WO2013080794A1 - 光学フィルム、面発光体及び光学フィルムの製造方法 - Google Patents
光学フィルム、面発光体及び光学フィルムの製造方法 Download PDFInfo
- Publication number
- WO2013080794A1 WO2013080794A1 PCT/JP2012/079489 JP2012079489W WO2013080794A1 WO 2013080794 A1 WO2013080794 A1 WO 2013080794A1 JP 2012079489 W JP2012079489 W JP 2012079489W WO 2013080794 A1 WO2013080794 A1 WO 2013080794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- optical film
- active energy
- resin
- energy ray
- Prior art date
Links
- 239000012788 optical film Substances 0.000 title claims abstract description 190
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 239000010419 fine particle Substances 0.000 claims abstract description 101
- 229920005989 resin Polymers 0.000 claims abstract description 91
- 239000011347 resin Substances 0.000 claims abstract description 91
- 239000000203 mixture Substances 0.000 claims description 140
- 239000000463 material Substances 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 59
- 230000002093 peripheral effect Effects 0.000 claims description 41
- 238000012546 transfer Methods 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 25
- 230000001678 irradiating effect Effects 0.000 claims description 14
- 238000011049 filling Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 105
- 238000000605 extraction Methods 0.000 description 61
- 239000010410 layer Substances 0.000 description 44
- -1 polyethylene terephthalate Polymers 0.000 description 42
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 31
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 18
- 239000011521 glass Substances 0.000 description 17
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 16
- 239000000178 monomer Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 13
- 229920001971 elastomer Polymers 0.000 description 13
- 239000005060 rubber Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 238000002834 transmittance Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000003505 polymerization initiator Substances 0.000 description 11
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 239000004925 Acrylic resin Substances 0.000 description 9
- 229920000178 Acrylic resin Polymers 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000007747 plating Methods 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 229920001187 thermosetting polymer Polymers 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229920001225 polyester resin Polymers 0.000 description 7
- 239000004645 polyester resin Substances 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 229940059574 pentaerithrityl Drugs 0.000 description 5
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 5
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920005668 polycarbonate resin Polymers 0.000 description 4
- 239000004431 polycarbonate resin Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000012719 thermal polymerization Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- 229930185605 Bisphenol Natural products 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 150000003949 imides Chemical class 0.000 description 3
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 3
- 239000001095 magnesium carbonate Substances 0.000 description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- SZCWBURCISJFEZ-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) 3-hydroxy-2,2-dimethylpropanoate Chemical compound OCC(C)(C)COC(=O)C(C)(C)CO SZCWBURCISJFEZ-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- CZZVAVMGKRNEAT-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;3-hydroxy-2,2-dimethylpropanoic acid Chemical compound OCC(C)(C)CO.OCC(C)(C)C(O)=O CZZVAVMGKRNEAT-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- RCEJCSULJQNRQQ-UHFFFAOYSA-N 2-methylbutanenitrile Chemical compound CCC(C)C#N RCEJCSULJQNRQQ-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 2
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 150000001728 carbonyl compounds Chemical class 0.000 description 2
- 239000012461 cellulose resin Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- CVDUUPMTIHXQKC-UHFFFAOYSA-N ethene 1,3,5-triazinane-2,4,6-trione Chemical group C=C.O=C1NC(=O)NC(=O)N1 CVDUUPMTIHXQKC-UHFFFAOYSA-N 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000013500 performance material Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- BHSNKRNOWCQPEC-UHFFFAOYSA-N (1-cycloheptyl-2-methylcycloheptyl)methyl prop-2-enoate Chemical compound CC1CCCCCC1(COC(=O)C=C)C1CCCCCC1 BHSNKRNOWCQPEC-UHFFFAOYSA-N 0.000 description 1
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- VWAQEEYHYXPMHK-UHFFFAOYSA-N (2-ethyl-2-methyl-1,3-dioxolan-4-yl)methyl prop-2-enoate Chemical compound CCC1(C)OCC(COC(=O)C=C)O1 VWAQEEYHYXPMHK-UHFFFAOYSA-N 0.000 description 1
- SWFHGTMLYIBPPA-UHFFFAOYSA-N (4-methoxyphenyl)-phenylmethanone Chemical compound C1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 SWFHGTMLYIBPPA-UHFFFAOYSA-N 0.000 description 1
- ROLAGNYPWIVYTG-UHFFFAOYSA-N 1,2-bis(4-methoxyphenyl)ethanamine;hydrochloride Chemical compound Cl.C1=CC(OC)=CC=C1CC(N)C1=CC=C(OC)C=C1 ROLAGNYPWIVYTG-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 1
- SAMJGBVVQUEMGC-UHFFFAOYSA-N 1-ethenoxy-2-(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOC=C SAMJGBVVQUEMGC-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 1
- COXCGWKSEPPDAA-UHFFFAOYSA-N 2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)C#N COXCGWKSEPPDAA-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- PUFAFJLYWMNNEC-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]ethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCCOCCOCCO PUFAFJLYWMNNEC-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- VUIWJRYTWUGOOF-UHFFFAOYSA-N 2-ethenoxyethanol Chemical compound OCCOC=C VUIWJRYTWUGOOF-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- SJEBAWHUJDUKQK-UHFFFAOYSA-N 2-ethylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC=C3C(=O)C2=C1 SJEBAWHUJDUKQK-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- BUZICZZQJDLXJN-UHFFFAOYSA-N 3-azaniumyl-4-hydroxybutanoate Chemical compound OCC(N)CC(O)=O BUZICZZQJDLXJN-UHFFFAOYSA-N 0.000 description 1
- SKKHNUKNMQLBTJ-UHFFFAOYSA-N 3-bicyclo[2.2.1]heptanyl 2-methylprop-2-enoate Chemical compound C1CC2C(OC(=O)C(=C)C)CC1C2 SKKHNUKNMQLBTJ-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- XRUKRHLZDVJJSX-UHFFFAOYSA-N 4-cyanopentanoic acid Chemical compound N#CC(C)CCC(O)=O XRUKRHLZDVJJSX-UHFFFAOYSA-N 0.000 description 1
- BUUSNVSJZVGMFY-UHFFFAOYSA-N 4-ethylheptane-3,3-diol Chemical compound CCCC(CC)C(O)(O)CC BUUSNVSJZVGMFY-UHFFFAOYSA-N 0.000 description 1
- IBPADELTPKRSCQ-UHFFFAOYSA-N 9h-fluoren-1-yl prop-2-enoate Chemical compound C1C2=CC=CC=C2C2=C1C(OC(=O)C=C)=CC=C2 IBPADELTPKRSCQ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- YLFGHCRFTZILJU-UHFFFAOYSA-N C=CC=C.C(=C)OCCOCCOCCOC=C Chemical compound C=CC=C.C(=C)OCCOCCOCCOC=C YLFGHCRFTZILJU-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- KMPZSFWGSLUHRM-UHFFFAOYSA-N N=C=O.N=C=O.C=CC1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=CC1=CC=CC=C1 KMPZSFWGSLUHRM-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 208000034189 Sclerosis Diseases 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- IAXXETNIOYFMLW-GYSYKLTISA-N [(1r,3r,4r)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@@]2(C)[C@H](OC(=O)C(=C)C)C[C@@H]1C2(C)C IAXXETNIOYFMLW-GYSYKLTISA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- BICNEUKUQARCEL-UHFFFAOYSA-N [2-methyl-2-(2-methylpropyl)-1,3-dioxolan-4-yl]methyl prop-2-enoate Chemical compound CC(C)CC1(C)OCC(COC(=O)C=C)O1 BICNEUKUQARCEL-UHFFFAOYSA-N 0.000 description 1
- KXBFLNPZHXDQLV-UHFFFAOYSA-N [cyclohexyl(diisocyanato)methyl]cyclohexane Chemical compound C1CCCCC1C(N=C=O)(N=C=O)C1CCCCC1 KXBFLNPZHXDQLV-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- ZDNFTNPFYCKVTB-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,4-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=C(C(=O)OCC=C)C=C1 ZDNFTNPFYCKVTB-UHFFFAOYSA-N 0.000 description 1
- JKJWYKGYGWOAHT-UHFFFAOYSA-N bis(prop-2-enyl) carbonate Chemical compound C=CCOC(=O)OCC=C JKJWYKGYGWOAHT-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000006226 butoxyethyl group Chemical group 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- LMGZGXSXHCMSAA-UHFFFAOYSA-N cyclodecane Chemical compound C1CCCCCCCCC1 LMGZGXSXHCMSAA-UHFFFAOYSA-N 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- CJSBUWDGPXGFGA-UHFFFAOYSA-N dimethyl-butadiene Natural products CC(C)=CC=C CJSBUWDGPXGFGA-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- QKLCQKPAECHXCQ-UHFFFAOYSA-N ethyl phenylglyoxylate Chemical compound CCOC(=O)C(=O)C1=CC=CC=C1 QKLCQKPAECHXCQ-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- SAMYCKUDTNLASP-UHFFFAOYSA-N hexane-2,2-diol Chemical compound CCCCC(C)(O)O SAMYCKUDTNLASP-UHFFFAOYSA-N 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- YLHXLHGIAMFFBU-UHFFFAOYSA-N methyl phenylglyoxalate Chemical compound COC(=O)C(=O)C1=CC=CC=C1 YLHXLHGIAMFFBU-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- FVXBCDWMKCEPCL-UHFFFAOYSA-N nonane-1,1-diol Chemical compound CCCCCCCCC(O)O FVXBCDWMKCEPCL-UHFFFAOYSA-N 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- NCAIGTHBQTXTLR-UHFFFAOYSA-N phentermine hydrochloride Chemical compound [Cl-].CC(C)([NH3+])CC1=CC=CC=C1 NCAIGTHBQTXTLR-UHFFFAOYSA-N 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/003—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/24—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
- B29C41/26—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on a rotating drum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/24—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
- B29C41/32—Making multilayered or multicoloured articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00355—Production of simple or compound lenses with a refractive index gradient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00365—Production of microlenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0074—Production of other optical elements not provided for in B29D11/00009- B29D11/0073
- B29D11/00788—Producing optical films
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/002—Refractors for light sources using microoptical elements for redirecting or diffusing light
- F21V5/004—Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0043—Inhomogeneous or irregular arrays, e.g. varying shape, size, height
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0056—Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2025/00—Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
- B29K2025/04—Polymers of styrene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2033/00—Use of polymers of unsaturated acids or derivatives thereof as moulding material
- B29K2033/04—Polymers of esters
- B29K2033/08—Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2035/00—Use of polymers of unsaturated polycarboxylic acids or derivatives thereof as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/24—Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
- B29K2105/246—Uncured, e.g. green
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
- B29L2011/0016—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B2207/00—Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
- G02B2207/113—Fluorescence
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/858—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
Definitions
- the present invention relates to an optical film, a surface light emitter, and a method for producing an optical film.
- This application is filed in Japanese Patent Application No. 2011-260296 filed in Japan on November 29, 2011, Japanese Patent Application No. 2012-0899957 filed in Japan on April 11, 2012, and in Japan on April 11, 2012.
- Japanese Patent Application No. 2012-090491 filed Japanese Patent Application No. 2012-112300 filed in Japan on May 16, 2012, and Japanese Patent Application No. 2012-150405 filed in Japan on July 4, 2012 Claim the right and use it here.
- organic EL (electroluminescence) light-emitting devices are expected to be used for flat panel displays, or to be used for next-generation lighting instead of fluorescent lamps.
- the structure of the organic EL light emitting device is diversified from a simple structure in which an organic thin film serving as a light emitting layer is sandwiched between two films to a multilayer structure.
- Examples of the latter multilayered structure include a structure in which a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are laminated on an anode provided on a glass substrate.
- the layers sandwiched between the anode and the cathode are all composed of organic thin films, and the thickness of each organic thin film is very thin, such as several tens of nm.
- An organic EL light-emitting device is a laminate of thin films, and the total reflection angle of light between the thin films is determined by the difference in refractive index between the materials of the thin films. At present, about 80% of the light generated in the light emitting layer is confined inside the organic EL light emitting device and cannot be extracted outside. Specifically, when the refractive index of the glass substrate is 1.5 and the refractive index of the air layer is 1.0, the critical angle ⁇ c is 41.8 °, and the incident angle is smaller than the critical angle ⁇ c. the light is emitted from the glass substrate to the air layer, the light of the larger incident angle than the critical angle theta c is confined within the glass substrate by total internal reflection. Therefore, it is required to extract light confined inside the glass substrate on the surface of the organic EL light emitting device to the outside of the glass substrate, that is, to improve light extraction efficiency and normal luminance.
- organic EL light emitting devices that perform isotropic light emission, it is required that the light extraction efficiency and normal luminance are improved, and that the emission angle dependency of the wavelength of light emitted from the organic EL light emitting device is small. . That is, when the light emitted from the light emitting layer passes through the glass substrate and is emitted from the glass substrate, the difference in the emission angle depending on the wavelength is small, in other words, the distribution of the light emitted from the glass substrate has wavelength dependency. There is a demand for as little as possible.
- Patent Document 1 proposes an optical film having a microlens covered with an outer layer made of a low refractive index deposition material in order to improve the luminance of a surface light emitter.
- Patent Document 2 proposes an optical film having a lens portion containing fine particles in order to keep the luminance uniformity of the surface light emitter.
- the optical film proposed in Patent Document 1 is limited to a film on which the material of the outer layer can be deposited, and it is difficult to control the lens shape and the thickness of the outer layer. Inferior.
- the optical film proposed in Patent Document 2 includes fine particles, the emission angle dependency of the emission light wavelength of the surface light emitter is improved, but the fine particles are localized at the intended location in the lens portion. Therefore, it is difficult to achieve both the light extraction efficiency of the surface light emitter and the emission angle dependency of the emission light wavelength.
- a plurality of convex microlenses are arranged, and the microlens has a region ⁇ and a region ⁇ , and the region ⁇ occupies a convex outer portion of the microlens and is positioned so as to cover the region ⁇ .
- a plurality of convex microlenses are arranged, and the microlens has a region ⁇ and a region ⁇ , and the region ⁇ occupies a convex outer portion of the microlens and is positioned so as to cover the region ⁇ .
- An optical film The region ⁇ includes fine particles, The region ⁇ contains fine particles as necessary, An optical film in which the fine particle content P 1 in the region ⁇ is lower than the fine particle content P 2 in the region ⁇ ; Is provided.
- a plurality of convex microlenses are arranged, and the microlens has a region ⁇ and a region ⁇ , and the region ⁇ occupies a convex outer portion of the microlens and is positioned so as to cover the region ⁇ .
- An optical film The region ⁇ includes fine particles, The region ⁇ contains fine particles as necessary, An optical film in which the fine particle content P 1 in the region ⁇ is higher than the fine particle content P 2 in the region ⁇ ; Is provided.
- a surface light emitter including any one of the above optical films is provided as one of the above objects.
- a method for producing an optical film in which a plurality of convex microlenses are arranged including the following steps A to D executed sequentially: Step A: Rotating a roll mold having an outer peripheral surface on which a plurality of concave microlens transfer portions are arranged, and moving the base material along the outer peripheral surface of the roll mold in the rotation direction of the roll mold, the roll Applying the active energy ray-curable composition B to the outer peripheral surface of the mold and filling a part of the concave shape of the microlens transfer portion with the active energy ray-curable composition B; Step B: supplying the active energy ray-curable composition A between the outer peripheral surface of the roll mold and the substrate; Step C: Active energy in a region between the outer peripheral surface of the roll mold and the base material in a state where the active energy ray-curable composition A is sandwiched between the outer peripheral surface of the roll type and the base material. Irradiating with radiation; Step D
- the optical film of the present invention is excellent in improving the light extraction efficiency of the surface light emitter, excellent in suppressing the emission angle dependency of the emission light wavelength of the surface light emitter, or excellent in scratch resistance.
- the surface light emitter including the optical film of the present invention is excellent in light extraction efficiency or excellent in suppression of the emission angle dependency of the emission light wavelength. According to the method for producing an optical film of the present invention, it is excellent in improving the light extraction efficiency of the surface light emitter, excellent in suppressing the emission angle dependency of the emission light wavelength of the surface light emitter, or scratch resistant. An excellent optical film can be obtained.
- FIG. 1 An example of a convex microlens is shown in FIG.
- (a) is a schematic sectional view
- (b) is a schematic perspective view.
- the microlens 10 has a region ⁇ indicated by reference numeral 11 and a region ⁇ indicated by reference numeral 12.
- the region ⁇ (12) occupies the convex outer portion of the microlens 10.
- the region ⁇ (12) is located so as to cover the region ⁇ (11).
- the region ⁇ (12) may completely cover the region ⁇ (11), or may be covered so that a part of the region ⁇ (11) is exposed to the outside.
- reference numeral 13 indicates a bottom surface portion of the microlens 10.
- the bottom surface portion 13 of the microlens refers to a virtual planar portion surrounded by the outer peripheral edge of the bottom portion of the microlens.
- the bottom surface portion of the microlens corresponds to the interface between the microlens and the relaxation layer.
- the longest diameter L of the bottom surface portion 13 of the microlens refers to the length of the longest portion of the bottom surface portion of the microlens
- the average longest diameter Lave of the bottom surface portion of the microlens is the optical film. The surface having the microlens was photographed with a scanning microscope, and the longest diameter L of the bottom surface of the microlens was measured at five locations to obtain an average value.
- the micro lenses and the height H refer to the highest to the site height of the microlens from the bottom portion of the microlens, the average height H ave microlenses a cross section of an optical film
- the images were taken with a scanning microscope, and the height H of the microlens was measured at five locations to obtain the average value.
- the height h of the region ⁇ refers to the height from the bottom surface of the microlens to the highest portion of the region ⁇
- the average height h ave of the region ⁇ is a cross section of the optical film. It image
- Examples of the convex shape of the microlens include, for example, a spherical notch shape, a spherical notch shape, an ellipsoidal spherical notch shape (a shape obtained by cutting a spheroid on one plane), and an ellipsoidal spherical notch shape (a spheroid is mutually connected).
- Shape cut by two parallel planes pyramid shape, truncated pyramid shape, cone shape, truncated cone shape, and related roof shape (spherical shape, spherical truncated shape, ellipsoidal spherical shape, elliptical shape) And a truncated cone shape, a pyramid shape, a truncated pyramid shape, a cone shape, or a shape in which a truncated cone shape extends along the bottom surface portion).
- the convex shape of these microlenses may be used alone or in combination of two or more for a plurality of microlenses.
- a spherical notch shape, a spherically truncated shape, an elliptical spherically truncated shape, and an elliptical spherically truncated shape are preferred,
- An ellipsoidal sphere shape is more preferable.
- the average longest diameter L ave of the bottom surface of the microlens is preferably 2 to 400 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 20 to 100 ⁇ m.
- the average longest diameter L ave of the bottom surface portion of the microlens is 2 ⁇ m or more, the light extraction efficiency of the surface light emitter is excellent.
- the average longest diameter L ave of the bottom surface portion of the microlens is 400 ⁇ m or less, the microlens is not visually recognized, and the appearance of the optical film is excellent.
- the average height H ave of the microlens is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, and still more preferably 10 to 50 ⁇ m.
- the average height H ave of the microlenses is 1 ⁇ m or more, the light extraction efficiency of the surface light emitter is excellent.
- the average height H ave of the microlens is 200 ⁇ m or less, the flexibility of the optical film is excellent.
- the aspect ratio of the microlens is preferably 0.3 to 1.4, more preferably 0.35 to 1.3, and still more preferably 0.4 to 1.0.
- the aspect ratio of the microlens was calculated by “average height H ave of microlens / average longest diameter L ave of the bottom surface of the microlens”.
- Bottom surface of the microlens examples include a circle and an ellipse. With respect to the shape of the bottom surface of these convex microlenses, one type may be used alone for a plurality of microlenses, or two or more types may be used in combination. Among the shapes of the bottom surfaces of these microlenses, a circular or elliptical shape is preferable, and a circular shape is more preferable because of the excellent light extraction efficiency of the surface light emitter.
- the total ratio of the area of the bottom surface portion 13 of the microlens 10 (area surrounded by a dotted line in FIG. 2) to the area of the optical film 20 (area surrounded by a solid line in FIG. 2) is preferably 20 to 99%. 30 to 95% is more preferable, and 50 to 93% is still more preferable.
- the ratio of the total area of the bottom surface of the microlens to the area of the optical film is 20% or more, the light extraction efficiency of the surface light emitter is excellent.
- the ratio of the total area of the bottom surface portion of the microlens to the area of the optical film is 99% or less, a roll-type transfer portion can be easily formed, and the optical film can be easily manufactured.
- the maximum value of the ratio of the total area of the bottom surfaces of the microlens to the area of the optical film is about 91%.
- FIG. 3A An example of the arrangement of microlenses is shown in FIG.
- a hexagonal arrangement FIG. 3A
- a rectangular arrangement FIG. 3B
- a rhombus arrangement FIG. 3C
- a linear arrangement FIG. 3D
- a circular arrangement FIG. 3 (e)
- a random arrangement FIG. 3 (f)
- a hexagonal array and a rectangular array are more preferable because of the excellent light extraction efficiency of the surface light emitter.
- the average height h ave of the region ⁇ is preferably 0.8 to 160 ⁇ m, more preferably 4 to 80 ⁇ m, and still more preferably 8 to 40 ⁇ m.
- the average height h ave of the region ⁇ is 0.8 ⁇ m or more, the light extraction efficiency and normal luminance of the surface light emitter are excellent. Further, when the average height h ave of the region ⁇ is 160 ⁇ m or less, the effect of suppressing the emission angle dependency of the emission light wavelength of the surface light emitter is excellent.
- the ratio of the average height h ave of the region ⁇ to the average height H ave of the microlens is preferably 0.04 to 0.96, more preferably 0.1 to 0.92, and 0 2 to 0.88 is more preferable.
- the ratio of the average height h ave of the region ⁇ to the average height H ave of the microlens is 0.04 or more, the light extraction efficiency and the normal luminance of the surface light emitter are excellent.
- the ratio of the average height h ave of the region ⁇ to the average height H ave of the microlens is 0.96 or less, the effect of suppressing the emission angle dependence of the emission light wavelength of the surface light emitter is excellent.
- the ratio of the volume of the region ⁇ to the volume of the microlens is preferably 0.01 to 0.90, more preferably 0.02 to 0.80, and further preferably 0.03 to 0.70.
- the ratio of the volume of the region ⁇ to the volume of the microlens is 0.01 or more, the light extraction efficiency of the surface light emitter is excellent.
- the ratio of the volume of the region ⁇ to the volume of the microlens is 0.90 or less, the effect of suppressing the emission angle dependency of the emission light wavelength of the surface light emitter is excellent.
- another region may exist between the region ⁇ and the region ⁇ .
- This “other area” may be composed of one layer or a plurality of layers.
- Examples of the “other region” include an intermediate region having a refractive index between the refractive index of the resin in the region ⁇ and the refractive index of the resin in the region ⁇ .
- the first aspect of the optical film of the present invention is an optical film in which both the region ⁇ and the region ⁇ contain a resin, and the refractive index n 1 of the resin in the region ⁇ is higher than the refractive index n 2 of the resin in the region ⁇ . .
- the optical film of the first aspect is particularly excellent in the light extraction efficiency of the surface light emitter.
- the refractive index n 1 of the resin in the region ⁇ should be higher than the refractive index n 2 of the resin in the region ⁇ , but preferably 1.45 to 1.75, and 1.50 to 1.70 is more preferable, and 1.55-1.65 is still more preferable.
- the refractive index n 1 of the resin in the region ⁇ is 1.45 or more, the light extraction efficiency and the normal luminance of the surface light emitter are excellent.
- the refractive index n 1 of the resin in the region ⁇ is 1.75 or less, the degree of freedom in selecting the resin increases.
- the refractive index of the film in this specification is a value measured using a prism coupler with a He—Ne laser as the light source under the condition of 20 ° C.
- the refractive index is measured by the measurement method after the resin or the like is formed into a film.
- the refractive index n 2 of the resin in the region ⁇ may be lower than the refractive index n 1 of the resin in the region ⁇ , but is preferably 1.35 to 1.65, and preferably 1.40 to 1.60 is more preferable, and 1.45 to 1.55 is still more preferable. If the refractive index n 2 of the resin in the region ⁇ is 1.35 or more, the degree of freedom in selecting the resin increases. Further, when the refractive index n 2 of the resin in the region ⁇ is 1.65 or less, the light extraction efficiency and the normal luminance of the surface light emitter are excellent.
- the difference between the refractive index n 1 of the resin in the region ⁇ and the refractive index n 2 of the resin in the region ⁇ is excellent in the light extraction efficiency of the surface light emitter.
- 0.05 or more is more preferable, and 0.10 or more is still more preferable.
- the region ⁇ and the region ⁇ of the optical film of the first aspect are composed mainly of a resin.
- the content of the resin in the region ⁇ of the optical film of the first aspect is preferably 50% by mass or more, more preferably 60% by mass or more, based on the total amount of the region ⁇ , since the light extraction efficiency of the surface light emitter is excellent. More preferably, it is more than mass%.
- the content of the resin in the region ⁇ of the optical film of the first aspect is preferably 50% by mass or more, more preferably 60% by mass or more, based on the total amount of the region ⁇ , since the light extraction efficiency of the surface light emitter is excellent. More preferably, it is more than mass%.
- the region ⁇ and the region ⁇ of the optical film of the first aspect may include fine particles as necessary.
- Content P 1 of the fine particles in the region ⁇ of the optical film of the first aspect is excellent in light extraction efficiency of the surface light emitter, the region ⁇ total amount is preferably 50 wt% or less, more preferably 40 wt% or less 30 mass% or less is still more preferable.
- Content P 2 of the fine particles in the region ⁇ of the optical film of the first aspect is excellent in light extraction efficiency of the surface light emitter, the region ⁇ total amount is preferably 50 wt% or less, more preferably 40 wt% or less 30 mass% or less is still more preferable.
- the fine particles contained in the region ⁇ and the region ⁇ of the optical film of the first aspect may be the same or different in the content ⁇ , the refractive index, the material, the particle diameter, the particle shape, and the like in the region ⁇ and the region ⁇ . Good.
- the region ⁇ includes fine particles, the region ⁇ includes fine particles as necessary, and the fine particle content P 1 in the region ⁇ is greater than the fine particle content P 2 in the region ⁇ .
- the optical film of the second aspect is particularly excellent in the light extraction efficiency of the surface light emitter and excellent in the action of suppressing the emission angle dependence of the emission light wavelength.
- the fine particle content P 1 in the region ⁇ should be lower than the fine particle content P 2 in the region ⁇ , but the region ⁇ is excellent in the light extraction efficiency of the surface light emitter.
- the content P 2 of the fine particles in the region ⁇ is be higher than the content P 1 of the fine particles in the area alpha, the region ⁇ total amount is preferably 5 to 50 mass%, 15 More preferably, the content is about 45% by mass, and further more preferably 22 to 40% by mass.
- the content P 2 of the fine particles in the region ⁇ is 5 mass% or more, excellent emission angle dependence of the inhibitory effect of the emitted light wavelength of the surface light emitter.
- the content ratio P 2 of the fine particles in the region ⁇ is 50 wt% or less, excellent light extraction efficiency of the surface light emitter.
- the fine particles contained in the region ⁇ and the region ⁇ of the optical film of the second aspect may have the same or different refractive index, material, particle size, particle shape, and the like in the region ⁇ and the region ⁇ .
- the difference between the fine particle content P 1 in the region ⁇ and the fine particle content P 2 in the region ⁇ is preferably 3 to 50% by mass, more preferably 5 to 45% by mass, More preferably, it is 10 to 40% by mass.
- the difference between the fine particle content P 1 in the region ⁇ and the fine particle content P 2 in the region ⁇ is 3% by mass or more, the effect of suppressing the emission angle dependency of the emission light wavelength of the surface light emitter is excellent.
- the difference between the fine particle content P 1 in the region ⁇ and the fine particle content P 2 in the region ⁇ is 50% by mass or less, the light extraction efficiency of the surface light emitter is excellent.
- the region ⁇ and the region ⁇ of the optical film of the second aspect are composed mainly of a resin.
- the resin content in the region ⁇ of the optical film of the second embodiment is preferably 88% by mass or more, more preferably 93% by mass or more, based on the total amount of the region ⁇ , since the light extraction efficiency of the surface light emitter is excellent. More preferably, it is more than mass%.
- the content of the resin in the region ⁇ of the optical film of the second embodiment is preferably 50% by mass or more, more preferably 55% by mass or more in the total amount of the region ⁇ because the light extraction efficiency of the surface light emitter is excellent. More preferably, it is more than mass%.
- the resin in the region ⁇ and the region ⁇ of the optical film of the second aspect may have the same refractive index, material, or the like in the region ⁇ and the region ⁇ .
- the difference between the refractive index n 1 of the resin in the region ⁇ and the refractive index n 2 of the resin in the region ⁇ is excellent in the light extraction efficiency of the surface light emitter, and is 0.02 or more. Preferably, 0.05 or more is more preferable.
- regions the difference between the refractive index n b of the fine particles contained in the refractive index n 2 and the region ⁇ of the resin in ⁇ is the outgoing light wavelength of the surface light emitter emission angle dependent inhibitory effect 0.02 or more is preferable, 0.05 or more is more preferable, and 0.08 or more is still more preferable.
- the refractive index of the fine particles is a value measured as follows. A film of Cargill's standard refraction liquid is prepared on a glass plate, fine particles are added into the film, and another glass plate is covered.
- a total light transmittance is measured using a haze meter.
- the total light transmittance is measured in the same manner as described above for various samples in which the refractive index of the Cargill standard refraction liquid is changed.
- the refractive index of the Cargill standard refraction liquid in the sample in which the largest total light transmittance among the measured total light transmittances is obtained is defined as the refractive index of the fine particles.
- the region ⁇ includes fine particles, the region ⁇ includes fine particles as necessary, and the fine particle content P 1 in the region ⁇ is equal to the fine particle content P 2 in the region ⁇ .
- the optical film of the third aspect is particularly excellent in scratch resistance and excellent in the light extraction efficiency of the surface light emitter.
- the fine particle content P 1 in the region ⁇ may be higher than the fine particle content P 2 in the region ⁇ , but is preferably 5 to 50% by mass in the total amount of the region ⁇ . More preferably, the content is about 45% by mass, and further more preferably 22 to 40% by mass. If the content P 1 of the fine particles in the region ⁇ is 5 mass% or more, excellent scratch resistance of the optical film. When the content ratio P 2 of the fine particles in the region ⁇ is 50 wt% or less, excellent light extraction efficiency of the surface light emitter.
- the content P 2 of the fine particles in the region ⁇ is may be lower than the content P 1 of the fine particles in the area alpha, due to excellent light extraction efficiency of the surface light emitter, region ⁇
- the total amount 12% by mass or less is preferable, 7% by mass or less is more preferable, and 3% by mass or less is more preferable.
- the fine particles contained in the region ⁇ and the region ⁇ of the optical film of the third aspect may be the same or different in the refractive index, material, particle diameter, particle shape and the like in the region ⁇ and the region ⁇ .
- the difference between the fine particle content P 1 in the region ⁇ and the fine particle content P 2 in the region ⁇ is preferably 3 to 50% by mass, more preferably 5 to 45% by mass, More preferably, it is 10 to 40% by mass.
- the difference between the fine particle content P 1 in the region ⁇ and the fine particle content P 2 in the region ⁇ is 3% by mass or more, the effect of suppressing the emission angle dependency of the emission light wavelength of the surface light emitter is excellent.
- the difference between the fine particle content P 1 in the region ⁇ and the fine particle content P 2 in the region ⁇ is 50% by mass or less, the light extraction efficiency of the surface light emitter is excellent.
- the region ⁇ and the region ⁇ of the optical film of the third aspect are composed mainly of a resin.
- the content of the resin in the region ⁇ of the optical film of the third aspect is preferably 50% by mass or more, more preferably 55% by mass or more, in the total amount of the region ⁇ , because the light extraction efficiency of the surface light emitter is excellent. More preferably, it is more than mass%.
- the resin content in the region ⁇ of the optical film of the third embodiment is preferably 88% by mass or more, more preferably 93% by mass or more, based on the total amount of the region ⁇ , since the light extraction efficiency of the surface light emitter is excellent. More preferably, it is more than mass%.
- the resin in the region ⁇ and region ⁇ of the optical film of the third aspect may be the same or different in refractive index, material, and the like in the region ⁇ and the region ⁇ .
- the difference between the refractive index n 1 of the resin in the region ⁇ and the refractive index n 2 of the resin in the region ⁇ is excellent in the light extraction efficiency of the surface light emitter.
- 0.05 or more is more preferable.
- any resin and / or any fine particles may be used in a range corresponding to any one of the first aspect, the second aspect, and the third aspect. it can.
- the resin examples include acrylic resin; polycarbonate resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; styrene resin such as polystyrene and ABS resin; and vinyl chloride resin.
- acrylic resin is preferable because it has a high light transmittance in the visible light wavelength region and is excellent in heat resistance, mechanical properties, and molding processability.
- Examples of the method for producing the resin include a method of curing the thermosetting composition by heating, a method of curing the active energy ray-curable composition by irradiating active energy rays.
- a method of irradiating active energy rays to cure the active energy ray curable composition is preferable because the process is simple and the curing speed is fast.
- active energy rays examples include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays.
- active energy rays examples include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays.
- ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable because the active energy ray-curable composition is excellent in curability and can suppress deterioration of the optical film.
- the active energy ray-curable composition is not particularly limited as long as it can be cured by active energy rays. However, the active energy ray-curable composition is excellent in handleability and curability, and the optical film has flexibility, heat resistance, scratch resistance, and resistance.
- An active energy ray-curable composition containing a polymerizable monomer (A), a crosslinkable monomer (B) and an active energy ray polymerization initiator (C) because it is excellent in various physical properties such as solvent properties and light transmittance. Things are preferred.
- thermosetting composition is not particularly limited as long as it can be cured by heat. However, the thermosetting composition is excellent in handleability and curability, and has flexibility, heat resistance, scratch resistance, solvent resistance, and light transmittance of the optical film.
- the thermosetting composition containing a polymerizable monomer (A), a crosslinkable monomer (B) and a thermal polymerization initiator (D) is preferable because of excellent physical properties such as the above.
- Examples of the polymerizable monomer (A) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, iso -Butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, alkyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth
- Epoxy (meth) acrylates aromatic vinyls such as styrene and ⁇ -methylstyrene; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and 2-hydroxyethyl vinyl ether; vinyl carboxylates such as vinyl acetate and vinyl butyrate; Examples thereof include olefins such as ethylene, propylene, butene and isobutene.
- These polymerizable monomers (A) may be used individually by 1 type, and may use 2 or more types together. Among these polymerizable monomers (A), the handleability and curability of the active energy ray-curable composition are excellent, and the flexibility, heat resistance, scratch resistance, solvent resistance, light transmittance, etc.
- (meth) acrylates, epoxy (meth) acrylates, aromatic vinyls and olefins are preferable, and (meth) acrylates and epoxy (meth) acrylates are more preferable.
- (meth) acrylate refers to acrylate or methacrylate.
- the content of the polymerizable monomer (A) in the active energy ray-curable composition is preferably 0.5 to 60% by mass, more preferably 1 to 57% by mass, based on the total amount of the active energy ray-curable composition. 2 to 55% by mass is more preferable.
- the content of the polymerizable monomer (A) is 0.5% by mass or more, the handleability of the active energy ray-curable composition is excellent, and the substrate adhesion of the optical film is excellent.
- hardenability of an active energy ray curable composition as the content rate of a polymerizable monomer (A) is 60 mass% or less, and excellent in the solvent resistance of an optical film.
- crosslinkable monomer (B) examples include hexa (meth) acrylates such as dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate; dipentaerythritol hydroxypenta (meth) acrylate , Penta (meth) acrylates such as caprolactone-modified dipentaerythritol hydroxypenta (meth) acrylate; ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxy modified tetra (meth) acrylate, dipenta Such as erystol hexa (meth) acrylate, dipentaerystol penta (meth) acrylate, tetramethylolmethane
- Tora (meth) acrylates trimethylolpropane tri (meth) acrylate, trisethoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, tris ( Tri (meth) acrylates such as 2- (meth) acryloyloxyethyl) isocyanurate, aliphatic hydrocarbon-modified trimethylolpropane tri (meth) acrylate having 2 to 5 carbon atoms, and isocyanuric acid ethylene oxide-modified tri (meth) acrylate Triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) ) Acrylate, 1,5-pentanediol di
- Polyurethane polyfunctional (meth) acrylates such as compounds obtained by reacting an isocyanate group with a hydroxyl group-containing (meth) acrylate; divinyl ethers such as diethylene glycol divinyl ether and triethylene glycol divinyl ether Butadiene, isoprene, dienes such as dimethyl butadiene and the like.
- These crosslinkable monomers (B) may be used individually by 1 type, and may use 2 or more types together.
- the optical film has excellent physical properties such as flexibility, heat resistance, scratch resistance, solvent resistance, and light transmittance.
- (Meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, diallyls, allyl (meth) acrylates, polyester di (meth) acrylates, urethane polyfunctional (meth) Acrylates are preferred, hexa (meth) acrylates, penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, polyester di (meth) acrylates, urethane Functional (meth) acrylates are more preferred.
- the content of the crosslinkable monomer (B) in the active energy ray curable composition is preferably 30 to 98% by mass, more preferably 35 to 97% by mass, based on the total amount of the active energy ray curable composition. More preferably, it is -96 mass%.
- the content of the crosslinkable monomer (B) is 30% by mass or more, the crosslinkability and curability of the active energy ray-curable composition are excellent, and the solvent resistance of the optical film is excellent.
- flexibility of an optical film is excellent in the content rate of a crosslinkable monomer (B) being 98 mass% or less.
- Examples of the active energy ray polymerization initiator (C) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, acetoin, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxyacetophenone.
- ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone benzyldimethyl ketal, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylamino) benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy Carbonyl compounds such as -2-methyl-1-phenylpropan-1-one and 2-ethylanthraquinone; tetramethylthiuram monosulfide, tetramethylthiura Sulfur compounds such as disulfide; 2,4,6-trimethylbenzoyl diphenylphosphine oxide, acylphosphine oxide such as benzo dichloride ethoxy phosphine oxide, and the like.
- active energy ray polymerization initiators (C) may be used alone or in combination of two or more.
- active energy ray polymerization initiators (C) carbonyl compounds and acyl phosphine oxides are preferred because they are excellent in handleability and curability of the active energy ray curable composition and light transmittance of the optical film. More preferred are carbonyl compounds.
- the content of the active energy ray polymerization initiator (C) in the active energy ray curable composition is preferably 0.1 to 10% by mass, and preferably 0.5 to 8% by mass, based on the total amount of the active energy ray curable composition. Is more preferable, and 1 to 5% by mass is even more preferable.
- the content of the active energy ray polymerization initiator (C) is 0.1% by mass or more, the handleability and curability of the active energy ray curable composition are excellent.
- thermal polymerization initiator (D) examples include azo compounds such as isobutyronitrile, 2-methylbutyronitrile, 2,4-dimethylvaleronitrile, 4-cyanovaleric acid, 2-methylpropionic acid; Examples thereof include peroxides such as benzoyl, tert-butyl hydroperoxide, cumene hydroperoxide, and di-tert-butyl peroxide.
- thermal polymerization initiators (D) may be used alone or in combination of two or more.
- isobutyronitrile and 2-methylbutyronitrile are preferable because they are excellent in handleability and curability of the thermosetting composition and light transmittance of the optical film. Butyronitrile is more preferred.
- the fine particles are not particularly limited as long as they have a light diffusion effect in the visible light wavelength region (approximately 400 to 700 nm), and known fine particles can be used.
- the fine particles may be used alone or in combination of two or more.
- the fine particle material examples include gold, silver, silicon, aluminum, magnesium, zirconium, titanium, zinc, germanium, indium, tin, antimony, cerium, and other metals; silicon oxide, aluminum oxide, magnesium oxide, zirconium oxide, and oxide.
- Metal oxides such as titanium, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, and cerium oxide; metal hydroxides such as aluminum hydroxide; metal carbonates such as magnesium carbonate; silicon nitride Metal nitrides such as acrylic resin, styrene resin, silicone resin, urethane resin, melamine resin, epoxy resin and the like. These fine particle materials may be used alone or in combination of two or more.
- silicon, aluminum, magnesium, silicon oxide, aluminum oxide, magnesium oxide, aluminum hydroxide, magnesium carbonate, acrylic resin, styrene resin, silicone Resin, urethane resin, melamine resin, and epoxy resin are preferable, and silicon oxide, aluminum oxide, aluminum hydroxide, magnesium carbonate, acrylic resin, styrene resin, silicone resin, urethane resin, melamine resin, and epoxy resin are more preferable.
- the volume average particle diameter of the fine particles is preferably 0.5 to 20 ⁇ m, more preferably 0.7 to 15 ⁇ m, and still more preferably 0.8 to 10 ⁇ m.
- the volume average particle diameter of the fine particles is 0.5 ⁇ m or more, light in the visible wavelength region can be effectively scattered. Further, when the volume average particle diameter of the fine particles is 20 ⁇ m or less, the fluidity when mixed with the active energy ray-curable composition or the thermosetting composition is excellent.
- Examples of the shape of the fine particles include a spherical shape, a cylindrical shape, a cubic shape, a rectangular parallelepiped shape, a pyramid shape, a conical shape, a star shape, a donut shape, a daisy chain shape, a powder shape, and an indefinite shape. These fine particles may be used singly or in combination of two or more.
- a spherical shape, a cubic shape, a rectangular parallelepiped shape, a pyramid shape, and a star shape are preferable, and a spherical shape is more preferable because light in the visible light wavelength range can be effectively scattered.
- a relaxation layer 21 is formed between the bottom surface portion of the convex microlens 10 and the substrate 22 as shown in FIG. It is preferable that the optical film 20 be made.
- the optical film of the present invention is not limited to this.
- the relaxation layer 21 mainly has a role of relaxing the stress accompanying polymerization shrinkage during curing and maintaining the convex shape of the microlens.
- the material for the relaxation layer known resins and known fine particles can be used.
- the material of the relaxation layer is the material of the region ⁇ . Is preferably the same.
- the thickness of the relaxation layer is preferably 1 to 60 ⁇ m, more preferably 3 to 40 ⁇ m, still more preferably 5 to 30 ⁇ m.
- the thickness of the relaxation layer is 1 ⁇ m or more, the handleability of the optical film is excellent. Further, when the thickness of the relaxation layer is 60 ⁇ m or less, the light extraction efficiency of the surface light emitter is excellent.
- the base material 22 is preferably made of a material that easily transmits light in the visible light wavelength region.
- the base material 22 is made of a material that easily transmits the active energy ray. Preferably it is.
- the material of the base material examples include acrylic resin; polycarbonate resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; styrene resin such as polystyrene and ABS resin; vinyl chloride resin; diacetyl cellulose, triacetyl cellulose, and the like. Cellulose resin; imide resin such as polyimide and polyimide amide; glass; metal.
- acrylic resin, polycarbonate resin, polyester resin, styrene resin, cellulose resin, and imide resin are preferred because of excellent flexibility and active energy ray permeability, and acrylic resin and polycarbonate resin. Polyester resin and imide resin are more preferable.
- the thickness of the substrate is preferably 10 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, still more preferably 50 to 300 ⁇ m.
- the thickness of the substrate is 10 ⁇ m or more, the handleability of the optical film is excellent.
- it is excellent in the light extraction efficiency of a surface light-emitting body as the thickness of a base material is 500 micrometers or less.
- an easy adhesion treatment may be applied to the surface of the base material as necessary.
- the method for easy adhesion treatment include a method for forming an easy adhesion layer made of a polyester resin, an acrylic resin, a urethane resin, or the like on the surface of the substrate, and a method for roughening the surface of the substrate.
- the substrate may be subjected to surface treatments such as antistatic, antireflection, and adhesion prevention between the substrates as necessary.
- an adhesive layer may be provided on the surface of the optical film that does not have a convex microlens.
- an adhesive layer may be provided on the surface of the base material as shown in FIG.
- the adhesive layer is not particularly limited, and can be formed by applying a known adhesive.
- a protective film may be provided on the surface of the adhesive layer in order to improve the handleability of the optical film. What is necessary is just to peel a protective film from an adhesion layer, when sticking an optical film on the surface of an organic electroluminescent light emitting device.
- the protective film is not particularly limited, and a known protective film can be used.
- Step A Rotating a roll mold having an outer peripheral surface on which a plurality of concave microlens transfer portions are arranged, and moving the base material along the outer peripheral surface of the roll mold in the rotation direction of the roll mold, the roll Applying the active energy ray-curable composition B to the outer peripheral surface of the mold and filling a part of the concave shape of the microlens transfer portion with the active energy ray-curable composition B;
- Step B supplying the active energy ray-curable composition A between the outer peripheral surface of the roll mold and the substrate;
- Step C Active energy in a region between the outer peripheral surface of the roll mold and the base material in a state where the active energy ray-curable composition A is sandwiched between the outer peripheral surface of the roll type and the base material. Irradiating with radiation; Process D
- a manufacturing method including the process A to the process D that are sequentially executed can be performed by using, for example, a manufacturing apparatus shown in FIG.
- a manufacturing apparatus shown in FIG. Hereinafter, although the method of manufacturing the optical film of the present invention using the manufacturing apparatus shown in FIG. 6 will be described, the manufacturing method of the optical film of the present invention is not limited to the method using the manufacturing apparatus shown in FIG. Absent.
- Step A rotates the roll mold 51 having an outer peripheral surface on which a plurality of concave microlens transfer portions are arranged, and the rotation direction of the roll mold 51 along the outer peripheral surface of the roll mold 51 (the direction of the arrow in FIG. 6).
- the active energy ray-curable composition B is applied to the outer peripheral surface of the roll mold 51 while the base material 22 is running, and a part of the concave shape of the microlens transfer portion is filled with the active energy ray-curable composition B. It is a process.
- Examples of the roll mold 51 include molds such as aluminum, brass, and steel; resin molds such as silicone resin, urethane resin, epoxy resin, ABS resin, fluororesin, and polymethylpentene resin; molds obtained by plating the resin; Examples include a mold made of a material obtained by mixing various metal powders with a resin.
- a die is preferable because of excellent heat resistance and mechanical strength and suitable for continuous production.
- the mold is preferable in many respects such as high durability against polymerization heat generation, difficulty in deformation, scratch resistance, temperature control, and suitable for precision molding.
- the roll mold 51 has a concave transfer portion corresponding to the convex shape in order to form the convex microlens of the optical film 20.
- Examples of the method for producing the transfer portion include cutting with a diamond tool, etching as described in International Publication No. 2008/069324 pamphlet, and the like.
- these transfer part manufacturing methods when forming a concave shape having a curved surface such as a spherical shape, the productivity of the roll mold 51 is excellent, and etching as described in the pamphlet of International Publication No. 2008/069324 In the case of forming a concave shape having no curved surface such as a pyramid shape, cutting with a diamond bit is preferable because the productivity of the roll die 51 is excellent.
- a metal thin film is produced using an electroforming method, and the metal thin film is wound around a roll core member.
- a method of manufacturing a cylindrical roll mold can be used.
- the rotational speed of the roll mold 51 is preferably from 0.1 to 50 m / min, more preferably from 0.3 to 40 m / min, and more preferably from 0.5 to 30 m / min because of excellent moldability and productivity of the optical film. Further preferred.
- the running speed of the base material 22 is preferably 0.1 to 50 m / min, more preferably 0.3 to 40 m / min, and more preferably 0.5 to 30 m / min because of excellent moldability and productivity of the optical film. Further preferred. Since the rotational speed of the roll mold 51 and the traveling speed of the base material 22 are excellent in the moldability of the optical film, it is preferable that the speed is comparable.
- the active energy ray-curable composition B is dropped onto the roll mold 51 using the nozzle 52 and then contacted with the doctor blade 54.
- a bank 53 is formed, and the active energy ray-curable composition B is spread and applied in the width direction of the roll die 51; the active energy ray-curable composition B is dropped onto the roll die 51 using the nozzle 52.
- a method in which the coating extends the B can be mentioned.
- the active energy ray-curable composition B is applied to the doctor blade 54.
- a method is preferably used in which a bank 53 is formed by reaching the outer peripheral surface of the roll mold 51 through the doctor blade 54 and the active energy ray-curable composition B is spread and applied in the width direction of the roll mold 51.
- the nozzle 52 may be singular (one point) or plural, but is preferably singular (one point) since the active energy ray-curable composition B can be uniformly applied.
- the active energy ray-curable composition B When applying the active energy ray-curable composition B, it is preferable to form the bank 53 on the outer peripheral surface of the roll mold 51 because the active energy ray-curable composition B can be uniformly applied.
- the doctor blade 54 is effective for forming the bank 53.
- the material of the doctor blade 54 include resins such as polyethylene resin, polypropylene resin, and polyester resin; metals such as aluminum and stainless steel.
- a resin is preferable because it is excellent in flexibility and suppresses scratching on the roll mold 51, and among them, a polyester resin is preferable.
- a roll coater, a bar coater or the like may be used instead of the doctor blade 54.
- the application of the active energy ray-curable composition B in the step A is an application for causing the active energy ray-curable composition B to follow the surface of the concave microlens transfer portion on the outer peripheral surface of the roll mold 51. It is preferable.
- the application of the active energy ray-curable composition B to the surface of the microlens transfer portion during application means that the active energy ray-curable composition B flows while being pressed against the surface of the microlens transfer portion, This means that it has a convex surface that follows at least a part of the surface of the microlens transfer portion.
- a coating method for causing the active energy ray-curable composition B to follow the surface of the microlens transfer portion include, for example, a doctor blade 54 having a tapered sharp tip, a roll coater or a roll mold 51 that rotates a bar coater.
- a bank 53 of the active energy ray-curable composition B is formed while pressing against the surface, and the active energy ray-curable composition is formed by the peripheral edge portion of the concave microlens transfer portion and the doctor blade 54, roll coater or bar coater.
- Examples include a method in which a shearing force is applied to B and, as a result, surface tension is applied to the surface of the active energy ray-curable composition B following the concave shape.
- the base material 22 is preferably pressed toward the roll mold 51 by the nip roll 56 and the pressing roll 56 ′.
- the material of the nip roll 56 and the pressing roll 56 ' include metals such as aluminum, stainless steel, and brass; those having a rubber layer on the surface of the metal. Among these nip rolls 56 and pressing rolls 56 ', those having a rubber layer on the metal surface are preferable.
- the rubber material of the rubber layer include ethylene propylene rubber, butadiene rubber, urethane rubber, nitrile rubber, and silicone rubber. Among these rubber layers, ethylene propylene rubber and silicone rubber are preferable because of excellent resistance to active energy rays.
- the rubber layer on the surface of the nip roll 56 and the pressing roll 56 ′ preferably has a rubber hardness specified by JIS-K-6253 of 20 to 90 degrees, more preferably 40 to 85 degrees, and 50 to 80 degrees. More preferably.
- the rubber hardness of the rubber layer is 20 degrees or more, the effect of suppressing the generation of bubbles in the optical film is excellent. Further, when the rubber hardness of the rubber layer is 90 degrees or less, the strain applied to the base material 22 becomes small, and the action of suppressing the breakage of the base material 22 is excellent.
- the viscosity of the active energy ray-curable composition B or the active energy ray-curable composition It is preferable to control the temperature at the time of applying the product B. Because, by controlling the viscosity or the temperature, the contact angle (wetting property) when the active energy ray-curable composition B comes into contact with the concave shape of the outer peripheral surface of the roll mold 51 is determined, and the concave surface is formed. This is because it can be determined whether it can be covered.
- the active energy ray curable composition B For example, if the viscosity of the active energy ray curable composition B is too small, the active energy ray curable composition B exists only in the back of the concave shape, and it becomes difficult to sufficiently follow the concave shape surface. When the viscosity of the energy beam curable composition B is too large, the active energy beam curable composition B does not flow to the back of the concave shape, and it tends to be difficult to sufficiently follow the concave surface.
- the viscosity of the active energy ray-curable composition B will be described later.
- the temperature at the time of application of the active energy ray-curable composition B is preferably 10 to 90 ° C., more preferably 20 to 80 ° C., since the coating can follow the concave surface of the outer peripheral surface of the roll mold 51. preferable. What is necessary is just to control the temperature at the time of application
- step X When it is desired to clarify the interface between the region ⁇ and the region ⁇ of the microlens of the optical film 20, the step of irradiating the active energy ray-curable composition B with active energy rays (step X) may be included immediately before step B. preferable.
- the vicinity of the interface between the region ⁇ and the region ⁇ in the microlens is gradationized, and the vicinity of the interface between the region ⁇ and the region ⁇ includes both the component of the region ⁇ and the component of the region ⁇ . It becomes an area.
- Examples of the method of irradiating the active energy ray include a method using the active energy ray irradiating device 55.
- the active energy ray irradiation by the active energy ray irradiation device 55 is preferably performed uniformly in the width direction of the roll type.
- an ultraviolet lamp is connected to a light incident end of a line light made of an optical fiber, and the line It is possible to irradiate active energy rays uniformly in the width direction of the roll mold by arranging the light emitting end of the light line shape in the vicinity of the roll mold so that the line direction and the width direction of the roll mold coincide. It becomes.
- the cumulative amount of irradiation active energy rays by the active energy ray irradiation device 55 is excellent in curability of the active energy ray curable composition B and does not hinder the application of the active energy ray curable composition A.
- To 5 J / cm 2 is preferable, and 0.1 to 3 J / cm 2 is more preferable.
- a light shielding plate is provided around the active energy ray irradiation device 55 so that the active energy ray of the active energy ray irradiation device 55 is not diffused to cure the active energy ray curable composition A before coating. May be provided.
- Step B is a step of supplying the active energy ray-curable composition A between the outer peripheral surface of the roll mold 51 and the base material 22.
- a nozzle 52 ′ is applied to the roll die 51 coated with the active energy ray-curable composition B.
- the bank 53 ′ is formed through contact with the nip roll 56 through the substrate 22, and the active energy ray-curable composition A is formed in the width direction of the roll mold 51.
- Examples of the method include a method in which the coated base material 22 is associated and coated.
- the active energy ray-curable composition B is applied because the generation of bubbles in the microlens can be suppressed and the thickness of the relaxation layer can be easily controlled.
- the bank 53 ′ is formed by contacting the nip roll 56 via the base material 22, and the width direction of the roll mold 51.
- a method in which the active energy ray-curable composition A is spread and applied is preferable.
- step C the active energy ray curable composition A is sandwiched between the outer peripheral surface of the roll mold 51 and the base material 22, and the active energy is applied to the region between the outer peripheral surface of the roll mold 51 and the base material 22. It is a process of irradiating a line.
- Examples of the method of irradiating the active energy ray include a method using an active energy ray irradiating device 55 ′.
- Examples of the active energy ray emission light source of the active energy ray irradiation device 55 ′ include a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, an electrodeless ultraviolet lamp, a visible light halogen lamp, and a xenon lamp.
- the accumulated amount of irradiation active energy rays by the active energy ray irradiation device 55 ′ is preferably 0.1 to 10 J / cm 2 because it is excellent in curability of the active energy ray curable composition and suppresses deterioration of the optical film. 0.5 to 8 J / cm 2 is more preferable.
- Step D is a step of peeling the cured product obtained in Step C from the roll mold 51.
- the outer peripheral surface of the roll mold 51 may be subjected to surface treatment in advance.
- a surface treatment method of the roll mold 51 for example, plating treatment such as nickel plating, chromium plating, diamond-like carbon coating, etc .; a method of applying a release agent such as fluorine release agent, silicone release agent, vegetable oil and fat Etc.
- the active energy ray-curable composition A constitutes the region ⁇ of the optical film by being cured by irradiation with active energy rays.
- the active energy ray-curable composition A may be appropriately blended so that a desired region ⁇ is formed, and includes an active energy ray-curable composition, fine particles, and other components as necessary.
- the active energy ray-curable composition B constitutes the region ⁇ of the optical film by being cured by irradiation with active energy rays.
- the active energy ray-curable composition B may be appropriately mixed with components so that a desired region ⁇ is formed, and includes an active energy ray-curable composition, fine particles, and other components as necessary.
- other components include various additives such as a release agent, an antistatic agent, a leveling agent, an antifouling property improver, a dispersion stabilizer, and a viscosity modifier.
- the viscosity of the active energy ray-curable composition A is preferably 10 to 3000 mPa ⁇ s, more preferably 20 to 2500 mPa ⁇ s, and even more preferably 30 to 2000 mPa ⁇ s, because it is excellent in handleability during the production of an optical film.
- the viscosity of the active energy ray-curable composition B is preferably 10 to 3000 mPa ⁇ s because it can follow the concave surface of the outer peripheral surface of the roll mold 51 and is excellent in handleability during the production of the optical film. 20 to 2500 mPa ⁇ s is more preferable, and 30 to 2000 mPa ⁇ s is still more preferable.
- the method of producing the optical film of the present invention by curing the active energy ray-curable composition with active energy rays has been described.
- the active energy rays are replaced with heat
- the optical film of the present invention can be similarly obtained by replacing the active energy ray-curable composition with a thermosetting composition and curing the thermosetting composition with heat.
- the surface light emitter of the present invention includes the optical film of the present invention.
- Examples of the surface light emitter of the present invention include a surface light emitter as shown in FIG.
- the surface light emitter shown in FIG. 5 will be described, but the surface light emitter according to the present invention is not limited to the surface light emitter shown in FIG.
- the surface light emitter shown in FIG. 5 is an optical film on the surface of a glass substrate 41 of an organic EL light emitting device 40 in which a glass substrate 41, an anode 42, a light emitting layer 43, and a cathode 44 are sequentially laminated, with an adhesive layer 30 interposed. 20 is provided.
- the surface light emitter in which the organic EL light emitting device 40 is provided with the optical film 20 of the present invention has excellent light extraction efficiency and can suppress the emission angle dependency of the emission light wavelength.
- optical films obtained in Examples and Comparative Examples were cut using a razor blade so as to pass through the apex of the microlens and perpendicular to the bottom surface of the microlens.
- the obtained cut surface was observed using an electron microscope (model name “S-4300-SE / N”, manufactured by Hitachi High-Technologies Corporation).
- Resin A Resin obtained by curing an active energy ray-curable resin composition (1) described later by irradiation with active energy rays (refractive index: 1.52)
- Resin B Resin obtained by curing active energy ray-curable resin composition (2) described later by irradiation with active energy rays (refractive index: 1.58)
- Fine particles A Silicone resin spherical fine particles (trade name “Tospearl 2000B”, manufactured by Momentive Performance Materials, refractive index 1.42, volume average particle diameter 6 ⁇ m)
- Fine particles B Styrene resin spherical fine particles (trade name “SBX-6”, manufactured by Sekisui Plastics Co., Ltd., refractive index 1.59, volume average particle diameter 6 ⁇ m)
- Fine particles C Silicone resin spherical fine particles (trade name “TSR9000”, manufactured by Momentive Performance Materials, refractive index 1.42, volume average particle diameter 2 ⁇ m)
- the organic EL light emitting device was directly used as a surface light emitter.
- Example 1 (Production of active energy ray-curable composition (1))
- a glass flask 117.6 g (0.7 mol) of hexamethylene diisocyanate as a diisocyanate compound, 151.2 g (0.3 mol) of an isocyanurate type hexamethylene diisocyanate trimer, 2 as a hydroxyl group-containing (meth) acrylate -128.7 g (0.99 mol) of hydroxypropyl acrylate and 693 g (1.54 mol) of pentaerythritol triacrylate, 22.1 g of di-n-butyltin dilaurate as a catalyst, and 0.55 g of hydroquinone monomethyl ether as a polymerization inhibitor The mixture was heated to 75 ° C.
- Fluorene acrylate (trade name “Ogsol EA-5003”, Osaka Gas Chemical Co., Ltd.) was used as it was as the active energy ray-curable composition (2).
- chromium plating was applied to obtain a roll mold.
- the width of the region where the concave transfer portion is present in the roll mold is 280 mm. This region is arranged at the center of the roll mold in the axial direction of 320 mm, and both ends of the roll mold in the axial direction are mirror surfaces. did.
- the active energy ray curable composition (2) is used as the active energy ray curable composition A for constituting the region ⁇ , and the active energy ray curable composition B for constituting the region ⁇ is used as the active energy ray curable composition B.
- Step A using the curable composition (1) and the apparatus shown in FIG. 6 (coating involves causing the active energy ray-curable composition B to follow the surface of the concave microlens transfer portion), step X, the process B, the process C, and the process D were performed in this order, and the optical film was manufactured.
- photographed the cross section of the obtained optical film with the electron microscope is shown in FIG.
- the micro lens of the obtained optical film has a region ⁇ made of resin B, a region ⁇ made of resin A, the average longest diameter L ave of the bottom surface of the micro lens being 50 ⁇ m, and the average height H ave of the micro lens being 25 ⁇ m.
- the average height h ave of the region ⁇ was 18 ⁇ m, and it was a microlens having a spherical shape substantially corresponding to the size of a roll-shaped concave shape.
- the relaxation layer of the obtained optical film was comprised with the same component as the area
- a polyester film (trade name “Diafoil T910E125”, manufactured by Mitsubishi Plastics, width 340 mm, thickness 125 ⁇ m) is used as the base material 22, the roll type described above is used as the roll type 51, and a plastic is used as the doctor blade 54.
- an ultraviolet irradiation device (model name “SP-7”, USHIO) as the active energy ray irradiation device 55
- an ultraviolet ray irradiation device (model name “Light Hammer 6”, manufactured by Fusion UV Systems) as an active energy ray irradiation device 55 ′
- a rubber roller as a nip roll 56 and a pressure roll 56 ′
- Gram Paul UV Miyagawa Roller Co., Ltd., Table Rubber hardness of 60 degrees
- the manufacturing conditions were as follows.
- the traveling speed of the base material 22 is 3 m / min
- the rotational speed of the roll mold 51 is 3 m / min
- the surface temperature of the roll mold is 40 ° C.
- the active energy ray curable composition A and the active energy ray curable composition were 40 ° C.
- the temperature of B was 25 ° C.
- the viscosities of the active energy ray curable composition A and the active energy ray curable composition B were 700 mPa ⁇ s.
- the active energy ray-curable composition B is dropped onto the roll mold 51 using the nozzle 52 and then brought into contact with the doctor blade 54 to form the bank 53.
- the active energy ray-curable composition B was spread and applied in the width direction.
- the active energy ray-curable composition B was allowed to follow the surface of the concave microlens transfer portion on the outer peripheral surface of the roll mold 51.
- a bank 53 ′ was formed by contacting the nip roll 56 via the material 22, and the active energy ray-curable composition A was spread and applied in the width direction of the roll mold 51.
- the active energy ray irradiating device 55 was irradiated with an ultraviolet ray having an accumulated light amount of 0.2 J / cm 2
- the active energy ray irradiating device 55 ′ was irradiated with an ultraviolet ray having an accumulated light amount of 0.76 J / cm 2 .
- Example 1 the surface light emitters obtained in Example 1 including the optical film of the present invention were superior in light extraction efficiency compared to the surface light emitters obtained in Comparative Examples 1 to 3.
- Example 2 As active energy ray-curable composition A for constituting region ⁇ , 100 parts of active energy ray-curable composition (1) as active energy ray-curable composition B for constituting region ⁇ , active energy A surface light emitter was obtained in the same manner as in Example 1 except that 90 parts of the linear curable composition (1) and 10 parts of the fine particles A were used. Table 2 shows the light extraction efficiency and chromaticity change amount of the obtained surface light emitter.
- Examples 3 to 18, Comparative Examples 4 to 5 A surface light emitter was obtained in the same manner as in Example 2 except that the region ⁇ and region ⁇ of the optical film were changed to be made of the resin and fine particles shown in Table 2. 8 to 10 show images obtained by photographing cross sections of the optical films obtained in Examples 4 and 15 and Comparative Example 4 with an electron microscope. Table 2 shows the light extraction efficiency and chromaticity change amount of the obtained surface light emitter.
- the evaluation criteria for the light extraction efficiency shown in Table 2 are shown below.
- the evaluation criteria of the chromaticity change amount shown in Table 2 are shown below.
- the surface light emitters obtained in Examples 2 to 18 including the optical film of the present invention were excellent in light extraction efficiency and excellent in suppression of the emission angle dependency of the emission light wavelength.
- the surface light emitters obtained in Examples 16 to 18 were particularly excellent in both the light extraction efficiency and the suppression of the emission angle dependence of the emission light wavelength.
- the surface light emitters obtained in Comparative Examples 1 and 3 do not contain fine particles in the region ⁇ , they have excellent light extraction efficiency but are inferior in suppression of the emission angle dependency of the emission light wavelength.
- the surface light emitters obtained in Comparative Examples 4 and 5 are excellent in suppressing the emission angle dependency of the emission light wavelength because the fine particle content in the region ⁇ is not lower than the fine particle content in the region ⁇ . Inefficient.
- Example 19 to 21 A surface light emitter was obtained in the same manner as in Example 2 except that the region ⁇ and region ⁇ of the optical film were changed to be composed of the resin and fine particles shown in Table 3.
- photographed the cross section of the optical film obtained in Example 21 with the electron microscope is shown in FIG.
- a distance of 100 mm was set to 30 mm under the conditions of a load of 2 N and a frictional curved surface by using a Gakushin friction tester (model name “RT-200”, manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.).
- the waste was reciprocated a total of 1000 times at a reciprocation / min speed to give scratches to the optical film of the surface light emitter.
- Table 3 shows the light extraction efficiency before and after the scratch resistance evaluation of the obtained surface light emitter.
- the optical films of the present invention obtained in Examples 19 to 21 were compared with the optical films obtained in Comparative Examples 1 and 4, and the light extraction before and after evaluating the scratch resistance of the surface light emitters. Small difference in efficiency and excellent scratch resistance.
- the active energy ray-curable composition B is applied by dropping the active energy ray-curable composition B onto the roll die 51 using the nozzle 52 and then contacting the doctor blade 54 to form the bank 53. From the method of spreading the active energy ray-curable composition B in the width direction, the active energy ray-curable composition B is dropped onto the doctor blade 54 and reaches the outer peripheral surface of the roll die 51 through the doctor blade 54. The bank 53 is formed, and the active energy ray-curable composition B is spread and applied in the width direction of the roll mold 51 (the active energy ray-curable composition B follows the surface of the concave microlens transfer portion).
- the optical film was obtained in the same manner as in Example 1 except that the application was changed to coating). In the obtained optical film, no bubbles were generated in the microlens, and a uniform microlens was transferred.
- Example 23 Except for changing the doctor blade 54 to a roll coater (coating involves causing the active energy ray-curable composition B to follow the surface of the concave microlens transfer portion), the same operation as in Example 22 was performed, An optical film was obtained. In the obtained optical film, no bubbles were generated in the microlens, and a uniform microlens was transferred.
- the optical film of the present invention it is possible to obtain a surface light emitter excellent in light extraction efficiency or excellent in suppressing the output angle dependence of the output light wavelength.
- the surface light emitter can be used for lighting, display, screen, etc. It can be used suitably.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- General Engineering & Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Moulding By Coating Moulds (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
本願は、2011年11月29日に日本に出願された特願2011-260296号、2012年4月11日に日本に出願された特願2012-089957号、2012年4月11日に日本に出願された特願2012-090491号、2012年5月16日に日本に出願された特願2012-112300号及び2012年7月4日に日本に出願された特願2012-150405号に基づき優先権を主張し、その内容をここに援用する。
また、特許文献2に提案されている光学フィルムは、微細粒子を含むため、面発光体の出射光波長の出射角度依存性が改善されるものの、レンズ部内で微細粒子を意図した箇所に局在化させることが困難であり、面発光体の光取り出し効率と出射光波長の出射角度依存性とを両立させることが困難である。
本発明の他の目的は、光取り出し効率に優れ、或いは出射光波長の出射角度依存性の抑制に優れた面発光体を提供することにある。
また、本発明の更に別の目的は、面発光体の光取り出し効率を向上させることに優れ、面発光体の出射光波長の出射角度依存性を抑制することに優れ、或いは耐傷付き性に優れる光学フィルムの製造に好適な方法を提供することにある。
凸形状のマイクロレンズが複数配列され、前記マイクロレンズは、領域α及び領域βを有し、前記領域βは、前記マイクロレンズの凸形状の外側部分を占め、前記領域αを覆うように位置している光学フィルムであって、
前記領域α及び前記領域βは、いずれも樹脂を含み、
前記領域αにおける樹脂の屈折率n1が、前記領域βにおける樹脂の屈折率n2よりも高い光学フィルム、
が提供される。
凸形状のマイクロレンズが複数配列され、前記マイクロレンズは、領域α及び領域βを有し、前記領域βは、前記マイクロレンズの凸形状の外側部分を占め、前記領域αを覆うように位置している光学フィルムであって、
前記領域βは微粒子を含み、
前記領域αは必要に応じて微粒子を含み、
前記領域αにおける微粒子の含有率P1が、前記領域βにおける微粒子の含有率P2よりも低い光学フィルム、
が提供される。
凸形状のマイクロレンズが複数配列され、前記マイクロレンズは、領域α及び領域βを有し、前記領域βは、前記マイクロレンズの凸形状の外側部分を占め、前記領域αを覆うように位置している光学フィルムであって、
前記領域αは微粒子を含み、
前記領域βは必要に応じて微粒子を含み、
前記領域αにおける微粒子の含有率P1が、前記領域βにおける微粒子の含有率P2よりも高い光学フィルム、
が提供される。
順次実行される下記工程A乃至Dを含む、凸形状のマイクロレンズが複数配列された光学フィルムの製造方法:
工程A:凹形状のマイクロレンズ転写部が複数配列された外周面を有するロール型を回転させ、前記ロール型の外周面に沿って前記ロール型の回転方向に基材を走行させながら、前記ロール型の外周面に活性エネルギー線硬化性組成物Bを塗布し、前記マイクロレンズ転写部の凹形状の一部を前記活性エネルギー線硬化性組成物Bで充填する工程;
工程B:前記ロール型の外周面と前記基材との間に活性エネルギー線硬化性組成物Aを供給する工程;
工程C:前記ロール型の外周面と前記基材との間に前記活性エネルギー線硬化性組成物Aを挟持した状態で、前記ロール型の外周面と前記基材との間の領域に活性エネルギー線を照射する工程;
工程D:前記工程Cで得られた硬化物を前記ロール型から剥離する工程、
が提供される。
本発明の光学フィルムを含む面発光体は、光取り出し効率に優れ、或いは出射光波長の出射角度依存性の抑制に優れる。
本発明の光学フィルムの製造方法によれば、面発光体の光取り出し効率を向上させることに優れ、面発光体の出射光波長の出射角度依存性を抑制することに優れ、或いは耐傷付き性に優れる光学フィルム、を得ることができる。
本発明の光学フィルムは、凸形状のマイクロレンズが複数配列されている。
また、本明細書において、マイクロレンズの底面部13の最長径Lとは、マイクロレンズの底面部における最も長い部分の長さをいい、マイクロレンズの底面部の平均最長径Laveは、光学フィルムのマイクロレンズを有する表面を走査型顕微鏡にて撮影し、マイクロレンズの底面部の最長径Lを5箇所測定し、その平均値とした。
また、本明細書において、マイクロレンズの高さHとは、マイクロレンズの底面部からマイクロレンズの最も高い部位までの高さをいい、マイクロレンズの平均高さHaveは、光学フィルムの断面を走査型顕微鏡にて撮影し、マイクロレンズの高さHを5箇所測定し、その平均値とした。
更に、本明細書において、領域αの高さhとは、マイクロレンズの底面部から領域αの最も高い部位までの高さをいい、領域αの平均高さhaveは、光学フィルムの断面を走査型顕微鏡にて撮影し、領域αの高さhを5箇所測定し、その平均値とした。
尚、マイクロレンズのアスペクト比は、「マイクロレンズの平均高さHave/マイクロレンズの底面部の平均最長径Lave」で算出した。
マイクロレンズの底面部の形状としては、例えば、円形、楕円形等が挙げられる。これらの凸形状のマイクロレンズの底面部の形状は、複数のマイクロレンズにつき、1種を単独で用いてもよく、2種以上を併用してもよい。これらのマイクロレンズの底面部の形状の中でも、面発光体の光取り出し効率に優れることから、円形、楕円形が好ましく、円形がより好ましい。
光学フィルム20の面積(図2の実線で囲まれた面積)に対するマイクロレンズ10の底面部13の面積(図2の点線で囲まれた面積)の合計の割合は、20~99%が好ましく、30~95%がより好ましく、50~93%が更に好ましい。光学フィルムの面積に対するマイクロレンズの底面部の面積の合計の割合が20%以上であると、面発光体の光取り出し効率に優れる。また、光学フィルムの面積に対するマイクロレンズの底面部の面積の合計の割合が99%以下であると、ロール型の転写部が形成しやすく、光学フィルムの製造が容易となる。
尚、マイクロレンズの底面部がすべて同一の大きさの円形である場合、光学フィルムの面積に対するマイクロレンズの底面部の合計の面積の割合の最大値は、91%程度となる。
マイクロレンズの配列例を、図3に示す。
マイクロレンズの配列としては、例えば、六方配列(図3(a))、矩形配列(図3(b))、菱形配列(図3(c))、直線状配列(図3(d))、円状配列(図3(e))、ランダム配列(図3(f))等が挙げられる。これらのマイクロレンズの配列の中でも、面発光体の光取り出し効率に優れることから、六方配列、矩形配列、菱形配列が好ましく、六方配列、矩形配列がより好ましい。
領域αの平均高さhaveは、0.8~160μmが好ましく、4~80μmがより好ましく、8~40μmが更に好ましい。領域αの平均高さhaveが0.8μm以上であると、面発光体の光取り出し効率及び法線輝度に優れる。また、領域αの平均高さhaveが160μm以下であると、面発光体の出射光波長の出射角度依存性の抑制作用に優れる。
本発明の光学フィルムの第1の態様は、領域α及び領域βはいずれも樹脂を含み、領域αにおける樹脂の屈折率n1が領域βにおける樹脂の屈折率n2よりも高い光学フィルムである。
第1の態様の光学フィルムは、特に、面発光体の光取り出し効率に優れる。
尚、本明細書におけるフィルムの屈折率は、20℃の条件下で、He-Neレーザを光源とし、プリズムカプラを用いて測定した値とする。フィルム状でない樹脂等の場合は、樹脂等をフィルム状に成形した後に、前記測定方法により屈折率を測定するものとする。
第1の態様の光学フィルムの領域αにおける樹脂の含有率は、面発光体の光取り出し効率に優れることから、領域α全量中、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましい。
第1の態様の光学フィルムの領域βにおける樹脂の含有率は、面発光体の光取り出し効率に優れることから、領域β全量中、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましい。
第1の態様の光学フィルムの領域αにおける微粒子の含有率P1は、面発光体の光取り出し効率に優れることから、領域α全量中、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましい。
第1の態様の光学フィルムの領域βにおける微粒子の含有率P2は、面発光体の光取り出し効率に優れることから、領域β全量中、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましい。
第1の態様の光学フィルムの領域α及び領域βに含まれる微粒子は、含有率、屈折率、材料、粒子径、粒子形状等が領域αと領域βとで同一であっても異なっていてもよい。
本発明の光学フィルムの第2の態様は、領域βは微粒子を含み、領域αは必要に応じて微粒子を含み、領域αにおける微粒子の含有率P1が領域βにおける微粒子の含有率P2よりも低い光学フィルムである。
第2の態様の光学フィルムは、特に、面発光体の光取り出し効率に優れ、出射光波長の出射角度依存性の抑制作用に優れる。
第2の態様の光学フィルムにおいて、領域βにおける微粒子の含有率P2は、領域αにおける微粒子の含有率P1よりも高ければよいが、領域β全量中、5~50質量%が好ましく、15~45質量%がより好ましく、22~40質量%が更に好ましい。領域βにおける微粒子の含有率P2が5質量%以上であると、面発光体の出射光波長の出射角度依存性の抑制作用に優れる。また、領域βにおける微粒子の含有率P2が50質量%以下であると、面発光体の光取り出し効率に優れる。
第2の態様の光学フィルムの領域α及び領域βに含まれる微粒子は、屈折率、材料、粒子径、粒子形状等が領域αと領域βとで同一であっても異なっていてもよい。
第2の態様の光学フィルムの領域αにおける樹脂の含有率は、面発光体の光取り出し効率に優れることから、領域α全量中、88質量%以上が好ましく、93質量%以上がより好ましく、97質量%以上が更に好ましい。
第2の態様の光学フィルムの領域βにおける樹脂の含有率は、面発光体の光取り出し効率に優れることから、領域β全量中、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が更に好ましい。
第2の態様の光学フィルムの領域α及び領域βにおける樹脂は、屈折率、材料等が領域αと領域βとで同一であっても異なっていてもよい。
尚、本明細書における微粒子の屈折率は、以下のように測定した値とする。
カーギル標準屈折液の膜をガラスプレート上に作成し、膜内に微粒子を添加し、他のガラスプレートを被せる。このように2つのガラスプレートで微粒子添加膜を挟み込んで固定することで得られたサンプルにつき、ヘーズメータを用いて全光線透過率を測定する。カーギル標準屈折液の屈折率を変更した種々のサンプルにつき、前記と同様に全光線透過率を測定する。測定した全光線透過率の中で最も大きい全光線透過率が得られたサンプルにおけるカーギル標準屈折液の屈折率を微粒子の屈折率とする。
本発明の光学フィルムの第3の態様は、領域αは微粒子を含み、領域βは必要に応じて微粒子を含み、領域αにおける微粒子の含有率P1が、領域βにおける微粒子の含有率P2よりも高い光学フィルムである。
第3の態様の光学フィルムは、特に、耐傷付き性に優れ、面発光体の光取り出し効率に優れる。
領域αにおける微粒子の含有率P1が5質量%以上であると、光学フィルムの耐傷付き性に優れる。また、領域αにおける微粒子の含有率P2が50質量%以下であると、面発光体の光取り出し効率に優れる。
第3の態様の光学フィルムにおいて、領域βにおける微粒子の含有率P2は、領域αにおける微粒子の含有率P1よりも低ければよいが、面発光体の光取り出し効率に優れることから、領域β全量中、12質量%以下が好ましく、7質量%以下がより好ましく、3質量%以下が更に好ましい。
第3の態様の光学フィルムの領域α及び領域βに含まれる微粒子は、屈折率、材料、粒子径、粒子形状等が領域αと領域βとで同一であっても異なっていてもよい。
第3の態様の光学フィルムの領域αにおける樹脂の含有率は、面発光体の光取り出し効率に優れることから、領域α全量中、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が更に好ましい。
第3の態様の光学フィルムの領域βにおける樹脂の含有率は、面発光体の光取り出し効率に優れることから、領域β全量中、88質量%以上が好ましく、93質量%以上がより好ましく、97質量%以上が更に好ましい。
第3の態様の光学フィルムの領域α及び領域βにおける樹脂は、屈折率、材料等が領域αと領域βとで同一であっても異なっていてもよい。
本発明の光学フィルムを構成する材料として、前記第1の態様、前記第2の態様、前記第3の態様のいずれかに該当する範囲で、任意の樹脂及び/又は任意の微粒子を用いることができる。
樹脂としては、例えば、アクリル樹脂;ポリカーボネート樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリスチレン、ABS樹脂等のスチレン樹脂;塩化ビニル樹脂等が挙げられる。これらの樹脂の中でも、可視光波長域の光透過率が高く、耐熱性、力学特性、成形加工性に優れることから、アクリル樹脂が好ましい。
本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートをいう。
微粒子は、可視光波長域(概ね400~700nm)の光拡散効果を有する微粒子であれば特に限定されることはなく、公知の微粒子を用いることができる。微粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明の光学フィルムは、凸形状のマイクロレンズの形状の維持に優れることから、図4に示すように、凸形状のマイクロレンズ10の底面部と基材22との間に緩和層21が形成された光学フィルム20であることが好ましい。但し、本発明の光学フィルムは、これに限定されるものではない。
緩和層21は、主として、硬化時の重合収縮等に伴う応力を緩和して、マイクロレンズの凸形状を維持する役割を有する。
基材22を含めて光学フィルムを有機EL発光デバイス上に積層する場合は、基材22は可視光波長域の光を透過しやすい材料からなるのが好ましい。また、光学フィルムの製造時にロール型と基材22との間に活性エネルギー線硬化性組成物を挟持して活性エネルギー線を照射する場合は、基材22は活性エネルギー線を透過しやすい材料からなるのが好ましい。
易接着処理の方法としては、例えば、基材の表面にポリエステル樹脂、アクリル樹脂、ウレタン樹脂等からなる易接着層を形成する方法、基材の表面を粗面化処理する方法等が挙げられる。
基材には、易接着処理以外にも、必要に応じて、帯電防止、反射防止、基材同士の密着防止等の表面処理を施してもよい。
粘着層は、特に限定されることはなく、公知の粘着剤を塗布することで形成することができる。
保護フィルムとしては、特に限定されることはなく、公知の保護フィルムを用いることができる。
本発明の光学フィルムの製造方法としては、工程が簡便であり、光学フィルムの成形性に優れることから、順次実行される下記工程を含む製造方法が好ましい:
工程A:凹形状のマイクロレンズ転写部が複数配列された外周面を有するロール型を回転させ、前記ロール型の外周面に沿って前記ロール型の回転方向に基材を走行させながら、前記ロール型の外周面に活性エネルギー線硬化性組成物Bを塗布し、前記マイクロレンズ転写部の凹形状の一部を前記活性エネルギー線硬化性組成物Bで充填する工程;
工程B:前記ロール型の外周面と前記基材との間に活性エネルギー線硬化性組成物Aを供給する工程;
工程C:前記ロール型の外周面と前記基材との間に前記活性エネルギー線硬化性組成物Aを挟持した状態で、前記ロール型の外周面と前記基材との間の領域に活性エネルギー線を照射する工程;
工程D:前記工程Cで得られた硬化物を前記ロール型から剥離する工程。
以下、図6に示す製造装置を用いて本発明の光学フィルムを製造する方法について説明するが、本発明の光学フィルムの製造方法は図6に示す製造装置を用いた方法に限定されるものではない。
工程Aは、凹形状のマイクロレンズ転写部が複数配列された外周面を有するロール型51を回転させ、ロール型51の外周面に沿ってロール型51の回転方向(図6の矢印の方向)に基材22を走行させながら、ロール型51の外周面に活性エネルギー線硬化性組成物Bを塗布し、マイクロレンズ転写部の凹形状の一部を活性エネルギー線硬化性組成物Bで充填する工程である。
転写部の製造方法としては、例えば、ダイヤモンドバイトによる切削、国際公開2008/069324号パンフレットに記載されるようなエッチング等が挙げられる。これらの転写部の製造方法の中でも、球欠形状等の曲面を有する凹形状を形成する場合、ロール型51の生産性に優れることから、国際公開2008/069324号パンフレットに記載されるようなエッチングが好ましく、角錐形状等の曲面を有さない凹形状を形成する場合、ロール型51の生産性に優れることから、ダイヤモンドバイトによる切削が好ましい。
また、転写部の製造方法として、転写部の凹形状を反転させた凸形状を有するマスター型から、電鋳法を用いて金属薄膜を作製し、この金属薄膜をロール芯部材に巻きつけて、円筒形のロール型を製造する方法を用いることができる。
基材22の走行速度は、光学フィルムの成形性及び生産性に優れることから、0.1~50m/分が好ましく、0.3~40m/分がより好ましく、0.5~30m/分が更に好ましい。
ロール型51の回転速度と基材22の走行速度とは、光学フィルムの成形性に優れることから、同程度の速度であることが好ましい。
ドクターブレード54の材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂等の樹脂;アルミニウム、ステンレス鋼等の金属等が挙げられる。これらのドクターブレード54の材料の中でも、柔軟性に優れ、ロール型51への傷付きを抑制することから、樹脂が好ましく、中でもポリエステル樹脂が好ましい。
ドクターブレード54の代わりとして、ロールコーター、バーコーター等を用いてもよい。
活性エネルギー線硬化性組成物Bをマイクロレンズ転写部の表面に追従させる塗布の方法としては、例えば、テーパ状の鋭利な先端を有するドクターブレード54、ロールコーター又はバーコーターを回転するロール型51の表面に押し付けながら、活性エネルギー線硬化性組成物Bのバンク53を形成し、凹形状のマイクロレンズ転写部の周縁エッジ部とドクターブレード54、ロールコーター又はバーコーターとにより活性エネルギー線硬化性組成物Bにせん断力を作用し、その結果、凹形状に倣った活性エネルギー線硬化性組成物Bの表面に表面張力が作用するようになる方法等が挙げられる。
これにより、光学フィルム内の気泡の発生を抑制でき、かつ、領域αをできるだけ多く領域βで覆うことができ、光学フィルムにおける領域βの役割を十分果たすことができる。
ニップロール56、押さえロール56’の材料としては、アルミニウム、ステンレス鋼、真鋳等の金属;前記金属の表面にゴム層を有するもの等が挙げられる。これらのニップロール56、押さえロール56’の材料の中でも、金属の表面にゴム層を有するものが好ましい。
ゴム層のゴムの材料としては、例えば、エチレンプロピレンゴム、ブタジエンゴム、ウレタンゴム、二トリルゴム、シリコーンゴムが挙げられる。これらのゴム層のゴムの材料の中でも、活性エネルギー線への耐性に優れることから、エチレンプロピレンゴム、シリコーンゴムが好ましい。
ニップロール56、押さえロール56’の表面のゴム層は、JIS-K-6253で規定するゴム硬度が20~90度であることが好ましく、40~85度であることがより好ましく、50~80度であることが更に好ましい。ゴム層のゴム硬度が20度以上であると、光学フィルム内の気泡発生の抑制作用に優れる。また、ゴム層のゴム硬度が90度以下であると、基材22にかかる歪みが小さくなり、基材22の破損の抑制作用に優れる。
活性エネルギー線硬化性組成物Bの塗布時の温度は、ロール型51の外周面の凹形状の表面に追従して被覆することができることから、10~90℃が好ましく、20~80℃がより好ましい。
活性エネルギー線硬化性組成物Bの塗布時の温度は、ロール型51の内部又は外部に、必要に応じて、シーズヒータ及び温水ジャケット等の熱源設備を設けて制御すればよい。
光学フィルム20のマイクロレンズの領域αと領域βとの界面を明瞭にしたい場合、活性エネルギー線硬化性組成物Bに活性エネルギー線を照射する工程(工程X)を工程Bの直前に含むことが好ましい。
尚、工程Xがない場合は、マイクロレンズ中の領域αと領域βとの界面付近がグラデーション化され、領域αと領域βとの界面付近が領域αの成分及び領域βの成分の両方を含む領域となる。
活性エネルギー線照射装置55による活性エネルギー線の照射は、ロール型の幅方向に関して均一に照射されることが好ましく、例えば、紫外線ランプに光ファイバからなるラインライトの光入射端を接続し、前記ラインライトのライン状の光出射端をロール型近傍にてライン方向とロール型の幅方向とが合致するように配置することで、ロール型の幅方向に関して均一に活性エネルギー線を照射することが可能となる。
活性エネルギー線照射装置55の活性エネルギー線が拡散して活性エネルギー線硬化性組成物Aを塗布前に硬化させることがないように、必要に応じて、活性エネルギー線照射装置55の周辺に遮光板を設けてもよい。
工程Bは、ロール型51の外周面と基材22との間に活性エネルギー線硬化性組成物Aを供給する工程である。
工程Cは、ロール型51の外周面と基材22との間に活性エネルギー線硬化性組成物Aを挟持した状態で、ロール型51の外周面と基材22との間の領域に活性エネルギー線を照射する工程である。
活性エネルギー線照射装置55’の活性エネルギー線の発光光源としては、例えば、ケミカルランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、無電極紫外線ランプ、可視光ハロゲンランプ、キセノンランプ等が挙げられる。
活性エネルギー線照射装置55’による照射活性エネルギー線の積算光量は、活性エネルギー線硬化性組成物の硬化性に優れ、光学フィルムの劣化を抑制することから、0.1~10J/cm2が好ましく、0.5~8J/cm2がより好ましい。
工程Dは、工程Cで得られた硬化物をロール型51から剥離する工程である。
ロール型51の表面処理方法としては、例えば、ニッケルめっき、クロムめっき、ダイヤモンドライクカーボンコーティング等のめっき処理;フッ素系離型剤、シリコーン系離型剤、植物油脂等の離型剤を塗布する方法等が挙げられる。
活性エネルギー線硬化性組成物Aは、活性エネルギー線照射により硬化することで、光学フィルムの領域αを構成する。
活性エネルギー線硬化性組成物Aは、所望の領域αが構成されるように成分を適宜配合すればよく、活性エネルギー線硬化性組成物、必要に応じて、微粒子、他の成分を含む。
活性エネルギー線硬化性組成物Bは、所望の領域βが構成されるように成分を適宜配合すればよく、活性エネルギー線硬化性組成物、必要に応じて、微粒子、他の成分を含む。
活性エネルギー線硬化性組成物Bの粘度は、ロール型51の外周面の凹形状の表面に追従することができ、光学フィルムの製造時の取り扱い性に優れることから、10~3000mPa・sが好ましく、20~2500mPa・sがより好ましく、30~2000mPa・sが更に好ましい。
本発明の面発光体は、本発明の光学フィルムを含む。
本発明の面発光体としては、例えば、図5に示すような面発光体が挙げられる。
以下、図5に示す面発光体について説明するが、本発明による面発光体は、図5に示す面発光体に限定されるものではない。
有機EL発光デバイス40に本発明の光学フィルム20を設けた面発光体は、光取り出し効率に優れ、出射光波長の出射角度依存性を抑制できる。
尚、実施例中の「部」及び「%」は、「質量部」及び「質量%」を示す。
実施例及び比較例で得られた光学フィルムを、マイクロレンズの頂点を通り且つマイクロレンズの底面部に対して垂直に、カミソリ刃を用いて切断した。得られた切断面を、電子顕微鏡(機種名「S-4300-SE/N」、(株)日立ハイテクノロジーズ製)を用いて観察した。
実施例、比較例及び参考例で得られた面発光体上に、直径10mmの穴の空いた厚さ0.1mmの遮光シートを配置し、これを、積分球(ラブスフェア社製、大きさ6インチ)のサンプル開口部に配置した。この状態で、有機EL発光デバイスに10mAの電流を通電して点灯した時の、遮光シートの直径10mmの穴から出射する光を、分光計測器(分光器:機種名「PMA-12」(浜松ホトニクス(株)製)、ソフトウェア:ソフト名「PMA用基本ソフトウェアU6039-01ver.3.3.1」)にて測定し、標準視感度曲線による補正を行って、面発光体の光子数を算出した。
参考例で得られた面発光体の光子数を基準としたときの、実施例及び比較例で得られた面発光体の光子数の割合(百分率)を、光取り出し効率[%]とした。
実施例、比較例及び参考例で得られた面発光体上に、直径10mmの穴の空いた厚さ0.1mmの遮光シートを配置した。この状態で、有機EL発光デバイスに1.5Aの電流を通電して点灯した時の、遮光シートの直径10mmの穴から出射する光を、輝度計(機種名「BM-7」、(株)トプコン製)にて、面発光体の法線方向から2.5度ずつ傾斜させ、それぞれxy表色系の色度x、yを測定した。得られた0度から80度の間におけるx、yの測定値から、CIE1960UCS色度図に従う以下の式:
U=4x/(-2x+12y+3);
V=6y/(-2x+12y+3);
を用い、U、Vを算出し、0度から80度の間におけるU、Vのそれぞれの最大値と最小値との差Δu、Δvを算出し、いずれか大きい方の値を色度変化量とした。
尚、色度変化量が小さいほど、面発光体の出射光波長の出射角度依存性の抑制作用に優れることを意味する。
樹脂A:後述する活性エネルギー線硬化性樹脂組成物(1)を活性エネルギー線照射により硬化した樹脂(屈折率1.52)
樹脂B:後述する活性エネルギー線硬化性樹脂組成物(2)を活性エネルギー線照射により硬化した樹脂(屈折率1.58)
微粒子A:シリコーン樹脂球状微粒子(商品名「トスパール2000B」、モメンティブ・パフォーマンス・マテリアルズ社製、屈折率1.42、体積平均粒子径6μm)
微粒子B:スチレン樹脂球状微粒子(商品名「SBX-6」、積水化成品工業(株)製、屈折率1.59、体積平均粒子径6μm)
微粒子C:シリコーン樹脂球状微粒子(商品名「TSR9000」、モメンティブ・パフォーマンス・マテリアルズ社製、屈折率1.42、体積平均粒子径2μm)
有機EL発光デバイス:有機EL照明パネルキット「Symfos OLED-010K」(コニカミノルタ社製)の光出射面側の表面の光学フィルムを剥離した有機EL発光デバイス
有機EL発光デバイスを、そのまま面発光体とした。
(活性エネルギー線硬化性組成物(1)の製造)
ガラス製のフラスコに、ジイソシアネート化合物としてヘキサメチレンジイソシアネート117.6g(0.7モル)及びイソシアヌレート型のヘキサメチレンジイソシアネート3量体151.2g(0.3モル)、水酸基含有(メタ)アクリレートとして2-ヒドロキシプロピルアクリレート128.7g(0.99モル)及びペンタエリスリトールトリアクリレート693g(1.54モル)、触媒としてジラウリル酸ジ-n-ブチルスズ22.1g、並びに重合禁止剤としてハイドロキノンモノメチルエーテル0.55gを仕込み、75℃に昇温し、75℃に保ったまま攪拌を続け、フラスコ内の残存イソシアネート化合物の濃度が0.1モル/L以下になるまで反応させ、室温に冷却し、ウレタン多官能アクリレートを得た。
得られたウレタン多官能アクリレート34.6部、ポリブチレングリコールジメタクリレート(商品名「アクリエステルPBOM」、三菱レイヨン(株)製)24.7部、エチレンオキサイド変性ビスフェノールAジメタクリレート(商品名「ニューフロンティアBPEM-10」、第一工業製薬(株)製)39.5部及び1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」、チバ・スペシャルティ・ケミカルズ(株)製)1.2部を混合し、活性エネルギー線硬化性樹脂組成物(1)を得た。
フルオレン系アクリレート(商品名「オグソールEA-5003」、大阪ガスケミカル(株)製)を、そのまま活性エネルギー線硬化性組成物(2)とした。
外径200mm、軸方向の長さ320mmの鋼製のロールの外周面に、厚さ200μm、ビッカース硬度230Hvの銅めっきを施した。銅めっき層の表面に感光剤を塗布し、レーザ露光、現像及びエッチングを行い、銅めっき層に直径50μm、深さ25μmの半球の凹形状が最小間隔3μmで六方配列に並んでいる転写部が形成された型を得た。得られた型の表面に、防錆性及び耐久性を付与するため、クロムめっきを施し、ロール型を得た。
尚、ロール型における凹形状の転写部が存在する領域の幅は280mmであり、この領域はロール型の軸方向の長さ320mmの中央に配置され、ロール型の軸方向の両端は鏡面領域とした。
領域αを構成するための活性エネルギー線硬化性組成物Aとして、活性エネルギー線硬化性組成物(2)を用い、領域βを構成するための活性エネルギー線硬化性組成物Bとして、活性エネルギー線硬化性組成物(1)を用い、図6に示す装置により工程A(塗布は、活性エネルギー線硬化性組成物Bを凹形状のマイクロレンズ転写部の表面に追従させることを含むものである)、工程X、工程B、工程C及び工程Dをこの順に実行して、光学フィルムを製造した。得られた光学フィルムの断面を電子顕微鏡にて撮影した画像を図7に示す。得られた光学フィルムのマイクロレンズは、領域αが樹脂Bからなり、領域βが樹脂Aからなり、マイクロレンズの底面部の平均最長径Laveが50μm、マイクロレンズの平均高さHaveが25μm、領域αの平均高さhaveが18μmであり、ほぼロール型の凹形状の大きさに対応した球欠形状のマイクロレンズであった。また、得られた光学フィルムの緩和層は、領域αと同一の成分で構成され、厚さが20μmであった。
基材22の走行速度を3m/分とし、ロール型51の回転速度を3m/分とし、ロール型の表面温度を40℃とし、活性エネルギー線硬化性組成物A及び活性エネルギー線硬化性組成物Bの温度を25℃とし、活性エネルギー線硬化性組成物A及び活性エネルギー線硬化性組成物Bの粘度を700mPa・sとした。
活性エネルギー線硬化性組成物Bの塗布方法として、ノズル52を用いて活性エネルギー線硬化性組成物Bをロール型51に滴下した後にドクターブレード54に接触させてバンク53を形成し、ロール型51の幅方向に活性エネルギー線硬化性組成物Bを広げて塗布する方法を用いた。この塗布方法では、活性エネルギー線硬化性組成物Bがロール型51の外周面の凹形状のマイクロレンズ転写部の表面に追従させられた。
活性エネルギー線硬化性組成物Aを供給する方法として、活性エネルギー線硬化性組成物Bを塗布したロール型51に、ノズル52’を用いて活性エネルギー線硬化性組成物Aを滴下した後に、基材22を介してニップロール56に接触させてバンク53’を形成し、ロール型51の幅方向に活性エネルギー線硬化性組成物Aを広げて塗布する方法を用いた。
活性エネルギー線照射装置55から0.2J/cm2の積算光量の紫外線を照射、活性エネルギー線照射装置55’から0.76J/cm2の積算光量の紫外線を照射した。
有機EL発光デバイスAの光出射面側に、粘着層としてカーギル標準屈折液(屈折率1.52、(株)モリテックス製)を塗布し、得られた基材を有する光学フィルムの基材の面を光学密着させ、面発光体を得た。得られた面発光体の光取り出し効率、色度変化量を表1に示す。
光学フィルムの領域α及び領域βが表1の樹脂からなるよう変更した以外は、実施例1と同様に操作を行い、面発光体を得た。得られた面発光体の光取り出し効率、色度変化量を表1に示す。
領域αを構成するための活性エネルギー線硬化性組成物Aとして、活性エネルギー線硬化性組成物(1)100部を、領域βを構成するための活性エネルギー線硬化性組成物Bとして、活性エネルギー線硬化性組成物(1)90部及び微粒子A10部とした以外は、実施例1と同様に操作を行い、面発光体を得た。得られた面発光体の光取り出し効率、色度変化量を表2に示す。
光学フィルムの領域α及び領域βが表2の樹脂及び微粒子からなるよう変更した以外は、実施例2と同様に操作を行い、面発光体を得た。実施例4、15、比較例4で得られた光学フィルムの断面を電子顕微鏡にて撮影した画像を図8~10に示す。得られた面発光体の光取り出し効率、色度変化量を表2に示す。
A:174.0を超える
B:170.5を超え、174.0以下
C:170.5以下
表2に示す色度変化量の評価基準を以下に示す。
A:0.010以下
B:0.010を超え、0.012以下
C:0.012を超える
一方、比較例1、3で得られた面発光体は、領域βに微粒子を含まないため、光取り出し効率に優れるものの、出射光波長の出射角度依存性の抑制に劣った。また、比較例4、5で得られた面発光体は、領域αの微粒子含有率が領域βの微粒子含有率より低くないので、出射光波長の出射角度依存性の抑制に優れるものの、光取り出し効率に劣った。
光学フィルムの領域α及び領域βが表3の樹脂及び微粒子からなるよう変更した以外は、実施例2と同様に操作を行い、面発光体を得た。実施例21で得られた光学フィルムの断面を電子顕微鏡にて撮影した画像を図11に示す。得られた面発光体について、学振型摩擦試験機(機種名「RT-200」、(株)大栄科学精器製作所製)により、荷重2N、摩擦子曲面の条件で、100mmの距離を30往復/分の速度で合計1000回ウエスを往復させ、面発光体の光学フィルムに傷を付与した。得られた面発光体の耐傷付き性評価前後の光取り出し効率を表3に示す。
活性エネルギー線硬化性組成物Bの塗布方法を、ノズル52を用いて活性エネルギー線硬化性組成物Bをロール型51に滴下した後にドクターブレード54に接触させてバンク53を形成し、ロール型51の幅方向に活性エネルギー線硬化性組成物Bを広げて塗布する方法から、ドクターブレード54に活性エネルギー線硬化性組成物Bを滴下し、ドクターブレード54を伝ってロール型51の外周面に到達させてバンク53を形成し、ロール型51の幅方向に活性エネルギー線硬化性組成物Bを広げて塗布する方法(活性エネルギー線硬化性組成物Bを凹形状のマイクロレンズ転写部の表面に追従させることを含む塗布)に変更した以外は、実施例1と同様に操作を行い、光学フィルムを得た。得られた光学フィルムは、マイクロレンズ内に気泡の発生がなく、均一なマイクロレンズが転写されていた。
ドクターブレード54をロールコーターに変更した(塗布は活性エネルギー線硬化性組成物Bを凹形状のマイクロレンズ転写部の表面に追従させることを含む)以外は、実施例22と同様に操作を行い、光学フィルムを得た。得られた光学フィルムは、マイクロレンズ内に気泡の発生がなく、均一なマイクロレンズが転写されていた。
11 領域α
12 領域β
13 底面部
20 光学フィルム
21 緩和層
22 基材
30 粘着層
40 有機EL発光デバイス
41 ガラス基板
42 陽極
43 発光層
44 陰極
50 光学フィルムの製造装置
51 ロール型
52 ノズル
52’ ノズル
53 バンク
53’ バンク
54 ドクターブレード
55 活性エネルギー線照射装置
55’ 活性エネルギー線照射装置
56 ニップロール
56’ 押さえロール
Claims (12)
- 凸形状のマイクロレンズが複数配列され、前記マイクロレンズは、領域α及び領域βを有し、前記領域βは、前記マイクロレンズの凸形状の外側部分を占め、前記領域αを覆うように位置している光学フィルムであって、
前記領域α及び前記領域βは、いずれも樹脂を含み、
前記領域αにおける樹脂の屈折率n1が、前記領域βにおける樹脂の屈折率n2よりも高い光学フィルム。 - 前記領域αにおける樹脂の屈折率n1と前記領域βにおける樹脂の屈折率n2との差が0.02以上である、請求項1に記載の光学フィルム。
- 凸形状のマイクロレンズが複数配列され、前記マイクロレンズは、領域α及び領域βを有し、前記領域βは、前記マイクロレンズの凸形状の外側部分を占め、前記領域αを覆うように位置している光学フィルムであって、
前記領域βは微粒子を含み、
前記領域αは必要に応じて微粒子を含み、
前記領域αにおける微粒子の含有率P1が、前記領域βにおける微粒子の含有率P2よりも低い光学フィルム。 - 前記領域βにおける微粒子の含有率P2が5~50質量%である、請求項3に記載の光学フィルム。
- 前記領域βは樹脂を含み、
前記領域βにおける樹脂の屈折率n2と前記領域βにおける微粒子の屈折率nbとの差が0.08以上である、請求項3に記載の光学フィルム。 - 前記領域α及び前記領域βは、いずれも樹脂を含み、
前記領域αにおける樹脂の屈折率n1と前記領域βにおける樹脂の屈折率n2との差が0.02以上である、請求項3に記載の光学フィルム。 - 凸形状のマイクロレンズが複数配列され、前記マイクロレンズは、領域α及び領域βを有し、前記領域βは、前記マイクロレンズの凸形状の外側部分を占め、前記領域αを覆うように位置している光学フィルムであって、
前記領域αは微粒子を含み、
前記領域βは必要に応じて微粒子を含み、
前記領域αにおける微粒子の含有率P1が、前記領域βにおける微粒子の含有率P2よりも高い光学フィルム。 - 前記領域α及び前記領域βは、いずれも樹脂を含み、
前記領域αにおける樹脂の屈折率n1と前記領域βにおける樹脂の屈折率n2との差が0.02以上である、請求項7に記載の光学フィルム。 - 請求項1~8のいずれか一項に記載の光学フィルムを含む面発光体。
- 順次実行される下記工程A乃至Dを含む、凸形状のマイクロレンズが複数配列された光学フィルムの製造方法:
工程A:凹形状のマイクロレンズ転写部が複数配列された外周面を有するロール型を回転させ、前記ロール型の外周面に沿って前記ロール型の回転方向に基材を走行させながら、前記ロール型の外周面に活性エネルギー線硬化性組成物Bを塗布し、前記マイクロレンズ転写部の凹形状の一部を前記活性エネルギー線硬化性組成物Bで充填する工程;
工程B:前記ロール型の外周面と前記基材との間に活性エネルギー線硬化性組成物Aを供給する工程;
工程C:前記ロール型の外周面と前記基材との間に前記活性エネルギー線硬化性組成物Aを挟持した状態で、前記ロール型の外周面と前記基材との間の領域に活性エネルギー線を照射する工程;
工程D:前記工程Cで得られた硬化物を前記ロール型から剥離する工程。 - 前記工程Aにおける前記活性エネルギー線硬化性組成物Bの塗布が、前記活性エネルギー線硬化性組成物Bを前記ロール型の外周面の凹形状のマイクロレンズ転写部の表面に追従させる塗布である、請求項10に記載の光学フィルムの製造方法。
- 更に、前記工程Aと前記工程Bとの間に実行される下記工程Xを含む、請求項10又は11に記載の光学フィルムの製造方法:
工程X:前記活性エネルギー線硬化性組成物Bに活性エネルギー線を照射する工程。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/359,376 US9765941B2 (en) | 2011-11-29 | 2012-11-14 | Optical film, surface light emitting body, and method for producing optical film |
CN201280051924.3A CN103890617B (zh) | 2011-11-29 | 2012-11-14 | 光学膜、面发光体和光学膜的制造方法 |
KR1020147009798A KR20140097125A (ko) | 2011-11-29 | 2012-11-14 | 광학 필름, 면발광체 및 광학 필름의 제조 방법 |
EP12852523.5A EP2787374A4 (en) | 2011-11-29 | 2012-11-14 | OPTICAL FILM, SURFACE LIGHT EMITTING BODY, AND METHOD FOR PRODUCING OPTICAL FILM |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011260296 | 2011-11-29 | ||
JP2011-260296 | 2011-11-29 | ||
JP2012-090491 | 2012-04-11 | ||
JP2012089957 | 2012-04-11 | ||
JP2012-089957 | 2012-04-11 | ||
JP2012090491 | 2012-04-11 | ||
JP2012112300 | 2012-05-16 | ||
JP2012-112300 | 2012-05-16 | ||
JP2012150405 | 2012-07-04 | ||
JP2012-150405 | 2012-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080794A1 true WO2013080794A1 (ja) | 2013-06-06 |
Family
ID=48535260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079489 WO2013080794A1 (ja) | 2011-11-29 | 2012-11-14 | 光学フィルム、面発光体及び光学フィルムの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9765941B2 (ja) |
EP (1) | EP2787374A4 (ja) |
JP (1) | JPWO2013080794A1 (ja) |
KR (1) | KR20140097125A (ja) |
CN (1) | CN103890617B (ja) |
TW (1) | TWI533033B (ja) |
WO (1) | WO2013080794A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014199921A1 (ja) * | 2013-06-12 | 2014-12-18 | 三菱レイヨン株式会社 | El用光取り出しフィルム、el用光取り出しフィルムの製造方法及び面発光体 |
JP2015219422A (ja) * | 2014-05-19 | 2015-12-07 | Nltテクノロジー株式会社 | 光学部材及び表示装置 |
JP2016018050A (ja) * | 2014-07-08 | 2016-02-01 | 三菱レイヨン株式会社 | 光学フィルム、面発光体及び光学フィルムの製造方法 |
JP2016045386A (ja) * | 2014-08-25 | 2016-04-04 | 三菱レイヨン株式会社 | 光学フィルム、面発光体及び光学フィルムの製造方法 |
JP2016093962A (ja) * | 2014-11-17 | 2016-05-26 | 三菱レイヨン株式会社 | 光学フィルムの製造方法、光学フィルム及び面発光体 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014189035A1 (ja) * | 2013-05-23 | 2017-02-23 | 三菱レイヨン株式会社 | 光学フィルム、光学フィルムの製造方法及び面発光体 |
JP6012692B2 (ja) * | 2014-01-27 | 2016-10-25 | キヤノン株式会社 | マイクロレンズアレイの形成方法および固体撮像装置の製造方法 |
TWI556002B (zh) * | 2014-08-05 | 2016-11-01 | 群創光電股份有限公司 | 抗反射結構及電子裝置 |
CN107046047A (zh) * | 2016-08-19 | 2017-08-15 | 广东聚华印刷显示技术有限公司 | 印刷型电致发光器件的像素单元及其制备方法和应用 |
CN107643555A (zh) * | 2017-08-25 | 2018-01-30 | 张家港康得新光电材料有限公司 | 多层复合膜及其制备方法 |
JP7057126B2 (ja) * | 2017-12-26 | 2022-04-19 | デクセリアルズ株式会社 | 原盤、転写物及び原盤の製造方法 |
CN109920936B (zh) * | 2019-03-19 | 2020-11-24 | 合肥鑫晟光电科技有限公司 | 一种显示面板、其制作方法及显示装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10111537A (ja) * | 1996-08-16 | 1998-04-28 | Dainippon Printing Co Ltd | レンチキュラーレンズシート、ディスプレイ用前面板及び透過型スクリーン |
JP2007133196A (ja) * | 2005-11-11 | 2007-05-31 | Dainippon Printing Co Ltd | 光収束シート、面光源装置 |
JP2008058494A (ja) * | 2006-08-30 | 2008-03-13 | Hitachi Maxell Ltd | マイクロレンズアレイシートの製造方法 |
WO2008069324A1 (ja) | 2006-12-08 | 2008-06-12 | Mitsubishi Rayon Co., Ltd., | 光拡散性光学フィルム及びその製造方法、プリズムシート、並びに面光源装置 |
WO2008093819A1 (ja) * | 2007-02-02 | 2008-08-07 | Dai Nippon Printing Co., Ltd. | 光学シート、面光源装置、透過型表示装置 |
JP2008305590A (ja) * | 2007-06-05 | 2008-12-18 | Dainippon Printing Co Ltd | 面光源装置、透過型表示装置 |
JP2009025774A (ja) | 2007-07-24 | 2009-02-05 | Toppan Printing Co Ltd | レンズシート、ディスプレイ用光学シート及びそれを用いたバックライトユニット、ディスプレイ装置 |
JP2011123204A (ja) | 2009-12-09 | 2011-06-23 | Samsung Yokohama Research Institute Co Ltd | マイクロレンズアレイシートおよびその製造方法 |
JP2011159632A (ja) * | 2011-03-22 | 2011-08-18 | Dainippon Printing Co Ltd | 面光源装置と透過型表示装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010048968A1 (en) * | 2000-02-16 | 2001-12-06 | Cox W. Royall | Ink-jet printing of gradient-index microlenses |
US7221512B2 (en) * | 2002-01-24 | 2007-05-22 | Nanoventions, Inc. | Light control material for displaying color information, and images |
US20050224997A1 (en) * | 2004-04-08 | 2005-10-13 | Tsung-Neng Liao | Method of fabricating optical substrate |
WO2009151171A1 (en) * | 2008-06-13 | 2009-12-17 | Miraenanotech Co., Ltd. | Apparatus and method for manufacturing an optical sheet |
JP5363173B2 (ja) * | 2009-04-10 | 2013-12-11 | ミサワホーム株式会社 | 住宅仕様確定支援システム |
JP2010250237A (ja) * | 2009-04-20 | 2010-11-04 | Mitsubishi Rayon Co Ltd | レンズシート製造方法 |
-
2012
- 2012-11-14 US US14/359,376 patent/US9765941B2/en not_active Expired - Fee Related
- 2012-11-14 WO PCT/JP2012/079489 patent/WO2013080794A1/ja active Application Filing
- 2012-11-14 KR KR1020147009798A patent/KR20140097125A/ko not_active Application Discontinuation
- 2012-11-14 CN CN201280051924.3A patent/CN103890617B/zh not_active Expired - Fee Related
- 2012-11-14 EP EP12852523.5A patent/EP2787374A4/en not_active Withdrawn
- 2012-11-14 JP JP2012553122A patent/JPWO2013080794A1/ja active Pending
- 2012-11-22 TW TW101143705A patent/TWI533033B/zh not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10111537A (ja) * | 1996-08-16 | 1998-04-28 | Dainippon Printing Co Ltd | レンチキュラーレンズシート、ディスプレイ用前面板及び透過型スクリーン |
JP2007133196A (ja) * | 2005-11-11 | 2007-05-31 | Dainippon Printing Co Ltd | 光収束シート、面光源装置 |
JP2008058494A (ja) * | 2006-08-30 | 2008-03-13 | Hitachi Maxell Ltd | マイクロレンズアレイシートの製造方法 |
WO2008069324A1 (ja) | 2006-12-08 | 2008-06-12 | Mitsubishi Rayon Co., Ltd., | 光拡散性光学フィルム及びその製造方法、プリズムシート、並びに面光源装置 |
WO2008093819A1 (ja) * | 2007-02-02 | 2008-08-07 | Dai Nippon Printing Co., Ltd. | 光学シート、面光源装置、透過型表示装置 |
JP2008305590A (ja) * | 2007-06-05 | 2008-12-18 | Dainippon Printing Co Ltd | 面光源装置、透過型表示装置 |
JP2009025774A (ja) | 2007-07-24 | 2009-02-05 | Toppan Printing Co Ltd | レンズシート、ディスプレイ用光学シート及びそれを用いたバックライトユニット、ディスプレイ装置 |
JP2011123204A (ja) | 2009-12-09 | 2011-06-23 | Samsung Yokohama Research Institute Co Ltd | マイクロレンズアレイシートおよびその製造方法 |
JP2011159632A (ja) * | 2011-03-22 | 2011-08-18 | Dainippon Printing Co Ltd | 面光源装置と透過型表示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2787374A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014199921A1 (ja) * | 2013-06-12 | 2014-12-18 | 三菱レイヨン株式会社 | El用光取り出しフィルム、el用光取り出しフィルムの製造方法及び面発光体 |
KR20160019530A (ko) * | 2013-06-12 | 2016-02-19 | 미쯔비시 레이온 가부시끼가이샤 | El용 광 취출 필름, el용 광 취출 필름의 제조 방법 및 면 발광체 |
JPWO2014199921A1 (ja) * | 2013-06-12 | 2017-02-23 | 三菱レイヨン株式会社 | El用光取り出しフィルム、el用光取り出しフィルムの製造方法及び面発光体 |
US9891354B2 (en) | 2013-06-12 | 2018-02-13 | Mitsubishi Chemical Corporation | Light-extraction film for EL, method for manufacturing light-extraction film for EL, and planar light-emitting body |
KR101859303B1 (ko) | 2013-06-12 | 2018-06-28 | 미쯔비시 케미컬 주식회사 | El용 광 취출 필름, el용 광 취출 필름의 제조 방법 및 면 발광체 |
JP2015219422A (ja) * | 2014-05-19 | 2015-12-07 | Nltテクノロジー株式会社 | 光学部材及び表示装置 |
US10101504B2 (en) | 2014-05-19 | 2018-10-16 | Nlt Technologies, Ltd. | Optical element and display device |
JP2016018050A (ja) * | 2014-07-08 | 2016-02-01 | 三菱レイヨン株式会社 | 光学フィルム、面発光体及び光学フィルムの製造方法 |
JP2016045386A (ja) * | 2014-08-25 | 2016-04-04 | 三菱レイヨン株式会社 | 光学フィルム、面発光体及び光学フィルムの製造方法 |
JP2016093962A (ja) * | 2014-11-17 | 2016-05-26 | 三菱レイヨン株式会社 | 光学フィルムの製造方法、光学フィルム及び面発光体 |
Also Published As
Publication number | Publication date |
---|---|
TW201331631A (zh) | 2013-08-01 |
US20150085496A1 (en) | 2015-03-26 |
CN103890617B (zh) | 2016-01-06 |
JPWO2013080794A1 (ja) | 2015-04-27 |
KR20140097125A (ko) | 2014-08-06 |
EP2787374A4 (en) | 2016-04-27 |
US9765941B2 (en) | 2017-09-19 |
CN103890617A (zh) | 2014-06-25 |
EP2787374A1 (en) | 2014-10-08 |
TWI533033B (zh) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013080794A1 (ja) | 光学フィルム、面発光体及び光学フィルムの製造方法 | |
JP5474263B1 (ja) | El素子用光取り出しフィルム、面発光体及びel素子用光取り出しフィルムの製造方法 | |
TWI632062B (zh) | El用光提取膜、el用光提取膜的製造方法以及面發光體 | |
WO2014157379A1 (ja) | 光学フィルム、光学フィルムの製造方法及び面発光体 | |
WO2014163135A1 (ja) | 光学フィルム及び面発光体 | |
JP6402625B2 (ja) | 光学フィルムの製造方法、光学フィルム、面発光体及び光学フィルムの製造装置 | |
JP2017191190A (ja) | 光学フィルムの製造方法 | |
JP6394309B2 (ja) | 光学フィルムの製造方法、光学フィルム及び面発光体 | |
JP2015206957A (ja) | 光学フィルム、積層体、照明及びディスプレイ | |
JP2014102370A (ja) | 光学フィルム及び面発光体 | |
JP2016018024A (ja) | 光学フィルム、面発光体及び光学フィルムの製造方法 | |
JP2017069208A (ja) | エレクトロルミネッセンス素子用光取り出し構造体及び面発光体 | |
JP2016081614A (ja) | El素子用光取り出しフィルム及び面発光体 | |
JP2015159033A (ja) | 光取り出しフィルム、面発光体及び光取り出しフィルムの製造方法 | |
JP2016143612A (ja) | エレクトロルミネッセンス素子用光取り出しフィルム及び面発光体 | |
JP2015219332A (ja) | 光学フィルム及び面発光体 | |
JP2016045386A (ja) | 光学フィルム、面発光体及び光学フィルムの製造方法 | |
JP2016018050A (ja) | 光学フィルム、面発光体及び光学フィルムの製造方法 | |
JP2016001207A (ja) | 光学フィルム、面発光体及び光学フィルムの製造方法 | |
JP2016061813A (ja) | 光学フィルム、面発光体、及び光学フィルムの製造方法 | |
JP2017191694A (ja) | 光取出し構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012553122 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12852523 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147009798 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14359376 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |