JP6656085B2 - 蓄電装置、パワーコンディショナ及び分散電源システム - Google Patents

蓄電装置、パワーコンディショナ及び分散電源システム Download PDF

Info

Publication number
JP6656085B2
JP6656085B2 JP2016105460A JP2016105460A JP6656085B2 JP 6656085 B2 JP6656085 B2 JP 6656085B2 JP 2016105460 A JP2016105460 A JP 2016105460A JP 2016105460 A JP2016105460 A JP 2016105460A JP 6656085 B2 JP6656085 B2 JP 6656085B2
Authority
JP
Japan
Prior art keywords
value
power
upper limit
receiving
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016105460A
Other languages
English (en)
Other versions
JP2017212825A (ja
Inventor
智也 楠瀬
智也 楠瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016105460A priority Critical patent/JP6656085B2/ja
Publication of JP2017212825A publication Critical patent/JP2017212825A/ja
Application granted granted Critical
Publication of JP6656085B2 publication Critical patent/JP6656085B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、蓄電装置、パワーコンディショナ及び分散電源システムに関する。
太陽光発電装置や蓄電装置のような分散電源を系統に連系させて制御する分散電源システムが知られている(例えば、特許文献1参照)。
従来、太陽光発電装置と蓄電装置の両方を系統に連系させている分散電源システムにおいて、系統が停電した場合に、太陽光発電パワーコンディショナの自立出力が供給する電力で蓄電装置内の蓄電池を充電することは難しかった。
しかしながら、近年、太陽光発電パワーコンディショナの自立出力を受電するための専用端子を設けた蓄電装置の製品が市場に出回りつつある。このような専用端子を設けた蓄電装置によれば、停電時に、太陽光発電パワーコンディショナの自立出力から受電する電力で蓄電装置内の蓄電池を充電することができる。
特開2011−101523号公報
太陽光発電パワーコンディショナの自立出力は、正常な電力供給ができない場合に自立出力を停止させるための過負荷保護機能を有する。太陽光発電パワーコンディショナは、例えば、自立出力の電圧が80Vまで下がり、その状態が2秒継続した場合、過負荷保護機能により自立出力を停止させる。
太陽光発電パワーコンディショナの自立出力を受電可能な専用端子を設けた蓄電装置は、太陽光発電パワーコンディショナの自立出力を無駄なく活用するため、受電電流の最大値を大きめの値に設定することが好ましい。太陽光発電パワーコンディショナの一般的な最大出力電流は15Aであるため、蓄電装置は、受電電流の最大値を15Aに近い値(例えば14A)に設定しているものが多い。
しかしながら、蓄電装置の受電電流の最大値を大きめの値に設定していると、日射量が減少したときに過負荷保護機能により太陽光発電パワーコンディショナの自立出力が停止するリスクが高まる。そうすると、過負荷保護機能によって太陽光発電パワーコンディショナが停止している時間が長くなり、結果的に、太陽光発電装置の発電電力を、蓄電池の充電に十分に活用することができない場合がある。
かかる点に鑑みてなされた本発明の目的は、太陽光発電装置の発電電力を十分に活用して、太陽光発電パワーコンディショナの自立出力によって蓄電池を充電することができる蓄電装置、パワーコンディショナ及び分散電源システムを提供することにある。
本発明の実施形態に係る蓄電装置は、蓄電池と、太陽光発電パワーコンディショナの自立出力端子から供給される電力を受電可能な入力端子と、前記入力端子からの受電電圧の値に応じて、前記入力端子からの受電電流の上限設定値を制御する制御部と、記憶部と、を備え、前記制御部は、前記記憶部から、第1の所定電圧値と、前記第1の所定電圧値よりも大きい第2の所定電圧値と、を読み込み、前記受電電圧の値が、前記第1の所定電圧値以下となると、前記受電電流を減少させ、前記受電電圧の値が、前記受電電流の減少により前記第2の所定電圧値に達すると、そのときの受電電流値を前記上限設定値として、前記記憶部の前記上限設定値を更新する
また、本発明の実施形態に係るパワーコンディショナは、直流電力又は交流電力に変換する蓄電池用のパワーコンディショナである。前記パワーコンディショナは、太陽光発電パワーコンディショナの自立出力端子から供給される電力を受電可能な入力端子と、前記入力端子からの受電電圧の値に応じて、前記入力端子からの受電電流の上限設定値を制御する制御部と、記憶部と、を備え、前記制御部は、前記記憶部から、第1の所定電圧値と、前記第1の所定電圧値よりも大きい第2の所定電圧値と、を読み込み、前記受電電圧の値が、前記第1の所定電圧値以下となると、前記受電電流を減少させ、前記受電電圧の値が、前記受電電流の減少により前記第2の所定電圧値に達すると、そのときの受電電流値を前記上限設定値として、前記記憶部の前記上限設定値を更新する
また、本発明の実施形態に係る分散電源システムは、太陽光発電パワーコンディショナと蓄電装置とを備える。前記蓄電装置は、蓄電池と、前記太陽光発電パワーコンディショナの自立出力端子から供給される電力を受電可能な入力端子と、前記入力端子からの受電電圧の値に応じて、前記入力端子からの受電電流の上限設定値を制御する制御部と、記憶部と、を備え、前記制御部は、前記記憶部から、第1の所定電圧値と、前記第1の所定電圧値よりも大きい第2の所定電圧値と、を読み込み、前記受電電圧の値が、前記第1の所定電圧値以下となると、前記受電電流を減少させ、前記受電電圧の値が、前記受電電流の減少により前記第2の所定電圧値に達すると、そのときの受電電流値を前記上限設定値として、前記記憶部の前記上限設定値を更新する
本発明の実施形態に係る蓄電装置、パワーコンディショナ及び分散電源システムによれば、太陽光発電装置の発電電力を十分に活用して、太陽光発電パワーコンディショナの自立出力によって蓄電池を充電することができる。
本発明の第1実施形態に係る分散電源システムの概略構成を示す図である。 受電電流の上限設定値に依存して総受電電力量が変わる様子を示す図である。 受電電流の上限設定値を可変にした場合に、総受電電力量が増える様子を示す図である。 昼間に日射量が減少した場合において、受電電流の上限設定値を可変にした場合に、総受電電力量が増える様子を示す図である。 受電電流を減少させる様子を示す図である。 図1の蓄電装置が受電電流の上限設定値を低減させる動作の一例を説明するフローチャートである。 本発明の第2実施形態に係る分散電源システムの概略構成を示す図である。
以下、本発明の実施形態について、図面を参照して説明する。
[第1実施形態]
分散電源システム1は、図1に示すように、太陽電池10と、太陽光発電パワーコンディショナ20と、負荷30と、蓄電装置100とを備える。図1において、各機能ブロックを結ぶ実線は主に電力線を示し、破線は主に通信線又は信号線を示す。
太陽電池10は、太陽光のエネルギーから直流電力を発電し、太陽光発電パワーコンディショナ20に供給する。
太陽光発電パワーコンディショナ20は、太陽電池10から供給された直流電力を交流電力に変換する。太陽光発電パワーコンディショナ20は、系統40に連系して用いられる。太陽光発電パワーコンディショナ20は、通常時には、連系出力端子21から系統40(電力会社)に電力を売電することができる。
太陽光発電パワーコンディショナ20は、系統40からの電力が停止したときには自立運転を行い、自立出力端子22から電力を供給する。系統40からの電力が停止するときは、例えば、停電のとき、又は系統40と解列したときなどが挙げられる。以下の説明においては、停電のときを例に挙げて説明する。自立出力端子22は、蓄電装置100の自立入力端子114に接続されており、太陽光発電パワーコンディショナ20は、系統40の停電時に、自立出力端子22から蓄電装置100に電力を供給することができる。
太陽光発電パワーコンディショナ20は、内部の電力変換回路などに故障を生じさせる可能性があるときに自立出力を停止させる保護機能として、「過電流保護機能」及び「過負荷保護機能」を有する。
過電流保護機能は、自立出力の電圧が所定の電圧範囲内で、所定の電流より大きい電流が流れる状態が、所定の時間継続すると作動し、自立出力を停止させる。具体的な値としては、例えば、自立出力の電圧が80〜90Vの範囲で、15Aを超える電流が流れる状態が30秒継続すると、太陽光発電パワーコンディショナ20は、過電流保護機能の作動により自立出力を停止させる。一般に、住宅用に販売されている太陽光発電パワーコンディショナは、過電流保護機能が作動する状況では熱の発生等、機器が重大な故障に至る可能性があるとして、自動的に復帰されないように設定されている。そのため、一度停止すると人為的に復帰動作がされるまで発電電力は捨てることになる。
過負荷保護機能は、例えば日射不足で自立出力の出力が定格まで出せずに負荷消費電力が過剰となる場合、又は出力ショートなどの非常状態の場合に迅速に対応するための保護機能である。過負荷保護機能は、自立出力の電圧が所定電圧値以下の状態が、所定の時間継続すると作動し、自立出力を停止させる。具体的な値としては、例えば、出力電圧が80V未満の状態が2秒継続すると、太陽光発電パワーコンディショナ20は、過負荷保護機能の作動により自立出力を停止させる。一般に、住宅用に販売されている太陽光発電パワーコンディショナは、過負荷保護機能が作動しても、300秒程度の時間経過後に自動的に復帰されるように設定されていることが多い。このように自動復帰する設定となっている理由は、過負荷保護機能が作動した原因が、日射不足によって負荷消費電力が過剰となったことが原因である場合に、日射不足が解消される可能性を考慮していること等によるものである。
負荷30は、蓄電装置100の特定出力端子113に接続された電気機器などである。負荷30は、系統40の停電時においても動作させる重要度の高い電気機器であり、例えば、携帯端末の充電器やテレビなどである。なお、本実施形態においては負荷30がホームネットワークを介して所定プロトコルにより外部から制御可能である場合を説明するが、外部から制御しない場合は蓄電装置100の切替リレー110を開放することで動作を停止させてもよい。なお、所定プロトコルとしては、例えば、ECHONET Lite(登録商標)などを用いることができる。
蓄電装置100は、停電時に、太陽光発電パワーコンディショナ20の自立出力端子22から供給される電力を、自立入力端子114に引き込んで受電する。以後、自立出力端子22から自立入力端子114に引き込んで受電する電力を「受電電力」と称する。また、受電電力の電圧を「受電電圧」と称し、受電電力の電流を「受電電流」と称する。
蓄電装置100は、太陽光発電パワーコンディショナ20から受電する受電電流の上限値を、上限設定値として設定しており、受電電流が上限設定値を超えないように受電電流を制御する。上限設定値は、蓄電装置100の製造メーカーが初期設定値として付与している値であってもよいし、ユーザが通信手段で遠隔操作又は手動で直接操作により設定した設定値であってもよいし、設置業者又は電気工事士が設定した値であってもよい。蓄電装置100は、受電電流を減少させる場合、例えば、蓄電池101の充電量を減少させる。または、蓄電装置100は、受電電流を減少させる場合、例えば、特定出力端子113に接続している負荷30への供給電力を減少させる。
蓄電装置100は、蓄電池101と、双方向インバータ102と、制御部103と、記憶部104と、電流センサ105と、連系リレー107と、系統リンクリレー108と、自立リレー109と、切替リレー110と、太陽光リンクリレー111と、連系出力端子112と、特定出力端子113と、自立入力端子(入力端子)114とを備える。
蓄電池101は、充電時には、双方向インバータ102から供給される直流電力によって充電される。また、蓄電池101は、放電時には、双方向インバータ102に直流電力を供給する。
双方向インバータ102は、系統連系時には、系統40から供給される交流電力を直流電力に変換し、変換した直流電力を供給して、蓄電池101を充電することができる。双方向インバータ102は、停電時には、太陽光発電パワーコンディショナ20から供給される交流電力を直流電力に変換し、変換した直流電力を供給して、蓄電池101を充電することができる。また、双方向インバータ102は、蓄電池101から供給される直流電力を交流電力に変換し、負荷30に供給することができる。
制御部103は、蓄電装置100全体を制御及び管理するものであり、例えばプロセッサにより構成することができる。
制御部103は、電圧検知線106から取得した受電電圧の値に基づいて、受電電流の上限設定値を制御する。
制御部103は、受電電流の値が上限設定値を超えないように、太陽光発電パワーコンディショナ20から受電する受電電流を制御する。制御部103は、双方向インバータ102を制御して蓄電池101への充電量を増減させることによって、受電電流の値を制御することができる。また、制御部103は、特定出力端子113に接続された負荷30への電力供給量を制御して、受電電流を制御することもできる。
制御部103の機能の詳細については後述する。
記憶部104は、半導体メモリ又は磁気メモリ等で構成することができる。記憶部104は、制御部103が実行する処理に用いられるプログラム等の各種情報を記憶する。
記憶部104は、各製造メーカー、各機種の太陽光発電パワーコンディショナ20の過負荷保護機能の作動条件を記憶している。該過負荷保護機能の作動条件は、仕様書に記載の値などの公表されている値を記憶させておいてもよいし、公表されている値がない場合は、一般的な値を記憶させておいてもよい。また、記憶部104は、機種毎に異なる値ではなく、共通の値として、過負荷保護機能の作動条件の値を記憶していてもよい。なお、記憶部104への記憶は、製造メーカーが製造時に書き込んでおいてもよいし、設置現場で追加入力可能としてもよい。また、インターネットを用いて定期的に外部サーバーにアクセスして、新たな設定値が自動的に追加・更新されるようにしてもよい。
電流センサ105は、太陽光発電パワーコンディショナ20からの受電電流を検出する。図1においては、自立入力端子114からの受電電流を1つの電流センサで検出できる位置に電流センサ105を設置しているが、電流センサ105の設置位置はこれに限られるものではない。例えば、蓄電池101への充電電流を検出できる位置と、特定出力端子113に供給する電流を検出できる位置とに1つずつ電流センサを設置し、これら2つの電流センサにより検出した電流値の和から受電電流を検出してもよい。また、図1の例では単相2線式として電流センサ105を1個としているが、単相3線式ならば電流センサ105を2個とすればよい。
電圧検知線106は、受電電圧の値を取得するために、制御部103に引き込まれた配線である。図1の例では単相2線式として電圧検知線106を1本としているが、単相3線式ならば電圧検知線106を2本として対応する電流センサ105の電流値と併せて電力を算出させればよい。
連系リレー107は、制御部103によって、系統連系時には閉状態、停電時には開状態となるように制御される。
系統リンクリレー108は、制御部103によって、系統連系時において、特定出力端子113に系統40からの電力を供給する場合に閉状態となるように制御される。
自立リレー109は、制御部103によって、系統連系時には開状態、停電時には閉状態となるように制御され、停電時には、蓄電池101の出力する直流電力を双方向インバータ102で交流電力に変換して負荷30へ供給することができる。また、自立リレー109は、停電時であっても、太陽光発電パワーコンディショナ20の自立運転時において、負荷30への電力供給を優先する場合は、開状態に制御される。
切替リレー110は、制御部103によって、特定出力端子113に電力を供給する場合には閉状態、特定出力端子113に電力を供給しない場合には開状態となるように制御される。太陽光発電パワーコンディショナ20の自立運転時において、蓄電池101への充電を優先させる場合や、負荷30が蓄電装置100からの制御を受け付ける機能を有さない場合は、制御部103は、切替リレー110が開状態となるように制御する。
太陽光リンクリレー111は、制御部103によって、系統連系時には開状態、停電時には閉状態となるように制御される。
連系出力端子112は、系統連系時に、蓄電装置100を系統40に連系させる端子である。
特定出力端子113は、蓄電装置100から負荷30に電力を供給する端子である。
自立入力端子114は、太陽光発電パワーコンディショナ20の自立出力端子22に接続されている。自立入力端子114は、停電時に、太陽光発電パワーコンディショナ20の自立出力を、自立出力端子22から受電することができる。
<受電電流の上限設定値への総受電電力量の依存>
一般に、蓄電装置100が太陽光発電パワーコンディショナ20の自立出力端子22から受電する際、蓄電装置100における受電電流の上限設定値が大きい方が、多くの電力量を受電することができると想定されていることが多い。しかしながら、過負荷保護機能による太陽光発電パワーコンディショナ20の自立出力の停止を考慮すると、必ずしも受電電流の上限設定値が大きい方が、多くの電力量を受電するとはいえない。図2を参照して、蓄電装置100が太陽光発電パワーコンディショナ20の自立出力端子22から1日に受電することができる総受電電力量の、受電電流の上限設定値に対する依存性を説明する。なお、図2に示す例は、参考のために、受電電流の上限設定値を固定した場合の例を示すものであり、実際には、本実施形態に係る蓄電装置100は、受電電流の上限設定値を可変とするものである。
最初に、図2(a)を参照して、受電電流の上限設定値を15Aに設定した場合の総受電電力量を説明する。
朝夕は日射量が少ないため、太陽光発電パワーコンディショナ20が発電可能な電力量は小さい。例えば、8:00から9:00までの時間帯に、太陽光発電パワーコンディショナ20が発電可能な電力量は、1.0kWhである。しかしながら、この発電量では、蓄電装置100に15Aの電流を供給する能力がないため、受電電圧は80V以下に低下する。そのため、太陽光発電パワーコンディショナ20は、過負荷保護機能により自立出力を停止する。ここでいう停止とは、300秒程度の時間経過後に自動的に復帰し、再び過負荷保護機能により自立出力を停止する、を繰り返す動作をいう。その結果、蓄電装置100は、8:00から9:00までの時間帯は、太陽光発電パワーコンディショナ20から受電することができない。同様に、6:00から8:00及び15:00から18:00までの時間帯も、蓄電装置100は、過負荷保護機能による自立出力の停止により、太陽光発電パワーコンディショナ20から受電することができない。
一方、9:00から15:00までの時間帯は、発電量が十分であるため、太陽光発電パワーコンディショナ20は、過負荷保護機能により自立出力を停止することなく、自立出力端子22から蓄電装置100に電力を供給することができる。
図2(a)に示す例においては、蓄電装置100が太陽光発電パワーコンディショナ20から1日に受電する総受電電力量は8.5kWhとなる。
続いて、図2(b)を参照して、受電電流の上限設定値を10Aに設定した場合の総受電電力量を説明する。
受電電流の上限設定値が10Aである場合は、図2(a)の場合と異なり、日射量の少ない7:00から9:00及び15:00から17:00の時間帯においても、太陽光発電パワーコンディショナ20は、蓄電装置100に10Aの電流を供給する能力がある。そのため、7:00から9:00及び15:00から17:00の時間帯において、太陽光発電パワーコンディショナ20は、過負荷保護機能による自立出力の停止を行わない。その結果、蓄電装置100は、7:00から9:00及び15:00から17:00の時間帯においても、太陽光発電パワーコンディショナ20から受電することができる。
また、9:00から15:00の時間帯は、発電量が十分であるため、太陽光発電パワーコンディショナ20は10A以上の電流を供給可能であるが、蓄電装置100が受電電流の上限設定値を10Aに設定しているため、蓄電装置100に10Aを供給する。そのため、図2(b)に示す例においては、蓄電装置100が、9:00から15:00までの間の各1時間に受電する電力量は、1.0kWhである。
図2(b)に示す例においては、蓄電装置100が太陽光発電パワーコンディショナ20から1日に受電する総受電電力量は9.8kWhとなる。これは、図2(a)の場合の総受電電力量8.5kWhより1.3kWh大きい値である。
このように、受電電流の上限設定値を大きい値に設定すると、過負荷保護機能による自立出力の停止により、蓄電装置100が太陽光発電パワーコンディショナ20から受電できる時間が短くなる。その結果、受電電流の上限設定値を小さい値に設定した場合よりも、1日に受電する総受電電力量が小さい場合があり得る。
本実施形態に係る蓄電装置100は、図2に示したような受電電流の上限設定値への総受電電力量の依存を考慮して、受電電圧に基づいて受電電流の上限設定値を適切に制御するものである。
<過負荷保護機能の作動を抑制する制御>
蓄電装置100が、太陽光発電パワーコンディショナ20の過負荷保護機能が作動しないようにするため、受電電流の上限設定値を制御する動作の一例を説明する。
制御部103は、受電電流の上限設定値を設定する。制御部103は、太陽光発電パワーコンディショナ20の供給可能な発電電力を無駄なく受電することができるようにするため、大きめの値を受電電流の上限設定値の初期値として設定する。ここで、「大きめの値」とは、太陽光発電パワーコンディショナ20の供給可能電流の上限に近いと想定される電流値であり、例えば、太陽光発電パワーコンディショナ20の自立運転時において、安定的に自立出力端子22に出力可能な設計値である。制御部103は、上限設定値の初期値を、例えば15Aに設定する。
制御部103は、太陽光発電パワーコンディショナ20の自立出力端子22からの受電電圧の値を、電圧検知線106から取得する。制御部103は、受電電圧の値が所定電圧値(第1の所定電圧値)以下となると、受電電流の上限設定値を、初期値よりも小さい所定の値(例えば、10A)に低減させる。第1の所定電圧値は、例えば91Vである。第1の所定電圧値は、太陽光発電パワーコンディショナ20が過負荷保護機能を作動させると想定される電圧値(例えば、80V)に基づいて、その値よりもマージンをもって大きい値に設定された値である。
制御部103は、受電電流の上限設定値が初期値よりも小さい値に低減されると、受電電流の値が低減後の上限設定値を超えないように、太陽光発電パワーコンディショナ20から受電する受電電流を制御する。
このように、制御部103は、太陽光発電パワーコンディショナ20の自立出力端子22からの受電電圧が所定電圧値以下となると、受電電流の上限設定値を低減させる制御を実行する。これにより、太陽光発電パワーコンディショナ20が過負荷保護機能の作動により自立出力を停止することを防ぐことができ、日射量低下等の理由で発電電力が低下したとしても長時間安定して、太陽光発電パワーコンディショナ20に自立運転出力を続けさせることができる。したがって、蓄電装置100は、太陽光発電パワーコンディショナ20が供給可能な太陽電池10の発電電力を、蓄電池101の充電に十分に活用することができる。
なお、負荷30の起動時などは、突入電力が発生して大きな電流を引き込み、受電電圧が一時的に大きく低下することがある。このような突入電力による一時的な受電電圧の低下は許容できるようにするために、制御部103は、受電電圧が所定電圧値以下となっても、所定電圧値以下となっている時間が所定の時間以下であれば、受電電流の上限設定値を低減させないように制御してもよい。具体的には、一般的な太陽光発電パワーコンディショナ20の過負荷保護機能の作動までの時間が2〜3秒なので、2秒未満は猶予期間としてもよい。
図3及び図4を参照して、本実施形態に係る蓄電装置100の制御により、蓄電装置100が太陽光発電パワーコンディショナ20の自立出力端子22から1日に受電することのできる総受電電力量が増加する様子を示す。
最初に、図3を参照して、朝夕の日射量が少ない場合について説明する。図3に示す例では、9:00以前の時間及び15:00以後の時間は日射量が少なく、太陽光発電パワーコンディショナ20は、15Aを供給する能力がないものとする。
図3(a)は、本実施形態と対比するために、受電電流の上限設定値を15Aに固定した場合を示す図である。図3(a)に示す例においては、9:00以前の時間及び15:00以後の時間は、日射量が少なく太陽電池10の発電量が不足しているため、蓄電装置100が太陽光発電パワーコンディショナ20から15Aの電流を受電しようとすると、受電電圧が低下し過負荷保護機能が作動する。
その結果、蓄電装置100が太陽光発電パワーコンディショナ20から受電できる時間は、9:00から15:00までの時間帯のみとなり、蓄電装置100の総受電電力量は、9.0kWhとなる。
図3(b)は、本実施形態に係る蓄電装置100の制御を実行した場合を示す図である。この場合、受電電圧が低下すると制御部103が受電電流の上限設定値を15Aから10Aに低減するため、太陽光発電パワーコンディショナ20が10Aを供給する能力があれば、過負荷保護機能は作動しない。また、受電電流の上限設定値を一定時間毎に15Aに戻すようにすれば、日射量が回復した場合に受電電流を15Aで受電することができる(例えば図中9:00)。この詳細については後述する。
その結果、蓄電装置100は、7:00から9:00の時間帯及び15:00から17:00の時間帯も10Aの電流を受電することができ、蓄電装置100の総受電電力量は、13.0kWhとなる。
このように、図3に示す例においては、本実施形態に係る蓄電装置100の制御を実行することにより、蓄電装置100が1日に受電することができる総受電電力量が9.0kWhから13.0kWhに増加する。
続いて、図4を参照して、朝夕の日射量が少ない上に、にわか雨のような天候の悪化により昼間にも日射量が減少する時間帯があった場合について説明する。図4に示す例では、9:00以前の時間及び15:00以後の時間は日射量が少なく、太陽光発電パワーコンディショナ20は、15Aを供給する能力がないものとする。また、12:00から14:00の時間帯も天候の悪化により日射量が少なく、太陽光発電パワーコンディショナ20は、15Aを供給する能力がないものとする。
図4(a)は、本実施形態と対比するために、受電電流の上限設定値を15Aに固定した場合を示す図である。図4(a)に示す例においては、9:00以前の時間及び15:00以後の時間、さらに12:00から14:00の時間帯は、日射量が少なく太陽電池10の発電量が不足しているため、蓄電装置100が太陽光発電パワーコンディショナ20から15Aの電流を受電しようとすると、受電電圧が低下し過負荷保護機能が作動する。
その結果、蓄電装置100が太陽光発電パワーコンディショナ20から受電できる時間は、9:00から12:00までの時間帯及び14:00から15:00までの時間帯のみとなり、蓄電装置100の総受電電力量は、6.0kWhとなる。
図4(b)は、本実施形態に係る蓄電装置100の制御を実行した場合を示す図である。この場合、受電電圧が低下すると制御部103が受電電流の上限設定値を15Aから10Aに低減するため、太陽光発電パワーコンディショナ20が10Aを供給する能力があれば、過負荷保護機能は作動しない。
その結果、蓄電装置100は、7:00から9:00の時間帯、12:00から14:00の時間帯及び15:00から17:00の時間帯も10Aの電流を受電することができ、蓄電装置100の総受電電力量は、12.0kWhとなる。
このように、図4に示す例においては、本実施形態に係る蓄電装置100の制御を実行することにより、蓄電装置100が1日に受電することができる総受電電力量が6.0kWhから12.0kWhに増加する。
<受電電圧に基づく受電電流の上限設定値の設定>
図5を参照して、蓄電装置100が、太陽光発電パワーコンディショナ20の過負荷保護機能が作動しないように、受電電圧に基づいて受電電流の上限設定値を設定する動作の一例を説明する。なお、図5で用いている数値はあくまで一例であり、この数値に限定されるものではない。
制御部103は、受電電流の上限設定値の初期値を、例えば15Aに設定しているものとする。図5に示す例においては、日射量の減少などの理由により、時刻t1から受電電圧の値が徐々に減少するものとする。
制御部103は、受電電圧の値が所定電圧値(第1の所定電圧値)以下となると、受電電流を徐々に減少させる制御を実行する。図5に示す例では、第1の所定電圧値は91Vであるものとする。
図5に示す例では、時刻t2において受電電圧が91Vに達する。そのため、制御部103は、時刻t2から、徐々に受電電流を減少させる制御を実行する。
制御部103は、受電電圧が所定電圧値(第2の所定電圧値)に達するまで受電電流を減少させる。図5に示す例では、第2の所定電圧値は95Vであるものとする。なお、第2の所定電圧値を95Vとするのは一例であり、他の値であってもよい。第2の所定電圧値は、太陽光発電パワーコンディショナ20が過負荷保護機能を作動させる電圧よりも十分大きい値として設定された値である。
制御部103は、時刻t2から受電電流を減少させる制御を開始し、時刻t3において受電電圧の値が95Vに達すると、受電電流を減少させる制御を終了する。そして、制御部103は、時刻t3における受電電流の値である10Aに、受電電流の上限設定値を更新する。
続いて、蓄電装置100が、太陽光発電パワーコンディショナ20の過負荷保護機能が作動しないように、受電電圧に基づいて受電電流の上限設定値を設定する動作の一例について、図6に示すフローチャートを参照して説明する。
制御部103は、記憶部104から、蓄電装置100に接続している太陽光発電パワーコンディショナ20からの受電電流の上限設定値の初期値を読み込む(ステップS101)。記憶部104は、例えば、太陽光発電パワーコンディショナ20の機種毎に受電電流の上限設定値の初期値を記憶している。
制御部103は、記憶部104から、太陽光発電パワーコンディショナ20からの受電を抑制する所定電圧値を読み込む(ステップS102)。ここで、所定電圧値は、例えば91Vである。
制御部103は、太陽光発電パワーコンディショナ20の自立出力端子22から自立入力端子114への受電を開始する(ステップS103)。
制御部103は、電圧検知線106から受電電圧の値を取得し、電流センサ105から受電電流の値を取得する(ステップS104)。
制御部103は、取得した受電電圧の値が所定電圧値以下であるか否かを判定する(ステップS105)。
取得した受電電圧の値が所定電圧値より大きい場合(ステップS105:No)、制御部103は、ステップS107に進む。
取得した受電電圧の値が所定電圧値以下である場合(ステップS105:Yes)、制御部103は、受電電流を減少させる制御を実行し(ステップS106)、ステップS104に戻る。なお、ステップS106において、受電電流を減少させる制御を実行すると、制御部103は、該制御を実行したことを記憶部104に記憶させる。
ステップS105においてNoと判定した場合、制御部103は、本受電電流の上限設定値を設定する動作開始後(ステップS101以降)にステップS106による受電電流を減少させる制御を実行した経過があるか否かを判定する(ステップS107)。
受電電流を減少させる制御を実行していた場合(ステップS107:Yes)、制御部103は、現在の受電電流の値に、受電電流の上限設定値を更新する(ステップS108)。
受電電流を減少させる制御を実行していなかった場合(ステップS107:No)、制御部103は、本フローを終了する。
<受電電流の上限設定値の増加>
制御部103は、受電電流の上限設定値を低減させる制御を実行した後、所定の条件を満たした場合に、受電電流の上限設定値を初期値に戻す制御を実行する。
制御部103は、例えば、受電電圧の値が所定の値(第3の所定電圧値)以上になった場合に、受電電流の上限設定値を初期値に戻す制御を実行する。例えば、図5に示す例においては、受電電圧が95Vになるように受電電流の上限設定値を設定したが、その後、日射量の回復により受電電圧が上昇する場合がある。例えば、制御部103は、受電電圧が100Vまで上昇した場合に、受電電流の上限設定値を初期値に戻すように制御してもよい。
また、制御部103は、所定のタイミングで受電電流の上限設定値を初期値に戻してもよい。例えば、制御部103は、一定の時間間隔(例えば1時間間隔)又は所定の指定時刻(例えば夜間)に受電電流の上限設定値を初期値に戻すように制御してもよい。
また、制御部103は、太陽光発電パワーコンディショナ20から発電電力量の値を取得し、発電電力量が所定の値以上である場合に、受電電流の上限設定値を初期値に戻すように制御してもよい。
また、制御部103は、インターネットなどから天候情報を取得し、天候が回復して日射量が増加していると推定される場合に、受電電流の上限設定値を初期値に戻すように制御してもよい。
[第2実施形態]
分散電源システム2は、図7に示すように、太陽電池10と、太陽光発電パワーコンディショナ20と、負荷30と、蓄電池101と、パワーコンディショナ150とを備える。図7において、各機能ブロックを結ぶ実線は主に電力線を示し、破線は主に通信線又は信号線を示す。
第2実施形態においては、第1実施形態と相違する部分について主に説明し、第1実施形態と共通又は類似する内容については、説明を省略する。
第2実施形態は、第1実施形態における蓄電装置100が、パワーコンディショナ150に置き換わった点で、第1実施形態と相違する。パワーコンディショナ150は、蓄電池101を内部に有さず、外部に設置された蓄電池101と、パワーコンディショナ150内の双方向インバータ102とが接続されている。パワーコンディショナ150のその他の構成は、第1実施形態における蓄電装置100と同様であるため、説明を省略する。
本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各構成部、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部やステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、本発明について装置を中心に説明してきたが、本発明は装置の各構成部が実行するステップを含む方法、装置が備えるプロセッサにより実行される方法、プログラム、又はプログラムを記録した記憶媒体としても実現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。
また、制御部103は、受電電流の上限設定値を、上述した第1実施形態及び第2実施形態のように、リニアに低減又は増加させていく他に、予め記憶部104に記憶させておいた前回変更時の上限設定値を用いて急速に変化させてもよい。
具体的には、例えば、制御部103は、図6のステップS108で更新した上限設定値を記憶部104に記憶しておき、次回の動作時に受電電圧が低下したときには、記憶していた前回更新時の上限設定値に変更してもよい。制御部103は、その後、受電電圧の状態をみて、更新後の上限設定値の値を第1実施形態及び第2実施形態のように低減又は増加させて最適値に微修正してもよい。
この結果、太陽光発電パワーコンディショナ20の出力低下が急速に生じた場合であっても、制御部103は、受電電圧が80Vまで下がる前に受電電流を減らすことができ、受電電流減少の制御の処理速度が追従し切れず過負荷保護機能が動作するリスクを減らすことができる。
なお、このように前回更新時の上限設定値に変更することと、リニアに変更させることの制御の切り替えとしては、例えば、既に受電電圧の値が低い(例えば、90V)状態まで下がっていた場合、早急に受電電流を下げないと過負荷保護機能が作動してしまう可能性が高いので、制御部103は、前回更新時の上限設定値に変更してもよい。一方、まだ低下が少ない場合(例えば、94V)、過負荷保護機能が作動する電圧(80V)まで余裕があるので、制御部103は、第1実施形態及び第2実施形態のように制御してもよい。
1、2 分散電源システム
10 太陽電池
20 太陽光発電パワーコンディショナ
21 連系出力端子
22 自立出力端子
30 負荷
40 系統
100 蓄電装置
101 蓄電池
102 双方向インバータ
103 制御部
104 記憶部
105 電流センサ
106 電圧検知線
107 連系リレー
108 系統リンクリレー
109 自立リレー
110 切替リレー
111 太陽光リンクリレー
112 連系出力端子
113 特定出力端子
114 自立入力端子(入力端子)
150 パワーコンディショナ

Claims (10)

  1. 蓄電池と、
    太陽光発電パワーコンディショナの自立出力端子から供給される電力を受電可能な入力端子と、
    前記入力端子からの受電電圧の値に応じて、前記入力端子からの受電電流の上限設定値を制御する制御部と
    記憶部と、を備え
    前記制御部は、
    前記記憶部から、第1の所定電圧値と、前記第1の所定電圧値よりも大きい第2の所定電圧値と、を読み込み、
    前記受電電圧の値が、前記第1の所定電圧値以下となると、前記受電電流を減少させ、
    前記受電電圧の値が、前記受電電流の減少により前記第2の所定電圧値に達すると、そのときの受電電流値を前記上限設定値として、前記記憶部の前記上限設定値を更新する蓄電装置。
  2. 請求項1に記載の蓄電装置において、前記第1の所定電圧値は、前記太陽光発電パワーコンディショナが過負荷保護機能を作動させる電圧値よりも大きい値であることを特徴とする蓄電装置。
  3. 請求項1又は2に記載の蓄電装置において、前記制御部は、前記受電電流の上限設定値を、前記記憶部に記憶していた前回更新時の上限設定値に変更することを特徴とする蓄電装置。
  4. 請求項1から3のいずれか1項に記載の蓄電装置において、前記制御部は、一定の時間間隔で前記上限設定値を初期値に戻すことを特徴とする蓄電装置。
  5. 請求項1から3のいずれか1項に記載の蓄電装置において、前記制御部は、所定の指定時刻で前記上限設定値を初期値に戻すことを特徴とする蓄電装置。
  6. 請求項に記載の蓄電装置において、前記制御部は、夜間に前記上限設定値を初期値に戻すことを特徴とする蓄電装置。
  7. 請求項1から3のいずれか1項に記載の蓄電装置において、前記制御部は、前記受電電圧が第3の所定電圧値以上となると、前記上限設定値を初期値に戻すことを特徴とする蓄電装置。
  8. 請求項4から7のいずれか1項に記載の蓄電装置において、前記制御部は、前記太陽光発電パワーコンディショナから発電電力量の値を取得し、該発電電力量が所定の値以上である場合に、前記上限設定値を初期値に戻すことを特徴とする蓄電装置。
  9. 直流電力又は交流電力に変換する蓄電池用のパワーコンディショナであって、
    太陽光発電パワーコンディショナの自立出力端子から供給される電力を受電可能な入力端子と、
    前記入力端子からの受電電圧の値に応じて、前記入力端子からの受電電流の上限設定値を制御する制御部と
    記憶部と、を備え
    前記制御部は、
    前記記憶部から、第1の所定電圧値と、前記第1の所定電圧値よりも大きい第2の所定電圧値と、を読み込み、
    前記受電電圧の値が、前記第1の所定電圧値以下となると、前記受電電流を減少させ、
    前記受電電圧の値が、前記受電電流の減少により前記第2の所定電圧値に達すると、そのときの受電電流値を前記上限設定値として、前記記憶部の前記上限設定値を更新するパワーコンディショナ。
  10. 太陽光発電パワーコンディショナと蓄電装置とを備える分散電源システムであって、
    前記蓄電装置は、
    蓄電池と、
    前記太陽光発電パワーコンディショナの自立出力端子から供給される電力を受電可能な入力端子と、
    前記入力端子からの受電電圧の値に応じて、前記入力端子からの受電電流の上限設定値を制御する制御部と
    記憶部と、を備え
    前記制御部は、
    前記記憶部から、第1の所定電圧値と、前記第1の所定電圧値よりも大きい第2の所定電圧値と、を読み込み、
    前記受電電圧の値が、前記第1の所定電圧値以下となると、前記受電電流を減少させ、
    前記受電電圧の値が、前記受電電流の減少により前記第2の所定電圧値に達すると、そのときの受電電流値を前記上限設定値として、前記記憶部の前記上限設定値を更新する分散電源システム。
JP2016105460A 2016-05-26 2016-05-26 蓄電装置、パワーコンディショナ及び分散電源システム Active JP6656085B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105460A JP6656085B2 (ja) 2016-05-26 2016-05-26 蓄電装置、パワーコンディショナ及び分散電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105460A JP6656085B2 (ja) 2016-05-26 2016-05-26 蓄電装置、パワーコンディショナ及び分散電源システム

Publications (2)

Publication Number Publication Date
JP2017212825A JP2017212825A (ja) 2017-11-30
JP6656085B2 true JP6656085B2 (ja) 2020-03-04

Family

ID=60476358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105460A Active JP6656085B2 (ja) 2016-05-26 2016-05-26 蓄電装置、パワーコンディショナ及び分散電源システム

Country Status (1)

Country Link
JP (1) JP6656085B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180901A1 (ja) * 2018-03-23 2019-09-26 三菱電機株式会社 電力変換装置
JP7096555B2 (ja) * 2020-06-08 2022-07-06 AURA-Green Energy株式会社 自然エネルギー余剰電力の利活用システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260092B2 (ja) * 2008-03-10 2013-08-14 株式会社日立製作所 電力変換装置及び発電変換システム
JP5810871B2 (ja) * 2011-11-30 2015-11-11 オムロン株式会社 制御装置および制御方法
JP5903622B2 (ja) * 2011-12-15 2016-04-13 パナソニックIpマネジメント株式会社 電力供給システムおよび充放電用パワーコンディショナ
JP2013143895A (ja) * 2012-01-12 2013-07-22 Sharp Corp 充放電制御装置、蓄電システム、電力供給システム、および、充放電制御方法
JP5744307B2 (ja) * 2012-02-13 2015-07-08 三菱電機株式会社 電力変換装置
JP6007526B2 (ja) * 2012-03-13 2016-10-12 オムロン株式会社 充電電力制御装置、充電電力制御方法、プログラム、および太陽光発電システム
JP6000742B2 (ja) * 2012-08-10 2016-10-05 シャープ株式会社 パワーコンディショナおよび電力供給システム
JP6598716B2 (ja) * 2016-03-28 2019-10-30 京セラ株式会社 蓄電装置及びパワーコンディショナ

Also Published As

Publication number Publication date
JP2017212825A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
US9651971B2 (en) Control device, power control system, and power control method
WO2017026287A1 (ja) 制御装置、エネルギー管理装置、システム、及び制御方法
KR101531625B1 (ko) 충전 장치
JP6160481B2 (ja) 電源装置、電源システムおよび電源制御方法
US20120229077A1 (en) Electric power supply system and method for controlling electric power discharge
JP2007028735A (ja) 分散電源システム及び方法
WO2009148839A1 (en) Storage system that maximizes the utilization of renewable energy
EP2858200B1 (en) Power supply system
JP2008306832A (ja) 電力貯蔵システム
JP2011250673A (ja) エネルギーコントローラおよび制御方法
JP5841279B2 (ja) 電力充電供給装置
JP6656085B2 (ja) 蓄電装置、パワーコンディショナ及び分散電源システム
Schonberger et al. Autonomous load shedding in a nanogrid using DC bus signalling
JP7042694B2 (ja) パワーコンディショナおよび逆接続時の制御方法
JP6598716B2 (ja) 蓄電装置及びパワーコンディショナ
JP6832511B2 (ja) 電力変換装置、電力変換システム
JP6832510B2 (ja) 電力変換装置、電力変換システム
JP5895231B2 (ja) 制御装置
JP2012010554A (ja) 自家用発電システム
JP6762297B2 (ja) 機器制御システムおよび制御方法
JP6617283B2 (ja) 電力変換システム
US20180323614A1 (en) Apparatus control device, apparatus control system, and apparatus control method
JP2017041933A (ja) 直流電源システムの制御装置
JP6846709B2 (ja) 電力変換装置、電力変換システム
JP2017070063A (ja) 電力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6656085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150