WO2013078737A1 - 锂离子电池用的正极复合材料及其制备方法 - Google Patents

锂离子电池用的正极复合材料及其制备方法 Download PDF

Info

Publication number
WO2013078737A1
WO2013078737A1 PCT/CN2011/084266 CN2011084266W WO2013078737A1 WO 2013078737 A1 WO2013078737 A1 WO 2013078737A1 CN 2011084266 W CN2011084266 W CN 2011084266W WO 2013078737 A1 WO2013078737 A1 WO 2013078737A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composite material
polysiloxane
polysilazane
added
Prior art date
Application number
PCT/CN2011/084266
Other languages
English (en)
French (fr)
Inventor
卢世刚
阚素荣
张向军
金维华
Original Assignee
北京有色金属研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京有色金属研究总院 filed Critical 北京有色金属研究总院
Priority to US14/361,328 priority Critical patent/US9362566B2/en
Publication of WO2013078737A1 publication Critical patent/WO2013078737A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a cathode material for a lithium ion battery and a preparation method thereof, and belongs to the field of chemical power sources, in particular to key materials and technical fields of lithium ion batteries.
  • the positive electrode materials used in commercial lithium ion batteries are mainly lithium intercalation transition metal oxides, including lithium cobalt oxide LiCo0 2 , lithium nickelate LiNi0 2 , and spinel lithium manganese oxide LiMn 2 0 4 .
  • the most widely used lithium cobalt oxide LiCo0 2 material has excellent electrochemical performance, but its shortcomings such as shortage of resources, high price and poor safety performance limit its large-scale application, especially in the field of electric vehicle batteries, and lithium nickelate.
  • LiNi0 2 is difficult to synthesize and has poor safety, which limits its development and application.
  • the theoretical specific capacity is as high as 170 mAh / g, and has a more stable cycle stability than lithium cobaltate, the cycle life can be more than 2000 times, the discharge platform is stable, at about 3. 4V. In addition, it is rich in resources and environmentally compatible, and it will have broad application prospects in the lithium battery industry.
  • the electron conductivity of the lithium iron phosphate itself is very low, only 10- 9 S / cm, pure lithium iron phosphate by means of adding a conductive agent when preparing an electrode, generally only released 40% _60% of the theoretical capacity, and For the first time, the electrical efficiency and cycle capacity retention rate are also low, so pure lithium iron phosphate is directly used for lithium ion battery cathode materials. Modification of lithium iron phosphate material is the only way to put lithium iron phosphate into practical use. Doping and cladding are the two major modification methods.
  • Carbon coating can not only improve the electrical conductivity between lithium iron phosphate particles, but also reduce the particle size of lithium iron phosphate, thereby improving the macroscopic electrochemical performance of lithium iron phosphate.
  • the addition of amorphous carbon after coating significantly reduces the tap density.
  • the tap density of commercial lithium iron phosphate is generally less than l. lgcm- 3 , many less than 1 gem- 3 , which makes the performance of lithium iron phosphate Improvements and improvements in tap density cannot be organically unified.
  • Coated oxide is a commonly used method in the field of lithium ion battery materials.
  • the main composition of the positive electrode material in US 2007/0207385A1 is A 3x Ml 2y (P04) 3 ; the second part is composed of at least one of SiC, BN or M2 2a O b , and the second part is coated with A 3x Ml 2y CP04) 3 surface, wherein A is at least one element of IA, II A, ⁇ , and Ml ⁇ ⁇ 2 is at least one element of lanthanum, IIIA, IVA, VA.
  • the preparation method given in the patent embodiment is to prepare a solution containing A ions, M1 ions and P0 4 3 -, or first prepare A 3x Ml 2y (P04) 3 , and add a solution containing M 2 ions to adjust the ra
  • the value is formed into a M2 hydroxide precipitate, which is then converted into an M2 oxide, and then subjected to heat treatment to obtain a composite product.
  • the patented technology mainly coats the surface of the positive electrode material with oxide, Si (:, BN, wherein SiC is a semiconductor, the ion conductivity is low, there is no electrochemical activity, and the temperature of synthetic SiC is generally higher (more than 1500 ° C). It is difficult to coat SiC alone.
  • Si0 2 and BN are all insulators. Although Si0 2 has certain ion conductivity, the effect of SiC, Si0 2 , BN or any mixture of three on the modification of lithium iron phosphate is Very limited. Summary of the invention
  • An object of the present invention is to provide a positive electrode composite material for a lithium ion battery which has a marked improvement in electrochemical performance and tap density, and a preparation method thereof.
  • the present invention adopts the following technical solutions:
  • SiCO or SiCNO is obtained by pyrolysis of polysiloxane
  • SiCN is obtained by pyrolysis of polysilazane
  • SiBCN is obtained by pyrolysis of polyborosilazane.
  • the polysiloxane is a repeating Si-0 bond as a main chain, and the silicon on the side chain is directly bonded to a hydrocarbon group, a carboxyl group, a hydroxyl group, an amino group, an alkoxy group, an alkenyloxy group, an acyloxy group, a hydrogen group, and a hydrogen group.
  • the polymer composed of one or more of a hydrocarbon group having a hydroxyl group, a carboxyl group, an amino group, a hydrogen group, an alkenyl group or a halogen has a degree of polymerization of from 2 to 2,000, and a degree of polymerization of more preferably from 5 to 500.
  • the alkoxy group, the alkenyloxy group, the acyloxy group has 1 to 6 carbon atoms, and the hydrocarbon group is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, a carbon atom.
  • the number is 1-12, more preferably 1-8.
  • Polysilicon More preferably, the oxyalkylene is a polysiloxane containing a Si-H bond in its molecule.
  • the polysiloxane is more preferably a polysiloxane containing a Si-OH bond in its molecule.
  • the polysiloxane is more preferably a polysiloxane having a derivative of an unsaturated hydrocarbon or an unsaturated hydrocarbon in the molecule.
  • the polysiloxane is more preferably a polysiloxane having a phenyl group in its molecule.
  • the polysiloxane is more preferably a thermosetting silicone resin.
  • the polysiloxane is a liquid polysiloxane or a polysiloxane which can be dissolved by a solvent or a polysiloxane which can be melted.
  • the polysilazane is a main chain of a repeating Si-N bond, and the silicon on the side chain is directly bonded to a hydrocarbon group, a carboxyl group, a hydroxyl group, an amino group, an alkoxy group, an alkenyloxy group, an acyloxy group, a hydrogen group, and a hydrogen group.
  • the polymer composed of one or more of a hydrocarbon group having a hydroxyl group, a carboxyl group, an amino group, a hydrogen group, an alkenyl group and a halogen has a degree of polymerization of 22,000 and a degree of polymerization of more preferably 5,500.
  • the alkoxy group, alkenyloxy group and acyloxy group have 1 to 6 carbon atoms.
  • the hydrocarbon group is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or an aralkyl group having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms.
  • the polysilazane is more preferably a polysilazane having a Si-H bond in its molecule.
  • the polysilazane is more preferably a polysilazane having a Si-OH bond in its molecule.
  • the polysilazane is more preferably a polysilazane having a derivative of an unsaturated hydrocarbon or an unsaturated hydrocarbon in the molecule.
  • the polysilazane is more preferably a polysilazane having a phenyl group in its molecule.
  • the polysilazane is a liquid polysilazane or a polysilazane which can be dissolved by a solvent or a polysilazane which can be melted.
  • the polyborosilazane is repeatedly contained in a C-Si-N-BB-C-Si-N- or a C-B-Si- ⁇ -, and the Si in the side chain is directly bonded to the hydrocarbon group, the carboxyl group, the hydroxyl group, the amino group.
  • the degree of polymerization is 22,000, and the degree of polymerization is more preferably 5,500.
  • the alkoxy group, the alkenyloxy group and the acyloxy group have 1 to 6 carbon atoms.
  • the hydrocarbon group is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or an aralkyl group having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms.
  • the polyborosilazane is a liquid polyborosilazane or a polyborosilane which can be dissolved by a solvent or a polyborosilane which can be melted.
  • the preparation method of the composite material comprises the following steps:
  • the amount of polysiloxane, polysilazane, and polyboroxane added is calculated according to the pyrolysis rate under the same conditions, so that at least one of SiCO SiCNO SiCN SiBCN in the positive electrode composite after pyrolysis accounts for the composite material.
  • Li a M b P0 4 is then added thereto, and the amount of Li a M b P0 4 is calculated according to the pyrolysis rate under the same experimental conditions so that Li a M b in the positive electrode composite after pyrolysis
  • the content of P0 4 is 80-99 wt% of the total weight of the composite material, and the stirring is hooked;
  • the crosslinked product is sintered in a non-oxidizing atmosphere or in a vacuum to obtain a composite material in which at least one of SiCO, SiCNO, SiCN, SiBCN is combined with Li a M b P0 4 .
  • the organic solvent is at least one of acetone, toluene, xylene, ethanol, diethyl ether, n-propanol, isopropanol, n-butanol, acetonitrile, ethanolamine, tetrahydrofuran, DMF, chloroform, pyridine, N-methylpyrrolidone. .
  • the curing is at least one of heat curing, adding a curing agent, heating and curing, and ultraviolet curing; wherein, in the heat curing or curing curing agent, the curing temperature is 20 ° C to 400 ° C.
  • the sintering condition is 300-50 CTC for 0-5 hours, then heated to 500 ⁇ 850 °C for 1-15 hours.
  • the sintering conditions are more preferably 300-50 CTC for 0-5 hours, then heated to 600-750 ° C for 1-10 hours.
  • the non-oxidizing atmosphere includes at least one of argon, nitrogen, NH 3 , or a vacuum.
  • step 1 after dissolving at least one of polysiloxane, polysilazane, and polyborosilazane in an organic solvent, carbon or carbon precursor is added before Li a M b P0 4 is added.
  • the residual carbon after carbonization of the carbon or carbon precursor accounts for 1 to 20% by weight of the total weight of the composite.
  • the carbon and carbon precursor is at least one of graphite, acetylene black, sucrose, glucose, fructose, and phenolic resin.
  • the Li a M b P0 4 is prepared by a solid phase method using a metal M powder and lithium dihydrogen phosphate.
  • the metal M powder and lithium dihydrogen phosphate are added according to the molecular expression of Li a M b P0 4 , and the solvent is added for wet grinding.
  • the amount of the solvent added is added in a solid-liquid volume ratio of 1:1 to 1:5, and wet-grinded to the slurry. After the particle size is less than 2 ⁇ ⁇ , deionized water is added, and the volume of deionized water is added to be 5% to 50% of the volume of the slurry.
  • the solvent is one of ethanol, acetone, n-propanol, n-butanol, ethanolamine, and isopropanol.
  • the deionized water is added while stirring, and after adding water, it is ball milled for 0.5 to 1 hour.
  • the drying includes one of vacuum drying and microwave drying.
  • the non-oxidizing atmosphere includes at least one of argon, nitrogen, or a mixture.
  • the M powder is one or a mixture of a powder prepared by a reduction method, an electrolytically prepared powder, and a powder prepared by a carbonyl method, and the M powder has a particle diameter of 500 nm to 10 m.
  • the tap density of Li a M b P0 4 can be increased.
  • the curing effect of polysiloxane, polysilazane and polyborosilane is to crosslink and solidify into a three-dimensional insoluble and insoluble network structure, and to improve the pyrolysis rate in the pyrolysis process.
  • the curing is a addition reaction of a silicon hydrogen bond contained in a polymer molecule with an unsaturated bond contained in a curing agent, a self-condensation reaction of a hydroxyl group in a polymer, a self-polymerization of an unsaturated bond in a polymer, and a heat of a silicone resin. Curing reaction.
  • the functional groups in polysiloxane, polysilazane, and polyborosilane are mainly used to facilitate crosslinking curing and increase the pyrolysis rate.
  • the materials containing Si, C, 0 and containing Si, C, N, 0 obtained by pyrolysis of polysiloxane are collectively referred to as SiCO and SiCNO in the literature; and Si, C are obtained after pyrolysis of polysilazane.
  • the materials of N are collectively referred to as SiCN; the materials containing Si, B, C, and N obtained by pyrolysis of polyborosilazane are collectively referred to as SiBCN.
  • the composition of C in the composite product is higher, and the electrochemical properties of the composite material are better.
  • the inventors dissolved the polysiloxane in an organic solvent in Example 11, and then added LiFeP0 4 , stirred and hooked, and heat-cured to prepare a precursor, which was obtained by pyrolysis of the precursor in a non-oxidizing atmosphere or in a vacuum.
  • the materials were tested by XRD, TEM, tap density, and electrochemical specific capacity.
  • the XRD results show a structure of LiFeP0 4 (see Figure 1), indicating that there is no change in the bulk structure of the material.
  • the TEM results show that there is a coating on the surface of the particles (see Figure 2), indicating that the material is not a single phase.
  • Fe and P are the main elements constituting LiFeP0 4 , indicating that LiFeP0 4 is mainly distributed inside the particles, Si [see Fig.
  • SiC0, SiCNO, SiCN, SiBCN have a network structure, Si, C 0 in the SiCO structure, Si, CN, 0 in the SiCNO structure, Si, CN in the SiCN structure, Si, CN in the SiBCN structure, B is a chemical bond, and has better conductivity, stability and oxidation resistance than Si (:, Si0 2 , BN, and more compact, tap density is generally about 2.
  • the composite material with at least one of SiC0, SiCNO, SiCN, SiBCN and Li a M b P0 4 is very effective in improving the capacity, and is used alone.
  • the effect of improving the tap density of the composite material of the present invention is very remarkable.
  • the network structure formed by the cross-linking of SiCO, SiCNO, SiCN and SiBCN precursors is beneficial to improve Li a M b P0 4 Surface properties improve its electrical conductivity. From the charge-discharge curve, the composite charge and discharge curve of the composite becomes smooth, the platform becomes flat, and the charge-discharge polarization is significantly reduced. From the electrochemical performance, the composite modified Li a M b P0 4 , the first specific capacity, the first charge and discharge efficiency have been greatly improved; and the tap density has also been significantly improved. Due to the relatively stable nature of SiC0, SiCN0, SiCN and SiBCN in air, the storage performance of the modified Li a M b P0 4 is greatly improved.
  • Li a M b P0 4 is obtained by wet grinding and drying in a solvent using a metal powder and lithium dihydrogen phosphate, and then sintering in a vacuum at a high temperature in a non-oxidizing atmosphere.
  • Li a M b P0 4 synthesized by the method of the present invention has a characteristic of high tap density and lower cost due to the use of a metal powder having a higher density and a lower cost.
  • the tap density of the carbon-coated lithium iron phosphate is generally less than 1. lg/cm 3
  • the composite Li a M b P0 4 of the present invention is more than the material of the present invention. 5 ⁇
  • the tap density is generally 1. 5 g / cm 3 or more, can also reach 2. 0 g / cm 3 or more.
  • Figure 4 is an XRD pattern of LiFePO 4 synthesized in Comparative Example 1;
  • Figure 5 is a top view of the LiFeP0 4 synthesized in Comparative Example 1;
  • Figure 6 is a first charge and discharge curve of the synthesized LiFeP0 4 of Comparative Example 1;
  • Battery positive electrode composite 85 ⁇ 92% (weight percent), conductive agent (graphite or carbon black) 4 ⁇ 8% (weight percent), binder PVDF (polyvinylidene fluoride) 4 ⁇ 8% (weight percent), The mixture is mixed into a slurry, coated on both sides of the aluminum foil, and dried in the air to form an electrode.
  • the counter electrode is a lithium metal sheet to constitute a test battery.
  • the electrolyte is 1 M (mol/L) LiPF 6 /EC+DMC, etc., EC is ethylene carbonate, and DMC is dimethyl carbonate.
  • the volume is 5% by volume of the slurry, and then ball milled for 0.5 hours, and vacuum-dried to obtain a precursor.
  • the dried precursor is placed in a high-temperature furnace, vacuumed, passed through an inert gas of argon, heated to 650 ° C, held for 10 hours, naturally reduced to less than 10 CTC, the product is taken out, and after grinding, LiFeP0 4 is obtained, and XRD is tested. It is pure phase.
  • the second discharge and discharge efficiency was 94.2%, the tap density was 1.22g/cm 3 , and the initial charge and discharge capacity was 107 mAh/g, the first charge and discharge efficiency was 94.2%, and the tap density was 1.22 g/cm 3 .
  • the galvanic density is 1. 8g/cm 3 .
  • the initial charge and discharge efficiency is 92.3%, the first charge and discharge efficiency is 92.3%, and the tap density is 1. 8g/cm 3 .
  • Comparative Example 3 The sucrose and the pure phase LiFeP0 4 prepared in Comparative Example 1 were weighed according to 7% of the total weight of sucrose. The total weight here is the total weight of sucrose and LiFePO 4 , and anhydrous ethanol was added thereto, and anhydrous ethanol was added. The amount is twice the volume of the solid. After ball milling in a planetary ball mill for 3 hours, the microwave is dried. After drying, it is placed in a high-temperature furnace.
  • the vacuum is first introduced and then the inert gas is argon gas.
  • the temperature is raised to 70 CTC for 2 hours, and the temperature is naturally lowered to less than 10 CTC.
  • the product was taken out, and after grinding, C/LiFeP0 4 was obtained, and the carbon content was analyzed to be 3% by weight based on the total weight.
  • the total weight referred to herein is the total weight of the residue carbon and the LiFePO 4 after sucrose carbonization.
  • Electrochemical performance test at a relative Li+/Li potential of 2.0 to 4.2 V, the specific volume of the discharge The amount of 154 mAh/g, the first charge and discharge efficiency of 97.8%, the tap density of 1. 1 g/cm 3 .
  • LiFeP0 4 prepared in Comparative Example 1 was added, and pyrolysis was carried out from ethyl orthosilicate at the same temperature.
  • the pyrolysis rate is calculated by adding the weight of ethyl orthosilicate so that SiO 2 accounts for 5 wt% of the total weight after pyrolysis, and the total weight here is the total weight of the residues Si0 2 and LiFeP 0 4 after pyrolysis of ethyl orthosilicate. . It was stirred for 5 hours and then evaporated to dryness at 70 ° C to obtain a precursor.
  • the precursor is placed in a high-temperature furnace, first evacuated and then ventilated with inert gas, heated to 70 CTC for 2 hours, and naturally cooled to less than 10 CTC.
  • the product is taken out and ground to obtain a Si0 2 /LiFePO 4 material.
  • the electrochemical performance test was carried out at a relative Li+/Li potential of 2.0 to 4.2 V.
  • the discharge specific capacity was 115 mAh/g
  • the first charge and discharge efficiency was 96%
  • the tap density was 1. 4 g/cm 3 .
  • Example 1 Taking vinyl-terminated polymethylphenylsiloxane (C 2 H 3 ) 3 SiO ⁇ CH 3 (C 6 3 ⁇ 4 ) SiO ⁇ n Si(C 2 H 3 ) 3 n was 150, placed in oxidation In aluminum crucible, diluted with acetone, the volume of acetone added was three times the volume of vinyl-terminated polymethylphenylsiloxane, and then LiFePO 4 prepared by the method of Comparative Example 1 was added thereto, according to SiCO /LiFeP0 4 5% by weight of SiCO added to the vinyl terminated polymethylphenylsiloxane, wherein the vinyl terminated polymethylphenylsiloxane was added in the same experimental conditions as the vinyl terminated polymethylphenylsiloxane The pyrolysis rate of the alkane is calculated.
  • the mixture was heated to 400 ° C with stirring for 5 hours, and after the silicone was cured, a precursor was formed.
  • the ruthenium containing the precursor is placed in a high-temperature furnace, vacuumed, passed through an inert gas N 2 , heated to 700 ° C, and after 2 hours of incubation, after natural cooling to less than 10 CTC, the product is taken out and ground to obtain SiCO /LiFeP0 4 composite
  • the material, SiCO is 5 wt% of the total weight. 5% ⁇
  • the first charge and discharge efficiency of 97. 35%, tapping density of 1. 55g / cm 3 .
  • the composite material SiCO /LiFeP0 4 formed by compounding LiFePO 4 of Comparative Example 1 with a vinyl-terminated polymethylphenylsiloxane in this example, wherein SiCO accounts for 5 wt% of the total weight Significant improvements in both electrochemical performance and tap density have been achieved.
  • the electrochemical specific capacity is increased from 107 mAh/g before recombination to 158. 2 mAh/g after recombination.
  • the first charge and discharge efficiency is increased from 94.2% before recombination to 97.35% after recombination. before the uncomplexed 1. 22g / cm 3 up to the composite of 1. 55g / cm 3.
  • Example 2 Taking a hydroxyl terminated polymethylphenylsiloxane (OH) 3 SiO ⁇ CH 3 (C 6 H 5 )SiO ⁇ n Si(OH) 3 n was 50, placed in an alumina crucible, and added with acetone.
  • OH hydroxyl terminated polymethylphenylsiloxane
  • the ruthenium containing the precursor is placed in a high-temperature furnace, vacuumed, and then passed through an inert gas of nitrogen, heated to 725 ° C, and kept for 2 hours, then naturally cooled to less than 10 CTC, taken out, and ground to obtain a SiCO /LiFeP0 4 composite material, SiCO accounted for 5 ⁇ The total weight of 7. 5wt%.
  • the first charge-discharge efficiency is 98%
  • the first charge-discharge efficiency is 98%
  • the tap density is 1.65g/cm 3 .
  • the first charge-discharge efficiency is 98. 2 mAh/g.
  • Example 3 Taking a hydroxyl terminated polymethylethoxysiloxane (OH) 3 SiO ⁇ CH 3 (OC 2 3 ⁇ 4 ) SiO ⁇ n Si(OH) 3 n was 150, placed in an alumina crucible, and toluene was added. ⁇ The volume of the toluene was added to the volume of the hydroxyl terminated polymethyl ethoxy siloxane was 1.5 times, then LiFeP0 4 of Comparative Example 1 was added thereto, according to SiCO /LiFeP0 4 SiCO accounted for 3wt% added hydroxyl a blocked polymethylethoxysiloxane in which the amount of hydroxyl terminated polymethylethoxysiloxane is added by the pyrolysis rate of the hydroxyl terminated polymethylethoxysiloxane under the same experimental conditions.
  • the mixture was heated to 300 V with stirring for 2 hours, and after the silicone was cured, a precursor was formed.
  • the crucible containing the precursor is placed in a high-temperature furnace, vacuumed, passed through an inert gas N 2 , heated to 650 ° C, held for 5 hours, naturally cooled to less than 10 CTC, taken out, and ground to obtain a SiCO /LiFeP0 4 composite, SiCO It accounts for 3% by weight of the total weight.
  • / ⁇ B is incorporated into a polymethylhydrogensiloxane, wherein the amount of polymethylhydrogensiloxane added is calculated by the pyrolysis rate of the polymethylhydrogensiloxane under the same experimental conditions.
  • the mixture was heated to 120 ° C with stirring to crosslink the polymethylhydrogensiloxane and divinylbenzene to form a precursor.
  • the obtained precursor is placed in a high-temperature furnace, vacuumed, and then introduced into NH 3 , heated to 350 ° C, kept for 3 hours, then heated to 800 ° C, kept for 3 hours, naturally cooled to less than 10 CTC and then taken out, 5 ⁇ % ⁇
  • the first charge and discharge efficiency is 98.1 mAh/g
  • the first charge and discharge efficiency is 98.1%
  • the tap density is 1. 1%. 65g/cm 3 .
  • the mixture was heated to 400 ° C with stirring for 1 hour, and after the polymethylvinylsiloxane was cured, a precursor was obtained. Then, the precursor is placed in a high-temperature furnace, vacuumed, then passed through an inert gas N 2 , heated to 750 ° C, and after 2 hours of heat preservation, naturally cooled to a temperature of less than 100 °, and then taken out, and the composite material SiCO /LiFeP0 4 is obtained . SiCO accounts for 10% by weight of the total weight.
  • the galvanic density is 1.73g/cm 3 .
  • the first charge and discharge efficiency is 98.3%
  • the first charge and discharge efficiency is 98.3%
  • the tap density is 1.73g/cm 3 .
  • SiCO accounted for 7.5 wt% of polymethylhydrogensiloxane, wherein the amount of polymethylhydrogensiloxane added was determined by pyrolysis of polymethylhydrogensiloxane under the same experimental conditions. Rate to calculate. The mixture was heated to 150 ° C with stirring to cross-link the polymethylhydrogensiloxane and divinylbenzene to obtain a precursor.
  • the obtained precursor is placed in a high temperature furnace, After vacuuming, the inert gas N 2 is introduced , the temperature is raised to 450 ° C, the temperature is maintained for 3 hours, the temperature is raised to 650 ° C, the temperature is kept for 5 hours, and the temperature is naturally lowered to less than 10 CTC, and then taken out, and the composite material of SiCO /LiFeP0 4 is obtained by grinding, SiCO 5 ⁇ % ⁇ The total weight of 7. 5wt%.
  • the XRD test showed a lithium iron phosphate structure.
  • the first discharge efficiency is 97.6%
  • the tap density is 2. 0g/cm 3
  • the initial charge and discharge capacity is 148.
  • the volume is twice the volume of the methylvinylpolysilazane, and the pure phase LiFeP04 synthesized in Comparative Example 1 is added, and the above methylvinylpolysilazane is added according to the SiCN/LiFeP0 4 in which the SiCN is 3 wt%, wherein the above methyl group is added.
  • the amount of vinyl polysilazane added was calculated by the pyrolysis rate of the above methylvinyl polysilazane under the same experimental conditions.
  • the mixture was heated while stirring to volatilize the toluene, and then heated to 35 CTC to obtain a precursor.
  • the XRD test showed a lithium iron phosphate structure. I.
  • the above-mentioned hydroxy-terminated methylphenylpolysilazane was added in accordance with SiCN/LiFeP0 4 in which SiCN was 5 wt%.
  • the mixture was heated by stirring to volatilize the toluene, and then heated to 35 CTC to obtain a precursor.
  • the precursor is placed in a high-temperature furnace, first vacuumed, then filled with inert gas N 2 , heated to 400 ° C, held for 2 hours, then heated to 800 ° C, held for 2 hours, naturally cooled to less than 10 CTC and removed, after trituration SiCN / LiFeP0 4 composites, SiCN 7. 5wt% of the total weight.
  • the XRD test showed a lithium iron phosphate structure.
  • the first charge-discharge efficiency is 98.1%, and the tap density is 1.67g/cm 3 .
  • the first charge-discharge efficiency is 98.1 mAh/g.
  • Example 10 Taking an amino group-containing hydroxy-terminated polysiloxane (OH) 3 SiO ⁇ CH 3 [(;C 3 H 6 )NH 2 )]SiO ⁇ n Si(;OH) 3 n was 100 in alumina In the crucible, the acetone was dissolved, and the volume of the acetone was added to be 4.5 times the volume of the amino group-containing hydroxyl-terminated polysiloxane, and then sucrose and LiFeP0 4 of Comparative Example 1 were added, according to C/SiCO/LiFeP0 4 in C and SiCO accounts for 1 of composite materials 15% by weight of sucrose and amino group-containing hydroxy-terminated polysiloxane, wherein sucrose and amino group-containing hydroxy-terminated polysiloxane are added in accordance with the same experimental conditions under sucrose and the amino group-containing hydroxy-terminated polysiloxane The pyrolysis rate of the alkane is calculated.
  • the mixture was heated to 200 ° C with stirring for 3 hours, and after the polysiloxane was cured, a precursor was obtained.
  • the crucible containing the precursor is placed in a high-temperature furnace, vacuumed, and then passed through an inert gas N 2 to a temperature of 675 ° C. After 4 hours of heat preservation, it is naturally cooled to 10 CTC, taken out, and ground to obtain a composite material C/SiCO /LiFeP0 4 .
  • the residual carbon after sucrose carbonization decomposition accounts for 1 wt% of the total weight, and SiCO accounts for 15 wt% of the total weight.
  • the total weight is the residual carbon after sucrose carbonization decomposition, and the amino group-containing hydroxy-terminated polysiloxane pyrolysis. The sum of the weights of the remaining SiCO and LiFeP0 4 .
  • the XRD test showed a lithium iron phosphate structure. Relative to Li + / 2. 0V to test the electrochemical performance of Li 4. 2V potential, first discharge capacity 160. 2mAh / g, initial charge and discharge efficiency of 98.35%, a tap density of 1. 5g / cm 3.
  • thermosetting silicone resin - polymethylphenylsiloxane (CH 3 ) 3 SiO ⁇ CH 3 (C 6 3 ⁇ 4 ) SiO ⁇ n Si(CH 3 ) 3 n was 200 in an alumina crucible, After adding xylene, the volume of xylene added was 3.5 times the volume of the thermosetting silicone resin, and then LiFeP0 4 of Comparative Example 1 was added, and the thermosetting silicone resin was added according to SiCO/LiFeP0 4 in which SiCO accounted for 20% of the composite material, wherein The amount of thermosetting silicone resin added was calculated according to the pyrolysis rate of the thermosetting silicone resin under the same experimental conditions.
  • the mixture was heated to 210 ° C with stirring for 3 hours, and after the silicone resin was cured, a precursor was obtained.
  • Will contain The precursor of the precursor is placed in a high-temperature furnace, vacuumed and then passed through an inert gas N 2 to a temperature of 825 ° C. After 4 hours of heat preservation, it is naturally cooled to a temperature of less than 10 CTC and then taken out, and the composite material SiCO /LiFeP0 4 is obtained by grinding. 20 wt% of the total weight.
  • the XRD test showed a lithium iron phosphate structure. 8% ⁇ The first charge and discharge efficiency was 98.8%, the tap density was 1.67g/cm 3 , the initial charge and discharge capacity was 98.
  • Example 12 Taking a carboxyl group-containing polysiloxane (C3 ⁇ 4) 3 SiO ⁇ [(CH 2 ) m (COOH)](C6H 5 )SiO ⁇ n Si(CH 3 )3 n is 150 into alumina crucible The amount of acetone added was 1.5 times the volume of the carboxyl group-containing polysiloxane in the side chain, and then LiFeP0 4 of Comparative Example 1 was added, and SiCO was added to 2 wt% of the composite material in SiCO /LiFeP0 4 .
  • the side chain carboxyl group-containing polysiloxane in which the side chain carboxyl group-containing polysiloxane is added is calculated according to the pyrolysis rate of the side chain carboxyl group-containing polysiloxane under the same experimental conditions.
  • the mixture was heated to 360 ° C with stirring for 6 hours, and after the silicone was cured, a precursor was obtained.
  • the crucible containing the precursor is placed in a high-temperature furnace, vacuumed, passed through an inert gas N 2 , heated to 600 ° C, and kept for 10 hours, then naturally cooled to 10 CTC and taken out, and ground to obtain a composite material SiCO /LiFeP0 4 , SiCO accounted for 2 wt% of the total weight.
  • the XRD test showed a lithium iron phosphate structure. Relative to Li + / 2. 0V to test the electrochemical performance of Li 4. 2V potential, first discharge capacity 155. 2mAh / g, the first charge and discharge efficiency was 98.4%, a tap density of 1. 5g / cm 3.
  • Example 13 Taking a hydroxyl-terminated poly-p-fluorophenylbutylsiloxane (COH) 3 SiO ⁇ C 4 H9(C6H 4 F)SiO ⁇ n Si(OH) 3 n was 80 in an alumina crucible, added The acetone was dissolved, and the volume of the acetone-added poly-p-fluorophenylmethylsiloxane was 2.5 times, and then LiFeP0 4 of Comparative Example 1 was added, and SiCO in the SiCO /LiFeP0 4 respectively accounted for the composite material.
  • COH hydroxyl-terminated poly-p-fluorophenylbutylsiloxane
  • the composite material is SiCO /LiFeP0 4 , and SiCO is totaled. 3 wt% of weight.
  • the XRD test showed a lithium iron phosphate structure.
  • the second charge and discharge efficiency is 98. 25%, and the tap density is 1.65 g/cm 3 .
  • the first charge and discharge capacity is 98. 2 mAh/g, the first charge and discharge efficiency is 98. 25%, and the tap density is 1.65 g/cm 3 .
  • Example 14 Take hydroxyl-terminated polydimethylsiloxane OH(C3 ⁇ 4) 2 SiO ⁇ (CH 3 ) 2 SiO ⁇ n Si(CH) 2 OH , n is 200 in alumina crucible, add curing agent (C3 ⁇ 4) 3 Si ⁇ OSiH(CH 3 ) ⁇ 3 6 OSi (CH 3 ) 3 , the ratio of curing agent to hydroxyl-terminated polymethylsiloxane is 1: 5, the catalyst is added to dibutyltin dilaurate, and the amount of catalyst added is based on the total weight.
  • the mixture was heated to 70 ° C with stirring for 3 hours, and after curing of the terminal hydroxyl polydimethylsiloxane, a precursor was obtained.
  • the crucible containing the precursor is placed in a high-temperature furnace, vacuumed, and then passed through an inert gas N 2 to a temperature of 650 ° C. After 8 hours of heat preservation, it is naturally cooled to less than 10 CTC and then taken out, and ground to obtain a composite material SiCO /LiFeP0 4 , SiCO It accounts for 6 wt% of the total weight.
  • the XRD test showed a lithium iron phosphate structure.
  • the first charge-discharge efficiency is 98.1%
  • the tap density is 1.61g/cm 3 .
  • the first charge-discharge efficiency is 98.1 mAh/g.
  • Example 15 The molecular structure of polyborosilazane is shown in the following figure, wherein m is 40, n is 120, p is 40, polyborosilazane is dissolved with toluene, and then LiFePO 4 of Comparative Example 1 is added thereto, according to SiBCN.
  • the above-mentioned polyborosilazane was added to 5% of SiBCN in /LiFeP0 4 , and the amount of the above polyborosilazane was calculated by the pyrolysis rate of the above polyborosilazane under the same experimental conditions.
  • SiBCN is 5 wt% of the total weight.
  • the material showed a lithium iron phosphate structure by XRD.
  • the galvanic density is 1. 7g/cm 3 .
  • the first charge and discharge efficiency is 97.9%, and the tap density is 1. 7g/cm 3 .
  • this embodiment forms a composite of LiFeP0 4 of Comparative Example 1 by using the above polyborosilazane.
  • the composite material SiBCO /LiFeP0 4 in which SiBCO accounts for 5 wt% of the total weight, has a significant improvement in both electrochemical performance and tap density.
  • the electrochemical specific capacity increased from 107 mAh/g before recombination to 155 mAh/g after recombination.
  • the first charge and discharge efficiency increased from 94.2% before uncombination to 97.9% after recombination.
  • the tap density was uncomplexed.
  • the previous 1.22g/cm 3 was increased to 1. 7g/cm 3 after compounding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

锂离子电池用的正极复合材料及其制备方法。该复合材料是由SiCO、SiCNO、SiCN、SiBCN中至少一种与LiaMbPO4复合形成的复合材料,其中0.95≤a≤1.1,0.95≤b≤1.1,M为Fe、Co、Ni、Mn中至少一种。该正极复合材料中SiCO、SiCNO、SiCN、SiBCN至少一种的含量占复合材料总重量1-20wt%。将LiaMbPO4加入到聚硅氧烷、聚硅氮烷、聚硼硅氮烷中至少一种有机硅聚合物中,通过固化交联,热解后得到由SiCO、SiCNO、SiCN、SiBCN中至少一种与LiaMbPO4复合的复合材料。该复合材料和LiaMbPO4相比,电化学性能和振实密度都有显著提高。

Description

锂离子电池用的正极复合材料及其制备方法
技术领域
本发明涉及一种锂离子电池正极材料及其制备方法,属于化学电源领域,特别是锂离 子电池关键材料和技术领域。
背景技术 自 1990年日本索尼公司开发锂离子电池以来, 正极材料的研发便受到人们的关注。 目前商品化锂离子电池使用的正极材料主要为嵌锂过渡金属氧化物,包括层状结构的钴酸 锂 LiCo02、 镍酸锂 LiNi02, 以及尖晶石结构锰酸锂 LiMn204等。 其中最为广泛的钴酸锂 LiCo02材料具有优异的电化学性能, 但因其资源短缺, 价格昂贵, 安全性能差等缺点限 制了其大规模应用, 尤其是在电动汽车电池领域, 而镍酸锂 LiNi02合成较困难, 安全性 较差, 限制了其发展和应用, 锰酸锂 LiMn204合成成本低, 安全性能较好, 但其容量较 低、 高温循环稳定性欠佳, 其应用受到限制。 橄榄石型磷酸铁锂由于其优异的安全性能近年来成为锂离子电池正极材料的研究热 点 。 1997 年 Goodenough 等研究 了 一系列过渡金属聚 阴 离子化合物 M2(X04)3(M=TiFeNbVX=SPAsMoW),发现橄榄石结构磷酸铁锂具有良好的锂离子嵌入 和脱嵌能力。 其理论比容量高达 170mAh/g, 而且具有比钴酸锂更加稳定的循环稳定性, 循环寿命可达 2000次以上, 放电平台平稳, 在 3. 4V左右。 除此之外, 其资源丰富、 环境 相容性好,它在锂电池工业将具有广阔的应用前景。然而磷酸铁锂本身的电子导电率非常 低, 只有 10— 9S/cm, 纯的磷酸铁锂通过在制备电极时加入导电剂的方式, 一般也只能放出 理论容量的 40%_60%, 而且首次充当电效率和循环容量保持率也较低, 所以纯的磷酸铁锂 直接用于锂离子电池正极材料实用性较差。对磷酸铁锂材料进行改性是磷酸铁锂实用化的 唯一途径。 掺杂和包覆是两大主要改性方法。
1999 年加拿大福斯泰克公司在加拿大申请了用碳包覆正极材料的专利技术, 专利号 为 CA2270771 , 正极材料对应通式为 AaMmZzO。NnFf, 其中 A为碱金属; M为至少一种过渡 金属或至少一种非过渡金属; Z 为至少一种非金属; 0氧; N氮; F 氟。 其特征是碳沉 积在 AaMmZzO。NnFf表面, 碳是通过有机物热解得到。 专利技术显示磷酸铁锂外包覆碳后 其电化学性能比未包覆有了显著的改善。碳包覆既能改善磷酸铁锂颗粒间的导电性,又能 减小磷酸铁锂的颗粒大小,进而改善磷酸铁锂宏观的电化学性能。但包覆后的无定形碳的 加入, 使振实密度明显下降, 目前商品化的磷酸铁锂的振实密度一般小于 l . lgcm—3, 很多 小于 1 gem— 3, 这使得磷酸铁锂性能的改善和振实密度的提高不能有机统一起来。 包覆氧化物是锂离子电池材料领域较常用的方法, 其主要作用是提高材料稳定性, 避免和电解液直接接触, 提高材料电化学性能, 如 US20050130042A1 在 LiCo02、 LiNixCoi-x02 、 LiNi1/3Co1/3Mn1/302、 LiMn204表面包覆氧化物, 如 Al、 Mg、 Zn、 Sn、 Si、 B的氧化物。
US 2007/0207385A1中正极材料主要组成是 A3x Ml2y(P04)3 ; 第二部分组成为 SiC 、 BN或者 M22aOb 其中的至少一种, 第二部分包覆在 A3x Ml2yCP04)3表面, 其中 A为 I A、 II A, ΠΙΑ中至少一种元素, Ml禾 Π Μ2是 ΠΑ、 IIIA、 IVA、 VA中至少一种元素。 该专 利实施例中给出的制备方法是先制备含有 A离子、 Ml离子和 P04 3—的溶液,或者先制备 A3x Ml2y(P04)3, 将含 M2离子的溶液加入其中, 调整 ra值, 形成 M2氢氧化物沉淀, 再转 换成 M2氧化物, 然后经过热处理得到复合产物。 该专利技术主要是在正极材料表面包覆氧化物、 Si (:、 BN, 其中 SiC是半导体, 离子 传导能力较低, 没有电化学活性, 一般合成 SiC的温度也较高(大于 1500°C ), 单独包覆 SiC难度较大, Si02、 BN均属于绝缘体, 虽然 Si02有一定的离子传导能力, 单独用 SiC 、 Si02、 BN或者三个任意混合物对磷酸铁锂性能改性的效果是非常有限的。 发明内容
本发明的目的是提供一种电化学性能和振实密度都有显著提高的锂离子电池用的正 极复合材料及其制备方法。
为实现上述目的, 本发明采取以下技术方案:
本发明的锂离子电池用的正极复合材料是由 SiCO、 SiCNO、 SiCN、 SiBCN中至少一 种与 LiaMbP04复合, 其中 0.95 a L l, 0.95=¾b=¾ l. 1 , M为 Fe、 Co、 Ni、 Mn中至少一 种, 所述复合材料中 SiCO、 SiCNO、 SiCN、 SiBCN 中至少一种的含量占复合材料总重 量的 l-20wt%; LiaMbP04占复合材料总重量的 80_99wt%。
其中 SiCO或 SiCNO是由聚硅氧烷热解得到; SiCN是由聚硅氮烷热解得到; SiBCN 是由聚硼硅氮烷热解得到。
所述的聚硅氧烷是以重复的 Si-0键为主链, 侧链上硅直接与烃基、 羧基、 羟基、 氨基、 烷氧基、链烯基氧基、 酰氧基、氢、 ¾素以及含有羟基、 羧基、氨基、 氢、链烯基、 卤素的烃基中的一种或几种相连所组成的聚合物, 聚合度为 2〜2000, 聚合度更优选的 为 5〜500。 所述的烷氧基、 链烯基氧基、 酰氧基中碳原子数为 1-6个, 所述的烃基是烷 基、 链烯基、 炔基、 芳基、 芳烷基, 碳原子数为 1-12个, 更优选为 1-8个。 所述的聚硅 氧烷更优选为分子中含有 Si-H键的聚硅氧烷。所述的聚硅氧烷更优选为分子中含有 Si-OH 键的聚硅氧烷。所述的聚硅氧烷更优选是分子中含有不饱和烃或者不饱和烃的衍生物的聚 硅氧烷。所述的聚硅氧烷更优选为分子中含有苯基的聚硅氧烷。所述的聚硅氧烷更优选为 热固化的硅树脂。所述的聚硅氧烷是液态的聚硅氧烷或者能够用溶剂溶解的聚硅氧烷或者 能够熔融的聚硅氧烷。
所述的聚硅氮烷是以重复的 Si-N键为主链, 侧链上硅直接与烃基、 羧基、 羟基、 氨基、 烷氧基、链烯基氧基、 酰氧基、氢、 ¾素以及含有羟基、 羧基、氨基、 氢、链烯基、 卤素的烃基中的一种或几种相连所组成的聚合物, 聚合度为 2 2000, 聚合度更优选的 为 5 500。 所述的烷氧基、 链烯基氧基、 酰氧基中碳原子数为 1-6个。 所述的烃基是烷 基、 链烯基、 炔基、 芳基、 芳烷基, 碳原子数为 1-12个, 更优选为 1-8个。 所述的聚硅 氮烷更优选为分子中含有 Si-H键的聚硅氮烷。所述的聚硅氮烷更优选为分子中含有 Si-OH 键的聚硅氮烷。所述的聚硅氮烷更优选为分子中含有不饱和烃或者不饱和烃的衍生物的聚 硅氮烷。所述的聚硅氮烷更优选为分子中含有苯基的聚硅氮烷。所述的聚硅氮烷是液态的 聚硅氮烷或者能够用溶剂溶解的聚硅氮烷或者能够熔融的聚硅氮烷。
所述的聚硼硅氮烷是重复含有一 C一 Si— N— B B— C一 Si— N—或者一 C一 B— Si-Ν-, 侧链上 Si直接与烃基、 羧基、 羟基、氨基、 烷氧基、链烯基氧基、 酰氧基、氢、 卤素以及含有羟基、 羧基、 氨基、 烷氧基、 链烯基氧基、 酰氧基、 氢、 卤素的烃基相连 所组成的聚合物, 聚合度为 2 2000, 聚合度更优选的为 5 500。 所述的烷氧基、 链烯 基氧基、酰氧基中碳原子数为 1-6个。所述的烃基是烷基、链烯基、炔基、芳基、芳烷基, 碳原子数为 1-12个, 更优选为 1-8个。 所述的聚硼硅氮烷是液态的聚硼硅氮烷或者能够 用溶剂溶解的聚硼硅氮烷或者能够熔融的聚硼硅氮烷。
在本发明提供一种锂离子电池正极复合材料中, 其中, 在 LiaMbP04中, 优选 a=l b=l ; 而 M为 Fe Co Ni Mn中至少一种。
该复合材料的制备方法包括下述步骤:
①将聚硅氧烷、 聚硅氮烷、 聚硼硅氮烷中至少一种溶解在有机溶剂中, 有机溶剂的加 入量按照入的聚合物和溶剂体积比为 1 : 1到 1 : 5加入, 聚硅氧烷、 聚硅氮烷、 聚硼硅 氮烷的加入量按照相同条件下的热解率来计算使得热解后的正极复合材料中 SiCO SiCNO SiCN SiBCN中至少一种含量占复合材料总重量的 l_20wt%;然后将 LiaMbP04 加入其中, LiaMbP04的加入量按照相同实验条件下的热解率来计算使得热解后的正极 复合材料中 LiaMbP04含量占复合材料总重量的 80-99wt%, 搅拌均勾;
②固化形成交联产物; ③在非氧化气氛下或真空中,将该交联产物烧结,得到 SiCO、 SiCNO 、 SiCN、 SiBCN 中至少一种与 LiaMbP04复合的复合材料。
所述的有机溶剂为丙酮、 甲苯、 二甲苯、 乙醇、 乙醚、 正丙醇、 异丙醇、 正丁醇、 乙 腈、 乙醇胺、 四氢呋喃、 DMF、 氯仿、 吡啶、 N-甲基吡咯烷酮中至少一种。
所述的固化为加热固化、 加入固化剂后再加热固化、 紫外光固化中至少一种; 其中, 在加热固化或加固化剂剂加热固化中, 固化温度为 20°C〜400 °C。
所述的烧结条件是 300-50CTC保温 0-5小时, 然后加热到 500〜850 °C, 保温 1-15 小时。
所述的烧结条件更优选的为 300-50CTC保温 0-5小时, 然后加热到 600〜750 °C, 保 温 1-10小时。
所述的非氧化性气氛包括氩气、 氮气、 NH3、 中至少一种或者为真空。
在上述步骤①中, 在将聚硅氧烷、聚硅氮烷、聚硼硅氮烷中至少一种溶解在有机溶剂 中之后, 在 LiaMbP04加入之前, 再加入碳或者碳前驱体, 碳或者碳前驱体碳化后的残余 碳占复合材料总重量的 l〜20wt%。
所述的碳和碳前驱体为石墨、 乙炔黑、蔗糖、葡萄糖、果糖、酚醛树酯中的至少一种。 所述的 LiaMbP04通过金属 M粉和磷酸二氢锂采用固相法制备。
按照 LiaMbP04的分子表达式加入金属 M粉和磷酸二氢锂, 加入溶剂进行湿磨, 加入 溶剂的量按照固液体积比 1 : 1到 1 :5加入,湿磨到浆料粒度小于 2 μ ηι后, 加入去离子水, 去离子水加入体积为浆料体积的 5%_50%。 干燥, 得到前驱体, 放入高温炉中, 在非氧化 气氛下或真空中加热到 300-500°C, 保温 0-10小时, 再升温到 600-850°C, 保温 2-24小 时, 自然降温, 得到纯相 LiaMbP04
所述溶剂为乙醇、 丙酮、 正丙醇、 正丁醇、 乙醇胺、 异丙醇中的一种。
所述加入去离子水为边加边搅拌, 加完水后再球磨 0.5〜1小时。
所述的干燥包括真空干燥、 微波干燥其中的一种。
所述的非氧化性气氛包括氩气、 氮气、 中至少一种或者混合物。
所述的 M粉为还原法制备的粉末、电解法制备的粉末、羰基法制备的粉末中的一种或 几种混合, M粉粒径 500nm-10 m。
上面所述制备 LiaMbP04方法中, 当不加入碳或者碳前驱体时, 可提高 LiaMbP04的振 实密度。
上面所述制备 LiaMbP04方法中, 加入去离子水的作用为使浆料迅速稠化, 边加边搅 拌,加完后再球磨 0. 5〜1小时 可以保证稠化过程浆料的均勾性,保证所制备的 LiaMbP04 的材料具有较好的电化学性能。
制备过程中, 聚硅氧烷、聚硅氮烷、聚硼硅氮烷固化的作用是将其交联固化成三维不 溶不溶的网络结构,提高热解过程中的热解率。固化更优选是聚合物分子中含有的硅氢键 与固化剂含有的不饱和键的加成反应、聚合物中羟基的自缩合反应、聚合物中不饱和键的 自聚合反应、硅树脂的热固化反应。聚硅氧烷、聚硅氮烷、聚硼硅氮烷中的官能团主要作 用是利于交联固化, 提高热解率。
文献中将聚硅氧烷热解后得到的含有 Si、 C, 0以及含有 Si、 C, N、 0的材料统称为 SiCO和 SiCNO; 将聚硅氮烷热解后得到的含有 Si、 C, N的材料统称 SiCN; 将聚硼硅氮烷 热解后得到的含有 Si、 B、 C, N的材料统称为 SiBCN。
当聚合物中含有较多的苯基、链烯基、炔基时, 复合产物中 C的成分较高, 复合材料 电化学性能较好。 发明人在实施例 11中将聚硅氧烷溶解在有机溶剂中, 然后加入 LiFeP04后, 搅拌均 勾, 加热固化, 制备前驱体, 将前驱体在非氧化气氛下或真空中热解后得到的材料进行了 XRD、 TEM、振实密度、 电化学比容量等的测试分析。 XRD结果显示为 LiFeP04结构(见 图 1 ), 说明材料主体结构没有变化。 TEM结果显示在颗粒表面存在一包覆层 (见图 2), 说明材料非一单相。 选取颗粒 [见图 3(1)]进行能谱分析, 从颗粒外层向颗粒内部做线扫描 (从 a向 b做线性扫描), 随着扫描位置从颗粒外沿向颗粒内延伸, 可以看到 Fe [见图 3 (2) ]和 P [见图 3(3)]含量逐渐升高, Fe和 P是构成 LiFeP04的主要元素, 说明 LiFeP04 主要分布在颗粒内部, Si [见图 3(4)]含量逐渐降低, 显示出 Si主要分布在颗粒外层, Si 是聚硅氧烷的热解产物的主要元素, 说明主体 LiFeP04在颗粒内部,包覆的聚硅氧烷热解 后的产物主要分布在颗粒外层,两者形成了复合材料。该复合材料电化学性能和振实密度 测试显示其电化学比容量和振实密度都比没有复合的 LiFeP04有显著的提高,经过复合后 实现了材料电化学性能和振实密度同步提高的目的。 其原因在于: 上述 SiC0、 SiCNO 、 SiCN, SiBCN具有网络结构, SiCO结构中的 Si、 C 0, SiCNO 结构中的 Si、 C N、 0, SiCN结构中的 Si、 C N, SiBCN结构中 Si、 C N、 B均靠化学键 相连, 和 Si (:、 Si02、 BN相比具有较好的导电性、 稳定性和抗氧化性, 且比较致密, 振实 密度一般在 2. 2g/cm3左右, 和单独用 Si (:、 Si02、 BN包覆的效果相比, 用 SiC0、 SiCNO 、 SiCN, SiBCN至少一种和 LiaMbP04复合的复合材料在容量的提高方面效果非常显著, 和 单独用碳材料包覆的 LiaMbP04材料相比,本发明复合材料振实密度的提高效果非常显著。
SiCO, SiCNO 、 SiCN, SiBCN前驱体前期的交联形成的网状结构有利于改善了 LiaMbP04 表面性能,改善其导电性。从充放电曲线看,复合后的复合材料首次充放电曲线变得光滑, 平台变得平坦,充放电极化有明显的降低,从电化学性能看,经过复合改性后的 LiaMbP04, 首次比容量、 首次充放电效率都有较大改善; 而且振实密度也有显著的提高。 由于 SiC0、 SiCN0、 SiCN、 SiBCN在空气中较稳定的特性, 使得改性后的 LiaMbP04储存性能得到较大 的改善。
本发明技术中的 LiaMbP04利用金属粉末和磷酸二氢锂在溶剂中湿磨、 干燥后, 在非 氧化性气氛下后者真空中高温烧结得到。由于使用了密度较大更加廉价的金属粉,本发明 的方法合成的 LiaMbP04具有振实密度大的特性, 而且成本更低。
此外本发明材料比单纯用碳包覆的材料,振实密度有了较大提高,碳包覆的磷酸铁锂 振实密度一般小于 1. lg/cm3, 本发明复合 LiaMbP04振实密度一般为 1. 5 g/cm3以上, 还 可以达到 2. 0 g/cm3以上。
附图说明
图 1实施例 11复合后材料的 XRD图谱;
图 2实施例 11复合后材料的 TEM图谱;
图 3 实施例 11复合后材料能谱分析图;
图 4比较例 1合成的 LiFeP04的 XRD图;
图 5比较例 1合成的 LiFeP04形貌图;
图 6比较例 1 合成的 LiFeP04的首次充放电曲线;
图 7比较例 3 蔗糖包覆的 C/ LiFeP04的首次充放电曲线;
图 8实施例 1 SiCO /LiFeP04的首次充放电曲线;
图 9实施例 4 SiCNO I LiFeP04首次充放电曲线;
图 10实施例 6 SiCO I LiFeP04首次充放电曲线; 图 11实施例 7 SiCN I LiFeP04的首次充放电曲线; 图 12实施例 15 SiBCN I LiFeP04的首次充放电曲线。
具体实施方式
下面结合具体例子对本发明的技术方案进行说明:
为了检测本发明的锂离子电池正极复合材料的物理和电化学性能, 用荷兰 V Pert PRO MPD型 XRD衍射仪进行结构测试; 用场发射扫描电子显微镜 (FESEM, HITACHI, S4800, 加速电压 ΙΟΟΚν) 进行形貌测试;用 Philips F20 进行 TEM测试; 用本领域所属的普通技 术人员均知的方法,将其组装成平板式试验电池进行电化学性能测试,用本发明的锂离子 电池用正极复合材料 85〜92% (重量百分数), 导电剂 (石墨或者炭黑) 4〜8% (重量百分 数), 粘结剂 PVDF (聚偏氟乙烯) 4〜8% (重量百分数), 混合调成浆状, 涂在铝箔的两面 上, 在空气中干燥, 制成电极。 对电极为锂金属片组成试验电池。 电解液为 1M (mol/L) LiPF6/EC+DMC等, EC为碳酸乙烯酯, DMC为碳酸二甲酯。充放电电流密度 0. 1C,充放电上、 下限电压为 2. 0〜4. 2V, 比容量计算方法 C=mA X h/g, 其中 C: 比容量, h: 放电时间, g : 活性物质重量。温度为 25 ± 2°C,用计算机控制恒电流测试仪进行电化学容量和循环测试。 比较例 1 按照 Li: Fe: P=l: 1: 1的比例称取金属铁粉和磷酸二氢锂, 湿磨到浆料粒径小于 1 μ m 后, 加入去离子水, 加入去离子水的体积为浆料体积的 5%, 再球磨 0. 5小时, 抽真空干 燥, 得到前驱体。 将干燥后的前驱体放入高温炉中, 抽真空后通惰性气体氩气, 升温到 650 °C , 保温 10小时, 自然降至小于 10CTC后, 取出产物, 经过研磨得到 LiFeP04, 经过 XRD测试为纯相。在相对 Li+/Li 电位 2. 0到 4. 2V下进行电化学性能测试,其首次放电比 容量 107mAh/g, 首次充放电效率 94. 2%, 振实密度 1. 22g/cm3。 比较例 2 按照 Li : Fe : P=l: 1: 1的比例称取金属铁粉和磷酸二氢锂, 湿磨到浆料粒径 2 μ m后, 加入去离子水, 加入去离子水的体积为浆料体积的 10%, 再球磨 0. 5小时, 抽真空干燥, 将干燥后的前驱体放入高温炉中,抽真空后通惰性气体氮气,升温到 750°C,保温 5小时, 自然冷却降至小于 10CTC后, 取出产物, 经过研磨得到 LiFeP04, 经过 XRD测试为纯相。 在相对 Li+/Li 电位 2. 0到 4. 2V下进行电化学性能测试, 其首次放电比容量 95. 5mAh/g, 首次充放电效率 92. 3%, 振实密度 1. 8g/cm3。 比较例 3 按照蔗糖占总重量的 7%称取蔗糖和比较例 1制备的纯相 LiFeP04,这里所说的总重量 是蔗糖和 LiFeP04的总重量, 加入无水乙醇, 加入无水乙醇的量是固体体积的 2倍, 在行 星球磨机中球磨 3小时后微波干燥, 干燥后放入高温炉中, 先抽真空再通惰性气体氩气, 升温到 70CTC保温 2 小时, 自然降温到小于 10CTC后, 取出产物, 经过研磨后得到 C/LiFeP04, 分析碳含量占总重量的 3wt%, 这里所说的总重量是蔗糖碳化后残余物碳和 LiFeP04的总重量。在相对 Li+/Li 电位 2. 0到 4. 2V下进行电化学性能测试,其放电比容 量 154mAh/g,首次充放电效率 97. 8%, 振实密度 1. 1 g/cm3。 结果可见用蔗糖包覆纯相 LiFeP04后, 材料比容量得到较大提高, 由未包覆的 107 mAh/g提高到 154mAh/g,充放电效率由未包覆的 94. 2%提高到 97. 8%,但是材料的振实密度 却有所降低, 由未包覆的 1. 22 g/cm3降低到 1. lg/cm3。 比较例 4 将正硅酸乙酯用乙醇溶解, 乙醇的加入量为正硅酸乙酯体积的 3 倍, 加入比较例 1 制备的 LiFeP04, 由正硅酸乙酯在相同温度下热解得到热解率计算加入的正硅酸乙酯重 量,使得热解后 Si02占总重量的 5wt%,这里所说的总重量是正硅酸乙酯热解后残余物 Si02 和 LiFeP04的总重量。 搅拌 5小时, 然后 70°C蒸干, 得到前驱体。 将前驱体放入高温炉 中, 先抽真空再通惰性气体氩气, 升温到 70CTC保温 2小时, 自然降温到小于 10CTC后, 取出产物, 经过研磨得到 Si02/ LiFePO4材料。 在相对 Li+/Li 电位 2. 0到 4. 2V下进行电 化学性能测试, 其放电比容量 115mAh/g,首次充放电效率 96%, 振实密度 1. 4 g/cm3。 结果可见用 Si02对 LiFeP04复合后, 其电化学性能有所改善, 放电比容量由未复合 的 107mAh/g提高到复合后的 115mAh/g, 首次充放电效率由未复合的 94. 2%提高到复合后 的 96%, 振实密度由未复合的 1. 22 g/cm3提高到复合后的 1. 4 g/cm3。 但是其电化学比容 量改善不是太明显。 实施例 1 取乙烯基封端的聚甲基苯基硅氧烷 (C2H3)3SiO{CH3(C6¾)SiO}nSi(C2H3)3 n为 150, 放 入氧化铝坩埚中,加入丙酮稀释,所加入丙酮的体积为乙烯基封端的聚甲基苯基硅氧烷体 积的 3倍, 然后将比较例 1方法制备的 LiFeP04加入其中, 按照 SiCO /LiFeP04中 SiCO 占 5wt%加入乙烯基封端的聚甲基苯基硅氧烷, 其中乙烯基封端的聚甲基苯基硅氧烷的加 入量通过相同实验条件下乙烯基封端的聚甲基苯基硅氧烷的热解率来计算。加入后边搅拌 边加热到 400°C, 保持 5小时, 待聚硅氧烷固化后, 形成前驱体。 将含有前驱体的坩埚 放入高温炉中, 抽真空后通惰性气体 N2, 升温到 700°C, 保温 2小时后, 自然冷却到小于 10CTC后, 取出产物, 经过研磨得到 SiCO /LiFeP04复合材料, SiCO占总重量的 5 wt%。 相对 Li+/Li电位 2. 0V到 4. 2V测试电化学性能, 首次放电比容量 158. 2mAh/g, 首次充放 电效率 97. 35%, 振实密度 1. 55g/cm3。 结果可以看出, 本实施例用乙烯基封端的聚甲基苯基硅氧烷对比较例 1 的 LiFeP04 进行复合后形成的复合材料 SiCO /LiFeP04, 其中 SiCO占总重量的 5wt%, 在电化学性能 和振实密度两方面有了显著的改善。 电化学比容量由未复合前的 107mAh/g提高到复合后 的 158. 2mAh/g, 首次充放电效率由未复合前的 94. 2%提高到复合后的 97. 35%, 振实密度 由未复合前的 1. 22g/cm3提高到复合后的 1. 55g/cm3。 其中振实密度明显好于比较例 3用 蔗糖包覆形成的复合材料 C/LiFeP04的效果, 在电化学性能上明显好于比较例 4用 Si02 包覆形成的复合材料 Si02/LiFeP04的效果。 实施例 2 取羟基封端的聚甲基苯基硅氧烷 (OH)3SiO{CH3(C6H5)SiO}nSi(OH)3 n为 50, 放入氧 化铝坩埚中, 加入丙酮稀释, 所加入丙酮的体积为羟基封端的聚甲基苯基硅氧烷体积的 4 倍, 然后将比较例 1的 LiFeP04加入其中, 按照 SiCO /LiFeP04中 SiCO占 7. 5wt%加入羟 基封端的聚甲基苯基硅氧烷,其中羟基封端的聚甲基苯基硅氧烷的的加入量通过相同实验 条件下羟基封端的聚甲基苯基硅氧烷的热解率来计算。边搅拌边加热到 300°C, 保持 1小 时, 待聚硅氧烷固化后, 形成前驱体。将含有前驱体的坩埚放入高温炉中, 抽真空后通惰 性气体氮气,升温到 725°C,保温 2小时后, 自然冷却到小于 10CTC后取出,研磨得到 SiCO /LiFeP04复合材料, SiCO占总重量的 7. 5wt%。 相对 Li+/Li电位 2. 0V到 4. 2V测试电化 学性能, 首次放电比容量 157. 2mAh/g, 首次充放电效率 98%, 振实密度 1. 65g/cm3。 实施例 3 取羟基封端的聚甲基乙氧基硅氧烷 (OH)3SiO{CH3(OC2¾)SiO}nSi(OH)3 n为 150, 放 入氧化铝坩埚中,加入甲苯溶解,所加入甲苯的体积为羟基封端的聚甲基乙氧基硅氧烷体 积的 1. 5倍, 然后将比较例 1的 LiFeP04加入其中, 按照 SiCO /LiFeP04中 SiCO占 3wt% 加入羟基封端的聚甲基乙氧基硅氧烷,其中羟基封端的聚甲基乙氧基硅氧烷的加入量通过 相同实验条件下羟基封端的聚甲基乙氧基硅氧烷的热解率来计算。 边搅拌边加热到 300 V, 保持 2小时, 待聚硅氧烷固化后, 形成前驱体。将含有前驱体的坩埚放入高温炉中, 抽真空后通惰性气体 N2, 升温到 650°C, 保温 5小时后, 自然冷却到小于 10CTC后取出, 研磨得到 SiCO /LiFeP04复合材料, SiCO占总重量的 3wt%。相对 Li+/Li电位 2. 0V到 4. 2V 测试电化学性能,首次放电比容量 154mAh/g,首次充放电效率 98. 0%,振实密度 1. 53g/cm3。 实施例 4 将聚甲基含氢硅氧烷 (CH3)3SiO{CH3(H)SiO}mSi(CH3)3 (m=20), 加入二甲苯, 加入二 甲苯的体积为聚甲基含氢硅氧烷体积的 2 倍, 按照聚甲基含氢硅氧烷和固化剂重量比为 2 : 1加入固化剂二乙烯基苯, 加入几滴催化剂氯铂酸乙醇溶液 (1 mg/100ml乙醇), 搅拌 同时将比较例 1的 LiFeP04加入其中, 按照 SiCNO /LiFeP04中 SiCNO占 7. 5wt。/^B入聚甲 基含氢硅氧烷,其中聚甲基含氢硅氧烷的加入量通过相同实验条件下聚甲基含氢硅氧烷的 热解率来计算。 边搅拌边加热到 120°C, 使得聚甲基含氢硅氧烷和二乙烯基苯交联固化, 形成前驱体。 然后将所得到的前驱体放入高温炉中, 抽真空后通入 NH3, 升温到 350°C, 保温 3小时, 再升温到 800°C, 保温 3小时, 自然降温到小于 10CTC后取出, 研磨得到复 合材料 SiCNO /LiFeP04, SiCNO 占总重量的 7. 5wt%。 经过 XRD测试显示磷酸铁锂结构, 相对 Li+/Li电位 2. 0到 4. 2V测试电化学性能, 首次放电比容量 153. 5mAh/g, 首次充放 电效率 98. 1%, 振实密度 1. 65g/cm3。 实施例 5 聚甲基乙烯基硅氧烷 (CH3)3SiO{C¾(CH=CH2)SiO}nSi(CH3)3 (n=400), 用丙酮溶解, 加入丙酮的体积为聚甲基乙烯基硅氧烷体积的 2倍, 然后加入比较例 1合成的 LiFeP04, 按照 SiCO /LiFeP04中 SiCO占 10wt%加入聚甲基乙烯基硅氧烷,其中聚甲基乙烯基硅氧烷 的加入量通过相同实验条件下聚甲基乙烯基硅氧烷的热解率来计算。边搅拌边加热到 400 °C, 保持 1小时, 待聚甲基乙烯基硅氧烷固化后, 得到前驱体。然后将前驱体放入高温炉 中, 抽真空后通惰性气体 N2, 升温到 750°C, 保温 2小时后, 自然冷却到温度小于 100 °〇后取出, 研磨得到复合材料 SiCO /LiFeP04, SiCO 占总重量的 10wt%。 相对 Li+/Li电 位 2. 0到 4. 2V测试电化学性能,其首次放电比容量 155. 2mAh/g,首次充放电效率 98. 3%, 振实密度 1. 73g/cm3。 实施例 6 将聚甲基含氢硅氧烷 (CH3)3SiO{CH3(H)SiO}mSi(CH3)3 (m=40) 用丙酮稀释, 加入丙 酮的体积为聚甲基含氢硅氧烷体积的 1. 5倍,按照聚甲基含氢硅氧烷和固化剂重量比 2 : 1 加入固化剂二乙烯基苯, 搅拌同时将比较例 2 合成的 LiFeP04加入其中, 按照 SiCO /LiFeP04中 SiCO占 7. 5wt%加入聚甲基含氢硅氧烷,其中聚甲基含氢硅氧烷的加入量通过 相同实验条件下聚甲基含氢硅氧烷的热解率来计算。边搅拌边加热到 150°C, 使得聚甲基 含氢硅氧烷和二乙烯基苯交联固化, 得到前驱体。 然后将所得到的前驱体放入高温炉中, 抽真空后通入惰性气体 N2, 升温到 450°C, 保温 3小时, 再升温到 650°C, 保温 5小时, 自然降温到小于 10CTC后取出, 研磨得到 SiCO /LiFeP04的复合材料, SiCO 占总重量的 7. 5wt%。经过 XRD测试显示磷酸铁锂结构。相对 Li+/Li电位 2. 0到 4. 2V测试电化学性能, 首次放电比容量 148. 3mAh/g, 首次充放电效率 97. 6%, 振实密度 2. 0g/cm3。 实施例 7 将甲基乙烯基聚硅氮烷 (CH3)3Si NH[CH3(C2H3) SiNH]n Si(CH3)3, n=30,溶解在甲苯 中, 加入甲苯的体积为甲基乙烯基聚硅氮烷体积的 2 倍, 加入比较例 1 合成的纯相 LiFeP04, 按照 SiCN /LiFeP04中 SiCN占 3wt%加入上述甲基乙烯基聚硅氮烷,其中上述甲 基乙烯基聚硅氮烷的加入量按通过相同实验条件下上述甲基乙烯基聚硅氮烷的热解率来 计算。 边搅拌边加热使得甲苯挥发, 再加热到 35CTC固化, 得到前驱体。 将前驱体放入高 温炉中, 先抽真空, 再充入惰性气体 N2, 升温到 400°C, 保温 2小时, 再升温到 800°C, 保温 2小时, 自然冷却到小于 10CTC后取出, 研磨后得到 SiCN /LiFeP04复合材料, SiCN 占总重量的 3wt%。 经过 XRD测试显示磷酸铁锂结构。相对 Li+/Li电位 2. 0V到 4. 2V测试 电化学性能, 首次放电比容量 156mAh/g, 首次充放电效率 98. 2%, 振实密度 1. 6g/cm3。 实施例 8 羟基封端的甲基苯基聚硅氮烷 (OH)3Si NH [CH3(C6H5) SiNH]n Si(OH)3, n=150,溶解在 甲苯中,加入甲苯的量为羟基封端的甲基苯基聚硅氮烷量的 3倍,加入比较例 1合成的纯 相 LiFeP04, 按照 SiCN /LiFeP04中 SiCN占 5wt%加入上述羟基封端的甲基苯基聚硅氮烷, 其中上述羟基封端的甲基苯基聚硅氮烷的加入量按通过相同实验条件下上述羟基封端的 甲基苯基聚硅氮烷的热解率来计算。 搅拌加热使得甲苯挥发, 再加热到 35CTC固化, 得到 前驱体。 将前驱体放入高温炉中, 先抽真空, 再充入惰性气体 N2, 升温到 300°C, 保温 2 小时, 再升温到 750°C, 保温 4小时, 自然冷却到小于 10CTC后取出, 研磨后得到 SiCN /LiFeP04复合材料, SiCN 占总重量的 5wt%。经过 XRD测试显示磷酸铁锂结构。相对 Li+/Li 电位 2. 0V到 4. 2V测试电化学性能, 首次放电比容量 157mAh/g, 首次充放电效率 97. 2%, 振实密度 1. 65g/cm3。 实施例 9 羟基封端的甲基乙氧基聚硅氮烷 (OH)3SiNH{C¾(OC2H5)SiNH}nSi(OH)3 n=130,溶解 在甲苯中,加入甲苯的量为羟基封端的甲基乙氧基聚硅氮烷量的 2倍,加入比较例 1合成 的纯相 LiFeP04, 按照 SiCN /LiFeP04中 SiCN占 7. 5wt%加入上述羟基封端的甲基乙氧基 聚硅氮烷,其中上述羟基封端的甲基乙氧基聚硅氮烷的加入量按通过相同实验条件下上述 羟基封端的甲基乙氧基聚硅氮烷的热解率来计算。搅拌加热使得甲苯挥发, 再加热到 350 °C固化, 得到前驱体。 将前驱体放入高温炉中, 先抽真空, 再充入惰性气体 N2, 升温到 400 °C , 保温 2小时, 再升温到 800°C, 保温 2小时, 自然冷却到小于 10CTC后取出, 研磨 后得到 SiCN /LiFeP04复合材料, SiCN 占总重量的 7. 5wt%。 经过 XRD测试显示磷酸铁锂 结构。 相对 Li+/Li电位 2. 0V到 4. 2V测试电化学性能, 首次放电比容量 154mAh/g, 首次 充放电效率 98. 1%, 振实密度 1. 67g/cm3。 实施例 10 取含氨基的羟基封端的聚硅氧烷 (OH)3SiO{CH3[(;C3H6)NH2)]SiO}nSi(;OH)3 n为 100放 入氧化铝坩埚中,加入丙酮溶解,加入丙酮的体积为含氨基的羟基封端的聚硅氧烷体积的 4. 5倍, 然后加入蔗糖和比较例 1的 LiFeP04, 按照 C/ SiCO /LiFeP04中 C 和 SiCO分别 占复合材料的 1
Figure imgf000014_0001
15^%加入蔗糖和含氨基的羟基封端的聚硅氧烷, 其中蔗糖和含氨 基的羟基封端的聚硅氧烷的加入量按照相同实验条件下蔗糖和该含氨基的羟基封端的聚 硅氧烷的热解率来计算。 边搅拌边加热到 200°C, 保持 3小时, 待聚硅氧烷固化后, 得到 前驱体。 将含有前驱体的坩埚放入高温炉中, 抽真空后通惰性气体 N2, 升温到 675°C, 保温 4小时后, 自然冷却到 10CTC后取出, 研磨得到复合材料 C/ SiCO /LiFeP04, 蔗糖碳 化分解后残余的碳占总重量的 1 wt%, SiCO占总重量的 15 wt%, 所说的总重量为蔗糖碳 化分解后残余的碳、含氨基的羟基封端的聚硅氧烷热解后的 SiCO和 LiFeP04的重量之和。 经过 XRD测试显示磷酸铁锂结构。 相对 Li+/Li电位 2. 0V到 4. 2V测试电化学性能, 首次 放电比容量 160. 2mAh/g, 首次充放电效率为 98. 35%, 振实密度 1. 5g/cm3。 实施例 11 取热固性的硅树脂 -聚甲基苯基硅氧烷 (CH3)3SiO{CH3(C6¾)SiO}nSi(CH3)3 n 为 200 放入氧化铝坩埚中, 加入二甲苯溶解, 加入二甲苯的体积为热固性硅树脂体积的 3. 5倍, 然后加入比较例 1的 LiFeP04,按照 SiCO /LiFeP04中 SiCO占复合材料的 20 %加入热固 性的硅树脂,其中热固性的硅树脂的加入量按照相同实验条件下该热固性的硅树脂热解率 来计算。 边搅拌边加热到 210°C, 保持 3小时, 待该硅树脂固化后, 得到前驱体。 将含有 前驱体的坩埚放入高温炉中, 抽真空后通惰性气体 N2, 升温到 825°C, 保温 4小时后, 自然冷却到温度小于 10CTC后取出, 研磨得到复合材料 SiCO /LiFeP04, SiCO占总重量 的 20 wt%。 经过 XRD测试显示磷酸铁锂结构。 相对 Li+/Li电位 2. 0V到 4. 2V测试电化学 性能, 首次放电比容量 159. 3mAh/g, 首次充放电效率为 98. 8%, 振实密度 1. 67g/cm3。 实施例 12 取侧链含羧基的聚硅氧烷 (C¾)3SiO{[ (CH2) m(COOH)](C6H5)SiO}nSi(CH3)3 n为 150 放入氧化铝坩埚中, 加入丙酮稀释, 加入丙酮的体积为侧链含羧基的聚硅氧烷体积的 1. 5 倍, 然后加入比较例 1的 LiFeP04, 按照 SiCO /LiFeP04中 SiCO占复合材料的 2wt%加入 侧链含羧基的聚硅氧烷,其中侧链含羧基的聚硅氧烷的加入量按照相同实验条件下该侧链 含羧基的聚硅氧烷的热解率来计算。 边搅拌边加热到 360°C, 保持 6小时, 待聚硅氧烷固 化后, 得到前驱体。 将含有前驱体的坩埚放入高温炉中, 抽真空后通惰性气体 N2, 升温 到 600°C, 保温 10小时后, 自然冷却到 10CTC后取出, 研磨得到复合材料 SiCO /LiFeP04, SiCO占总重量的 2wt%。经过 XRD测试显示磷酸铁锂结构。相对 Li+/Li电位 2. 0V到 4. 2V 测试电化学性能, 首次放电比容量 155. 2mAh/g, 首次充放电效率为 98. 4%, 振实密度 1. 5g/ cm3。 实施例 13 取羟基封端的聚对 -氟苯基丁基硅氧烷 COH)3SiO {C4H9(C6H4F)SiO}nSi(OH)3 n为 80放 入氧化铝坩埚中, 加入丙酮溶解, 加入丙酮的体积为羟基封端的聚对 -氟苯基甲基硅氧烷 体积的 2. 5倍, 然后加入比较例 1的 LiFeP04, 按照 SiCO /LiFeP04中 SiCO分别占复合 材料的 3^%加入羟基封端的聚对-氟苯基丁基硅氧烷, 其中羟基封端的聚对 -氟苯基丁基 硅氧烷的加入量按照相同实验条件下羟基封端的聚对 -氟苯基丁基硅氧烷的热解率来计 算。 边搅拌边加热到 300°C, 保持 3小时, 待羟基封端的聚对-氟苯基丁基硅氧烷固化后, 得到前驱体。 将含有前驱体的坩埚放入高温炉中, 抽真空后通惰性气体 N2, 升温到 675 V, 保温 4小时后, 自然冷却到 10CTC后取出, 研磨得到复合材料 SiCO /LiFeP04, SiCO 占总重量的 3 wt%。 经过 XRD测试显示磷酸铁锂结构。 相对 Li+/Li电位 2. 0V到 4. 2V测 试电化学性能, 首次放电比容量 159. 2mAh/g, 首次充放电效率为 98. 25%, 振实密度 1. 65g/ cm3。 实施例 14 取端羟基聚二甲基硅氧烷 OH(C¾)2SiO{ (CH3)2SiO}nSi(CH)2OH , n为 200放入氧化 铝坩埚中, 加入固化剂 (C¾) 3Si{OSiH(CH3)}36 OSi (CH3) 3, 固化剂和端羟基聚甲基硅 氧烷的比例为 1 : 5, 加入催化剂二月桂酸二丁基锡, 催化剂的加入量占总重量的 0. 8%, 加 入溶剂二甲苯,加入二甲苯的体积为端羟基聚二甲基硅氧烷和固化剂体积的 1. 5倍,然后 加入比较例 1的 LiFeP04, 按照 SiCO /LiFeP04中 SiCO分别占复合材料的 6 %加入端羟 基聚二甲基硅氧烷和固化剂,其中端羟基聚二甲基硅氧烷和固化剂的加入量按照相同实验 条件下端羟基聚二甲基硅氧烷的热解率来计算。 边搅拌边加热到 70°C, 保持 3小时, 待 端羟基聚二甲基硅氧烷固化后, 得到前驱体。将含有前驱体的坩埚放入高温炉中, 抽真空 后通惰性气体 N2, 升温到 650°C, 保温 8小时后, 自然冷却到小于 10CTC后取出, 研磨得 到复合材料 SiCO /LiFeP04, SiCO占总重量的 6 wt%。 经过 XRD测试显示磷酸铁锂结构。 相对 Li+/Li电位 2. 0V到 4. 2V测试电化学性能, 首次放电比容量 152. 2mAh/g, 首次充放 电效率为 98. 1%, 振实密度 1. 61g/cm3。 实施例 15 聚硼硅氮烷分子结构式如下图所示, 其中 m为 40, n为 120, p为 40,用甲苯溶解聚硼 硅氮烷, 然后将比较例 1的 LiFeP04加入其中, 按照 SiBCN /LiFeP04中 SiBCN占 5 %加 入上述聚硼硅氮烷,其中上述聚硼硅氮烷的加入量通过相同实验条件下上述聚硼硅氮烷的 热解率来计算。 加热到 25CTC保温 2 小时, 搅拌固化后, 放入高温炉中, 抽真空后通 N2 气, 升温到 850°C,保温 1小时, 自然降温到小于 10CTC后取出,研磨得到 SiBCN/LiFeP04 复合材料, SiBCN占总重量的 5 wt%。 材料经过 XRD检测显示磷酸铁锂结构。 电化学性能 测试,相对 Li+/Li电位 2. 0V到 4. 2V首次放电比容量为 155mAh/g,首次充放电效率 97. 9%, 振实密度 1. 7g/cm3
Figure imgf000016_0001
结果可以看出, 本实施例用上述聚硼硅氮烷对比较例 1的 LiFeP04进行复合后形成 的复合材料 SiBCO /LiFeP04, 其中 SiBCO占总重量的 5wt%, 在电化学性能和振实密度两 方面有了显著的改善。 电化学比容量由未复合前的 107mAh/g提高到复合后的 155mAh/g, 首次充放电效率由未复合前的 94. 2%提高到复合后的 97. 9%, 振实密度由未复合前的 1. 22g/cm3提高到复合后的 1. 7g/cm3。 其中振实密度明显好于比较例 3用蔗糖包覆形成的 复合材料 C/LiFeP04的效果, 在电化学性能上明显好于比较例 4用 Si02包覆形成的复合 材料 Si02/LiFeP04的效果。
表 1实施例材料电化学性能和振实密度
Figure imgf000017_0001

Claims

、 一种锂离子电池用的正极复合材料, 其特征是由 SiCO、 SiCNO SiCN、 SiBCN中 至少一种与 LiaMbP04复合, 其中 0.95 a L l, 0.95 b l. 1, M为 Fe Co Ni Mn中至少一种, 所述复合材料中 SiC0、 SiCNO SiCN、 SiBCN中至少一种的含 量占复合材料总重量的 1 -20wt%; LiaMbP04占复合材料总重量的 80_99wt% 、 根据权利要求 1所述的复合材料, 其特征是 SiCO或 SiCNO是由聚硅氧烷热解得 至 lj; SiCN是由聚硅氮烷热解得到; SiBCN是由聚硼硅氮烷热解得到。 、 根据权利要求 2所述的复合材料, 其特征是所述的聚硅氧烷是以重复的 Si-0键 为主链, 侧链上硅直接与烃基、 羧基、 羟基、 氨基、 烷氧基、 链烯基氧基、 酰氧 基、 氢、 卤素以及含有羟基、 羧基、 氨基、 氢、 链烯基、 卤素的烃基中的一种或几 种相连所组成的聚合物, 聚合度为 2〜2000。 、 根据权利要求 3所述的复合材料, 其特征是所述的聚硅氧烷的聚合度为 5〜500。 、 根据权利要求 3或 4所述的复合材料,其特征是所述的烃基是烷基、链烯基、炔基、 方基、 方院基 、 根据权利要求 3、 4、 5中的任意一项所述的复合材料, 其特征是所述的聚硅氧烷是 分子中含有 Si-H键的聚硅氧烷。 、 根据权利要求 3、 4、 5中的任意一项所述的复合材料, 其特征是所述的聚硅氧烷是 分子中含有 Si-OH键的聚硅氧烷。 、 根据权利要求 3、 4、 5中的任意一项所述的复合材料, 其特征是所述的聚硅氧烷是 分子中含有不饱和烃或者不饱和烃的衍生物的聚硅氧烷。 、 根据权利要求 3、 4、 5中的任意一项所述的复合材料, 其特征是所述的聚硅氧烷是 分子中含有苯基的聚硅氧烷。0、 根据权利要求 3、 4、 5中的任意一项所述的复合材料, 其特征是所述的聚硅氧烷是 热固化的硅树脂。
1、 根据权利要求 3、 4、 5、 6、 7、 8、 9、 10中的任意一项所述的复合材料, 其特征是 所述的聚硅氧烷是液态的聚硅氧烷或者能够用溶剂溶解的聚硅氧烷或者能够熔融 的聚硅氧烷。
、 根据权利要求 2所述的复合材料, 其特征是所述的聚硅氮烷是以重复的 Si-N键 为主链, 侧链上硅直接与烃基、 羧基、 羟基、 氨基、 烷氧基、 链烯基氧基、 酰氧 基、 氢、 卤素以及含有羟基、 羧基、 氨基、 氢、 链烯基、 卤素的烃基中的一种或几 种相连所组成的聚合物, 聚合度为 2〜2000。 、 根据权利要求 12所述的复合材料, 其特征是所述的聚硅氮烷的聚合度为 5〜500。 、 根据权利要求 12或 13所述的复合材料, 其特征是所述的烃基是烷基、链烯基、炔 基、 方基、 方院基。
、 根据权利要求 12、 13、 14中的任意一项所述的复合材料, 其特征是所述的聚硅氮 烷是分子中含有 Si-H键的聚硅氮烷。
、 根据权利要求 12、 13、 14中的任意一项所述的复合材料, 其特征是所述的聚硅氮 烷是分子中含有 Si-OH键的聚硅氮烷。
、 根据权利要求 12、 13、 14中的任意一项所述的复合材料, 其特征是所述的聚硅氮 烷是分子中含有不饱和烃或者不饱和烃的衍生物的聚硅氮烷。
、 根据权利要求 12、 13、 14中的任意一项所述的复合材料, 其特征是所述的聚硅氮 烷是分子中含有苯基的聚硅氮烷。
、 根据权利要求 12、 13、 14、 15、 16、 17、 18中的任意一项所述的复合材料, 其特 征是所述的聚硅氮烷是液态的聚硅氮烷或者能够用溶剂溶解的聚硅氮烷或者能够 熔融的聚硅氮烷。
、 根据权利要求 2所述的复合材料, 其特征是所述的聚硼硅氮烷是以重复含有一 C一 Si— N— B—或者一 B— C一 Si— N—或者一 C一 B— Si— N—作为主链, 侧链上硅直 接与烃基、 羧基、 羟基、 氨基、 烷氧基、 链烯基氧基、 酰氧基、 氢、 ¾素以及含 有羟基、 羧基、 氨基、 氢、 链烯基、 卤素的烃基中的一种或几种相连所组成的聚 合物, 聚合度为 2〜2000。
、 根据权利要求 20所述的复合材料,其特征是所述的聚硼硅氮烷的聚合度为 5〜500。 、 根据权利要求 20或 21所述的复合材料, 其特征是所述的烃基是烷基、链烯基、炔 基、 方基、 方院基。
、 根据权利要求 20、 21、 22中的任意一项所述的复合材料, 其特征是所述的聚硼硅 氮烷是液态的聚硼硅氮烷或者能够用溶剂溶解的聚硼硅氮烷或者能够熔融的聚硼 硅氮烷。
、 一种制备权利要求 1所述复合材料的方法, 该方法包括下述步骤:
( 1 ) 将聚硅氧烷、 聚硅氮烷、 聚硼硅氮烷中至少一种溶解在有机溶剂中, 有机溶剂 的加入量按照加入的聚合物和溶剂体积比为 1 : 1到 1 : 5加入, 聚硅氧烷、聚硅 氮烷、聚硼硅氮烷的中至少一种加入量按照相同实验条件下的热解率来计算使 得热解后的正极复合材料中 SiC0、 SiCN0、 SiCN、 SiBCN中至少一种含量占 复合材料总重量的 l_20wt%, 然后将 LiaMbP04加入其中, LiaMbP04的加入量 按照相同实验条件下的热解率来计算使得热解后的正极复合材料中 LiaMbP04 含量占复合材料总重量的 80_99wt%, 搅拌均勾;
(2) 固化形成交联产物;
( 3 ) 在非氧化气氛下或真空中, 将该固化产物烧结, 得到 SiCO、 SiCNO 、 SiCN、 SiBCN中至少一种与 LiaMbP04复合的复合材料。
、 根据权利要求 24所述的方法, 其特征是, 所述的有机溶剂为丙酮、 甲苯、 二甲苯、 乙醇、 乙醚、正丙醇、异丙醇、正丁醇、 乙腈、 乙醇胺、 四氢呋喃、 DMF、氯仿、 吡 啶、 N-甲基吡咯烷酮中至少一种。
、 据权利要求 24所述的方法, 其特征是, 所述的固化为加热固化、 加入固化剂后再 加热固化、 紫外光固化中至少一种, 其中, 在加热固化或加固化剂加热固化中, 固 化温度为 20°C〜400°C。
、 根据权利要求 24所述的方法, 其特征是, 所述的步骤③的烧结过程中, 所述的烧 结条件是 300-500°C保温 0-5小时, 然后加热到 500〜850°C, 保温 1-15小时。 、 根据权利要求 27所述的方法, 其特征是, 所述的烧结条件是 300-500°C保温 0-5 小时, 然后加热到 600〜750°C, 保温 1-10小时。
、 根据权利要求 24所述的方法,其特征是,所述的非氧化性气氛为氩气、氮气、 NH3、 H2中至少一种。
、 根据权利要求 24所述的方法, 其特征是, 在将聚硅氧烷、 聚硅氮烷、 聚硼硅氮烷 中至少一种溶解在有机溶剂中之后, 在 LiaMbP04加入之前, 再加入碳或者碳前驱 体, 碳或者碳前驱体碳化后的残余碳占复合材料总重量的 l〜20wt%。
、 根据权利要求 30所述的方法, 其特征是, 所述的碳或者碳前驱体为石墨、 乙炔黑、 蔗糖、 葡萄糖、 果糖、 酚醛树酯中的至少一种。
、 根据权利要求 24所述的方法, 其特征是所述的 LiaMbP04通过金属 M粉和磷酸二 氢锂采用固相法制备。
、 根据权利要求 32所述的方法,其特征是,按权利要 1所述的 LiaMbP04的分子表达 式加入金属 M粉和磷酸二氢锂, 加入溶剂进行湿磨, 加入溶剂的量按照固液体积 比 1 : 1到 1 :5加入, 湿磨到浆料粒度小于 2 μ ηι后, 加入去离子水, 去离子水加入 体积为浆料体积的 5%_50%。 干燥, 得到前驱体, 放入高温炉中, 在非氧化气氛下 或真空中加热到 300-500°C, 保温 0-10小时, 再升温到 600-850°C, 保温 2-24小 时, 自然降温, 得到纯相 LiaMbP04
、 根据权利要求 33所述的方法, 其特征是所述的溶剂为乙醇、 丙酮、 正丙醇、 正丁 醇、 乙醇胺、 异丙醇中的一种。
、 根据权利要求 33所述的方法, 其特征是所述加入去离子水为边加边搅拌, 加完水 后再球磨 0.5〜1小时。
、 根据权利要求 33所述的方法, 其特征是, 所述的非氧化性气氛包括氩气、 氮气、 H2中至少一种或者混合物。
、 根据权利要求 33所述的方法, 其特征在于所述的 M粉为还原法制备的粉末、 电解 法制备的粉末或羰基法制备的粉末, M粉粒径 500nm-10 μ m。
PCT/CN2011/084266 2011-11-30 2011-12-20 锂离子电池用的正极复合材料及其制备方法 WO2013078737A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/361,328 US9362566B2 (en) 2011-11-30 2011-12-20 Positive composite material for lithium ion batteries and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110391205.3 2011-11-30
CN201110391205.3A CN103137968B (zh) 2011-11-30 2011-11-30 锂离子电池用的正极复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2013078737A1 true WO2013078737A1 (zh) 2013-06-06

Family

ID=48497489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084266 WO2013078737A1 (zh) 2011-11-30 2011-12-20 锂离子电池用的正极复合材料及其制备方法

Country Status (3)

Country Link
US (1) US9362566B2 (zh)
CN (1) CN103137968B (zh)
WO (1) WO2013078737A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101973047B1 (ko) * 2011-11-08 2019-04-29 삼성에스디아이 주식회사 복합양극활물질, 이를 포함하는 양극 및 리튬전지, 및 이의 제조방법
WO2014098070A1 (ja) * 2012-12-19 2014-06-26 Dic株式会社 非水性二次電池負極用活物質、及び非水性二次電池
CN103500814B (zh) * 2013-09-17 2015-08-26 天津师范大学 多孔SiCN-HF锂离子电池负极材料的制备方法与应用
CN103979540B (zh) * 2014-05-28 2016-06-01 厦门大学 一种SiCO微米级草莓状陶瓷球的制备方法
CN103979541B (zh) * 2014-05-28 2016-06-01 厦门大学 一种SiCO微米级双四面体陶瓷的制备方法
CN105514488B (zh) 2016-01-19 2018-11-02 宁德新能源科技有限公司 一种粘结剂及其锂离子电池
CN108232154A (zh) * 2017-12-30 2018-06-29 国联汽车动力电池研究院有限责任公司 一种锂离子电池复合正极材料及其制备方法和锂离子电池
KR102207529B1 (ko) 2018-03-14 2021-01-26 주식회사 엘지화학 비정질 실리콘-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN111453737B (zh) * 2019-01-22 2021-08-03 成都博达爱福科技有限公司 一种由mq硅树脂制备氧化亚硅的方法
CN111106350A (zh) * 2019-10-31 2020-05-05 合肥国轩高科动力能源有限公司 一种提高锂离子电池正极材料导电性以及稳定性的方法
CN111509201A (zh) * 2020-03-20 2020-08-07 合肥国轩高科动力能源有限公司 一种低直流内阻正极浆料的制备方法
CN112382761B (zh) * 2020-10-30 2021-11-12 东莞东阳光科研发有限公司 一种SiO2包覆的三元正极材料及其制备方法
CN112310382A (zh) * 2020-11-23 2021-02-02 山东硅纳新材料科技有限公司 一种SiCO包覆Si制备的SiCO-Si微球及其制备方法
CN117457902A (zh) * 2023-12-25 2024-01-26 宁波容百新能源科技股份有限公司 一种普鲁士蓝类正极材料及其制备方法、电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631106A (en) * 1996-06-11 1997-05-20 Dow Corning Corporation Electrodes for lithium ion batteries using polysilazanes ceramic with lithium
US5824280A (en) * 1996-06-11 1998-10-20 Dow Corning Corporation Electrodes for lithium ion batteries using polysiloxanes
CN101047244A (zh) * 2006-03-27 2007-10-03 信越化学工业株式会社 SiCO-Li复合材料、制备方法和非水电解质二次电池负电极材料
CN101964411A (zh) * 2010-08-25 2011-02-02 宁波金和新材料股份有限公司 LiFePO4复合型正极材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658863B2 (en) * 2004-07-30 2010-02-09 Shin-Etsu Chemical Co., Ltd. Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
CN100559637C (zh) * 2004-11-02 2009-11-11 A123系统公司 制造复合电极材料的方法
US7781100B2 (en) * 2005-05-10 2010-08-24 Advanced Lithium Electrochemistry Co., Ltd Cathode material for manufacturing rechargeable battery
GB0713898D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
CN101591012B (zh) * 2008-05-27 2012-06-13 北京有色金属研究总院 一种用于锂离子电池正极材料磷酸铁锂的制备方法
JP2010097843A (ja) * 2008-10-17 2010-04-30 Panasonic Corp リチウムイオン二次電池
CN103545516A (zh) * 2013-10-30 2014-01-29 合肥恒能新能源科技有限公司 一种锂电池用磷酸铁锂正极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631106A (en) * 1996-06-11 1997-05-20 Dow Corning Corporation Electrodes for lithium ion batteries using polysilazanes ceramic with lithium
US5824280A (en) * 1996-06-11 1998-10-20 Dow Corning Corporation Electrodes for lithium ion batteries using polysiloxanes
CN101047244A (zh) * 2006-03-27 2007-10-03 信越化学工业株式会社 SiCO-Li复合材料、制备方法和非水电解质二次电池负电极材料
CN101964411A (zh) * 2010-08-25 2011-02-02 宁波金和新材料股份有限公司 LiFePO4复合型正极材料及其制备方法

Also Published As

Publication number Publication date
CN103137968B (zh) 2015-06-10
CN103137968A (zh) 2013-06-05
US9362566B2 (en) 2016-06-07
US20140346410A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2013078737A1 (zh) 锂离子电池用的正极复合材料及其制备方法
CN112018367B (zh) 用于电池的负极活性材料及其制备方法、电池负极、电池
JP5122272B2 (ja) アノード活物質、その製造方法及びこれを採用したアノードとリチウム電池
CN103137967B (zh) 一种锂离子电池正极复合材料及其制备方法
KR102237829B1 (ko) 리튬 이차 전지용 음극재, 그 제조방법, 이를 음극으로 포함하는 리튬 이차 전지
CN110350196B (zh) 一种复合粘结剂、硅基负极片及其制备方法
CN110620224A (zh) 用于锂电池的负极材料及其制备方法和锂电池
JP2013037950A (ja) 複合正極活物質、全固体電池、および複合正極活物質の製造方法
TWI766129B (zh) 負極活性物質及其製造方法
CN113506861B (zh) 一种锂离子电池硅基复合负极材料及其制备方法
CN111463419B (zh) 一种硅基@钛铌氧化物核壳结构的负极材料及其制备方法
KR101705234B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP2014107013A (ja) ケイ素含有複合材料
Batmaz et al. Highly durable 3D conductive matrixed silicon anode for lithium-ion batteries
EP3442060A1 (en) Method for producing negative electrode active material for lithium ion secondary batteries
CN109167048B (zh) 钛、氮共掺杂的碳包覆氧化亚硅的材料及其制法与应用
WO2020067609A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
CN104145357B (zh) Si/C复合物及其制备方法、以及包含该Si/C复合物的锂二次电池用负极活性物质
CN107026261B (zh) 一种锡钴合金嵌入碳纳米复合材料的制备与应用
CN104659341A (zh) 一种锂离子电池用的复合负极材料及其制造方法
CN112490585A (zh) 一种用于锂金属电池的陶瓷隔膜及其制备方法
CN111668492A (zh) 一种锂金属负极集流体及其制备方法、复合负极和锂金属二次电池
WO2023184370A1 (zh) 正极活性材料、其制备方法以及包含其的正极极片、二次电池及用电装置
CN115498165A (zh) 一种黑磷基复合电极及其制备方法与应用
KR100817009B1 (ko) 리튬 이차전지용 음극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14361328

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876447

Country of ref document: EP

Kind code of ref document: A1