WO2013076909A1 - 電気部品用樹脂、半導体装置、及び配線基板 - Google Patents

電気部品用樹脂、半導体装置、及び配線基板 Download PDF

Info

Publication number
WO2013076909A1
WO2013076909A1 PCT/JP2012/006652 JP2012006652W WO2013076909A1 WO 2013076909 A1 WO2013076909 A1 WO 2013076909A1 JP 2012006652 W JP2012006652 W JP 2012006652W WO 2013076909 A1 WO2013076909 A1 WO 2013076909A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
phase change
change material
semiconductor device
filler
Prior art date
Application number
PCT/JP2012/006652
Other languages
English (en)
French (fr)
Inventor
南尾 匡紀
宏樹 池内
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/994,253 priority Critical patent/US9265144B2/en
Priority to CN201280006993.2A priority patent/CN103339722B/zh
Priority to JP2013523398A priority patent/JP5591405B2/ja
Priority to EP12851940.2A priority patent/EP2784808B8/en
Publication of WO2013076909A1 publication Critical patent/WO2013076909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • H01L23/4275Cooling by change of state, e.g. use of heat pipes by melting or evaporation of solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0256Electrical insulation details, e.g. around high voltage areas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0227Insulating particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0376Flush conductors, i.e. flush with the surface of the printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0723Shielding provided by an inner layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/1056Metal over component, i.e. metal plate over component mounted on or embedded in PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10969Metallic case or integral heatsink of component electrically connected to a pad on PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components

Definitions

  • the present invention relates to a resin for electrical parts, a semiconductor device in which a semiconductor element is sealed with a resin, and a wiring board.
  • inverter control devices are required to be smaller and lighter.
  • a resin-encapsulated semiconductor device mounted inside an inverter control device has a configuration aiming for a reduction in size and weight.
  • a resin-sealed semiconductor device incorporating a power semiconductor element or a wiring board on which an electrical component such as a semiconductor device is mounted is required to have a high breakdown voltage between adjacent electrodes or to improve heat dissipation performance.
  • Patent Document 1 In the resin-encapsulated semiconductor device, the heat dissipation performance from the chip to the upper surface of the package is limited by the thermal conductivity of the resin used for encapsulation. Therefore, in Patent Document 1, as shown in FIG. 11, a metal case 33 that covers the chip 31 is attached to the substrate 32, and the inside of the case 33 is filled with the refrigerant 34. In the resin-encapsulated semiconductor device of Patent Document 1, heat generated from the chip 31 is transmitted to the case 33 by the thermal convection of the refrigerant 34, so that the thermal conductivity to the outside is higher than that of the conventional resin-encapsulated semiconductor device. Can be increased.
  • FIG. 12 is a schematic cross-sectional view of a semiconductor device 1001 disclosed in Patent Document 2.
  • the semiconductor device 1001 includes a heat sink 1003, a substrate 1005, and an element 1007.
  • the element 1007 mounted on the substrate 1005 is sealed with a sealing material 1013.
  • the sealing material 1013 contains a phase change material 1103 in the form of microcapsules.
  • an epoxy resin is disclosed.
  • a heat conductive material 1009 is filled between the element 1007 and the sealing material 1013.
  • the element 1007 and the sealing material 1013 are thermally coupled by a heat conductive material 1009.
  • the filling process of the refrigerant 34 into the case 33 may be complicated.
  • the fluorine-type inert liquid or ethanol with a high dielectric constant is used as the refrigerant
  • the semiconductor device of Patent Document 2 does not take into account the withstand voltage, it is difficult to realize a high withstand voltage.
  • An object of the present invention is to provide a resin for an electrical component, a semiconductor device, and a wiring board that have good heat dissipation performance and can realize a high breakdown voltage.
  • the resin for electrical parts of the present invention is configured by mixing a filler into an electrically insulating resin, and the filler absorbs heat and changes in phase due to phase change. It is characterized in that it is formed by encapsulating a variable substance in an electrically insulating capsule.
  • a semiconductor device of the present invention is characterized in that a semiconductor element is sealed with the resin for electrical parts.
  • the wiring board of the present invention is characterized in that a conductor pattern is formed on a base substrate made of the resin for electric parts.
  • another wiring board includes a layer in which an electrical component or a conductor pattern is formed directly or via an intermediate layer in the electrical component resin.
  • An electrical circuit is constructed.
  • the present invention it is possible to provide a resin for electric parts, a semiconductor device, and a wiring board that have good heat dissipation performance and can achieve high breakdown voltage.
  • FIG. 1 shows a first semiconductor device according to the first embodiment.
  • the first semiconductor device in FIG. 1 is a resin-encapsulated semiconductor device, and is an example of a structure using an electrically insulating resin for electrical components as a sealing resin.
  • the power element T1 is fixed to the first lead frame 1, and the control element T2 is fixed to the second lead frame 2.
  • the first and second lead frames 1 and 2 are fixed to the upper surface of the heat sink 3 via insulating sheets 5a and 5b.
  • the power element T1 and the control element T2 are examples of semiconductor elements.
  • the insulating sheets 5a and 5b are made of, for example, a heat conductive electric insulating material, and have a three-layer structure in which an electric insulating layer is sandwiched between a plurality of adhesive layers.
  • the exterior body 4 is intended to integrate the first lead frame 1 and the second lead frame 2 and to protect the power element T1 and the control element T2.
  • the exterior body 4 is composed of a first resin 6 which is an example of a thermosetting resin such as epoxy.
  • the first resin 6 is mixed with a filler 7 which is a feature of the present invention.
  • the filling rate of the filler 7 in the first resin 6 of the first embodiment is set to 20% or more and 80% or less depending on the heat absorption or insulation characteristics described later, the material characteristics of the first resin 6, and the like.
  • the resin for sealing for example, the first resin 6
  • the filler 7 is configured by enclosing a phase change material 8 that changes the phase by absorbing the surrounding heat in an electrically insulating capsule 9.
  • Fig.2 (a) shows the expanded sectional view of the filler 7 of a normal temperature state. In the normal temperature state shown in FIG. 2 (a), the state of the phase change material 8 is solid.
  • FIG. 2B shows the filler 7 in a state of absorbing heat generated from the power element T1 and the like. In the state of absorbing heat shown in FIG. 2 (b), the state of the phase change material 8 is liquid.
  • the filler 7 is configured by injecting erythritol as a phase change material 8 into a capsule 9 made of silica (SiO 2 ).
  • the capsule 9 having a particle size of 60 ⁇ m is used.
  • capsules 9 having a particle diameter of 2 ⁇ m or more and 100 ⁇ m or less can be used.
  • the capsule 9 has a shell thickness of 0.1 ⁇ m or more and 20 ⁇ m or less.
  • erythritol having a volume 60% of the volume of the capsule 9 is used as the phase change material 8 in the capsule 9.
  • the volume of erythritol as the phase change material 8 is preferably 30% or more and 70% or less with respect to the volume of the capsule 9.
  • a gas layer 10 As the gas layer 10, various inert gases and air can be used. In this Embodiment 1, air was used for the gas layer 10 as what has high insulation.
  • Erythritol is a solid as shown in FIG. 2 (a) in the normal temperature state, but expands by changing to a liquid state at a melting point of 118 ° C.
  • 118 degreeC which is a melting point of the erythritol which is an example of the phase change substance 8 is lower than the heat resistant temperature 125 degreeC of the power element T1. That is, in the first embodiment, the phase change material 8 having a melting point lower than the heat resistant temperature of the power element T1 is used.
  • the melting point of the phase change material 8 is configured to be lower than the heat resistance temperature of the power element T1 as described above, so that the phase change material 8 absorbs heat and reaches the first heat resistance temperature or higher. The possibility that the temperature of the semiconductor device rises is reduced.
  • the capsule 9 is configured to have a strength that does not rupture even by melting and expansion of the phase change material 8 so that the phase change material 8 does not flow outside.
  • FIG. 3 is a temperature characteristic diagram of heat absorption and heat dissipation accompanying heat generation of the semiconductor element according to the first embodiment of the present invention.
  • FIG. 9 is an enlarged cross-sectional view of a conventional semiconductor device, and
  • FIG. 10 is a temperature characteristic diagram of heat absorption and heat dissipation accompanying heat generation of the semiconductor element of the conventional example.
  • the first semiconductor device of the first embodiment uses the first resin 6 mixed with the filler 7. Therefore, in the first semiconductor device of the first embodiment, when the power element T1 generates heat and the temperature of the first resin 6 rises, the temperature rises as shown by the solid line in FIG. 3 and then the melting point 118 of erythritol. When the temperature rises to ° C, the temperature rise stops. This is because the phase change material 8 (erythritol) melts and changes in phase from a solid to a liquid, and the heat of fusion is absorbed by the phase change material 8 along with this phase change, and the gradient of the temperature rise is the melting of Eristoel. This is because it rapidly decreases near the point.
  • the phase change material 8 erythritol
  • the first semiconductor device according to the first embodiment exhibits the characteristics as shown in FIG. 3 and can delay the time to reach the temperature peak exceeding the heat resistance temperature of the power element T1. That is, the first semiconductor device of the present invention can improve the withstand voltage as well as good heat dissipation characteristics by kneading the microcapsules encapsulating the phase change material into a desired resin. Specifically, the good heat dissipation characteristic is to develop an endothermic action when the first semiconductor device has a sharp temperature rise. Further, the improvement of the withstand voltage is to prevent the concentration of the space electric field and to lower the dielectric constant against the voltage increase which becomes a problem during the instantaneous driving of the first semiconductor device.
  • “Section H” is a heat generation section due to power loss
  • “Section R” is a heat dissipation section in which the temperature increase stops due to heat generation and the temperature decreases.
  • “section H1”, which is a part of section H, is a section where the temperature rise is stopped due to heat absorption due to the phase change of the phase change material 8.
  • “section H2”, which is a part of the section H is a section in which the temperature of the first semiconductor device is rising without being able to absorb heat by the phase change material 8.
  • the relationship between the “section H1” and the “section H2” depends on the amount of the phase change material 8 in the filler 7. As the amount of the phase change material 8 increases, the “section H1” becomes longer.
  • the phantom line (two-dot chain line) of FIG. 3 shows the temperature rise change in the case of the conventional example shown in FIG. That is, the phantom line in FIG. 3 represents the temperature rise change of the comparative example when the first resin in which the filler 7 is not mixed is used.
  • the first resin 6 of the first embodiment it is possible to prevent the exterior body 4 from reaching a temperature peak and improve the reliability associated with the temperature rise of the semiconductor device. it can.
  • the first resin 6 according to the first embodiment can alleviate the temperature effect at the time of system back electromotive force, and has the same external dimensions as conventional ones. Even the inverter of the motor can improve the driving performance of the motor.
  • the first resin 6 mixed with the filler 7 of the present invention has an excellent withstand voltage during heat generation.
  • the conventional semiconductor device shown in FIG. 9 is compared as a comparative example.
  • the entire thermosetting resin 26 of the exterior body 24 is epoxy.
  • the dielectric constant of epoxy is “4”
  • the dielectric constant of capsule 9 (silica) of filler 7 is “2.5”
  • the dielectric constant of phase change material 8 is “2.5”. 1.5 ". Therefore, in the semiconductor device of the first embodiment, the dielectric constant of the filler 7 is lower than the dielectric constant of the epoxy, and an improvement in dielectric strength between the electrodes in the semiconductor device can be realized. Compared with the case where ethanol is used as the refrigerant 34 in the semiconductor device in Patent Document 1, since the dielectric constant of ethanol is “24”, the semiconductor device of the first embodiment greatly increases the withstand voltage between the electrodes. Can be improved.
  • FIGS. 4 to 8 show a wiring board as an example of a structure using the resin for electric parts of the first embodiment described above as an insulating resin.
  • the structures shown in FIGS. 4 to 8 will be described as Examples 1 to 5.
  • Example 1- In the wiring board 11a of Example 1 shown in FIG. 4, the conductor pattern 13 is formed on the upper surface of the base substrate 12. Filler 7 is mixed in electrically insulating first resin 6 constituting base substrate 12. In the same manner as in the first embodiment, the filler 7 is configured by enclosing a phase change material 8 that absorbs heat and changes phase in an insulating capsule 9. The semiconductor device 14 is configured to thermally couple the heat radiating plate 3 to the conductor pattern 13 and radiate heat through the conductor pattern 13.
  • the base substrate 12 with the resin for electrical components in which the filler 7 is mixed with the first insulating resin 6, the heat generated by the semiconductor device 14 is generated by the endothermic action of the melting heat of the phase change material 8.
  • the heat can be radiated through the base substrate 12. Therefore, the time to reach the temperature peak exceeding the heat resistance temperature of the semiconductor device 14 can be delayed, and the semiconductor device 14 can be protected from thermal destruction.
  • Example 2- The wiring board 11b of the second embodiment shown in FIG. 5 is different from the first embodiment only in that the conductor pattern 13 is embedded in the base substrate 12.
  • the wiring board 11c of Example 3 shown in FIG. 6 is a multilayer wiring board with an inner layer circuit.
  • the wiring board 11c is configured by laminating layers 18 and 19 with the intermediate layer 20 interposed therebetween to construct an electric circuit.
  • an electrical component of the active element 15 or the passive element 16 or a conductor pattern 17 is formed.
  • the filler 7 is mixed in the first resin 6 constituting at least one of the layers 18 and 19 and the intermediate layer 20.
  • the electrical component is prevented from being thermally destroyed by the endothermic action of the heat of fusion of the phase change material 8 in the filler 7. Not only can it be protected, it can also be expected to have a shielding effect in the high frequency band.
  • This shielding effect in the high frequency band is an effect that the filler 7 has a lower dielectric constant than the first resin 6.
  • Example 4 The wiring board 11d of Example 4 shown in FIG. 7 is different from Example 3 described above only in that the layers 18 and 19 are laminated without the intermediate layer 20 interposed therebetween.
  • Example 5 The wiring board 11e of Example 5 shown in FIG. 8 is different from Example 3 described above only in that a shield layer 21 that blocks the passage of electromagnetic waves is formed on the intermediate layer 20.
  • the material of the capsule 9 of the filler 7 is made of silica (SiO 2).
  • an organic material such as electrically insulating melamine or silicone can be used.
  • the phase change material 8 of the filler 7 has been described as being erythritol.
  • the phase change material 8 is a material that undergoes a phase change at a temperature lower than the heat resistance temperature of the electrical component that is the device to be used.
  • Other sugar alcohols can be used as long as the dielectric constant is smaller than that of the mixed resin.
  • Other sugar alcohols include, for example, sorbitol, xylitol, paraffin having a dielectric constant of “2” and a melting point of “70 ° C.”, dielectric constant of “2.3” and a melting point of “125 ° C.”
  • a phase change material such as “polyethylene” can be used as the phase change material 8 of the filler 7.
  • the heat absorption characteristics and heat radiation characteristics can be adjusted by adjusting the additive and its amount.
  • the description has been given on the assumption that the filler 7 is mixed in all areas of the board.
  • the same can be applied to a prepreg in which the electrically insulating first resin mixed with the filler 7 is used as a matrix resin for impregnating a base material such as glass fiber or carbon fiber.
  • the heat of fusion of the phase change material 8 of each of the above embodiments uses latent heat necessary for phase transition from solid to liquid.
  • the phase change material 8 may be configured using only latent heat necessary for phase transition from the solid to the intermediate phase state, It is also possible to configure using only the latent heat necessary for the phase transition from the intermediate phase state to the liquid.
  • the space between the phase change material 8 and the capsule 9 is the gas layer 10.
  • a liquid layer or a gel layer may be provided between the phase change material 8 and the capsule 9.
  • the characteristic required for the layer between the phase change material 8 and the capsule 9 is that the dielectric constant is equal to or lower than the dielectric constant of the first resin 6 which is an example of the resin.
  • the present invention contributes to reducing the size of various inverter devices such as an air conditioner that requires high power control, as well as improving the reliability of an electrical structure in a poor use environment.
  • T1 power element T2 control element 1 1st, 2nd lead frame 3 heat sink 4 exterior body 5a, 5b insulating sheet 6 first resin 7 filler 8 phase change material 9 capsule 10 gas layer 11a, 11b, 11c, 11d, 11e Wiring board 12 Base board 13, 17 Conductor pattern 14 Semiconductor device 15 Active element 16 Passive element 18, 19 layer 20 Intermediate layer 21 Shield layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 半導体素子T1を第1樹脂6によって封止することで樹脂パッケージした構造体としての半導体装置において、第1樹脂6に、周囲の熱を吸熱して相変化することで絶縁耐圧が上昇する相変化物質を電気絶縁性のカプセルに封入したフィラー7が混入されており、フィラー7の作用によって、放熱性能が良好で、しかも高耐圧の構造体を実現する。

Description

電気部品用樹脂、半導体装置、及び配線基板
 本発明は、電気部品用樹脂、半導体素子を樹脂で封止した半導体装置、及び配線基板に関する。
 例えばインバーター制御機器は、小型化および軽量化が求められている。同様に、インバーター制御機器の内部に実装される樹脂封止型半導体装置は、小型化および軽量化を目指した構成となっている。また、パワー半導体素子を内蔵した樹脂封止型半導体装置又は半導体装置などの電気部品が実装された配線基板では、隣接する電極間の高耐圧化又は放熱性能の向上などが求められている。
 樹脂封止型半導体装置において、チップからパッケージ上面への放熱性能は、封止に使用している樹脂の熱伝導度で制約される。そのため、特許文献1では、図11に示すように、チップ31を覆うような金属製のケース33を基板32に取り付け、ケース33の内部に冷媒34を充填している。特許文献1の樹脂封止型半導体装置は、チップ31から発生した熱が冷媒34の熱対流によってケース33に伝えられるため、従来の樹脂封止型半導体装置に比べて外部への熱伝導性を高めることができる。
 また、特許文献2のパルス駆動電力半導体用の冷却システムは、相変化物質をマイクロカプセルの形で封止材料に含有させて、熱を吸収している。図12は特許文献2に開示の半導体装置1001の概略断面図である。半導体装置1001は、放熱板1003、基板1005および素子1007を備えている。基板1005に実装されている素子1007は、封止材料1013で封止されている。封止材料1013には、相変化物質1103がマイクロカプセルの形で含有されている。封止材料1013の一例として、エポキシ樹脂が開示されている。なお、素子1007と封止材料1013との間には、熱伝導材料1009が充填されている。素子1007と封止材料1013とは、熱伝導材料1009によって熱結合されている。
特開2008-4688号公報 米国特許第6848500号明細書
 しかしながら、特許文献1の樹脂封止型半導体装置では、ケース33への冷媒34の充填工程が煩雑になる場合がある。また、冷媒34としては、誘電率の高いフッ素系不活性液又はエタノールが使用されるため、放熱性能及び絶縁耐圧に限界の兆しが見えてきている。
 また、特許文献2の半導体装置は、絶縁耐圧を考慮していない構成のため、高耐圧を実現することは困難である。
 本発明は、放熱性能が良好であると共に、高耐圧を実現できる電気部品用樹脂、半導体装置、及び配線基板を提供することを目的とする。
 上記課題を解決するために、本発明の電気部品用樹脂は、電気絶縁性の樹脂にフィラーを混入することで構成され、前記フィラーは、吸熱して相変化することで絶縁耐圧が変化する相変化物質を電気絶縁性のカプセルに封入して形成されたことを特徴とする。
 また、上記課題を解決するために、本発明の半導体装置は、前記電気部品用樹脂によって、半導体素子を封止したことを特徴とする。
 また、上記課題を解決するために、本発明の配線基板は、前記電気部品用樹脂により構成されたベース基板に、導体パターンを形成したことを特徴とする。
 また、上記課題を解決するために、本発明の別の配線基板は、前記電気部品用樹脂の内部に、電気部品又は導体パターンが形成された層を、直接又は中間層を介して積層して電気回路が構築されたことを特徴とする。
 本発明によると、放熱性能が良好であると共に、高耐圧を実現できる電気部品用樹脂、半導体装置、及び配線基板を提供することができる。
本発明の実施の形態1にかかる半導体装置の拡大断面図 本発明の実施の形態1にかかるフィラーの拡大断面図 本発明の実施の形態1にかかる半導体素子の発熱に伴う吸熱と放熱の温度特性図 本発明の実施の形態2にかかる配線基板の実施例1の拡大断面図 実施例2の配線基板の拡大断面図 実施例3の配線基板の拡大断面図 実施例4の配線基板の拡大断面図 実施例5の配線基板の拡大断面図 従来例の半導体装置の拡大断面図 従来例の半導体素子の発熱に伴う吸熱と放熱の温度特性図 特許文献1の半導体装置の拡大断面図 特許文献2の半導体装置の拡大断面図
  (実施の形態1)
 図1は、本実施の形態1の第1半導体装置を示す。図1の第1半導体装置は、樹脂封止型半導体装置であって、電気絶縁性の電気部品用樹脂を封止樹脂として使用した構造体の一例である。
 この第1半導体装置は、パワー素子T1が第1リードフレーム1に固定され、制御素子T2が第2リードフレーム2に固定されている。第1,第2リードフレーム1,2は、絶縁シート5a,5bを介して放熱板3の上面に固定されている。パワー素子T1、制御素子T2は、半導体素子の一例である。絶縁シート5a,5bは、例えば、熱伝導性の電気絶縁材料で構成され、電気絶縁層を複数層の接着層で挟んだ3層構造を有する。外装体4は、第1リードフレーム1及び第2リードフレーム2の一体化と、パワー素子T1及び制御素子T2の保護とを目的とするものである。外装体4は、例えばエポキシ等の熱硬化型樹脂の一例である第1樹脂6から構成される。第1樹脂6には、本発明の特徴であるフィラー7が混入されている。本実施の形態1の第1樹脂6中のフィラー7の充填率は、後述する吸熱又は絶縁の特性、第1樹脂6の材料特性などに応じて、20%以上かつ80%以下としている。
 本発明では、封止をするための樹脂(例えば、第1樹脂6)としては、成形可能な樹脂であると共に、誘電率がフィラー7より高いものを用いることが望ましい。このような樹脂およびフィラー7を用いることで、半導体装置において、瞬間的な電圧上昇に対応した絶縁耐圧の特性を実現することができる。
 このフィラー7は、図2(a)に示すように、周囲の熱を吸熱して相変化する相変化物質8を電気絶縁性のカプセル9に封入して、構成されている。図2(a)は、常温状態のフィラー7の拡大断面図を示す。図2(a)に示す常温状態では、相変化物質8の状態は固体である。図2(b)は、パワー素子T1などから発生した熱を吸収した状態のフィラー7を示す。図2(b)に示す熱を吸収した状態では、相変化物質8の状態は液体である。
 具体的には、フィラー7は、シリカ(SiO)製のカプセル9の中に、相変化物質8としてのエリスリトール(erythritol)を注入することで構成されている。本実施の形態1では、カプセル9として、粒径60μmのものを使用した。なお、本発明においては、カプセル9としては、粒径2μm以上かつ100μm以下のものが使用可能である。本発明においては、カプセル9の殻厚みは、0.1μm以上かつ20μm以下である。本実施の形態1では、カプセル9内の相変化物質8として、カプセル9の容積の60%の体積のエリスリトールを用いている。なお、相変化物質8としてのエリスリトールの体積は、カプセル9の容積に対して30%以上かつ70%以下が望ましい。カプセル9と相変化物質8の間は、気体層10である。気体層10としては、各種の不活性ガスや空気を使用することができる。本実施の形態1では、高い絶縁性を有するものとして、気体層10に空気を使用した。
 エリスリトールは、常温状態では、図2(a)に示すように固体であるが、融解点118℃で液体状態に相変化して膨張する。なお、相変化物質8の一例であるエリスリトールの融解点である118℃は、パワー素子T1の耐熱温度125℃よりも低い。すなわち、本実施の形態1では、パワー素子T1の耐熱温度よりも低い融解点を有する相変化物質8を用いている。本発明は、このように相変化物質8の融解点がパワー素子T1の耐熱温度より低くなるように構成することで、この相変化物質8で吸熱し、パワー素子T1の耐熱温度以上まで第1半導体装置の温度が上昇する可能性を軽減させている。なお、カプセル9は、相変化物質8が外部に流出しないように、この相変化物質8の融解膨張によっても破裂しない強度に構成されている。
 本発明の第1半導体装置が、従来例に比べて温度が上昇する可能性が軽減していることについて、図3と、図9及び図10を用いて説明する。
 図3は、本発明の実施の形態1にかかる半導体素子の発熱に伴う吸熱と放熱の温度特性図である。図9は、従来例の半導体装置の拡大断面図であり、図10は、従来例の半導体素子の発熱に伴う吸熱と放熱の温度特性図である。
 本実施の形態1の第1半導体装置は、フィラー7を混入した第1樹脂6を使用している。そのため、本実施の形態1の第1半導体装置では、パワー素子T1が発熱して第1樹脂6が温度上昇すると、図3に実線で示したように温度上昇した後、エリスリトールの融解点の118℃に上昇した際に、温度上昇が止まる。これは、相変化物質8(エリスリトール)が融解して固体から液体に相変化し、この相変化に伴って融解熱が相変化物質8に吸熱されて、温度上昇の傾きがエリストリールの融解点付近で急激に小さくなるためである。そのため、本実施の形態1の第1半導体装置は、図3のような特性を示すと共に、パワー素子T1の耐熱温度を越える温度ピークに至る時間を遅らせることができる。
 すなわち、本発明の第1半導体装置は、相変化物質を封入したマイクロカプセルを所望の樹脂に混練することにより、良好な放熱特性と共に、絶縁耐圧を向上させることができる。具体的には、良好な放熱特性とは、第1半導体装置の急峻な温度上昇時の吸熱作用を発現させることである。また、絶縁耐圧の向上とは、第1半導体装置の瞬間的な駆動時に課題となる電圧上昇に対して、空間電界集中を防ぐと共に誘電率を低下させることである。
 なお、図3の実線において、“区間H”が、電力損失に伴う発熱区間であり、“区間R”が、発熱により温度上昇が停止して温度低下する放熱区間である。また、区間Hの一部である“区間H1”は、相変化物質8の相変化に伴って吸熱されて、温度上昇が止まっている区間である。また、区間Hの一部である“区間H2”は、相変化物質8で吸熱できずに第1半導体装置の温度が上昇している区間である。この“区間H1”と“区間H2”の関係は、フィラー7内の相変化物質8の量に依存する。相変化物質8の量が多いほど、“区間H1”が長くなる。
 なお、図3の仮想線(二点鎖線)は、図10に示す従来例の場合の温度上昇変化を示すものである。すなわち、図3の仮想線は、フィラー7を混入しなかった第1樹脂を使用した場合の比較例の温度上昇変化を表している。
 このように、本実施の形態1の第1樹脂6を使用することで、外装体4が温度ピークに到達する事態の発生を防止し、半導体装置の温度上昇に伴う信頼性を向上させることができる。本実施の形態1の第1樹脂6は、例えば、モータを駆動するインバーターのドライバー用の半導体装置の場合には、系統逆起電力時の温度影響を緩和することができ、従来と同じ外形寸法のインバーターであってもモータの運転性能を向上させることができる。
 さらに、本発明のフィラー7を混入させた第1樹脂6は、発熱時の絶縁耐圧も優れている。この絶縁耐圧について、図9に示す従来の半導体装置を比較例として比較する。なお、図9に示す従来の半導体装置は、外装体24の熱硬化型樹脂26の全部がエポキシである。
 ここで、エポキシの誘電率が“4”であるのに対して、フィラー7のカプセル9(シリカ)の誘電率が“2.5”であり、相変化物質8(エリスリトール)の誘電率が“1.5”である。そのため、本実施の形態1の半導体装置では、フィラー7の誘電率がエポキシの誘電率よりも低くなり、半導体装置における電極間の絶縁耐圧の向上を実現できる。また、特許文献1における半導体装置に冷媒34としてエタノールを使用した場合と比較すると、エタノールの誘電率が“24”であるため、本実施の形態1の半導体装置は、電極間の絶縁耐圧を大幅に向上させることができる。
  (実施の形態2)
 図4~図8は、前述の実施の形態1の電気部品用樹脂を絶縁性樹脂として使用した構造体の一例である配線基板を示す。図4~図8に示す構造体について、実施例1~実施例5として説明する。なお、実施の形態1と同様のものには同一の符号を付けて説明する。
              - 実施例1 -
 図4に示す実施例1の配線基板11aは、ベース基板12の上面に導体パターン13が形成されている。ベース基板12を構成する電気絶縁性の第1樹脂6に、フィラー7が混入されている。フィラー7は、前述の実施の形態1と同様に、吸熱して相変化する相変化物質8を絶縁性のカプセル9に封入して構成されている。半導体装置14は、放熱板3を導体パターン13に熱的に結合して、導体パターン13を介して放熱するよう構成されている。
 このように、電気絶縁性の第1樹脂6にフィラー7を混入した電気部品用樹脂でベース基板12を構成することによって、相変化物質8の融解熱の吸熱作用によって、半導体装置14の発熱を、ベース基板12を介して放熱することができる。よって、半導体装置14の耐熱温度を越える温度ピークに到達する時間を遅らせることができ、半導体装置14を熱破壊から保護できる。
              - 実施例2 -
 図5に示す実施例2の配線基板11bは、導体パターン13がベース基板12の中に埋め込まれている点だけが前述の実施例1と異なっている。
              - 実施例3 -
 図6に示す実施例3の配線基板11cは、内層回路入りの多層配線基板である。配線基板11cは、中間層20を介して層18,19を積層して、電気回路が構築されている。層18,19の内部には、能動素子15又は受動素子16の電気部品または導体パターン17が形成されている。実施例3では、各層18,19,中間層20の少なくとも何れかを構成する第1樹脂6に、フィラー7が混入されている。
 このように、各層18,19,中間層20を構成する電気部品用樹脂にフィラー7を混入することで、フィラー7内の相変化物質8の融解熱の吸熱作用によって、電気部品を熱破壊から保護できるだけでなく、高周波帯でのシールド効果も期待できる。この高周波帯でのシールド効果は、フィラー7が第1樹脂6に比べて低誘電率である効果である。
              - 実施例4 -
 図7に示す実施例4の配線基板11dは、中間層20を介さずに層18,19が積層されている点だけが、前述の実施例3と異なっている。
              - 実施例5 -
 図8に示す実施例5の配線基板11eは、中間層20に電磁波の通過を遮るシールド層21が形成されている点だけが、前述の実施例3とは異なっている。
 上記の各実施の形態や各実施例では、フィラー7のカプセル9の材質がシリカ(SiO2)製であるとして説明した。だが、フィラー7のカプセル9の材質としては、電気絶縁性のメラミン、シリコーンなどの有機系物質なども使用できる。
 また、上記の各実施の形態では、フィラー7の相変化物質8がエリスリトールであるとして説明したが、使用対象の素子である電気部品の耐熱温度未満の温度にて相変化する物質であって、誘電率が混入される樹脂よりも小さいものであれば、その他の糖アルコールを使用することもできる。その他の糖アルコールとしては、例えば、ソルビトール,キシリトール、又は、誘電率が“2”程度で融解点が“70℃”程度のパラフィン、誘電率が“2.3”程度で融解点が“125℃”程度のポリエチレンなどの相変化物質が、フィラー7の相変化物質8として使用できる。また、何れの場合にも添加物とその量を調節することによって吸熱特性と放熱特性を調節できる。
 また、上記の各実施の形態の配線基板や多層配線基板では、基板の全ての領域にフィラー7が混入されたものとして説明した。だが、フィラー7の混入された電気絶縁性の第1樹脂を、ガラス繊維や炭素繊維などの基材に含浸させるマトリクス樹脂として使用した、プリプレグでも同様に実施できる。
 上記の各実施の形態の相変化物質8の融解熱は、固体から液体に相転移する時に必要な潜熱を利用したものであった。だが、固体と液体との中間的な相状態を有する相変化物質8の場合には、固体から前記中間的な相状態への相転移する時に必要な潜熱だけを利用して構成することや、前記中間的な相状態から液体への相転移する時に必要な潜熱だけを利用して構成することもできる。
 上記の各実施の形態のフィラー7は、相変化物質8とカプセル9の間が気体層10であった。だが、相変化物質8とカプセル9の間が液体層またはゲル層であってもよい。この場合、相変化物質8とカプセル9の間の層に要求される特性は、その誘電率が樹脂の一例である第1樹脂6の誘電率以下であることである。
 本発明は、大電力制御が必要な空気調和装置などの各種のインバーター装置の小型化のほか、劣悪な使用環境における電気構造体の信頼性の向上に寄与する。
 T1 パワー素子
 T2 制御素子
 1,2 第1,第2リードフレーム
 3 放熱板
 4 外装体
 5a,5b 絶縁シート
 6 第1樹脂
 7 フィラー
 8 相変化物質
 9 カプセル
 10 気体層
 11a,11b,11c,11d,11e 配線基板
 12 ベース基板
 13,17 導体パターン
 14 半導体装置
 15 能動素子
 16 受動素子
 18,19 層
 20 中間層
 21 シールド層

Claims (11)

  1.  電気絶縁性の樹脂にフィラーを混入することで構成され、
     前記フィラーは、吸熱して相変化することで絶縁耐圧が変化する相変化物質を電気絶縁性のカプセルに封入して形成された、
    電気部品用樹脂。
  2.  前記相変化物質は、吸熱して相変化することで絶縁耐圧が上昇する、
    請求項1記載の電気部品用樹脂。
  3.  前記フィラーにおける前記相変化物質と前記カプセルとの隙間は、前記相変化物質が吸熱して相変化することで小さくなる、
    請求項1または請求項2記載の電気部品用樹脂。
  4.  前記相変化物質の誘電率は、前記樹脂の誘電率よりも小さい、
    請求項1~3の何れかに記載の電気部品用樹脂。
  5.  前記相変化物質は、使用対象である電気部品の耐熱温度未満の温度にて相変化する物質である、
    請求項1~4の何れかに記載の電気部品用樹脂。
  6.  前記カプセルはシリカであり、前記相変化物質は糖アルコールである、
    請求項1~5の何れかに記載の電気部品用樹脂。
  7.  前記相変化物質は、エリスリトールである、
    請求項1~6の何れかに記載の電気部品用樹脂。
  8.  前記相変化物質は、ソルビトール、キシリトール、パラフィン、またはポリエチレンのいずれか1つである、
    請求項1~6の何れかに記載の電気部品用樹脂。
  9.  請求項1~8の何れかに記載の電気部品用樹脂によって、半導体素子を封止した、
    半導体装置。
  10.  請求項1~8の何れかに記載の電気部品用樹脂により構成されたベース基板に、導体パターンを形成した、
    配線基板。
  11.  請求項1~8の何れかに記載の電気部品用樹脂の内部に、電気部品又は導体パターンが形成された層を、直接又は中間層を介して積層して電気回路が構築された、
    配線基板。
PCT/JP2012/006652 2011-11-21 2012-10-18 電気部品用樹脂、半導体装置、及び配線基板 WO2013076909A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/994,253 US9265144B2 (en) 2011-11-21 2012-10-18 Electrical component resin, semiconductor device, and substrate
CN201280006993.2A CN103339722B (zh) 2011-11-21 2012-10-18 电气零件用树脂、半导体装置及配线基板
JP2013523398A JP5591405B2 (ja) 2011-11-21 2012-10-18 電気部品用樹脂、半導体装置、及び配線基板
EP12851940.2A EP2784808B8 (en) 2011-11-21 2012-10-18 Electrical component resin, semiconductor device, and substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253383 2011-11-21
JP2011-253383 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013076909A1 true WO2013076909A1 (ja) 2013-05-30

Family

ID=48469380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006652 WO2013076909A1 (ja) 2011-11-21 2012-10-18 電気部品用樹脂、半導体装置、及び配線基板

Country Status (5)

Country Link
US (1) US9265144B2 (ja)
EP (1) EP2784808B8 (ja)
JP (1) JP5591405B2 (ja)
CN (1) CN103339722B (ja)
WO (1) WO2013076909A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011120A1 (fr) * 2013-09-24 2015-03-27 St Microelectronics Crolles 2 Puce de circuits integres montee sur un support
CN107124837A (zh) * 2013-08-12 2017-09-01 英飞凌科技股份有限公司 电子模块及制造其的方法
JP2018536996A (ja) * 2015-11-26 2018-12-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 被覆材を有する電気装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107909A1 (de) * 2014-06-05 2015-12-17 Infineon Technologies Ag Leiterplatten und Verfahren zu deren Herstellung
EP3240372A1 (en) 2016-04-27 2017-11-01 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Heat capacitive component carrier and method to produce said component carrier
WO2018009269A1 (en) * 2016-07-06 2018-01-11 Lumileds Llc Printed circuit board for integrated led driver
CN106684065A (zh) * 2016-09-07 2017-05-17 四川上特科技有限公司 一种集成式Mini整流桥新结构及其制作工艺
EP3545550B1 (en) * 2016-11-23 2021-02-17 ABB Schweiz AG Manufacturing of a power semiconductor module
CN109550467B (zh) * 2018-11-29 2020-10-30 江南大学 一种导电复合壳材空心微球及其制备方法
CN111261527B (zh) * 2020-02-11 2021-10-01 深圳市法本电子有限公司 一种半导体封装构件及其制备方法
US20230360998A1 (en) * 2022-05-06 2023-11-09 Raytheon Technologies Corporation Power electronic devices and methods of packaging power electronic devices tailored for transient thermal management

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137098A (en) * 1980-03-26 1981-10-26 Agency Of Ind Science & Technol Heat-accumulating medium made of phase transition material and heat accumulation therewith
JP2003100969A (ja) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk 放熱部材
US6848500B1 (en) 1999-03-11 2005-02-01 Skyworks Solutions, Inc. Cooling system for pulsed power electronics
JP2008004688A (ja) 2006-06-21 2008-01-10 Noda Screen:Kk 半導体パッケージ
JP2009029962A (ja) * 2007-07-27 2009-02-12 Swcc Showa Device Technology Co Ltd 蓄熱性樹脂皮膜およびこれを用いた蓄熱性を有するボード
WO2010074970A2 (en) * 2008-12-23 2010-07-01 Intel Corporation Polymer thermal interface materials

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780356A (en) * 1969-02-27 1973-12-18 Laing Nikolaus Cooling device for semiconductor components
JPS621452A (ja) 1985-06-26 1987-01-07 Nok Corp 蓄熱材封入マイクロカプセルの製造法
US5007478A (en) * 1989-05-26 1991-04-16 University Of Miami Microencapsulated phase change material slurry heat sinks
US5314005A (en) * 1991-11-25 1994-05-24 Reuven Dobry Particulate heating/cooling agents
US5560856A (en) * 1994-11-02 1996-10-01 Dobry; Reuven Particulate agents for dry heat application
DE69819043T2 (de) * 1997-09-02 2004-08-26 Ajinomoto Co., Inc. Thermoplastische Harzzusammensetzung, Mittel zur Verbesserung der Wärmealterungsbeständigkeit eines thermoplastischen Harzes, und Harzgegenstand daraus geformt
EP1162659A3 (de) * 2000-06-08 2005-02-16 MERCK PATENT GmbH Einsatz von PCM in Kühlern für elektronische Bauteile
US6645598B2 (en) * 2002-01-04 2003-11-11 Robert J. Alderman Cell insulation blanket with phase change material, and method of making
US7108914B2 (en) * 2002-07-15 2006-09-19 Motorola, Inc. Self-healing polymer compositions
DE10250249A1 (de) * 2002-10-28 2004-05-13 Sgl Carbon Ag Mischungen für Wärmespeicher
US7646098B2 (en) * 2005-03-23 2010-01-12 Endicott Interconnect Technologies, Inc. Multilayered circuitized substrate with p-aramid dielectric layers and method of making same
US20070135550A1 (en) 2005-12-14 2007-06-14 Nirupama Chakrapani Negative thermal expansion material filler for low CTE composites
US20070148448A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Microencapsulated delivery vehicles including cooling agents
IL176693A0 (en) 2006-07-04 2006-10-31 Aharon Eyal Stable suspensions containing microcapsules and methods for the preparation thereof
US8008410B2 (en) * 2006-11-15 2011-08-30 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for encapsulating semiconductor and semiconductor device
US20090109623A1 (en) * 2007-10-31 2009-04-30 Forcecon Technology Co., Ltd. Heat-radiating module with composite phase-change heat-radiating efficiency
JP2011058764A (ja) 2009-09-14 2011-03-24 Sumitomo Electric Ind Ltd 蓄熱材及び蓄熱器
CN102822228B (zh) 2010-03-26 2015-03-25 松下电器产业株式会社 预浸料用环氧树脂组合物、预浸料和多层印制电路布线板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137098A (en) * 1980-03-26 1981-10-26 Agency Of Ind Science & Technol Heat-accumulating medium made of phase transition material and heat accumulation therewith
US6848500B1 (en) 1999-03-11 2005-02-01 Skyworks Solutions, Inc. Cooling system for pulsed power electronics
JP2003100969A (ja) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk 放熱部材
JP2008004688A (ja) 2006-06-21 2008-01-10 Noda Screen:Kk 半導体パッケージ
JP2009029962A (ja) * 2007-07-27 2009-02-12 Swcc Showa Device Technology Co Ltd 蓄熱性樹脂皮膜およびこれを用いた蓄熱性を有するボード
WO2010074970A2 (en) * 2008-12-23 2010-07-01 Intel Corporation Polymer thermal interface materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784808A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107124837A (zh) * 2013-08-12 2017-09-01 英飞凌科技股份有限公司 电子模块及制造其的方法
FR3011120A1 (fr) * 2013-09-24 2015-03-27 St Microelectronics Crolles 2 Puce de circuits integres montee sur un support
JP2018536996A (ja) * 2015-11-26 2018-12-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 被覆材を有する電気装置

Also Published As

Publication number Publication date
CN103339722B (zh) 2016-04-06
US9265144B2 (en) 2016-02-16
EP2784808B1 (en) 2016-07-06
CN103339722A (zh) 2013-10-02
JP5591405B2 (ja) 2014-09-17
JPWO2013076909A1 (ja) 2015-04-27
EP2784808A1 (en) 2014-10-01
EP2784808B8 (en) 2016-08-24
US20140054077A1 (en) 2014-02-27
EP2784808A4 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5591405B2 (ja) 電気部品用樹脂、半導体装置、及び配線基板
JP5920121B2 (ja) 車載用アンテナ装置
JP5351107B2 (ja) コンデンサの冷却構造およびインバータ装置
CN105742252B (zh) 一种功率模块及其制造方法
JP5012066B2 (ja) 電源モジュール
KR101388815B1 (ko) 반도체 패키지
CN103378048A (zh) 半导体封装件、安装结构及半导体封装模块
KR101278393B1 (ko) 파워 패키지 모듈 및 그의 제조방법
JP5556613B2 (ja) 半導体装置
TW201631723A (zh) 半導體裝置及半導體模組
JP2012099612A (ja) 半導体装置
JP2007305702A (ja) 半導体装置およびその製造方法
JP6707634B2 (ja) 半導体装置
WO2012081434A1 (ja) 半導体装置
JP2008270678A (ja) 絶縁シートおよび半導体装置
JP5842109B2 (ja) 樹脂封止型半導体装置及びその製造方法
JP2008199721A (ja) 電源モジュール
JP2008235576A (ja) 電子部品の放熱構造及び半導体装置
JP5921723B2 (ja) 半導体装置
JP2011238643A (ja) パワー半導体モジュール
JPH08204069A (ja) パッケージicのモジュール
JP2013229535A (ja) 半導体装置
JP2013229534A (ja) 半導体装置
JP2012227337A (ja) 半導体装置
CN107426940B (zh) 一种车用dc/dc变换器散热方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280006993.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013523398

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012851940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012851940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13994253

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE