circuit 24c is not limited to this, and a comparator, a transistor, or the like may be used, or a dedicated power supply IC may be used.
  • the DC / DC converter 20 further includes a series circuit (not shown) connected to the power supply terminal 26 of the power supply control circuit 25 via a resistor and a diode in the forward direction on the output side of the smoothing circuit 18b.
  • the resistance value of the series circuit is such that the voltage applied to the power supply terminal 26 via the series circuit is lower than the voltage applied from the rectifying and smoothing circuit 24a when the switching element 23a is operated, and the resistance of the power supply control circuit 25 The voltage is set to be necessary for operation.
  • this series circuit secures the power required for starting the power supply control circuit 25, the securing of the starting power can be obtained from a storage battery, and is not limited to this configuration.
  • the power conversion device 14 includes a DC / DC converter unit 31 and an AC / DC converter unit 32.
  • the DC / DC converter unit 31 is connected in reverse to the LC circuit 34 including the capacitor C1 and the inductor L1 connected to the storage battery 13 side, and the switching element 35a and the switching element 35a connected to the LC circuit 34 in parallel.
  • a half bridge circuit 35 having two sets of diodes 35b.
  • the DC / DC converter unit 31 is obtained from the AC / DC converter unit 32 together with L1 and C1 by turning ON / OFF the upper switching element of the half-bridge circuit 35 and keeping the lower switching element OFF.
  • the high-voltage DC power can be stepped down to the low-voltage DC power and used for charging the storage battery 13. Further, the DC / DC converter unit 31 keeps the upper switching element of the half-bridge circuit 35 OFF and turns the lower switching element ON / OFF, so that the low-voltage direct current from the storage battery 13 together with L1 and C2 is obtained.
  • the voltage can be boosted to a high DC voltage and supplied to the AC / DC converter unit 32. Therefore, the DC / DC converter unit 31 of the power converter 14 corresponds to the step-up / step-down unit of the present invention, and operates as a charging voltage control circuit and a charging current control circuit in a charging mode in which the storage battery 13 is charged, and discharge is performed. It operates as a DC voltage booster during the discharge mode.
  • the AC / DC converter unit 32 includes four sets of a capacitor C2 connected in parallel with the DC / DC converter unit 31, and a switching element 36a and a diode 36b connected in parallel to the switching element 36a in the reverse direction. And a low-pass filter including inductors L2 and L3 connected between the full bridge circuit 36 and the system 11 and a capacitor C3.
  • the AC / DC converter unit 32 rectifies the high-voltage AC power supplied from the system 11 with an active filter configured by the full bridge circuit 36, smooths it with the capacitor C ⁇ b> 2, and then supplies it to the DC / DC converter unit 31. be able to.
  • the AC / DC converter unit 32 can convert the high-voltage DC power supplied from the DC / DC converter unit 31 into high-voltage AC power having substantially the same frequency as that of the system 11 and substantially the same phase. Therefore, the AC / DC converter unit 32 of the power conversion device 14 corresponds to the AC / DC bidirectional conversion unit of the present invention, and operates as a rectifier circuit in the charging mode in which the storage battery 13 is charged, and discharge is performed. Operates as a grid-linked inverter in the discharge mode.
  • the power converter 14 operates as a bidirectional power converter.
  • the two switching elements 35a of the DC / DC converter section 31 and the four switching elements 36a of the AC / DC converter section 32 are controlled by the control circuit 21 of the power storage system controller 17 shown in FIGS. 1 and 2, respectively.
  • the concrete control system of these switching elements 35a and 36a is already known, the detailed description is abbreviate
  • the control circuit 21 performs the steps shown in FIG. 4 at predetermined time intervals so that the control power supplied to the power supply terminal 22 of the control circuit 21 is set to the DC side (storage battery 13 side). , Whether to be on the AC side (system 11 side) or to turn off the control power.
  • the power storage system controller 17 is normally activated, the opening / closing section 15 and the opening / closing section 16 are closed, and the switch means 19 is switched to the AC / DC converter 18 side. Start from a state where
  • step S1 it is detected whether or not AC power is supplied from the grid 11, that is, whether or not a power failure has occurred.
  • a detection method for this power failure for example, as in the invention disclosed in Patent Document 2, it can be detected by utilizing a phenomenon in which the system impedance increases when a power failure occurs in the system 11.
  • this power failure detection method is employed, a power failure in the system 11 can be easily detected even when AC power is supplied from the storage battery 13 via the power converter 14 to the system 11.
  • step S2 If it is determined in step S1 that no power failure has occurred (NO), it is detected in step S2 whether or not the storage battery 13 is in a discharged state. Whether or not the storage battery 13 is in a discharged state can be easily detected by detecting the direction of the current flowing between the storage battery 13 and the power conversion device 14. It can also be detected by the ON / OFF state of the switching element of the half-bridge circuit 35 or the control circuit 21. If it is determined in step S2 that the battery is not in a discharged state (NO), the storage battery 13 is in a standby state. Therefore, in step S3, the switch means 19 is switched to the AC side, and the system 11 is switched to the AC / DC converter 18 and the DC. The power for driving the control circuit 21 is supplied to the power supply terminal 22 of the control circuit 21 via the DC converter 20.
  • step S4 If it is determined in step S2 that the battery is in a discharged state (YES), it is detected in step S4 whether the storage battery 13 is in an overdischarged state. Whether or not the storage battery 13 is in an overdischarged state can be detected from the current value or voltage value when the storage battery 13 is discharged. It can also be detected by monitoring the charging / discharging current of the continuous storage battery 13 and obtaining the state of charge (SOC) representing the charging rate with respect to the fully charged state from the storage battery 13. If it is determined in step S4 that the battery is not overdischarged (NO), in step S5, the switch means 19 is switched to the DC side, and the storage battery 13 passes through the DC / DC converter 20 to the power supply terminal 22 of the control circuit 21. Power for driving the control circuit 21 is supplied.
  • SOC state of charge
  • step S4 If it is determined in step S4 that the battery is in an overdischarged state (YES), power is supplied to the system 11, so the switch means 19 is switched to the AC / DC converter 18 side in step S3, and the system 11 Then, power for driving the control circuit 21 is supplied to the power supply terminal 22 of the control circuit 21 through the AC / DC converter 18 and the DC / DC converter 20. At this time, at least one of the opening / closing part 15 and the opening / closing piece 16, for example, the opening / closing piece 16 is opened, the storage battery 13 is disconnected from the system 11, and the operation of the power converter 14 is stopped. If it does in this way, since the discharge from the storage battery 13 can be stopped, it can suppress that the storage battery 13 becomes more overdischarged and deteriorates.
  • step S6 it is detected in step S6 whether or not the storage battery 13 is in a state immediately before reaching the overdischarged state. If it is determined (NO) that the storage battery 13 is not in a state immediately before reaching the overdischarged state, the switch means 19 is switched to the DC side in step S5, and the control circuit 21 passes through the DC / DC converter 20 from the storage battery 13. The power for driving the control circuit 21 is supplied to the power supply terminal 22. At this time, the storage battery 13 can continue discharging through the power conversion device 14, can operate as an uninterruptible power supply, and can appropriately supply power to the specific load 12a (see FIG. 1).
  • step S6 when it is determined in step S6 that the state is just before reaching the overdischarge state (YES), it becomes impossible to supply driving power from the storage battery 13 or the system 11 to the control circuit 21.
  • the switch means 19 is switched to the AC / DC converter 18 side, at least one of the opening / closing part 15 and the opening / closing piece 16, for example, the opening / closing piece 16 is opened to disconnect the storage battery 13 from the system 11 and stop the operation of the power converter 14. . If it does in this way, since the discharge from the storage battery 13 can be stopped at the time of the power failure of the system
  • the electric power necessary for driving the control circuit 21 of the power storage system controller 17 is the system 11 side during standby when the storage battery 13 is not discharged and when the storage battery 13 is charged. Is supplied from the storage battery side during a discharge mode in which the storage battery 13 is discharged and during a power failure. Therefore, according to the power storage system 10 of the present invention, the power necessary for driving the power storage system controller 17 is directly supplied from the storage battery 13 during the discharge mode in which the storage battery 13 is discharged and during a power failure. Is supplied without going through the power conversion device, the loss of power from the storage battery is reduced and the system efficiency is improved as compared with the prior art.
  • the power storage system controller is switched to a state where power for operation is supplied from the system when the storage battery is in a state immediately before reaching the overdischarge state in the discharge mode, Stop discharging the storage battery. Therefore, the storage battery does not become overdischarged even during a power failure.
  • power is supplied from the grid to the power storage system controller, so that the power storage system controller immediately resumes operation.
  • the DC power from which the AC high voltage of the system is converted by the rectifier circuit and the DC power from the storage battery are switched by the switch means by the rectifier circuit connected to the system, and one adjustment circuit is used. It can be converted into DC power optimal for the operation of the power storage system controller. For this reason, it is possible to easily select and supply power for operation necessary for driving the power storage system controller from the storage battery or the system by the switch means with a simple configuration.
  • a DC voltage can be converted into an optimum voltage for the operation of the power storage system controller by a DC power supply circuit connected to the storage battery.
  • the AC high voltage of the system can be converted into the DC voltage optimum for the operation of the power storage system controller by the rectifying and smoothing circuit connected to the system. Therefore, a DC constant voltage circuit with a simple configuration can be employed as the DC power supply circuit. Further, since a DC constant voltage circuit having a simple configuration corresponding to the voltage after converting AC power to DC power can be adopted as the rectifying and smoothing circuit, the circuit configuration is simplified.
  • the AC / DC converter 18 of the power storage system controller 17 uses a mere bridge rectifier circuit 18a and a smoothing circuit 18b, and the obtained DC voltage constant voltage circuit.
  • a DC / DC converter 20 operating as a DC constant voltage circuit from the storage battery 13 is also shown.
  • the AC / DC converter 18 that can obtain a constant voltage DC power is commercially available as a packaged general-purpose product. Therefore, a modified power storage system 10A using a constant voltage DC power as the AC / DC converter 18 will be described with reference to FIG.
  • FIG. 5 is a schematic circuit diagram of a power storage system 10A according to a modification.
  • the power storage system 10A of this modification differs from the power storage system 10 of the embodiment only in the configuration of the power storage system controller 17A. Therefore, in FIG. 5, the same components as the power storage system 10 of the embodiment are not included. The same reference numerals are assigned and detailed description thereof is omitted.
  • an AC / DC converter 18A that outputs DC power that has been converted to a constant voltage is used.
  • the input side of the AC / DC converter 18 ⁇ / b> A is connected to the system 11 side upstream of the switching piece 16, and the output side of the AC / DC converter 18 ⁇ / b> A is connected to one terminal of the switch means 19.
  • the input side of the DC / DC converter 20 ⁇ / b> A is connected to the storage battery 13 side downstream of the opening / closing part 15, and the output side of the DC / DC converter 20 ⁇ / b> A is connected to the other terminal of the switch means 19.
  • the terminal connected to the movable piece of the switch means 19 is directly connected to the power supply terminal 22 of the control circuit 21.
  • the power storage system 10A of the modified example adopting such a configuration, it is possible to achieve the same effect of improving the system efficiency as in the case of the power storage system 10 of the embodiment, and a DC constant voltage having a simple configuration as a DC / DC converter.
  • a DC power supply circuit including a circuit can be employed.
  • an AC / DC converter that can obtain direct-current power converted to constant voltage from the above-described alternating-current power can be employed, the circuit configuration is simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本発明の蓄電システムは、蓄電池と、電力変換装置と、蓄電システムコントローラとを備え、蓄電システムコントローラは、夜間の特定の時間帯の電力で蓄電池を充電し、昼間に蓄電池から放電を行うように制御し、蓄電池の充放電が行われない待機時及び蓄電池の充電時には系統側から給電され、蓄電池の放電時には、蓄電池側から電力変換装置を経ることなく給電され、蓄電池が過放電になる前に系統から給電する状態に切り替えると共に、蓄電池の放電を停止させる。

Description

蓄電システム
 本発明は、蓄電システムに関し、詳しくは、蓄電システムの各構成要素を制御するための蓄電システム制御装置の電源を、待機時、充電時、放電時及び停電時に応じて最適な状態に制御することによって、システム効率を向上させ、しかも、停電時に蓄電池の過放電を防止することができると共に、停電が復帰した場合には自動的に動作再開ができるようにした蓄電システムに関する。
 従来から、商用電源(系統)と各負荷との間に充放電可能な電池モジュールが組み込まれた蓄電システムを接続し、この蓄電システムを停電時における通信システムやコンピュータシステム等のバックアップ電源として使用することが行われていた。近年に至り、大型の太陽電池、風力発電機、波力発電機等、発電量の変動が大きい分散電源によって発電された電力を蓄電システムに貯蔵し、直交変換して商用電源に供給することが行われるようになってきている。
 さらに、各家庭に設置された太陽電池やマイクロ風力発電機によって発電された電力を一時的に蓄電システムに貯蔵し、家庭内でエアコンや電子レンジ等の大電力が使用されるときの補助電力として使用したり、余った電力を系統に供給したりすることも行われるようになってきている。このようなシステムを採用すると、商用電源から瞬間的に大電力が使用されることを抑制し、商用電源の電力の使用量の平準化が図れるようになり、かつ、余剰の電力を系統に供給することができるようになる。また、商用電源が停電を起こした場合には、蓄電システムに貯蔵した電力を家庭内の使用機器の電力として用いる、非常用電源ないし無停電電源装置として蓄電システムを使用することもできるようになる。
 このような蓄電システムは、パワーコンディショナ及び制御回路を用いて蓄電池の充電及び放電が制御されている。例えば、下記特許文献1には、太陽電池と蓄電池と商用電力系統との3つの電源をパワーコンディショナによって制御する蓄電システムが開示されている。この蓄電システムで用いられているパワーコンディショナ50は、図6に示すように、商用電力系統51に家庭内負荷52が接続され、太陽電池等の直流電源53および蓄電手段54からパワーコンディショナ50を経由し、スイッチSaを介して出力された交流電力のうち、家庭内負荷52で消費されない余剰電力分が、商用電力系統51側に逆潮流される構成となっている。
 パワーコンディショナ50は、DC-DCコンバータ55、インバータ回路56、充放電回路57を備えている。直流電源53の直流電力は、DC-DCコンバータ55によって昇圧され、インバータ回路56により、直流母線58の直流電力を商用周波数の交流電力に変換して、例えば単相200Vの商用電力系統51に出力する。蓄電手段54は充放電回路57によって充電又は放電され、DC-DCコンバータ55と充放電回路57が接続された直流母線58に接続されている。そして、例えば太陽電池の発電がない夜間、商用電力系統51からインバータ回路56、充放電回路57を経て蓄電手段54に充電電力が供給されるようになっている。すなわち、インバータ回路56は、DC/AC及びAC/DCの何れの方向にも変換し得る双方向インバータ回路となされている。
 また、電源選択回路59は、直流電源53から駆動電力が供給される第1電源回路60と、蓄電手段54から駆動電力が供給される第2電源回路61と、商用電力系統51から駆動電力が供給される第3電源回路62から少なくとも一つの電源回路を選択して、制御回路63に駆動電力を供給するようになっている。なお、パワーコンディショナ50は、商用電力系統51が停電した際に、パワーコンディショナ50が商用電力系統51とは独立した非常用電源として動作する自立運転モードの実現のために、スイッチSbを介して自立運転出力64をインバータ回路56の出力端子として備えている。
特開2008-054473号公報 特開2007-097311号公報
 上記特許文献1に開示されているパワーコンディショナ50においては、蓄電手段54から放電される状態となった場合の制御回路63に供給される電力は、全て蓄電手段54から、充放電回路57、インバータ回路56を経て直流を交流電圧に変換した後、再度第3電源回路62によって直流に変換され、電源選択回路59を経て給電されるようになっているため、少なくともインバータ回路56による直流を交流に変換する際の変換ロス及び第3電源回路62による交流を直流に変換する際の変換ロスが生じるので、システム効率が低下するという課題が存在する。
 本発明は、従来の蓄電システムの構成を見直し、蓄電システムの各構成要素を制御するための蓄電システム制御装置の電源を、待機時、充電時、放電時及び停電時に応じて最適な状態に制御することによって、システム効率を向上させ、しかも、停電時に蓄電池の過放電を防止することができると共に、停電が復帰した場合には自動的に動作再開ができるようにした蓄電システムを提供することを目的とする。
 上記目的を達成するため、本発明の蓄電システムは、
 蓄電池と、系統からの電力を用いて前記蓄電池を充電する充電モード及び前記蓄電池から放電される電力を変換して前記系統及び負荷に供給する放電モードを有する電力変換装置と、前記電力変換装置の前記モードの選択を制御するための蓄電システムコントローラと、を備える蓄電システムにおいて、
 前記蓄電システムコントローラは、
 前記充電モード及び前記放電モードの何れのモードでもない待機時及び前記充電モード時には前記系統から作動用の電力が給電され、
 前記放電モード時には、前記蓄電池から前記電力変換装置を経ることなく直接に作動用の電力が給電され、かつ、前記蓄電池が過放電状態に至る直前の状態になった際は、前記系統から作動用の電力が給電される状態に切り替わると共に、前記蓄電池の放電を停止させることを特徴とする。
実施形態に係る蓄電システムの概略回路図である。 図1の蓄電システムコントローラの回路図である。 図1の双方向電力変換装置の回路図である。 実施形態に係る蓄電システムの動作を説明するフローチャートである。 変形例の蓄電システムの概略回路図である。 従来例のパワーコンディショナの回路図である。
 以下、本発明を実施するための形態について、実施形態及び図面を参照しながら詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための蓄電システムの一例を説明するものであって、本発明をこの実施形態に記載された蓄電システムに特定することを意図するものではなく、本発明は特許請求の範囲に含まれるその他の実施形態のものにも等しく適応し得るものである。
 最初に図1を参照して、実施形態の蓄電システム10の構成について説明する。蓄電システム10では、商用電力に連なる系統11に家庭内の一般負荷12が接続されている。また、蓄電システム10は、蓄電池13から電力変換装置14を経由して出力された交流電力が、一般負荷12で消費されない余剰電力分が生じないように、すなわち、系統11側に逆潮流しないよう構成されている。また、蓄電池13は、夜間の特定の時間帯の電力を用いて蓄電池13を充電するため、系統11から電力変換装置14を介して充電電力が供給される。すなわち、電力変換装置14は、蓄電池13から系統11に供給し得る交流電力を生成できるだけでなく、逆に系統11から蓄電池13の充電用の直流電力を生成することができ、双方向電力変換装置ないし双方向パワーコンディショナとも称される。
 また、蓄電池13と電力変換装置14との間には開閉部15が配置され、電力変換装置14と系統11との間には開閉切片16が配置されている。開閉部15及び開閉切片16としてはリレー又は電力用半導体素子が使用される。なお、系統11の停電時には、電力変換装置14を蓄電池13に充電されていた電力を利用していわゆる無停電電源装置として作動させることができるため、電力変換装置14にコンピュータ等の停電すると大きな影響を残す特定負荷12aを接続してもよい。
 さらに、系統11と蓄電池13との間には蓄電システムコントローラ17が電力変換装置14と並列に接続されている。蓄電システムコントローラ17は、適宜外部からの指令によって、上述した夜間の電力を用いた蓄電池13の充電制御を行うと共に、昼間に蓄電池13に蓄電された電力を適宜に放電制御することにより、系統11からの入力電力のピークカット機能を有している。
 蓄電システムコントローラ17は、AC/DCコンバータ18、スイッチ手段19、DC/DCコンバータ20及び制御回路21を備えている。AC/DCコンバータ18の入力側は開閉切片16よりも上流側の系統11側に接続され、AC/DCコンバータ18の出力側はスイッチ手段19の一方の端子に接続されている。また、蓄電池13の出力はスイッチ手段19の他方の端子に直接接続されている。そして、スイッチ手段19の可動切片に接続された端子はDC/DCコンバータ20の入力側に接続され、DC/DCコンバータ20の出力側は制御回路21の電源端子22に接続されている。
 すなわち、制御回路21の電源端子22には、蓄電池13からの直流電力とAC/DCコンバータ18からの交直変換された直流電力がスイッチ手段19によって選択されてDC/DCコンバータ20に供給される。DC/DCコンバータ20に供給された電流は、DC/DCコンバータ20によって制御回路21の最適な駆動電圧となるように定電圧化されて制御回路21の電源端子22に供給される。また、制御回路21は、電力変換装置14、開閉部15、開閉切片16及びスイッチ手段19の動作を制御する。
 次に、蓄電システムコントローラ17の具体的構成を、図2を用いて説明する。蓄電システムコントローラ17のAC入力側はブリッジ整流回路18aに接続されている。ブリッジ清流回路18aの+端子(正出力)は、リアクタとコンデンサとからなる平滑回路18bを経てスイッチ手段19の一方の端子に接続されている。スイッチ手段19の一方の端子は、トランス24の入力コイルとスイッチング素子23a及びダイオード23bの並列回路を経て、ブリッジ整流回路18aの-端子(負出力)に接続されている。ここではブリッジ整流回路18a及び平滑回路18bが本発明の整流平滑回路に対応し、図1におけるAC/DCコンバータ18に対応する。スイッチ手段19の他方の端子は蓄電池13の+端子に接続されている。
 トランス24の一方の出力コイルはダイオードとコンデンサとからなる整流平滑回路24aを介して電源制御回路25の電力として供給されている。トランス24の他方の出力コイルはダイオードとコンデンサとからなる整流平滑回路24bを介して制御回路21の電力として供給されている。制御回路21の出力にてコイルが導通され、スイッチ手段19の切片が一方又は他方側に切換えられる。トランス19、スイッチング素子23a、ダイオード23b、トランス24、整流回路24a及び24bが本発明の調整回路に対応し、図1におけるDC/DCコンバータ20を形成する。
 DC/DCコンバータ20は、電源制御回路25によって、スイッチング素子23aのON/OFFを制御することによってトランス24に入力される直流電力を交流化する。またDC/DCコンバータ20は、トランス24の第1出力側の制御回路21の電源端子22に供給される直流電圧E1及び第2出力側の電源制御回路25の電源端子26に供給される直流電圧E2を同時に可変して安定化する。例えばPUTを用いた比較回路24cでE1の出力が所定値より低くなるとフォトカプラ24dの発光ダイオードの出力トランジスタを介して電源制御回路25に出力して、電源制御回路25がスイッチング素子23aのON/OFF又はONデューティを可変制御する。すなわち、フォトカプラ24dによるフィードバック型のスイッチング電源をなしている。なお、比較回路24cは、これに限るものではなく、コンパレータ、トランジスタ等を用いてもよく、また、専用の電源用ICを用いてもよいものである。
 また、DC/DCコンバータ20は、平滑回路18bの出力側において、抵抗とダイオードとを順方向に介して電源制御回路25の電源端子26に接続される直列回路(図示せず)をさらに備える。この直列回路の抵抗の値は、この直列回路を介して電源端子26に印加される電圧が、スイッチング素子23aの作動に際し、整流平滑回路24aより印加される電圧より低く、かつ電源制御回路25の作動に必要な電圧となるように設定されている。この直列回路により電源制御回路25の起動に要する電力が確保されるものであるが、起動電力の確保は蓄電池から得ることも可能であり、この構成に限るものではない。
 次に、図3を用いて電力変換装置14の概略構成を説明する。電力変換装置14は、DC/DCコンバータ部31及びAC/DCコンバータ部32を備えている。DC/DCコンバータ部31は、蓄電池13側に接続されたコンデンサC1及びインダクタL1とからなるLC回路34と、LC回路34に接続されたスイッチング素子35a及びスイッチング素子35aに並列に逆方向に接続されたダイオード35bを2組備えたハーフブリッジ回路35とを備えている。DC/DCコンバータ部31は、ハーフブリッジ回路35の上段のスイッチング素子をON/OFFし、下側のスイッチング素子をOFFのままとすることにより、L1とC1と共にAC/DCコンバータ部32から得られた高電圧の直流電力を低電圧の直流電力に降圧して蓄電池13の充電用に供することができる。また、DC/DCコンバータ部31は、ハーフブリッジ回路35の上段のスイッチング素子をOFFのままとし、下側のスイッチング素子をON/OFFすることにより、L1、C2と共に蓄電池13からの低電圧の直流電圧を高電圧の直流電圧に昇圧してAC/DCコンバータ部32に供給することができる。そのため、電力変換装置14のDC/DCコンバータ部31は、本発明の昇降圧部に対応し、蓄電池13の充電が行われる充電モード時には充電電圧制御回路及び充電電流制御回路として作動し、放電が行われる放電モード時には直流電圧昇圧回路として作動する。
 また、AC/DCコンバータ部32は、DC/DCコンバータ部31との間に並列に接続されたコンデンサC2と、スイッチング素子36a及びスイッチング素子36aに並列に逆方向に接続されたダイオード36bを4組備えたフルブリッジ回路36と、フルブリッジ回路36と系統11との間に接続されたインダクタL2、L3とコンデンサC3とから構成されたローパスフィルタとを備えている。AC/DCコンバータ部32は、系統11から供給された高電圧の交流電力をフルブリッジ回路36で構成されるアクティブフィルタで整流してコンデンサC2で平滑した後、DC/DCコンバータ部31に供給することができる。また、AC/DCコンバータ部32は、DC/DCコンバータ部31から供給された高電圧の直流電力を系統11と略同一周波数で略同一位相の高電圧の交流電力に変換することができる。そのため、電力変換装置14のAC/DCコンバータ部32は、本発明の交流/直流の双方向変換部に対応し、蓄電池13の充電が行われる充電モード時には整流回路として作動し、放電が行われる放電モード時には系統連携インバータとして作動する。
 それ故、電力変換装置14は双方向電力変換装置として作動する。なお、DC/DCコンバータ部31の2つのスイッチング素子35a及びAC/DCコンバータ部32の4つのスイッチング素子36aは、それぞれ図1及び図2に示した蓄電システムコントローラ17の制御回路21によって制御される。なお、これらのスイッチング素子35a及び36aの具体的制御方式は、既に周知であるので、その詳細な説明は省略する。
 次に、図4に示したフローチャートを用いて、蓄電システムコントローラ17の制御回路21の動作を説明する。本実施形態では、制御回路21は所定時間間隔で図4に示した各ステップを実施することにより、制御回路21の電源端子22に供給する制御電源を、DC側(蓄電池13側)とするか、AC側(系統11側)とするか、あるいは、制御電源をOFFとするかを制御する。なお、本発明においては、初期状態として、蓄電システムコントローラ17が正常に起動され、開閉部15及び開閉切片16が閉状態となっていると共に、スイッチ手段19がAC/DCコンバータ18側に切り替えられている状態からスタートするものとする。
 まず、ステップS1において、系統11から交流電力が供給されているか否か、すなわち停電が生じているか否かが検知される。この停電の検知方式としては、例えば、上記特許文献2に開示されている発明のように、系統11に停電が生じると系統インピーダンスが上昇する現象を利用して検知することができる。この停電の検知方式を採用すると、蓄電池13から電力変換装置14を経て系統11に交流電力が供給されていた際でも、系統11の停電を容易に検知することができる。
 ステップS1で停電が生じていないと判断(NO)された場合には、ステップS2において蓄電池13が放電状態であるか否かが検知される。蓄電池13が放電状態であるか否かは、蓄電池13と電力変換装置14との間に流れる電流の方向を検知することによって容易に検知することができる。また、ハーフブリッジ回路35のスイッチング素子のON/OFFの状態又は制御回路21によっても検知することができる。ステップS2で放電状態ではないと判断(NO)された場合には、蓄電池13は待機状態にあるから、ステップS3において、スイッチ手段19をAC側に切り替え、系統11からAC/DCコンバータ18及びDC/DCコンバータ20を経て、制御回路21の電源端子22へ制御回路21の駆動用電力を供給する。
 また、ステップS2で放電状態であると判断(YES)された場合には、ステップS4において蓄電池13が過放電状態であるか否かが検知される。蓄電池13が過放電状態であるか否かは、蓄電池13の放電時の電流値や電圧値から検知することができる。また、常時蓄電池13の充放電電流を監視して、満充電状態に対する充電割合を表す充電状態SOC(State of Charge)を蓄電池13から求めることによっても検知することができる。ステップS4で過放電状態でないと判断(NO)された場合には、ステップS5において、スイッチ手段19をDC側に切り替え、蓄電池13からDC/DCコンバータ20を経て、制御回路21の電源端子22へ制御回路21の駆動用電力を供給する。
 また、ステップS4において過放電状態であると判断(YES)された場合には、系統11には給電されているため、ステップS3において、スイッチ手段19をAC/DCコンバータ18側に切り替え、系統11からAC/DCコンバータ18及びDC/DCコンバータ20を経て、制御回路21の電源端子22へ制御回路21の駆動用電力を供給する。このとき、開閉部15及び開閉切片16の少なくとも一方、例えば開閉切片16を開状態として蓄電池13を系統11とは切り離し、電力変換装置14の動作を停止させる。このようにすれば、蓄電池13からの放電を停止することができるので、蓄電池13がより過放電状態となって劣化することを抑制することができる。
 さらに、ステップS1で停電状態であると判断(YES)された場合には、ステップS6で蓄電池13が過放電状態に至る直前の状態であるか否かが検知される。蓄電池13が過放電状態に至る直前の状態でないと判断(NO)された場合には、ステップS5において、スイッチ手段19をDC側に切り替え、蓄電池13からDC/DCコンバータ20を経て、制御回路21の電源端子22へ制御回路21の駆動用電力を供給する。このとき、蓄電池13は電力変換装置14を経て放電を継続することができ、無停電電源装置として作動することができ、適宜特定負荷12a(図1参照)へ電力を供給することができる。
 また、ステップS6において過放電状態に至る直前の状態であると判断(YES)された場合には、蓄電池13からも系統11からも制御回路21へ駆動用電力を供給することができなくなるので、スイッチ手段19をAC/DCコンバータ18側に切り替え、開閉部15及び開閉切片16の少なくとも一方、例えば開閉切片16を開状態として蓄電池13を系統11とは切り離し、電力変換装置14の動作を停止させる。このようにすれば、系統11の停電時に蓄電池13からの放電を停止することができるので、これ以上の放電が継続されて過放電になることを抑制することができる。このとき、開閉部15が閉状態であって開閉切片16が開状態であっても、蓄電池13から電力変換装置14側へ流れる電流は実質的に無視できるようにすることができるが、開閉部15及び開閉切片16の両者共に開状態となるようにすればより好ましい。
 このように、本実施形態の蓄電システム10によれば、蓄電システムコントローラ17の制御回路21の駆動に必要な電力は、蓄電池13の放電が行われない待機時及び蓄電池13の充電時には系統11側から給電され、蓄電池13の放電が行われる放電モード時及び停電時には蓄電池側から給電されるようになされている。そのため、本発明の蓄電システム10によれば、蓄電池13の放電が行われる放電モード時及び停電時には、蓄電システムコントローラ17の駆動に必要な電力は直接蓄電池13から供給され、従来技術のように蓄電池からの直流電力が電力変換装置を経ることなく供給されるので、従来技術に比すると蓄電池からの電力のロスが少なくなってシステム効率が向上する。
 また、本実施形態の蓄電システムにおいては、蓄電システムコントローラは、放電モード時に蓄電池が過放電状態に至る直前の状態になった際に、系統から作動用の電力が給電される状態に切り替わると共に、蓄電池の放電を停止する。そのため、例え停電時であっても蓄電池が過放電になることがない。しかも、停電から復帰した際には、系統から蓄電システムコントローラに電力が供給されるから、蓄電システムコントローラは直ちに動作再開する。なお、停電が生じている場合、必要に応じて蓄電池が過放電状態とならない程度に放電させ、停電すると影響が大きい特定負荷駆動用の無停電電源装置として作動させてもよい。
 また、本実施形態の蓄電システムにおいては、系統に接続された整流回路により系統の交流高電圧が整流回路によって変換された直流電力及び蓄電池からの直流電力をスイッチ手段によって切り替え、一つの調整回路によって蓄電システムコントローラの作動に最適な直流電力に変換することができる。そのため、簡単な構成でありながら、スイッチ手段によって容易に蓄電池ないし系統から蓄電システムコントローラの駆動に必要な作動用の電力を選択して供給することができる。
 また、本実施形態の蓄電システムコントローラにおいては、蓄電池に接続された直流電源回路によって直流電圧を蓄電システムコントローラの作動に最適な電圧に変換することができる。また、系統に接続された整流平滑回路により系統の交流高電圧を蓄電システムコントローラの作動に最適な直流電圧に変換することができる。そのため、直流電源回路として簡単な構成の直流定電圧回路を採用することができる。また、整流平滑回路として交流電力を直流電力に変換した後にその電圧に対応した簡単な構成の直流定電圧回路を採用することができるため、回路構成が簡単となる。
 なお、上記実施形態の蓄電システム10においては、蓄電システムコントローラ17のAC/DCコンバータ18としては単なるブリッジ整流回路18aと平滑回路18bとからなるものを使用し、得られた直流電圧の定電圧回路として蓄電池13からの直流定電圧回路として作動するDC/DCコンバータ20を兼用した例を示した。しかしながら、AC/DCコンバータ18として定電圧化された直流電力を得ることができるものが、既にパッケージ化された汎用品として市販されている。そこで、AC/DCコンバータ18として定電圧化された直流電力を得ることができるものを使用した変形例の蓄電システム10Aを、図5を用いて説明する。なお、図5は変形例の蓄電システム10Aの概略回路図である。
 この変形例の蓄電システム10Aが実施形態の蓄電システム10と構成が相違する点は、蓄電システムコントローラ17Aの構成のみであるので、図5においては実施形態の蓄電システム10と同一の構成部分には同一の参照符号を付与してその詳細な説明は省略する。変形例の蓄電システム10Aでは、AC/DCコンバータ18Aとしては定電圧化された直流電力を出力するものが用いられる。AC/DCコンバータ18Aの入力側は開閉切片16よりも上流側の系統11側に接続され、AC/DCコンバータ18Aの出力側はスイッチ手段19の一方の端子に接続されている。また、DC/DCコンバータ20Aの入力側は、開閉部15よりも下流側の蓄電池13側に接続され、DC/DCコンバータ20Aの出力側はスイッチ手段19の他方の端子に接続されている。そして、スイッチ手段19の可動切片に接続された端子が直接制御回路21の電源端子22に接続されている。
 このような構成を採用した変形例の蓄電システム10Aによれば、実施形態の蓄電システム10の場合と同様のシステム効率の向上効果を達成できると共に、DC/DCコンバータとして簡単な構成の直流定電圧回路を含む直流電源回路を採用することができる。また、AC/DCコンバータとして上述のような交流電力から直接定電圧化された直流電力を得ることができるものを採用することができるため、回路構成が簡単となる。
 10、10A…蓄電システム 11…系統 12…一般負荷 12a…特定負荷 13…蓄電池 14…電力変換装置 15…開閉部 16…開閉切片 17、17A…蓄電システムコントローラ 18、18A…AC/DCコンバータ 18a…ブリッジ整流回路 18b…平滑回路 19…スイッチ手段 20、20A…DC/DCコンバータ 21…制御回路 21…電源端子 23a…スイッチング素子 23b…ダイオード 24…トランス 24a、24b…整流平滑回路 24c…比較回路 24d…フォトカプラ 25…電源制御回路 26…電源端子 31…DC/DCコンバータ部 32…AC/DCコンバータ部 34…LC回路 35…ハーフブリッジ回路 35a…スイッチング素子 35b…ダイオード 36…フルブリッジ回路 36a…スイッチング素子 36b…ダイオード

Claims (5)

  1.  蓄電池と、系統からの電力を用いて前記蓄電池を充電する充電モード及び前記蓄電池から放電される電力を変換して前記系統及び負荷に供給する放電モードを有する電力変換装置と、前記電力変換装置の前記モードの選択を制御するための蓄電システムコントローラと、を備える蓄電システムにおいて、
     前記蓄電システムコントローラは、
     前記充電モード及び前記放電モードの何れのモードでもない待機時及び前記充電モード時には前記系統から作動用の電力が給電され、
     前記放電モード時には、前記蓄電池から前記電力変換装置を経ることなく直接に作動用の電力が給電され、かつ、前記蓄電池が過放電状態に至る直前の状態になった際は、前記系統から作動用の電力が給電される状態に切り替わると共に、前記蓄電池の放電を停止させる蓄電システム。
  2.  前記蓄電システムコントローラは、前記電力変換装置の動作を制御するための制御回路と、前記系統に接続された整流回路と、前記制御回路へ給電する直流電力を制御する調整回路と、前記蓄電池の出力と前記整流回路の出力を選択して前記調整回路へ供給するスイッチ手段とを備えている請求項1に記載の蓄電システム。
  3.  前記蓄電システムコントローラは、前記蓄電池に接続された直流電源回路と、前記系統に接続された整流平滑回路と、前記電力変換装置の動作を制御するための制御回路と、前記直流電源回路の出力及び前記整流平滑回路の出力を切り替えて前記制御回路へ接続するスイッチ手段とを備えている請求項1に記載の蓄電システム。
  4.  前記電力変換装置は、昇降圧部及び交流/直流の双方向変換部を備え、
     前記昇降圧部は、前記蓄電池の直流電力を所定の電圧に昇圧して前記交流/直流の双方向変換部に出力する機能と、前記交流/直流の双方向変換部の直流出力を所定の電圧に降圧して前記蓄電池を充電する機能とを備え、
     前記交流/直流の双方向変換部は、前記系統からの交流電力を直流電力に変換して前記昇降圧部に出力する機能と、前記昇降圧部からの直流電力を交流電力に変換して前記系統に供給する機能とを備え、
     前記制御回路は、前記昇降圧部及び前記交流/直流の双方向変換部のそれぞれの機能を切り替えることによって、前記蓄電池への充放電を制御する請求項2又は3に記載の蓄電システム。
  5.  前記昇降圧部は、前記蓄電池側に接続されたLC回路と、前記LC回路に接続されたスイッチング素子及び前記スイッチング素子に並列に逆方向に接続されるダイオードを2組備えたハーフブリッジ回路を備え、
     前記交流/直流の双方向変換部は、少なくとも単相ブリッジ回路をなす複数のスイッチング素子及び前記複数のスイッチング素子のそれぞれと並列に逆方向に接続されるダイオードを備えている請求項4に記載の蓄電システム。
PCT/JP2012/054114 2011-02-21 2012-02-21 蓄電システム WO2012115098A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035245 2011-02-21
JP2011035245A JP2012175801A (ja) 2011-02-21 2011-02-21 蓄電システム

Publications (1)

Publication Number Publication Date
WO2012115098A1 true WO2012115098A1 (ja) 2012-08-30

Family

ID=46720875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054114 WO2012115098A1 (ja) 2011-02-21 2012-02-21 蓄電システム

Country Status (2)

Country Link
JP (1) JP2012175801A (ja)
WO (1) WO2012115098A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525676A (zh) * 2019-02-01 2020-08-11 台达电子工业股份有限公司 直流输出不断电电源供应器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090569A (ja) * 2012-10-30 2014-05-15 Sharp Corp 電力変換装置、電力供給システム、及び電源供給方法
JP5938679B2 (ja) * 2012-11-30 2016-06-22 パナソニックIpマネジメント株式会社 双方向コンバータ
KR20140107098A (ko) 2012-12-28 2014-09-04 가부시키가이샤 히타치세이사쿠쇼 축전 장치
JP6127233B2 (ja) * 2013-05-18 2017-05-17 大和ハウス工業株式会社 蓄電池システム
JP6150341B2 (ja) * 2014-03-18 2017-06-21 ニチコン株式会社 蓄電システムに備えられた電源装置
JP6534219B2 (ja) * 2016-03-25 2019-06-26 ニチコン株式会社 蓄電システム
CN106300428A (zh) * 2016-10-21 2017-01-04 珠海格力电器股份有限公司 一种光伏系统及其控制方法
KR102167429B1 (ko) 2017-04-12 2020-10-19 주식회사 엘지화학 에너지 저장 장치의 과방전 방지 및 재기동 장치 및 방법
JP7028252B2 (ja) * 2017-10-13 2022-03-02 株式会社村田製作所 蓄電モジュールおよび電源システム
JP7405704B2 (ja) 2020-06-17 2023-12-26 ニチコン株式会社 蓄電システム
CN114762213A (zh) * 2020-06-23 2022-07-15 宁德时代新能源科技股份有限公司 一种可实现双向充放电的便携装置电源拓扑
CN114499283A (zh) 2020-10-26 2022-05-13 台达电子工业股份有限公司 发电机控制系统及其控制方法
CN112865091A (zh) * 2021-02-20 2021-05-28 阳光电源股份有限公司 一种储能系统及其开关电源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097311A (ja) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd 系統連係装置
WO2008026425A1 (en) * 2006-08-28 2008-03-06 Sharp Kabushiki Kaisha Power conditioner
US20090134704A1 (en) * 2007-11-27 2009-05-28 Canon Kabushiki Kaisha Electric power-supply apparatus and over-discharge control method for use therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097311A (ja) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd 系統連係装置
WO2008026425A1 (en) * 2006-08-28 2008-03-06 Sharp Kabushiki Kaisha Power conditioner
US20090134704A1 (en) * 2007-11-27 2009-05-28 Canon Kabushiki Kaisha Electric power-supply apparatus and over-discharge control method for use therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525676A (zh) * 2019-02-01 2020-08-11 台达电子工业股份有限公司 直流输出不断电电源供应器

Also Published As

Publication number Publication date
JP2012175801A (ja) 2012-09-10

Similar Documents

Publication Publication Date Title
WO2012115098A1 (ja) 蓄電システム
JP5124114B2 (ja) 蓄電機能を有するパワーコンディショナ
JP5903622B2 (ja) 電力供給システムおよび充放電用パワーコンディショナ
JP5641144B2 (ja) 電力変換装置
JP2011200096A (ja) 蓄電システム
WO2012144357A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
JP2011211885A (ja) 蓄電システム
KR102244042B1 (ko) 폐배터리 기반의 독립형 가정용 에너지 저장 시스템
WO2011152249A1 (ja) 系統連系システム、及び分配器
JP5290349B2 (ja) 直流給電システムおよびその制御方法
US20230198261A1 (en) Power supply system including dc-to-dc converter and control method therefor
JP2008131736A (ja) 分散型電源システムと昇降圧チョッパ装置
WO2012128252A1 (ja) 蓄電システム
JP5284447B2 (ja) 分散電源システム
JP2014128164A (ja) パワーコンディショナ及び太陽光発電システム
KR20090085973A (ko) 대체 에너지원이 접속된 무정전전원장치
JP2012175864A (ja) 蓄電システム
JP5799210B2 (ja) 蓄電システム、充放電回路、及び系統連系装置
KR20180054021A (ko) 양방향 dc-dc 컨버터, 및 이를 포함하는 에너지 저장 시스템
WO2018139200A1 (ja) 電力変換装置及びパワーコンディショナ
Schwertner et al. Supervisory control for stand-alone photovoltaic systems
JP6646852B2 (ja) 電力変換装置、及び電力変換システム
JP6722295B2 (ja) 電力変換システム、電力供給システムおよび電力変換装置
KR101162221B1 (ko) 에너지 저장장치의 과충전/과방전 방지장치 및 방법
JP5810254B2 (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749055

Country of ref document: EP

Kind code of ref document: A1