WO2013080859A1 - 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物 - Google Patents

熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物 Download PDF

Info

Publication number
WO2013080859A1
WO2013080859A1 PCT/JP2012/080191 JP2012080191W WO2013080859A1 WO 2013080859 A1 WO2013080859 A1 WO 2013080859A1 JP 2012080191 W JP2012080191 W JP 2012080191W WO 2013080859 A1 WO2013080859 A1 WO 2013080859A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
ray shielding
compound
heat
fine particles
Prior art date
Application number
PCT/JP2012/080191
Other languages
English (en)
French (fr)
Inventor
藤田 賢一
佳輔 町田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US14/362,303 priority Critical patent/US20140335364A1/en
Priority to JP2013547113A priority patent/JP5867753B2/ja
Priority to EP12853566.3A priority patent/EP2786972A4/en
Priority to CN201280059288.9A priority patent/CN104245618B/zh
Priority to KR1020147018280A priority patent/KR102038448B1/ko
Publication of WO2013080859A1 publication Critical patent/WO2013080859A1/ja
Priority to US16/839,477 priority patent/US11215742B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/007Sunglare reduction by coatings, interposed foils in laminar windows, or permanent screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31627Next to aldehyde or ketone condensation product
    • Y10T428/3163Next to acetal of polymerized unsaturated alcohol [e.g., formal butyral, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a heat ray shielding film having good visible light transmittance and an excellent heat ray shielding function, a heat ray shielding laminated transparent base material, and an automobile on which the heat ray shielding laminated transparent base material is mounted as a window material.
  • a transparent base material As safety glass used in window materials for automobiles or buildings, a transparent base material is used in which a laminated glass is formed by sandwiching an intermediate layer containing polyvinyl acetal resin or the like between a plurality of (for example, two) opposing glass plates. ing. Furthermore, a transparent base material has been proposed for the purpose of reducing the cooling load and the heat of human heat by blocking incident solar energy by providing the intermediate layer with a heat ray shielding function.
  • Patent Document 1 discloses a laminated glass in which a soft resin layer containing a heat ray shielding metal oxide made of tin oxide or indium oxide having a fine particle diameter of 0.1 ⁇ m or less is sandwiched between two opposing plate glasses. Is disclosed.
  • Patent Document 2 discloses that Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, Mn, at least between two opposing glass plates.
  • Metals such as Ta, W, V, and Mo, oxides of the metals, nitrides of the metals, sulfides of the metals, Sb and F dopants to the metals, and intermediate layers in which these composites are dispersed
  • a laminated glass sandwiching a glass is disclosed.
  • Patent Document 3 fine particles composed of TiO 2 , ZrO 2 , SnO 2 , and In 2 O 3 and a glass component composed of organosilicon or an organosilicon compound are sandwiched between opposing transparent plate-like members.
  • An automotive window glass is disclosed.
  • an intermediate layer composed of three layers is provided between at least two opposing transparent glass plates, and Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, Mo metal, metal oxide, metal nitride, metal sulfide, metal
  • a laminated glass is disclosed in which a dope of Sb or F or a composite of these is dispersed and an intermediate layer of the first layer and the third layer is used as a resin layer.
  • each of the conventional laminated glasses disclosed in Patent Documents 1 to 4 has a problem that the heat ray shielding function is not sufficient when high visible light transmittance is required.
  • Patent Document 5 discloses that a metal oxide semiconductor, a near infrared absorber, and an ultraviolet absorber are mixed with a transparent synthetic resin and molded on a film. An ultraviolet and infrared shield is disclosed.
  • the applicant forms an intermediate layer having a heat ray shielding function between two sheet glasses, and this intermediate layer is composed of hexaboride fine particles alone, or hexaboride fine particles and ITO fine particles and / or ATO fine particles.
  • a heat ray-shielding laminated glass comprising a heat ray shielding film containing vinyl resin, or a heat ray containing the fine particles formed on the surface of the intermediate layer facing the inside of at least one plate glass
  • Patent Document 6 discloses a heat ray shielding laminated glass composed of a shielding film and a heat ray shielding film containing a vinyl resin interposed between the two plate glasses.
  • the optical properties of laminated glass for heat ray shielding in which hexaboride fine particles alone, or hexaboride fine particles and ITO fine particles and / or ATO fine particles are applied has a transmittance in the visible light region. In addition, it exhibits strong absorption in the near infrared region and has minimum transmittance.
  • the heat-shielding laminated glass is improved until the solar radiation transmittance when the visible light transmittance is 70% or more is in the 50% range. It was done.
  • Patent Document 7 As a heat ray shielding laminated glass in which a polyvinyl acetal resin is replaced with an ultraviolet curable resin and a heat ray shielding film in which a composite tungsten compound is contained in the ultraviolet curable resin is used as an intermediate layer. is doing.
  • the heat-shielding laminated glass has a solar radiation transmittance when the visible light transmittance is 70% or more as compared with the conventional laminated glass described in Patent Documents 1 to 4 and Patent Document 6. It was improved until the rate was around 35%.
  • the first problem is that the laminated glass according to the prior art described in Patent Documents 1 to 5 is not sufficient in heat ray shielding function when high visible light transmittance is required as described above. is there. Furthermore, in the market, the heat shielding function will be further improved in terms of improving comfort in automobiles and buildings, improving fuel efficiency by reducing automobile air-conditioner load, and saving energy by reducing air-conditioner load in buildings. The demand is high. From this viewpoint, the laminated glass for heat ray shielding described in Patent Documents 6 and 7 still had room for improvement.
  • the present invention has been made paying attention to the above problems.
  • the problem to be solved is a heat ray shielding film that exhibits excellent heat shielding properties while having a polyvinyl acetal resin as a main component, a heat ray shielding laminated transparent substrate using the heat ray shielding film, and the heat ray shielding laminated transparent It is to provide an automobile in which a base material is mounted as a window material.
  • the present inventors have conducted intensive research on a method for improving the heat ray shielding characteristics while maintaining a high visible light transmittance.
  • the present inventors paid attention to the wavelength distribution of the weight coefficient used in the visible light transmittance calculation described in JIS R 3106. Specifically, the wavelength distribution of the weight coefficient used for calculating the visible light transmittance and the solar radiation energy in the short wavelength region were studied in detail. And the knowledge that it was possible to reduce only the solar radiation transmittance
  • a conventional ultraviolet shielding agent that does not cut the visible light region as much as possible is used.
  • a material that absorbs light in the vicinity of a wavelength of 450 nm strongly but does not absorb in the vicinity of a wavelength of 550 nm, which is a region that greatly contributes to the calculation of the visible light transmittance The present invention has been completed by conceiving the configuration of coexistence.
  • the second invention is The compound having a heat-ray-shielding function, the general formula M y WO Z (where, M is selected Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, a Cu One or more elements, 0.1 ⁇ y ⁇ 0.5, 2.2 ⁇ z ⁇ 3.0), and a composite tungsten oxide fine particle having a hexagonal crystal structure It is a heat ray shielding film as described in 1st invention.
  • the third invention is The composite tungsten oxide fine particle is a fine particle having an average particle diameter of 40 nm or less.
  • the heat ray shielding film according to the second aspect of the invention is the composite tungsten oxide fine particle having an average particle diameter of 40 nm or less.
  • the fourth invention is:
  • the selective wavelength absorbing material is at least one selected from isoindoline compounds, isoindolinone compounds, quinoxaline compounds, quinophthalone compounds, condensed diazo compounds, nickel azo compounds, and bismuth vanadate compounds. It is a heat ray shielding film as described in the invention.
  • the fifth invention is: The heat ray shielding film according to the first invention, wherein the selective wavelength absorbing material is at least one selected from a quinophthalone compound and a nickel azo compound.
  • the sixth invention is:
  • the first to fifth selection wavelength absorbing materials have a transmission profile in which the transmittance of light having a wavelength of 550 nm is 90% or more and the transmittance of light having a wavelength of 450 nm is 15% or less.
  • a heat ray shielding film according to any one of the inventions.
  • the seventh invention The heat ray shielding film according to any one of the first to sixth inventions, wherein the heat ray shielding film further contains an infrared absorbing organic compound.
  • the infrared absorbing organic compound is a phthalocyanine compound, naphthalocyanine compound, imonium compound, diimonium compound, polymethine compound, diphenylmethane compound, triphenylmethane compound, quinone compound, azo compound, pentadiene compound, azomethine compound, squarylium compound, organometallic complex
  • the heat ray shielding film according to the seventh invention, wherein the heat ray shielding film is at least one selected from cyanine compounds.
  • the infrared ray absorbing organic compound is at least one selected from a phthalocyanine compound and a diimonium compound, and is the heat ray shielding film according to the eighth invention.
  • the eleventh invention is A heat ray shielding laminated transparent substrate, wherein the heat ray shielding film according to any one of the first to tenth inventions is present between a plurality of transparent substrates.
  • the twelfth invention is The heat ray shielding laminated transparent according to the eleventh invention, wherein an infrared reflective film having a visible light transmittance of 88% or more and a solar reflectance of 21% or more is present between a plurality of transparent substrates. It is a substrate.
  • the thirteenth invention is At least one of the transparent substrates is a heat ray shielding laminated transparent substrate according to the eleventh or twelfth invention, wherein at least one sheet is glass.
  • the fourteenth invention is The heat ray shielding according to any one of the eleventh to thirteenth inventions, wherein the visible light transmittance calculated by JIS R 3106 is 70% or more and the solar radiation transmittance is 32.5% or less. It is a laminated transparent substrate.
  • the fifteenth invention A heat ray shielding laminated transparent substrate according to any one of the eleventh to fourteenth inventions is mounted as a window material.
  • the sixteenth invention is A heat ray shielding laminated transparent base material according to any one of the eleventh to fourteenth aspects is a building characterized in that it is used as a window material.
  • a heat ray shielding film that exhibits excellent optical characteristics and high weather resistance by using a compound having a heat ray shielding function and a selective wavelength absorbing material together with a polyvinyl acetal resin as a main component.
  • the heat ray shielding laminated transparent base material which exhibits the outstanding optical characteristic, high weather resistance, and the outstanding mechanical characteristic was able to be obtained by using a heat ray shielding film.
  • the heat ray shielding laminated transparent base material by mounting the heat ray shielding laminated transparent base material on a car as a window material, it has become possible to suppress a rise in the temperature inside the car in summer. Moreover, it became possible to suppress the temperature rise in the building in the summertime by using the said heat ray shielding laminated transparent base material for the opening part of a building as a window material.
  • 6 is a graph showing the relationship between the visible light transmittance and the solar radiation transmittance in the heat ray shielding laminated transparent base materials according to Examples 1 to 16 and Comparative Examples 1 to 4 and 6 to 9.
  • 6 is a graph showing the relationship between visible light transmittance and solar radiation transmittance in heat-shielding laminated transparent base materials according to Examples 17 to 28 and Comparative Examples 1 to 4.
  • 6 is a graph showing the relationship between the visible light transmittance and the solar radiation transmittance in heat-shielding laminated transparent base materials according to Examples 29 to 33 and Comparative Examples 1 to 4 and 5.
  • 6 is a graph showing the relationship between the visible light transmittance and the solar radiation transmittance in heat-shielded transparent base materials according to Examples 5 to 8, 40 to 47, and Comparative Examples 1 to 4.
  • the heat ray shielding film according to the present invention comprises a fine particle of a compound having a heat ray shielding function, a dispersant, a selective wavelength absorbing material, an infrared-absorbing organic compound, a polyvinyl acetal resin, a plasticizer, if desired, an adhesive strength adjusting agent, if desired, Contains other additives.
  • the heat ray shielding film according to the present invention is obtained by dispersing fine particles of a compound having a heat ray shielding function and a dispersant in a part of a plasticizer to be added to the polyvinyl acetal resin to obtain a fine particle dispersion of the compound having a heat ray shielding function.
  • the heat ray shielding film according to the present invention provides a dispersion in which fine particles of a compound having a heat ray shielding function and a dispersing agent are dispersed in a general organic solvent, and then the organic solvent is removed to disperse the solid.
  • the components of the heat ray shielding film according to the present invention, the heat ray shielding film, and the heat ray shielding laminated transparent substrate using the heat ray shielding film will be described in detail.
  • the fine particles of the compound having a heat ray shielding function according to the present invention composite tungsten oxide fine particles, organic infrared shielding fine particles, and the like can be used, but use of composite tungsten oxide fine particles is preferable. Therefore, in the following description, a case where composite tungsten oxide fine particles are used as fine particles of a compound having a heat ray shielding function will be described.
  • heat ray shielding can be achieved by operating in the same manner as for composite tungsten oxide particles.
  • a film and a heat-shielding transparent substrate can be produced.
  • Fine particles having a heat ray shielding function is composite tungsten oxide fine particles. Since the composite tungsten oxide fine particles absorb a large amount of light in the near infrared region, particularly a wavelength of 1000 nm or more, the transmitted color tone often has a blue color tone.
  • the composite tungsten oxide fine particles have a general formula MyWO Z (where M is one or more selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, Cu). Element, 0.1 ⁇ y ⁇ 0.5, 2.2 ⁇ z ⁇ 3.0), and preferably has a hexagonal crystal structure.
  • examples of preferable composite tungsten oxide fine particles include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like.
  • the addition amount of the additive element M is preferably 0.1 or more and 0.5 or less, and more preferably around 0.33. This is because the value theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this.
  • the particle diameter of the composite tungsten oxide fine particles can be appropriately selected depending on the purpose of use of the heat ray shielding film.
  • the composite tungsten oxide fine particles preferably have a dispersed particle diameter of 40 nm or less. If the composite tungsten oxide fine particles have a dispersed particle size smaller than 40 nm, light is not completely blocked by scattering, and visibility in the visible light region is maintained, and at the same time, transparency is efficiently maintained. Because you can.
  • the scattering by the composite tungsten oxide fine particles is further performed. It is preferable to consider the reduction. In consideration of the further reduction in scattering, the dispersed particle diameter of the composite tungsten oxide fine particles is 30 nm or less, preferably 25 nm or less.
  • the dispersed particle diameter of the composite tungsten oxide fine particles is small, light scattering in the visible light region having a wavelength of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced.
  • the scattering of the light having the wavelength it is possible to avoid a situation in which the heat ray shielding film has an appearance like a frosted glass when strong light is irradiated and the clear transparency is lost.
  • the composite tungsten oxide fine particles have a dispersed particle diameter of 40 nm or less, the above-described geometrical scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained.
  • the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is reduced.
  • the dispersed tungsten oxide fine particles have a dispersed particle diameter of 25 nm or less because the scattered light is extremely reduced.
  • the dispersed tungsten oxide fine particles have a small dispersed particle diameter.
  • the dispersed particle diameter of the composite tungsten oxide fine particles is 1 nm or more, industrial production is easy.
  • the amount of the composite tungsten particles contained in the heat-ray shielding film, per unit area 0.2g / m 2 ⁇ 2.5g / m 2 is desirable.
  • the composite tungsten oxide fine particles represented by the general formula MY WO Z can be obtained by heat-treating a tungsten compound starting material in an inert gas atmosphere or a reducing gas atmosphere. it can.
  • the tungsten compound starting material is dried after dissolving tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate powder, tungsten hexachloride powder, ammonium tungstate powder, or tungsten hexachloride powder in alcohol.
  • each material in the form of a solution in order to produce a starting material in which each component is uniformly mixed at the molecular level, it is preferable to mix each material in the form of a solution, and the tungsten compound starting material containing the element M is water, an organic solvent, or the like. It is preferable that it is soluble in a solvent. Examples include tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide, etc. containing element M, but are not limited to these and are in solution form Is preferable.
  • the heat treatment condition in an inert gas atmosphere is preferably 400 ° C. or higher.
  • the starting material heat-treated at 400 ° C. or higher has a sufficient near-infrared absorbing power and is efficient as heat ray shielding fine particles.
  • an inert gas such as Ar or N 2 is preferably used.
  • the heat treatment conditions in the reducing atmosphere the starting material is first heat-treated at 100 ° C. or more and 400 ° C. or less in the reducing gas atmosphere, and then at a temperature of 400 ° C. or more and 1200 ° C. or less in the inert gas atmosphere. It is better to heat-treat with.
  • the reducing gas at this time is not particularly limited, but H 2 is preferable.
  • H 2 is preferable.
  • the composition of the reducing atmosphere for example, Ar, preferably mixed with 0.1% or more by volume of H 2 in an inert gas such as N 2, More preferably, 0.2% or more is mixed. If H 2 is 0.1% or more by volume, the reduction can proceed efficiently.
  • the composite tungsten oxide fine particles according to the present invention are surface-treated and coated with a compound containing at least one selected from Si, Ti, Zr, and Al, preferably with an oxide.
  • a known surface treatment may be performed using an organic compound containing one or more selected from Si, Ti, Zr, and Al.
  • the composite tungsten oxide fine particles according to the present invention and an organosilicon compound may be mixed and subjected to a hydrolysis treatment.
  • the powder color of the composite tungsten oxide fine particles is the L * a * b * color system recommended by the International Illumination Commission (CIE) ( In the powder color in JISZ8729-2004), it is desirable to satisfy the conditions that L * is 25 to 80, a * is -10 to 10, and b * is -15 to 15.
  • CIE International Illumination Commission
  • the dispersant according to the present invention is used for uniformly dispersing the above-described composite tungsten oxide fine particles according to the present invention in a polyvinyl acetal resin described later.
  • the dispersant according to the present invention has a thermal decomposition temperature of 200 ° C. or higher measured with a differential thermothermal gravimetric simultaneous measurement apparatus (hereinafter sometimes referred to as TG-DTA), and has urethane, acrylic and styrene main chains. It is preferable that it is a dispersing agent which has.
  • the thermal decomposition temperature is a temperature at which weight loss due to thermal decomposition of the dispersant begins in the TG-DTA measurement.
  • the dispersant is preferably a dispersant having an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group.
  • These functional groups are adsorbed on the surface of the composite tungsten oxide fine particles, prevent aggregation of the composite tungsten oxide fine particles, and have an effect of uniformly dispersing the fine particles even in the heat ray shielding film.
  • Specific examples include acrylic-styrene copolymer dispersants having a carboxyl group as a functional group and acrylic dispersants having an amine-containing group as a functional group.
  • the dispersant having an amine-containing group as a functional group preferably has a molecular weight Mw of 2000 to 200,000 and an amine value of 5 to 100 mgKOH / g.
  • the dispersant having a carboxyl group preferably has a molecular weight of Mw 2000 to 200000 and an acid value of 1 to 50 mgKOH / g.
  • the amount of the dispersant added is desirably in the range of 10 to 1000 parts by weight, more preferably in the range of 30 to 400 parts by weight with respect to 100 parts by weight of the composite tungsten oxide fine particles. This is because, if the added amount of the dispersant is in the above range, the composite tungsten oxide fine particles are uniformly dispersed in the polyvinyl acetal resin, and the physical properties of the obtained heat ray shielding film are not adversely affected.
  • the selected wavelength absorbing material according to the present invention is a material that selectively and strongly absorbs only light in a certain wavelength region.
  • the present inventors considered the wavelength distribution of the weight coefficient used in the visible light transmittance calculation described in JIS R 3106, and sufficiently shielded with the above-described composite tungsten oxide fine particles alone.
  • the composite tungsten oxide fine particles are used alone by using a configuration in which the selective wavelength absorbing material that strongly absorbs light in the vicinity of the wavelength of 450 nm and does not absorb near the wavelength of 550 nm is used in combination with the composite tungsten oxide fine particles. Compared to the case, a lower solar radiation transmittance could be obtained.
  • a heat ray shielding laminated transparent base material is used as a member that requires high visibility, such as an automobile windshield, strong light such as direct sunlight, headlamps, etc.
  • strong light such as direct sunlight, headlamps, etc.
  • fine particles such as composite tungsten oxide fine particles contained are strongly scattered in the short wavelength region of visible light, and the phenomenon that the transparent substrate for heat ray shielding becomes cloudy white may be a problem.
  • the present inventors have made the above-mentioned selective wavelength absorbing material absorb the scattered light in the short wavelength region of visible light generated by being scattered by fine particles such as composite tungsten oxide fine particles, thereby generating the bluish and cloudy color. It was conceived that the effect of improving the transparency of the heat ray shielding film according to the present invention and the heat ray shielding laminated transparent base material can be exhibited.
  • the transmittance of light having a wavelength of 550 nm of the selective wavelength absorbing material itself excluding the absorption of the medium and the substrate is 90% or more, and the transmission of light having a wavelength of 450 nm
  • the rate is preferably 40% or less. More preferably, the transmittance of light having a wavelength of 550 nm is 90% or more, and the transmittance of light having a wavelength of 450 nm is 15% or less. If the light transmittance of the selected wavelength absorbing material is 90% or more with respect to light having a wavelength of 550 nm and 40% or less with respect to light having a wavelength of 450 nm, the selected wavelength absorbing material and composite tungsten are used.
  • the oxide fine particles are used in combination, the visible light transmittance does not decrease, and further, absorption of light in the vicinity of a wavelength of 450 nm can be sufficiently obtained. As a result, compared with the case where the composite tungsten oxide fine particles are used alone, the solar radiation transmittance is lowered and the heat shielding characteristics are improved.
  • the selective wavelength absorbing material used in the present invention include isoindoline compounds, isoindolinone compounds, quinoxaline compounds, quinophthalone compounds, condensed diazo compounds, nickel azo compounds, and bismuth vanadate compounds.
  • the mixing ratio of the selective wavelength absorbing material and the composite tungsten oxide fine particles is preferably such that the weight ratio (composite tungsten oxide fine particles / selected wavelength absorbing material) is in the range of 99/1 to 70/30. More preferably, it is 95/5 to 80/20, and even more preferably 90/10 to 80/20.
  • the mixing ratio of the addition amount of the selective wavelength absorbing material is 70/30 or less, the visible wavelength region is not strongly absorbed by the selective wavelength absorbing material, and the visible light transmittance is maintained. As a result, the solar radiation transmittance is maintained as compared with the case where the composite tungsten oxide fine particles are used alone, and the heat shielding characteristics are maintained.
  • the mixing ratio of the addition amount of the selective wavelength absorbing material is 99/1 or more in the above-described weight ratio, sufficient absorption of light in the vicinity of a wavelength of 450 nm is obtained, and the effect of addition is exhibited.
  • the compound itself may be added to the polyvinyl acetal resin and the plasticizer together with the composite tungsten oxide fine particle plasticizer dispersion described later or the composite tungsten oxide fine particle dispersion.
  • the selective wavelength absorbing material is dispersed in the plasticizer in the same manner as the composite tungsten oxide fine particles described above. It is also possible to add to the heat ray-shielding film as a dispersion in the above state or as a dispersion in which the selective wavelength absorbing material is dispersed in a solid dispersant.
  • the selective wavelength absorbing material is uniformly dispersed in the heat ray shielding film, and any method that does not impair the transparency of the obtained heat ray shielding film is preferably used.
  • an infrared-absorbing organic compound having strong absorption in the near-infrared region may be further added to the heat ray shielding film as desired.
  • infrared absorbing organic compounds used for this purpose include phthalocyanine compounds, naphthalocyanine compounds, imonium compounds, diimonium compounds, polymethine compounds, diphenylmethane compounds, triphenylmethane compounds, quinone compounds, azo compounds, pentadiene compounds, azomethine compounds, squarylium. Compounds, organometallic complexes, cyanine compounds and the like can be used.
  • the infrared absorbing organic compound it is preferable to select one that dissolves in the plasticizer constituting the heat ray shielding film described above, because the transparency of the obtained heat ray shielding film is not impaired.
  • the infrared-absorbing organic compound is more preferably a material that strongly absorbs light in the range from the visible long wavelength region to the near infrared region having a wavelength of 650 nm to 1000 nm. This is because there is a large synergistic effect when the infrared absorbing organic compound having the optical characteristics and the composite tungsten oxide fine particles having strong absorption in the wavelength region of 800 nm or more are used in combination. This is because a higher heat shielding performance can be obtained as compared with the case of using in the above. From this point of view, as the infrared absorbing organic compound used in the present invention, a diimonium compound or a phthalocyanine compound is particularly preferable.
  • the mixing ratio of the addition amount of the infrared absorbing organic compound is less than 95/5 in the above-mentioned weight ratio, the infrared absorbing organic compound strongly increases the light in the visible light long wavelength region from the wavelength range of 650 nm to 1000 nm to the near infrared region. Since the effect to absorb decreases and the effect of addition cannot be obtained so much, it is not preferable.
  • the mixing ratio of the addition amount of the infrared absorbing organic compound is more than 50/50 in the above-described weight ratio, the light near the wavelength of 550 nm, which is a wavelength region that greatly contributes to the calculation of the visible light transmittance by the infrared absorbing organic compound. As a result, the visible light transmittance is reduced. For this reason, when the visible light transmittance is combined, the heat shielding property is deteriorated, which is not preferable.
  • Polyvinyl acetal resin As the polyvinyl acetal resin used for the heat ray shielding film according to the present invention, a polyvinyl butyral resin is preferable. Further, in consideration of the physical properties of the heat ray shielding film, a plurality of types of polyvinyl acetal resins having different degrees of acetalization may be used in combination. Furthermore, a copolyvinyl acetal resin obtained by reacting a plurality of types of aldehydes in combination during acetalization can also be preferably used. From this viewpoint, the preferable lower limit of the degree of acetalization of the polyvinyl acetal resin is 60%, and the upper limit is 75%.
  • the polyvinyl acetal resin can be prepared by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol is usually obtained by saponifying polyvinyl acetate. Generally, polyvinyl alcohol having a saponification degree of 80 to 99.8 mol% is used.
  • the preferable minimum of the polymerization degree of the said polyvinyl alcohol is 200, and an upper limit is 3000.
  • the degree of polymerization is 200 or more, resistance to penetration of the manufactured heat ray shielding laminated transparent base material is maintained, and safety is maintained.
  • it is 3000 or less the moldability of the resin film is maintained, the rigidity of the resin film is also maintained in a preferable range, and the workability is maintained.
  • the aldehyde is not particularly limited, and in general, aldehydes having 1 to 10 carbon atoms such as n-butyraldehyde, isobutyraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, acetaldehyde and the like are used. It is done. Of these, n-butyraldehyde, n-hexylaldehyde, and n-valeraldehyde are preferable, and butyraldehyde having 4 carbon atoms is more preferable.
  • Plasticizer used for the heat ray shielding film mainly composed of the polyvinyl acetal resin according to the present invention includes a plasticizer that is a compound of a monohydric alcohol and an organic acid ester, and a polyhydric alcohol organic acid ester.
  • a plasticizer that is a compound of a monohydric alcohol and an organic acid ester
  • a polyhydric alcohol organic acid ester examples include ester plasticizers such as compounds, and phosphoric acid plasticizers such as organic phosphate plasticizers.
  • Any plasticizer is preferably liquid at room temperature.
  • a plasticizer that is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferred.
  • the ester compound synthesized from the polyhydric alcohol and fatty acid is not particularly limited.
  • glycol such as triethylene glycol, tetraethylene glycol, tripropylene glycol, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptyl
  • glycol ester compounds obtained by reaction with monobasic organic acids such as acids, n-octylic acid, 2-ethylhexylic acid, pelargonic acid (n-nonyl acid), and decyl acid.
  • ester compounds of tetraethylene glycol, tripropylene glycol, and the above-mentioned monobasic organic are also included.
  • fatty acid esters of triethylene glycol such as triethylene glycol dihexanate, triethylene glycol di-2-ethylbutyrate, triethylene glycol dioctanoate, and triethylene glycol di-2-ethylhexanate are suitable. is there.
  • the fatty acid ester of triethylene glycol has various properties such as compatibility with polyvinyl acetal and cold resistance in a well-balanced manner, and is excellent in processability and economy.
  • triethylene glycol di-2-ethylhexanate, triethylene glycol di-2-ethylbutyrate, and tetraethylene glycol di-2-ethylhexanate are preferable.
  • Adhesive strength adjusting agent It is also preferable to add an optional adhesive strength adjusting agent to the heat ray shielding film according to the present invention.
  • the said adhesive force regulator is not specifically limited, An alkali metal salt and / or an alkaline-earth metal salt are used suitably.
  • the acid which comprises the said metal salt is not specifically limited, For example, inorganic acids, such as carboxylic acids, such as octyl acid, hexyl acid, butyric acid, acetic acid, formic acid, or hydrochloric acid, nitric acid, are mentioned.
  • a carboxylic acid magnesium salt having 2 to 16 carbon atoms and a potassium carboxylate salt having 2 to 16 carbon atoms are preferable.
  • the carboxylic acid magnesium salt or potassium salt of the organic acid having 2 to 16 carbon atoms is not particularly limited, and examples thereof include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutanoate, and 2-ethylbutane. Potassium acid, magnesium 2-ethylhexanoate, potassium 2-ethylhexanoate and the like are preferably used.
  • adhesive strength modifiers may be used alone or in combination of two or more.
  • sodium, potassium, magnesium, calcium, or cerium carboxylate is used as an adhesive strength modifier, the action as an original adhesive strength modifier and the above-described improved weather resistance of the composite tungsten oxide fine particles are improved. It can also have an effect.
  • the heat-ray shielding film according to the present invention may further contain general additives as desired.
  • general additives for example, azo dyes, cyanine dyes, quinoline dyes, perylene dyes, carbon black, etc., which are generally used for coloring thermoplastic resins to give an arbitrary color tone as desired. It may be added.
  • a compound such as a dye or a pigment.
  • the selective wavelength absorbing material may have a high transmittance in the ultraviolet region, and when combined with an ultraviolet shielding agent, a higher heat ray shielding effect can be obtained.
  • Examples of the ultraviolet screening agent include hydroxybenzophenone-based, salicylic acid-based, HALS-based, triazole-based, triazine-based organic ultraviolet absorbers, and inorganic ultraviolet absorbers such as zinc oxide, titanium oxide, and cerium oxide.
  • a coupling agent, a surfactant, an antistatic agent, and the like can be added.
  • the composite tungsten oxide fine particles and the dispersing agent described above are dispersed in a part of the plasticizer added to the polyvinyl acetal resin to obtain a composite.
  • the solid solvent is removed by removing the organic solvent. A composite tungsten oxide fine particle dispersion in which the composite tungsten oxide fine particles are dispersed therein is produced.
  • plasticizer dispersion liquid of composite tungsten oxide fine particles The composite tungsten oxide fine particles and the dispersant are added to and mixed with the plasticizer, and the composite tungsten oxide fine particles are plasticized using a general dispersion method.
  • An agent dispersion can be obtained. Specifically, a dispersion method such as a bead mill, a ball mill, a sand mill, or ultrasonic dispersion can be used.
  • an organic solvent having a boiling point of 120 ° C. or lower may be added as desired.
  • the organic solvent those having a boiling point of 120 ° C. or less are preferably used. If the boiling point is 120 ° C. or lower, it is easy to remove by a drying step, which is a subsequent step, particularly by drying under reduced pressure. As a result, removal in the reduced-pressure drying step proceeds rapidly, contributing to the productivity of the composite tungsten oxide fine particle-containing composition. Furthermore, since the vacuum drying process proceeds easily and sufficiently, it can be avoided that an excess organic solvent remains in the composite tungsten oxide fine particle-containing composition according to the present invention.
  • the method of uniformly dispersing the composite tungsten oxide fine particles in the organic solvent can be arbitrarily selected from general methods. As specific examples, methods such as a bead mill, a ball mill, a sand mill, and ultrasonic dispersion can be used.
  • a method for removing the organic solvent from the composite tungsten oxide fine particle-containing dispersion a method of drying under reduced pressure is preferable. Specifically, the composite tungsten oxide fine particle-containing dispersion is dried under reduced pressure while stirring to separate the composite tungsten oxide fine particle-containing composition and the organic solvent component.
  • the apparatus used for drying under reduced pressure include a vacuum stirring type dryer, but any apparatus having the above functions may be used, and the apparatus is not particularly limited.
  • the pressure of the pressure reduction of a drying process is selected suitably.
  • the removal efficiency of the solvent is improved, and the composite tungsten oxide fine particle-containing composition is not exposed to high temperature for a long time, so that aggregation of dispersed fine particles does not occur. preferable. Furthermore, productivity is increased, and it is easy to collect the evaporated organic solvent, which is preferable from the environmental consideration.
  • the plasticizer dispersion liquid of the composite tungsten oxide fine particles described above, or the composite tungsten oxide fine particles, the dispersant, and the plasticizer have a boiling point of 120 ° C. or less.
  • a composite tungsten oxide fine particle dispersion in which the concentration of the heat ray-shielding tungsten oxide fine particles is 50% by mass or less is produced using a general dispersion method.
  • the concentration of the composite tungsten oxide fine particles in the plasticizer is preferably 50% by mass or less. If the concentration of the composite tungsten oxide fine particles in the plasticizer is 50% by mass or less, the fine particles are hardly aggregated, easily dispersed, a sudden increase in viscosity can be avoided, and handling is easy.
  • a method of uniformly dispersing the composite tungsten oxide fine particles in the plasticizer can be arbitrarily selected from general methods. As a specific example, after obtaining a dispersion containing composite tungsten oxide fine particles, the organic solvent is removed by a known method, so that the composite tungsten oxide fine particles are dispersed in a solid dispersant. A dispersion can also be obtained.
  • Heat ray shielding laminated transparent base material The heat ray shielding laminated transparent base material using the heat ray shielding film according to the present invention has various forms.
  • a heat ray shielding laminated inorganic glass using inorganic glass as a transparent substrate is obtained by laminating and integrating a plurality of opposing inorganic glasses that are sandwiched by the heat ray shielding film according to the present invention by a known method. can get.
  • the obtained heat-shielding laminated inorganic glass can be used mainly as an inorganic glass for the front of an automobile or a window of a building.
  • the structure which uses the heat ray shielding film concerning this invention and the infrared rays reflective film mentioned later together as a heat ray shielding film, and makes it a heat ray shielding laminated transparent base material is also preferable.
  • the infrared reflective film is sandwiched between a heat ray shielding film and a transparent PVB resin film to be integrated into a multilayer film.
  • the obtained multilayer film is sandwiched between a plurality of opposing inorganic glasses and laminated and integrated by a known method to obtain a heat-shielding laminated inorganic glass.
  • the heat shielding characteristics of the heat-shielding laminated transparent base material according to the present invention are indicated by the solar radiation transmittance with respect to the visible light transmittance.
  • the solar radiation transmittance is preferably 32.5% or less, more preferably 31% or less, and further preferably 30% or less.
  • the heat ray shielding laminated transparent base material according to the present invention when used for a window material such as a windshield of an automobile, a high heat ray shielding ability is required while satisfying the transmittance of 70% or more stipulated by the Road Transport Vehicle Law. It is because it is said.
  • the solar radiation transmittance of the heat-shielding laminated transparent base material is 32.5% or less, the power consumption of the air conditioner when the outside air temperature is 30 ° C or higher is compared with the case where ordinary laminated glass is installed. Reduced by more than 5%.
  • a transparent resin is used as a transparent substrate, and it is used in the same manner as the above inorganic glass, or in combination with the above inorganic glass, and a heat ray shielding film is sandwiched between opposing transparent substrates, so that the heat ray shielding transparent A substrate can be obtained.
  • the application of the heat ray shielding laminated transparent base material is the same as that of the heat ray shielding laminated inorganic glass described above.
  • the heat ray shielding film according to the present invention can be used alone, or the heat ray shielding film according to the present invention can be used on one side or both sides of a transparent substrate such as inorganic glass or transparent resin. Is possible.
  • the infrared reflective film used together with the heat ray shielding film according to the present invention described above will be described.
  • the visible light region hardly absorbs sunlight, specifically the near infrared region, specifically From the viewpoint of the heat ray shielding function, it is preferable to reflect only the wavelength range of 800 nm to 1200 nm.
  • the optical properties of the infrared film are preferably a visible light transmittance of 85% or more and a solar reflectance of 18% or more, and a visible light transmittance of 88% or more and a solar reflectance of 21% or more. More preferred.
  • the infrared reflective film according to the present invention transmits electromagnetic waves in the wavelength region used for mobile phones and ETC. Those are preferred. Therefore, a film with a resin multilayer film that transmits electromagnetic waves is preferable to a film with metal film that has conductivity and does not transmit the electromagnetic waves.
  • the composite tungsten oxide fine particles together with a selected wavelength absorbing material having a transmission profile with a wavelength 550 nm transmittance of 90% or more and a wavelength 450 nm transmittance of 40% or less in a predetermined ratio, Compared with the case where the composite tungsten oxide fine particles are used alone, higher heat ray shielding characteristics can be exhibited.
  • the present invention will be described more specifically with reference to examples.
  • the present invention is not limited to the following examples.
  • the powder color (10 ° field of view, light source D65) of the composite tungsten oxide fine particles in each example, the light transmittance at a wavelength of 450 nm, the light transmittance at a wavelength of 550 nm, and the heat ray of the selected wavelength absorbing material plasticizer dispersion The visible light transmittance and solar transmittance of the shielded laminated inorganic glass were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd.
  • the said solar transmittance is an parameter
  • the haze value was measured based on JISK7105 using HR-200 manufactured by Murakami Color Research Laboratory Co., Ltd.
  • the said haze value is a parameter
  • the mixed powder was heated while supplying 5% H 2 gas with N 2 gas as a carrier and subjected to reduction treatment at a temperature of 600 ° C. for 1 hour, and then calcined at 800 ° C. for 30 minutes in an N 2 gas atmosphere.
  • composite tungsten oxide fine particles hereinafter abbreviated as “fine particles a”) were obtained.
  • the composition formula of the fine particles a was Cs 0.33 WO 3 , and the powder colors were L * of 35.2845, a * of 1.4873, and b * of ⁇ 5.2114.
  • Dispersant a 10 mass of an acrylic dispersant (amine value 48 mg KOH / g, decomposition temperature 250 ° C.) having 20 mass% of fine particles a and a group containing amine as a functional group. %, 70% by mass of triethylene glycol di-2-ethylhexanate (hereinafter abbreviated as plasticizer a) was weighed. These were loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and pulverized and dispersed for 10 hours to obtain a plasticizer dispersion of composite tungsten oxide fine particles (hereinafter abbreviated as “fine particle dispersion A”). Here, the dispersion average particle diameter of the tungsten oxide fine particles in the fine particle dispersion A was measured with a Nikkiso Microtrac particle size distribution meter and found to be 24 nm.
  • a selective wavelength absorbing material plasticizer dispersion (hereinafter abbreviated as a selective wavelength absorbing material dispersion ⁇ ).
  • the selected wavelength-absorbing material dispersion ⁇ is diluted with a plasticizer a to a predetermined concentration, and placed in a glass cell. The optical characteristics are measured.
  • the transmittance of light having a wavelength of 450 nm is 5.3%, and light having a wavelength of 550 nm is obtained.
  • the transmittance was 92.8. Prior to the measurement, only the plasticizer a was added to the glass cell, and the baseline was measured.
  • a predetermined amount of the fine particle dispersion A and the selective wavelength absorbing material dispersion ⁇ are added to a mixture obtained by mixing 30% by mass of the plasticizer a and 70% by mass of the polyvinyl butyral resin, and the concentration of the fine particles a in the mixture is 0.15.
  • the composition A for manufacturing a heat ray shielding film was obtained by setting the mass concentration of the material of the selective wavelength absorbing material to 0.0079 mass%.
  • the composition A for producing the heat ray shielding film was kneaded at 200 ° C. with a twin-screw extruder, and the heat ray shielding film according to Example 1 was obtained as a sheet having a thickness of 0.7 mm by extrusion calendering from a T die. .
  • the obtained heat ray shielding film according to Example 1 was sandwiched between two opposing inorganic glasses and bonded and integrated by a known method to obtain a heat ray shielding laminated transparent base material according to Example 1.
  • the optical properties of the heat-shielding laminated transparent base material were as follows: the solar radiation transmittance was 41.4% and the haze value was 0.6% when the visible light transmittance was 78.0%. The results are shown in Table 1.
  • Examples 2 to 33 Except that the concentration of the fine particles a in the composition A for producing a heat ray shielding film described in Example 1 and the type and concentration of the selective wavelength absorbing material were changed, Examples 2 to A heat ray shielding laminated transparent base material according to No. 33 was obtained. Then, the optical characteristics of the heat ray shielding laminated transparent base materials according to Examples 2 to 33 were measured in the same manner as in Example 1. Table 1 shows the concentration of the fine particles a, the type and the concentration of the selective wavelength absorbing material in Examples 2 to 33. Furthermore, Table 1 shows the measurement results of optical characteristics of the heat-shielding transparent substrates according to Examples 2 to 33.
  • the selective wavelength absorbing material As the selective wavelength absorbing material, the above-described quinophthalone compound was used in Examples 2 to 16, the nickel azo compound was used in Examples 17 to 28, and the isoindoline compound was used in Example 29.
  • a quinoxaline compound was used, in Example 31, a condensed diazo compound was used, in Example 32, an isoindolinone compound was used, and in Example 33, a bismuth vanadate compound was used.
  • Comparative Examples 1 to 4 were carried out in the same manner as in Example 1 except that the concentration of the fine particles a in the composition A for producing a heat ray shielding film described in Example 1 was changed and no selective wavelength absorbing material was added. Such a heat ray shielding laminated transparent base material was obtained. Then, the optical characteristics of the heat ray shielding laminated transparent base materials according to Comparative Examples 1 to 4 were measured in the same manner as in Example 1. The concentrations of the fine particles a in Comparative Examples 1 to 4 are shown in Table 2. Further, Table 2 shows the measurement results of optical characteristics of the heat-shielding laminated transparent base materials according to Comparative Examples 1 to 4.
  • Comparative Examples 5 to 9 were performed in the same manner as in Example 1 except that the concentration of fine particles a in the composition A for producing a heat ray shielding film described in Example 1 and the type and concentration of the selective wavelength absorbing material were changed. Such a heat ray shielding laminated transparent base material was obtained. The results are shown in Table 2. As the selective wavelength absorbing material, a benzimidazolone compound was used in Comparative Example 5, and the quinophthalone compound described above was used in Comparative Examples 6 to 9.
  • Rb-added composite tungsten oxide fine particles (hereinafter abbreviated as fine particles b) were obtained.
  • the composition formula of the fine particles b was Rb 0.33 WO 3 , and the powder color L * was 36.3938, a * was ⁇ 0.2385, and b * was ⁇ 3.8318.
  • fine particle dispersion B a plasticizer dispersion of Rb-added composite tungsten oxide fine particles (hereinafter abbreviated as fine particle dispersion B). It was.
  • the dispersion average particle diameter of the Rb-added tungsten oxide fine particles in the fine particle dispersion B was 28 nm as measured with a Nikkiso Microtrac particle size distribution meter.
  • a predetermined amount of the fine particle dispersion B and the selective wavelength absorbing material dispersion ⁇ are added to a mixture obtained by mixing 30% by mass of the plasticizer a and 70% by mass of the polyvinyl butyral resin, and the concentration of the fine particles b in the mixture is 0.25%. %,
  • the concentration of the selected wavelength absorbing material was 0.0278% by mass, and a composition B for producing a heat ray shielding film was obtained.
  • composition B for production of the heat ray shielding film was kneaded at 200 ° C. with a twin screw extruder, extruded from a T die, and a heat ray shielding film according to Example 34 was obtained as a 0.7 mm thick sheet by a calender roll method.
  • the obtained heat ray shielding film was sandwiched between two opposing inorganic glasses and laminated together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 34. And the optical characteristic of the heat ray shielding laminated transparent base material concerning the said Example 34 was measured similarly to Example 1.
  • FIG. 34 The obtained heat ray shielding film was sandwiched between two opposing inorganic glasses and laminated together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 34. And the optical characteristic of the heat ray shielding laminated transparent base material concerning the said Example 34 was measured similarly to Example 1.
  • the optical properties of the heat-shielding laminated transparent base material were as follows: the solar radiation transmittance was 28.9% and the haze value was 0.6% when the visible light transmittance was 70.9%.
  • Example 35 to 39 The heat ray shielding laminated transparent according to Examples 35 to 39 was changed in the same manner as in Example 34 except that the type and concentration of the selective wavelength absorbing material in Composition B for manufacturing a heat ray shielding film described in Example 34 were changed. A substrate was obtained. Then, the optical characteristics of the heat ray shielding laminated transparent base materials according to Examples 35 to 39 were measured in the same manner as in Example 34. Table 2 shows the concentration of the fine particles b, the type and concentration of the selected wavelength absorbing material in Examples 35 to 39. Furthermore, Table 2 shows the optical characteristic measurement results of the heat ray shielding laminated transparent base materials according to Examples 35 to 39.
  • Example 35 As the selective wavelength absorbing material, a nickel azo compound is used in Example 35, an isoindoline compound is used in Example 36, a quinoxaline compound is used in Example 37, and a condensed diazo compound is used in Example 38. In Example 39, an isoindolinone compound was used.
  • Comparative Example 10 A heat ray shielding laminated transparent base material according to Comparative Example 10 was obtained in the same manner as Example 34 except that the selective wavelength absorbing material was not added. The results are shown in Table 2.
  • Example 40 To the composition in which 30% by mass of the plasticizer a and 70% by mass of the polyvinyl butyral resin described in Example 1 were mixed, Nippon Carlit (as the infrared-absorbing organic compound with a predetermined amount of the fine particle dispersion A, the selective wavelength absorbing material dispersion ⁇ , and Co., Ltd. diimonium compound CIR-RL was added, the concentration of fine particles a in the mixture was 0.125% by mass, the material concentration of the selective wavelength absorbing material was 0.0139% by mass, and the infrared absorbing organic compound was 0.1% by mass.
  • the composition C for production of a heat ray shielding film was obtained with 0139 mass%.
  • the composition C for production of this heat ray shielding film was kneaded at 200 ° C. with a twin screw extruder, extruded from a T die, and a heat ray shielding film according to Example 40 was obtained as a sheet having a thickness of 0.7 mm by a calender roll method.
  • the obtained heat ray shielding film was sandwiched between two opposing inorganic glasses and laminated together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 40. And the optical characteristic of the heat ray shielding laminated transparent base material which concerns on the said Example 40 was measured similarly to Example 1.
  • FIG. 40 The obtained heat ray shielding film was sandwiched between two opposing inorganic glasses and laminated together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 40. And the optical characteristic of the heat ray shielding laminated transparent base material which concerns on the said Example 40 was measured similarly to Example 1.
  • the optical characteristics of the heat-shielded transparent base material were as follows.
  • the solar light transmittance was 37.6% and the haze value was 0.6% when the visible light transmittance was 77.5%.
  • Examples 41 to 51 Implemented in the same manner as in Example 40 except that the type and concentration of the selective wavelength absorbing material, the type and concentration of the infrared-absorbing organic compound in the composition C for producing a heat ray shielding film described in Example 40 were changed. Heat-shielded laminated transparent substrates according to Examples 41 to 51 were obtained. Then, the optical characteristics of the heat ray shielding laminated transparent base materials according to Examples 41 to 51 were measured in the same manner as in Example 40. Table 2 shows the concentrations of the fine particles a, the types and concentrations of the selective wavelength absorbing materials, and the types and concentrations of the infrared absorbing organic compounds in Examples 41 to 51. Furthermore, Table 2 shows the optical characteristic measurement results of the heat ray shielding laminated transparent base materials according to Examples 41 to 51.
  • the selective wavelength absorbing material the quinophthalone compound described above was used in Examples 41 to 43, 48, 50 and 51, and the nickel azo compound was used in Examples 44 to 47 and 49.
  • the infrared absorbing organic compound the above-described diimonium compound was used in Examples 41 to 47, 50, and 51, and the phthalocyanine compound was used in Examples 48 and 49.
  • Example 52 Infrared reflective film (Scotch Tint S90 manufactured by Sumitomo 3M Co., Ltd .: visible light transmittance 89%, solar reflectance 22%) is sandwiched between the heat ray shielding film obtained in Example 5 and a transparent PVB intermediate film, and two more sheets Were bonded together by a known method to obtain a heat ray shielding laminated transparent base material according to Example 52. And the optical characteristic of the heat ray shielding laminated transparent base material which concerns on the said Example 52 was measured similarly to Example 1. FIG. During the measurement, optical characteristics were measured from the glass surface in contact with the transparent PVB intermediate film.
  • Table 3 shows the concentration of the fine particles a, the type and concentration of the selected wavelength absorbing material, and the type and concentration of the infrared absorbing organic compound in Example 52. Furthermore, Table 3 shows the measurement results of optical characteristics of the heat-shielding transparent substrate according to Example 52.
  • Example 53 to 55 Using the infrared reflective film described in Example 52 and the heat ray shielding film obtained in Examples 6 to 8, the same operation as in Example 52 was performed, and the heat ray shielding laminated transparent base according to Examples 53 to 55 was performed. The material was obtained. The optical characteristics of the heat ray shielding laminated transparent base materials according to Examples 53 to 55 were measured in the same manner as in Example 1. Table 3 shows the concentration of the fine particles a, the type and concentration of the selective wavelength absorbing material, and the type and concentration of the infrared absorbing organic compound in Examples 53 to 55. Furthermore, Table 3 shows the measurement results of optical characteristics of the heat-shielding transparent substrates according to Examples 53 to 55.
  • FIG. 1 is a graph in which the vertical axis represents solar transmittance and the horizontal axis represents visible light transmittance.
  • the weight ratio of the selective wavelength absorbing material to the composite tungsten oxide fine particles is 99/1. It was found that by setting the ratio in the range of ⁇ 70/30, higher heat shielding performance can be obtained as compared with the case where the composite tungsten oxide fine particles are used alone as shown in Comparative Examples 1 to 4.
  • Examples 17 to 28 a lower solar transmittance can be obtained by using the selective wavelength absorbing material in combination with the composite tungsten oxide fine particles.
  • FIG. 2 is a graph similar to FIG. 1.
  • the data of Examples 17 to 20 in which the weight ratio A of the composite tungsten oxide fine particles a / the selective wavelength absorbing material ⁇ nickel azo compound> is 95/5 is ⁇ ⁇ ⁇ .
  • the data of Examples 21 to 24, which are 90/10, are plotted with- ⁇ -
  • the data of Examples 25 to 28, which are 80/20 are plotted with - ⁇ -
  • the comparative example is 100/0.
  • Data of 1 to 4 are plotted with-*-.
  • the weight ratio of the selective wavelength absorbing material to the composite tungsten oxide fine particles is in the range of 99/1 to 70/30.
  • Comparative Examples 1 to 4 it was found that higher heat shielding performance can be obtained as compared with the case where the composite tungsten oxide fine particles are used alone.
  • FIG. 3 is a graph similar to FIG. 1, in which the data of Example 29 in which the selected wavelength absorbing material is an isoindoline compound is plotted with ⁇ ⁇ ⁇ , and the data of Example 30 with a quinoxaline compound is plotted with ⁇ ⁇ ⁇ .
  • Example 31 which is a condensed diazo compound is plotted by - ⁇ -
  • the data of Example 32 which is an isoindolinone compound is --
  • the data of Example 33 which is a bismuth vanadate compound is- ⁇ -
  • the data of Comparative Example 5 which is a benzimidazolone compound is plotted by ⁇ + ⁇
  • the data of Comparative Examples 1 to 4 in which these selective wavelength absorbing materials are not added are plotted by ⁇ * ⁇ .
  • a selected wavelength absorbing material having a transmission profile with a light transmittance of 90% or more at a wavelength of 550 nm and a light transmittance of 40% or less at a wavelength of 450 nm, and the composite tungsten oxide fine particles. It has been found that the combined use of the composite tungsten oxide fine particles provides higher heat shielding performance as compared with the case where the composite tungsten oxide fine particles are used alone.
  • the transmission profile of the selected wavelength absorbing material used is such that the transmittance of light with a wavelength of 550 nm is 90% or less, and the transmittance of light with a wavelength of 450 nm is 40% or more, Since it is out of the range defined in the present invention, the heat shielding characteristics are reduced even when the composite tungsten oxide fine particles are used alone.
  • Examples 34 to 39 a lower solar transmittance was obtained by using the selective wavelength absorbing material together with the Rb-added composite tungsten oxide fine particles. Further, a selective wavelength absorbing material having a transmission profile with a light transmittance of 90% or more at a wavelength of 550 nm and a light transmittance of 40% or less at a wavelength of 450 nm, and the Rb-doped composite tungsten oxide fine particles, As a result of the combined use, it was found that higher heat shielding performance can be obtained as compared with the case where the Rb-added composite tungsten oxide fine particles described in Comparative Example 10 are used alone.
  • Examples 40 to 47 a lower solar transmittance was obtained by using the selected wavelength absorbing material and the infrared absorbing organic compound in combination with the composite tungsten oxide fine particles.
  • FIG. 4 shows a graph similar to FIG. 1 in which the weight ratio A of (composite tungsten oxide fine particles / selective wavelength absorbing material ⁇ quinophthalone compound>) is 90/10, and (composite tungsten oxide fine particles / infrared absorbing organic compound).
  • the composite tungsten oxide fine particles are used alone, or the selected wavelength absorbing material and the composite tungsten oxide are used. It has been found that higher heat shielding performance can be obtained as compared with the case of using physical particles together.
  • Examples 48 to 51 the selective wavelength absorbing material and the infrared absorbing organic compound were used in combination with the composite tungsten oxide fine particles.
  • the combined use resulted in lower solar transmittance than Comparative Examples 1 to 4 where the combined use was not performed.
  • the selected wavelength absorbing material and the infrared absorbing organic compound in combination with the composite tungsten oxide fine particles higher heat shielding performance can be obtained as compared with the case where the composite tungsten oxide fine particles are used alone. It has been found.
  • Example 48 the weight ratio A of (composite tungsten oxide fine particles / selective wavelength absorbing material ⁇ quinophthalone compound>) is 90/10, and (composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ phthalocyanine series). Compound)) is 90/10, and (weight of composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ phthalocyanine compound>) is 90/10.
  • Example 49 (complex tungsten oxidation) The weight ratio A of the fine particles / selective wavelength absorbing material (nickel azo compound)) is 90/10, and the weight ratio B of the (composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ phthalocyanine compound>) is 90/10.
  • Example 50 (composite tungsten oxide fine particles / selective wavelength absorbing material ⁇ kinophthalonization> The weight ratio A of the compound>) is 90/10, and the weight ratio B of the (composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ diimonium compound>) is 50/50. Weight ratio A of the fine particles / selective wavelength absorbing material ⁇ quinophthalone compound>) is set to 90/10, and the weight ratio B of (composite tungsten oxide fine particles / infrared absorbing organic compound ⁇ diimonium compound>) is set to 95/5. .
  • Examples 52 to 55 the selective wavelength absorbing material and the infrared reflective film were used in combination with the composite tungsten oxide fine particles.
  • solar radiation transmittances were lower than those of Comparative Examples 1 to 4 where the combined use was not performed.
  • the combined use of the selective wavelength absorbing material, the infrared reflective film, and the composite tungsten oxide fine particles may provide higher heat shielding performance than when the composite tungsten oxide fine particles are used alone. found.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリビニルアセタール樹脂を主成分としながら、優れた遮熱特性を発揮する熱線遮蔽膜、及び当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材を提供する。熱線遮蔽機能を有する化合物と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを含有する熱線遮蔽膜であって、前期選択波長吸収材料は、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が40%以下の透過プロファイルを有することを特徴とする熱線遮蔽膜を提供する。

Description

熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物
 本発明は、可視光透過性が良好でかつ優れた熱線遮蔽機能を有する熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車に関する。
 自動車あるいは建造物などの窓材に用いられる安全ガラスとして、対向する複数枚(例えば2枚)の板ガラス間にポリビニルアセタール樹脂等を含む中間層を挟み込んで合わせガラスを構成した透明基材が用いられている。さらに、当該中間層に熱線遮蔽機能を持たせることにより入射する太陽エネルギーを遮断して、冷房負荷や人の熱暑感の軽減を目的とした透明基材が提案されている。
 例えば、特許文献1には、2枚の対向する板ガラス間に0.1μm以下の微細な粒径の酸化錫あるいは酸化インジウムから成る熱線遮蔽性金属酸化物を含有する軟質樹脂層を挟んだ合わせガラスが開示されている。
 また、特許文献2には、少なくとも2枚の対向する板ガラスの間にSn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moといった金属、当該金属の酸化物、当該金属の窒化物、当該金属の硫化物、当該金属へのSbやFのドープ物、さらに、これらの複合物を分散した中間層を挟んだ合わせガラスが開示されている。
 また、特許文献3には、TiO2、ZrO2、SnO2、In23から成る微粒子と、有機ケイ素または有機ケイ素化合物から成るガラス成分とを、対向する透明板状部材の間に挟んだ自動車用窓ガラスが開示されている。
 さらに、特許文献4には、少なくとも2枚の対向する透明ガラス板状体の間に、3層から成る中間層を設け、当該中間層の第2層にSn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、当該金属の酸化物、当該金属の窒化物、当該金属の硫化物、当該金属へのSbやFのドープ物、または、これらの複合物を分散させ、第1層および第3層の中間層を樹脂層とした合わせガラスが開示されている。
 しかし、特許文献1~4に開示されている従来の合わせガラスは、いずれも高い可視光透過率が求められたときの熱線遮蔽機能が十分でない、という問題点が存在した。
 さらに、合わせガラスの熱線遮蔽機能の向上させる方法として、特許文献5には、金属酸化物半導体と近赤外吸収剤と紫外線吸収剤を透明な合成樹脂に混合してフィルム上に成型してなる紫外線赤外線遮蔽体について開示されている。
 一方、出願人は、熱線遮蔽機能を有する中間層を2枚の板ガラス間に存在させて成り、この中間層が、六ホウ化物微粒子単独、または、六ホウ化物微粒子とITO微粒子および/またはATO微粒子と、ビニル系樹脂とを含有する熱線遮蔽膜により構成された熱線遮蔽用合わせガラス、または、前記中間層が、少なくとも一方の板ガラスの内側に面する面上に形成された上記微粒子が含まれる熱線遮蔽膜と、上記2枚の板ガラス間に介在されるビニル系樹脂を含有する熱線遮蔽膜とで構成された熱線遮蔽用合わせガラスを特許文献6として開示している。
 特許文献6に記載したように、六ホウ化物微粒子単独、または、六ホウ化物微粒子とITO微粒子および/またはATO微粒子が、適用された熱線遮蔽用合わせガラスの光学特性は、可視光領域に透過率の極大を持つと共に、近赤外領域に強い吸収を発現して透過率の極小を持つ。この結果、当該熱線遮蔽用合わせガラスは、特許文献1~4に記載された従来の合わせガラスに比べて、可視光透過率70%以上のときの日射透過率が50%台となる迄、改善された。
 また、本発明者らは、ポリビニルアセタール樹脂を紫外線硬化樹脂に代替し、当該紫外線硬化樹脂に複合タングステン化合物を含有させた熱線遮蔽膜を中間層とした熱線遮蔽用合わせガラスを特許文献7として開示している。
 特許文献7に記載したように、当該熱線遮蔽用合わせガラスは、特許文献1~4および特許文献6に記載された従来の合わせガラスに比べて、可視光透過率70%以上のときの日射透過率が35%前後となる迄、改善された。
特開平8-217500号公報 特開平8-259279号公報 特開平4-160041号公報 特開平10-297945号公報 特開2004-37768号公報 特開2001-89202号公報 特開2010-202495号公報
 しかしながら、本発明者らが更なる検討を行った結果、以下の課題が見出された。
 第1の課題は、特許文献1~5に記載された従来の技術に係る合わせガラスでは、上述したように、いずれも高い可視光透過率が求められたときの熱線遮蔽機能が十分でないことである。
 さらに、市場では、自動車内あるいは建造物内の快適性向上、あるいは自動車のエアコン負荷軽減による燃費向上、建造物内でのエアコン負荷軽減による省エネルギー化の観点から更なる遮熱機能の高性能化を要望する声が高い。当該観点からすると、特許文献6、7に記載された熱線遮蔽用合わせガラスにおいても、未だ改善の余地を有していた。
 本発明は、上記課題に着目してなされたものである。そして、その解決しようとする課題は、ポリビニルアセタール樹脂を主成分としながら、優れた遮熱特性を発揮する熱線遮蔽膜、当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車を提供することである。
 本発明者らは上記課題を解決するため、高い可視光透過率を維持させつつ熱線遮蔽特性を向上させる方法について鋭意研究を行った。
 本発明者らは、JIS R 3106に記載されている可視光透過率算出に使用される重価係数の波長分布に着目した。具体的には、可視光透過率算出に使用される重価係数の波長分布と、短波長領域における日射エネルギーとを詳細に研究した。そして、可視光線の短波長領域を適宜に遮蔽することで、可視光透過率を高く維持しつつ日射透過率のみを低下させることが可能であるとの知見を得た。
 具体的には、可視光透過率の低下を少しでも防ぐため、また、熱線遮蔽合わせ透明基材が黄色に着色しないように、従来技術における、可視光領域をできるだけカットしないような紫外線遮蔽剤を用いるという常識にも拘わらず、波長450nm付近の光を強く吸収する一方、可視光透過率算出に大きく寄与する領域である波長550nm付近には吸収を持たない材料を、熱線遮蔽機能を有する化合物と併存させるという構成に想到し、本発明を完成したものである。
[規則91に基づく訂正 03.12.2012] 
 すなわち、上述の課題を解決する第1の発明は、
 熱線遮蔽機能を有する化合物と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを含有する熱線遮蔽膜であって、前期選択波長吸収材料は、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が40%以下の透過プロファイルを有し、前記熱線遮蔽機を有する化合物と前記選択波長吸収材料の重量比が(熱線遮蔽機能を有する化合物/選択波長吸収材料)=99/1~70/30の範囲であることを特徴とする熱線遮蔽膜である。
 第2の発明は、
 前記熱線遮蔽機能を有する化合物が、一般式MyWOZ(但し、Mは、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される1種類以上の元素、0.1≦y≦0.5、2.2≦z≦3.0)で示され、かつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子であることを特徴とする第1の発明に記載の熱線遮蔽膜である。
 第3の発明は、
 前記複合タングステン酸化物微粒子が、平均粒径40nm以下の微粒子であることを特徴とする第2の発明に記載の熱線遮蔽膜である。
 第4の発明は、
 前記選択波長吸収材料が、イソインドリン化合物、イソインドリノン化合物、キノキサリン化合物、キノフタロン化合物、縮合ジアゾ化合物、ニッケルアゾ化合物、バナジン酸ビスマス化合物から選択される少なくとも1種であることを特徴とする第1の発明に記載の熱線遮蔽膜である。
 第5の発明は、
 前記選択波長吸収材料が、キノフタロン化合物、ニッケルアゾ化合物から選択される少なくとも1種であることを特徴とする第1の発明に記載の熱線遮蔽膜である。
 第6の発明は、
 前期選択波長吸収材料が、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が15%以下の透過プロファイルを有することを特徴とする第1から第5の発明のいずれかに記載の熱線遮蔽膜である。
 第7の発明は、
 前記熱線遮蔽膜が、さらに赤外線吸収性有機化合物を含むことを特徴とする第1から第6の発明のいずれかに記載の熱線遮蔽膜である。
 第8の発明は、
 前記赤外線吸収性有機化合物が、フタロシアニン化合物、ナフタロシアニン化合物、イモニウム化合物、ジイモニウム化合物、ポリメチン化合物、ジフェニルメタン化合物、トリフェニルメタン化合物、キノン化合物、アゾ化合物、ペンタジエン化合物、アゾメチン化合物、スクアリリウム化合物、有機金属錯体、シアニン化合物から選択される少なくとも1種であることを特徴とする第7の発明に記載の熱線遮蔽膜である。
 第9の発明は、
 前記赤外線吸収性有機化合物が、フタロシアニン化合物、ジイモニウム化合物から選択される少なくとも1種であることを特徴とする第8の発明に記載の熱線遮蔽膜である。
 第10の発明は、
 前記赤外線吸収性有機化合物と前記複合タングステン酸化物微粒子の重量比が(複合タングステン酸化物微粒子/赤外線吸収性有機化合物)=95/5~50/50の範囲であることを特徴とする第7から第9の発明のいずれかに記載の熱線遮蔽膜である。
 第11の発明は、
 複数枚の透明基材間に、第1から第10の発明のいずれかに記載の熱線遮蔽膜が存在していることを特徴とする熱線遮蔽合わせ透明基材である。
 第12の発明は、
 複数枚の透明基材間に、さらに可視光透過率88%以上であり且つ日射反射率21%以上の赤外線反射フィルムが存在していることを特徴する第11の発明に記載の熱線遮蔽合わせ透明基材である。
 第13の発明は、
 前記透明基材の内、少なくとも1枚がガラスであることを特徴とする第11または第12の発明に記載の熱線遮蔽合わせ透明基材である。
 第14の発明は、
 JIS R 3106で算出される可視光透過率が70%以上であり、且つ日射透過率が32.5%以下であることを特徴とする第11から第13の発明のいずれかに記載の熱線遮蔽合わせ透明基材である。
 第15の発明は、
 第11から第14の発明のいずれかに記載の熱線遮蔽合わせ透明基材が、窓材として搭載されていることを特徴とする自動車である。
 第16の発明は、
 第11から第14の発明のいずれかに記載の熱線遮蔽合わせ透明基材が、窓材として使用されていることを特徴とする建造物である。
 本発明によれば、ポリビニルアセタール樹脂を主成分としながら、熱線遮蔽機能を有する化合物と、選択波長吸収材料とを併用することで、優れた光学的特性と高い耐候性とを発揮する熱線遮蔽膜を得ることが出来た。そして、熱線遮蔽膜を用いることで、優れた光学的特性と高い耐候性と優れた機械的特性とを発揮する熱線遮蔽合わせ透明基材を得ることが出来た。さらに、当該熱線遮蔽合わせ透明基材を窓材として自動車に搭載することで、夏場の車内温度上昇抑制が可能となった。また当該熱線遮蔽合わせ透明基材を窓材として建造物の開口部に使用することで、夏場の建造物内の温度上昇を抑制することが可能となった。
実施例1~16および比較例1~4、6~9に係る熱線遮蔽合わせ透明基材における可視光透過率と日射透過率との関係を示すグラフである。 実施例17~28および比較例1~4に係る熱線遮蔽合わせ透明基材における可視光透過率と日射透過率との関係を示すグラフである。 実施例29~33および比較例1~4、5に係る熱線遮蔽合わせ透明基材における可視光透過率と日射透過率との関係を示すグラフである。 実施例5~8、40~47および比較例1~4に係る熱線遮蔽合わせ透明基材における可視光透過率と日射透過率との関係を示すグラフである。
 以下、本発明の実施の形態について詳細に説明する。
 本発明に係る熱線遮蔽膜は、熱線遮蔽機能を有する化合物の微粒子、分散剤、選択波長吸収材料、所望により赤外線吸収性有機化合物、ポリビニルアセタール樹脂、可塑剤、所望により接着力調整剤、所望によりその他の添加物を含有している。
 本発明に係る熱線遮蔽膜は、熱線遮蔽機能を有する化合物の微粒子と分散剤とを、ポリビニルアセタール樹脂へ添加する可塑剤の一部に分散して、熱線遮蔽機能を有する化合物の微粒子分散液を得、得られた分散液と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを混練した後、押出成形法、カレンダー成形法等の公知の方法により、フィルム状に成形することによって製造することが出来る。
 また、本発明に係る熱線遮蔽膜は、熱線遮蔽機能を有する化合物の微粒子と分散剤とを一般的な有機溶剤に分散した分散液を得た後、その有機溶剤を除去することで固体の分散剤中に熱線遮蔽機能を有する化合物の微粒子が分散した状態の熱線遮蔽機能を有する化合物の微粒子分散体を得、得られた分散体と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを混練した後、押出成形法、カレンダー成形法等の公知の方法により、フィルム状に成形することによっても製造することが出来る。
 以下、本発明に係る熱線遮蔽膜の構成成分、熱線遮蔽膜、および、当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材について詳細に説明する。
 尚、本発明に係る熱線遮蔽機能を有する化合物の微粒子としては、複合タングステン酸化物微粒子や有機系赤外線遮蔽微粒子等が使用可能であるが、複合タングステン酸化物微粒子の使用が好ましい。そこで、以下の説明においては、熱線遮蔽機能を有する化合物の微粒子として、複合タングステン酸化物微粒子を用いた場合について説明する。尤も、有機系赤外線遮蔽微粒子等を用いた場合や、複合タングステン酸化物微粒子と有機系赤外線遮蔽微粒子等とを併用した場合も、複合タングステン酸化物微粒子の場合と同様に操作することで、熱線遮蔽膜、熱線遮蔽合わせ透明基材を製造することが出来る。
[1]熱線遮蔽膜の構成成分
 本発明に係る熱線遮蔽膜について、まず、その構成成分である熱線遮蔽機能を有する微粒子とその製造方法、分散剤、選択波長吸収材料、赤外線吸収性有機化合物、ポリビニルアセタール樹脂、可塑剤、接着力調整剤、その他の添加材について説明する。
 (1)熱線遮蔽機能を有する微粒子
 本発明に係る熱線遮蔽機能を有する微粒子の好ましい例は、複合タングステン酸化物微粒子である。当該複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm以上の光を大きく吸収するため、その透過色調はブルー系の色調となるものが多い。
 複合タングステン酸化物微粒子は、一般式MyWOZ(但し、Mは、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される1種類以上の元素、0.1≦y≦0.5、2.2≦z≦3.0)で表記され、かつ六方晶の結晶構造を有しているものであることが好ましい。
 以上説明した複合タングステン酸化物微粒子において、好ましい複合タングステン酸化物微粒子の例としては、Cs0.33WO3、Rb0.33WO3、K0.33WO3、Ba0.33WO3などを挙げることが出来る。尤も、y、zの値が上記の範囲に収まるものであれば、有用な熱線遮蔽特性を得ることができる。添加元素Mの添加量は、0.1以上0.5以下が好ましく、さらに好ましくは0.33付近である。これは六方晶の結晶構造から理論的に算出される値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。また、Zの範囲については、2.2≦z≦3.0が好ましい。これは、MyWOZで表記される複合タングステン酸化物材料においても、上述したWOxで表記されるタングステン酸化物材料と同様の機構が働くのに加え、z≦3.0においても、上述した元素Mの添加による自由電子の供給があるためである。尤も、光学特性の観点から、より好ましくは2.45≦z≦3.00である。
 当該複合タングステン酸化物微粒子の粒子径は、熱線遮蔽膜の使用目的によって適宜選定することができる。例えば、熱線遮蔽膜を透明性が求められる用途に使用する場合は、当該複合タングステン酸化物微粒子が40nm以下の分散粒子径を有していることが好ましい。当該複合タングステン酸化物微粒子が40nmよりも小さい分散粒子径を有していれば、散乱により光を完全に遮蔽することが無く、可視光領域の視認性を保持し、同時に効率よく透明性を保持することが出来るからである。
 本発明に係る熱線遮蔽膜や熱線遮蔽合わせ透明基材を、例えば自動車のフロントガラスのように、特に可視光領域の透明性を重視する用途に適用する場合は、さらに複合タングステン酸化物微粒子による散乱低減を考慮することが好ましい。当該さらなる散乱低減を考慮するときには、複合タングステン酸化物微粒子の分散粒子径を30nm以下、好ましくは25nm以下とするのが良い。
 この理由は、複合タングステン酸化物微粒子の分散粒子径が小さければ、幾何学散乱またはミー散乱による波長400nm~780nmの可視光線領域における光の散乱が低減されるからである。当該波長の光の散乱が低減することで、強い光が照射されたときに熱線遮蔽膜が曇りガラスのような外観となって、鮮明な透明性が失われるという事態を回避できる。
 これは、複合タングステン酸化物微粒子の分散粒子径が40nm以下になると、上述した幾何学散乱またはミー散乱が低減し、レイリー散乱領域になる為である。レイリー散乱領域では、散乱光が粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い散乱が低減し透明性が向上する。さらに、複合タングステン酸化物微粒子の分散粒子径が25nm以下になると、散乱光は非常に少なくなり好ましい。
 以上、説明したように、光の散乱を回避する観点からは、複合タングステン酸化物微粒子の分散粒子径は小さい方が好ましい。一方、複合タングステン酸化物微粒子の分散粒子径が1nm以上であれば、工業的な製造は容易である。
 また、熱線遮蔽膜に含まれる複合タングステン微粒子の量は、単位面積あたり0.2g/m2~2.5g/m2が望ましい。
 (2)熱線遮蔽機能を有する微粒子の製造方法
 一般式MYWOZ表記される複合タングステン酸化物微粒子は、タングステン化合物出発原料を不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して得ることができる。
 まず、タングステン化合物出発原料について説明する。
 タングステン化合物出発原料は、三酸化タングステン粉末、ニ酸化タングステン粉末、酸化タングステンの水和物粉末、六塩化タングステン粉末、タングステン酸アンモニウム粉末、または、六塩化タングステン粉末をアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、または、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選ばれたいずれか1種類以上であって、さらに元素Mを、元素単体または化合物の形態で含有するタングステン化合物を出発原料とすることが好ましい。
 ここで、各成分が分子レベルで均一混合した出発原料を製造するためには、各原料を溶液の形で混合することが好ましく、元素Mを含むタングステン化合物出発原料が、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等が挙げられるが、これらに限定されず、溶液状になるものであれば好ましい。
 次に、不活性ガス雰囲気または還元性ガス雰囲気中における熱処理について説明する。まず、不活性ガス雰囲気中における熱処理条件としては、400℃以上が好ましい。400℃以上で熱処理された出発原料は、十分な近赤外線吸収力を有し熱線遮蔽微粒子として効率が良い。不活性ガスとしてはAr、N2等の不活性ガスを用いることがよい。
 また、還元性雰囲気中における熱処理条件としては、出発原料を、まず還元性ガス雰囲気中にて100℃以上400℃以下で熱処理し、次いで不活性ガス雰囲気中にて400℃以上1200℃以下の温度で熱処理することが良い。この時の還元性ガスは、特に限定されないが、H2が好ましい。そして、還元性ガスとしてH2を用いる場合は、還元性雰囲気の組成として、例えば、Ar、N2等の不活性ガスにH2を体積比で0.1%以上を混合することが好ましく、さらに好ましくは0.2%以上混合したものである。H2が体積比で0.1%以上であれば効率よく還元を進めることができる。
 本発明に係る複合タングステン酸化物微粒子が表面処理され、Si、Ti、Zr、Alから選択される1種類以上を含有する化合物、好ましくは酸化物で被覆されていることは、耐候性向上の観点から好ましい。当該表面処理を行うには、Si、Ti、Zr、Alから選択される1種類以上を含有する有機化合物を用いて、公知の表面処理を行えばよい。例えば、本発明に係る複合タングステン酸化物微粒子と有機ケイ素化合物とを混合し、加水分解処理を行えばよい。
 また、後述する熱線遮蔽膜の光学的特性を向上させる観点から、複合タングステン酸化物微粒子の粉体色が、国際照明委員会(CIE)が推奨しているL***表色系(JISZ8729-2004)における粉体色において、L*が25~80、a*が-10~10、b*が-15~15である条件を満たすことが望ましい。当該粉体色を有する複合タングステン酸化物微粒子を用いることで、優れた光学特性を有する熱線遮蔽膜を得ることが出来る。
 (3)分散剤
 本発明に係る分散剤は、上述した本発明に係る複合タングステン酸化物微粒子を、後述するポリビニルアセタール樹脂へ均一に分散させる為に用いられる。
 本発明に係る分散剤は、示差熱熱重量同時測定装置(以下、TG-DTAと記載する場合がある。)で測定される熱分解温度が200℃以上あって、ウレタン、アクリル、スチレン主鎖を有する分散剤であることが好ましい。ここで、熱分解温度とはTG-DTA測定において、当該分散剤の熱分解による重量減少が始まる温度である。
 熱分解温度が200℃以上であれば、ポリビニルアセタール樹脂との混練時に当該分散剤が分解することがないからである。これによって、分散剤の分解に起因した熱線遮蔽合わせガラス用熱線遮蔽膜の褐色着色、可視光透過率の低下、本来の光学特性が得られない事態を回避出来る。
 また、当該分散剤は、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有する分散剤であることが好ましい。これらの官能基は、複合タングステン酸化物微粒子の表面に吸着し、複合タングステン酸化物微粒子の凝集を防ぎ、熱線遮蔽膜中でも当該微粒子を均一に分散させる効果を持つ。具体的には、カルボキシル基を官能基として有するアクリル-スチレン共重合体系分散剤、アミンを含有する基を官能基として有するアクリル系分散剤が例として挙げられる。官能基にアミンを含有する基を有する分散剤は、分子量Mw2000~200000、アミン価5~100mgKOH/gのものが好ましい。また、カルボキシル基を有する分散剤では、分子量Mw2000~200000、酸価1~50mgKOH/gのものが好ましい。
 当該分散剤の添加量は、複合タングステン酸化物微粒子100重量部に対し10重量部~1000重量部の範囲であることが望ましく、より好ましくは30重量部~400重量部の範囲である。分散剤添加量が上記範囲にあれば、複合タングステン酸化物微粒子が、ポリビニルアセタール樹脂中で均一に分散すると伴に、得られる熱線遮蔽膜の物性に悪影響を及ぼすことがないからである。
 (4)選択波長吸収材料
 本発明に係る選択波長吸収材料は、一定の波長領域の光のみを選択的に、強く吸収する材料である。
 上述したように、本発明者らは、JIS R 3106に記載されている可視光透過率算出に使用される重価係数の波長分布を考慮し、上述した複合タングステン酸化物微粒子だけでは十分に遮蔽しきれない波長450nm付近の光を強く吸収し、且つ可視光透過率算出に大きく寄与する波長領域である波長550nm付近に吸収を持たない選択波長吸収材料を、複合タングステン酸化物微粒子と併用する構成に想到した。そして、当該波長450nm付近の光を強く吸収し、波長550nm付近に吸収を持たない選択波長吸収材料を、複合タングステン酸化物微粒子と併用する構成を用いることで、複合タングステン酸化物微粒子単独で使用する場合と比較して、より低い日射透過率を得ることが出来た。
 また、例えば、自動車フロントガラスのように、高い視認性が要求される部材として熱線遮蔽合わせ透明基材が使用された場合、直射日光、ヘッドランプなどの強い光が、当該熱線遮蔽合わせ透明基材に照射された際、含有される複合タングステン酸化物微粒子等の微粒子が可視光の短波長領域を強く散乱し、当該熱線遮蔽合わせ透明基材が青白く曇る現象が問題となる場合があった。
 ここで、本発明者らは、上述した選択波長吸収材料が、複合タングステン酸化物微粒子等の微粒子によって散乱されて発生した可視光短波長領域の散乱光を吸収することで、当該青白く曇りの発生を抑制し、本発明に係る熱線遮蔽膜、および、熱線遮蔽合わせ透明基材の透明性を高める効果をも発揮出来ることに想到した。
 本発明に係る選択波長吸収材料の光学特性としては、媒体や基材の吸収を除いた選択波長吸収材料自体の波長550nmの光の透過率が90%以上であり、且つ波長450nmの光の透過率が40%以下であることが好ましい。また、波長550nmの光の透過率が90%以上であり、且つ波長450nmの光の透過率が15%以下であることがより好ましい。
 これは、選択波長吸収材料の光の透過率が、波長550nmの光に対して90%以上であり、且つ波長450nmの光に対して40%以下であれば、当該選択波長吸収材料と複合タングステン酸化物微粒子とを併用したときに、可視光透過率が低下しないからであり、さらに、波長450nm付近の光の吸収も十分に得られる。その結果、上記複合タングステン酸化物微粒子単独で使用した場合と比較して、日射透過率が低くなり、遮熱特性が向上するからである。
 本発明で使用される具体的な選択波長吸収材料としては、イソインドリン化合物、イソインドリノン化合物、キノキサリン化合物、キノフタロン化合物、縮合ジアゾ化合物、ニッケルアゾ化合物、バナジン酸ビスマス化合物等が挙げられる。特に、波長450nmの光の透過率を15%以下にするためには、キノフタロン化合物、ニッケルアゾ化合物から選択される少なくとも1種を用いることが好ましい。
 選択波長吸収材料と複合タングステン酸化物微粒子の混合割合は、重量比(複合タングステン酸化物微粒子/選択波長吸収材料)の値が99/1~70/30の範囲であることが好ましい。より好ましくは95/5~80/20であり、90/10~80/20であるとさらに好ましい。選択波長吸収材料の添加量の混合割合が70/30以下であると、選択波長吸収材料による可視光領域の吸収が強くならず、可視光透過率が維持される。その結果、上記複合タングステン酸化物微粒子単独で使用した場合と比較して日射透過率が維持され、遮熱特性が維持されるからである。
 また、選択波長吸収材料の添加量の混合割合が上述した重量比で99/1以上であれば、波長450nm付近の光の十分な吸収が得られ、添加効果が発揮されるからである。
 選択波長吸収材料の熱線遮蔽膜への添加方法は、化合物自体を後述する複合タングステン酸化物微粒子可塑剤分散液、または、複合タングステン酸化物微粒子分散体と共にポリビニルアセタール樹脂と可塑剤に添加することも可能である。
 ただし、得られる熱線遮蔽膜、および、当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材の透明性を考慮すると、上述した複合タングステン酸化物微粒子と同様に、可塑剤に選択波長吸収材料を分散した状態の分散液、または、固体の分散剤中に選択波長吸収材料が分散した状態の分散体として、熱線遮蔽膜へ添加することも可能である。
 いずれにしても、選択波長吸収材料が熱線遮蔽膜中で均一に分散していれば良く、得られる熱線遮蔽膜の透明性を損なわない方法であれば好適に用いられる。
 (5)赤外線吸収性有機化合物
 本発明においては、所望により近赤外域に強い吸収を持つ赤外線吸収性有機化合物を、熱線遮蔽膜へさらに添加しても良い。
 当該目的で用いられる赤外線吸収性有機化合物としては、フタロシアニン化合物、ナフタロシアニン化合物、イモニウム化合物、ジイモニウム化合物、ポリメチン化合物、ジフェニルメタン化合物、トリフェニルメタン化合物、キノン化合物、アゾ化合物、ペンタジエン化合物、アゾメチン化合物、スクアリリウム化合物、有機金属錯体、シアニン化合物等を使用することができる。
 当該赤外線吸収性有機化合物として、上述した熱線遮蔽膜を構成する可塑剤に溶解するものを選択すれば、得られる熱線遮蔽膜の透明性を損なわないので好ましい。
 当該赤外線吸収性有機化合物は、波長650nmから1000nmの可視光長波長領域から近赤外線領域の範囲の光を強く吸収する材料がより好ましい。これは、当該光学的特性を有する赤外線吸収性有機化合物と、波長800nm以上の波長領域に強い吸収をもつ複合タングステン酸化物微粒子とを併用した時の相乗効果が大きく、複合タングステン酸化物微粒子を単独で使用する場合と比較して、高い遮熱性能が得られるからである。
 当該観点からは、本発明で用いる赤外線吸収性有機化合物としては、ジイモニウム化合物、または、フタロシアニン化合物が特に好ましい。
 当該赤外線吸収性有機化合物と、前記複合タングステン酸化物微粒子との重量比が[複合タングステン酸化物微粒子/赤外線吸収性有機化合物]=95/5~50/50の範囲であることが好ましい。
 赤外線吸収性有機化合物の添加量の混合割合が上述した重量比で95/5より少ないと、赤外線吸収性有機化合物による波長650nmから1000nmの可視光長波長領域から近赤外線領域の範囲の光を強く吸収する効果が少なくなり、添加効果があまり得られないため、好ましくない。また、赤外線吸収性有機化合物の添加量の混合割合が上述した重量比で50/50より多くなると、赤外線吸収性有機化合物により可視光透過率算出に大きく寄与する波長領域である波長550nm付近の光まで吸収され、その結果、可視光透過率が低下してしまう。そのため、可視光透過率を合わせると遮熱特性が悪化するため、好ましくない。
 (6)ポリビニルアセタール樹脂
 本発明に係る熱線遮蔽膜に用いるポリビニルアセタール樹脂としては、ポリビニルブチラール樹脂が好ましい。また、熱線遮蔽膜の物性を考慮した上で、アセタール化度が異なる複数種のポリビニルアセタール樹脂を併用してもよい。さらに、アセタール化時に複数種類のアルデヒドを組み合わせて反応させた共ポリビニルアセタール樹脂も、好ましく用いることが出来る。
 当該観点から、ポリビニルアセタール樹脂のアセタール化度の好ましい下限は60%、上限は75%である。
 上記ポリビニルアセタール樹脂は、ポリビニルアルコールをアルデヒドによりアセタール化することにより調製することができる。
 上記ポリビニルアルコールは、通常、ポリ酢酸ビニルをケン化することにより得られ、一般的には、ケン化度80~99.8モル%のポリビニルアルコールが用いられる。
 また、上記ポリビニルアルコールの重合度の好ましい下限は200、上限は3000である。重合度が200以上であると、製造される熱線遮蔽合わせ透明基材の貫通への耐性が保持され、安全性が保たれる。一方、3000以下であれば、樹脂膜の成形性が保たれ、樹脂膜の剛性も好ましい範囲に保たれ、加工性が保たれるからである。
 上記アルデヒドは特に限定されず、一般的には、n-ブチルアルデヒド、イソブチルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、アセトアルデヒド等、炭素数が1~10のアルデヒドが用いられる。なかでも、n-ブチルアルデヒド、n-ヘキシルアルデヒド、n-バレルアルデヒドが好ましく、より好ましくは炭素数が4のブチルアルデヒドである。
 (7)可塑剤
 本発明に係るポリビニルアセタール樹脂を主成分とした熱線遮蔽膜に用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤や、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。特に、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
 当該多価アルコールと脂肪酸から合成されたエステル化合物は特に限定されないが、例えば、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の一塩基性有機酸との反応によって得られた、グリコール系エステル化合物が挙げられる。また、テトラエチレングリコール、トリプロピレングリコールと、上記一塩基性有機とのエステル化合物等も挙げられる。
 なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-オクタネート、トリエチレングリコールジ-2-エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステルが好適である。トリエチレングリコールの脂肪酸エステルは、ポリビニルアセタールとの相溶性や耐寒性など様々な性質をバランスよく備えており、加工性、経済性にも優れている。
 可塑剤の選択にあたっては加水分解性が低いものであることに留意する。当該観点からは、トリエチレングリコールジ-2-エチルヘキサネート、トリエチレングリコールジ-2-エチルブチレート、テトラエチレングリコールジ-2-エチルヘキサネートが好ましい。
 (8)接着力調整剤
 本発明に係る熱線遮蔽膜へ、さらに所望により接着力調整剤を含有させることも好ましい。
 当該接着力調整剤は、特に限定されないが、アルカリ金属塩および/またはアルカリ土類金属塩が好適に用いられる。当該金属塩を構成する酸は、特に限定されず、例えば、オクチル酸、ヘキシル酸、酪酸、酢酸、蟻酸等のカルボン酸、又は、塩酸、硝酸等の無機酸が挙げられる。アルカリ金属塩および/またはアルカリ土類金属塩の中でも、炭素数2~16のカルボン酸マグネシウム塩、炭素数2~16のカルボン酸カリウム塩が好ましい。
 当該炭素数2~16の有機酸のカルボン酸マグネシウム塩、カリウム塩としては、特に限定されないが、例えば、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチルブタン酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸マグネシウム、2-エチルヘキサン酸カリウム等が好適に用いられる。
 これらの接着力調整剤は単独で用いてもよく、2種以上を併用してもよい。
 尚、接着力調整剤として、ナトリウム、カリウム、マグネシウム、カルシウム、セリウムのカルボン酸塩を用いた場合は、本来の接着力調整剤としての作用と、上述した複合タングステン酸化物微粒子の耐候性向上の効果も兼ね備えることができる。
 (9)その他の添加剤
 本発明に係る熱線遮蔽膜へは、さらに所望により、一般的な添加剤を配合することも可能である。例えば、所望により任意の色調を与えるための、アゾ系染料、シアニン系染料、キノリン系、ペリレン系染料、カーボンブラック等、一般的に熱可塑性樹脂の着色に利用されている染料化合物、顔料化合物を添加しても良い。特に本発明においては、可視光の短波長側の光を吸収しているため、透過光色が黄色味を帯びる。そのため、染料、顔料等の化合物を添加して熱線遮蔽膜の色調を調整することが好ましい。
 さらに、前記選択波長吸収材料は、紫外領域において透過率の高くなる場合があり、紫外線遮蔽剤を組み合わせると、より高い熱線遮蔽効果が得られる。紫外線遮蔽剤としては、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の有機紫外線吸収剤、酸化亜鉛、酸化チタン、酸化セリウム等の無機紫外線吸収剤などが挙げられる。
 また、その他の添加剤として、カップリング剤、界面活性剤、帯電防止剤等を添加することが出来る。
[2]熱線遮蔽膜
 本発明に係る熱線遮蔽膜を製造する為には、上述した複合タングステン酸化物微粒子と分散剤とを、ポリビニルアセタール樹脂へ添加する可塑剤の一部に分散して、複合タングステン酸化物微粒子分散液を製造するか、または、複合タングステン酸化物微粒子と分散剤とを一般的な有機溶剤に分散した分散液を得た後、その有機溶剤を除去することで固体の分散剤中に複合タングステン酸化物微粒子が分散した状態の複合タングステン酸化物微粒子分散体を製造する。
 そして、製造された複合タングステン酸化物微粒子可塑剤分散液、または、製造された複合タングステン酸化物微粒子分散体と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤と、所望によりその他の添加剤や接着力調整剤とを混合し、混練した後、押出成形法、カレンダー成形法等の公知の方法により、例えば、フィルム状に成形することによって製造することが出来る。さらに、所望により当該熱線遮蔽膜へ赤外線吸収性有機化合物を添加すると、より高い熱線遮蔽特性が得られる。
 以下、複合タングステン酸化物微粒子の可塑剤分散液の製造方法、および、複合タングステン酸化物微粒子分散体の製造方法について説明する。
 (1)複合タングステン酸化物微粒子の可塑剤分散液の製造方法
 複合タングステン酸化物微粒子と分散剤とを、可塑剤に添加・混合し、一般的な分散方法を用いて複合タングステン酸化物微粒子の可塑剤分散液を得ることができる。具体的には、ビーズミル、ボールミル、サンドミル、超音波分散などの分散方法を用いることが出来る。
 尚、当該複合タングステン酸化物微粒子の可塑剤への分散の際、所望により、さらに120℃以下の沸点を有する有機溶剤を添加しても良い。
 当該有機溶剤は、120℃以下の沸点を持つものが好ましく使用される。沸点が120℃以下であれば、後工程である乾燥工程、特に減圧乾燥で除去することが容易である。この結果、減圧乾燥の工程で除去することが迅速に進み、複合タングステン酸化物微粒子含有組成物の生産性に寄与するからである。さらに、減圧乾燥の工程が容易かつ十分に進行するので、本発明に係る複合タングステン酸化物微粒子含有組成物中に過剰な有機溶剤が残留するのを回避できる。この結果、熱線遮蔽膜成形時に気泡の発生などの不具合が発生することを回避できる。具体的には、トルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸ブチル、イソプロピルアルコール、エタノールが挙げられるが、沸点が120℃以下で、且つ複合タングステン酸化物微粒子を均一に分散可能なものであれば、任意に選択できる。
 複合タングステン酸化物微粒子を均一に有機溶剤へ分散させる方法は、一般的な方法から任意に選択出来る。具体例としては、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を用いることが出来る。
 また、複合タングステン酸化物微粒子含有分散液から有機溶剤を除去する方法としては、減圧乾燥する方法が好ましい。具体的には、複合タングステン酸化物微粒子含有分散液を攪拌しながら減圧乾燥して、複合タングステン酸化物微粒子含有組成物と有機溶剤成分とを分離する。減圧乾燥に用いる装置としては、真空攪拌型の乾燥機があげられるが、上記機能を有する装置であれば良く、特に限定されない。また、乾燥工程の減圧の圧力は適宜選択される。
 当該減圧乾燥法を用いることで、溶剤の除去効率が向上すると伴に、複合タングステン酸化物微粒子含有組成物が長時間高温に曝されることがないので、分散している微粒子の凝集が起こらず好ましい。さらに生産性も上がり、蒸発した有機溶剤を回収することも容易で、環境的配慮からも好ましい。
 (2)複合タングステン酸化物微粒子分散体の製造方法
 上述した複合タングステン酸化物微粒子の可塑剤分散液、または、複合タングステン酸化物微粒子と分散剤と可塑剤とを、上述した120℃以下の沸点を有する有機溶剤に添加・混合し、一般的な分散方法を用いて熱線遮タングステン酸化物微粒子の濃度が50質量%以下となる複合タングステン酸化物微粒子分散体を製造する。
 当該可塑剤中の複合タングステン酸化物微粒子の濃度は50質量%以下であることが好ましい。可塑剤中の複合タングステン酸化物微粒子の濃度が50質量%以下であれば、微粒子の凝集が起こり難く、分散が容易で、粘性の急増も回避出来、取り扱いが容易だからである。
 複合タングステン酸化物微粒子を均一に可塑剤へ分散させる方法は、一般的な方法から任意に選択出来る。具体例として複合タングステン酸化物微粒子含有分散液を得た後、公知の方法でその有機溶剤を除去することで、固体の分散剤中に複合タングステン酸化物微粒子が分散した状態の複合タングステン酸化物微粒子分散体を得ることも出来る。
[3]熱線遮蔽合わせ透明基材
 本発明に係る熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材には、様々な形態がある。
 例えば、透明基材として無機ガラスを用いた熱線遮蔽合わせ無機ガラスは、本発明に係る熱線遮蔽膜を挟み込んで存在させた対向する複数枚の無機ガラスを、公知の方法で張り合わせ一体化することによって得られる。得られた熱線遮蔽合わせ無機ガラスは、主に自動車のフロント用の無機ガラスや、建物の窓として使用することが出来る。
 さらに、本発明に係る熱線遮蔽膜と、後述する赤外線反射フィルムを熱線遮蔽膜とを併用して、熱線遮蔽合わせ透明基材とする構成も好ましい。当該構成を採る場合、当該赤外線反射フィルムを熱線遮蔽膜と透明なPVB樹脂膜で挟みこんで一体化して多層膜とする。得られた多層膜を対向する複数枚の無機ガラスで挟み込み、公知の方法で張り合わせ一体化することによって、熱線遮蔽合わせ無機ガラスが得られる。
 ここで、当該熱線遮蔽合わせ無機ガラスを自動車に用いることを考えると、自動車内の温度上昇抑制効果を考慮して、当該赤外線反射フィルムを本発明に係る熱線遮蔽膜より車外側に存在させる構成が好ましい。
 本発明に係る熱線遮蔽合わせ透明基材の遮熱特性は、可視光透過率に対する日射透過率で示される。可視光透過率に対して日射透過率が低いほど遮熱特性に優れた熱線遮蔽合わせ透明基材となる。具体的には、可視光透過率が70%のときに日射透過率が32.5%以下であることが好ましく、31%以下であるとより好ましく、30%以下であるとさらに好ましい。
 特に、本発明に係る熱線遮蔽合わせ透明基材を自動車のフロントガラス等の窓材に用いる場合は、道路運送車両法にて規定されている透過率70%以上を満たしつつ高い熱線遮蔽能力が必要とされるからである。因みに、熱線遮蔽合わせ透明基材の日射透過率が32.5%以下であれば、外気温が30℃以上のときのエアコンの消費電力が、通常の合わせガラスが搭載させている場合と比較して、5%以上削減される。この結果、特にハイブリッドカーや電気自動車のような電池を用いる自動車においては、電池の消費を抑えられることから、航続距離の延長などに有意な効果が見られる。従って、自動車の燃費向上、温室効果ガス排出量削減に寄与することが期待でき、将来的には自動車の設計上、必須の部材となることが予想される。
 透明基材として透明樹脂を用い、上記無機ガラスと同様に使用し、または、上記無機ガラスと併用し、対向する透明基材の間に熱線遮蔽膜を挟み込んで存在させることでも、熱線遮蔽合わせ透明基材を得ることが出来る。当該熱線遮蔽合わせ透明基材の用途は、上述した熱線遮蔽合わせ無機ガラスと同様である。
 また、所望により、本発明に係る熱線遮蔽膜単体として使用すること、無機ガラスや透明樹脂等の透明基材の片面または両面に本発明に係る熱線遮蔽膜を存在させて使用することも、勿論可能である。
 ここで、上述した、本発明に係る熱線遮蔽膜と併用する赤外線反射フィルムについて説明する。
 上述した本発明に係る赤外線反射フィルムは、本発明に係る熱線遮蔽膜と併用したときの光学特性を考慮すると、可視光領域にはほとんど太陽光の吸収を持たず、近赤外線領域、具体的には波長800nmから1200nmの範囲のみを反射するものであることが、熱線遮蔽機能の観点から好ましい。
 具体的には、赤外線フィルムの光学特性として、可視光透過率85%以上、日射反射率18%以上であることが好ましく、可視光透過率88%以上、日射反射率21%以上であることがより好ましい。
 さらに、自動車のフロントガラス、建物の窓として熱線遮蔽合わせ透明基材を使用することを考慮すると、本発明に係る赤外線反射フィルムは、携帯電話やETCに用いられている波長域の電磁波を透過させるものが好ましい。従って、導電性を持ち上記電磁波を透過させない金属膜付きフィルムよりも電磁波を透過させる樹脂多層膜付きフィルムが好ましい。
[4]まとめ
 以上、詳細に説明したように、本発明に係る複合タングステン酸化物の可塑剤分散液、または、本発明に係る複合タングステン酸化物分散体と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを混練し、さらに、公知の方法により、フィルム状に成形することによって、本発明に係る熱線遮蔽膜の作製が可能となった。
 そして、当該本発明に係る熱線遮蔽膜を、対向する複数枚の透明基材の間に挟み込むように存在させることによって、可視光領域の高い透過性を維持すると共に低い日射透過率を発揮する、本発明に係る熱線遮蔽合わせ透明基材の作製が可能となった。
 そして、当該複合タングステン酸化物微粒子と、波長550nm透過率が90%以上であり、且つ、波長450nm透過率が40%以下の透過プロファイルを有する選択波長吸収材料を所定の割合で併用することで、複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い熱線遮蔽特性を発揮することが可能となった。
 以下、実施例を参照しながら本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 また、各実施例における複合タングステン酸化物微粒子の粉体色(10°視野、光源D65)、選択波長吸収材料可塑剤分散液の波長450nmの光の透過率、波長550nmの光の透過率、熱線遮蔽合わせ無機ガラスの可視光透過率、および、日射透過率は、日立製作所(株)製の分光光度計U-4000を用いて測定した。尚、当該日射透過率は、熱線遮蔽合わせ透明基材の熱線遮蔽性能を示す指標である。
 また、ヘイズ値は村上色彩技術研究所(株)社製HR-200を用い、JISK7105に基づいて測定した。尚、当該ヘイズ値は熱線遮蔽合わせ透明基材の透明性を示す指標である。
[実施例1]
 H2WO450gとCs(OH)218.7g(Cs/W(モル比)=0.33相当)とをメノウ乳鉢で十分混合して混合粉末とした。当該混合粉末を、N2ガスをキャリアーとした5%H2ガスを供給下で加熱し600℃の温度で1時間の還元処理を行った後、N2ガス雰囲気下において800℃で30分間焼成して複合タングステン酸化物微粒子(以下、微粒子aと略称する。)を得た。
 当該微粒子aの組成式は、Cs0.33WO3であり、粉体色はL*が35.2845、a*が1.4873、b*が-5.2114であった。
 微粒子a20質量%、官能基としてアミンを含有する基を有するアクリル系分散剤(アミン価48mgKOH/g、分解温度250℃、)のアクリル系分散剤(以下、分散剤aと略称する。)10質量%、トリエチレングリコールジ-2-エチルヘキサノネート(以下可塑剤aと略称する。)70質量%を秤量した。これらを0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、複合タングステン酸化物微粒子の可塑剤分散液(以下、微粒子分散液Aと略称する。)を得た。
 ここで、微粒子分散液A内におけるタングステン酸化物微粒子の分散平均粒子径を、日機装製マイクロトラック粒度分布計で測定したところ24nmであった。
 一方、選択波長吸収材料としてBASF(株)社製キノフタロン化合物を20質量%、分散剤a10質量%、可塑剤a70質量%を秤量した。これらを0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、3時間粉砕・分散処理し、選択波長吸収材料可塑剤分散液(以下、選択波長吸収材料分散液αと略称する。)を得た。
 選択波長吸収材料分散液αを、可塑剤aで所定の濃度まで希釈し、ガラスセルに入れて光学特性を測定したところ波長450nmの光の透過率が5.3%であり、波長550nmの光の透過率が92.8であった。尚、当該測定に先立ち、ガラスセルに可塑剤aのみを入れてベースラインを測定した。
 可塑剤a30質量%、ポリビニルブチラール樹脂70質量%を混合した混合物へ、所定量の微粒子分散液Aと選択波長吸収材料分散液αとを添加し、当該混合物中における微粒子aの濃度を0.15質量%、選択波長吸収材料の物濃度を0.0079質量%とし、熱線遮蔽膜の製造用組成物Aを得た。この結果、熱線遮蔽膜の製造用組成物Aにおける前記選択波長吸収材料と前記複合タングステン酸化物微粒子との重量比(複合タングステン酸化物微粒子/選択波長吸収材料)は0.15/0.0079=95/5となった。
 この熱線遮蔽膜の製造用組成物Aを、二軸押出機で200℃で混練し、Tダイより押出しカレンダーロール法により0.7mm厚のシートとして、実施例1に係る熱線遮蔽膜を得た。
 得られた実施例1に係る熱線遮蔽膜を2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して、実施例1に係る熱線遮蔽合わせ透明基材を得た。
 熱線遮蔽合わせ透明基材の光学特性は、表1に示すように、可視光透過率78.0%のときの日射透過率は41.4%で、ヘイズ値は0.6%であった。この結果を表1に示した。
[実施例2~33]
 実施例1で説明した、熱線遮蔽膜の製造用組成物A中における微粒子aの濃度と、選択波長吸収材料の種類、濃度とを変えた以外は、実施例1と同様にして実施例2~33に係る熱線遮蔽合わせ透明基材を得た。そして当該実施例2~33に係る熱線遮蔽合わせ透明基材の光学特性を実施例1と同様に測定した。この実施例2~33における微粒子aの濃度、選択波長吸収材料の種類、および濃度を表1に示した。さらに、実施例2~33に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表1に示した。
 尚、選択波長吸収材料として、実施例2~16においては、上述したキノフタロン化合物を用い、実施例17~28においては、ニッケルアゾ化合物を用い、実施例29においては、イソインドリン化合物を用い、実施例30においては、キノキサリン化合物を用い、実施例31においては、縮合ジアゾ化合物を用い、実施例32においては、イソインドリノン化合物を用い、実施例33においては、バナジン酸ビスマス化合物を用いた。
[比較例1~4]
 実施例1で説明した、熱線遮蔽膜の製造用組成物A中における微粒子aの濃度を変え、選択波長吸収材料を添加しなかった以外は、実施例1と同様にして比較例1~4に係る熱線遮蔽合わせ透明基材を得た。そして当該比較例1~4に係る熱線遮蔽合わせ透明基材の光学特性を実施例1と同様に測定した。この比較例1~4における微粒子aの濃度を表2に示した。さらに、比較例1~4に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表2に示した。
[比較例5~9]
 実施例1で説明した、熱線遮蔽膜の製造用組成物A中における微粒子aの濃度と選択波長吸収材料の種類、濃度を変えた以外は、実施例1と同様にして比較例5~9に係る熱線遮蔽合わせ透明基材を得た。この結果を表2に示した。
 尚、選択波長吸収材料として、比較例5においては、ベンツイミダゾロン化合物を用い、比較例6~9においては、上述したキノフタロン化合物を用いた。
[実施例34]
 水13.5gにRbNO38.8gを溶解し、これをH2WO445.3gに添加(Rb/W(モル比)=0.33相当)して十分攪拌した後、乾燥した。当該乾燥物を、N2ガスをキャリアーとした2%H2ガスを供給しながら加熱し、800℃の温度で30分間焼成した後、同温度でN2ガス雰囲気下において800℃で90分間焼成してRb添加複合タングステン酸化物微粒子(以下、微粒子bと略称する。)を得た。
 当該微粒子bの組成式は、Rb0.33WO3であり、粉体色のL*が36.3938、a*が-0.2385、b*が-3.8318であった。
 微粒子b20質量%、分散剤a10質量%、可塑剤a70質量%を秤量した。これらを0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、Rb添加複合タングステン酸化物微粒子の可塑剤分散液(以下、微粒子分散液Bと略称する。)を得た。ここで、微粒子分散液B内におけるRb添加タングステン酸化物微粒子の分散平均粒子径を、日機装製マイクロトラック粒度分布計で測定したところ28nmであった。
 可塑剤a30質量%、ポリビニルブチラール樹脂70質量%を混合した混合物へ、所定量の微粒子分散液Bと選択波長吸収材料分散液αを添加し、当該混合物中における微粒子bの濃度を0.25質量%、選択波長吸収材料の物濃度を0.0278質量%とし、熱線遮蔽膜の製造用組成物Bを得た。この結果、熱線遮蔽膜の製造用組成物Bにおける前記選択波長吸収材料と前記Rb添加複合タングステン酸化物微粒子との重量比(Rb添加複合タングステン酸化物微粒子/選択波長吸収材料)は0.25/0.0278=90/10となった。この熱線遮蔽膜の製造用組成物Bを、二軸押出機で200℃で混練、Tダイより押出しカレンダーロール法により0.7mm厚のシートとして実施例34に係る熱線遮蔽膜を得た。
 得られた熱線遮蔽膜を2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して、実施例34に係る熱線遮蔽合わせ透明基材を得た。そして当該実施例34に係る熱線遮蔽合わせ透明基材の光学特性を実施例1と同様に測定した。
 熱線遮蔽合わせ透明基材の光学特性は、表2に示すように、可視光透過率70.9%のときの日射透過率は28.9%で、ヘイズ値は0.6%であった。
[実施例35~39]
 実施例34で説明した、熱線遮蔽膜の製造用組成物B中における選択波長吸収材料の種類、濃度を変えた以外は、実施例34と同様にして実施例35~39に係る熱線遮蔽合わせ透明基材を得た。そして当該実施例35~39に係る熱線遮蔽合わせ透明基材の光学特性を実施例34と同様に測定した。この実施例35~39における微粒子bの濃度、選択波長吸収材料の種類、および濃度を表2に示した。さらに、実施例35~39に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表2に示した。
 尚、選択波長吸収材料として実施例35においては、ニッケルアゾ化合物を用い、実施例36においては、イソインドリン化合物を用い、実施例37においては、キノキサリン化合物を用い、実施例38においては、縮合ジアゾ化合物を用い、実施例39においては、イソインドリノン化合物を用いた。
[比較例10]
 選択波長吸収材料を添加しなかった以外は、実施例34と同様にして比較例10に係る熱線遮蔽合わせ透明基材を得た。この結果を表2に示した。
[実施例40]
 実施例1で説明した可塑剤a30質量%、ポリビニルブチラール樹脂70質量%を混合した組成物へ、所定量の微粒子分散液Aと選択波長吸収材料分散液αと赤外線吸収性有機化合物として日本カーリット(株)製ジイモニウム化合物CIR-RLとを添加し、当該混合物中における微粒子aの濃度を0.125質量%、選択波長吸収材料の物濃度を0.0139質量%、赤外線吸収性有機化合物を0.0139質量%とし、熱線遮蔽膜の製造用組成物Cを得た。この結果、熱線遮蔽膜の製造用組成物Cにおける前記選択波長吸収材料と前記複合タングステン酸化物微粒子との重量比(複合タングステン酸化物微粒子/選択波長吸収材料)は0.125/0.0139=90/10となった。この熱線遮蔽膜の製造用組成物Cを二軸押出機で200℃で混練、Tダイより押出しカレンダーロール法により0.7mm厚のシートとして実施例40に係る熱線遮蔽膜を得た。
 得られた熱線遮蔽膜を2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して、実施例40に係る熱線遮蔽合わせ透明基材を得た。そして当該実施例40に係る熱線遮蔽合わせ透明基材の光学特性を実施例1と同様に測定した。
 熱線遮蔽合わせ透明基材の光学特性は、表2に示すように、可視光透過率77.5%のときの日射透過率は37.6%で、ヘイズ値は0.6%であった。
[実施例41~51]
 実施例40で説明した、熱線遮蔽膜の製造用組成物C中における選択波長吸収材料の種類、濃度、赤外線吸収性有機化合物の種類、濃度を変えた以外は、実施例40と同様にして実施例41~51に係る熱線遮蔽合わせ透明基材を得た。そして当該実施例41~51に係る熱線遮蔽合わせ透明基材の光学特性を実施例40と同様に測定した。この実施例41~51における微粒子aの濃度、選択波長吸収材料の種類および濃度、赤外線吸収性有機化合物の種類および濃度を表2に示した。さらに、実施例41~51に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表2に示した。
 尚、選択波長吸収材料として、実施例41~43、48、50、51においては、上述したキノフタロン化合物を用い、実施例44~47、49においては、ニッケルアゾ化合物を用いた。
 一方、赤外線吸収性有機化合物として、実施例41~47、50、51においては、上述したジイモニウム化合物を用い、実施例48、49においては、フタロシアニン系化合物を用いた。
[実施例52]
 赤外線反射フィルム(住友3M社製 スコッチティントS90:可視光透過率89%、日射反射率22%)を、実施例5で得られた熱線遮蔽膜と透明なPVB中間膜とで挟み、さらに2枚の対向する無機ガラスで挟み込み、公知の方法で張り合わせ一体化して、実施例52に係る熱線遮蔽合わせ透明基材を得た。
 そして、当該実施例52に係る熱線遮蔽合わせ透明基材の光学特性を、実施例1と同様に測定した。当該測定の際、透明なPVB中間膜が接しているガラス面から光学特性を測定した。
 この実施例52における微粒子aの濃度、選択波長吸収材料の種類および濃度、赤外線吸収性有機化合物の種類および濃度を表3に示した。さらに、実施例52係る熱線遮蔽合わせ透明基材の光学特性測定結果を表3に示した。
[実施例53~55]
 実施例52で説明した赤外線反射フィルムと、実施例6~8で得られた熱線遮蔽膜とを用いて、実施例52と同様の操作をおこない、実施例53~55に係る熱線遮蔽合わせ透明基材を得た。
 当該実施例53~55に係る熱線遮蔽合わせ透明基材の光学特性を実施例1と同様に測定した。そして、実施例53~55における微粒子aの濃度、選択波長吸収材料の種類および濃度、赤外線吸収性有機化合物の種類および濃度を表3に示した。さらに、実施例53~55に係る熱線遮蔽合わせ透明基材の光学特性測定結果を表3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実施例1~16および比較例1~4、6~9の評価]
 実施例1~16においては、選択波長吸収材料を複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られた。
 当該結果を、図1を用いて説明する。
 図1は、縦軸に日射透過率をとり、横軸に可視光透過率をとったグラフである。そして、当該グラフへ(複合タングステン酸化物微粒子a/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aが95/5である実施例1~4のデータを-◇-でプロットし、90/10である実施例5~8のデータを-□-でプロットし、80/20である実施例9~12のデータを-△-でプロットし、70/30である実施例13~16のデータを-×-でプロットし、100/0である比較例1~4のデータを-*-でプロットし、60/40である比較例6~9のデータを-+-でプロットしたものである。
 図1より、実施例1~16に示すように前記選択波長吸収材料と前記複合タングステン酸化物微粒子の重量比(複合タングステン酸化物微粒子a/選択波長吸収材料〈キノフタロン化合物〉)を、99/1~70/30の範囲とすることで、比較例1~4に示すように複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。
 一方、比較例6~9に示すように(複合タングステン酸化物微粒子a/選択波長吸収材料〈キノフタロン化合物〉)を60/40として、99/1~70/30の範囲外とすると、複合タングステン酸化物微粒子を単独で使用した場合と比較しても、遮熱特性が低下することが判明した。
[実施例17~28および比較例1~4の評価]
 実施例17~28においても、選択波長吸収材料を複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られる。
 当該結果を、図2を用いて説明する。
 図2は、図1と同様のグラフへ(複合タングステン酸化物微粒子a/選択波長吸収材料〈ニッケルアゾ化合物〉)の重量比Aが95/5である実施例17~20のデータを-◇-でプロットし、90/10である実施例21~24のデータを-□-でプロットし、80/20である実施例25~28のデータを-△-でプロットし、100/0である比較例1~4のデータを-*-でプロットしたものである。
 図2より、前記選択波長吸収材料と前記複合タングステン酸化物微粒子の重量比(複合タングステン酸化物微粒子a/選択波長吸収材料〈ニッケルアゾ化合物〉)を、99/1~70/30の範囲とすることで、比較例1~4に示すように複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。
[実施例29~33および比較例1~4、5の評価]
 実施例29~33においては、選択波長吸収材料を複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られた。
 当該結果を、図3を用いて説明する。
 図3は、図1と同様のグラフへ選択波長吸収材料がイソインドリン化合物である実施例29のデータを-◇-でプロットし、キノキサリン化合物である実施例30のデータを-□-でプロットし、縮合ジアゾ化合物である実施例31のデータを-△-でプロットし、イソインドリノン化合物である実施例32のデータを-◇-、バナジン酸ビスマス化合物である実施例33のデータを-○-でプロットし、ベンツイミダゾロン化合物である比較例5のデータを-+-でプロットし、これらの選択波長吸収材料を添加しない比較例1~4のデータを-*-でプロットしたものである。
 図3より、波長550nmの光の透過率が90%以上であり、且つ、波長450nmに光の透過率が40%以下の透過プロファイルを有する選択波長吸収材料と、前記複合タングステン酸化物微粒子とを併用したことによって、複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。
 一方、比較例5においては、使用した選択波長吸収材料の透過プロファイルは、波長550nmの光の透過率が90%以下であり、且つ、波長450nmの光の透過率が40%以上であって、本発明で規定した範囲外であるため、複合タングステン酸化物微粒子を単独で使用した場合と比較しても遮熱特性が低下した。
[実施例34~39および比較例10の評価]
 実施例34~39においては、選択波長吸収材料をRb添加複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られた。また、波長550nmの光の透過率が90%以上であり、且つ、波長450nmに光の透過率が40%以下の透過プロファイルを有する選択波長吸収材料と、前記Rb添加複合タングステン酸化物微粒子とを併用したことによって、比較例10に記載したRb添加複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。
[実施例5~8、40~47および比較例1~4の評価]
 実施例40~47においては、選択波長吸収材料と赤外線吸収性有機化合物とを、複合タングステン酸化物微粒子と併用したことによって、より低い日射透過率が得られた。
 当該結果を、図4を用いて説明する。
 図4は、図1と同様のグラフへ(複合タングステン酸化物微粒子/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aが90/10であり、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈ジイモニウム系化合物〉)の重量比Bが90/10である実施例40~43のデータを-◇-でプロットし、(複合タングステン酸化物微粒子/選択波長吸収材料〈ニッケルアゾ化合物〉)の重量比Aが90/10であり、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈ジイモニウム系化合物〉)の重量比Bが90/10である実施例44~47のデータを-△-でプロットし、(複合タングステン酸化物微粒子/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aが90/10である実施例5~8のデータを-×-でプロットし、100/0である比較例1~4のデータを-*-でプロットしたものである。
 図4より、選択波長吸収材料と赤外線吸収性有機化合物とを、複合タングステン酸化物微粒子と併用したことにより、複合タングステン酸化物微粒子を単独で使用した場合、または、選択波長吸収材料と複合タングステン酸化物微粒子とを併用した場合と比較して、より高い遮熱性能が得られることが判明した。
[実施例48~51および比較例1~4の評価]
 実施例48~51においては、選択波長吸収材料と赤外線吸収性有機化合物とを、複合タングステン酸化物微粒子と併用した。実施例48~51においては当該併用を行ったことによって、当該併用を行っていない比較例1~4より低い日射透過率が得られた。また、選択波長吸収材料と赤外線吸収性有機化合物とを、複合タングステン酸化物微粒子と併用したことにより、複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。
 ここで、実施例48においては(複合タングステン酸化物微粒子/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aを90/10でとし、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈フタロシアニン系化合物〉)の重量比Bを90/10とし、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈フタロシアニン系化合物〉)の重量比Bを90/10とし、実施例49においては(複合タングステン酸化物微粒子/選択波長吸収材料〈ニッケルアゾ化合物〉)の重量比Aを90/10とし、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈フタロシアニン系化合物〉)の重量比Bを90/10とし、実施例50においては(複合タングステン酸化物微粒子/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aを90/10とし、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈ジイモニウム系化合物〉)の重量比Bを50/50とし、実施例51においては(複合タングステン酸化物微粒子/選択波長吸収材料〈キノフタロン化合物〉)の重量比Aを90/10とし、(複合タングステン酸化物微粒子/赤外線吸収性有機化合物〈ジイモニウム系化合物〉)の重量比Bを95/5とした。
[実施例52~55の評価]
 実施例52~55においては、選択波長吸収材料と赤外線反射フィルムとを、複合タングステン酸化物微粒子と併用した。当該併用を行ったことによって実施例52~55においては、当該併用を行っていない比較例1~4より低い日射透過率が得られた。また、選択波長吸収材料と赤外線反射フィルムと、複合タングステン酸化物微粒子とを併用したことにより、複合タングステン酸化物微粒子を単独で使用した場合と比較して、より高い遮熱性能が得られることが判明した。

Claims (16)

  1. [規則91に基づく訂正 03.12.2012] 
     熱線遮蔽機能を有する化合物と、選択波長吸収材料と、ポリビニルアセタール樹脂と、可塑剤とを含有する熱線遮蔽膜であって、前期選択波長吸収材料は、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が40%以下の透過プロファイルを有し、前記熱線遮蔽機能を有する化合物と前記選択波長吸収材料の重量比が(熱線遮蔽機能を有する化合物/選択波長吸収材料)=99/1~70/30の範囲であることを特徴とする熱線遮蔽膜。
  2.  前記熱線遮蔽機能を有する化合物が、一般式MyWOZ(但し、Mは、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される1種類以上の元素、0.1≦y≦0.5、2.2≦z≦3.0)で示され、かつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子であることを特徴とする請求項1に記載の熱線遮蔽膜。
  3.  前記複合タングステン酸化物微粒子が、平均粒径40nm以下の微粒子であることを特徴とする請求項2に記載の熱線遮蔽膜。
  4.  前記選択波長吸収材料が、イソインドリン化合物、イソインドリノン化合物、キノキサリン化合物、キノフタロン化合物、縮合ジアゾ化合物、ニッケルアゾ化合物、バナジン酸ビスマス化合物から選択される少なくとも1種であることを特徴とする請求項1に記載の熱線遮蔽膜。
  5.  前記選択波長吸収材料が、キノフタロン化合物、ニッケルアゾ化合物から選択される少なくとも1種であることを特徴とする請求項1に記載の熱線遮蔽膜。
  6.  前期選択波長吸収材料が、波長550nmの光の透過率が90%以上であり、且つ、波長450nmの光の透過率が15%以下の透過プロファイルを有することを特徴とする請求項1から5のいずれかに記載の熱線遮蔽膜。
  7.  前記熱線遮蔽膜が、さらに赤外線吸収性有機化合物を含むことを特徴とする請求項1から6のいずれかに記載の熱線遮蔽膜。
  8.  前記赤外線吸収性有機化合物が、フタロシアニン化合物、ナフタロシアニン化合物、イモニウム化合物、ジイモニウム化合物、ポリメチン化合物、ジフェニルメタン化合物、トリフェニルメタン化合物、キノン化合物、アゾ化合物、ペンタジエン化合物、アゾメチン化合物、スクアリリウム化合物、有機金属錯体、シアニン化合物から選択される少なくとも1種であることを特徴とする請求項7に記載の熱線遮蔽膜。
  9.  前記赤外線吸収性有機化合物が、フタロシアニン化合物、ジイモニウム化合物から選択される少なくとも1種であることを特徴とする請求項8に記載の熱線遮蔽膜。
  10.  前記赤外線吸収性有機化合物と前記複合タングステン酸化物微粒子の重量比が(複合タングステン酸化物微粒子/赤外線吸収性有機化合物)=95/5~50/50の範囲であることを特徴とする請求項7から9のいずれかに記載の熱線遮蔽膜。
  11.  複数枚の透明基材間に、請求項1から10のいずれかに記載の熱線遮蔽膜が存在していることを特徴とする熱線遮蔽合わせ透明基材。
  12.  複数枚の透明基材間に、さらに可視光透過率88%以上であり且つ日射反射率21%以上の赤外線反射フィルムが存在していることを特徴する請求項11に記載の熱線遮蔽合わせ透明基材。
  13.  前記透明基材の内、少なくとも1枚がガラスであることを特徴とする請求項11から12のいずれかに記載の熱線遮蔽合わせ透明基材。
  14.  JIS R 3106で算出される可視光透過率が70%以上であり、且つ日射透過率が32.5%以下であることを特徴とする請求項11から13のいずれかに記載の熱線遮蔽合わせ透明基材。
  15.  請求項11から13のいずれかに記載の熱線遮蔽合わせ透明基材が、窓材として搭載されていることを特徴とする自動車。
  16.  請求項11から13のいずれかに記載の熱線遮蔽合わせ透明基材が、窓材として使用されていることを特徴とする建造物。
PCT/JP2012/080191 2011-12-02 2012-11-21 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物 WO2013080859A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/362,303 US20140335364A1 (en) 2011-12-02 2012-11-21 Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material
JP2013547113A JP5867753B2 (ja) 2011-12-02 2012-11-21 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物
EP12853566.3A EP2786972A4 (en) 2011-12-02 2012-11-21 THERMAL RADIATION PROTECTIVE FILM, COMBINED THERMAL AND TRANSPARENT RADIATION PROTECTION SUBSTRATE, VEHICLE EQUIPPED WITH TRANSPARENT LAMINATE PROTECTIVE SUBSTRATE AGAINST THERMAL RADIATION AS WINDOW MATERIAL, AND BUILDING USING TRANSPARENT LAMINATE PROTECTIVE SUBSTRATE AGAINST RADIATION THERMAL AS WINDOW MATERIAL
CN201280059288.9A CN104245618B (zh) 2011-12-02 2012-11-21 热线遮蔽膜、热线遮蔽夹层透明基体材料、以及安装该热线遮蔽夹层透明基体材料作为窗口材料的汽车、以及使用该热线遮蔽夹层透明基体材料作为窗口材料的建造物
KR1020147018280A KR102038448B1 (ko) 2011-12-02 2012-11-21 열선 차폐막, 열선 차폐 적층 투명기재, 및 상기 열선 차폐 적층 투명기재가 창문재로서 탑재되어 있는 자동차, 및 상기 열선 차폐 적층 투명기재가 창문재로서 사용되어 있는 건축물
US16/839,477 US11215742B2 (en) 2011-12-02 2020-04-03 Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011265339 2011-12-02
JP2011-265339 2011-12-02
JP2012072998 2012-03-28
JP2012-072998 2012-03-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/362,303 A-371-Of-International US20140335364A1 (en) 2011-12-02 2012-11-21 Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material
US16/839,477 Continuation US11215742B2 (en) 2011-12-02 2020-04-03 Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material

Publications (1)

Publication Number Publication Date
WO2013080859A1 true WO2013080859A1 (ja) 2013-06-06

Family

ID=48535319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080191 WO2013080859A1 (ja) 2011-12-02 2012-11-21 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物

Country Status (6)

Country Link
US (2) US20140335364A1 (ja)
EP (1) EP2786972A4 (ja)
JP (1) JP5867753B2 (ja)
KR (1) KR102038448B1 (ja)
CN (1) CN104245618B (ja)
WO (1) WO2013080859A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163119A1 (ja) 2013-04-03 2014-10-09 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、熱線遮蔽樹脂シート材、自動車および建造物
JP2014210698A (ja) * 2013-04-03 2014-11-13 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車および建造物
CN104726040A (zh) * 2015-04-14 2015-06-24 魏勇 一种含有钨青铜的pvb浆料及其制备方法
WO2015156273A1 (ja) * 2014-04-07 2015-10-15 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2016017513A1 (ja) * 2014-07-28 2016-02-04 コニカミノルタ株式会社 赤外線反射フィルム及び合わせガラス
JP2017105705A (ja) * 2015-12-02 2017-06-15 住友金属鉱山株式会社 熱線遮蔽微粒子および熱線遮蔽微粒子分散液
JP2017119626A (ja) * 2012-02-10 2017-07-06 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US20170283311A1 (en) * 2014-08-29 2017-10-05 Sumitomo Metal Mining Co., Ltd. Assembly of hexaboride fine particles, hexaboride fine particle dispersion, hexaboride fine particle-dispersed body, laminated transparent base material using hexaboride fine particle-dispersed body, infrared-absorptive film, and infrared-absorptive glass
JP2018522284A (ja) * 2015-07-15 2018-08-09 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. 有彩色ファサード装置及び有彩色窓装置
CN111494699A (zh) * 2013-09-06 2020-08-07 生物兼容英国有限公司 不透射线聚合物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610660B2 (ja) * 2015-03-31 2019-11-27 コニカミノルタ株式会社 近赤外線遮蔽フィルム、その製造方法及び粘着剤組成物
JP6655009B2 (ja) * 2015-03-31 2020-02-26 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
EP3323006A1 (en) 2015-07-15 2018-05-23 CoeLux S.r.l. Reflective illumination systems for optically widened perception
US11130315B2 (en) 2015-12-02 2021-09-28 Sumitomo Metal Mining Co., Ltd. Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent substrate
US10531555B1 (en) * 2016-03-22 2020-01-07 The United States Of America As Represented By The Secretary Of The Army Tungsten oxide thermal shield
JP6835067B2 (ja) * 2016-04-01 2021-02-24 住友金属鉱山株式会社 赤外線吸収材料、赤外線吸収材料分散液、赤外線吸収材料分散体、赤外線吸収材料分散体合わせ透明基材、赤外線吸収透明基材
WO2018091556A1 (de) * 2016-11-17 2018-05-24 Covestro Deutschland Ag Transparenter mehrschichtkörper zum wärmemanagement

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160041A (ja) 1990-10-24 1992-06-03 Hitachi Ltd 自動車用窓ガラス
JPH08217500A (ja) 1995-02-14 1996-08-27 Sumitomo Osaka Cement Co Ltd 合わせガラス
JPH08259279A (ja) 1995-01-23 1996-10-08 Central Glass Co Ltd 合せガラス及びその製造方法
JPH10297945A (ja) 1997-04-28 1998-11-10 Central Glass Co Ltd 合わせガラス及びその製造方法
JP2001089202A (ja) 1999-05-17 2001-04-03 Sumitomo Metal Mining Co Ltd 日射遮蔽合わせガラス
JP2002220262A (ja) * 2001-01-16 2002-08-09 Central Glass Co Ltd 高断熱合わせガラス
JP2004037768A (ja) 2002-07-02 2004-02-05 Kenji Saito 紫外線・赤外線遮蔽体
JP2008528313A (ja) * 2005-01-07 2008-07-31 スリーエム イノベイティブ プロパティズ カンパニー 太陽光制御多層フィルム
JP2008194563A (ja) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd 日射遮蔽膜および波長選択型遮蔽膜
JP2010202495A (ja) 2009-02-09 2010-09-16 Sumitomo Metal Mining Co Ltd 熱線遮蔽合わせガラスおよびその製造方法
WO2011040444A1 (ja) * 2009-09-29 2011-04-07 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386986B2 (ja) * 1999-03-31 2009-12-16 株式会社日本触媒 無機系微粒子含有組成物とその用途および分散剤
CN100343190C (zh) * 2001-07-26 2007-10-17 积水化学工业株式会社 夹层玻璃用中间膜以及夹层玻璃
JP3982466B2 (ja) * 2002-09-25 2007-09-26 住友金属鉱山株式会社 熱線遮蔽成分分散体とその製造方法およびこの分散体を用いて得られる熱線遮蔽膜形成用塗布液と熱線遮蔽膜並びに熱線遮蔽樹脂成形体
JP2006240893A (ja) * 2005-02-28 2006-09-14 Sekisui Chem Co Ltd 合わせガラス用着色中間膜および合わせガラス
DE602006011448D1 (de) * 2005-03-28 2010-02-11 Mitsubishi Eng Plastics Corp Polycarbonatharzzusammensetzung und formprodukt zum schutz gegen heisse strahlung
JP2007045636A (ja) * 2005-08-05 2007-02-22 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
US7952805B2 (en) * 2006-08-22 2011-05-31 3M Innovative Properties Company Solar control film
JP2008200924A (ja) * 2007-02-19 2008-09-04 Toray Ind Inc 積層フィルム
JP5245283B2 (ja) * 2007-04-26 2013-07-24 住友金属鉱山株式会社 熱線遮蔽塩化ビニルフィルム製造用組成物およびその製造方法、並びに、熱線遮蔽塩化ビニルフィルム
US20100220388A1 (en) * 2007-06-08 2010-09-02 Bridgestone Corporation Near-infrared shielding material, laminate including the same, and optical filter for display including the same
CN101835824B (zh) * 2007-10-25 2014-01-01 住友金属矿山株式会社 高耐热性母料、热线遮蔽透明树脂成形体、以及热线遮蔽透明层压体
JP5176492B2 (ja) * 2007-11-06 2013-04-03 住友金属鉱山株式会社 近赤外線吸収粘着体、プラズマディスプレイパネル用近赤外線吸収フィルターおよびプラズマディスプレイパネル
WO2010046285A2 (en) * 2008-10-23 2010-04-29 Basf Se Heat absorbing additives
JP5120661B2 (ja) * 2009-03-26 2013-01-16 住友金属鉱山株式会社 合わせ構造体
US8268202B2 (en) * 2009-07-07 2012-09-18 Basf Se Potassium cesium tungsten bronze particles
JP5344261B2 (ja) * 2011-04-14 2013-11-20 住友金属鉱山株式会社 熱線遮蔽膜とその製造方法、および熱線遮蔽合わせ透明基材

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160041A (ja) 1990-10-24 1992-06-03 Hitachi Ltd 自動車用窓ガラス
JPH08259279A (ja) 1995-01-23 1996-10-08 Central Glass Co Ltd 合せガラス及びその製造方法
JPH08217500A (ja) 1995-02-14 1996-08-27 Sumitomo Osaka Cement Co Ltd 合わせガラス
JPH10297945A (ja) 1997-04-28 1998-11-10 Central Glass Co Ltd 合わせガラス及びその製造方法
JP2001089202A (ja) 1999-05-17 2001-04-03 Sumitomo Metal Mining Co Ltd 日射遮蔽合わせガラス
JP2002220262A (ja) * 2001-01-16 2002-08-09 Central Glass Co Ltd 高断熱合わせガラス
JP2004037768A (ja) 2002-07-02 2004-02-05 Kenji Saito 紫外線・赤外線遮蔽体
JP2008528313A (ja) * 2005-01-07 2008-07-31 スリーエム イノベイティブ プロパティズ カンパニー 太陽光制御多層フィルム
JP2008194563A (ja) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd 日射遮蔽膜および波長選択型遮蔽膜
JP2010202495A (ja) 2009-02-09 2010-09-16 Sumitomo Metal Mining Co Ltd 熱線遮蔽合わせガラスおよびその製造方法
WO2011040444A1 (ja) * 2009-09-29 2011-04-07 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2786972A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119626A (ja) * 2012-02-10 2017-07-06 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
KR20150138347A (ko) 2013-04-03 2015-12-09 스미토모 긴조쿠 고잔 가부시키가이샤 열선 차폐막, 열선 차폐 적층 투명기재, 열선 차폐 수지 시트재, 자동차 및 건조물
JP2014210698A (ja) * 2013-04-03 2014-11-13 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車および建造物
WO2014163119A1 (ja) 2013-04-03 2014-10-09 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、熱線遮蔽樹脂シート材、自動車および建造物
US9868665B2 (en) 2013-04-03 2018-01-16 Sumitomo Metal Mining Co., Ltd. Heat ray-shielding film, heat ray-shielding laminated transparent base material, heat ray-shielding resin sheet material, automobile and building
EP3034294A1 (en) 2013-04-03 2016-06-22 Sumitomo Metal Mining Co., Ltd. Heat-ray-shielding film, heat-ray-shielding transparent substrate, heat-ray-shielding resin sheet material, vehicle, and building
US11957755B2 (en) 2013-09-06 2024-04-16 Boston Scientific Medical Device Limited Radiopaque polymers
CN111494699A (zh) * 2013-09-06 2020-08-07 生物兼容英国有限公司 不透射线聚合物
US10569509B2 (en) 2014-04-07 2020-02-25 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass having coloring matter with specified maximum absorption wavelengths, and laminated glass
WO2015156273A1 (ja) * 2014-04-07 2015-10-15 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
RU2687824C2 (ru) * 2014-04-07 2019-05-16 Секисуй Кемикал Ко., Лтд. Промежуточная пленка для ламинированного стекла и ламинированное стекло
WO2016017513A1 (ja) * 2014-07-28 2016-02-04 コニカミノルタ株式会社 赤外線反射フィルム及び合わせガラス
US10934207B2 (en) 2014-08-29 2021-03-02 Sumitomo Metal Mining Co., Ltd. Methods for producing an assembly of hexaboride fine particles
US20170283311A1 (en) * 2014-08-29 2017-10-05 Sumitomo Metal Mining Co., Ltd. Assembly of hexaboride fine particles, hexaboride fine particle dispersion, hexaboride fine particle-dispersed body, laminated transparent base material using hexaboride fine particle-dispersed body, infrared-absorptive film, and infrared-absorptive glass
CN104726040A (zh) * 2015-04-14 2015-06-24 魏勇 一种含有钨青铜的pvb浆料及其制备方法
JP2018522284A (ja) * 2015-07-15 2018-08-09 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. 有彩色ファサード装置及び有彩色窓装置
US10684399B2 (en) 2015-07-15 2020-06-16 Coelux S.R.L. Chromatic facade and window units
JP2017105705A (ja) * 2015-12-02 2017-06-15 住友金属鉱山株式会社 熱線遮蔽微粒子および熱線遮蔽微粒子分散液

Also Published As

Publication number Publication date
JP5867753B2 (ja) 2016-02-24
US20200233129A1 (en) 2020-07-23
US20140335364A1 (en) 2014-11-13
KR102038448B1 (ko) 2019-10-30
US11215742B2 (en) 2022-01-04
EP2786972A1 (en) 2014-10-08
JPWO2013080859A1 (ja) 2015-04-27
KR20140098240A (ko) 2014-08-07
CN104245618B (zh) 2017-08-25
CN104245618A (zh) 2014-12-24
EP2786972A4 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5867753B2 (ja) 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車、および、当該熱線遮蔽合わせ透明基材が窓材として使用されている建造物
JP5305050B2 (ja) 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材
JP5344261B2 (ja) 熱線遮蔽膜とその製造方法、および熱線遮蔽合わせ透明基材
CN105307996B (zh) 热线屏蔽膜、热线屏蔽夹层透明基材、热线屏蔽树脂片材、汽车及建筑物
JP6098831B2 (ja) 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車および建造物
JP5899874B2 (ja) 赤外線遮蔽材料微粒子分散液とその製造方法および熱線遮蔽膜と熱線遮蔽合わせ透明基材
KR102142115B1 (ko) 열선 차폐 미립자 함유 조성물 및 이의 제조 방법, 열선 차폐막, 및, 열선 차폐 적층 투명기재
JP5541227B2 (ja) 熱線遮蔽微粒子含有組成物の製造方法、熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜、当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材、および、それらの製造方法
JP5975292B2 (ja) 熱線遮蔽膜および熱線遮蔽合わせ透明基材
JP5673466B2 (ja) 熱線遮蔽膜とその製造方法、および熱線遮蔽合わせ透明基材
JP6123991B2 (ja) 熱線遮蔽用合わせ構造体
JP6103283B2 (ja) 熱線遮蔽膜製造用の組成物とその製造方法、熱線遮蔽膜の製造方法および熱線遮蔽合わせ透明基材の製造方法
JP5888053B2 (ja) 熱線遮蔽膜、熱線遮蔽合わせ透明基材、および、当該熱線遮蔽合わせ透明基材が窓材として搭載されている自動車
JP2013116977A (ja) 熱線遮蔽微粒子含有組成物およびその製造方法、熱線遮蔽膜、および、熱線遮蔽合わせ透明基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14362303

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012853566

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147018280

Country of ref document: KR

Kind code of ref document: A