WO2013088724A1 - 蓄電装置とその製造方法 - Google Patents

蓄電装置とその製造方法 Download PDF

Info

Publication number
WO2013088724A1
WO2013088724A1 PCT/JP2012/007969 JP2012007969W WO2013088724A1 WO 2013088724 A1 WO2013088724 A1 WO 2013088724A1 JP 2012007969 W JP2012007969 W JP 2012007969W WO 2013088724 A1 WO2013088724 A1 WO 2013088724A1
Authority
WO
WIPO (PCT)
Prior art keywords
exterior body
current collector
power storage
collector plate
storage device
Prior art date
Application number
PCT/JP2012/007969
Other languages
English (en)
French (fr)
Inventor
三浦 照久
育史 大島
村上 和宏
秀樹 島本
川崎 周作
野本 進
基浩 坂田
上岡 浩二
正行 新庄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013549123A priority Critical patent/JP6127274B2/ja
Publication of WO2013088724A1 publication Critical patent/WO2013088724A1/ja
Priority to US14/301,691 priority patent/US9287059B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage device used for regenerating various electronic devices and hybrid vehicles, or for storing electric power, and a method for manufacturing the same.
  • FIG. 21 is a front sectional view of an electric double layer capacitor which is an example of a conventional power storage device.
  • This capacitor includes a capacitor element 101, two current collecting plates 102, a cylindrical metal case 105 having a bottom surface 105A, a terminal plate 103 partially exposed to the outside of the case 105, and a sealing rubber 106. And have.
  • the capacitor element 101 has a positive electrode end 101A and a negative electrode end 101B (hereinafter referred to as ends 101A and 101B) at opposing positions.
  • the current collector plate 102 is welded and joined to the end portions 101A and 101B.
  • the capacitor element 101 is housed in the case 105 so that the current collector plate 102 joined to the end portion 101B faces the bottom surface 105A.
  • the current collector plate 102 joined to the end portion 101 ⁇ / b> A is located at the opening of the case 105 and joined to the terminal plate 103.
  • the sealing rubber 106 interposes the terminal plate 103 with the opening of the case 105 to insulate them.
  • the lateral drawing portion 105B is formed from the outside to the inside of the opening of the case 105, whereby the sealing rubber 106 is compressed and the opening is sealed.
  • the open end of the case 105 is processed inward to form a bent portion 105C.
  • the capacitor element 101 is composed of a positive electrode, a negative electrode, and a separator (all not shown).
  • Each of the positive electrode and the negative electrode is configured by applying an electrode layer containing a carbon material to a strip-shaped current collector except for one end side.
  • these positive and negative electrodes are opposed to each other so that the electrode layer-unformed portions of the current collectors protrude in the opposite direction, and the separators are interposed between the opposed positive and negative electrodes. It is composed by winding.
  • the electrode layer non-formation part of each electrode comprises the edge part 101A and the edge part 101B, respectively.
  • the terminal plate 103 is provided with a through hole that connects the inside and the outside of the case 105, and a pressure regulating valve 104 that prevents an increase in pressure inside the case 105 is provided so as to close the through hole.
  • each electrode in sheet form and the current collector plate 102 are in surface contact with each other, and current can be taken out from the capacitor element 101. Therefore, current collection inside the electric double layer capacitor can be performed with low resistance (see, for example, Patent Document 1).
  • the present invention is a power storage device with improved workability in the arrangement of a sealing member and a method for manufacturing the same.
  • the power storage device of the present invention includes a power storage element, an electrolyte impregnated in the power storage element, a terminal plate, an exterior body, and a sealing member.
  • the power storage element has a first electrode and a second electrode, and has a first end from which the first electrode is drawn.
  • the terminal plate has an element connection portion electrically connected to the first electrode at the first end portion, and an external terminal portion connected to the element connection portion.
  • the exterior body has a bottom surface and a cylindrical side wall provided with an opening extending from the bottom surface and positioned on the opposite side of the bottom surface.
  • the exterior body is made of a conductive material, and houses the storage element together with the electrolyte so that the terminal plate is located on the opening side.
  • the sealing member is located on the element connecting portion, has an insertion hole into which the external terminal portion is inserted, and seals the opening of the exterior body together with the external terminal portion.
  • the external terminal portion is a column or cylinder having a tapered portion on the outer periphery of the tip, and part of the external terminal portion is exposed from the sealing member.
  • the taper portion has a first end portion and a second end portion farther from the element connection portion than the first end portion. In the first direction extending from the bottom surface of the exterior body to the opening, the edge of the side wall in the opening of the exterior body is located between the first end and the second end of the tapered portion.
  • the power storage device of the present invention is manufactured by the following steps. Producing a power storage device having a first electrode and a second electrode and having a first end from which the first electrode is pulled out; having an element connection portion and an external terminal portion connected to the element connection portion Electrically connecting the element connecting portion of the terminal plate and the first electrode at the first end of the electricity storage device; a bottom surface, and a cylindrical shape provided with an opening extending from the bottom surface and positioned on the opposite side of the bottom surface A step of accommodating the storage element connected to the terminal plate together with the electrolyte so that the terminal plate is located on the opening side in an exterior body made of a conductive material.
  • the external terminal portion is a column or a cylinder having a tapered portion provided on the outer periphery and a sealing portion connected to the tapered portion.
  • the external terminal portion when the external terminal portion is inserted into the insertion hole of the sealing member while the sealing member is housed in the exterior body, the external body portion is not tapered before the main body portion where the taper of the external terminal portion is not formed.
  • the open end is in contact with the sealing member. Therefore, the position of the outer peripheral surface of the sealing member inside the exterior body is determined on the basis of the position of the inner peripheral surface of the opening end that first contacts. Thereby, even after the position of the outer peripheral surface of a sealing member is decided, a sealing member can be continuously entered in an exterior body.
  • the sealing member when the sealing member is accommodated in the exterior body, at least a part of the outer periphery of the sealing member can be accommodated inside the exterior body before the main body portion of the external terminal portion contacts the insertion hole of the sealing member.
  • the external terminal portion, the sealing member, and the exterior body are configured in a dimensional relationship, the above-described power storage device of the present invention is configured.
  • FIG. 1A is a top view of the electric double layer capacitor in accordance with the first exemplary embodiment of the present invention.
  • 1B is a front sectional view of the electric double layer capacitor shown in FIG. 1A.
  • 2A is a top view of a terminal plate used in the electric double layer capacitor shown in FIG. 1B.
  • 2B is a front sectional view of the terminal board shown in FIG. 2A.
  • FIG. 3A is a top view of a sealing member used in the electric double layer capacitor shown in FIG. 1B.
  • 3B is a front sectional view of the sealing member shown in FIG. 3A.
  • FIG. 3C is a bottom view of the sealing member shown in FIG. 3A.
  • 4A is a schematic cross-sectional view when the external terminal portion of the terminal plate shown in FIG.
  • FIG. 2B is inserted into the sealing member while accommodating the sealing member shown in FIG. 3B in the exterior body.
  • 4B is a schematic cross-sectional view when the external terminal portion of the terminal plate shown in FIG. 2B is inserted into the sealing member while accommodating the sealing member shown in FIG. 3B in the exterior body.
  • 4C is a schematic cross-sectional view when the external terminal portion of the terminal plate shown in FIG. 2B is inserted into the sealing member while accommodating the sealing member shown in FIG. 3B in the exterior body.
  • 4D is a schematic cross-sectional view when the external terminal portion of the terminal plate shown in FIG. 2B is inserted into the sealing member while accommodating the sealing member shown in FIG. 3B in the exterior body.
  • FIG. 1 is a schematic cross-sectional view when the external terminal portion of the terminal plate shown in FIG. 2B is inserted into the sealing member while accommodating the sealing member shown in FIG. 3B in the exterior body.
  • FIG. 5 is an image diagram illustrating the state of the external terminal portion and the sealing member when the sealing member shown in FIG. 3B and the external terminal portion of the terminal plate shown in FIG. 2B are in contact with each other.
  • 6A is a top view of the current collector plate of the electric double layer capacitor shown in FIG. 1B.
  • 6B is a front sectional view of the current collector plate shown in FIG. 6A.
  • FIG. 7 is a plan view showing the inside of the bottom surface of the exterior body of the electric double layer capacitor shown in FIG. 1B.
  • FIG. 8 is an enlarged front cross-sectional view showing a joined state between the exterior body and the current collector plate of the electric double layer capacitor shown in FIG. 1B.
  • FIG. 9 is a bottom perspective view showing the bottom surface of the exterior body through the current collector plate in the electric double layer capacitor shown in FIG. 1B.
  • FIG. 10A is a front sectional view of the electric double layer capacitor in accordance with the second exemplary embodiment of the present invention.
  • 10B is a side sectional view of the electric double layer capacitor shown in FIG. 10A.
  • FIG. 11 is a perspective view of a terminal board used in the electric double layer capacitor shown in FIG. 10A.
  • 12A is a top view of the terminal board shown in FIG. 12B is a front cross-sectional view of the terminal board shown in FIG. 13 is a perspective view of a current collector plate used in the electric double layer capacitor shown in FIG. 10A.
  • 14 is a bottom view of the current collector plate shown in FIG.
  • FIG. 15A is a top perspective view showing a terminal plate holder or a current collector plate holder used in the electric double layer capacitor shown in FIG. 10A.
  • 15B is a bottom perspective view of the terminal plate holder or current collector holder shown in FIG. 15A.
  • FIG. 16A is a top view of the terminal plate holder or current collector holder shown in FIG. 15A.
  • FIG. 16B is a front cross-sectional view of the terminal plate holder or the current collector plate holder shown in FIG. 15A.
  • FIG. 17A is a partially enlarged cross-sectional view of another exterior body of the electric double layer capacitor shown in FIG. 10A.
  • FIG. 17B is a partially enlarged cross-sectional view of still another exterior body of the electric double layer capacitor shown in FIG. 10A.
  • 18A is a bottom view of another current collector plate used in the electric double layer capacitor according to Embodiment 2 of the present invention.
  • 18B is a front sectional view of the current collector plate shown in FIG. 18A.
  • 18C is a side sectional view of the current collector plate shown in FIG. 18A.
  • FIG. 19 is a bottom view of still another current collector plate used in the electric double layer capacitor according to Embodiment 2 of the present invention.
  • FIG. 20A is a partial front sectional view showing an excerpt of the bottom surface portion of the exterior body before connection in order to explain another method of connecting the current collector plate and the exterior body used in the electric double layer capacitor according to Embodiment 2 of the present invention.
  • FIG. 20B is a partial front cross-sectional view showing an excerpt of the bottom surface portion of the exterior body after connection in order to explain another method of connecting the current collector plate and the exterior body used in the electric double layer capacitor according to Embodiment 2 of the present invention.
  • FIG. FIG. 21 is a front sectional view of an electric double layer capacitor as an example of a conventional power storage device.
  • the electric double layer capacitor shown in FIG. 21 has a low resistance.
  • an annular or cylindrical sealing rubber 106 so as to cover the outer periphery of the terminal plate 103.
  • the sealing rubber 106 in the case 105 while inserting a part of the terminal board 103 into a through hole provided in the sealing rubber 106.
  • the inner peripheral surface of the sealing rubber 106 slides on the terminal plate 103 and the outer peripheral surface slides on the case 105. Since the frictional resistance of the surface of the sealing rubber 106 is large, there is a risk that this frictional resistance will deteriorate the workability when the terminal board 103 is inserted.
  • FIG. 1A is a top view of an electric double layer capacitor as an example of the power storage device according to Embodiment 1
  • FIG. 1B is a front sectional view of the electric double layer capacitor.
  • the electric double layer capacitor includes a capacitor element 1 that is a storage element, an electrolyte (not shown) impregnated in the capacitor element 1, a terminal plate 2, a current collector plate 3, and an outer package 4 having a bottom surface 4A, And a sealing member 5.
  • Capacitor element 1 has a positive electrode that is a first electrode and a negative electrode that is a second electrode, as well as an element end 1A that is a first end from which the positive electrode is drawn, and a negative electrode that is opposite to the first end. And an element end 1B which is a second end located on the side.
  • the capacitor element 1 has a winding shape, and has an element end 1A for drawing out the positive electrode and an element end 1B for drawing out the negative electrode at both ends in the winding axis direction. In this way, electrodes having different polarities are drawn from a pair of opposed end portions.
  • the positive electrode and the negative electrode may be reversed.
  • the configuration of the capacitor element is not particularly limited as long as it is a configuration in which each electrode is drawn from opposite ends. For example, it may be a ninety-nine fold shape in which the positive electrode, the negative electrode, and the separator are alternately laminated, or the positive electrode and the negative electrode face each other.
  • the capacitor element 1 is composed of a positive electrode and a negative electrode facing each other, and a separator interposed therebetween (both not shown).
  • Each of the positive electrode and the negative electrode is composed of a current collector made of a metal foil such as aluminum and an electrode layer containing a carbon material formed on the surface of the current collector except for one end (both not shown).
  • the separator is made of cellulose, for example.
  • the positive electrode and the negative electrode face each other so that the portions where the electrode layers are not formed protrude in the opposite direction, and are wound with a separator interposed therebetween to constitute the capacitor element 1. That is, the capacitor element 1 is a wound body. Since the positive electrode, the negative electrode, and the separator are wound, a hollow portion 1 ⁇ / b> C serving as a gap penetrating in the winding axis direction after the winding is formed. And the bundle
  • the capacitor element 1 has a substantially cylindrical shape having the hollow portion 1C in the center portion.
  • an electrolytic solution in which ethyltrimethylammonium tetrafluoroborate as a supporting salt is dissolved in ⁇ -butyrolactone as a solvent can be used.
  • the concentration is, for example, 1.0 mol / l.
  • the terminal plate 2 has a plate-like element connecting portion 2A and an external terminal portion 2B connected to the element connecting portion 2A and connected to the outside.
  • the element connection portion 2 ⁇ / b> A is electrically connected to the positive electrode at the element end 1 ⁇ / b> A of the capacitor element 1.
  • the external terminal portion 2B is provided on the back surface of the surface connected to the capacitor element 1 in the element connection portion 2A.
  • the terminal board 2 is made of, for example, aluminum.
  • the current collector plate 3 is joined to the negative electrode at the element end 1B.
  • the current collector plate 3 is formed of a conductive plate material such as metal, for example, an aluminum plate.
  • the exterior body 4 has a cylindrical shape having a bottom surface 4A and a side wall 4K provided with an opening located on the opposite side of the bottom surface 4A, and is made of a conductive material such as metal.
  • the outer package 4 accommodates the capacitor element 1 together with the terminal plate 2, the current collector plate 3, and the electrolyte so that the terminal plate 2 is positioned on the opening side.
  • the exterior body 4 is made of, for example, aluminum.
  • the sealing member 5 is located on the element connection portion 2A, has an insertion hole 5A into which the external terminal portion 2B is inserted, and seals the opening of the exterior body 4 together with the external terminal portion 2B.
  • the sealing member 5 is made of, for example, butyl rubber.
  • FIG. 2A is a top view of the terminal board 2
  • FIG. 2B is a front sectional view of the terminal board 2.
  • 3A, 3B, and 3C are a top view, a front sectional view, and a bottom view of the sealing member 5, respectively.
  • the terminal board 2 is formed of a conductive member such as metal.
  • the terminal plate 2 is composed of the disk-shaped element connecting portion 2A and the external terminal portion 2B which is a column body for drawing out an electrode provided on the outer surface of the element connecting portion 2A.
  • the external terminal portion 2B is a column or a cylinder, and a tapered portion 2C is formed on the outer peripheral portion of the tip so that the tip becomes the thinnest.
  • liquid injection holes 2D and 2d are formed so that the electrolytic solution can be impregnated into the capacitor element 1 from the outside.
  • the thickness direction is a first direction extending from the bottom surface 4A of the exterior body 4 to the opening. In other words, the thickness direction is a vertical direction when the bottom surface 4A of the exterior body 4 is placed on a horizontal plane.
  • the sealing member 5 is composed of at least a cylindrical elastic material.
  • the insertion hole 5A is provided in the central portion of the sealing member 5, and is disposed on the element connection portion 2A of the terminal plate 2 with the external terminal portion 2B of the terminal plate 2 inserted. ing.
  • the outer peripheral surface of the sealing member 5 is opposed to the inner peripheral surface of the opening of the exterior body 4.
  • the inner peripheral surface of the sealing member 5 is a surface exposed to the insertion hole 5A.
  • the inner surface of the side wall 4K protrudes inward of the outer package 4 on the outer surface of the portion facing the outer peripheral surface of the sealing member 5.
  • a drawing portion 4C is formed. The opening of the exterior body 4 is sealed by compressing the sealing member 5 by the drawing portion 4C.
  • the opening end of the exterior body 4 is bent to the inside of the exterior body 4 to form a curling portion 4D in which the side wall edge 4J is in contact with the upper surface of the sealing member 5.
  • Curling process part 4D suppresses that the sealing member 5 is displaced to a perpendicular direction (especially upward) with respect to the element connection part 2A, when the internal pressure of the exterior body 4 rises.
  • a protruding portion 5E is formed by increasing the thickness of the sealing member 5 between the external terminal portion 2B of the terminal plate 2 partially exposed from the insertion hole 5A and the curling portion 4D. Has been.
  • the electric double layer capacitor in the present embodiment is configured.
  • the external terminal portion 2B of the terminal plate 2 is a column or cylinder having a tapered portion 2C provided on the top and outer periphery of the tip and a sealing portion 2H connected to the tapered portion 2C.
  • the tapered portion 2C has a first end portion 2F and a second end portion 2G farther from the element connection portion 2A than the first end portion 2F.
  • the first end 2F is positioned at the lower end of the tapered portion 2C
  • the second end 2G is positioned at the upper end of the tapered portion 2C.
  • a part of the external terminal portion 2B is exposed from the sealing member 5 to the outside.
  • the sealing member 5 When the sealing member 5 is accommodated in the exterior body 4 while the external terminal portion 2B is inserted into the insertion hole 5A of the sealing member 5, the sealing portion 2H of the external terminal portion 2B is inserted into the insertion hole 5A of the sealing member 5. Before the contact, at least a part of the outer periphery of the sealing member 5 is accommodated in the exterior body 4. With this configuration, it is possible to improve workability at the time of insertion of the sealing member 5 accommodated in the exterior body 4 while inserting the external terminal portion 2B.
  • the side wall edge 4J means an edge on which the wall surface of the side wall 4K is formed. Therefore, when the curling process part 4C etc. are formed in the opening part upper end of the exterior body 4, the curved-surface part formed in the upper end of the exterior body 4 does not correspond to the side wall edge 4J.
  • the side wall edge 4J means an edge of a portion extending toward the inside of the exterior body 4.
  • the position (height) of the side wall edge 4J of the exterior body 4 is the height of the side wall edge 4J of the exterior body 4 after the drawing part 4C formed on the side wall 4K and the drawing part 4C.
  • the position of the side wall edge 4J before processing is specified from the structure after processing, the length of the portion protruding into the exterior body 4 as the drawing portion 4C of the exterior body 4 is not considered.
  • the drawing portion 4C is provided, the distance between the lower end 4L where the deformation for projecting into the exterior body 4 starts and the upper end 4U where the deformation ends is the shortest is defined as the height in the drawing portion 4C.
  • FIGS. 4A to 4D and FIG. 4A to 4D are schematic cross-sectional views when the external terminal portion 2B is inserted into the sealing member 5 while the sealing member 5 is accommodated in the exterior body 4.
  • FIG. FIG. 5 is an image view showing the contact state between the external terminal portion 2B and the sealing member 5 in an extracted manner.
  • FIG. 4A shows a capacitor element 1, the element connection portion 2 A of the terminal plate 2 is connected to the element end portion 1 A, and the capacitor element 1 to which the terminal plate 2 is connected together with the electrolyte is connected to the exterior body 4.
  • the state which accommodated so that 2 may be located in the opening part side is shown.
  • the front end of the external terminal portion 2 ⁇ / b> B is at a position higher than the side wall edge 4 ⁇ / b> J of the exterior body 4 and protrudes from the exterior body 4 to the outside.
  • the sealing member 5 is brought close to the exterior body 4 and the external terminal portion 2B, first, the tip of the external terminal portion 2B is first inserted into the insertion hole 5A of the sealing member 5 as shown in FIG. 4B. Thereby, the position of the sealing member 5 is temporarily determined with respect to the external terminal part 2B. That is, the tip of the external terminal portion 2B and the insertion hole 5A function as a guide.
  • the first end 2F close to the element connecting portion 2A in the tapered portion 2C is located closer to the element connecting portion 2A than the side wall edge 4J of the exterior body 4. Therefore, when the external terminal portion 2B is inserted into the sealing member 5 while further containing the sealing member 5 in the exterior body 4, the sealing of the external terminal portion 2B without taper as shown in FIG. 4C The outer peripheral surface of the sealing member 5 is inserted into the exterior body 4 before the portion 2H enters the narrowest portion of the insertion hole 5A.
  • the sealing member 2H is positively contacted with the sealing member 5H.
  • the side wall edge 4J comes into contact with the sealing member 5 first. Therefore, the position of the outer peripheral surface of the sealing member 5 inside the exterior body 4 is determined with reference to the position of the inner peripheral surface of the side wall edge 4J that first contacts.
  • the sealing member 5 is already in contact with the inner peripheral surface of the side wall end 4J which is the inside of the exterior body 4, the sealing member 5 is continued even after the position of the outer peripheral surface of the sealing member 5 is determined. It is possible to enter the exterior body 4.
  • the sealing member 5 when the position of the first end portion 2F of the tapered portion 2C is higher than the side wall edge 4J, the sealing member 5 is positioned before the outer peripheral surface comes into contact with the inner peripheral surface of the exterior body 4.
  • the insertion hole 5A positively contacts the sealing portion 2H of the external terminal portion 2B.
  • the position of the outer peripheral surface of the sealing member 5 is determined based on the position of the outer peripheral surface of the sealing portion 2H. And after the position of the outer peripheral surface of the sealing member 5 is determined, the sealing member 5 contacts the side wall edge 4J of the exterior body 4.
  • the position of the outer peripheral surface of the sealing member 5 is also linked to the displacement of the external terminal portion 2B. Shift. Due to such positional displacement of the sealing member 5, a part of the outer peripheral surface of the sealing member 5 may protrude from the position of the inner peripheral surface of the side wall edge 4J to the outside of the exterior body 4. In this case, the portion of the sealing member 5 that is in contact with the end face of the exterior body 4 prevents further progress of the sealing member 5, making it difficult to accommodate the sealing member 5 in the exterior body 4.
  • the position of the sealing member 5 is determined by the contact condition with the inner periphery of the opening of the exterior body 4. That is, first, it is confirmed whether the sealing member 5 can be accommodated in the exterior body 4 by continuing the insertion of the external terminal portion 2B. Thereafter, the sealing member 5 can come into contact with the sealing portion 2H through the insertion hole 5A. Therefore, as described above, it is possible to prevent the sealing member 5 from being difficult to be accommodated in the exterior body 4 by the protruding portion. With this configuration, when the sealing member 5 is accommodated in the exterior body 4, it is possible to easily accommodate the sealing member 5 without preparing a separate guide jig or the like.
  • the opening of the insertion hole 5A contacts the inclined surface of the tapered portion 2C before reaching the sealing portion 2H. Touch.
  • the opening of the insertion hole 5A receives a stress indicated by an arrow A perpendicular to the inclined surface according to the inclination angle of the inclined surface of the tapered portion 2C.
  • the stress indicated by the arrow A is decomposed into a stress indicated by an arrow B that is horizontal with respect to the element connecting portion 2A of the terminal board 2 and a stress indicated by an arrow C that is perpendicular to the element connecting portion 2A. Can do.
  • a compressive stress is applied in the horizontal direction with respect to the insertion hole 5A. Therefore, the opening area of the insertion hole 5A is expanded.
  • the external terminal portion 2B can be inserted by absorbing the shift up to the compression limit of the sealing member 5.
  • the tip of the external terminal portion 2 ⁇ / b> B is preferably located at a position higher than the side wall edge 4 ⁇ / b> J of the exterior body 4.
  • the following positional relationship is established as a result in the state after the drawing portion 4C and the curling portion 4D are formed. That is, in the first direction extending from the bottom surface 4A of the exterior body 4 to the opening, the side wall edge 4J in the opening of the exterior body 4 is between the first end 2F and the second end 2G of the tapered portion 2C. To position. As described above, the first direction is the vertical direction of the bottom surface 4A when the bottom surface 4A is placed horizontally, and is the direction in which the side wall 4K of the exterior body 4 extends.
  • the side wall edge 4J is positioned above the second end 2G.
  • the upper end of the side wall 4K of the exterior body 4 is always higher than the upper end of the terminal board 2.
  • the side wall 4K is interposed between two electric double layer capacitors arranged in parallel with one external terminal portion 2B. It is necessary to process the shape so that it can be connected beyond the upper end portion (particularly, the curling portion), and the degree of freedom in connection is reduced.
  • the sealing portion 4H is likely to be high, and the external terminal portion 2B is likely to be tall. Therefore, it becomes easy to enlarge as an electric double layer capacitor.
  • the lower end of the inner wall of the insertion hole 5A of the sealing member 5 is the first end side 5F
  • the upper end farther from the element connection portion 2A than the first end side 5F in the first direction is the second end.
  • Side 5G Let it be side 5G.
  • the first end 2F of the tapered portion 2C is located above the lower end 4L of the drawn portion 4C, that is, far from the element connecting portion 2A, and the second end of the inner wall of the insertion hole 5A. It is preferable to be located below the side 5G, that is, close to the element connection portion 2A.
  • the relationship between the strain and stress of the sealing member serving as a sample is measured in advance, the sealing structure of the opening used for stress analysis is set for the sample, and a known simulation software is set.
  • the stress applied from the sealing member 5 to the external terminal portion 2B can be calculated.
  • FIG. 1B in the front sectional view of the exterior body 4, the cross section of the side wall 4K of the exterior body 4 is formed in a substantially straight line from the bottom surface 4A side to a certain height.
  • the location where this change point is provided is defined as the lower end 4L of the drawing portion 4C. That is, the lower end 4L of the drawn portion 4C is an end portion on the side farther from the side wall end 4J in the first direction.
  • the sealing member 5 is formed with an annular skirt portion 5B extending toward the bottom surface 4A of the exterior body 4 at the outer peripheral end portion of the bottom surface, which is the surface facing the element connection portion 2A of the terminal plate 2.
  • the skirt portion 5B has an annular shape or a cylindrical shape, and is made of the same or different insulating material as the main body portion of the sealing member 5.
  • the skirt portion 5 ⁇ / b> B has a function of insulating the outer peripheral end portion of the element connecting portion 2 ⁇ / b> A of the terminal plate 2 from the inner peripheral surface of the facing exterior body 4.
  • the level of the sealing member 5 in the exterior body 4 may be lowered due to some factor.
  • the protruding direction of the skirt portion 5B also changes obliquely from the direction perpendicular to the element connecting portion 2A according to the angle at which the sealing member 5 is inclined.
  • the gap between the element connecting portion 2A and the exterior body 4 is developed in a direction perpendicular to the element connecting portion 2A. Therefore, it becomes difficult to insert the skirt portion 5B into the gap.
  • the sealing member 5 may be accommodated in the exterior body 4 without being inserted into the gap. Therefore, as shown in FIG. 3B, a configuration in which a tapered portion 5C is provided on the inner peripheral surface side in the skirt portion 5B is more preferable.
  • the taper portion 5C By providing the taper portion 5C, even if the sealing member 5 is inclined up to the taper angle of the taper portion 5C, the inclined surface of the taper portion 5C is parallel to the outer peripheral end of the element connection portion 2A, or this The slope comes into contact with the element connecting portion 2A. Accordingly, the degree of freedom of insertion of the skirt portion 5B into the gap is improved as compared with the configuration in which the tapered portion 5C is not provided.
  • the skirt portion 5B is not limited to an annular shape, and may be provided intermittently at the outer peripheral end portion.
  • the sealing member 5 it is preferable to provide a tapered portion 5D at the inner peripheral portion of the opening portion on the bottom surface (surface facing the terminal plate 2) side of the insertion hole 5A.
  • the taper portion 5D increases the distance between the outer peripheral surface of the external terminal portion 2B and the inner peripheral surface of the insertion hole 5A. Therefore, the contact between the external terminal portion 2B and the inner peripheral surface of the insertion hole 5A can be avoided more reliably, and the frictional resistance can be further reduced.
  • the opening part of the exterior body 4 is sealed with the sealing member 5 and the external terminal part 2B of the terminal board 2.
  • the gas generated inside the exterior body 4 is released through the sealing member 5.
  • a pressure regulating valve (not shown) becomes unnecessary, and the electric double layer capacitor can be used while being laid down sideways.
  • the space which provides a pressure regulation valve in the opening surface of the exterior body 4 is unnecessary, it becomes small as the whole electric double layer capacitor.
  • FIGS. 6A to 9 are a plan view and a front sectional view of the current collector plate 3, respectively.
  • FIG. 7 is a plan view showing the inside of the bottom surface 4 ⁇ / b> A of the exterior body 4.
  • FIG. 8 is a front cross-sectional view showing a partially enlarged view of the bonding state of the exterior body 4 and the current collector plate 3.
  • FIG. 9 is a bottom perspective view showing the bottom surface 4 ⁇ / b> A of the exterior body 4 through the current collector plate 3.
  • the current collector plate 3 is made of a conductive plate material such as metal. As shown in FIGS. 6A and 6B, the current collector plate 3 has a disc portion 3D and a convex portion 3E provided at the center of the disc portion 3D. As shown in FIG. 8, the convex portion 3 ⁇ / b> E is disposed so as to face the hollow portion 1 ⁇ / b> C of the capacitor element 1. A liquid injection hole 3B is provided in the disc portion 3D and the convex portion 3E, and a cutout portion 3C is provided in the outer periphery of the disc portion 3D. Moreover, the disc part 3D has the element connection part 3A and the exterior body connection part 3G as shown in FIG. 8, FIG. The element connecting portion 3A is joined to the element end 1B. The exterior body connecting portion 3G is in contact with the joint portion 4G of the bottom surface 4A of the exterior body 4 and is welded.
  • a contact portion 4 ⁇ / b> E that protrudes toward the opening and contacts the current collector plate 3 is formed on the inner surface of the bottom surface 4 ⁇ / b> A of the exterior body 4.
  • an external connection portion 4 ⁇ / b> B protruding outward is formed on the outer surface of the bottom surface 4 ⁇ / b> A so as to connect to a connection bar (not shown).
  • the recessed part is formed in the location different from the external connection part 4B in the outer surface of the bottom face 4A, and the cross-shaped notch is provided in the bottom of this recessed part as an example.
  • This incision has a lower mechanical strength than a portion where there is no incision. When the internal pressure of the exterior body 4 reaches a certain level or more, the valve is opened from this cut. In this way, the valve portion 4F is provided.
  • a gap is formed between the current collector plate 3 and the bottom surface 4A of the exterior body 4 at a position where the current collector plate 3 is not in contact with the contact portion 4E as shown in FIG. Is formed.
  • the exterior body connection portion 3G of the current collector plate 3 and the inner surface of the bottom surface 4A are welded. This portion on the bottom surface 4A is referred to as a joint portion 4G.
  • a notch 2E is provided at the outer peripheral end of the element connecting portion 2A of the terminal board 2.
  • a notch 3 ⁇ / b> C is provided at a position facing the notch 2 ⁇ / b> E via the capacitor element 1. That is, the cutout portion 3C of the current collector plate 3 and the cutout portion 2E of the element connection portion 2A are opposed to each other in the direction extending from the bottom surface 4A of the exterior body 4 to the opening, in other words, in the vertical direction of the bottom surface 4A. .
  • Such a configuration is preferable.
  • the notch portion 2E becomes a reference for the arrangement of the element connection portion 2A and the current collector plate 3 in the rotation direction around the external terminal portion 2B. That is, by determining the position of the notch 2E, the arrangement of the current collector plate 3 in the rotational direction can also be determined. Thereby, the position of the connection part of the current collection board 3 with respect to the capacitor element 1 can be determined on the basis of the notch 2E.
  • the arrangement of the current collector plate 3 located at the bottom of the exterior body 4 can be determined by looking at the position of the notch 2E. Therefore, when the exterior body connection portion 3G of the current collector plate 3 and the joint portion 4G of the exterior body 4 are joined from the outside of the exterior body 4, an element connection portion that is a connection portion between the current collector plate 3 and the capacitor element 1 3A can be prevented from being melted in duplicate. In the case where such a positioning reference is provided, it is preferable that the configuration has no rotational symmetry with respect to the center of the surface to be provided.
  • the positioning portion may be provided with a hole having a different size from the liquid injection hole 3B, a protrusion, or partially colored. That is, the current collector plate 3 and the element connecting portion 2A may be used as positioning portions with non-rotation symmetry.
  • the outer peripheral end portions of the element connection portion 2A and the current collector plate 3 are provided as in the notches 2E and 3C.
  • the position in the rotational direction can be confirmed simply by looking at the capacitor element 1 from the side. .
  • productivity is improved.
  • the outer shape of the current collector plate 3 and the outer shape of the element connection portion 2 ⁇ / b> A are respectively non-rotational symmetric.
  • the positioning portion is provided in the outer periphery, in order to visually recognize the positioning portion, it is necessary to provide a protrusion protruding from the capacitor element 1 higher than the outer peripheral end portion. In this case, there is a possibility that the shape of the element connecting portion 2A becomes complicated or the weight increases.
  • the terminal plate 2 and the current collector plate 3 are arranged on the element end portions 1A and 1B of the capacitor element 1 and are welded, a pair of insertion portions that fit in the gaps in the notches 2E and 3C are provided.
  • a jig (not shown), the terminal plate 2 and the current collector plate 3 can be positioned in the capacitor element 1 at a time. From this point of view, productivity is improved.
  • burrs there may be burrs on the surface of the welded part.
  • burrs may exist at the connection portion of the current collector plate 3 with the capacitor element 1. If the contact portion 4E and the connection portion come into contact with each other in a state including burrs, the height of the current collector plate 3 varies in the plurality of contact portions 4E, and the level of the current collector plate 3 may be lowered. There is. Therefore, as shown in FIG. 9, the notch portion of the current collector plate 3 is disposed on the contact portion 4E of the exterior body 4, and the connection portion of the current collector plate 3 with the capacitor element 1 (welded joint location). It is preferable to make the part except for contact with the contact part 4E.
  • the current collector plate 3 and the exterior body 4 are formed using a valve portion 4F which is provided at a position deviated from the center portion on the bottom surface 4A of the exterior body 4 and has no rotational symmetry with respect to the center of the bottom surface 4A.
  • the bottom surface 4A may be positioned.
  • the bottom surface 4A of the exterior body 4 is non-rotational symmetric.
  • three contact portions 4E are provided at the outer peripheral end of the inner surface of the bottom surface 4A at intervals at which the inner angle connecting the center portion of the bottom surface 4A is 120 °.
  • the position of the joint portion 4G may be determined based on the positional relationship between the straight line connecting the center of the bottom surface 4A and the arrangement position of the valve portion 4F and the straight line connecting the center and the contact portion 4E.
  • the contact portion 4E that contacts the notch portion 3C of the current collector plate 3 and the bottom surface 4A It is preferable to determine the position of the joint portion between the exterior body 4 and the current collector plate 3 based on the positional relationship between the straight line connecting the center of the base 4 and the straight line connecting the center of the bottom surface 4A and the valve portion 4F.
  • the two straight lines point in the same direction or in opposite directions, the center of the bottom surface 4A, the valve part 4F, and the notch part are positioned on one straight line. From the position of this straight line, it becomes easy to determine the position of the connection portion of the current collector plate 3 with the capacitor element 1. That is, the position of the notch 3C can be easily specified from the position of the valve 4F.
  • the position of the joint 4G can be set on the bottom surface 4A of the exterior body 4 on the basis of the position of the straight line so as to avoid the position of the connection portion with the capacitor element 1.
  • valve portion 4F is used as a positioning portion having no rotational symmetry with respect to the center of the bottom surface 4A.
  • the positioning portion as described above may be separately formed on the bottom surface 4A.
  • the bottom surface 4A may swell. At this time, the swelling progresses in the radial direction sequentially from the center of the bottom surface 4A. That is, the displacement due to the swelling at the center of the bottom surface 4A is the largest. Therefore, it is preferable to form the joint 4G of the exterior body 4 so as to surround the center of the bottom surface 4A of the exterior body 4. With this configuration, the reliability in the welding joint is improved as compared with the configuration in which the joint portions 4G are formed radially from the center.
  • the joint portion 4G at a constant interval from the center, the timing of separation between the exterior body connection portion 3G and the joint portion 4G caused by the displacement of the bottom surface 4A due to swelling compared to the radial joint portion 4G. Can be delayed. Thereby, the joining reliability between the current collection board 3 and the exterior body 4 can be improved, and the increase in resistance of a joining interface can be suppressed.
  • the opening area of the liquid injection hole 2D which is the first through hole provided in the element connection portion 2A is different from the opening area of the liquid injection hole 2d which is the second through hole.
  • the distance from the center of the element connecting portion 2A to the liquid injection hole 2D is preferably different from the distance to the liquid injection hole 2d.
  • the electrolytic solution passes between the capacitor element 1 and the side wall 4K of the exterior body 4 and is also supplied to the capacitor element 1 from the current collecting plate 3 side. Therefore, it is preferable that the opening area of the liquid injection hole 3B provided in the current collector plate 3 is different from the opening area of the liquid injection hole 3b.
  • the distance from the center of the current collector plate 3 to the liquid injection hole 3B may be different from the distance to the liquid injection hole 3b. preferable.
  • the liquid injection holes 2D and 2d provided in the terminal plate 2 and the liquid injection holes 3B and 3b provided in the current collector plate 3 preferably have non-opposing portions. That is, the liquid injection holes 2D and 2d that are terminal plate through holes and the liquid injection holes 3B and 3b that are current collector plate through holes do not coincide with each other when viewed from the direction extending from the bottom surface 4A of the exterior body 4 to the opening. Is preferred. That is, a configuration in which a part of the opening surface has a facing portion is preferable. A path through which the electrolytic solution injected from the terminal plate 2 to the current collector plate 3 passes through the capacitor element 1 is formed by such a part of the facing portion.
  • the electrolyte further enters the capacitor element 1 from the non-opposing portions provided at different positions through this path. Therefore, it is possible to inject the electrolytic solution to various locations in the capacitor element 1 by changing the positions of the non-opposing portions of the liquid injection holes 2D, 2d, 3B, and 3b. As a result, the entire liquid injection efficiency of the capacitor element 1 is increased.
  • FIG. 10A is a front sectional view of an electric double layer capacitor which is an example of a power storage device according to Embodiment 2 of the present invention
  • FIG. 10B is a side sectional view.
  • the main difference between the present embodiment and the first embodiment is that the terminal plate 32 is used instead of the terminal plate 2, the current collecting plate 33 is used instead of the current collecting plate 3, and the terminal plate holder 6 and the current collecting plate are used.
  • the holder 7 is added.
  • the sealing member 5 has no skirt portion 5B. Since the other basic configuration is the same as that of the first embodiment, detailed description may be omitted.
  • the terminal plate 32 joined to the element end 1A of the capacitor element 1 is accommodated and fixed inside the terminal plate holder 6.
  • the current collecting plate 33 joined to the element end 1 ⁇ / b> B of the capacitor element 1 is accommodated and fixed inside the current collecting plate holder 7.
  • FIG. 11 is a perspective view of the terminal plate 32
  • FIG. 12A is a top view of the terminal plate 32
  • FIG. 12B is a front sectional view of the terminal plate 32.
  • the terminal board 32 is made of a conductive member such as metal.
  • the terminal board 32 has a disk-shaped element connection part 32A and an external terminal part 32B.
  • the element connection portion 32 ⁇ / b> A is joined to the element end 1 ⁇ / b> A of the capacitor element 1.
  • the external terminal portion 32B is a column that is provided on the outer surface of the element connection portion 32A and draws out an electrode.
  • the element connection portion 32A is provided with an element joint portion 32C formed so as to protrude toward the element end portion 1A in order to be welded to the element end portion 1A.
  • a slit hole 32D is provided between the external terminal portion 32B and the element joint portion 32C.
  • a tapered portion 32E is formed on the outer periphery of the distal end portion of the external terminal portion 32B.
  • the terminal board 32 is made of aluminum, for example.
  • FIG. 13 is a perspective view of the current collector plate 33
  • FIG. 14 is a bottom view of the current collector plate 33.
  • the current collector plate 33 is made of a conductive plate material such as metal.
  • the current collector plate 33 includes an element connection portion 33A and an exterior body connection portion 33B.
  • the element connecting portion 33A protrudes toward the element end portion 1B in order to be welded to the element end portion 1B.
  • the exterior body connection portion 33B is provided at a position facing the hollow portion 1C of the capacitor element 1, and is in contact with the current collector plate connection portion 4H on the bottom surface 4A of the exterior body 4 shown in FIGS. 10A and 10B and welded.
  • a slit hole 33C is formed between the element connection portion 33A and the exterior body connection portion 33B.
  • a liquid injection hole 33D is formed at a position different from the element connection portion 33A and the exterior body connection portion 33B.
  • the current collecting plate 33 is made of, for example, aluminum.
  • the exterior body connecting portion 33B is welded and joined to the current collector plate connecting portion 4H by inserting the electrode equipment of a resistance welding machine through the hollow portion 1C of the capacitor element 1 facing the outer body connecting portion 33B.
  • FIGS. 15A to 16B 15A is a top perspective view of the terminal plate holder 6, and FIG. 15B is a bottom perspective view of the terminal plate holder 6.
  • FIG. 16A is a top view of the terminal board holder 6, and FIG. 16B is a front sectional view of the terminal board holder 6.
  • the terminal plate holder 6 and the current collector plate holder 7 are made of an insulating material such as polypropylene.
  • the terminal board holder 6 has a cylindrical part 6A and a fixed part 6B.
  • the cylindrical portion 6 ⁇ / b> A covers and accommodates the outer peripheral end portion of the terminal plate 32.
  • the fixing portion 6B is provided on the inner peripheral surface of the cylindrical portion 6A, and supports the terminal plate 32 accommodated in the cylindrical portion 6A within the cylindrical portion 6A.
  • the fixing portion 6B is composed of two components, a flat plate portion 6C and a protrusion 6D.
  • the flat plate portion 6C is formed so as to partially cover the outer peripheral end portion of the surface of the opening from one opening end of the cylindrical portion 6A.
  • the protrusion 6D is formed inside the cylindrical portion 6A with a predetermined distance from the flat plate portion 6C.
  • the protrusion 6D plays a role of snap fitting together with the cylindrical part 6A, and the terminal plate 32 is fixed by being sandwiched between the flat plate part 6C and the protrusion 6D.
  • the cylinder portion 6A has the same effect as the skirt portion 5B of the sealing member 5 in the first embodiment.
  • the current collector plate holder 7 has a cylindrical portion 7A and a fixing portion 7B.
  • the cylindrical portion 7A covers and accommodates the outer peripheral end of the current collector plate 33.
  • the fixing portion 7B is provided on the inner peripheral surface of the cylindrical portion 7A, and supports the current collecting plate 33 accommodated in the cylindrical portion 7A within the cylindrical portion 7A.
  • the fixing portion 7B is composed of two components, a flat plate portion 7C and a protrusion 7D.
  • the flat plate portion 7C is formed so as to partially cover the outer peripheral end portion of the surface of the opening from one opening end of the cylindrical portion 7A.
  • the protrusion 7D is formed inside the cylindrical portion 7A with a predetermined distance from the flat plate portion 7C.
  • the projection 7D plays a role of snap fitting together with the cylindrical portion 7A, and the current collector plate 33 is fixed by being sandwiched between the flat plate portion 7C and the projection 7D.
  • the positional relationship between the sealing member 5, the tapered portion 32E of the external terminal portion 32B, and the exterior body 4 is the same as the relationship between the sealing member 5 of Embodiment 1, the tapered portion 2C of the external terminal portion 2B, and the exterior body 4. It is. As described above, the electric double layer capacitor of this embodiment is configured.
  • the exterior body connection portion 33B of the current collector plate 33 joined to the element end 1B of the capacitor element 1 and the current collector plate connection portion 4H of the exterior body 4 are resistant from the current collector plate 33 side. Can be welded. In this case, the current collector plate 33 is preferentially melted over the exterior body 4, so that the exterior body 4 can be prevented from having a hole.
  • the current collector plate connection portion 4 ⁇ / b> H is provided at a position (connection portion) facing the hollow portion 1 ⁇ / b> C where the current collector plate 33 is not opposed to the capacitor element 1. And the welding trace has appeared on the upper surface of the exterior body connection part 33B at least as a trace of welding.
  • the current collector plate connecting portion 4H is thicker than the outer package connecting portion 33B. That is, the current collector plate 33 is thicker than the bottom surface 4 ⁇ / b> A of the exterior body 4 in the connection portion. Therefore, in resistance welding in which the pressurization location is welded while applying pressure to the exterior body connection portion 33B, a reaction force is applied from the thick collector plate connection portion 4H to the exterior body connection portion 33B against the pressurization. Obtainable. Therefore, the reliability at the time of welding can be improved.
  • the current collector plate connection portion 4H is formed so as to protrude from the bottom surface 4A of the exterior body 4. That is, it is preferable that the current collector plate connection portion 4H is provided as a protrusion protruding from the inside of the bottom surface 4A at the connection portion between the bottom surface 4A of the exterior body 4 and the current collector plate 33. Therefore, the contact area to the exterior body connecting portion 33B is small as compared with the configuration in which resistance welding is performed with the bottom surface 4A formed thicker than the current collector plate 33. Therefore, a stronger reaction force (stress) can be obtained.
  • the thickness of the current collector plate connecting portion 4H is 5.0 mm (the portion excluding the current collector plate connecting portion 4H is 1.0 mm) and the direct current resistance. Resistance welding is performed using a machine.
  • the resistor conditions are 9.6 V, 7.8 kA, 8 ms, and the radius of curvature of the electrode tip is 30 mm.
  • FIGS. 17A and 17B are partial enlarged cross-sectional views of the exterior body 4.
  • the end face at the tip of the current collector plate connecting portion 4H is not a flat surface but a spherical surface.
  • a taper is provided on the outer periphery of the current collector plate connecting portion 4H.
  • the reaction force may be increased by reducing the contact area by providing a projection or the like on the joint surface of the exterior body connecting portion 33B.
  • FIG. 10B the external connection portion 4B shown in FIG. 10B can be used as the protrusion.
  • the current collector plate 33 and the outer package 4 are in contact with and electrically connected only at the outer package connector 33B and the current collector connection 4H. That is, the part except the exterior body connection part 33B of the current collector plate 33 is not in contact with the exterior body 4 made of a conductive material. Therefore, it is possible to prevent the current that should be consumed in the exterior body connecting portion 33B from being dispersed. That is, the energy input for welding is concentrated at the location to be welded. As a result, highly reliable welding is possible.
  • the position of the current collector plate 33 is determined by the height of the current collector plate connection portion 4H, and the position of the current collector plate 33 is changed to the bottom surface 4A.
  • the flat plate portion 7 ⁇ / b> C of the current collector plate holder 7 is located at a portion other than the contact portion between the current collector plate 33 and the bottom surface 4 ⁇ / b> A of the exterior body 4. Since the flat plate portion 7C is made of an insulating material, it is possible to improve the accuracy of physical and electrical insulation other than at the joining portion more reliably.
  • an insulating plate having a through-hole having a size capable of accommodating the current collector plate connection portion 4H is disposed on the inner surface of the bottom surface 4A, or the current collector plate connection portion 4H on the bottom surface 4A is provided.
  • An insulating film may be formed in a portion other than the portion.
  • the slit hole 32D is provided between the element joint portion 32C and the external terminal portion 32B. Therefore, the external terminal portion 32B can be displaced with respect to the first direction (vertical direction) extending from the bottom surface 4A to the opening of the exterior body 4 independently of the element joint portion 32C.
  • the element connection portion 32A can fulfill the function of a damper portion by the slit hole 32D.
  • the slit hole 33C is provided between the element connection portion 33A and the exterior body connection portion 33B. Therefore, the exterior body connecting portion 33B can be displaced with respect to the first direction (vertical direction) extending from the bottom surface 4A to the opening of the exterior body 4 independently of the element connection portion 33A.
  • the current collector plate 33 can fulfill the function of the damper portion by the slit hole 33C.
  • the sealing member 5 may swell when sealing the opening of the exterior body 4 or when the internal pressure of the exterior body 4 increases.
  • stress in the winding axis direction is applied to the capacitor element 1 joined to the terminal plate 32 and the current collector plate 33.
  • a damper part acts and absorbs stress, whereby it is possible to suppress stress stress from being applied to the element joint part 32C and the element connection part 33A.
  • an increase in resistance at the element end portions 1A and 1B can be suppressed. Long-term reliability can be ensured by providing the terminal plate 32 with the slit hole 32D and providing the current collecting plate 33 with the slit hole 33C.
  • the slit hole 32D is formed so as to surround one of the external terminal portion 32B and the element joint portion 32C (however, so as not to form a ring). Is preferred. Similarly, it is preferable to form the slit hole 33C so as to surround one of the outer body connection portion 33B and the element connection portion 33A (but not to form a ring).
  • FIGS. 18A to 19 are a current collector plate having a configuration different from that of the current collector plate 33.
  • 18A is a bottom view of another current collector plate 13 used in the electric double layer capacitor according to the present embodiment
  • FIG. 18B is a front sectional view of the current collector plate 13
  • FIG. 18C is a side sectional view of the current collector plate 13. It is.
  • FIG. 19 is a bottom view of still another current collector plate 23.
  • the current collector plate 13 has an element connection portion 13A connected to the element end 1B of the capacitor element 1 and an exterior body connection portion 13B connected to the current collector plate connection portion 4H of the exterior body 4.
  • the element connection portion 13A and the exterior body connection portion 13B are provided in a flat plate shape.
  • the collar part 13E is provided in the circumference
  • the flange portion 13E protrudes from the periphery of the element connection portion 13A and the exterior body connection portion 13B toward the bottom surface 4A of the exterior body 4, and its end portion extends in the horizontal direction with respect to the bottom surface 4A.
  • the position of the end surface of the element end portion 1B that is in contact with the element connection portion 13A is the height of the upper end of the current collector plate connection portion 4H. It will be fixed.
  • a portion of the element end portion 1B that does not contact the element connection portion 13A further protrudes toward the bottom surface 4A.
  • the flange portion 13E comes into contact with the end surface of the non-contact portion. Therefore, the position of the end surface of the portion that does not come into contact with the element connection portion 13A can also be fixed to the position of the flange portion 13E.
  • a gap is provided between at least a part of the portion excluding the connection portion and the inner surface of the bottom surface 4 ⁇ / b> A of the exterior body 4.
  • at least a part of the portion excluding the connection portion is insulated from the exterior body 4 by the gap. In this way, the position of the end surface of the element end portion 1B that does not contact the element connection portion 13A can be controlled by the flange portion 13E.
  • the element end portion 1B can be prevented from coming into contact with the bottom surface 4A.
  • the electric energy required for welding can be concentrated on the exterior body connecting portion 13B.
  • the element connection portion 23A and the exterior body connection portion 23B are configured as a single plate material with only an area necessary for each element as a simple configuration. Accordingly, the material cost can be reduced and the cost of the power storage device can be reduced.
  • FIG. 20A and FIG. 20B are front sectional views partially extracting and showing a configuration before and after the current collector plate 43 and the inner bottom surface of the exterior body 14 are joined by cold welding.
  • the bottom surface of the exterior body 4 and the exterior body connection portion 33B at the center of the current collector plate 33 are joined by resistance welding.
  • the current collector plate 43 joined to the element end 1 ⁇ / b> B of the electricity storage device 1 is joined to the bottom surface of the bottomed cylindrical outer casing 14 by cold pressure welding.
  • the current collector plate 43 is formed of a conductive material such as metal, and is provided at the center of the flat plate element connection portion 43A and the element joint portion 43A. It has a protruding exterior body connection part 43B.
  • the exterior body connection portion 43B is formed thicker than the element connection portion 43A in order to connect to the bottom surface of the exterior body 14 by cold pressure welding.
  • the current collector plate 43 is made of aluminum as an example.
  • the exterior body 14 is made of a conductive material such as metal, and has a bottom surface 14A whose inner surface protrudes, and a current collector plate connection portion 14H which is a recess provided in the central portion of the bottom surface 14A and housing the exterior body connection portion 43B. And have.
  • a pressure contact portion 43 ⁇ / b> C that bites into the bottom surface of the current collector connection portion 14 ⁇ / b> H is formed in the exterior body connection portion 43 ⁇ / b> B by cold pressure welding.
  • the pressure contact portion 43C is configured by the exterior body connection portion 43B and the current collector plate connection portion 14H. Since this joining method does not involve melting at the time of joining, it is possible to reduce the possibility of perforation as compared with laser welding or the like.
  • the ratio of the thickness of the pressure contact portion 43C after pressure welding to the sum of the thicknesses of the current collector plate connection portion 14H and the exterior body connection portion 43B before pressure welding should be 0.3 or less. preferable. Further, if this ratio is 0.2 or less, the change with time in the resistance value of the connecting portion is preferably small.
  • the sum of the thicknesses of the current collector plate connection portion 14H and the outer body connection portion 43B before the pressure contact is the thickness of the non-pressure contact portion of the current collector plate connection portion 14H and the outer body connection portion 43B excluding the pressure contact portion 43C after the cold pressure welding. It is possible to specify from
  • the ratio of the diameter of the bottom surface of the hole-shaped pressure contact portion 43C to the inner diameter of the current collector plate connection portion 14H or the outer diameter of the outer body connection portion 43B is preferably 0.6 or less, and further this ratio is 0.4 or less. And the change with time of the resistance value of the connection portion is also small and more preferable.
  • the following materials can be used for the electrolyte used in Embodiments 1 and 2.
  • the solvent at least one of propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and the like can be used.
  • Examples of the supporting salt include tetraethylammonium tetrafluoroborate (TEABF 4 ), triethylmethylammonium tetrafluoroborate (TEMABF 4 ), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4 ), 1-ethyl-2, At least one of 3-dimethylimidazolium tetrafluoroborate (EDMIBF 4 ), 1,2,3-trimethylimidazolium tetrafluoroborate (TMIBF 4 ) and 1,3-dimethylimidazolium tetrafluoroborate (DMIBF 4 ) Can be used.
  • the solvent and electrolyte are not particularly limited.
  • a binder may be included in the solvent as the electrolyte, and a gel-like structure or a solid electrolyte may be used.
  • the material used for the current collector plate 3 and the terminal plate 2 is not limited to aluminum as described above, and titanium, zirconium, hafnium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, silicon, iron, silver, You may use lead, nickel, copper, platinum, gold, and these alloys.
  • the positive and negative electrode layers may contain a binder such as ammonium salt of carboxymethyl cellulose or polytetrafluoroethylene, or a conductive agent such as acetylene black. Good. When such a material is included, the distance between the activated carbons can be shortened and the conductivity can be improved, so that the resistance of the capacitor element 1 can be further reduced.
  • a binder such as ammonium salt of carboxymethyl cellulose or polytetrafluoroethylene
  • a conductive agent such as acetylene black
  • the present invention is not limited to an electric double layer capacitor, but is applied to an electrochemical capacitor or a storage battery mainly using a metal member as a current collecting member for each electrode layer such as a lithium secondary battery. May be.
  • a metal member as a current collecting member for each electrode layer
  • lithium secondary battery a lithium secondary battery.
  • electrochemical capacitors lithium ions are used as electrolyte cations, and lithium is occluded in a carbon material contained in the electrode layer of the negative electrode or a metal that can be alloyed with cations.
  • the positive electrode is the same as the positive electrode of the electric double layer capacitor. Even when applied to an electrochemical capacitor or a storage battery, the power storage device as described above can achieve a special effect of realizing improvement in sealing reliability.
  • the workability of inserting the sealing member into the exterior body is improved, and the productivity at the time of manufacturing the power storage device is improved. This is expected to be used for more electronic devices that require power storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 蓄電装置において、端子板は、蓄電素子の第1端部で第1電極と電気的に接続された素子接続部と、この素子接続部と接された外部端子部とを有する。封口部材は素子接続部上に位置し、外部端子部が挿入された挿入孔を有するとともに、外装体の開口部を外部端子部とともに封止している。外部端子部は、先端外周にテーパー部を有し、外部端子部の一部は封口部材から表出している。テーパー部は第1端部と、第1端部よりも素子接続部から遠い第2端部とを有する。外装体の底面から開口部へ延びる第1方向において、外装体の開口部における側壁の端辺が、テーパー部の第1端部と、第2端部との間に位置する。

Description

蓄電装置とその製造方法
 本発明は各種電子機器やハイブリッド自動車の回生用、あるいは電力貯蔵用等に使用される蓄電装置とその製造方法に関する。
 図21は、従来の蓄電装置の一例である電気二重層キャパシタの正面断面図である。このキャパシタはキャパシタ素子101と、2枚の集電板102と、底面105Aを有する筒状の金属製のケース105と、ケース105の外部へ一部が表出した端子板103と、封口ゴム106とを有する。
 キャパシタ素子101は対向する位置に正極端部101A、負極端部101B(以下、端部101A、101B)を有する。集電板102は端部101A、101Bにそれぞれ溶接接合されている。キャパシタ素子101は、端部101Bと接合された集電板102が底面105Aと対向するように、ケース105の中に収容されている。端部101Aと接合された集電板102は、ケース105の開口部に位置し、端子板103と接合されている。封口ゴム106は、端子板103をケース105の開口部との間に介在し、これらを絶縁している。封口ゴム106に対して、ケース105の開口部の外部から内部に向かって横絞り加工部105Bが形成されることにより、封口ゴム106が圧縮されて開口部が封止されている。またケース105の開口端は内側に向かって加工され、曲げ加工部105Cが形成されている。
 キャパシタ素子101は正極と負極とセパレータ(いずれも図示せず)で構成されている。正極と負極はそれぞれ、帯状の集電体に、一端辺を除いて炭素材料を含んだ電極層を塗布して構成されている。キャパシタ素子101は、これら正負極を、互いの集電体の電極層未形成部が逆方向に突出するようにずらして対向させ、対向した正負極の間にセパレータを介在させた状態でこれらを巻回して構成されている。これにより、各電極の電極層未形成部が、端部101A、端部101Bをそれぞれ構成している。
 端子板103には、ケース105の内部と外部を繋ぐ貫通孔が設けられ、この貫通孔を塞ぐようにケース105の内部の圧力上昇を防止する調圧弁104が設けられている。
 この構成では、シート状である各電極と集電板102がそれぞれ面接触してキャパシタ素子101から電流を取り出せる。そのため、電気二重層キャパシタの内部における集電を低抵抗で行うことができる(例えば、特許文献1参照)。
特開2009-194131号公報
 本発明は、封口部材の配設における作業性を向上させた蓄電装置とその製造方法である。
 本発明の蓄電装置は、蓄電素子と、蓄電素子に含浸した電解質と、端子板と、外装体と、封口部材とを有する。蓄電素子は第1電極と第2電極とを有するとともに、第1電極が引き出された第1端部を有する。端子板は、第1端部において第1電極と電気的に接続された素子接続部と、素子接続部と接続された外部端子部と、を有する。外装体は、底面と、底面から延び底面の反対側に位置する開口部が設けられた筒状の側壁とを有する。外装体は導電性材料で構成され、端子板が開口部側に位置するように、蓄電素子を電解質とともに収容している。封口部材は素子接続部上に位置し、外部端子部が挿入された挿入孔を有するとともに、外装体の開口部を外部端子部とともに封止している。外部端子部は、先端外周にテーパー部を有した柱体または筒体であり、外部端子部の一部は封口部材から表出している。テーパー部は第1端部と、第1端部よりも素子接続部から遠い第2端部とを有する。外装体の底面から開口部へ延びる第1方向において、外装体の開口部における側壁の端辺が、テーパー部の第1端部と、第2端部との間に位置する。
 また上記本発明の蓄電装置は次のステップにより製造される。第1電極と第2電極とを有するとともに、第1電極が引き出された第1端部を有する蓄電素子を作製するステップ;素子接続部と、素子接続部と接続された外部端子部とを有する端子板の素子接続部と、第1電極とを、蓄電素子の第1端部において電気的に接続するステップ;底面と、底面から延び底面の反対側に位置する開口部が設けられた筒状の側壁とを有し、導電性材料で構成された外装体に、電解質とともに、端子板が接続された蓄電素子を端子板が開口部側に位置するように収容するステップ;封口部材の挿入孔に外部端子部を挿入して封口部材を素子接続部上に配置するとともに封口部材を外装体の中に収容するステップ;封口部材と外部端子部により外装体を封止するステップ。ここで、外部端子部は、外周に設けられたテーパー部と、テーパー部につながる封止部とを有した柱体または筒体である。封口部材を外装体の中に収容する際、封口部材の挿入孔に外部端子部の封止部が当接する前に、封口部材の外周の少なくとも一部を外装体の内部へ収容する。そして封口部材を外装体の中に収容後に外部端子部の一部を封口部材から表出させる。
 この製造方法では、封口部材を外装体内へ収容しながら封口部材の挿入孔に外部端子部を挿入していく際に、外部端子部のテーパーを形成していない本体部より先に、外装体の開口端部が封口部材と当接する。そのため、外装体の内部における封口部材の外周面の位置が、最初に当接する開口端部の内周面の位置を基準にして決定される。これにより、封口部材の外周面の位置が決まった後も引続き封口部材を外装体の中へ入り込ませることができる。このように、封口部材を外装体の中に収容する際、封口部材の挿入孔に外部端子部の本体部が当接する前に、封口部材の外周の少なくとも一部を外装体の内部へ収容できる寸法関係に外部端子部と封口部材、外装体を構成すると、上述の本発明の蓄電装置の構成となる。
図1Aは本発明の実施の形態1における電気二重層キャパシタの上面図である。 図1Bは図1Aに示す電気二重層キャパシタの正面断面図である。 図2Aは図1Bに示す電気二重層キャパシタに用いられる端子板の上面図である。 図2Bは図2Aに示す端子板の正面断面図である。 図3Aは図1Bに示す電気二重層キャパシタに用いられる封口部材の上面図である。 図3Bは図3Aに示す封口部材の正面断面図である。 図3Cは図3Aに示す封口部材の底面図である。 図4Aは図3Bに示す封口部材を外装体内へ収容しながら封口部材に図2Bに示す端子板の外部端子部を挿入していく際の概略断面図である。 図4Bは図3Bに示す封口部材を外装体内へ収容しながら封口部材に図2Bに示す端子板の外部端子部を挿入していく際の概略断面図である。 図4Cは図3Bに示す封口部材を外装体内へ収容しながら封口部材に図2Bに示す端子板の外部端子部を挿入していく際の概略断面図である。 図4Dは図3Bに示す封口部材を外装体内へ収容しながら封口部材に図2Bに示す端子板の外部端子部を挿入していく際の概略断面図である。 図5は図3Bに示す封口部材と図2Bに示す端子板の外部端子部の当接時における外部端子部と封口部材の状態を抜粋して示したイメージ図である。 図6Aは図1Bに示す電気二重層キャパシタの集電板の上面図である。 図6Bは図6Aに示す集電板の正面断面図である。 図7は図1Bに示す電気二重層キャパシタの外装体の底面の内側を示す平面図である。 図8は図1Bに示す電気二重層キャパシタの外装体と集電板の接合状態を示す拡大正面断面図である。 図9は図1Bに示す電気二重層キャパシタにおいて、集電板を透視して外装体の底面を示す底面透視図である。 図10Aは本発明の実施の形態2における電気二重層キャパシタの正面断面図である。 図10Bは図10Aに示す電気二重層キャパシタの側面断面図である。 図11は図10Aに示す電気二重層キャパシタに用いられる端子板の斜視図である。 図12Aは図11に示す端子板の上面図である。 図12Bは図11に示す端子板の正面断面図である。 図13は図10Aに示す電気二重層キャパシタに用いられる集電板の斜視図である。 図14は図13に示す集電板の下面図である。 図15Aは図10Aに示す電気二重層キャパシタに用いられる端子板ホルダーまたは集電板ホルダーを示した上面斜視図である。 図15Bは図15Aに示す端子板ホルダーまたは集電板ホルダーの下面斜視図である。 図16Aは図15Aに示す端子板ホルダーまたは集電板ホルダーの上面図である。 図16Bは図15Aに示す端子板ホルダーまたは集電板ホルダーの正面断面図である。 図17Aは図10Aに示す電気二重層キャパシタの他の外装体の部分拡大断面図である。 図17Bは図10Aに示す電気二重層キャパシタのさらに他の外装体の部分拡大断面図である。 図18Aは本発明の実施の形態2における電気二重層キャパシタに用いられる別の集電板の下面図である。 図18Bは図18Aに示す集電板の正面断面図である。 図18Cは図18Aに示す集電板の側面断面図である。 図19は本発明の実施の形態2における電気二重層キャパシタに用いられるさらに別の集電板の下面図である。 図20Aは本発明の実施の形態2における電気二重層キャパシタに用いられる集電板および外装体の別の接続方法を説明するために接続前の外装体の底面部分を抜粋して示す部分正面断面図である。 図20Bは本発明の実施の形態2における電気二重層キャパシタに用いられる集電板および外装体の別の接続方法を説明するために接続後の外装体の底面部分を抜粋して示す部分正面断面図である。 図21は従来の蓄電装置の一例である電気二重層キャパシタの正面断面図である。
 本発明の実施の形態の説明に先立ち、従来の構成における課題を説明する。確かに、図21に示す電気二重層キャパシタは、低抵抗である。しかしながら、ケース105の開口部から端子103を介して一方の電極を引き出す場合、対となる電極を引き出しているケース105と端子板103とを絶縁する必要がある。また、ケース105の開口部を封止するために、端子板103の外周を覆うように、環状または筒状の封口ゴム106を設ける必要がある。
 その場合、端子板103の一部を封口ゴム106に設けられた貫通孔に挿入させながら、ケース105内に封口ゴム106を配設させるのが一般的である。端子板103を封口ゴム106へ挿入する際には、封口ゴム106の内周面は端子板103に対し摺動し、外周面はケース105に対し摺動する。封口ゴム106の表面の摩擦抵抗は大きいため、この摩擦抵抗が端子板103の挿入時における作業性を低下させる虞がある。
 以下に図面を用いて本発明の実施の形態における蓄電装置について説明するが、本発明は以下の内容に限定されない。
 (実施の形態1)
 図1Aは実施の形態1による蓄電装置の一例である電気二重層キャパシタの上面図であり、図1Bはこの電気二重層キャパシタの正面断面図である。この電気二重層キャパシタは、蓄電素子であるキャパシタ素子1と、キャパシタ素子1に含浸した電解質(図示せず)と、端子板2と、集電板3と、底面4Aを有する外装体4と、封口部材5とを有する。
 キャパシタ素子1は第1電極である正極と第2電極である負極とを有するとともに、正極が引き出された第1端部である素子端部1Aと、負極が引き出され、第1端部の反対側に位置する第2端部である素子端部1Bとを有する。
 本実施の形態において、キャパシタ素子1は巻回状であり、巻回軸方向の両端に正極を引き出す素子端部1A、負極を引き出す素子端部1Bをそれぞれ有する。このように、対向する一対の端部からそれぞれ互いに異なる極性の電極が引き出されている。なお正極と負極が逆でもよい。そして、キャパシタ素子の構成は、巻回状に限定されず、対向した両端から各電極が引き出される構成であれば特に限定されない。例えば、正極、負極、セパレータを交互に積層した積層構造や、正極、負極を対向させた状態で九十九折り状になっていてもよい。
 キャパシタ素子1は、対向する正極と負極、およびそれらの間に介在するセパレータから構成されている(いずれも図示せず)。正極および負極はアルミニウム等の金属箔の集電体と、この集電体の表面に一端辺を除いて形成された炭素材料を含む電極層からそれぞれ構成されている(いずれも図示せず)。セパレータは例えばセルロースから構成されている。
 正極、負極は、互いの電極層未形成部が逆方向に突出するように対向するとともに、それらの間にセパレータが介在した状態で巻回されて、キャパシタ素子1を構成している。すなわち、キャパシタ素子1は巻回体である。正極、負極とセパレータが巻回されているため、巻回後に巻回軸方向に貫通した空隙となる中空部1Cが形成されている。そして、巻回軸方向の両端に形成された正極、負極の電極層未形成部の束がそれぞれ素子端部1A、1Bを構成している。このように、キャパシタ素子1は、中心部分に中空部1Cを有した略円筒状の形状を有する。
 電解質としては、例えば、支持塩であるエチルトリメチルアンモニウムテトラフルオロボラートを、溶媒であるγ-ブチロラクトンに溶解した電解液を用いることができる。濃度は、例えば1.0mol/lである。
 端子板2は、板状の素子接続部2Aと、素子接続部2Aと接続されているとともに外部と接続される外部端子部2Bとを有する。素子接続部2Aは、キャパシタ素子1の素子端部1Aで正極と電気的に接続されている。外部端子部2Bは、素子接続部2Aにおける、キャパシタ素子1と接続された面の裏面上に設けられている。端子板2は例えばアルミニウムから構成されている。
 集電板3は素子端部1Bで負極と接合されている。集電板3は金属などの導電性を有した板材、例えばアルミニウム板で形成されている。
 外装体4は、底面4Aと、底面4Aの反対側に位置する開口部が設けられた側壁4Kとを有する筒状の形状を有し、金属などの導電性材料で構成されている。外装体4は、端子板2が上記開口部側に位置するように、キャパシタ素子1を端子板2、集電板3、電解質とともに収容している。外装体4は例えばアルミニウムから構成されている。
 封口部材5は素子接続部2A上に位置し、外部端子部2Bが挿入された挿入孔5Aを有するとともに、外装体4の開口部を外部端子部2Bとともに封止している。封口部材5は、例えばブチルゴムから構成されている。
 以下、図2A~図3Cを参照しながら端子板2と封口部材5について詳細に説明する。図2Aは端子板2の上面図であり、図2Bは、端子板2の正面断面図である。図3A、図3B、図3Cはそれぞれ、封口部材5の上面図、正面断面図、底面図である。
 端子板2は金属などの導電性を有した部材で形成されている。端子板2は前述のように円板状の素子接続部2Aと、素子接続部2Aの外表面上に設けられた電極を引き出す柱体である外部端子部2Bから構成されている。図2Bに示すように、外部端子部2Bは柱体または筒体であり、先端の外周部分には、先端が最も細くなるようにテーパー部2Cが形成されている。そして、素子接続部2Aの厚み方向には、外部からキャパシタ素子1へ電解液が含浸できるように、注液孔2D、2dが形成されている。厚み方向とは、外装体4の底面4Aから開口部へ延びる第1方向である。言い換えれば、厚み方向とは、外装体4の底面4Aを水平面に置いたときの鉛直方向である。
 図3A~図3Cに示すように封口部材5は、少なくとも円柱状の弾性材から構成されている。前述のように、封口部材5の中心部分には挿入孔5Aが設けられており、端子板2の外部端子部2Bが挿入された状態で、端子板2の素子接続部2A上に配設されている。
 封口部材5の外周面は外装体4の開口部の内周面と対向している。封口部材5の内周面とは、挿入孔5Aに表出した面である。この開口部を封止するために、外装体4の側壁4Kにおいて、側壁4Kの内面が封口部材5の外周面と対向している箇所の外面に、外装体4の内方に向かって突出した絞り加工部4Cが形成されている。絞り加工部4Cによって封口部材5が圧縮されることにより、外装体4の開口部が封止されている。
 外装体4の開口端部は外装体4の内側に曲げられ、側壁端辺4Jを封口部材5の上面に当接させたカーリング加工部4Dが形成されている。カーリング加工部4Dは、外装体4の内圧が上昇した際に、封口部材5が素子接続部2Aに対して鉛直方向(特に上方向)に変位することを抑制する。
 封口部材5の上面には、挿入孔5Aから部分的に表出した端子板2の外部端子部2Bとカーリング加工部4Dとの間に封口部材5を厚くして隆起させた隆起部5Eが形成されている。
 以上のように、本実施の形態における電気二重層キャパシタが構成されている。
 本実施の形態による電気二重層キャパシタは、以下の特徴を有する。まず、端子板2の外部端子部2Bは、先端の天面および外周に設けられたテーパー部2Cと、テーパー部2Cにつながる封止部2Hとを有した柱体または筒体である。テーパー部2Cは第1端部2Fと、第1端部2Fよりも素子接続部2Aから遠い第2端部2Gとを有する。本実施の形態では、一例として、図1Bに示すように、第1端部2Fがテーパー部2Cの下端、第2端部2Gがテーパー部2Cの上端に位置している。外部端子部2Bの一部は封口部材5から外部へ表出している。そして、外部端子部2Bを封口部材5の挿入孔5Aに挿入しつつ封口部材5を外装体4の中に収容する際に、封口部材5の挿入孔5Aに外部端子部2Bの封止部2Hが当接する前に、封口部材5の外周の少なくとも一部が外装体4の内部へ収容される。この構成により、外部端子部2Bを挿入しながら外装体4の中に収容されていく封口部材5の挿入時の作業性を高めることができる。
 なお、図1Bに示すように、側壁端辺4Jは、側壁4Kの壁面が形づくる端辺のことを意味する。そのため、外装体4の開口部上端にカーリング加工部4Cなどが形成されている場合、外装体4の上端に形成された曲面部分は側壁端辺4Jには該当しない。その場合、側壁端辺4Jとは、外装体4内部へ向かって延出した箇所の端部を意味する。そして、外装体4の側壁端辺4Jの位置(高さ)は、側壁4Kに形成される絞り加工部4Cが形成された後の外装体4の側壁端辺4Jの高さおよび絞り加工部4Cが形成される前の外装体4の側壁端辺4Jの高さのうち少なくとも一方で特定される。特に上記加工後の構造から加工前の側壁端辺4Jの位置を特定する場合、外装体4の絞り加工部4Cとして、外装体4内部へ突出した部分の長さは考慮しないものとする。絞り加工部4Cが設けられている場合、外装体4内部へ突出するための変形が開始する下端4Lから変形が終了する上端4Uを最短で結ぶ距離を、絞り加工部4Cにおける高さとする。
 ここで、図4A~図4D、図5を参照しながら封口部材5を外装体4内へ収容しながら封口部材5に外部端子部2Bを挿入していく際の手順を説明する。図4A~図4Dは封口部材5を外装体4内へ収容しながら封口部材5に外部端子部2Bを挿入していく際の概略断面図である。図5は、外部端子部2Bと封口部材5の当接状況を抜粋して示したイメージ図である。
 図4Aは、キャパシタ素子1を作製し、素子端部1Aに端子板2の素子接続部2Aを接続し、外装体4に、電解質とともに、端子板2が接続されたキャパシタ素子1を、端子板2が開口部側に位置するように収容した状態を示している。図4Aに示すように、外部端子部2Bの先端は外装体4の側壁端辺4Jよりも高い位置にあり、外装体4から外部へ突出している。そして、封口部材5を外装体4と外部端子部2Bとに近づける際、図4Bに示すように、まず外部端子部2Bの先端を封口部材5の挿入孔5Aに入れる。これにより、外部端子部2Bに対して封口部材5の位置が仮決めされる。すなわち、外部端子部2Bの先端と挿入孔5Aとはガイドとして機能する。
 そして、上述のようにテーパー部2Cにおける、素子接続部2Aに近い第1端部2Fが、外装体4の側壁端辺4Jよりも素子接続部2Aに近い位置にある。そのため、さらに封口部材5を外装体4内へ収容しながら封口部材5に外部端子部2Bを挿入していくと、図4Cに示すように外部端子部2Bの、テーパーを形成していない封止部2Hが挿入孔5Aの最も狭い部分に入る前に、封口部材5の外周面が外装体4に挿入される。
 さらに、封口部材5を外装体4内へ収容しながら封口部材5に外部端子部2Bを挿入していくと、図4Dに示すように封止部2Hが挿入孔5Aの最も狭い部分に挿入され、最終的には外部端子部2Bのテーパー部2Cの大部分が封口部材5から突出する。
 このように、封口部材5を外装体4内へ収容しながら封口部材5に外部端子部2Bを挿入していく際に、封口部材5と積極的に当接することとなる封止部2Hよりも、側壁端辺4Jが先に封口部材5と当接する。そのため、外装体4の内部における封口部材5の外周面の位置が、最初に当接する側壁端辺4Jの内周面の位置を基準にして決定される。このように、封口部材5は既に外装体4の内部である側壁端辺4Jの内周面と当接していることから、封口部材5の外周面の位置が決まった後も引続き封口部材5を外装体4の中へ入り込ませることができる。
 これに対し、テーパー部2Cの第1端部2Fの位置が、側壁端辺4Jより高い位置にある場合、封口部材5は、外周面が外装体4の内周面と当接するよりも先に、挿入孔5Aにおいて、外部端子部2Bの封止部2Hと積極的に当接する。この場合、封口部材5の外周面の位置は、封止部2Hの外周面の位置を基準にして決定される。そして、封口部材5の外周面の位置が決定した後に、封口部材5は外装体4の側壁端辺4Jと当接する。
 もし外部端子部2Bが円筒状である外装体4の高さ方向の中心軸からずれて配設されていると、外部端子部2Bの位置ずれに連動して封口部材5の外周面の位置もずれる。このような封口部材5の位置ずれによって、封口部材5の外周面の一部が、側壁端辺4Jの内周面の位置から外装体4の外部へはみ出す虞がある。この場合、封口部材5の外装体4の端面と当接している箇所が封口部材5のそれ以上の進行を阻止することとなり、封口部材5の外装体4内への収容が困難となる。
 これに対して、本実施の形態では、封口部材5の位置が外装体4の開口部内周との当接条件により決定される。すなわち、まず、封口部材5が外部端子部2Bの挿入を続けて外装体4の中に収容可能か確認される。そのあと、封口部材5は、挿入孔5Aにて封止部2Hと当接することができる。そのため、上述のように、はみ出し部分によって封口部材5が外装体4の中に収容させていくことが困難になることを抑制することができる。この構成により、封口部材5を外装体4内へ収容する際に、別途、ガイド治具等を用意する必要なく、容易に封口部材5を収容することができる。
 図5に示すように、外部端子部2Bの配置箇所が外装体4の中心軸からずれている場合、挿入孔5Aの開口部は、封止部2Hに達する前にテーパー部2Cの斜面と当接する。この場合、挿入孔5Aの開口部はテーパー部2Cの斜面の傾斜角に応じて、この斜面に対して垂直方向の矢印Aで示される応力を受ける。
 矢印Aの応力は、端子板2の素子接続部2Aに対して水平方向となる矢印Bで示される応力と、素子接続部2Aに対して鉛直方向となる矢印Cで示される応力に分解することができる。矢印Bの応力が発生することにより、挿入孔5Aに対して水平方向に圧縮応力が加わる。そのため、挿入孔5Aの開口面積が拡がる。その結果、外部端子部2Bの配置箇所に多少のずれが生じていたとしても、封口部材5の圧縮の限界まではそのずれを吸収して外部端子部2Bを挿入することができる。
 ただし、封口部材5に外部端子部2Bが未挿入の状態で、封口部材5が外装体4の側壁端辺4Jに当接してしまった場合、外部端子部2Bの位置ずれの程度によっては、外部端子部2Bの先端と封口部材5の底面とが当接してしまう。この場合、外部端子部2Bを挿入孔5Aに挿入することも困難になる。そのため、上述のように、外部端子部2Bの先端は、外装体4の側壁端辺4Jより高い位置にあることが好ましい。
 なお、上記のような位置関係により、絞り加工部4Cとカーリング加工部4Dを形成した後の状態においては、結果的に以下のような位置関係が成立する。すなわち、外装体4の底面4Aから開口部へ延びる第1方向において、外装体4の開口部における側壁端辺4Jが、テーパー部2Cの第1端部2Fと第2端部2Gとの間に位置する。前述のように、第1方向とは、底面4Aを水平に置いたときの底面4Aの鉛直方向であり、外装体4の側壁4Kが延びている方向である。
 上記位置関係の条件を満たさない構成では、例えば、側壁端辺4Jが第2端部2Gより上に位置する。この場合、端子板2の上端よりも、外装体4の側壁4Kの上端の方が常に高い位置になる。このような電気二重層キャパシタ同士を、接続部材(図示なし)を用いて電気的に接続する際に、一方の外部端子部2Bと並設された2つの電気二重層キャパシタの間に、側壁4Kの上端部(特に、カーリング加工部)を越えて接続できるように形状を加工する必要があり、接続自由度が下がる。また、側壁端辺4Jが第1端部2Fより下に位置する構成の場合、絞り加工部4Cを形成するために、側壁端部4Jと素子接続部2Aの間の空間は一定量必要となることから、封止部4Hが高くなりやすく、外部端子部2Bとして背が高くなりやすくなる。そのため、電気二重層キャパシタとして大型化しやすくなってしまう。
 ここで図1Bに示すように、封口部材5の挿入孔5Aの内壁の下端を第1端辺5F、上記第1方向において第1端辺5Fよりも素子接続部2Aから遠い上端を第2端辺5Gとする。このとき、上記第1方向において、テーパー部2Cの第1端部2Fが絞り加工部4Cの下端4Lよりも上、すなわち素子接続部2Aから遠くに位置し、挿入孔5Aの内壁の第2端辺5Gよりも下、すなわち素子接続部2Aに近くに位置することが好ましい。テーパー部2Cの第1端部2Fがこの範囲に位置しない構成に比べ、上述のようにテーパー部2Cの第1端部2Fがこの範囲に位置する構成では、外部端子部2Bの高さ方向において応力が偏って発生する。その結果、外部端子部2Bの外周面に加わる封止応力が集中して局部的に大きくなる。そのため、外装体4の開口部において封止の信頼性を高めることができる。封口部材5の経時劣化の形態の一つとして、封止応力の低下が挙げられるが、この構成により、優れた封止応力を維持することができる。なお、封止応力の算出については、試料となる封口部材のひずみと応力の関係をあらかじめ測定しておき、その試料について、応力解析に用いる開口部の封止構造を設定し、公知のシミュレーションソフトを用いて解析を実行することにより、封口部材5から外部端子部2Bへ加わる応力を算出できる。なお、図1Bに示すように、外装体4の正面断面図において、外装体4の側壁4Kの断面は、底面4A側から一定の高さまで略直線状に形成されている。その断面には略直線状から曲線に変化する箇所(変化点)がある。本明細書では、この変化点が設けられた箇所を、絞り加工部4Cの下端4Lと定義する。すなわち、絞り加工部4Cの下端4Lとは、上記第1方向において側壁端辺4Jから遠い側の端部である。
 なお、封口部材5には、端子板2の素子接続部2Aと対向した面である底面の外周端部に、外装体4の底面4Aに向かって延出した環状のスカート部5Bが形成されていることが好ましい。スカート部5Bは環状または筒状であり、封口部材5の本体部分と同一または別の絶縁材で構成される。スカート部5Bは、端子板2の素子接続部2Aの外周端部と、対向する外装体4の内周面とを絶縁する機能を有する。このようにスカート部5Bを素子接続部2Aの外周端と外装体4の内周面との間に介在させることにより信頼性が向上する。
 なお、封口部材5に外部端子部2Bを挿入していく途中で、何らかの要因によって、外装体4内での封口部材5の水平度が下がることがある。この場合、スカート部5Bの突出方向も、素子接続部2Aに対して垂直な方向から、封口部材5の傾斜した角度に応じて、斜方に変化する。一方、素子接続部2Aと外装体4との間の間隙は、素子接続部2Aに対して垂直な方向に展開されている。そのため、この間隙の中へスカート部5Bを挿入することが困難になる。場合によってはこの間隙に挿入されないまま封口部材5が外装体4内に収容される虞もある。そのため、図3Bに示すように、スカート部5Bにおいて、内周面側にテーパー部5Cを設けた構成がさらに好ましい。
 テーパー部5Cを設けることにより、テーパー部5Cのテーパー角までは封口部材5が傾斜したとしても、素子接続部2Aの外周端に対して、テーパー部5Cの斜面が平行関係となるか、あるいはこの斜面が素子接続部2Aと当接する。したがって、テーパー部5Cを設けない構成に比べて、スカート部5Bの上記間隙への挿入の自由度が向上する。なお、スカート部5Bは環状だけに限定されず、外周端部に断続的に設けられていてもよい。
 また、図3Bに示すように、封口部材5において、挿入孔5Aの底面(端子板2との対向面)側の開口部の内周部分にテーパー部5Dを設けることが好ましい。テーパー部5Dにより、外部端子部2Bの外周面と挿入孔5Aの内周面との距離が広がる。そのため、外部端子部2Bと挿入孔5Aの内周面との接触をより確実に回避することができ、摩擦抵抗をより低減することができる。
 なお、外装体4の開口部が封口部材5および端子板2の外部端子部2Bで封止されている。この場合、外装体4内部で発生したガスは封口部材5を透過して放出される。この構成により、調圧弁(図示せず)が不要となり、電気二重層キャパシタを横に倒して用いるなどが可能となる。また、外装体4の開口面において調圧弁を設けるスペースが不要であるため、電気二重層キャパシタ全体として小型になる。
 次に、集電板3と外装体4の底面4A、および端子板2との構成について図2Aに加え、図6A~図9を参照しながら説明する。図6A、図6Bはそれぞれ、集電板3の平面図と正面断面図である。図7は外装体4の底面4Aの内側を示す平面図である。図8は外装体4と集電板3の接合状態を部分的に拡大して示す正面断面図である。図9は集電板3を透視して外装体4の底面4Aを示す底面透視図である。
 前述のように、集電板3は金属などの導電性を有した板材で構成されている。図6A、図6Bに示すように、集電板3は円板部3Dと、円板部3Dの中央に設けられた凸部3Eとを有する。図8に示すように、凸部3Eはキャパシタ素子1の中空部1Cに対向するように配置される。円板部3Dおよび凸部3Eには注液孔3Bが設けられ、円板部3Dの外周には切り欠き部3Cが設けられている。また円板部3Dは、図8、図9に示すように素子接続部3Aと、外装体接続部3Gとを有する。素子接続部3Aは素子端部1Bと接合される。外装体接続部3Gは外装体4の底面4Aの接合部4Gと当接して溶接接合される。
 一方、図7に示すように、外装体4の底面4Aの内面には、開口部に向かって突出し集電板3と当接した当接部4Eが形成されている。また図8に示すように、底面4Aの外面には、接続バー(図示なし)と接続するために外方に突出した外部接続部4Bが形成されている。そして底面4Aの外面における、外部接続部4Bと異なる箇所には、凹部が形成され、この凹部の底に一例として十文字の切り込みが設けられている。この切り込みは、切り込みがない箇所に比べて機械的強度が弱くなっている。外装体4の内圧が一定以上に達した際には、この切り込みから開弁する。このようにして弁部4Fが設けられている。
 当接部4Eと集電板3が当接することにより、集電板3において当接部4Eと当接していない箇所では、図8に示すように、外装体4の底面4Aとの間に空隙が形成される。集電板3と外装体4とが非当接であるこの空隙部分において、集電板3の外装体接続部3Gと底面4Aの内面とが溶接される。底面4Aにおけるこの部分を接合部4Gとする。
 図2Aに示すように、端子板2の素子接続部2Aの外周端部に切り欠き部2Eが設けられている。そして、集電板3において、キャパシタ素子1を介して切り欠き部2Eと対向する位置に切り欠き部3Cが設けられている。すなわち、集電板3の切り欠き部3Cと素子接続部2Aの切り欠き部2Eとは、外装体4の底面4Aから開口部に延びる方向、言い換えれば、底面4Aの鉛直方向において対向している。このような構成が好ましい。
 このように互いの切り欠き部を対向させることにより、切り欠き部2Eが、素子接続部2Aと集電板3の、外部端子部2Bを軸とした回転方向の配置に関する基準となる。つまり、切り欠き部2Eの位置が決まることにより、集電板3の回転方向の配置も決定することができる。これにより、切り欠き部2Eを基準にして、キャパシタ素子1に対する集電板3の接続部分の位置を決定することができる。
 すなわち、切り欠き部2Eの位置を見ることで、外装体4の底に位置する集電板3の配置を判定することができる。そのため、外装体4の外部から集電板3の外装体接続部3Gと外装体4の接合部4Gとを接合する際に、集電板3とキャパシタ素子1との接続部分である素子接続部3Aを重複して溶融させることを防ぐことができる。このような、位置決めの基準を設ける場合、設ける面の中心に対して回転対称性をもたない構成とすることが好ましい。
 このように、端子板2および集電板3にそれぞれキャパシタ素子1を介して互いに対向する位置に位置決め部を設けることが好ましい。これにより、外装体4の中に収容されて視認が困難である集電板3の状態を別の部材から読み取り、外装体4と集電板3とを溶接接合する際に、集電板3とキャパシタ素子1との素子接続部3Aを回避することができる。なお、位置決め部として切り欠き部以外に、例えば注液孔3Bとは大きさの異なる孔を設けたり、突起を設けたり、部分的に着色してもよい。すなわち、集電板3と素子接続部2Aをそれぞれ非回転対称にして位置決め部として用いればよい。
 しかしながら、切り欠き部2E、3Cのように、位置決め部を素子接続部2A、集電板3の外周端部に設けることが好ましい。この構成では、外周端部で位置決めを行うことにより、端子板2および集電板3をキャパシタ素子1へ接合した後、キャパシタ素子1を側面から見るだけで回転方向における位置を確認することができる。その結果、生産性が向上する。このように集電板3の外形と素子接続部2Aの外形がそれぞれ、非回転対称であることが好ましい。
 一方、外周内に位置決め部を設けた場合、位置決め部を視認するためには、外周端部よりも高くキャパシタ素子1から突出した突部を設ける必要がある。この場合、素子接続部2Aの形状が複雑になったり重量が増大したりする可能性がある。
 また、端子板2や集電板3をキャパシタ素子1の素子端部1A、1B上に配置して溶接する際にも、切り欠き部2E、3C内の空隙に収まるような一対の差込み部分をもった治具(図示なし)を用いることにより、一度にキャパシタ素子1において端子板2および集電板3の位置決めを行うことができる。このような観点でも生産性が向上する。
 また、溶接接合された箇所の表面はバリなどが存在することがある。すなわち、集電板3のキャパシタ素子1との接続部分にはバリが存在することがある。バリを含んだ状態で当接部4Eとこの接続部分とが当接すると、複数の当接部4Eにおいて、集電板3の高さがばらつき、集電板3の水平度が下がってしまう虞がある。そのため、図9に示すように、集電板3の切り欠き部を外装体4の当接部4Eの上に配置し、集電板3のキャパシタ素子1との接続部分(溶接接合した箇所)を除いた箇所を当接部4Eと当接させることが好ましい。
 また、外装体4の底面4Aにおいて中心部分から外れた位置に設けられ、底面4Aの中心に対して回転対称性がない構成要素である弁部4Fを用いて集電板3と外装体4の底面4Aとを位置決めしてもよい。この場合、外装体4の底面4Aは非回転対称である。例えば、当接部4Eを底面4Aの内面の外周端に、底面4Aの中心部を結ぶ内角が120°となる間隔で3箇所設ける。そして、底面4Aの中心と弁部4Fの配設位置を結ぶ直線と、上記中心と当接部4Eを結ぶ直線との位置関係を基準として接合部4Gの位置を決定してもよい。
 そのとき、集電板3の配置条件を読み取ることを容易にするために、3つの当接部4Eのうち、集電板3の切り欠き部3Cと当接した当接部4Eと、底面4Aの中心とを結ぶ直線と、底面4Aの中心と弁部4Fとを結ぶ直線の位置関係を基準にして外装体4と集電板3の接合部の位置を決定することが好ましい。このとき、上記2つの直線が互いに同方向または逆方向を指すことにより、底面4Aの中心と、弁部4Fと、切り欠き部とが一本の直線上に位置する。この直線の位置から、集電板3におけるキャパシタ素子1との接続部分の位置を判断することが容易になる。すなわち弁部4Fの位置から切り欠き部3Cの位置を容易に特定できる。
 そしてキャパシタ素子1との接続部分の位置を回避するように、上記直線の位置を基準にして、外装体4の底面4Aにおいて、接合部4Gの位置を設定することができる。この構成により、底面4Aにおいて、接合部4Gの位置が素子接続部3Aと重なることを回避することが容易となる。その結果、集電板3におけるキャパシタ素子1との接続部分を再溶融させる可能性を低減することができる。
 なお以上の説明では、弁部4Fを底面4Aの中心に対して回転対称性がない位置決め部として利用しているが、底面4Aに別途、上記のような位置決め部を形成してもよい。
 なお、外装体4内の内圧が上昇したときに底面4Aが膨れることがある。この際、底面4Aの中心から順に径方向に向かって膨れが進行する。つまり、底面4Aの中心が最も膨れによる変位が大きくなる。そのため、外装体4の接合部4Gは、外装体4の底面4Aの中心を囲うように形成することが好ましい。この構成により、中心から放射状に接合部4Gを形成する構成に比べて、溶接接合における信頼性が向上する。すなわち、中心から一定間隔を設けて接合部4Gを形成することにより、放射状の接合部4Gと比較して、膨れによる底面4Aの変位によって生じる外装体接続部3Gと接合部4Gとの剥離のタイミングを遅らせることができる。これにより、集電板3と外装体4の間における接合信頼性を向上し、接合界面の抵抗増大を抑制することができる。
 また、素子接続部2Aに設けられた第1貫通孔である注液孔2Dの開口面積と第2貫通孔である注液孔2dの開口面積が異なることが好ましい。あるいは、切り欠き2Eがないと仮定し素子接続部2Aを円板状とした場合、素子接続部2Aの中心から注液孔2Dまでの距離と、注液孔2dまでの距離が異なることが好ましい。この構成により、注液孔2D、2dの開口面がキャパシタ素子1の様々な箇所と当接でき、キャパシタ素子1の様々な箇所に電解液を注液することができる。
 なお電解液はキャパシタ素子1と外装体4の側壁4Kとの間を通って集電板3の側からもキャパシタ素子1に供給される。そのため、集電板3に設けられた注液孔3Bの開口面積と注液孔3bの開口面積が異なることが好ましい。あるいは切り欠き3Cがないと仮定し集電板3の外形を円板状とした場合、集電板3の中心から注液孔3Bまでの距離と、注液孔3bまでの距離が異なることが好ましい。
 また、端子板2に設けられた注液孔2D、2dと、集電板3に設けられた注液孔3B、3bは、互いに非対向部分を有することが好ましい。すなわち、端子板貫通孔である注液孔2D、2dと、集電板貫通孔である注液孔3B、3bとは、外装体4の底面4Aから開口部へ延びる方向から見て一致しないことが好ましい。すなわち、開口面の一部が対向部を有する構成が好ましい。このような一部の対向部によってキャパシタ素子1を介して端子板2から集電板3へ注液された電解液が通り抜けるパスが形成される。このパスを通りかつ、異なる位置に設けられた非対向部からさらに電解液がキャパシタ素子1内へ入り込む。そのため、注液孔2D、2d、3B、3bの非対向部の位置を異ならせておくことにより、キャパシタ素子1においてより多様な箇所へ電解液を注液することが可能となる。その結果、キャパシタ素子1の全体の注液効率が高まる。
 (実施の形態2)
 図10Aは本発明の実施の形態2による蓄電装置の一例である電気二重層キャパシタの正面断面図であり、図10Bは側面断面図である。本実施の形態が実施の形態1と異なる主な点は、端子板2に代えて端子板32を用い、集電板3に代えて集電板33を用い、端子板ホルダー6と集電板ホルダー7を追加していることである。また封口部材5にはスカート部5Bがない。それ以外の基本的な構成は実施の形態1と同様であるので、詳細な説明を省略する場合がある。
 すなわち、キャパシタ素子1の素子端部1Aと接合された端子板32は、端子板ホルダー6の内部へ収容され、固定されている。キャパシタ素子1の素子端部1Bと接合された集電板33は集電板ホルダー7の内部へ収容され、固定されている。また外装体4の底面4Aの内面には、外装体4の開口部に向かって突出し、集電板ホルダー7に固定されて集電板33と当接した集電板接続部4Hが形成されている。
 次に図11~図12Bを参照しながら端子板32について説明する。図11は端子板32の斜視図であり、図12Aは端子板32の上面図、図12Bは端子板32の正面断面図である。
 端子板32は金属などの導電性を有する部材で構成されている。端子板32は円板状の素子接続部32Aと、外部端子部32Bとを有する。素子接続部32Aはキャパシタ素子1の素子端部1Aと接合される。外部端子部32Bは素子接続部32Aの外表面上に設けられ、電極を引き出す柱体である。素子接続部32Aには素子端部1Aと溶接接合されるために、素子端部1Aに向かって突出するように形成された素子接合部32Cが設けられている。また素子接続部32Aにおいて、外部端子部32Bと素子接合部32Cとの間にスリット孔32Dが設けられている。外部端子部32Bの先端部の外周にはテーパー部32Eが形成されている。端子板32は例えばアルミニウムで構成されている。
 次に図13、図14を参照しながら集電板33について説明する。図13は集電板33の斜視図であり、図14は集電板33の下面図である。
 集電板33は金属などの導電性を有する板材で構成されている。集電板33は素子接続部33Aと、外装体接続部33Bとを有する。素子接続部33Aは素子端部1Bと溶接接合されるために素子端部1B側へ突出している。外装体接続部33Bはキャパシタ素子1の中空部1Cと対向する位置に設けられ、図10A、図10Bに示す外装体4の底面4Aの集電板接続部4Hと当接し、溶接接合される。素子接続部33Aと外装体接続部33Bとの間にはスリット孔33Cが形成されている。素子接続部33Aと外装体接続部33Bとは異なる位置には注液孔33Dが形成されている。集電板33は例えば、アルミニウムで構成されている。外装体接続部33Bは、対向したキャパシタ素子1の中空部1Cより抵抗溶接機の電極設備を差し込んで集電板接続部4Hと溶接接合される。
 次に図15A~図16Bを参照しながら端子板ホルダー6、集電板ホルダー7について説明する。図15Aは端子板ホルダー6の上面斜視図であり、図15Bは端子板ホルダー6の下面斜視図である。図16Aは端子板ホルダー6の上面図であり、図16Bは端子板ホルダー6の正面断面図である。なお集電板ホルダー7の構造は端子板ホルダー6と同様であるため、これらの図面では括弧で示している。端子板ホルダー6および集電板ホルダー7は、ポリプロピレンなどの絶縁材から構成されている。
 端子板ホルダー6は、筒部6Aと固定部6Bとを有する。筒部6Aは端子板32の外周端部を覆うとともに収容する。固定部6Bは筒部6Aの内周面上に設けられ、筒部6A内に収容された端子板32を筒部6A内で支持する。
 より詳細には、固定部6Bは、平板部6Cと、突起6Dとの2つの構成要素によって構成されている。平板部6Cは筒部6Aの一方の開口端からその開口の面の外周端部を部分的に覆うように形成されている。突起6Dは平板部6Cと所定の間隔をもって、筒部6Aの内側に形成されている。突起6Dは筒部6Aとともにスナップフィットの役割を果たし、端子板32は平板部6Cと突起6Dとの間に挟持されることにより固定される。この構成では、筒部6Aが実施の形態1における封口部材5のスカート部5Bと同様の効果を奏する。
 同様に、集電板ホルダー7は、筒部7Aと固定部7Bとを有する。筒部7Aは集電板33の外周端部を覆うとともに収容する。固定部7Bは筒部7Aの内周面上に設けられ、筒部7A内に収容された集電板33を筒部7A内で支持する。
 より詳細には、固定部7Bは、平板部7Cと、突起7Dとの2つの構成要素によって構成されている。平板部7Cは筒部7Aの一方の開口端からその開口の面の外周端部を部分的に覆うように形成されている。突起7Dは平板部7Cと所定の間隔をもって、筒部7Aの内側に形成されている。突起7Dは筒部7Aとともにスナップフィットの役割を果たし、集電板33は平板部7Cと突起7Dとの間に挟持されることにより固定される。
 封口部材5と、外部端子部32Bのテーパー部32E、外装体4の位置、寸法関係は、実施の形態1の封口部材5と、外部端子部2Bのテーパー部2C、外装体4の関係と同様である。以上により本実施例の電気二重層キャパシタが構成されている。
 以上の構成においては、キャパシタ素子1の素子端部1Bと接合された集電板33の外装体接続部33Bと、外装体4の集電板接続部4Hとが、集電板33側から抵抗溶接できる。この場合、外装体4よりも集電板33が優先的に溶融されることから外装体4に孔があくことを抑制することができる。集電板接続部4Hは、集電板33がキャパシタ素子1と対向していない箇所である中空部1Cに対向する位置(接続部)に設けられている。そして、溶接の痕跡として少なくとも、外装体接続部33Bの上面に溶接痕が表出している。また集電板接続部4Hが外装体接続部33Bよりも厚い。すなわち、上記接続部において集電板33は外装体4の底面4Aより厚い。そのため、外装体接続部33Bに対して加圧しながらその加圧箇所を溶接する抵抗溶接において、加圧に対して、厚く形成された集電板接続部4Hから外装体接続部33Bへ反力を得ることができる。したがって、溶接時の信頼性を高めることができる。
 さらに、集電板接続部4Hは外装体4の底面4Aより突出して形成されている。すなわち、外装体4の底面4Aと集電板33との接続部において、底面4Aの内側から突出した突起として集電板接続部4Hが設けられていることが好ましい。そのため、集電板33より厚く形成された底面4Aと抵抗溶接を行う構成に比べて外装体接続部33Bへの当接面積が小さい。したがって、より強い反力(応力)を得ることができる。
 一例として、厚さが0.6mmの外装体接続部33Bに対して、集電板接続部4Hの厚さが5.0mm(集電板接続部4Hを除く箇所を1.0mm)として直流抵抗機を用いて抵抗溶接を行う。抵抗機の条件は一例として、9.6V、7.8kA、8ms、電極先端の曲率半径を30mmとする。
 次に、図17A、図17Bを参照しながら集電板接続部4Hのさらに好ましい例について説明する。図17A、図17Bは外装体4の部分拡大断面図である。図17Aに示す構成では、集電板接続部4Hの先端の端面が平面ではなく球面になっている。図17Bに示す構成では、集電板接続部4Hの外周にテーパーが設けられている。これらの構成により、さらに当接面積が減り外装体接続部33Bへの反力をさらに高めることができる。
 また、逆に外装体接続部33Bの接合面にプロジェクション形状などの突起を設けるなどして当接面積を減らして反力を高めてもよい。あるいは、外装体4の底面4Aの外側において、集電板33との接続部が形成された箇所に、外部に向かって突出した突起を設けてもよい。この場合、突起として図10Bに示す外部接続部4Bを利用することができる。
 また、本実施の形態による電気二重層キャパシタにおいて、集電板33と外装体4が外装体接続部33Bおよび集電板接続部4Hにおいてだけ当接し、電気的に接続されている。すなわち、集電板33の外装体接続部33Bを除く箇所が、導電材料から構成されている外装体4と当接していない。そのため、外装体接続部33Bにおいて消費されるべき電流が分散することが防止される。すなわち、溶接するために投入されたエネルギーが溶接すべき箇所に集中する。その結果、信頼性の高い溶接が可能となる。
 また、集電板接続部4Hが底面4Aから突出していることにより、集電板33の位置が集電板接続部4Hの高さによって配置位置が決まるとともに、集電板33の位置を底面4Aから遠ざけて絶縁することができる。さらに、集電板ホルダー7の平板部7Cが集電板33と外装体4の底面4Aの当接部分以外の部分に位置する。平板部7Cは絶縁材料から構成されているため、さらに確実に接合箇所以外での物理的、電気的な絶縁の精度を向上することができる。
 なお、集電板ホルダー7に代えて集電板接続部4Hを収容可能な大きさの貫通孔を有する絶縁板を底面4Aの内面上に配置したり、底面4Aにおける集電板接続部4Hを除く部分に絶縁膜を形成したりしてもよい。このように集電板接続部4Hを除く箇所の少なくとも一部と外装体4の底面4A内面との間に絶縁材料を介在させて絶縁することで上述の効果を発揮させることができる。
 次に図11に示す端子板32におけるスリット孔32Dおよび図13に示す集電板33におけるスリット孔の効果について説明する。
 前述のようにスリット孔32Dは素子接合部32Cと外部端子部32Bとの間に設けられている。そのため、外部端子部32Bは、素子接合部32Cと独立して、底面4Aから外装体4の開口部に延びる第1方向(上下方向)に対して変位することができる。このように素子接続部32Aはスリット孔32Dによってダンパー部の機能を果たすことができる。
 同様に、スリット孔33Cは素子接続部33Aと外装体接続部33Bとの間に設けられている。そのため、外装体接続部33Bは、素子接続部33Aと独立して、底面4Aから外装体4の開口部に延びる第1方向(上下方向)に対して変位することができる。このように集電板33はスリット孔33Cによってダンパー部の機能を果たすことができる。
 外装体4の開口部を封止する際や、外装体4の内圧があがったとき、封口部材5が膨れる可能性がある。このように封口部材5が膨れると、端子板32および集電板33と接合されたキャパシタ素子1に対して、巻回軸方向の応力が加わる。この応力に対して、ダンパー部が作用し応力を吸収することで、素子接合部32C、素子接続部33Aへ応力ストレスが加わることを抑制することができる。その結果、素子端部1A、1Bにおける抵抗の増大を抑制することができる。なお端子板32にスリット孔32Dを設け、集電板33にスリット孔33Cを設けることにより、長期信頼性が確保できる。
 なお、このダンパー部としての機能を高めるために、スリット孔32Dを、外部端子部32Bと素子接合部32Cとの一方の周りを包囲するように(但し、環を形成しないように)形成することが好ましい。同様に、スリット孔33Cを、外装体接続部33Bと素子接続部33Aとの一方の周りを包囲するように(但し、環を形成しないように)形成することが好ましい。
 次に集電板33とは異なる構成の集電板について、図18A~図19を参照しながら説明する。図18Aは本実施の形態における電気二重層キャパシタに用いられる別の集電板13の下面図であり、図18Bは集電板13の正面断面図、図18Cは集電板13の側面断面図である。図19はさらに別の集電板23の下面図である。
 まず集電板13について説明する。集電板13はキャパシタ素子1の素子端部1Bに接続される素子接続部13Aと、外装体4の集電板接続部4Hに接続される外装体接続部13Bとを有する。素子接続部13Aと外装体接続部13Bは、面一の平板状に設けられている。そして、平板状であるこの素子接続部13Aおよび外装体接続部13Bの周囲には鍔部13Eが設けられている。鍔部13Eは、素子接続部13Aおよび外装体接続部13Bの周囲から外装体4の底面4Aの方に向かって突出するとともに、その端部は底面4Aに対して水平方向に拡がっている。
 素子接続部13Aおよび外装体接続部13Bが面一上にあることから、素子端部1Bにおける、素子接続部13Aと当接した箇所の端面の位置は、集電板接続部4Hの上端の高さで固定される。一方、素子端部1Bにおける、素子接続部13Aと当接しない箇所は、さらに底面4Aに向かって突出する。この当接しない部分の端面に対して鍔部13Eが当接する。そのため、素子接続部13Aと当接しない部分の端面の位置も鍔部13Eの位置に固定させることができる。その結果、集電板33と外装体4において、接続部を除く箇所の少なくとも一部と外装体4の底面4Aの内面との間に空隙が設けられる。そして集電板33において、接続部を除く箇所の少なくとも一部がこの空隙によって外装体4と絶縁される。このように、鍔部13Eによって、素子端部1Bにおける、素子接続部13Aと当接しない部分の端面の位置を制御することができる。
 そして、鍔部13Eの位置を底面4Aと当接しない位置になるよう調整することにより、素子端部1Bが底面4Aに当接することを防ぐことができる。その結果、外装体接続部13Bと集電板接続部4Hとを抵抗溶接する際に、供給される電流が外装体接続部13B以外に流れることを抑制することができる。すなわち、溶接に必要な電気エネルギーを外装体接続部13Bに集中することができる。
 一方、図19に示す集電板23では、簡素な構成として素子接続部23Aと外装体接続部23Bとが、それぞれの要素として必要な面積だけを一体の板材として構成されている。これにより材料費を下げ蓄電装置として、低コスト化することができる。
 次に、図20A、図20Bを参照しながら他の集電板と外装体を用いた接続構成について説明する。図20A、図20Bは冷間圧接により集電板43と外装体14の内底面とが接合される前後の構成を部分的に抜粋して示した正面断面図である。
 図10A、図10Bに示す構成では、外装体4の底面と集電板33の中心部分にある外装体接続部33Bとが抵抗溶接により接合されている。これに対し図20A、図20Bに示す構成では、蓄電素子1の素子端部1Bに接合された集電板43が有底円筒状の外装体14の底面に冷間圧接により接合されている。
 図20Aに示すように、集電板43は、金属などの導電性材料で形成され、平板状の素子接続部43Aと、素子接合部43Aの中心部分に設けられて外装体14の底面側に突出した外装体接続部43Bとを有する。外装体接続部43Bは冷間圧接で外装体14の底面に接続するために素子接続部43Aより厚く形成されている。集電板43は、一例としてアルミニウムから構成されている。
 外装体14は、金属などの導電性材料で形成され、内面が突出した底面14Aと、底面14Aの中心部分に設けられて外装体接続部43Bが収容される凹部である集電板接続部14Hとを有する。
 この構成により、図20Bに示すように、冷間圧接によって、外装体接続部43B内に集電板接続部14Hの底面に食い込んだ圧接部43Cが形成されて集電板43と外装体14とが接合される。すなわち、圧接部43Cは外装体接続部43Bと集電板接続部14Hによって構成される。この接合方法では接合の際に溶融を伴わないため、レーザー溶接などと比べて孔あきなどの虞を低減することができる。
 冷間圧接を行うために、圧接前の集電板接続部14Hおよび外装体接続部43Bの厚みの和に対する圧接後の圧接部43Cの厚みの比が0.3以下となるようにすることが好ましい。そしてさらにこの比が0.2以下であると接続箇所の抵抗値の経時変化も小さく好ましい。圧接前の集電板接続部14Hおよび外装体接続部43Bの厚みの和は、冷間圧接後の圧接部43Cを除いた集電板接続部14Hと外装体接続部43Bの未圧接部分の厚みから特定することが可能である。
 また、集電板接続部14Hの内径もしくは外装体接続部43Bの外径に対する穴状の圧接部43C底面の径の比は0.6以下が好ましく、さらにはこの比が0.4以下であると接続箇所の抵抗値の経時変化も小さくより好ましい。
 なお、実施の形態1、2で用いる電解液には、前述の構成の他に以下の材料を用いることができる。溶媒として、プロピレンカーボネート(PC)やエチレンカーボネート(EC)、ジメチルカーボネート(DMC)などのうち少なくとも一つを用いることができる。支持塩として、例えばテトラエチルアンモニウムテトラフルオロボレート(TEABF)や、トリエチルメチルアンモニウムテトラフルオロボレート(TEMABF)、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMIBF)、1-エチル-2、3-ジメチルイミダゾリウムテトラフルオロボレート(EDMIBF)、1、2、3-トリメチルイミダゾリウムテトラフルオロボレート(TMIBF)及び1、3-ジメチルイミダゾリウムテトラフルオロボレート(DMIBF)などのうち少なくとも一つを用いることができる。溶媒、電解質は特に限定されない。
 また電解質として電解液以外に、溶媒中にバインダを含ませ、ゲル状のものを用いた構成や、固体状の電解質を用いてもよい。
 また、集電板3や端子板2に用いられる材料は、上記のようにアルミニウムに限定されず、チタン、ジルコニウム、ハフニウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、珪素、鉄、銀、鉛、ニッケル、銅、白金、金や、これらの合金を用いてもよい。
 また、正極や負極の電極層には上記のように活性炭のような炭素材料の他に、カルボキシメチルセルロースのアンモニウム塩やポリテトラフルオロエチレンなどのバインダやアセチレンブラックなどの導電剤が含まれていてもよい。このような材料が含まれた方が活性炭どうしの距離の短縮や導電性を向上させることができるため、キャパシタ素子1としてより低抵抗化することができる。
 なお、本発明は電気二重層キャパシタに限定されることはなく、電気化学キャパシタや、リチウム二次電池を始めとする夫々の電極層の集電部材として金属部材を主に用いた蓄電池に適用してもよい。電気化学キャパシタでは、電解質のカチオンとしてリチウムイオンが用いられ、負極の電極層に含まれる炭素材料、あるいはカチオンと合金化が可能である金属にリチウムを吸蔵させる。正極は電気二重層キャパシタの正極と同様である。電気化学キャパシタや蓄電池に応用しても上記のような蓄電装置として封止の信頼性向上の実現という格別な効果を奏することができる。
 本発明の蓄電装置は、封口部材の外装体に対する挿入作業性が向上し、蓄電装置として製造時の生産性が向上している。これにより、蓄電を必要とするより多くの電子機器に利用されることが期待される。
1  キャパシタ素子
1A,1B  素子端部
1C  中空部
2,32  端子板
2A,32A  素子接続部
2B,32B  外部端子部
2C,32E  テーパー部
2D,2d  注液孔
2E  切り欠き部
2F  第1端部
2G  第2端部
2H  封止部
3,13,23,33,43  集電板
3A,13A,23A,33A,43A  素子接続部
3B,3b,33D  注液孔
3C  切り欠き部
3D  円板部
3E  凸部
3G,13B,23B,33B,43B  外装体接続部
4,14  外装体
4A,14A  底面
4B  外部接続部
4C  絞り加工部
4D  カーリング加工部
4E  当接部
4F  弁部
4G  接合部
4H,14H  集電板接続部
4J  側壁端辺
4K  側壁
4L  下端
4U  上端
5  封口部材
5A  挿入孔
5B  スカート部
5C,5D  テーパー部
5E  隆起部
5F  第1端辺
5G  第2端辺
6  端子板ホルダー
6A,7A  筒部
6B,7B  固定部
6C,7C  平板部
6D,7D  突起
7  集電板ホルダー
13E  鍔部
32C  素子接合部
32D  スリット孔
33C  スリット孔
43C  圧接部

Claims (27)

  1. 第1電極と第2電極とを有するとともに、前記第1電極が引き出された第1端部を有する蓄電素子と、
    前記蓄電素子に含浸した電解質と、
    前記第1端部において前記第1電極と電気的に接続された素子接続部と、前記素子接続部と接続された外部端子部と、を有する端子板と、
    底面と、前記底面から延び前記底面の反対側に位置する開口部が設けられた筒状の側壁とを有し、導電性材料で構成され、前記端子板が前記開口部側に位置するように、前記蓄電素子を前記電解質とともに収容した外装体と、
    前記素子接続部上に位置し、前記外部端子部が挿入された挿入孔を有するとともに、前記外装体の前記開口部を前記外部端子部とともに封止した封口部材と、を備え、
    前記外部端子部は、先端外周にテーパー部を有した柱体または筒体であり、前記外部端子部の一部は前記封口部材から表出し、前記テーパー部は第1端部と、前記第1端部よりも前記素子接続部から遠い第2端部とを有し、
    前記外装体の前記底面から前記開口部へ延びる第1方向において、前記外装体の開口部における前記側壁の端辺が、前記テーパー部の前記第1端部と、前記第2端部との間に位置する、
    蓄電装置。
  2. 前記外装体の前記側壁において、前記側壁の内面が前記封口部材の外周面と対向した箇所の外面に、前記外装体の内方に向かって突出した絞り加工部が設けられ、
    前記封口部材は前記外部端子部と当接し、前記挿入孔に表出した内周面を有し、
    前記第1方向において、前記テーパー部の第1端部は、前記絞り加工部における前記第1方向において前記側壁の前記端辺から遠い側の端部と、前記封口部材の前記内周面における前記第1方向において前記素子接続部から遠い側の端辺との間に位置する、
    請求項1記載の蓄電装置。
  3. 前記封口部材は、前記端子板の前記素子接合部と対向した面と、前記面の外周端部から前記外装体の前記底面に向かって延出したスカート部と、前記スカート部の内周に設けられたテーパー部と、を有する、
    請求項1記載の蓄電装置。
  4. 前記蓄電素子は、前記第1端部の反対側に位置する第2端部を有し、前記第2端部から前記第2電極が引き出され、
    前記蓄電装置は、前記第2端部において前記第2電極と電気的に接続された導電性を有する集電板をさらに備え、
    前記端子板の素子接続部は板状であり、
    前記集電板と前記素子接続部はそれぞれ、非回転対称である、
    請求項1記載の蓄電装置。
  5. 前記集電板の外形と前記素子接続部の外形はそれぞれ、非回転対称である、
    請求項4記載の蓄電装置。
  6. 前記集電板と前記素子接続部のそれぞれの外周部には切り欠き部が設けられ、前記第1方向において、前記切り欠き部が前記蓄電素子を介して対向している、
    請求項5記載の蓄電装置。
  7. 前記外装体の前記底面は非回転対称である、
    請求項4記載の蓄電装置。
  8. 前記蓄電素子は、前記第1電極と前記第2電極の間に介在するセパレータをさらに有し、前記第1電極と前記第2電極と前記セパレータは巻回体を構成し、
    前記端子板の素子接続部は板状であり、前記素子接続部には前記第1方向に貫通する第1貫通孔と、前記第1方向に貫通するとともに前記第1貫通孔とは開口面積が異なる第2貫通孔とが設けられた、
    請求項1記載の蓄電装置。
  9. 前記蓄電素子は、前記第1電極と前記第2電極の間に介在するセパレータをさらに有し、前記第1電極と前記第2電極と前記セパレータは巻回体を構成し、
    前記端子板の素子接続部は円板状であり、前記素子接続部には前記第1方向に貫通する第1貫通孔と、前記第1方向に貫通するとともに前記第1貫通孔とは前記素子接続部の中心からの距離が異なる第2貫通孔とが設けられた、
    請求項1記載の蓄電装置。
  10. 前記蓄電素子は、前記第1電極と前記第2電極の間に介在するセパレータをさらに有し、前記第1電極と前記第2電極と前記セパレータは巻回体を構成し、
    前記蓄電素子は、前記第1端部の反対側に位置する第2端部を有し、前記第2端部から前記第2電極が引き出され、
    前記蓄電装置は、前記第2端部において前記第2電極と電気的に接続された導電性を有する集電板をさらに備え、
    前記端子板の素子接続部は板状であり、前記素子接続部には前記第1方向に貫通する端子板貫通孔が設けられ、
    前記集電板には前記第1方向に貫通する集電板貫通孔が設けられ、前記端子板貫通孔と前記集電板貫通孔とは、前記第1方向から見て一致しない、
    請求項1記載の蓄電装置。
  11. 前記端子板の前記素子接続部の外表面を覆うとともに、前記端子板を支持する固定部を有し、絶縁材で構成された端子板ホルダーをさらに備えた、
    請求項1記載の蓄電装置。
  12. 前記端子板の前記素子接続部は板状であり、前記素子接続部は、前記第1方向において、前記外部端子部が変位可能となるダンパー部として機能する、
    請求項1記載の蓄電装置。
  13. 前記素子接続部は前記蓄電素子と接合された素子接合部を有し、前記外部端子部と前記素子接合部との間にスリット孔が設けられ、前記素子接続部は前記スリット孔によって前記ダンパー部として機能する、
    請求項12記載の蓄電装置。
  14. 前記スリット孔は、前記外部端子部および前記素子接合部のうち少なくとも一方を囲うように形成された、
    請求項13記載の蓄電装置。
  15. 前記蓄電素子は、前記第1端部の反対側に位置する第2端部を有し、前記第2端部から前記第2電極が引き出され、
    前記蓄電装置は、前記第2端部において前記第2電極と電気的に接続された導電性を有する集電板をさらに備え、
    前記集電板と前記外装体の前記底面とは、前記集電板が前記蓄電素子と対向していない箇所に設けられた接続部で接続され、
    前記接続部において、前記外装体の前記底面は前記集電板より厚い、
    請求項1記載の蓄電装置。
  16. 前記外装体の前記底面と前記集電板との前記接続部において、前記底面の内側から突出した突起が設けられた、
    請求項15記載の蓄電装置。
  17. 前記突起の先端が球面であるか、または前記突起の外周がテーパーを有するかの少なくともいずれかである、
    請求項16記載の蓄電装置。
  18. 前記外装体の前記底面の外側において、前記集電板との前記接続部が形成された箇所に外部に向かって突出した突起が設けられた、
    請求項15記載の蓄電装置。
  19. 前記蓄電素子は、前記第1端部の反対側に位置する第2端部を有し、前記第2端部から前記第2電極が引き出され、
    前記蓄電装置は、前記第2端部において前記第2電極と電気的に接続された導電性を有する集電板をさらに備え、
    前記集電板と前記外装体の前記底面とは、前記集電板が前記蓄電素子と対向していない箇所に設けられた接続部で接続され、
    前記集電板において、前記接続部を除く箇所の少なくとも一部が前記外装体と絶縁された、
    請求項1記載の蓄電装置。
  20. 前記集電板および前記外装体において、前記接続部を除く箇所の少なくとも一部と前記外装体の底面の内面との間に空隙を設けて絶縁した請求項19記載の蓄電装置。
  21. 前記集電板および前記外装体において、前記接続部を除く箇所の少なくとも一部と前記外装体の前記底面の内面との間に絶縁材料を介在させて絶縁した請求項19記載の蓄電装置。
  22. 前記集電板の外表面の一部を覆うとともに、この集電板を支持する支持部を有する絶縁材から構成された集電板ホルダーをさらに備え、
    請求項21記載の蓄電装置。
  23. 第1電極と第2電極とを有するとともに、前記第1電極が引き出された第1端部を有する蓄電素子を作製するステップと、
    素子接続部と、前記素子接続部と接続された外部端子部とを有する端子板の前記素子接続部と、前記第1電極とを、前記蓄電素子の前記第1端部において電気的に接続するステップと、
    底面と、前記底面から延び前記底面の反対側に位置する開口部が設けられた筒状の側壁とを有し、導電性材料で構成された外装体に、電解質とともに、前記端子板が接続された蓄電素子を前記端子板が前記開口部側に位置するように収容するステップと、
    封口部材の挿入孔に前記外部端子部を挿入して前記封口部材を前記素子接続部上に配置するとともに前記封口部材を前記外装体の中に収容するステップと、
    前記封口部材と前記外部端子部により前記外装体を封止するステップと、を備え、
    前記外部端子部は、先端外周に設けられたテーパー部と、前記テーパー部につながる封止部とを有した柱体または筒体であり、
    前記封口部材を前記外装体の中に収容する際に、前記封口部材の前記挿入孔に前記外部端子部の前記封止部が当接する前に、前記封口部材の外周の少なくとも一部を前記外装体の内部へ収容するとともに、
    前記封口部材を前記外装体の中に収容後に前記外部端子部の一部を前記封口部材から表出させる、
    蓄電装置の製造方法。
  24. 前記テーパー部は前記本体部との境界の第1端部と、前記第1端部よりも前記素子接続部から遠い第2端部とを有し、
    前記端子板が接続された前記蓄電素子を前記外装体に収容した時点で、前記外装体の前記底面から前記開口端部へ延びる第1方向において、前記外装体の前記開口端部は、前記テーパー部の前記第1端部と、前記第2端部との間に位置する、
    請求項23記載の蓄電装置の製造方法。
  25. 前記蓄電素子を作製する際に、前記第1端部の反対側に位置する第2端部を有し、前記第2端部から前記第2電極を引き出すように前記蓄電素子を作製し、
    前記製造方法は、
    前記蓄電素子を前記外装体に収容する前に、導電性を有する集電板を前記第2端部において前記第2電極と電気的に接続するステップと、
    前記集電板を前記第2電極と電気的に接続し、前記蓄電素子を前記外装体に収容した後に、前記集電板が前記蓄電素子と対向していない箇所に設けられた接続部において、前記集電板と前記外装体の前記底面とを前記集電板の側から抵抗溶接で接続するステップと、をさらに備え、
    前記接続部において、前記集電板は前記外装体の前記底面より厚い、
    請求項23記載の蓄電装置の製造方法。
  26. 前記集電板が前記蓄電素子と対向していない箇所に設けられた前記接続部における前記外装体の前記底面の内側には突起が設けられ、
    前記集電板と前記外装体の前記底面とを接続する際、前記突起と前記集電板を当接させた状態で前記集電板と前記外装体の前記底面とを抵抗溶接する、
    請求項25記載の蓄電装置の製造方法。
  27. 前記蓄電素子を作製する際に、前記第1端部の反対側に位置する第2端部を有し、前記第2端部から前記第2電極を引き出すように前記蓄電素子を作製し、
    前記製造方法は、
    前記蓄電素子を前記外装体に収容する前に、導電性を有する集電板を前記第2端部において前記第2電極と電気的に接続するステップと、
    前記集電板を前記第2電極と電気的に接続し、前記蓄電素子を前記外装体に収容した後に、前記集電板が前記蓄電素子と対向していない箇所に設けられた接続部において、前記集電板と前記外装体の前記底面とを前記集電板の側から抵抗溶接で接続するステップと、をさらに備え、
    前記接続部を除く箇所の少なくとも一部において、前記集電板と前記外装体とを絶縁した状態で前記集電板と前記外装体の前記底面とを接続する、
    請求項23記載の蓄電装置の製造方法。
PCT/JP2012/007969 2011-12-15 2012-12-13 蓄電装置とその製造方法 WO2013088724A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013549123A JP6127274B2 (ja) 2011-12-15 2012-12-13 蓄電装置
US14/301,691 US9287059B2 (en) 2011-12-15 2014-06-11 Electric storage device and method of manufacture thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-274179 2011-12-15
JP2011274178 2011-12-15
JP2011274179 2011-12-15
JP2011-274181 2011-12-15
JP2011274181 2011-12-15
JP2011-274180 2011-12-15
JP2011-274178 2011-12-15
JP2011274180 2011-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/301,691 Continuation US9287059B2 (en) 2011-12-15 2014-06-11 Electric storage device and method of manufacture thereof

Publications (1)

Publication Number Publication Date
WO2013088724A1 true WO2013088724A1 (ja) 2013-06-20

Family

ID=48612197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007969 WO2013088724A1 (ja) 2011-12-15 2012-12-13 蓄電装置とその製造方法

Country Status (3)

Country Link
US (1) US9287059B2 (ja)
JP (1) JP6127274B2 (ja)
WO (1) WO2013088724A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145478A (ja) * 2018-02-23 2019-08-29 パナソニックIpマネジメント株式会社 蓄電デバイス及び蓄電モジュール
JP2019153552A (ja) * 2018-03-06 2019-09-12 Fdk株式会社 アルカリ電池およびアルカリ電池の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168885A1 (en) * 2013-04-10 2014-10-16 Maxwell Technologies, Inc Collector plate for energy storage device and methods of manufacturing
WO2016114472A1 (ko) * 2015-01-14 2016-07-21 엘에스엠트론 주식회사 터미널의 구조가 개선된 전기에너지 저장장치
GB2550617A (en) * 2016-05-26 2017-11-29 Ou Skeleton Tech Group Integrated carbon/carbon ultracapacitor of high power density and battery composed from said capacitors
US11393637B2 (en) * 2019-06-03 2022-07-19 Kemet Electronics Corporation High temperature polymer hermetically sealed capacitors
CN110136995A (zh) * 2019-06-11 2019-08-16 成都凹克新能源科技有限公司 一种电化学储能器件
CN110112011A (zh) * 2019-06-11 2019-08-09 成都凹克新能源科技有限公司 一种电化学储能器件
DE102021119259A1 (de) 2021-07-26 2023-01-26 Bayerische Motoren Werke Aktiengesellschaft Energiespeicherzelle sowie Verfahren zum Herstellen einer Energiespeicherzelle
WO2024050625A1 (en) * 2022-09-07 2024-03-14 Atlas Power Technologies Inc. Energy storage device with electrically isolated sleeve housing closed with two separate end caps integrated with the current terminals
DE102022132406A1 (de) 2022-12-06 2024-06-06 Skeleton Technologies GmbH Stromsammlerelement für eine Elektrodenbaugruppe einer Energiespeicherzelle, Bausatz und Energiespeicherzelle mit dem Stromsammlerelement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275751A (ja) * 1997-03-31 1998-10-13 Elna Co Ltd 電気二重層コンデンサおよびその製造方法
JP2009016587A (ja) * 2007-07-05 2009-01-22 Panasonic Corp キャパシタ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803185B2 (ja) 1989-07-05 1998-09-24 松下電器産業株式会社 電気二重層コンデンサ
JPH07326551A (ja) 1994-05-30 1995-12-12 Fuji Elelctrochem Co Ltd 電気二重層コンデンサ
WO2000034964A1 (en) * 1998-12-05 2000-06-15 Energy Storage Systems Pty. Ltd. A charge storage device
JP2001068379A (ja) 1999-08-24 2001-03-16 Honda Motor Co Ltd 電気二重層コンデンサ
US6456484B1 (en) 1999-08-23 2002-09-24 Honda Giken Kogyo Kabushiki Kaisha Electric double layer capacitor
JP2002083739A (ja) 2000-09-07 2002-03-22 Honda Motor Co Ltd 電気二重層キャパシタ
EP1677322A1 (en) 2003-10-21 2006-07-05 Asahi Glass Company Ltd. Electric double layer capacitor
JP2006313793A (ja) * 2005-05-06 2006-11-16 Asahi Glass Co Ltd 蓄電素子
JP2007335156A (ja) 2006-06-13 2007-12-27 Honda Motor Co Ltd 蓄電素子
JP4811246B2 (ja) * 2006-09-07 2011-11-09 パナソニック株式会社 コンデンサ
JP2008098275A (ja) * 2006-10-10 2008-04-24 Matsushita Electric Ind Co Ltd キャパシタ
JP5040698B2 (ja) * 2007-02-14 2012-10-03 パナソニック株式会社 キャパシタ
JP5130942B2 (ja) 2008-02-14 2013-01-30 パナソニック株式会社 キャパシタ
US8488301B2 (en) * 2011-02-28 2013-07-16 Corning Incorporated Ultracapacitor package design having slideably engagable bent tabs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275751A (ja) * 1997-03-31 1998-10-13 Elna Co Ltd 電気二重層コンデンサおよびその製造方法
JP2009016587A (ja) * 2007-07-05 2009-01-22 Panasonic Corp キャパシタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145478A (ja) * 2018-02-23 2019-08-29 パナソニックIpマネジメント株式会社 蓄電デバイス及び蓄電モジュール
JP7340804B2 (ja) 2018-02-23 2023-09-08 パナソニックIpマネジメント株式会社 蓄電デバイス及び蓄電モジュール
JP2019153552A (ja) * 2018-03-06 2019-09-12 Fdk株式会社 アルカリ電池およびアルカリ電池の製造方法
JP7049865B2 (ja) 2018-03-06 2022-04-07 Fdk株式会社 アルカリ電池およびアルカリ電池の製造方法

Also Published As

Publication number Publication date
US20140293510A1 (en) 2014-10-02
JPWO2013088724A1 (ja) 2015-04-27
JP6127274B2 (ja) 2017-05-17
US9287059B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP6127274B2 (ja) 蓄電装置
JP4061938B2 (ja) 蓄電素子およびその製造方法
US10135040B2 (en) Electric storage device, electric storage device assembly, and method for producing electric storage device
JP6390624B2 (ja) 蓄電デバイス
JP6432952B1 (ja) 電気化学セル
WO2012023434A1 (ja) 蓄電素子の製造方法及び蓄電素子
WO2001024206A1 (en) Capacitor element
US20090279232A1 (en) Electrolytic capacitors with multiple anodes and anode lead configurations thereof
US9472798B2 (en) Energy storage device
WO2021153439A1 (ja) 蓄電装置
JP6037204B2 (ja) 蓄電素子及び導電性部材
JP4530333B2 (ja) 密閉型電池
JP6436097B2 (ja) キャパシタ
JP7089895B2 (ja) 蓄電素子
JP6160081B2 (ja) 蓄電素子及びその製造方法
KR102555959B1 (ko) 외부접속단자를 갖는 전기화학 에너지 저장장치
JP4432580B2 (ja) コンデンサ
JP2012099746A (ja) 蓄電装置
JPH11243035A (ja) 電気二重層キャパシタ
JP2005340610A (ja) コンデンサ及びその製造方法
WO2022190671A1 (ja) 電気化学セル
JP2010239111A (ja) キャパシタおよびそれを用いたキャパシタユニット
KR20230057963A (ko) 이차 전지
JP2005340609A (ja) コンデンサ及びその製造方法
JPH11283586A (ja) 電池とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856930

Country of ref document: EP

Kind code of ref document: A1