WO2013080859A1 - 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物 - Google Patents
熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物 Download PDFInfo
- Publication number
- WO2013080859A1 WO2013080859A1 PCT/JP2012/080191 JP2012080191W WO2013080859A1 WO 2013080859 A1 WO2013080859 A1 WO 2013080859A1 JP 2012080191 W JP2012080191 W JP 2012080191W WO 2013080859 A1 WO2013080859 A1 WO 2013080859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat ray
- ray shielding
- compound
- heat
- fine particles
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 32
- 239000000463 material Substances 0.000 title claims description 78
- 239000011358 absorbing material Substances 0.000 claims abstract description 106
- 238000002834 transmittance Methods 0.000 claims abstract description 98
- 150000001875 compounds Chemical class 0.000 claims abstract description 50
- 239000004014 plasticizer Substances 0.000 claims abstract description 47
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 29
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000011354 acetal resin Substances 0.000 claims abstract description 27
- 229920006324 polyoxymethylene Polymers 0.000 claims abstract description 27
- 230000005540 biological transmission Effects 0.000 claims abstract description 9
- 239000010419 fine particle Substances 0.000 claims description 200
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 147
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 147
- 239000002131 composite material Substances 0.000 claims description 146
- -1 bismuth vanadate compounds Chemical class 0.000 claims description 79
- 150000002894 organic compounds Chemical class 0.000 claims description 45
- 239000011521 glass Substances 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 23
- 230000005855 radiation Effects 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 150000008049 diazo compounds Chemical class 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical class [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical class C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 claims description 3
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical class C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 claims description 3
- 125000002524 organometallic group Chemical group 0.000 claims description 3
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical class C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052701 rubidium Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N para-benzoquinone Natural products O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 claims description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 claims 1
- 239000002023 wood Substances 0.000 claims 1
- 239000002585 base Substances 0.000 description 53
- 239000006185 dispersion Substances 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 34
- 230000003287 optical effect Effects 0.000 description 31
- 239000002270 dispersing agent Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 28
- 239000000203 mixture Substances 0.000 description 27
- 239000005340 laminated glass Substances 0.000 description 18
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000003960 organic solvent Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000007858 starting material Substances 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 7
- 150000003658 tungsten compounds Chemical class 0.000 description 7
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000005357 flat glass Substances 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 238000006359 acetalization reaction Methods 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical compound Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- JEYLQCXBYFQJRO-UHFFFAOYSA-N 2-[2-[2-(2-ethylbutanoyloxy)ethoxy]ethoxy]ethyl 2-ethylbutanoate Chemical compound CCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CC JEYLQCXBYFQJRO-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000003961 organosilicon compounds Chemical class 0.000 description 2
- CXKGGJDGRUUNKU-UHFFFAOYSA-N oxotungsten;hydrate Chemical compound O.[W]=O CXKGGJDGRUUNKU-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 150000003252 quinoxalines Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten(iv) oxide Chemical compound O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical class C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XCTNDJAFNBCVOM-UHFFFAOYSA-N 1h-imidazo[4,5-b]pyridin-2-ylmethanamine Chemical compound C1=CC=C2NC(CN)=NC2=N1 XCTNDJAFNBCVOM-UHFFFAOYSA-N 0.000 description 1
- UNNGUFMVYQJGTD-UHFFFAOYSA-N 2-Ethylbutanal Chemical compound CCC(CC)C=O UNNGUFMVYQJGTD-UHFFFAOYSA-N 0.000 description 1
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 1
- WPMUZECMAFLDQO-UHFFFAOYSA-N 2-[2-(2-hexanoyloxyethoxy)ethoxy]ethyl hexanoate Chemical compound CCCCCC(=O)OCCOCCOCCOC(=O)CCCCC WPMUZECMAFLDQO-UHFFFAOYSA-N 0.000 description 1
- YJGHMLJGPSVSLF-UHFFFAOYSA-N 2-[2-(2-octanoyloxyethoxy)ethoxy]ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCCC YJGHMLJGPSVSLF-UHFFFAOYSA-N 0.000 description 1
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical class C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000005338 frosted glass Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- CQQJGTPWCKCEOQ-UHFFFAOYSA-L magnesium dipropionate Chemical compound [Mg+2].CCC([O-])=O.CCC([O-])=O CQQJGTPWCKCEOQ-UHFFFAOYSA-L 0.000 description 1
- JOADGALWHMAAKM-UHFFFAOYSA-L magnesium;2-ethylbutanoate Chemical compound [Mg+2].CCC(CC)C([O-])=O.CCC(CC)C([O-])=O JOADGALWHMAAKM-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- ZUFQCVZBBNZMKD-UHFFFAOYSA-M potassium 2-ethylhexanoate Chemical compound [K+].CCCCC(CC)C([O-])=O ZUFQCVZBBNZMKD-UHFFFAOYSA-M 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- BWILYWWHXDGKQA-UHFFFAOYSA-M potassium propanoate Chemical compound [K+].CCC([O-])=O BWILYWWHXDGKQA-UHFFFAOYSA-M 0.000 description 1
- 239000004331 potassium propionate Substances 0.000 description 1
- 235000010332 potassium propionate Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000005336 safety glass Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 150000004961 triphenylmethanes Chemical class 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J3/00—Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
- B60J3/007—Sunglare reduction by coatings, interposed foils in laminar windows, or permanent screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10614—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
- B32B17/10633—Infrared radiation absorbing or reflecting agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/22—Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/712—Weather resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/006—Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31627—Next to aldehyde or ketone condensation product
- Y10T428/3163—Next to acetal of polymerized unsaturated alcohol [e.g., formal butyral, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
Definitions
- the present invention relates to a heat ray shielding film having good visible light transmittance and an excellent heat ray shielding function, a heat ray shielding laminated transparent base material, and an automobile on which the heat ray shielding laminated transparent base material is mounted as a window material.
- a transparent base material As safety glass used in window materials for automobiles or buildings, a transparent base material is used in which a laminated glass is formed by sandwiching an intermediate layer containing polyvinyl acetal resin or the like between a plurality of (for example, two) opposing glass plates. ing. Furthermore, a transparent base material has been proposed for the purpose of reducing the cooling load and the heat of human heat by blocking incident solar energy by providing the intermediate layer with a heat ray shielding function.
- Patent Document 1 discloses a laminated glass in which a soft resin layer containing a heat ray shielding metal oxide made of tin oxide or indium oxide having a fine particle diameter of 0.1 ⁇ m or less is sandwiched between two opposing plate glasses. Is disclosed.
- Patent Document 2 discloses that Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, Mn, at least between two opposing glass plates.
- Metals such as Ta, W, V, and Mo, oxides of the metals, nitrides of the metals, sulfides of the metals, Sb and F dopants to the metals, and intermediate layers in which these composites are dispersed
- a laminated glass sandwiching a glass is disclosed.
- Patent Document 3 fine particles composed of TiO 2 , ZrO 2 , SnO 2 , and In 2 O 3 and a glass component composed of organosilicon or an organosilicon compound are sandwiched between opposing transparent plate-like members.
- An automotive window glass is disclosed.
- an intermediate layer composed of three layers is provided between at least two opposing transparent glass plates, and Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, Mo metal, metal oxide, metal nitride, metal sulfide, metal
- a laminated glass is disclosed in which a dope of Sb or F or a composite of these is dispersed and an intermediate layer of the first layer and the third layer is used as a resin layer.
- each of the conventional laminated glasses disclosed in Patent Documents 1 to 4 has a problem that the heat ray shielding function is not sufficient when high visible light transmittance is required.
- Patent Document 5 discloses that a metal oxide semiconductor, a near infrared absorber, and an ultraviolet absorber are mixed with a transparent synthetic resin and molded on a film. An ultraviolet and infrared shield is disclosed.
- the applicant forms an intermediate layer having a heat ray shielding function between two sheet glasses, and this intermediate layer is composed of hexaboride fine particles alone, or hexaboride fine particles and ITO fine particles and / or ATO fine particles.
- a heat ray-shielding laminated glass comprising a heat ray shielding film containing vinyl resin, or a heat ray containing the fine particles formed on the surface of the intermediate layer facing the inside of at least one plate glass
- Patent Document 6 discloses a heat ray shielding laminated glass composed of a shielding film and a heat ray shielding film containing a vinyl resin interposed between the two plate glasses.
- the optical properties of laminated glass for heat ray shielding in which hexaboride fine particles alone, or hexaboride fine particles and ITO fine particles and / or ATO fine particles are applied has a transmittance in the visible light region. In addition, it exhibits strong absorption in the near infrared region and has minimum transmittance.
- the heat-shielding laminated glass is improved until the solar radiation transmittance when the visible light transmittance is 70% or more is in the 50% range. It was done.
- Patent Document 7 As a heat ray shielding laminated glass in which a polyvinyl acetal resin is replaced with an ultraviolet curable resin and a heat ray shielding film in which a composite tungsten compound is contained in the ultraviolet curable resin is used as an intermediate layer. is doing.
- the heat-shielding laminated glass has a solar radiation transmittance when the visible light transmittance is 70% or more as compared with the conventional laminated glass described in Patent Documents 1 to 4 and Patent Document 6. It was improved until the rate was around 35%.
- the first problem is that the laminated glass according to the prior art described in Patent Documents 1 to 5 is not sufficient in heat ray shielding function when high visible light transmittance is required as described above. is there. Furthermore, in the market, the heat shielding function will be further improved in terms of improving comfort in automobiles and buildings, improving fuel efficiency by reducing automobile air-conditioner load, and saving energy by reducing air-conditioner load in buildings. The demand is high. From this viewpoint, the laminated glass for heat ray shielding described in Patent Documents 6 and 7 still had room for improvement.
- the present invention has been made paying attention to the above problems.
- the problem to be solved is a heat ray shielding film that exhibits excellent heat shielding properties while having a polyvinyl acetal resin as a main component, a heat ray shielding laminated transparent substrate using the heat ray shielding film, and the heat ray shielding laminated transparent It is to provide an automobile in which a base material is mounted as a window material.
- the present inventors have conducted intensive research on a method for improving the heat ray shielding characteristics while maintaining a high visible light transmittance.
- the present inventors paid attention to the wavelength distribution of the weight coefficient used in the visible light transmittance calculation described in JIS R 3106. Specifically, the wavelength distribution of the weight coefficient used for calculating the visible light transmittance and the solar radiation energy in the short wavelength region were studied in detail. And the knowledge that it was possible to reduce only the solar radiation transmittance
- a conventional ultraviolet shielding agent that does not cut the visible light region as much as possible is used.
- a material that absorbs light in the vicinity of a wavelength of 450 nm strongly but does not absorb in the vicinity of a wavelength of 550 nm, which is a region that greatly contributes to the calculation of the visible light transmittance The present invention has been completed by conceiving the configuration of coexistence.
- the second invention is The compound having a heat-ray-shielding function, the general formula M y WO Z (where, M is selected Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, a Cu One or more elements, 0.1 ⁇ y ⁇ 0.5, 2.2 ⁇ z ⁇ 3.0), and a composite tungsten oxide fine particle having a hexagonal crystal structure It is a heat ray shielding film as described in 1st invention.
- the third invention is The composite tungsten oxide fine particle is a fine particle having an average particle diameter of 40 nm or less.
- the heat ray shielding film according to the second aspect of the invention is the composite tungsten oxide fine particle having an average particle diameter of 40 nm or less.
- the fourth invention is:
- the selective wavelength absorbing material is at least one selected from isoindoline compounds, isoindolinone compounds, quinoxaline compounds, quinophthalone compounds, condensed diazo compounds, nickel azo compounds, and bismuth vanadate compounds. It is a heat ray shielding film as described in the invention.
- the fifth invention is: The heat ray shielding film according to the first invention, wherein the selective wavelength absorbing material is at least one selected from a quinophthalone compound and a nickel azo compound.
- the sixth invention is:
- the first to fifth selection wavelength absorbing materials have a transmission profile in which the transmittance of light having a wavelength of 550 nm is 90% or more and the transmittance of light having a wavelength of 450 nm is 15% or less.
- a heat ray shielding film according to any one of the inventions.
- the seventh invention The heat ray shielding film according to any one of the first to sixth inventions, wherein the heat ray shielding film further contains an infrared absorbing organic compound.
- the infrared absorbing organic compound is a phthalocyanine compound, naphthalocyanine compound, imonium compound, diimonium compound, polymethine compound, diphenylmethane compound, triphenylmethane compound, quinone compound, azo compound, pentadiene compound, azomethine compound, squarylium compound, organometallic complex
- the heat ray shielding film according to the seventh invention, wherein the heat ray shielding film is at least one selected from cyanine compounds.
- the infrared ray absorbing organic compound is at least one selected from a phthalocyanine compound and a diimonium compound, and is the heat ray shielding film according to the eighth invention.
- the eleventh invention is A heat ray shielding laminated transparent substrate, wherein the heat ray shielding film according to any one of the first to tenth inventions is present between a plurality of transparent substrates.
- the twelfth invention is The heat ray shielding laminated transparent according to the eleventh invention, wherein an infrared reflective film having a visible light transmittance of 88% or more and a solar reflectance of 21% or more is present between a plurality of transparent substrates. It is a substrate.
- the thirteenth invention is At least one of the transparent substrates is a heat ray shielding laminated transparent substrate according to the eleventh or twelfth invention, wherein at least one sheet is glass.
- the fourteenth invention is The heat ray shielding according to any one of the eleventh to thirteenth inventions, wherein the visible light transmittance calculated by JIS R 3106 is 70% or more and the solar radiation transmittance is 32.5% or less. It is a laminated transparent substrate.
- the fifteenth invention A heat ray shielding laminated transparent substrate according to any one of the eleventh to fourteenth inventions is mounted as a window material.
- the sixteenth invention is A heat ray shielding laminated transparent base material according to any one of the eleventh to fourteenth aspects is a building characterized in that it is used as a window material.
- a heat ray shielding film that exhibits excellent optical characteristics and high weather resistance by using a compound having a heat ray shielding function and a selective wavelength absorbing material together with a polyvinyl acetal resin as a main component.
- the heat ray shielding laminated transparent base material which exhibits the outstanding optical characteristic, high weather resistance, and the outstanding mechanical characteristic was able to be obtained by using a heat ray shielding film.
- the heat ray shielding laminated transparent base material by mounting the heat ray shielding laminated transparent base material on a car as a window material, it has become possible to suppress a rise in the temperature inside the car in summer. Moreover, it became possible to suppress the temperature rise in the building in the summertime by using the said heat ray shielding laminated transparent base material for the opening part of a building as a window material.
- 6 is a graph showing the relationship between the visible light transmittance and the solar radiation transmittance in the heat ray shielding laminated transparent base materials according to Examples 1 to 16 and Comparative Examples 1 to 4 and 6 to 9.
- 6 is a graph showing the relationship between visible light transmittance and solar radiation transmittance in heat-shielding laminated transparent base materials according to Examples 17 to 28 and Comparative Examples 1 to 4.
- 6 is a graph showing the relationship between the visible light transmittance and the solar radiation transmittance in heat-shielding laminated transparent base materials according to Examples 29 to 33 and Comparative Examples 1 to 4 and 5.
- 6 is a graph showing the relationship between the visible light transmittance and the solar radiation transmittance in heat-shielded transparent base materials according to Examples 5 to 8, 40 to 47, and Comparative Examples 1 to 4.
- the heat ray shielding film according to the present invention comprises a fine particle of a compound having a heat ray shielding function, a dispersant, a selective wavelength absorbing material, an infrared-absorbing organic compound, a polyvinyl acetal resin, a plasticizer, if desired, an adhesive strength adjusting agent, if desired, Contains other additives.
- the heat ray shielding film according to the present invention is obtained by dispersing fine particles of a compound having a heat ray shielding function and a dispersant in a part of a plasticizer to be added to the polyvinyl acetal resin to obtain a fine particle dispersion of the compound having a heat ray shielding function.
- the heat ray shielding film according to the present invention provides a dispersion in which fine particles of a compound having a heat ray shielding function and a dispersing agent are dispersed in a general organic solvent, and then the organic solvent is removed to disperse the solid.
- the components of the heat ray shielding film according to the present invention, the heat ray shielding film, and the heat ray shielding laminated transparent substrate using the heat ray shielding film will be described in detail.
- the fine particles of the compound having a heat ray shielding function according to the present invention composite tungsten oxide fine particles, organic infrared shielding fine particles, and the like can be used, but use of composite tungsten oxide fine particles is preferable. Therefore, in the following description, a case where composite tungsten oxide fine particles are used as fine particles of a compound having a heat ray shielding function will be described.
- heat ray shielding can be achieved by operating in the same manner as for composite tungsten oxide particles.
- a film and a heat-shielding transparent substrate can be produced.
- Fine particles having a heat ray shielding function is composite tungsten oxide fine particles. Since the composite tungsten oxide fine particles absorb a large amount of light in the near infrared region, particularly a wavelength of 1000 nm or more, the transmitted color tone often has a blue color tone.
- the composite tungsten oxide fine particles have a general formula MyWO Z (where M is one or more selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, Cu). Element, 0.1 ⁇ y ⁇ 0.5, 2.2 ⁇ z ⁇ 3.0), and preferably has a hexagonal crystal structure.
- examples of preferable composite tungsten oxide fine particles include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like.
- the addition amount of the additive element M is preferably 0.1 or more and 0.5 or less, and more preferably around 0.33. This is because the value theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this.
- the particle diameter of the composite tungsten oxide fine particles can be appropriately selected depending on the purpose of use of the heat ray shielding film.
- the composite tungsten oxide fine particles preferably have a dispersed particle diameter of 40 nm or less. If the composite tungsten oxide fine particles have a dispersed particle size smaller than 40 nm, light is not completely blocked by scattering, and visibility in the visible light region is maintained, and at the same time, transparency is efficiently maintained. Because you can.
- the scattering by the composite tungsten oxide fine particles is further performed. It is preferable to consider the reduction. In consideration of the further reduction in scattering, the dispersed particle diameter of the composite tungsten oxide fine particles is 30 nm or less, preferably 25 nm or less.
- the dispersed particle diameter of the composite tungsten oxide fine particles is small, light scattering in the visible light region having a wavelength of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced.
- the scattering of the light having the wavelength it is possible to avoid a situation in which the heat ray shielding film has an appearance like a frosted glass when strong light is irradiated and the clear transparency is lost.
- the composite tungsten oxide fine particles have a dispersed particle diameter of 40 nm or less, the above-described geometrical scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained.
- the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is reduced.
- the dispersed tungsten oxide fine particles have a dispersed particle diameter of 25 nm or less because the scattered light is extremely reduced.
- the dispersed tungsten oxide fine particles have a small dispersed particle diameter.
- the dispersed particle diameter of the composite tungsten oxide fine particles is 1 nm or more, industrial production is easy.
- the amount of the composite tungsten particles contained in the heat-ray shielding film, per unit area 0.2g / m 2 ⁇ 2.5g / m 2 is desirable.
- the composite tungsten oxide fine particles represented by the general formula MY WO Z can be obtained by heat-treating a tungsten compound starting material in an inert gas atmosphere or a reducing gas atmosphere. it can.
- the tungsten compound starting material is dried after dissolving tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate powder, tungsten hexachloride powder, ammonium tungstate powder, or tungsten hexachloride powder in alcohol.
- each material in the form of a solution in order to produce a starting material in which each component is uniformly mixed at the molecular level, it is preferable to mix each material in the form of a solution, and the tungsten compound starting material containing the element M is water, an organic solvent, or the like. It is preferable that it is soluble in a solvent. Examples include tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide, etc. containing element M, but are not limited to these and are in solution form Is preferable.
- the heat treatment condition in an inert gas atmosphere is preferably 400 ° C. or higher.
- the starting material heat-treated at 400 ° C. or higher has a sufficient near-infrared absorbing power and is efficient as heat ray shielding fine particles.
- an inert gas such as Ar or N 2 is preferably used.
- the heat treatment conditions in the reducing atmosphere the starting material is first heat-treated at 100 ° C. or more and 400 ° C. or less in the reducing gas atmosphere, and then at a temperature of 400 ° C. or more and 1200 ° C. or less in the inert gas atmosphere. It is better to heat-treat with.
- the reducing gas at this time is not particularly limited, but H 2 is preferable.
- H 2 is preferable.
- the composition of the reducing atmosphere for example, Ar, preferably mixed with 0.1% or more by volume of H 2 in an inert gas such as N 2, More preferably, 0.2% or more is mixed. If H 2 is 0.1% or more by volume, the reduction can proceed efficiently.
- the composite tungsten oxide fine particles according to the present invention are surface-treated and coated with a compound containing at least one selected from Si, Ti, Zr, and Al, preferably with an oxide.
- a known surface treatment may be performed using an organic compound containing one or more selected from Si, Ti, Zr, and Al.
- the composite tungsten oxide fine particles according to the present invention and an organosilicon compound may be mixed and subjected to a hydrolysis treatment.
- the powder color of the composite tungsten oxide fine particles is the L * a * b * color system recommended by the International Illumination Commission (CIE) ( In the powder color in JISZ8729-2004), it is desirable to satisfy the conditions that L * is 25 to 80, a * is -10 to 10, and b * is -15 to 15.
- CIE International Illumination Commission
- the dispersant according to the present invention is used for uniformly dispersing the above-described composite tungsten oxide fine particles according to the present invention in a polyvinyl acetal resin described later.
- the dispersant according to the present invention has a thermal decomposition temperature of 200 ° C. or higher measured with a differential thermothermal gravimetric simultaneous measurement apparatus (hereinafter sometimes referred to as TG-DTA), and has urethane, acrylic and styrene main chains. It is preferable that it is a dispersing agent which has.
- the thermal decomposition temperature is a temperature at which weight loss due to thermal decomposition of the dispersant begins in the TG-DTA measurement.
- the dispersant is preferably a dispersant having an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group.
- These functional groups are adsorbed on the surface of the composite tungsten oxide fine particles, prevent aggregation of the composite tungsten oxide fine particles, and have an effect of uniformly dispersing the fine particles even in the heat ray shielding film.
- Specific examples include acrylic-styrene copolymer dispersants having a carboxyl group as a functional group and acrylic dispersants having an amine-containing group as a functional group.
- the dispersant having an amine-containing group as a functional group preferably has a molecular weight Mw of 2000 to 200,000 and an amine value of 5 to 100 mgKOH / g.
- the dispersant having a carboxyl group preferably has a molecular weight of Mw 2000 to 200000 and an acid value of 1 to 50 mgKOH / g.
- the amount of the dispersant added is desirably in the range of 10 to 1000 parts by weight, more preferably in the range of 30 to 400 parts by weight with respect to 100 parts by weight of the composite tungsten oxide fine particles. This is because, if the added amount of the dispersant is in the above range, the composite tungsten oxide fine particles are uniformly dispersed in the polyvinyl acetal resin, and the physical properties of the obtained heat ray shielding film are not adversely affected.
- the selected wavelength absorbing material according to the present invention is a material that selectively and strongly absorbs only light in a certain wavelength region.
- the present inventors considered the wavelength distribution of the weight coefficient used in the visible light transmittance calculation described in JIS R 3106, and sufficiently shielded with the above-described composite tungsten oxide fine particles alone.
- the composite tungsten oxide fine particles are used alone by using a configuration in which the selective wavelength absorbing material that strongly absorbs light in the vicinity of the wavelength of 450 nm and does not absorb near the wavelength of 550 nm is used in combination with the composite tungsten oxide fine particles. Compared to the case, a lower solar radiation transmittance could be obtained.
- a heat ray shielding laminated transparent base material is used as a member that requires high visibility, such as an automobile windshield, strong light such as direct sunlight, headlamps, etc.
- strong light such as direct sunlight, headlamps, etc.
- fine particles such as composite tungsten oxide fine particles contained are strongly scattered in the short wavelength region of visible light, and the phenomenon that the transparent substrate for heat ray shielding becomes cloudy white may be a problem.
- the present inventors have made the above-mentioned selective wavelength absorbing material absorb the scattered light in the short wavelength region of visible light generated by being scattered by fine particles such as composite tungsten oxide fine particles, thereby generating the bluish and cloudy color. It was conceived that the effect of improving the transparency of the heat ray shielding film according to the present invention and the heat ray shielding laminated transparent base material can be exhibited.
- the transmittance of light having a wavelength of 550 nm of the selective wavelength absorbing material itself excluding the absorption of the medium and the substrate is 90% or more, and the transmission of light having a wavelength of 450 nm
- the rate is preferably 40% or less. More preferably, the transmittance of light having a wavelength of 550 nm is 90% or more, and the transmittance of light having a wavelength of 450 nm is 15% or less. If the light transmittance of the selected wavelength absorbing material is 90% or more with respect to light having a wavelength of 550 nm and 40% or less with respect to light having a wavelength of 450 nm, the selected wavelength absorbing material and composite tungsten are used.
- the oxide fine particles are used in combination, the visible light transmittance does not decrease, and further, absorption of light in the vicinity of a wavelength of 450 nm can be sufficiently obtained. As a result, compared with the case where the composite tungsten oxide fine particles are used alone, the solar radiation transmittance is lowered and the heat shielding characteristics are improved.
- the selective wavelength absorbing material used in the present invention include isoindoline compounds, isoindolinone compounds, quinoxaline compounds, quinophthalone compounds, condensed diazo compounds, nickel azo compounds, and bismuth vanadate compounds.
- the mixing ratio of the selective wavelength absorbing material and the composite tungsten oxide fine particles is preferably such that the weight ratio (composite tungsten oxide fine particles / selected wavelength absorbing material) is in the range of 99/1 to 70/30. More preferably, it is 95/5 to 80/20, and even more preferably 90/10 to 80/20.
- the mixing ratio of the addition amount of the selective wavelength absorbing material is 70/30 or less, the visible wavelength region is not strongly absorbed by the selective wavelength absorbing material, and the visible light transmittance is maintained. As a result, the solar radiation transmittance is maintained as compared with the case where the composite tungsten oxide fine particles are used alone, and the heat shielding characteristics are maintained.
- the mixing ratio of the addition amount of the selective wavelength absorbing material is 99/1 or more in the above-described weight ratio, sufficient absorption of light in the vicinity of a wavelength of 450 nm is obtained, and the effect of addition is exhibited.
- the compound itself may be added to the polyvinyl acetal resin and the plasticizer together with the composite tungsten oxide fine particle plasticizer dispersion described later or the composite tungsten oxide fine particle dispersion.
- the selective wavelength absorbing material is dispersed in the plasticizer in the same manner as the composite tungsten oxide fine particles described above. It is also possible to add to the heat ray-shielding film as a dispersion in the above state or as a dispersion in which the selective wavelength absorbing material is dispersed in a solid dispersant.
- the selective wavelength absorbing material is uniformly dispersed in the heat ray shielding film, and any method that does not impair the transparency of the obtained heat ray shielding film is preferably used.
- an infrared-absorbing organic compound having strong absorption in the near-infrared region may be further added to the heat ray shielding film as desired.
- infrared absorbing organic compounds used for this purpose include phthalocyanine compounds, naphthalocyanine compounds, imonium compounds, diimonium compounds, polymethine compounds, diphenylmethane compounds, triphenylmethane compounds, quinone compounds, azo compounds, pentadiene compounds, azomethine compounds, squarylium. Compounds, organometallic complexes, cyanine compounds and the like can be used.
- the infrared absorbing organic compound it is preferable to select one that dissolves in the plasticizer constituting the heat ray shielding film described above, because the transparency of the obtained heat ray shielding film is not impaired.
- the infrared-absorbing organic compound is more preferably a material that strongly absorbs light in the range from the visible long wavelength region to the near infrared region having a wavelength of 650 nm to 1000 nm. This is because there is a large synergistic effect when the infrared absorbing organic compound having the optical characteristics and the composite tungsten oxide fine particles having strong absorption in the wavelength region of 800 nm or more are used in combination. This is because a higher heat shielding performance can be obtained as compared with the case of using in the above. From this point of view, as the infrared absorbing organic compound used in the present invention, a diimonium compound or a phthalocyanine compound is particularly preferable.
- the mixing ratio of the addition amount of the infrared absorbing organic compound is less than 95/5 in the above-mentioned weight ratio, the infrared absorbing organic compound strongly increases the light in the visible light long wavelength region from the wavelength range of 650 nm to 1000 nm to the near infrared region. Since the effect to absorb decreases and the effect of addition cannot be obtained so much, it is not preferable.
- the mixing ratio of the addition amount of the infrared absorbing organic compound is more than 50/50 in the above-described weight ratio, the light near the wavelength of 550 nm, which is a wavelength region that greatly contributes to the calculation of the visible light transmittance by the infrared absorbing organic compound. As a result, the visible light transmittance is reduced. For this reason, when the visible light transmittance is combined, the heat shielding property is deteriorated, which is not preferable.
- Polyvinyl acetal resin As the polyvinyl acetal resin used for the heat ray shielding film according to the present invention, a polyvinyl butyral resin is preferable. Further, in consideration of the physical properties of the heat ray shielding film, a plurality of types of polyvinyl acetal resins having different degrees of acetalization may be used in combination. Furthermore, a copolyvinyl acetal resin obtained by reacting a plurality of types of aldehydes in combination during acetalization can also be preferably used. From this viewpoint, the preferable lower limit of the degree of acetalization of the polyvinyl acetal resin is 60%, and the upper limit is 75%.
- the polyvinyl acetal resin can be prepared by acetalizing polyvinyl alcohol with an aldehyde.
- the polyvinyl alcohol is usually obtained by saponifying polyvinyl acetate. Generally, polyvinyl alcohol having a saponification degree of 80 to 99.8 mol% is used.
- the preferable minimum of the polymerization degree of the said polyvinyl alcohol is 200, and an upper limit is 3000.
- the degree of polymerization is 200 or more, resistance to penetration of the manufactured heat ray shielding laminated transparent base material is maintained, and safety is maintained.
- it is 3000 or less the moldability of the resin film is maintained, the rigidity of the resin film is also maintained in a preferable range, and the workability is maintained.
- the aldehyde is not particularly limited, and in general, aldehydes having 1 to 10 carbon atoms such as n-butyraldehyde, isobutyraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, acetaldehyde and the like are used. It is done. Of these, n-butyraldehyde, n-hexylaldehyde, and n-valeraldehyde are preferable, and butyraldehyde having 4 carbon atoms is more preferable.
- Plasticizer used for the heat ray shielding film mainly composed of the polyvinyl acetal resin according to the present invention includes a plasticizer that is a compound of a monohydric alcohol and an organic acid ester, and a polyhydric alcohol organic acid ester.
- a plasticizer that is a compound of a monohydric alcohol and an organic acid ester
- a polyhydric alcohol organic acid ester examples include ester plasticizers such as compounds, and phosphoric acid plasticizers such as organic phosphate plasticizers.
- Any plasticizer is preferably liquid at room temperature.
- a plasticizer that is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferred.
- the ester compound synthesized from the polyhydric alcohol and fatty acid is not particularly limited.
- glycol such as triethylene glycol, tetraethylene glycol, tripropylene glycol, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptyl
- glycol ester compounds obtained by reaction with monobasic organic acids such as acids, n-octylic acid, 2-ethylhexylic acid, pelargonic acid (n-nonyl acid), and decyl acid.
- ester compounds of tetraethylene glycol, tripropylene glycol, and the above-mentioned monobasic organic are also included.
- fatty acid esters of triethylene glycol such as triethylene glycol dihexanate, triethylene glycol di-2-ethylbutyrate, triethylene glycol dioctanoate, and triethylene glycol di-2-ethylhexanate are suitable. is there.
- the fatty acid ester of triethylene glycol has various properties such as compatibility with polyvinyl acetal and cold resistance in a well-balanced manner, and is excellent in processability and economy.
- triethylene glycol di-2-ethylhexanate, triethylene glycol di-2-ethylbutyrate, and tetraethylene glycol di-2-ethylhexanate are preferable.
- Adhesive strength adjusting agent It is also preferable to add an optional adhesive strength adjusting agent to the heat ray shielding film according to the present invention.
- the said adhesive force regulator is not specifically limited, An alkali metal salt and / or an alkaline-earth metal salt are used suitably.
- the acid which comprises the said metal salt is not specifically limited, For example, inorganic acids, such as carboxylic acids, such as octyl acid, hexyl acid, butyric acid, acetic acid, formic acid, or hydrochloric acid, nitric acid, are mentioned.
- a carboxylic acid magnesium salt having 2 to 16 carbon atoms and a potassium carboxylate salt having 2 to 16 carbon atoms are preferable.
- the carboxylic acid magnesium salt or potassium salt of the organic acid having 2 to 16 carbon atoms is not particularly limited, and examples thereof include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutanoate, and 2-ethylbutane. Potassium acid, magnesium 2-ethylhexanoate, potassium 2-ethylhexanoate and the like are preferably used.
- adhesive strength modifiers may be used alone or in combination of two or more.
- sodium, potassium, magnesium, calcium, or cerium carboxylate is used as an adhesive strength modifier, the action as an original adhesive strength modifier and the above-described improved weather resistance of the composite tungsten oxide fine particles are improved. It can also have an effect.
- the heat-ray shielding film according to the present invention may further contain general additives as desired.
- general additives for example, azo dyes, cyanine dyes, quinoline dyes, perylene dyes, carbon black, etc., which are generally used for coloring thermoplastic resins to give an arbitrary color tone as desired. It may be added.
- a compound such as a dye or a pigment.
- the selective wavelength absorbing material may have a high transmittance in the ultraviolet region, and when combined with an ultraviolet shielding agent, a higher heat ray shielding effect can be obtained.
- Examples of the ultraviolet screening agent include hydroxybenzophenone-based, salicylic acid-based, HALS-based, triazole-based, triazine-based organic ultraviolet absorbers, and inorganic ultraviolet absorbers such as zinc oxide, titanium oxide, and cerium oxide.
- a coupling agent, a surfactant, an antistatic agent, and the like can be added.
- the composite tungsten oxide fine particles and the dispersing agent described above are dispersed in a part of the plasticizer added to the polyvinyl acetal resin to obtain a composite.
- the solid solvent is removed by removing the organic solvent. A composite tungsten oxide fine particle dispersion in which the composite tungsten oxide fine particles are dispersed therein is produced.
- plasticizer dispersion liquid of composite tungsten oxide fine particles The composite tungsten oxide fine particles and the dispersant are added to and mixed with the plasticizer, and the composite tungsten oxide fine particles are plasticized using a general dispersion method.
- An agent dispersion can be obtained. Specifically, a dispersion method such as a bead mill, a ball mill, a sand mill, or ultrasonic dispersion can be used.
- an organic solvent having a boiling point of 120 ° C. or lower may be added as desired.
- the organic solvent those having a boiling point of 120 ° C. or less are preferably used. If the boiling point is 120 ° C. or lower, it is easy to remove by a drying step, which is a subsequent step, particularly by drying under reduced pressure. As a result, removal in the reduced-pressure drying step proceeds rapidly, contributing to the productivity of the composite tungsten oxide fine particle-containing composition. Furthermore, since the vacuum drying process proceeds easily and sufficiently, it can be avoided that an excess organic solvent remains in the composite tungsten oxide fine particle-containing composition according to the present invention.
- the method of uniformly dispersing the composite tungsten oxide fine particles in the organic solvent can be arbitrarily selected from general methods. As specific examples, methods such as a bead mill, a ball mill, a sand mill, and ultrasonic dispersion can be used.
- a method for removing the organic solvent from the composite tungsten oxide fine particle-containing dispersion a method of drying under reduced pressure is preferable. Specifically, the composite tungsten oxide fine particle-containing dispersion is dried under reduced pressure while stirring to separate the composite tungsten oxide fine particle-containing composition and the organic solvent component.
- the apparatus used for drying under reduced pressure include a vacuum stirring type dryer, but any apparatus having the above functions may be used, and the apparatus is not particularly limited.
- the pressure of the pressure reduction of a drying process is selected suitably.
- the removal efficiency of the solvent is improved, and the composite tungsten oxide fine particle-containing composition is not exposed to high temperature for a long time, so that aggregation of dispersed fine particles does not occur. preferable. Furthermore, productivity is increased, and it is easy to collect the evaporated organic solvent, which is preferable from the environmental consideration.
- the plasticizer dispersion liquid of the composite tungsten oxide fine particles described above, or the composite tungsten oxide fine particles, the dispersant, and the plasticizer have a boiling point of 120 ° C. or less.
- a composite tungsten oxide fine particle dispersion in which the concentration of the heat ray-shielding tungsten oxide fine particles is 50% by mass or less is produced using a general dispersion method.
- the concentration of the composite tungsten oxide fine particles in the plasticizer is preferably 50% by mass or less. If the concentration of the composite tungsten oxide fine particles in the plasticizer is 50% by mass or less, the fine particles are hardly aggregated, easily dispersed, a sudden increase in viscosity can be avoided, and handling is easy.
- a method of uniformly dispersing the composite tungsten oxide fine particles in the plasticizer can be arbitrarily selected from general methods. As a specific example, after obtaining a dispersion containing composite tungsten oxide fine particles, the organic solvent is removed by a known method, so that the composite tungsten oxide fine particles are dispersed in a solid dispersant. A dispersion can also be obtained.
- Heat ray shielding laminated transparent base material The heat ray shielding laminated transparent base material using the heat ray shielding film according to the present invention has various forms.
- a heat ray shielding laminated inorganic glass using inorganic glass as a transparent substrate is obtained by laminating and integrating a plurality of opposing inorganic glasses that are sandwiched by the heat ray shielding film according to the present invention by a known method. can get.
- the obtained heat-shielding laminated inorganic glass can be used mainly as an inorganic glass for the front of an automobile or a window of a building.
- the structure which uses the heat ray shielding film concerning this invention and the infrared rays reflective film mentioned later together as a heat ray shielding film, and makes it a heat ray shielding laminated transparent base material is also preferable.
- the infrared reflective film is sandwiched between a heat ray shielding film and a transparent PVB resin film to be integrated into a multilayer film.
- the obtained multilayer film is sandwiched between a plurality of opposing inorganic glasses and laminated and integrated by a known method to obtain a heat-shielding laminated inorganic glass.
- the heat shielding characteristics of the heat-shielding laminated transparent base material according to the present invention are indicated by the solar radiation transmittance with respect to the visible light transmittance.
- the solar radiation transmittance is preferably 32.5% or less, more preferably 31% or less, and further preferably 30% or less.
- the heat ray shielding laminated transparent base material according to the present invention when used for a window material such as a windshield of an automobile, a high heat ray shielding ability is required while satisfying the transmittance of 70% or more stipulated by the Road Transport Vehicle Law. It is because it is said.
- the solar radiation transmittance of the heat-shielding laminated transparent base material is 32.5% or less, the power consumption of the air conditioner when the outside air temperature is 30 ° C or higher is compared with the case where ordinary laminated glass is installed. Reduced by more than 5%.
- a transparent resin is used as a transparent substrate, and it is used in the same manner as the above inorganic glass, or in combination with the above inorganic glass, and a heat ray shielding film is sandwiched between opposing transparent substrates, so that the heat ray shielding transparent A substrate can be obtained.
- the application of the heat ray shielding laminated transparent base material is the same as that of the heat ray shielding laminated inorganic glass described above.
- the heat ray shielding film according to the present invention can be used alone, or the heat ray shielding film according to the present invention can be used on one side or both sides of a transparent substrate such as inorganic glass or transparent resin. Is possible.
- the infrared reflective film used together with the heat ray shielding film according to the present invention described above will be described.
- the visible light region hardly absorbs sunlight, specifically the near infrared region, specifically From the viewpoint of the heat ray shielding function, it is preferable to reflect only the wavelength range of 800 nm to 1200 nm.
- the optical properties of the infrared film are preferably a visible light transmittance of 85% or more and a solar reflectance of 18% or more, and a visible light transmittance of 88% or more and a solar reflectance of 21% or more. More preferred.
- the infrared reflective film according to the present invention transmits electromagnetic waves in the wavelength region used for mobile phones and ETC. Those are preferred. Therefore, a film with a resin multilayer film that transmits electromagnetic waves is preferable to a film with metal film that has conductivity and does not transmit the electromagnetic waves.
- the composite tungsten oxide fine particles together with a selected wavelength absorbing material having a transmission profile with a wavelength 550 nm transmittance of 90% or more and a wavelength 450 nm transmittance of 40% or less in a predetermined ratio, Compared with the case where the composite tungsten oxide fine particles are used alone, higher heat ray shielding characteristics can be exhibited.
- the present invention will be described more specifically with reference to examples.
- the present invention is not limited to the following examples.
- the powder color (10 ° field of view, light source D65) of the composite tungsten oxide fine particles in each example, the light transmittance at a wavelength of 450 nm, the light transmittance at a wavelength of 550 nm, and the heat ray of the selected wavelength absorbing material plasticizer dispersion The visible light transmittance and solar transmittance of the shielded laminated inorganic glass were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd.
- the said solar transmittance is an parameter
- the haze value was measured based on JISK7105 using HR-200 manufactured by Murakami Color Research Laboratory Co., Ltd.
- the said haze value is a parameter
- the mixed powder was heated while supplying 5% H 2 gas with N 2 gas as a carrier and subjected to reduction treatment at a temperature of 600 ° C. for 1 hour, and then calcined at 800 ° C. for 30 minutes in an N 2 gas atmosphere.
- composite tungsten oxide fine particles hereinafter abbreviated as “fine particles a”) were obtained.
- the composition formula of the fine particles a was Cs 0.33 WO 3 , and the powder colors were L * of 35.2845, a * of 1.4873, and b * of ⁇ 5.2114.
- Dispersant a 10 mass of an acrylic dispersant (amine value 48 mg KOH / g, decomposition temperature 250 ° C.) having 20 mass% of fine particles a and a group containing amine as a functional group. %, 70% by mass of triethylene glycol di-2-ethylhexanate (hereinafter abbreviated as plasticizer a) was weighed. These were loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and pulverized and dispersed for 10 hours to obtain a plasticizer dispersion of composite tungsten oxide fine particles (hereinafter abbreviated as “fine particle dispersion A”). Here, the dispersion average particle diameter of the tungsten oxide fine particles in the fine particle dispersion A was measured with a Nikkiso Microtrac particle size distribution meter and found to be 24 nm.
- a selective wavelength absorbing material plasticizer dispersion (hereinafter abbreviated as a selective wavelength absorbing material dispersion ⁇ ).
- the selected wavelength-absorbing material dispersion ⁇ is diluted with a plasticizer a to a predetermined concentration, and placed in a glass cell. The optical characteristics are measured.
- the transmittance of light having a wavelength of 450 nm is 5.3%, and light having a wavelength of 550 nm is obtained.
- the transmittance was 92.8. Prior to the measurement, only the plasticizer a was added to the glass cell, and the baseline was measured.
- a predetermined amount of the fine particle dispersion A and the selective wavelength absorbing material dispersion ⁇ are added to a mixture obtained by mixing 30% by mass of the plasticizer a and 70% by mass of the polyvinyl butyral resin, and the concentration of the fine particles a in the mixture is 0.15.
- the composition A for manufacturing a heat ray shielding film was obtained by setting the mass concentration of the material of the selective wavelength absorbing material to 0.0079 mass%.
- the composition A for producing the heat ray shielding film was kneaded at 200 ° C. with a twin-screw extruder, and the heat ray shielding film according to Example 1 was obtained as a sheet having a thickness of 0.7 mm by extrusion calendering from a T die. .
- the obtained heat ray shielding film according to Example 1 was sandwiched between two opposing inorganic glasses and bonded and integrated by a known method to obtain a heat ray shielding laminated transparent base material according to Example 1.
- the optical properties of the heat-shielding laminated transparent base material were as follows: the solar radiation transmittance was 41.4% and the haze value was 0.6% when the visible light transmittance was 78.0%. The results are shown in Table 1.
- Examples 2 to 33 Except that the concentration of the fine particles a in the composition A for producing a heat ray shielding film described in Example 1 and the type and concentration of the selective wavelength absorbing material were changed, Examples 2 to A heat ray shielding laminated transparent base material according to No. 33 was obtained. Then, the optical characteristics of the heat ray shielding laminated transparent base materials according to Examples 2 to 33 were measured in the same manner as in Example 1. Table 1 shows the concentration of the fine particles a, the type and the concentration of the selective wavelength absorbing material in Examples 2 to 33. Furthermore, Table 1 shows the measurement results of optical characteristics of the heat-shielding transparent substrates according to Examples 2 to 33.
- the selective wavelength absorbing material As the selective wavelength absorbing material, the above-described quinophthalone compound was used in Examples 2 to 16, the nickel azo compound was used in Examples 17 to 28, and the isoindoline compound was used in Example 29.
- a quinoxaline compound was used, in Example 31, a condensed diazo compound was used, in Example 32, an isoindolinone compound was used, and in Example 33, a bismuth vanadate compound was used.
- Comparative Examples 1 to 4 were carried out in the same manner as in Example 1 except that the concentration of the fine particles a in the composition A for producing a heat ray shielding film described in Example 1 was changed and no selective wavelength absorbing material was added. Such a heat ray shielding laminated transparent base material was obtained. Then, the optical characteristics of the heat ray shielding laminated transparent base materials according to Comparative Examples 1 to 4 were measured in the same manner as in Example 1. The concentrations of the fine particles a in Comparative Examples 1 to 4 are shown in Table 2. Further, Table 2 shows the measurement results of optical characteristics of the heat-shielding laminated transparent base materials according to Comparative Examples 1 to 4.
- Comparative Examples 5 to 9 were performed in the same manner as in Example 1 except that the concentration of fine particles a in the composition A for producing a heat ray shielding film described in Example 1 and the type and concentration of the selective wavelength absorbing material were changed. Such a heat ray shielding laminated transparent base material was obtained. The results are shown in Table 2. As the selective wavelength absorbing material, a benzimidazolone compound was used in Comparative Example 5, and the quinophthalone compound described above was used in Comparative Examples 6 to 9.
- Rb-added composite tungsten oxide fine particles (hereinafter abbreviated as fine particles b) were obtained.
- the composition formula of the fine particles b was Rb 0.33 WO 3 , and the powder color L * was 36.3938, a * was ⁇ 0.2385, and b * was ⁇ 3.8318.
- fine particle dispersion B a plasticizer dispersion of Rb-added composite tungsten oxide fine particles (hereinafter abbreviated as fine particle dispersion B). It was.
- the dispersion average particle diameter of the Rb-added tungsten oxide fine particles in the fine particle dispersion B was 28 nm as measured with a Nikkiso Microtrac particle size distribution meter.
- a predetermined amount of the fine particle dispersion B and the selective wavelength absorbing material dispersion ⁇ are added to a mixture obtained by mixing 30% by mass of the plasticizer a and 70% by mass of the polyvinyl butyral resin, and the concentration of the fine particles b in the mixture is 0.25%. %,
- the concentration of the selected wavelength absorbing material was 0.0278% by mass, and a composition B for producing a heat ray shielding film was obtained.
- composition B for production of the heat ray shielding film was kneaded at 200 ° C. with a twin screw extruder, extruded from a T die, and a heat ray shielding film according to Example 34 was obtained as a 0.7 mm thick sheet by a calender roll method.
- the obtained heat ray shielding film was sandwiched between two opposing inorganic glasses and laminated together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 34. And the optical characteristic of the heat ray shielding laminated transparent base material concerning the said Example 34 was measured similarly to Example 1.
- FIG. 34 The obtained heat ray shielding film was sandwiched between two opposing inorganic glasses and laminated together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 34. And the optical characteristic of the heat ray shielding laminated transparent base material concerning the said Example 34 was measured similarly to Example 1.
- the optical properties of the heat-shielding laminated transparent base material were as follows: the solar radiation transmittance was 28.9% and the haze value was 0.6% when the visible light transmittance was 70.9%.
- Example 35 to 39 The heat ray shielding laminated transparent according to Examples 35 to 39 was changed in the same manner as in Example 34 except that the type and concentration of the selective wavelength absorbing material in Composition B for manufacturing a heat ray shielding film described in Example 34 were changed. A substrate was obtained. Then, the optical characteristics of the heat ray shielding laminated transparent base materials according to Examples 35 to 39 were measured in the same manner as in Example 34. Table 2 shows the concentration of the fine particles b, the type and concentration of the selected wavelength absorbing material in Examples 35 to 39. Furthermore, Table 2 shows the optical characteristic measurement results of the heat ray shielding laminated transparent base materials according to Examples 35 to 39.
- Example 35 As the selective wavelength absorbing material, a nickel azo compound is used in Example 35, an isoindoline compound is used in Example 36, a quinoxaline compound is used in Example 37, and a condensed diazo compound is used in Example 38. In Example 39, an isoindolinone compound was used.
- Comparative Example 10 A heat ray shielding laminated transparent base material according to Comparative Example 10 was obtained in the same manner as Example 34 except that the selective wavelength absorbing material was not added. The results are shown in Table 2.
- Example 40 To the composition in which 30% by mass of the plasticizer a and 70% by mass of the polyvinyl butyral resin described in Example 1 were mixed, Nippon Carlit (as the infrared-absorbing organic compound with a predetermined amount of the fine particle dispersion A, the selective wavelength absorbing material dispersion ⁇ , and Co., Ltd. diimonium compound CIR-RL was added, the concentration of fine particles a in the mixture was 0.125% by mass, the material concentration of the selective wavelength absorbing material was 0.0139% by mass, and the infrared absorbing organic compound was 0.1% by mass.
- the composition C for production of a heat ray shielding film was obtained with 0139 mass%.
- the composition C for production of this heat ray shielding film was kneaded at 200 ° C. with a twin screw extruder, extruded from a T die, and a heat ray shielding film according to Example 40 was obtained as a sheet having a thickness of 0.7 mm by a calender roll method.
- the obtained heat ray shielding film was sandwiched between two opposing inorganic glasses and laminated together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 40. And the optical characteristic of the heat ray shielding laminated transparent base material which concerns on the said Example 40 was measured similarly to Example 1.
- FIG. 40 The obtained heat ray shielding film was sandwiched between two opposing inorganic glasses and laminated together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 40. And the optical characteristic of the heat ray shielding laminated transparent base material which concerns on the said Example 40 was measured similarly to Example 1.
- the optical characteristics of the heat-shielded transparent base material were as follows.
- the solar light transmittance was 37.6% and the haze value was 0.6% when the visible light transmittance was 77.5%.
- Examples 41 to 51 Implemented in the same manner as in Example 40 except that the type and concentration of the selective wavelength absorbing material, the type and concentration of the infrared-absorbing organic compound in the composition C for producing a heat ray shielding film described in Example 40 were changed. Heat-shielded laminated transparent substrates according to Examples 41 to 51 were obtained. Then, the optical characteristics of the heat ray shielding laminated transparent base materials according to Examples 41 to 51 were measured in the same manner as in Example 40. Table 2 shows the concentrations of the fine particles a, the types and concentrations of the selective wavelength absorbing materials, and the types and concentrations of the infrared absorbing organic compounds in Examples 41 to 51. Furthermore, Table 2 shows the optical characteristic measurement results of the heat ray shielding laminated transparent base materials according to Examples 41 to 51.
- the selective wavelength absorbing material the quinophthalone compound described above was used in Examples 41 to 43, 48, 50 and 51, and the nickel azo compound was used in Examples 44 to 47 and 49.
- the infrared absorbing organic compound the above-described diimonium compound was used in Examples 41 to 47, 50, and 51, and the phthalocyanine compound was used in Examples 48 and 49.
- Example 52 Infrared reflective film (Scotch Tint S90 manufactured by Sumitomo 3M Co., Ltd .: visible light transmittance 89%, solar reflectance 22%) is sandwiched between the heat ray shielding film obtained in Example 5 and a transparent PVB intermediate film, and two more sheets Were bonded together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 52. And the optical characteristic of the heat ray shielding laminated transparent base material which concerns on the said Example 52 was measured similarly to Example 1. FIG. During the measurement, optical characteristics were measured from the glass surface in contact with the transparent PVB intermediate film.
- Table 3 shows the concentration of the fine particles a, the type and concentration of the selected wavelength absorbing material, and the type and concentration of the infrared absorbing organic compound in Example 52. Furthermore, Table 3 shows the measurement results of optical characteristics of the heat-shielding transparent substrate according to Example 52.
- Example 53 to 55 Using the infrared reflective film described in Example 52 and the heat ray shielding film obtained in Examples 6 to 8, the same operation as in Example 52 was performed, and the heat ray shielding laminated transparent base according to Examples 53 to 55 was performed. The material was obtained. The optical characteristics of the heat ray shielding laminated transparent base materials according to Examples 53 to 55 were measured in the same manner as in Example 1. Table 3 shows the concentration of the fine particles a, the type and concentration of the selective wavelength absorbing material, and the type and concentration of the infrared absorbing organic compound in Examples 53 to 55. Furthermore, Table 3 shows the measurement results of optical characteristics of the heat-shielding transparent substrates according to Examples 53 to 55.
- FIG. 1 is a graph in which the vertical axis represents solar transmittance and the horizontal axis represents visible light transmittance.
- the weight ratio of the selective wavelength absorbing material to the composite tungsten oxide fine particles is 99/1. It was found that by setting the ratio in the range of ⁇ 70/30, higher heat shielding performance can be obtained as compared with the case where the composite tungsten oxide fine particles are used alone as shown in Comparative Examples 1 to 4.
- Examples 17 to 28 a lower solar transmittance can be obtained by using the selective wavelength absorbing material in combination with the composite tungsten oxide fine particles.
- FIG. 2 is a graph similar to FIG. 1.
- the data of Examples 17 to 20 in which the weight ratio A of the composite tungsten oxide fine particles a / the selective wavelength absorbing material ⁇ nickel azo compound> is 95/5 is ⁇ ⁇ ⁇ .
- the data of Examples 21 to 24, which are 90/10, are plotted with- ⁇ -
- the data of Examples 25 to 28, which are 80/20 are plotted with - ⁇ -
- the comparative example is 100/0.
- Data of 1 to 4 are plotted with-*-.
- the weight ratio of the selective wavelength absorbing material to the composite tungsten oxide fine particles is in the range of 99/1 to 70/30.
- Comparative Examples 1 to 4 it was found that higher heat shielding performance can be obtained as compared with the case where the composite tungsten oxide fine particles are used alone.
- FIG. 3 is a graph similar to FIG. 1, in which the data of Example 29 in which the selected wavelength absorbing material is an isoindoline compound is plotted with ⁇ ⁇ ⁇ , and the data of Example 30 with a quinoxaline compound is plotted with ⁇ ⁇ ⁇ .
- Example 31 which is a condensed diazo compound is plotted by - ⁇ -
- the data of Example 32 which is an isoindolinone compound is --
- the data of Example 33 which is a bismuth vanadate compound is- ⁇ -
- the data of Comparative Example 5 which is a benzimidazolone compound is plotted by ⁇ + ⁇
- the data of Comparative Examples 1 to 4 in which these selective wavelength absorbing materials are not added are plotted by ⁇ * ⁇ .
- a selected wavelength absorbing material having a transmission profile with a light transmittance of 90% or more at a wavelength of 550 nm and a light transmittance of 40% or less at a wavelength of 450 nm, and the composite tungsten oxide fine particles. It has been found that the combined use of the composite tungsten oxide fine particles provides higher heat shielding performance as compared with the case where the composite tungsten oxide fine particles are used alone.
- the transmission profile of the selected wavelength absorbing material used is such that the transmittance of light with a wavelength of 550 nm is 90% or less, and the transmittance of light with a wavelength of 450 nm is 40% or more, Since it is out of the range defined in the present invention, the heat shielding characteristics are reduced even when the composite tungsten oxide fine particles are used alone.
- Examples 34 to 39 a lower solar transmittance was obtained by using the selective wavelength absorbing material together with the Rb-added composite tungsten oxide fine particles. Further, a selective wavelength absorbing material having a transmission profile with a light transmittance of 90% or more at a wavelength of 550 nm and a light transmittance of 40% or less at a wavelength of 450 nm, and the Rb-doped composite tungsten oxide fine particles, As a result of the combined use, it was found that higher heat shielding performance can be obtained as compared with the case where the Rb-added composite tungsten oxide fine particles described in Comparative Example 10 are used alone.
- Examples 40 to 47 a lower solar transmittance was obtained by using the selected wavelength absorbing material and the infrared absorbing organic compound in combination with the composite tungsten oxide fine particles.
- FIG. 4 shows a graph similar to FIG. 1 in which the weight ratio A of (composite tungsten oxide fine particles / selective wavelength absorbing material ⁇ quinophthalone compound>) is 90/10, and (composite tungsten oxide fine particles / infrared absorbing organic compound).
- the composite tungsten oxide fine particles are used alone, or the selected wavelength absorbing material and the composite tungsten oxide are used. It has been found that higher heat shielding performance can be obtained as compared with the case of using physical particles together.
- Examples 48 to 51 the selective wavelength absorbing material and the infrared absorbing organic compound were used in combination with the composite tungsten oxide fine particles.
- the combined use resulted in lower solar transmittance than Comparative Examples 1 to 4 where the combined use was not performed.
- the selected wavelength absorbing material and the infrared absorbing organic compound in combination with the composite tungsten oxide fine particles higher heat shielding performance can be obtained as compared with the case where the composite tungsten oxide fine particles are used alone. It has been found.
- Example 48 the weight ratio A of (composite tungsten oxide fine particles / selective wavelength absorbing material ⁇ quinophthalone compound>) is 90/10, and (composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ phthalocyanine series). Compound)) is 90/10, and (weight of composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ phthalocyanine compound>) is 90/10.
- Example 49 (complex tungsten oxidation) The weight ratio A of the fine particles / selective wavelength absorbing material (nickel azo compound)) is 90/10, and the weight ratio B of the (composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ phthalocyanine compound>) is 90/10.
- Example 50 (composite tungsten oxide fine particles / selective wavelength absorbing material ⁇ kinophthalonization> The weight ratio A of the compound>) is 90/10, and the weight ratio B of the (composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ diimonium compound>) is 50/50. Weight ratio A of the fine particles / selective wavelength absorbing material ⁇ quinophthalone compound>) is set to 90/10, and the weight ratio B of (composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ diimonium compound>) is set to 95/5. .
- Examples 52 to 55 the selective wavelength absorbing material and the infrared reflective film were used in combination with the composite tungsten oxide fine particles.
- solar radiation transmittances were lower than those of Comparative Examples 1 to 4 where the combined use was not performed.
- the combined use of the selective wavelength absorbing material, the infrared reflective film, and the composite tungsten oxide fine particles may provide higher heat shielding performance than when the composite tungsten oxide fine particles are used alone. found.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Joining Of Glass To Other Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
第1の課題は、特許文献1~5に記載された従来の技術に係る合わせガラスでは、上述したように、いずれも高い可視光透過率が求められたときの熱線遮蔽機能が十分でないことである。
さらに、市場では、自動車内あるいは建造物内の快適性向上、あるいは自動車のエアコン負荷軽減による燃費向上、建造物内でのエアコン負荷軽減による省エネルギー化の観点から更なる遮熱機能の高性能化を要望する声が高い。当該観点からすると、特許文献6、7に記載された熱線遮蔽用合わせガラスにおいても、未だ改善の余地を有していた。
すなわち、上述の課題を解決する第1の発明は、
熱線遮蔽機能を有する化合物と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを含有する熱線遮蔽膜であって、前期選択波長吸収材料は、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が40%以下の透過プロファイルを有し、前記熱線遮蔽機を有する化合物と前記選択波長吸収材料の重量比が(熱線遮蔽機能を有する化合物/選択波長吸収材料)=99/1~70/30の範囲であることを特徴とする熱線遮蔽膜である。
前記熱線遮蔽機能を有する化合物が、一般式MyWOZ(但し、Mは、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される1種類以上の元素、0.1≦y≦0.5、2.2≦z≦3.0)で示され、かつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子であることを特徴とする第1の発明に記載の熱線遮蔽膜である。
前記複合タングステン酸化物微粒子が、平均粒径40nm以下の微粒子であることを特徴とする第2の発明に記載の熱線遮蔽膜である。
前記選択波長吸収材料が、イソインドリン化合物、イソインドリノン化合物、キノキサリン化合物、キノフタロン化合物、縮合ジアゾ化合物、ニッケルアゾ化合物、バナジン酸ビスマス化合物から選択される少なくとも1種であることを特徴とする第1の発明に記載の熱線遮蔽膜である。
前記選択波長吸収材料が、キノフタロン化合物、ニッケルアゾ化合物から選択される少なくとも1種であることを特徴とする第1の発明に記載の熱線遮蔽膜である。
前期選択波長吸収材料が、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が15%以下の透過プロファイルを有することを特徴とする第1から第5の発明のいずれかに記載の熱線遮蔽膜である。
前記熱線遮蔽膜が、さらに赤外線吸収性有機化合物を含むことを特徴とする第1から第6の発明のいずれかに記載の熱線遮蔽膜である。
前記赤外線吸収性有機化合物が、フタロシアニン化合物、ナフタロシアニン化合物、イモニウム化合物、ジイモニウム化合物、ポリメチン化合物、ジフェニルメタン化合物、トリフェニルメタン化合物、キノン化合物、アゾ化合物、ペンタジエン化合物、アゾメチン化合物、スクアリリウム化合物、有機金属錯体、シアニン化合物から選択される少なくとも1種であることを特徴とする第7の発明に記載の熱線遮蔽膜である。
前記赤外線吸収性有機化合物が、フタロシアニン化合物、ジイモニウム化合物から選択される少なくとも1種であることを特徴とする第8の発明に記載の熱線遮蔽膜である。
前記赤外線吸収性有機化合物と前記複合タングステン酸化物微粒子の重量比が(複合タングステン酸化物微粒子/赤外線吸収性有機化合物)=95/5~50/50の範囲であることを特徴とする第7から第9の発明のいずれかに記載の熱線遮蔽膜である。
複数枚の透明基材間に、第1から第10の発明のいずれかに記載の熱線遮蔽膜が存在していることを特徴とする熱線遮蔽合わせ透明基材である。
複数枚の透明基材間に、さらに可視光透過率88%以上であり且つ日射反射率21%以上の赤外線反射フィルムが存在していることを特徴する第11の発明に記載の熱線遮蔽合わせ透明基材である。
前記透明基材の内、少なくとも1枚がガラスであることを特徴とする第11または第12の発明に記載の熱線遮蔽合わせ透明基材である。
JIS R 3106で算出される可視光透過率が70%以上であり、且つ日射透過率が32.5%以下であることを特徴とする第11から第13の発明のいずれかに記載の熱線遮蔽合わせ透明基材である。
第11から第14の発明のいずれかに記載の熱線遮蔽合わせ透明基材が、窓材として搭載されていることを特徴とする自動車である。
第11から第14の発明のいずれかに記載の熱線遮蔽合わせ透明基材が、窓材として使用されていることを特徴とする建造物である。
本発明に係る熱線遮蔽膜は、熱線遮蔽機能を有する化合物の微粒子、分散剤、選択波長吸収材料、所望により赤外線吸収性有機化合物、ポリビニルアセタール樹脂、可塑剤、所望により接着力調整剤、所望によりその他の添加物を含有している。
また、本発明に係る熱線遮蔽膜は、熱線遮蔽機能を有する化合物の微粒子と分散剤とを一般的な有機溶剤に分散した分散液を得た後、その有機溶剤を除去することで固体の分散剤中に熱線遮蔽機能を有する化合物の微粒子が分散した状態の熱線遮蔽機能を有する化合物の微粒子分散体を得、得られた分散体と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを混練した後、押出成形法、カレンダー成形法等の公知の方法により、フィルム状に成形することによっても製造することが出来る。
尚、本発明に係る熱線遮蔽機能を有する化合物の微粒子としては、複合タングステン酸化物微粒子や有機系赤外線遮蔽微粒子等が使用可能であるが、複合タングステン酸化物微粒子の使用が好ましい。そこで、以下の説明においては、熱線遮蔽機能を有する化合物の微粒子として、複合タングステン酸化物微粒子を用いた場合について説明する。尤も、有機系赤外線遮蔽微粒子等を用いた場合や、複合タングステン酸化物微粒子と有機系赤外線遮蔽微粒子等とを併用した場合も、複合タングステン酸化物微粒子の場合と同様に操作することで、熱線遮蔽膜、熱線遮蔽合わせ透明基材を製造することが出来る。
本発明に係る熱線遮蔽膜について、まず、その構成成分である熱線遮蔽機能を有する微粒子とその製造方法、分散剤、選択波長吸収材料、赤外線吸収性有機化合物、ポリビニルアセタール樹脂、可塑剤、接着力調整剤、その他の添加材について説明する。
本発明に係る熱線遮蔽機能を有する微粒子の好ましい例は、複合タングステン酸化物微粒子である。当該複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm以上の光を大きく吸収するため、その透過色調はブルー系の色調となるものが多い。
複合タングステン酸化物微粒子は、一般式MyWOZ(但し、Mは、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される1種類以上の元素、0.1≦y≦0.5、2.2≦z≦3.0)で表記され、かつ六方晶の結晶構造を有しているものであることが好ましい。
また、熱線遮蔽膜に含まれる複合タングステン微粒子の量は、単位面積あたり0.2g/m2~2.5g/m2が望ましい。
一般式MYWOZ表記される複合タングステン酸化物微粒子は、タングステン化合物出発原料を不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して得ることができる。
タングステン化合物出発原料は、三酸化タングステン粉末、ニ酸化タングステン粉末、酸化タングステンの水和物粉末、六塩化タングステン粉末、タングステン酸アンモニウム粉末、または、六塩化タングステン粉末をアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、または、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選ばれたいずれか1種類以上であって、さらに元素Mを、元素単体または化合物の形態で含有するタングステン化合物を出発原料とすることが好ましい。
また、還元性雰囲気中における熱処理条件としては、出発原料を、まず還元性ガス雰囲気中にて100℃以上400℃以下で熱処理し、次いで不活性ガス雰囲気中にて400℃以上1200℃以下の温度で熱処理することが良い。この時の還元性ガスは、特に限定されないが、H2が好ましい。そして、還元性ガスとしてH2を用いる場合は、還元性雰囲気の組成として、例えば、Ar、N2等の不活性ガスにH2を体積比で0.1%以上を混合することが好ましく、さらに好ましくは0.2%以上混合したものである。H2が体積比で0.1%以上であれば効率よく還元を進めることができる。
本発明に係る分散剤は、上述した本発明に係る複合タングステン酸化物微粒子を、後述するポリビニルアセタール樹脂へ均一に分散させる為に用いられる。
本発明に係る分散剤は、示差熱熱重量同時測定装置(以下、TG-DTAと記載する場合がある。)で測定される熱分解温度が200℃以上あって、ウレタン、アクリル、スチレン主鎖を有する分散剤であることが好ましい。ここで、熱分解温度とはTG-DTA測定において、当該分散剤の熱分解による重量減少が始まる温度である。
熱分解温度が200℃以上であれば、ポリビニルアセタール樹脂との混練時に当該分散剤が分解することがないからである。これによって、分散剤の分解に起因した熱線遮蔽合わせガラス用熱線遮蔽膜の褐色着色、可視光透過率の低下、本来の光学特性が得られない事態を回避出来る。
本発明に係る選択波長吸収材料は、一定の波長領域の光のみを選択的に、強く吸収する材料である。
上述したように、本発明者らは、JIS R 3106に記載されている可視光透過率算出に使用される重価係数の波長分布を考慮し、上述した複合タングステン酸化物微粒子だけでは十分に遮蔽しきれない波長450nm付近の光を強く吸収し、且つ可視光透過率算出に大きく寄与する波長領域である波長550nm付近に吸収を持たない選択波長吸収材料を、複合タングステン酸化物微粒子と併用する構成に想到した。そして、当該波長450nm付近の光を強く吸収し、波長550nm付近に吸収を持たない選択波長吸収材料を、複合タングステン酸化物微粒子と併用する構成を用いることで、複合タングステン酸化物微粒子単独で使用する場合と比較して、より低い日射透過率を得ることが出来た。
ここで、本発明者らは、上述した選択波長吸収材料が、複合タングステン酸化物微粒子等の微粒子によって散乱されて発生した可視光短波長領域の散乱光を吸収することで、当該青白く曇りの発生を抑制し、本発明に係る熱線遮蔽膜、および、熱線遮蔽合わせ透明基材の透明性を高める効果をも発揮出来ることに想到した。
これは、選択波長吸収材料の光の透過率が、波長550nmの光に対して90%以上であり、且つ波長450nmの光に対して40%以下であれば、当該選択波長吸収材料と複合タングステン酸化物微粒子とを併用したときに、可視光透過率が低下しないからであり、さらに、波長450nm付近の光の吸収も十分に得られる。その結果、上記複合タングステン酸化物微粒子単独で使用した場合と比較して、日射透過率が低くなり、遮熱特性が向上するからである。
また、選択波長吸収材料の添加量の混合割合が上述した重量比で99/1以上であれば、波長450nm付近の光の十分な吸収が得られ、添加効果が発揮されるからである。
ただし、得られる熱線遮蔽膜、および、当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材の透明性を考慮すると、上述した複合タングステン酸化物微粒子と同様に、可塑剤に選択波長吸収材料を分散した状態の分散液、または、固体の分散剤中に選択波長吸収材料が分散した状態の分散体として、熱線遮蔽膜へ添加することも可能である。
本発明においては、所望により近赤外域に強い吸収を持つ赤外線吸収性有機化合物を、熱線遮蔽膜へさらに添加しても良い。
当該目的で用いられる赤外線吸収性有機化合物としては、フタロシアニン化合物、ナフタロシアニン化合物、イモニウム化合物、ジイモニウム化合物、ポリメチン化合物、ジフェニルメタン化合物、トリフェニルメタン化合物、キノン化合物、アゾ化合物、ペンタジエン化合物、アゾメチン化合物、スクアリリウム化合物、有機金属錯体、シアニン化合物等を使用することができる。
当該赤外線吸収性有機化合物として、上述した熱線遮蔽膜を構成する可塑剤に溶解するものを選択すれば、得られる熱線遮蔽膜の透明性を損なわないので好ましい。
当該観点からは、本発明で用いる赤外線吸収性有機化合物としては、ジイモニウム化合物、または、フタロシアニン化合物が特に好ましい。
当該赤外線吸収性有機化合物と、前記複合タングステン酸化物微粒子との重量比が[複合タングステン酸化物微粒子/赤外線吸収性有機化合物]=95/5~50/50の範囲であることが好ましい。
赤外線吸収性有機化合物の添加量の混合割合が上述した重量比で95/5より少ないと、赤外線吸収性有機化合物による波長650nmから1000nmの可視光長波長領域から近赤外線領域の範囲の光を強く吸収する効果が少なくなり、添加効果があまり得られないため、好ましくない。また、赤外線吸収性有機化合物の添加量の混合割合が上述した重量比で50/50より多くなると、赤外線吸収性有機化合物により可視光透過率算出に大きく寄与する波長領域である波長550nm付近の光まで吸収され、その結果、可視光透過率が低下してしまう。そのため、可視光透過率を合わせると遮熱特性が悪化するため、好ましくない。
本発明に係る熱線遮蔽膜に用いるポリビニルアセタール樹脂としては、ポリビニルブチラール樹脂が好ましい。また、熱線遮蔽膜の物性を考慮した上で、アセタール化度が異なる複数種のポリビニルアセタール樹脂を併用してもよい。さらに、アセタール化時に複数種類のアルデヒドを組み合わせて反応させた共ポリビニルアセタール樹脂も、好ましく用いることが出来る。
当該観点から、ポリビニルアセタール樹脂のアセタール化度の好ましい下限は60%、上限は75%である。
上記ポリビニルアルコールは、通常、ポリ酢酸ビニルをケン化することにより得られ、一般的には、ケン化度80~99.8モル%のポリビニルアルコールが用いられる。
また、上記ポリビニルアルコールの重合度の好ましい下限は200、上限は3000である。重合度が200以上であると、製造される熱線遮蔽合わせ透明基材の貫通への耐性が保持され、安全性が保たれる。一方、3000以下であれば、樹脂膜の成形性が保たれ、樹脂膜の剛性も好ましい範囲に保たれ、加工性が保たれるからである。
本発明に係るポリビニルアセタール樹脂を主成分とした熱線遮蔽膜に用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤や、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。特に、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-オクタネート、トリエチレングリコールジ-2-エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステルが好適である。トリエチレングリコールの脂肪酸エステルは、ポリビニルアセタールとの相溶性や耐寒性など様々な性質をバランスよく備えており、加工性、経済性にも優れている。
本発明に係る熱線遮蔽膜へ、さらに所望により接着力調整剤を含有させることも好ましい。
当該接着力調整剤は、特に限定されないが、アルカリ金属塩および/またはアルカリ土類金属塩が好適に用いられる。当該金属塩を構成する酸は、特に限定されず、例えば、オクチル酸、ヘキシル酸、酪酸、酢酸、蟻酸等のカルボン酸、又は、塩酸、硝酸等の無機酸が挙げられる。アルカリ金属塩および/またはアルカリ土類金属塩の中でも、炭素数2~16のカルボン酸マグネシウム塩、炭素数2~16のカルボン酸カリウム塩が好ましい。
当該炭素数2~16の有機酸のカルボン酸マグネシウム塩、カリウム塩としては、特に限定されないが、例えば、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチルブタン酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸マグネシウム、2-エチルヘキサン酸カリウム等が好適に用いられる。
尚、接着力調整剤として、ナトリウム、カリウム、マグネシウム、カルシウム、セリウムのカルボン酸塩を用いた場合は、本来の接着力調整剤としての作用と、上述した複合タングステン酸化物微粒子の耐候性向上の効果も兼ね備えることができる。
本発明に係る熱線遮蔽膜へは、さらに所望により、一般的な添加剤を配合することも可能である。例えば、所望により任意の色調を与えるための、アゾ系染料、シアニン系染料、キノリン系、ペリレン系染料、カーボンブラック等、一般的に熱可塑性樹脂の着色に利用されている染料化合物、顔料化合物を添加しても良い。特に本発明においては、可視光の短波長側の光を吸収しているため、透過光色が黄色味を帯びる。そのため、染料、顔料等の化合物を添加して熱線遮蔽膜の色調を調整することが好ましい。
さらに、前記選択波長吸収材料は、紫外領域において透過率の高くなる場合があり、紫外線遮蔽剤を組み合わせると、より高い熱線遮蔽効果が得られる。紫外線遮蔽剤としては、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の有機紫外線吸収剤、酸化亜鉛、酸化チタン、酸化セリウム等の無機紫外線吸収剤などが挙げられる。
また、その他の添加剤として、カップリング剤、界面活性剤、帯電防止剤等を添加することが出来る。
本発明に係る熱線遮蔽膜を製造する為には、上述した複合タングステン酸化物微粒子と分散剤とを、ポリビニルアセタール樹脂へ添加する可塑剤の一部に分散して、複合タングステン酸化物微粒子分散液を製造するか、または、複合タングステン酸化物微粒子と分散剤とを一般的な有機溶剤に分散した分散液を得た後、その有機溶剤を除去することで固体の分散剤中に複合タングステン酸化物微粒子が分散した状態の複合タングステン酸化物微粒子分散体を製造する。
そして、製造された複合タングステン酸化物微粒子可塑剤分散液、または、製造された複合タングステン酸化物微粒子分散体と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤と、所望によりその他の添加剤や接着力調整剤とを混合し、混練した後、押出成形法、カレンダー成形法等の公知の方法により、例えば、フィルム状に成形することによって製造することが出来る。さらに、所望により当該熱線遮蔽膜へ赤外線吸収性有機化合物を添加すると、より高い熱線遮蔽特性が得られる。
複合タングステン酸化物微粒子と分散剤とを、可塑剤に添加・混合し、一般的な分散方法を用いて複合タングステン酸化物微粒子の可塑剤分散液を得ることができる。具体的には、ビーズミル、ボールミル、サンドミル、超音波分散などの分散方法を用いることが出来る。
当該有機溶剤は、120℃以下の沸点を持つものが好ましく使用される。沸点が120℃以下であれば、後工程である乾燥工程、特に減圧乾燥で除去することが容易である。この結果、減圧乾燥の工程で除去することが迅速に進み、複合タングステン酸化物微粒子含有組成物の生産性に寄与するからである。さらに、減圧乾燥の工程が容易かつ十分に進行するので、本発明に係る複合タングステン酸化物微粒子含有組成物中に過剰な有機溶剤が残留するのを回避できる。この結果、熱線遮蔽膜成形時に気泡の発生などの不具合が発生することを回避できる。具体的には、トルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸ブチル、イソプロピルアルコール、エタノールが挙げられるが、沸点が120℃以下で、且つ複合タングステン酸化物微粒子を均一に分散可能なものであれば、任意に選択できる。
上述した複合タングステン酸化物微粒子の可塑剤分散液、または、複合タングステン酸化物微粒子と分散剤と可塑剤とを、上述した120℃以下の沸点を有する有機溶剤に添加・混合し、一般的な分散方法を用いて熱線遮タングステン酸化物微粒子の濃度が50質量%以下となる複合タングステン酸化物微粒子分散体を製造する。
複合タングステン酸化物微粒子を均一に可塑剤へ分散させる方法は、一般的な方法から任意に選択出来る。具体例として複合タングステン酸化物微粒子含有分散液を得た後、公知の方法でその有機溶剤を除去することで、固体の分散剤中に複合タングステン酸化物微粒子が分散した状態の複合タングステン酸化物微粒子分散体を得ることも出来る。
本発明に係る熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材には、様々な形態がある。
例えば、透明基材として無機ガラスを用いた熱線遮蔽合わせ無機ガラスは、本発明に係る熱線遮蔽膜を挟み込んで存在させた対向する複数枚の無機ガラスを、公知の方法で張り合わせ一体化することによって得られる。得られた熱線遮蔽合わせ無機ガラスは、主に自動車のフロント用の無機ガラスや、建物の窓として使用することが出来る。
ここで、当該熱線遮蔽合わせ無機ガラスを自動車に用いることを考えると、自動車内の温度上昇抑制効果を考慮して、当該赤外線反射フィルムを本発明に係る熱線遮蔽膜より車外側に存在させる構成が好ましい。
また、所望により、本発明に係る熱線遮蔽膜単体として使用すること、無機ガラスや透明樹脂等の透明基材の片面または両面に本発明に係る熱線遮蔽膜を存在させて使用することも、勿論可能である。
上述した本発明に係る赤外線反射フィルムは、本発明に係る熱線遮蔽膜と併用したときの光学特性を考慮すると、可視光領域にはほとんど太陽光の吸収を持たず、近赤外線領域、具体的には波長800nmから1200nmの範囲のみを反射するものであることが、熱線遮蔽機能の観点から好ましい。
具体的には、赤外線フィルムの光学特性として、可視光透過率85%以上、日射反射率18%以上であることが好ましく、可視光透過率88%以上、日射反射率21%以上であることがより好ましい。
さらに、自動車のフロントガラス、建物の窓として熱線遮蔽合わせ透明基材を使用することを考慮すると、本発明に係る赤外線反射フィルムは、携帯電話やETCに用いられている波長域の電磁波を透過させるものが好ましい。従って、導電性を持ち上記電磁波を透過させない金属膜付きフィルムよりも電磁波を透過させる樹脂多層膜付きフィルムが好ましい。
以上、詳細に説明したように、本発明に係る複合タングステン酸化物の可塑剤分散液、または、本発明に係る複合タングステン酸化物分散体と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを混練し、さらに、公知の方法により、フィルム状に成形することによって、本発明に係る熱線遮蔽膜の作製が可能となった。
そして、当該本発明に係る熱線遮蔽膜を、対向する複数枚の透明基材の間に挟み込むように存在させることによって、可視光領域の高い透過性を維持すると共に低い日射透過率を発揮する、本発明に係る熱線遮蔽合わせ透明基材の作製が可能となった。
そして、当該複合タングステン酸化物微粒子と、波長550nm透過率が90%以上であり、且つ、波長450nm透過率が40%以下の透過プロファイルを有する選択波長吸収材料を所定の割合で併用することで、複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い熱線遮蔽特性を発揮することが可能となった。
また、各実施例における複合タングステン酸化物微粒子の粉体色(10°視野、光源D65)、選択波長吸収材料可塑剤分散液の波長450nmの光の透過率、波長550nmの光の透過率、熱線遮蔽合わせ無機ガラスの可視光透過率、および、日射透過率は、日立製作所(株)製の分光光度計U-4000を用いて測定した。尚、当該日射透過率は、熱線遮蔽合わせ透明基材の熱線遮蔽性能を示す指標である。
また、ヘイズ値は村上色彩技術研究所(株)社製HR-200を用い、JISK7105に基づいて測定した。尚、当該ヘイズ値は熱線遮蔽合わせ透明基材の透明性を示す指標である。
H2WO450gとCs(OH)218.7g(Cs/W(モル比)=0.33相当)とをメノウ乳鉢で十分混合して混合粉末とした。当該混合粉末を、N2ガスをキャリアーとした5%H2ガスを供給下で加熱し600℃の温度で1時間の還元処理を行った後、N2ガス雰囲気下において800℃で30分間焼成して複合タングステン酸化物微粒子(以下、微粒子aと略称する。)を得た。
当該微粒子aの組成式は、Cs0.33WO3であり、粉体色はL*が35.2845、a*が1.4873、b*が-5.2114であった。
ここで、微粒子分散液A内におけるタングステン酸化物微粒子の分散平均粒子径を、日機装製マイクロトラック粒度分布計で測定したところ24nmであった。
選択波長吸収材料分散液αを、可塑剤aで所定の濃度まで希釈し、ガラスセルに入れて光学特性を測定したところ波長450nmの光の透過率が5.3%であり、波長550nmの光の透過率が92.8であった。尚、当該測定に先立ち、ガラスセルに可塑剤aのみを入れてベースラインを測定した。
この熱線遮蔽膜の製造用組成物Aを、二軸押出機で200℃で混練し、Tダイより押出しカレンダーロール法により0.7mm厚のシートとして、実施例1に係る熱線遮蔽膜を得た。
実施例1で説明した、熱線遮蔽膜の製造用組成物A中における微粒子aの濃度と、選択波長吸収材料の種類、濃度とを変えた以外は、実施例1と同様にして実施例2~33に係る熱線遮蔽合わせ透明基材を得た。そして当該実施例2~33に係る熱線遮蔽合わせ透明基材の光学特性を実施例1と同様に測定した。この実施例2~33における微粒子aの濃度、選択波長吸収材料の種類、および濃度を表1に示した。さらに、実施例2~33に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表1に示した。
尚、選択波長吸収材料として、実施例2~16においては、上述したキノフタロン化合物を用い、実施例17~28においては、ニッケルアゾ化合物を用い、実施例29においては、イソインドリン化合物を用い、実施例30においては、キノキサリン化合物を用い、実施例31においては、縮合ジアゾ化合物を用い、実施例32においては、イソインドリノン化合物を用い、実施例33においては、バナジン酸ビスマス化合物を用いた。
実施例1で説明した、熱線遮蔽膜の製造用組成物A中における微粒子aの濃度を変え、選択波長吸収材料を添加しなかった以外は、実施例1と同様にして比較例1~4に係る熱線遮蔽合わせ透明基材を得た。そして当該比較例1~4に係る熱線遮蔽合わせ透明基材の光学特性を実施例1と同様に測定した。この比較例1~4における微粒子aの濃度を表2に示した。さらに、比較例1~4に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表2に示した。
実施例1で説明した、熱線遮蔽膜の製造用組成物A中における微粒子aの濃度と選択波長吸収材料の種類、濃度を変えた以外は、実施例1と同様にして比較例5~9に係る熱線遮蔽合わせ透明基材を得た。この結果を表2に示した。
尚、選択波長吸収材料として、比較例5においては、ベンツイミダゾロン化合物を用い、比較例6~9においては、上述したキノフタロン化合物を用いた。
水13.5gにRbNO38.8gを溶解し、これをH2WO445.3gに添加(Rb/W(モル比)=0.33相当)して十分攪拌した後、乾燥した。当該乾燥物を、N2ガスをキャリアーとした2%H2ガスを供給しながら加熱し、800℃の温度で30分間焼成した後、同温度でN2ガス雰囲気下において800℃で90分間焼成してRb添加複合タングステン酸化物微粒子(以下、微粒子bと略称する。)を得た。
当該微粒子bの組成式は、Rb0.33WO3であり、粉体色のL*が36.3938、a*が-0.2385、b*が-3.8318であった。
実施例34で説明した、熱線遮蔽膜の製造用組成物B中における選択波長吸収材料の種類、濃度を変えた以外は、実施例34と同様にして実施例35~39に係る熱線遮蔽合わせ透明基材を得た。そして当該実施例35~39に係る熱線遮蔽合わせ透明基材の光学特性を実施例34と同様に測定した。この実施例35~39における微粒子bの濃度、選択波長吸収材料の種類、および濃度を表2に示した。さらに、実施例35~39に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表2に示した。
尚、選択波長吸収材料として実施例35においては、ニッケルアゾ化合物を用い、実施例36においては、イソインドリン化合物を用い、実施例37においては、キノキサリン化合物を用い、実施例38においては、縮合ジアゾ化合物を用い、実施例39においては、イソインドリノン化合物を用いた。
選択波長吸収材料を添加しなかった以外は、実施例34と同様にして比較例10に係る熱線遮蔽合わせ透明基材を得た。この結果を表2に示した。
実施例1で説明した可塑剤a30質量%、ポリビニルブチラール樹脂70質量%を混合した組成物へ、所定量の微粒子分散液Aと選択波長吸収材料分散液αと赤外線吸収性有機化合物として日本カーリット(株)製ジイモニウム化合物CIR-RLとを添加し、当該混合物中における微粒子aの濃度を0.125質量%、選択波長吸収材料の物濃度を0.0139質量%、赤外線吸収性有機化合物を0.0139質量%とし、熱線遮蔽膜の製造用組成物Cを得た。この結果、熱線遮蔽膜の製造用組成物Cにおける前記選択波長吸収材料と前記複合タングステン酸化物微粒子との重量比(複合タングステン酸化物微粒子/選択波長吸収材料)は0.125/0.0139=90/10となった。この熱線遮蔽膜の製造用組成物Cを二軸押出機で200℃で混練、Tダイより押出しカレンダーロール法により0.7mm厚のシートとして実施例40に係る熱線遮蔽膜を得た。
実施例40で説明した、熱線遮蔽膜の製造用組成物C中における選択波長吸収材料の種類、濃度、赤外線吸収性有機化合物の種類、濃度を変えた以外は、実施例40と同様にして実施例41~51に係る熱線遮蔽合わせ透明基材を得た。そして当該実施例41~51に係る熱線遮蔽合わせ透明基材の光学特性を実施例40と同様に測定した。この実施例41~51における微粒子aの濃度、選択波長吸収材料の種類および濃度、赤外線吸収性有機化合物の種類および濃度を表2に示した。さらに、実施例41~51に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表2に示した。
一方、赤外線吸収性有機化合物として、実施例41~47、50、51においては、上述したジイモニウム化合物を用い、実施例48、49においては、フタロシアニン系化合物を用いた。
赤外線反射フィルム(住友3M社製 スコッチティントS90:可視光透過率89%、日射反射率22%)を、実施例5で得られた熱線遮蔽膜と透明なPVB中間膜とで挟み、さらに2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して、実施例52に係る熱線遮蔽合わせ透明基材を得た。
そして、当該実施例52に係る熱線遮蔽合わせ透明基材の光学特性を、実施例1と同様に測定した。当該測定の際、透明なPVB中間膜が接しているガラス面から光学特性を測定した。
この実施例52における微粒子aの濃度、選択波長吸収材料の種類および濃度、赤外線吸収性有機化合物の種類および濃度を表3に示した。さらに、実施例52係る熱線遮蔽合わせ透明基材の光学特性測定結果を表3に示した。
実施例52で説明した赤外線反射フィルムと、実施例6~8で得られた熱線遮蔽膜とを用いて、実施例52と同様の操作をおこない、実施例53~55に係る熱線遮蔽合わせ透明基材を得た。
当該実施例53~55に係る熱線遮蔽合わせ透明基材の光学特性を実施例1と同様に測定した。そして、実施例53~55における微粒子aの濃度、選択波長吸収材料の種類および濃度、赤外線吸収性有機化合物の種類および濃度を表3に示した。さらに、実施例53~55に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表3に示した。
実施例1~16においては、選択波長吸収材料を複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られた。
当該結果を、図1を用いて説明する。
図1は、縦軸に日射透過率をとり、横軸に可視光透過率をとったグラフである。そして、当該グラフへ(複合タングステン酸化物微粒子a/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aが95/5である実施例1~4のデータを-◇-でプロットし、90/10である実施例5~8のデータを-□-でプロットし、80/20である実施例9~12のデータを-△-でプロットし、70/30である実施例13~16のデータを-×-でプロットし、100/0である比較例1~4のデータを-*-でプロットし、60/40である比較例6~9のデータを-+-でプロットしたものである。
一方、比較例6~9に示すように(複合タングステン酸化物微粒子a/選択波長吸収材料〈キノフタロン化合物〉)を60/40として、99/1~70/30の範囲外とすると、複合タングステン酸化物微粒子を単独で使用した場合と比較しても、遮熱特性が低下することが判明した。
実施例17~28においても、選択波長吸収材料を複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られる。
当該結果を、図2を用いて説明する。
図2は、図1と同様のグラフへ(複合タングステン酸化物微粒子a/選択波長吸収材料〈ニッケルアゾ化合物〉)の重量比Aが95/5である実施例17~20のデータを-◇-でプロットし、90/10である実施例21~24のデータを-□-でプロットし、80/20である実施例25~28のデータを-△-でプロットし、100/0である比較例1~4のデータを-*-でプロットしたものである。
実施例29~33においては、選択波長吸収材料を複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られた。
当該結果を、図3を用いて説明する。
図3は、図1と同様のグラフへ選択波長吸収材料がイソインドリン化合物である実施例29のデータを-◇-でプロットし、キノキサリン化合物である実施例30のデータを-□-でプロットし、縮合ジアゾ化合物である実施例31のデータを-△-でプロットし、イソインドリノン化合物である実施例32のデータを-◇-、バナジン酸ビスマス化合物である実施例33のデータを-○-でプロットし、ベンツイミダゾロン化合物である比較例5のデータを-+-でプロットし、これらの選択波長吸収材料を添加しない比較例1~4のデータを-*-でプロットしたものである。
実施例34~39においては、選択波長吸収材料をRb添加複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られた。また、波長550nmの光の透過率が90%以上であり、且つ、波長450nmに光の透過率が40%以下の透過プロファイルを有する選択波長吸収材料と、前記Rb添加複合タングステン酸化物微粒子とを併用したことによって、比較例10に記載したRb添加複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。
実施例40~47においては、選択波長吸収材料と赤外線吸収性有機化合物とを、複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られた。
当該結果を、図4を用いて説明する。
図4は、図1と同様のグラフへ(複合タングステン酸化物微粒子/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aが90/10であり、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈ジイモニウム系化合物〉)の重量比Bが90/10である実施例40~43のデータを-◇-でプロットし、(複合タングステン酸化物微粒子/選択波長吸収材料〈ニッケルアゾ化合物〉)の重量比Aが90/10であり、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈ジイモニウム系化合物〉)の重量比Bが90/10である実施例44~47のデータを-△-でプロットし、(複合タングステン酸化物微粒子/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aが90/10である実施例5~8のデータを-×-でプロットし、100/0である比較例1~4のデータを-*-でプロットしたものである。
実施例48~51においては、選択波長吸収材料と赤外線吸収性有機化合物とを、複合タングステン酸化物微粒子と併用した。実施例48~51においては当該併用を行ったことによって、当該併用を行っていない比較例1~4より低い日射透過率が得られた。また、選択波長吸収材料と赤外線吸収性有機化合物とを、複合タングステン酸化物微粒子と併用したことにより、複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。
実施例52~55においては、選択波長吸収材料と赤外線反射フィルムとを、複合タングステン酸化物微粒子と併用した。当該併用を行ったことによって実施例52~55においては、当該併用を行っていない比較例1~4より低い日射透過率が得られた。また、選択波長吸収材料と赤外線反射フィルムと、複合タングステン酸化物微粒子とを併用したことにより、複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。
Claims (16)
- [規則91に基づく訂正 03.12.2012]
熱線遮蔽機能を有する化合物と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを含有する熱線遮蔽膜であって、前期選択波長吸収材料は、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が40%以下の透過プロファイルを有し、前記熱線遮蔽機能を有する化合物と前記選択波長吸収材料の重量比が(熱線遮蔽機能を有する化合物/選択波長吸収材料)=99/1~70/30の範囲であることを特徴とする熱線遮蔽膜。 - 前記熱線遮蔽機能を有する化合物が、一般式MyWOZ(但し、Mは、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される1種類以上の元素、0.1≦y≦0.5、2.2≦z≦3.0)で示され、かつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子であることを特徴とする請求項1に記載の熱線遮蔽膜。
- 前記複合タングステン酸化物微粒子が、平均粒径40nm以下の微粒子であることを特徴とする請求項2に記載の熱線遮蔽膜。
- 前記選択波長吸収材料が、イソインドリン化合物、イソインドリノン化合物、キノキサリン化合物、キノフタロン化合物、縮合ジアゾ化合物、ニッケルアゾ化合物、バナジン酸ビスマス化合物から選択される少なくとも1種であることを特徴とする請求項1に記載の熱線遮蔽膜。
- 前記選択波長吸収材料が、キノフタロン化合物、ニッケルアゾ化合物から選択される少なくとも1種であることを特徴とする請求項1に記載の熱線遮蔽膜。
- 前期選択波長吸収材料が、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が15%以下の透過プロファイルを有することを特徴とする請求項1から5のいずれかに記載の熱線遮蔽膜。
- 前記熱線遮蔽膜が、さらに赤外線吸収性有機化合物を含むことを特徴とする請求項1から6のいずれかに記載の熱線遮蔽膜。
- 前記赤外線吸収性有機化合物が、フタロシアニン化合物、ナフタロシアニン化合物、イモニウム化合物、ジイモニウム化合物、ポリメチン化合物、ジフェニルメタン化合物、トリフェニルメタン化合物、キノン化合物、アゾ化合物、ペンタジエン化合物、アゾメチン化合物、スクアリリウム化合物、有機金属錯体、シアニン化合物から選択される少なくとも1種であることを特徴とする請求項7に記載の熱線遮蔽膜。
- 前記赤外線吸収性有機化合物が、フタロシアニン化合物、ジイモニウム化合物から選択される少なくとも1種であることを特徴とする請求項8に記載の熱線遮蔽膜。
- 前記赤外線吸収性有機化合物と前記複合タングステン酸化物微粒子の重量比が(複合タングステン酸化物微粒子/赤外線吸収性有機化合物)=95/5~50/50の範囲であることを特徴とする請求項7から9のいずれかに記載の熱線遮蔽膜。
- 複数枚の透明基材間に、請求項1から10のいずれかに記載の熱線遮蔽膜が存在していることを特徴とする熱線遮蔽合わせ透明基材。
- 複数枚の透明基材間に、さらに可視光透過率88%以上であり且つ日射反射率21%以上の赤外線反射フィルムが存在していることを特徴する請求項11に記載の熱線遮蔽合わせ透明基材。
- 前記透明基材の内、少なくとも1枚がガラスであることを特徴とする請求項11から12のいずれかに記載の熱線遮蔽合わせ透明基材。
- JIS R 3106で算出される可視光透過率が70%以上であり、且つ日射透過率が32.5%以下であることを特徴とする請求項11から13のいずれかに記載の熱線遮蔽合わせ透明基材。
- 請求項11から13のいずれかに記載の熱線遮蔽合わせ透明基材が、窓材として搭載されていることを特徴とする自動車。
- 請求項11から13のいずれかに記載の熱線遮蔽合わせ透明基材が、窓材として使用されていることを特徴とする建造物。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/362,303 US20140335364A1 (en) | 2011-12-02 | 2012-11-21 | Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material |
JP2013547113A JP5867753B2 (ja) | 2011-12-02 | 2012-11-21 | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物 |
EP12853566.3A EP2786972A4 (en) | 2011-12-02 | 2012-11-21 | THERMAL RADIATION PROTECTIVE FILM, COMBINED THERMAL AND TRANSPARENT RADIATION PROTECTION SUBSTRATE, VEHICLE EQUIPPED WITH TRANSPARENT LAMINATE PROTECTIVE SUBSTRATE AGAINST THERMAL RADIATION AS WINDOW MATERIAL, AND BUILDING USING TRANSPARENT LAMINATE PROTECTIVE SUBSTRATE AGAINST RADIATION THERMAL AS WINDOW MATERIAL |
CN201280059288.9A CN104245618B (zh) | 2011-12-02 | 2012-11-21 | 热线遮蔽膜、热线遮蔽夹层透明基体材料、以及安装该热线遮蔽夹层透明基体材料作为窗口材料的汽车、以及使用该热线遮蔽夹层透明基体材料作为窗口材料的建造物 |
KR1020147018280A KR102038448B1 (ko) | 2011-12-02 | 2012-11-21 | 열선 차폐막, 열선 차폐 적층 투명기재, 및 상기 열선 차폐 적층 투명기재가 창문재로서 탑재되어 있는 자동차, 및 상기 열선 차폐 적층 투명기재가 창문재로서 사용되어 있는 건축물 |
US16/839,477 US11215742B2 (en) | 2011-12-02 | 2020-04-03 | Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011265339 | 2011-12-02 | ||
JP2011-265339 | 2011-12-02 | ||
JP2012072998 | 2012-03-28 | ||
JP2012-072998 | 2012-03-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/362,303 A-371-Of-International US20140335364A1 (en) | 2011-12-02 | 2012-11-21 | Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material |
US16/839,477 Continuation US11215742B2 (en) | 2011-12-02 | 2020-04-03 | Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080859A1 true WO2013080859A1 (ja) | 2013-06-06 |
Family
ID=48535319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080191 WO2013080859A1 (ja) | 2011-12-02 | 2012-11-21 | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20140335364A1 (ja) |
EP (1) | EP2786972A4 (ja) |
JP (1) | JP5867753B2 (ja) |
KR (1) | KR102038448B1 (ja) |
CN (1) | CN104245618B (ja) |
WO (1) | WO2013080859A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014163119A1 (ja) | 2013-04-03 | 2014-10-09 | 住友金属鉱山株式会社 | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、熱線遮蔽樹脂シート材、自動車および建造物 |
JP2014210698A (ja) * | 2013-04-03 | 2014-11-13 | 住友金属鉱山株式会社 | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車および建造物 |
CN104726040A (zh) * | 2015-04-14 | 2015-06-24 | 魏勇 | 一种含有钨青铜的pvb浆料及其制备方法 |
WO2015156273A1 (ja) * | 2014-04-07 | 2015-10-15 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
WO2016017513A1 (ja) * | 2014-07-28 | 2016-02-04 | コニカミノルタ株式会社 | 赤外線反射フィルム及び合わせガラス |
JP2017105705A (ja) * | 2015-12-02 | 2017-06-15 | 住友金属鉱山株式会社 | 熱線遮蔽微粒子および熱線遮蔽微粒子分散液 |
JP2017119626A (ja) * | 2012-02-10 | 2017-07-06 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
US20170283311A1 (en) * | 2014-08-29 | 2017-10-05 | Sumitomo Metal Mining Co., Ltd. | Assembly of hexaboride fine particles, hexaboride fine particle dispersion, hexaboride fine particle-dispersed body, laminated transparent base material using hexaboride fine particle-dispersed body, infrared-absorptive film, and infrared-absorptive glass |
JP2018522284A (ja) * | 2015-07-15 | 2018-08-09 | コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. | 有彩色ファサード装置及び有彩色窓装置 |
CN111494699A (zh) * | 2013-09-06 | 2020-08-07 | 生物兼容英国有限公司 | 不透射线聚合物 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6610660B2 (ja) * | 2015-03-31 | 2019-11-27 | コニカミノルタ株式会社 | 近赤外線遮蔽フィルム、その製造方法及び粘着剤組成物 |
JP6655009B2 (ja) * | 2015-03-31 | 2020-02-26 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
EP3323006A1 (en) | 2015-07-15 | 2018-05-23 | CoeLux S.r.l. | Reflective illumination systems for optically widened perception |
US11130315B2 (en) | 2015-12-02 | 2021-09-28 | Sumitomo Metal Mining Co., Ltd. | Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent substrate |
US10531555B1 (en) * | 2016-03-22 | 2020-01-07 | The United States Of America As Represented By The Secretary Of The Army | Tungsten oxide thermal shield |
JP6835067B2 (ja) * | 2016-04-01 | 2021-02-24 | 住友金属鉱山株式会社 | 赤外線吸収材料、赤外線吸収材料分散液、赤外線吸収材料分散体、赤外線吸収材料分散体合わせ透明基材、赤外線吸収透明基材 |
WO2018091556A1 (de) * | 2016-11-17 | 2018-05-24 | Covestro Deutschland Ag | Transparenter mehrschichtkörper zum wärmemanagement |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04160041A (ja) | 1990-10-24 | 1992-06-03 | Hitachi Ltd | 自動車用窓ガラス |
JPH08217500A (ja) | 1995-02-14 | 1996-08-27 | Sumitomo Osaka Cement Co Ltd | 合わせガラス |
JPH08259279A (ja) | 1995-01-23 | 1996-10-08 | Central Glass Co Ltd | 合せガラス及びその製造方法 |
JPH10297945A (ja) | 1997-04-28 | 1998-11-10 | Central Glass Co Ltd | 合わせガラス及びその製造方法 |
JP2001089202A (ja) | 1999-05-17 | 2001-04-03 | Sumitomo Metal Mining Co Ltd | 日射遮蔽合わせガラス |
JP2002220262A (ja) * | 2001-01-16 | 2002-08-09 | Central Glass Co Ltd | 高断熱合わせガラス |
JP2004037768A (ja) | 2002-07-02 | 2004-02-05 | Kenji Saito | 紫外線・赤外線遮蔽体 |
JP2008528313A (ja) * | 2005-01-07 | 2008-07-31 | スリーエム イノベイティブ プロパティズ カンパニー | 太陽光制御多層フィルム |
JP2008194563A (ja) * | 2007-02-08 | 2008-08-28 | Sumitomo Metal Mining Co Ltd | 日射遮蔽膜および波長選択型遮蔽膜 |
JP2010202495A (ja) | 2009-02-09 | 2010-09-16 | Sumitomo Metal Mining Co Ltd | 熱線遮蔽合わせガラスおよびその製造方法 |
WO2011040444A1 (ja) * | 2009-09-29 | 2011-04-07 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4386986B2 (ja) * | 1999-03-31 | 2009-12-16 | 株式会社日本触媒 | 無機系微粒子含有組成物とその用途および分散剤 |
CN100343190C (zh) * | 2001-07-26 | 2007-10-17 | 积水化学工业株式会社 | 夹层玻璃用中间膜以及夹层玻璃 |
JP3982466B2 (ja) * | 2002-09-25 | 2007-09-26 | 住友金属鉱山株式会社 | 熱線遮蔽成分分散体とその製造方法およびこの分散体を用いて得られる熱線遮蔽膜形成用塗布液と熱線遮蔽膜並びに熱線遮蔽樹脂成形体 |
JP2006240893A (ja) * | 2005-02-28 | 2006-09-14 | Sekisui Chem Co Ltd | 合わせガラス用着色中間膜および合わせガラス |
DE602006011448D1 (de) * | 2005-03-28 | 2010-02-11 | Mitsubishi Eng Plastics Corp | Polycarbonatharzzusammensetzung und formprodukt zum schutz gegen heisse strahlung |
JP2007045636A (ja) * | 2005-08-05 | 2007-02-22 | Sekisui Chem Co Ltd | 合わせガラス用中間膜および合わせガラス |
US7952805B2 (en) * | 2006-08-22 | 2011-05-31 | 3M Innovative Properties Company | Solar control film |
JP2008200924A (ja) * | 2007-02-19 | 2008-09-04 | Toray Ind Inc | 積層フィルム |
JP5245283B2 (ja) * | 2007-04-26 | 2013-07-24 | 住友金属鉱山株式会社 | 熱線遮蔽塩化ビニルフィルム製造用組成物およびその製造方法、並びに、熱線遮蔽塩化ビニルフィルム |
US20100220388A1 (en) * | 2007-06-08 | 2010-09-02 | Bridgestone Corporation | Near-infrared shielding material, laminate including the same, and optical filter for display including the same |
CN101835824B (zh) * | 2007-10-25 | 2014-01-01 | 住友金属矿山株式会社 | 高耐热性母料、热线遮蔽透明树脂成形体、以及热线遮蔽透明层压体 |
JP5176492B2 (ja) * | 2007-11-06 | 2013-04-03 | 住友金属鉱山株式会社 | 近赤外線吸収粘着体、プラズマディスプレイパネル用近赤外線吸収フィルターおよびプラズマディスプレイパネル |
WO2010046285A2 (en) * | 2008-10-23 | 2010-04-29 | Basf Se | Heat absorbing additives |
JP5120661B2 (ja) * | 2009-03-26 | 2013-01-16 | 住友金属鉱山株式会社 | 合わせ構造体 |
US8268202B2 (en) * | 2009-07-07 | 2012-09-18 | Basf Se | Potassium cesium tungsten bronze particles |
JP5344261B2 (ja) * | 2011-04-14 | 2013-11-20 | 住友金属鉱山株式会社 | 熱線遮蔽膜とその製造方法、および熱線遮蔽合わせ透明基材 |
-
2012
- 2012-11-21 WO PCT/JP2012/080191 patent/WO2013080859A1/ja active Application Filing
- 2012-11-21 US US14/362,303 patent/US20140335364A1/en not_active Abandoned
- 2012-11-21 KR KR1020147018280A patent/KR102038448B1/ko active IP Right Grant
- 2012-11-21 EP EP12853566.3A patent/EP2786972A4/en not_active Ceased
- 2012-11-21 CN CN201280059288.9A patent/CN104245618B/zh active Active
- 2012-11-21 JP JP2013547113A patent/JP5867753B2/ja active Active
-
2020
- 2020-04-03 US US16/839,477 patent/US11215742B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04160041A (ja) | 1990-10-24 | 1992-06-03 | Hitachi Ltd | 自動車用窓ガラス |
JPH08259279A (ja) | 1995-01-23 | 1996-10-08 | Central Glass Co Ltd | 合せガラス及びその製造方法 |
JPH08217500A (ja) | 1995-02-14 | 1996-08-27 | Sumitomo Osaka Cement Co Ltd | 合わせガラス |
JPH10297945A (ja) | 1997-04-28 | 1998-11-10 | Central Glass Co Ltd | 合わせガラス及びその製造方法 |
JP2001089202A (ja) | 1999-05-17 | 2001-04-03 | Sumitomo Metal Mining Co Ltd | 日射遮蔽合わせガラス |
JP2002220262A (ja) * | 2001-01-16 | 2002-08-09 | Central Glass Co Ltd | 高断熱合わせガラス |
JP2004037768A (ja) | 2002-07-02 | 2004-02-05 | Kenji Saito | 紫外線・赤外線遮蔽体 |
JP2008528313A (ja) * | 2005-01-07 | 2008-07-31 | スリーエム イノベイティブ プロパティズ カンパニー | 太陽光制御多層フィルム |
JP2008194563A (ja) * | 2007-02-08 | 2008-08-28 | Sumitomo Metal Mining Co Ltd | 日射遮蔽膜および波長選択型遮蔽膜 |
JP2010202495A (ja) | 2009-02-09 | 2010-09-16 | Sumitomo Metal Mining Co Ltd | 熱線遮蔽合わせガラスおよびその製造方法 |
WO2011040444A1 (ja) * | 2009-09-29 | 2011-04-07 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
Non-Patent Citations (1)
Title |
---|
See also references of EP2786972A4 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017119626A (ja) * | 2012-02-10 | 2017-07-06 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
KR20150138347A (ko) | 2013-04-03 | 2015-12-09 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 열선 차폐막, 열선 차폐 적층 투명기재, 열선 차폐 수지 시트재, 자동차 및 건조물 |
JP2014210698A (ja) * | 2013-04-03 | 2014-11-13 | 住友金属鉱山株式会社 | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車および建造物 |
WO2014163119A1 (ja) | 2013-04-03 | 2014-10-09 | 住友金属鉱山株式会社 | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、熱線遮蔽樹脂シート材、自動車および建造物 |
US9868665B2 (en) | 2013-04-03 | 2018-01-16 | Sumitomo Metal Mining Co., Ltd. | Heat ray-shielding film, heat ray-shielding laminated transparent base material, heat ray-shielding resin sheet material, automobile and building |
EP3034294A1 (en) | 2013-04-03 | 2016-06-22 | Sumitomo Metal Mining Co., Ltd. | Heat-ray-shielding film, heat-ray-shielding transparent substrate, heat-ray-shielding resin sheet material, vehicle, and building |
US11957755B2 (en) | 2013-09-06 | 2024-04-16 | Boston Scientific Medical Device Limited | Radiopaque polymers |
CN111494699A (zh) * | 2013-09-06 | 2020-08-07 | 生物兼容英国有限公司 | 不透射线聚合物 |
US10569509B2 (en) | 2014-04-07 | 2020-02-25 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass having coloring matter with specified maximum absorption wavelengths, and laminated glass |
WO2015156273A1 (ja) * | 2014-04-07 | 2015-10-15 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
RU2687824C2 (ru) * | 2014-04-07 | 2019-05-16 | Секисуй Кемикал Ко., Лтд. | Промежуточная пленка для ламинированного стекла и ламинированное стекло |
WO2016017513A1 (ja) * | 2014-07-28 | 2016-02-04 | コニカミノルタ株式会社 | 赤外線反射フィルム及び合わせガラス |
US10934207B2 (en) | 2014-08-29 | 2021-03-02 | Sumitomo Metal Mining Co., Ltd. | Methods for producing an assembly of hexaboride fine particles |
US20170283311A1 (en) * | 2014-08-29 | 2017-10-05 | Sumitomo Metal Mining Co., Ltd. | Assembly of hexaboride fine particles, hexaboride fine particle dispersion, hexaboride fine particle-dispersed body, laminated transparent base material using hexaboride fine particle-dispersed body, infrared-absorptive film, and infrared-absorptive glass |
CN104726040A (zh) * | 2015-04-14 | 2015-06-24 | 魏勇 | 一种含有钨青铜的pvb浆料及其制备方法 |
JP2018522284A (ja) * | 2015-07-15 | 2018-08-09 | コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. | 有彩色ファサード装置及び有彩色窓装置 |
US10684399B2 (en) | 2015-07-15 | 2020-06-16 | Coelux S.R.L. | Chromatic facade and window units |
JP2017105705A (ja) * | 2015-12-02 | 2017-06-15 | 住友金属鉱山株式会社 | 熱線遮蔽微粒子および熱線遮蔽微粒子分散液 |
Also Published As
Publication number | Publication date |
---|---|
JP5867753B2 (ja) | 2016-02-24 |
US20200233129A1 (en) | 2020-07-23 |
US20140335364A1 (en) | 2014-11-13 |
KR102038448B1 (ko) | 2019-10-30 |
US11215742B2 (en) | 2022-01-04 |
EP2786972A1 (en) | 2014-10-08 |
JPWO2013080859A1 (ja) | 2015-04-27 |
KR20140098240A (ko) | 2014-08-07 |
CN104245618B (zh) | 2017-08-25 |
CN104245618A (zh) | 2014-12-24 |
EP2786972A4 (en) | 2015-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5867753B2 (ja) | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物 | |
JP5305050B2 (ja) | 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材 | |
JP5344261B2 (ja) | 熱線遮蔽膜とその製造方法、および熱線遮蔽合わせ透明基材 | |
CN105307996B (zh) | 热线屏蔽膜、热线屏蔽夹层透明基材、热线屏蔽树脂片材、汽车及建筑物 | |
JP6098831B2 (ja) | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車および建造物 | |
JP5899874B2 (ja) | 赤外線遮蔽材料微粒子分散液とその製造方法および熱線遮蔽膜と熱線遮蔽合わせ透明基材 | |
KR102142115B1 (ko) | 열선 차폐 미립자 함유 조성물 및 이의 제조 방법, 열선 차폐막, 및, 열선 차폐 적층 투명기재 | |
JP5541227B2 (ja) | 熱線遮蔽微粒子含有組成物の製造方法、熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜、当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材、および、それらの製造方法 | |
JP5975292B2 (ja) | 熱線遮蔽膜および熱線遮蔽合わせ透明基材 | |
JP5673466B2 (ja) | 熱線遮蔽膜とその製造方法、および熱線遮蔽合わせ透明基材 | |
JP6123991B2 (ja) | 熱線遮蔽用合わせ構造体 | |
JP6103283B2 (ja) | 熱線遮蔽膜製造用の組成物とその製造方法、熱線遮蔽膜の製造方法および熱線遮蔽合わせ透明基材の製造方法 | |
JP5888053B2 (ja) | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車 | |
JP2013116977A (ja) | 熱線遮蔽微粒子含有組成物およびその製造方法、熱線遮蔽膜、および、熱線遮蔽合わせ透明基材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12853566 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013547113 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14362303 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012853566 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147018280 Country of ref document: KR Kind code of ref document: A |