WO2013076883A1 - 電磁クラッチ及び電磁クラッチのアーマチャ製造方法 - Google Patents

電磁クラッチ及び電磁クラッチのアーマチャ製造方法 Download PDF

Info

Publication number
WO2013076883A1
WO2013076883A1 PCT/JP2012/002160 JP2012002160W WO2013076883A1 WO 2013076883 A1 WO2013076883 A1 WO 2013076883A1 JP 2012002160 W JP2012002160 W JP 2012002160W WO 2013076883 A1 WO2013076883 A1 WO 2013076883A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
rotor
pressing
groove
die
Prior art date
Application number
PCT/JP2012/002160
Other languages
English (en)
French (fr)
Inventor
昌典 濱崎
雅樹 河嵜
Original Assignee
三菱重工オートモーティブサーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工オートモーティブサーマルシステムズ株式会社 filed Critical 三菱重工オートモーティブサーマルシステムズ株式会社
Priority to US14/241,850 priority Critical patent/US9261148B2/en
Priority to EP12851664.8A priority patent/EP2752594B1/en
Priority to CN201280048294.4A priority patent/CN103842680B/zh
Priority to JP2013545752A priority patent/JP5813132B2/ja
Publication of WO2013076883A1 publication Critical patent/WO2013076883A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/02Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings
    • F16D27/04Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings with axially-movable friction surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D2027/008Details relating to the magnetic circuit, or to the shape of the clutch parts to achieve a certain magnetic path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • the present invention relates to an improvement of an armature of an electromagnetic clutch applied to, for example, a vehicle air conditioner etc. to transmit power.
  • a compressor used in a vehicle air conditioner is provided with an electromagnetic clutch that is disposed between the compressor and a drive source to transmit power.
  • the electromagnetic clutch can selectively transmit or not transmit power by electromagnetic force.
  • the magnetic force of the electromagnetic coil 1 attracts the armature 2 to the rotor 3.
  • the armature 2 and the rotor 3 are integrally coupled to transmit power (see, for example, Patent Document 1).
  • the radial width of the armature 2 is divided into two, and the radial width of the rotor 3 is divided into three, so that the contact surface (gap) 4 between the armature 2 and the rotor 3 is in the radial direction. Divided into four.
  • the rotor 3 side of the contact surface 4 is referred to as an armature contact surface 4 a
  • the armature 2 side is referred to as a rotor contact surface 4 b.
  • the armature contact surface 4a of the rotor 3 is divided into three in the radial direction by grooves 5 having a groove width a as shown in FIG. 20A, for example, and the inner ring 3a, the center ring 3b and An outer peripheral ring 3c is formed.
  • the two grooves 5 are divided at a plurality of locations in the circumferential direction by the bridge 6 connecting the inner ring 3a, the center ring 3b, and the outer ring 3c.
  • the inner circumferential portion 2a and the outer circumferential portion 2b are divided into two by the groove 7 whose groove width is b.
  • the circumferential direction of the groove 7 on the armature 2 side is also divided into a plurality of parts by the bridge 8 connecting the inner peripheral portion 2 a and the outer peripheral portion 2 b.
  • the armature 2 in this case is manufactured by punching from a plate-like material.
  • the grooves 5, 7 are formed to block magnetic flux or magnetism, as is well known, and are also referred to as magnetic gaps.
  • the margin of the torque transmission capability decreases. That is, there is a problem that slippage occurs between the armature 2 and the rotor 3 when the margin of the torque transmission capability decreases due to the insufficient suction power.
  • the outer diameters of the armature 2 and the rotor 3 may be increased, but this is not preferable because the outer diameter of the electromagnetic clutch is increased.
  • the present invention has been made on the basis of such problems, and an electromagnetic clutch armature manufacturing method and electromagnetics capable of increasing the attraction between the armature and the rotor without increasing the outer diameters of the armature and the rotor.
  • the purpose is to provide a clutch.
  • the width of the groove 7 of the armature 2 may be narrowed instead of increasing the outer diameters of the armature and the rotor.
  • the groove 7 is conventionally formed by punching.
  • the width of the groove 7 is narrowed, the rigidity of the punching die is insufficient due to the decrease and the chip is easily chipped. Therefore, there is a limit to narrowing the groove width on the premise of mass production.
  • the punching die is replaced frequently, it is possible to form narrow grooves, but the manufacturing cost of the armature is significantly increased.
  • the present inventor has found that partially thinning the armature material by applying pressure can form a narrow groove without difficulty in mass production while suppressing the load on the punching die.
  • This thinning involves at least two forms.
  • first, wide grooves are formed by punching, which are magnetic gaps in the armature material.
  • the width of the groove is narrowed by applying a pressing force around the groove. That is, the width of the groove is narrowed by causing plastic flow around the groove, and the contact area between the armature and the rotor is increased accordingly. Since it is a wide groove that is formed by punching, a highly rigid punching die can be used, so the burden on the punching die can be suppressed.
  • the second mode is to form a locally thinned area in the armature material by first forming a groove and applying a pressing force to the area. Next, narrow grooves are formed by punching to form magnetic gaps. Since the area is thinned, the resistance to the punching die is small. Therefore, even if a narrow and low rigidity punching die is used, the burden imposed can be suppressed. As described above, in both of the embodiments, narrow grooves can be formed without difficulty in mass production.
  • the rotor contact surface of the armature is divided into a plurality of ring shapes in the radial direction by the annular groove for magnetic flux interruption formed concentrically with the armature, and the magnetic force of the electromagnetic coil
  • the armature is attracted to the contact surface of the rotor, and the armature and the rotor are integrally coupled to transmit power.
  • This electromagnetic clutch is characterized in that the armature is provided with a thin-walled portion which is thinner than the outer periphery of the armature adjacent to the periphery around the groove formed in the rotor contact surface. That is, the electromagnetic clutch includes a thin portion whose thickness decreases toward the periphery of the groove.
  • This armature is according to the first form described above.
  • the groove formed on the rotor contact surface is partitioned by the periphery of the plastically flowed armature toward the center in the width direction of the groove.
  • This armature is characterized in that the pressed portion, which is the periphery of the plastically-flowed armature, has a thickness smaller than that of its periphery.
  • the armature of the electromagnetic clutch according to the present invention can be manufactured in two forms as described above, but in each case the armature material is locally thinned. That is, in the method of manufacturing the armature of the electromagnetic clutch according to the present invention, the rotor contact surface of the armature is divided into a plurality of ring shapes in the radial direction by an annular groove for magnetic flux interception formed concentrically with the armature.
  • a method of manufacturing an armature of an electromagnetic clutch in which an armature is attracted to a contact surface of a rotor by a magnetic force of a coil and the armature and the rotor are integrally coupled to transmit power, the armature having a thinned region around a groove It is characterized in that it is manufactured using a material.
  • the attraction force between the armature and the rotor can be increased without increasing the outer diameters of the armature and the rotor.
  • the groove having the width w1 may be formed by punching within a range in which the rigidity of the punching die is not insufficient, and the cost increase does not occur, and the narrowing processing for applying the pressing force thereafter is inexpensive. Therefore, according to the present invention, the increase in cost can be minimized.
  • an indentation die provided with a pressing portion corresponding to the pressed portion can be pressed against the armature supported by the support surface of the lower die.
  • This method can be realized by a simple mechanism for relatively approaching and separating two opposing molds coaxially.
  • a pressing force can be applied to the pressed portion of the armature supported by the lower die using a roller-like tool.
  • the support surface of the lower type that supports the armature may have a recess formed in a portion corresponding to the pressure-receiving portion of the armature. It may be formed flat including the part corresponding to the part.
  • the narrowing processing step of the present invention it is preferable to apply a pressing force to the pressed portion by the pressing die while restraining the armature by holding by the pressing die provided around the pressing die and the lower die. .
  • An effect of restricting the plastic flow generated in the pressed portion toward the center in the width direction of the groove is obtained.
  • the effect of increasing the friction force is applied to one or both of the support surface of the lower die and the surface where the pressing die contacts the armature, to make the effect remarkable.
  • the portion corresponding to the pressed portion is excluded from the target of the frictional force increasing process.
  • plastic flow is more likely to occur when the frictional force is lower. Therefore, it is preferable to perform the frictional force reduction process on one or both of the pressing portion of the pressing die and the portion corresponding to the pressed portion in the lower die.
  • the pressing portion of the push-in type may have a curved contact portion with the armature or a flat shape.
  • a push-in type having a curved pressing portion is preferable for the lower mold having a recess, and a push-in type having a flat pressing portion is preferable to the lower mold having a flat support surface.
  • the armature is manufactured through a punching process of forming a groove by punching using a punching die.
  • the pressing force in the thinning step is applied by pressing the pressing die provided with the pressing portion corresponding to the pressed portion against the armature material supported by the support surface of the lower die.
  • the lower mold be formed with a slit for receiving the plastic flow generated in the armature material by pressing the pressing mold. This is to facilitate thinning.
  • the pressing die has a divided structure in which a part thereof also serves as the punching die. Is preferred. Since there is no need to change molds in the thinning step and the punching step, the processing time can be shortened.
  • the suction force between the armature and the rotor can be increased without increasing the outer diameters of the armature and the rotor.
  • the groove since the groove may be formed by punching within a range where the rigidity is not insufficient, the cost does not increase.
  • the narrowing process for applying the subsequent pressing force can be performed at low cost, the increase in cost can be minimized.
  • the punching step is the final step, a groove with high dimensional accuracy can be obtained without further processing.
  • FIG. 1 It is a longitudinal cross-sectional view which shows the structural example of the scroll-type compressor provided with the electromagnetic clutch in this Embodiment. It is a perspective sectional view of an electromagnetic clutch.
  • (A) is a top view of an armature
  • (b) is a top view of a rotor. It is an expanded sectional view which shows the crimping
  • the manufacturing procedure of the armature by 4th Embodiment is shown, (a), (b) shows a thinning process, (c), (d) shows a punching process.
  • the manufacturing procedure of the armature by 4th Embodiment is shown, (a), (b) shows a thinning process, (c), (d) shows the pressing process in the punching process shown in FIG.16 (c), (d). Shows the case of using.
  • the manufacturing procedure of the armature by 4th Embodiment is shown, (a), (b) is a thinning process, (c), (d) is an armature raw material in the punching process shown to FIG.16 (c), (d). Shows the case where the protuberances of the are placed opposite to the lower mold.
  • FIG. 14 is a perspective sectional view of a conventional electromagnetic clutch and an enlarged sectional view showing a crimped portion of an armature and a rotor.
  • A is a top view of the conventional rotor
  • (b) is a top view of an armature.
  • FIG. 1 is a longitudinal sectional view showing a configuration example of a scroll compressor provided with an electromagnetic clutch.
  • the scroll type compressor (compressor) 10 includes a front housing 11 and a rear housing 12 and a housing 13 in which the front housing 11 and the rear housing 12 are integrally fixed by bolts (not shown). ing.
  • crankshaft 14 is rotatably supported around its rotation axis L via a main bearing (needle bearing) 15 and a sub bearing (needle bearing) 16.
  • One end side (left side in FIG. 1) of the crankshaft 14 is a small diameter shaft portion 14a, and the small diameter shaft portion 14a penetrates the front housing 11 and protrudes to one end side.
  • An electromagnetic clutch M is attached to the protruding portion of the small diameter shaft portion 14 a, and is provided between the pulley 18 rotatably provided on the outer peripheral surface of the small diameter boss portion 11 a on one end side of the front housing 11 via a bearing 17. Power is to be interrupted.
  • a mechanical seal (lip seal) 19 is provided between the main bearing 15 and the sub-bearing 16 to thereby hermetically seal between the inside of the housing 13 and the atmosphere.
  • a large diameter shaft portion 14b is provided on the other end side (right side in FIG. 1) of the crankshaft 14, and the large diameter shaft portion 14b has a predetermined dimension from the rotation axis L of the crankshaft 14
  • the eccentric pin 14c is integrally provided in an eccentric state.
  • the large diameter shaft portion 14b and the small diameter shaft portion 14a of the crankshaft 14 are rotatably supported by the front housing 11 via the main bearing 15 and the sub bearing 16, respectively.
  • the orbiting scroll member 22 is connected to the eccentric pin 14 c via the balance bush 20 and the drive bearing 21 so that the orbiting scroll member 22 is rotationally driven by the rotation of the crankshaft 14. It has become.
  • the balance bush 20 is formed with a balance weight 20 a for removing an unbalanced load generated by the turning drive of the turning scroll member 22, and is turned along with the turning drive of the turning scroll member 22.
  • a pair of fixed scroll members 24 and an orbiting scroll member 22 which constitute the scroll type compression mechanism 23 are incorporated.
  • the fixed scroll member 24 comprises a fixed end plate 24a and a spiral wrap 24b erected from the fixed end plate 24a, while the orbiting scroll member 22 comprises an orbiting end plate 22a and an orbiting end plate And a spiral wrap 22b set up from 22a.
  • the fixed scroll member 24 and the orbiting scroll member 22 are incorporated with their centers separated by the turning radius, and the spiral wraps 24b and 22b are engaged with each other 180 degrees out of phase.
  • a pair of compression chambers C (divided) divided by the end plates 24a and 22a and the spiral wraps 24b and 22b are formed symmetrically between the scroll members 24 and 22 with respect to the center of the scroll. It will be done.
  • the fixed scroll member 24 is fixed to the inner surface (bottom surface) of the rear housing 12 via a bolt 25.
  • an eccentric pin 14c provided on one end side of the crankshaft 14 is fitted into a boss portion 26 provided on the back surface of the orbiting end plate 22a via the balance bush 20 and the drive bearing 21.
  • the orbiting scroll member 22 has the back surface of the orbiting end plate 22 a supported by the thrust receiving surface 11 b formed on the front housing 11, and is interposed between the thrust receiving surface 11 b and the back surface of the orbiting scroll member 22.
  • the orbiting scroll member 22 is configured to be rotationally orbited with respect to the fixed scroll member 24 while being prevented from rotating by the rotation preventing pin ring mechanism 27 mounted.
  • the rotation preventing pin ring mechanism 27 includes a pin 27a and a ring 27b, and the pin hole 11c for raising the pin 27a on one of the back surface or the thrust receiving surface 11b of the turning end plate 22a of the turning scroll member 22
  • the ring hole 22c which fits the ring 27b is provided.
  • the thrust receiving surface 11b is provided with a pin hole 11c for raising the pin 27a
  • the orbiting scroll member 22 is provided with a ring hole 22c for fitting the ring 27b.
  • the pin holes 11c and the ring holes 22c are provided at a plurality of places in the circumferential direction, generally three to four places (four places in the present embodiment).
  • a discharge port 24c for discharging the compressed refrigerant gas is opened at the central portion of the fixed end plate 24a of the fixed scroll member 24.
  • the discharge port 24c has the fixed end plate 24a via a retainer 28.
  • the discharge reed valve (not shown) attached is provided.
  • a seal member (not shown) such as an O-ring is installed on the back surface of the fixed end plate 24 a of the fixed scroll member 24 so as to be in close contact with the inner surface of the rear housing 12.
  • a discharge chamber 29 partitioned from the internal space (closed space) of the the internal space of the housing 13 excluding the discharge chamber 29 functions as the suction chamber 30.
  • Refrigerant gas returned from the refrigeration cycle is sucked into the suction chamber 30 through a suction port (not shown) provided in the front housing 11, and the fixed scroll member 24 and the orbiting scroll member pass through the suction chamber 30.
  • the refrigerant gas is drawn into the compression chamber C formed between the pressure chamber 22 and the pressure chamber 22.
  • a seal member 31 such as an O-ring is installed on a joint surface between the front housing 11 and the rear housing 12 to seal the suction chamber 30 in the housing 13 airtightly from the atmosphere.
  • the above-described scroll compressor 10 is provided with an electromagnetic clutch M which is mounted on the crankshaft 14 of the compression mechanism to transmit power.
  • the electromagnetic clutch M attracts the armature 42 of a magnetic material to the contact surface of the rotor 43 by the magnetic force of the electromagnetic coil 41, integrally couples the armature 42 and the rotor 43, and transmits power.
  • the radial direction of the armature 42 is divided into two by a groove (intermediate groove) 44 passing through the front and back of the armature 42 as a width b, as shown in FIGS. , And an outer peripheral ring 42b.
  • the groove 44 is divided at a plurality of locations in the circumferential direction by the bridge 50 connecting the inner circumferential ring 42 a and the outer circumferential ring 42 b.
  • the grooves 44 divided by the bridge 50 form arcs of the same width each having a groove width b.
  • the electromagnetic clutch M of the present embodiment has two grooves (inner peripheral groove) 45A whose width a is in the radial direction of the rotor 43, and grooves (an outer peripheral groove
  • the inner ring 43a, the central ring 43b, and the outer ring 43c are divided into three by 45B.
  • the two grooves 45A, 45B are divided at a plurality of locations in the circumferential direction by bridges 51A, 51B connecting the inner ring 43a, the center ring 43b and the outer ring 43c.
  • the grooves 45A, 45B divided by the bridges 51A, 51B form arcs of the same width, each having a groove width a.
  • the inner ring 43a of the rotor 43 is opposed to the inner ring 42a of the armature 42 by the grooves 44, 45A, 45B formed in this way, the rotor contact surface 46a of the armature 42 and the armature contact surface 46b of the rotor 43
  • An annular first contact surface A1 an annular second contact surface A2 in which the inner peripheral ring 42a of the armature 42 faces the central ring 43b of the rotor 43, and an outer peripheral ring 42b of the armature 42 opposes the central ring 43b of the rotor 43
  • a suction force is generated between the annular third contact surface A3 and the annular fourth contact surface A4 in which the outer peripheral ring 43c of the rotor 43 faces the outer peripheral ring 42b of the armature 42.
  • the first contact surface A1, the second contact surface A2, the third contact surface A3, and the fourth contact surface A4 are such that the areas of their annular areas are substantially equal to one another so that their suction forces become even.
  • the grooves 44, 45A, 45B are formed.
  • the first contact surface A1, the second contact surface A2, the third contact surface A3, and the fourth contact surface A4 The area of the fourth contact surface A4 on the outer periphery may be maximized.
  • the armature 42 is provided with a tapered recess 42 c around the groove 44 in the upper surface in the drawing.
  • the thinned recess 42 c is formed by plastic flow (or plastic deformation) around the groove 44 toward the center in the width direction of the groove 44.
  • the groove 44 has a narrower width than before plastic flow.
  • a pressing die 60 and a lower die 70 are prepared.
  • the pressing die 60 has a hollow cylindrical shape, and the pressing portion 61 is formed on one end side in the axial direction.
  • the pressing portion 61 is formed in a mountain shape with the central portion in the radial direction as the top.
  • the lower mold 70 has a ring shape, and a recess 72 is formed in the support surface 71.
  • the recess 72 is formed along the circumferential direction, and is recessed in a mountain shape with the central portion in the width direction as the top.
  • the indentation die 60 and the lower die 70 align the apex of the protrusion with the apex of the recess, and the center of the apex in the width direction of the groove 44 of the armature 42 (armature material).
  • armature material armature material
  • 5 (a) shows the armature 42 separately from the lower die 70 for ease of understanding, the armature 42 can be placed on the lower die 70 before the narrowing process is performed.
  • the indentation die 60 and the lower die 70 are made of a steel for cold die represented by JIS SKD 11 and a material having strength and abrasion resistance equal to or higher than steel for cold die. These materials have higher hardness and strength than the magnetic material that constitutes the armature 42.
  • the groove 44 of the armature 42 is such that the width of the groove 44 before the narrowing process (armature material) is w1 and the thickness is t1.
  • the groove 44 is formed by punching the material of the armature 42. As described above, in the industrial production scale, the limit width of the groove 44 that can be formed by punching is about 2 mm.
  • the width w1 of the groove 44 formed by punching is narrowed by narrowing processing using the indentation die 60 and the lower die 70. For that purpose, the push-in die 60 is lowered with respect to the armature 42 supported by the lower die 70 (FIG. 5 (b)).
  • the pressing portion 61 of the pressing die 60 touches the surface of the armature 42 and further lowers the pressing die 60, the pressed portion 47 around the groove 44 in contact with the pressing portion 61 is sandwiched between the pressing die 60 and the lower die 70. And the thickness becomes t2 thinner than t1.
  • the pressed portion 47 extends toward the center in the width direction of the groove 44 by the reduced thickness.
  • the groove 44 narrowed by causing the pressed portion 47 to plastically flow is divided by the pressed portion 47 that is plastically flowed, that is, the periphery of the armature 42, and the width w2 thereof is, for example, 0.5 to 1 It is about .5 mm.
  • the narrowed armature follows the shapes of the pressing portion 61 of the pressing die 60 and the recess 72 of the lower die 70, and the pressed portion 47 protrudes on the side of the rotor contact surface 46. As it is, it interferes with the armature contact surface 46b of the rotor 43, so as shown in FIG. 5 (c), the projecting portion is removed by cutting, for example, so as to be flush with the rotor contact surface 46a. Do.
  • machining such as polishing and pressing can be applied in addition to cutting.
  • the surface on the narrowed side can be machined flat without the depression of the pressed portion 47. That is, according to the present invention, after the narrowing processing, it is possible to flatly process one or both of the surface to which the pressed portion 47 belongs and the back surface opposite to the surface.
  • the groove 44 is initially formed with a reasonable width by punching, and then the groove width is narrowed by plastically flowing around the groove 44. Since the narrowing is such that the pressing force is applied by the pressing die 60 and the lower die 70, the life of these dies is longer than that of the punching dies. Therefore, according to the present embodiment, the suction force between the armature 42 and the rotor 43 is increased by increasing the contact area between the armature 42 and the rotor 43 without increasing the outer diameters of the armature 42 and the rotor 43 while suppressing the increase in cost.
  • An electromagnetic clutch M is provided.
  • a pressing die 80 is used in addition to the pressing die 60 and the lower die 70.
  • the pressing die 80 includes a cylindrical inner cylindrical portion 81 and a hollow cylindrical outer cylindrical portion 82, and the inner cylindrical portion 81 is coaxially disposed inside the outer cylindrical portion 82.
  • the push-in die 60 is disposed between the inner cylindrical portion 81 and the outer cylindrical portion 82, and is slidably arranged in the axial direction with respect to the inner cylindrical portion 81 and the outer cylindrical portion 82.
  • the pushing die 60 and the pressing die 80 can be raised and lowered independently of each other.
  • the outer diameter of the inner cylindrical portion 81 and the inner diameter of the push-in die 60, and the inner diameter of the outer cylindrical portion 82 and the outer diameter of the push-in die 60 are finished to dimensions that allow this sliding.
  • the pressing die 80 may be made of the same material as the pressing die 60 and the lower die 70.
  • the push-in mold 60 is separated from the armature 42, and only the presser mold 80 is lowered to clamp the armature 42 with the lower mold 70. .
  • the armature 42 is mechanically restrained.
  • the pressing die 60 is lowered to thin the periphery of the groove 44 of the armature 42, thereby narrowing the width of the groove 44. The operation of this narrowing processing is the same as in the first embodiment.
  • the second embodiment differs from the first embodiment in that the armature 42 is constrained as described above. Therefore, in the narrowing process, the armature 42 exhibits the following behavior.
  • an outward force shown by the arrow y is applied to the pressed portion 47 and the periphery thereof than the groove 44, and the pressed portion 47 and the periphery thereof. Will run away towards the outside (arrow y).
  • part of the narrowing of the groove 44 obtained by the plastic flow is offset. Therefore, in the second embodiment, the armature 42 is mechanically restrained in the planar direction by the pressing die 80 and the lower die 70 so as not to cause the relief.
  • the narrowing of the groove 44 is made more reliable.
  • the second embodiment preferably includes the following elements in order to achieve the purpose.
  • the presser die 80 and the lower die 70 are generally harder than the armature 42. Therefore, as the surface irregularities formed by increasing the surface roughness come into contact with the armature 42, the frictional force between each and the armature 42 becomes large, and the restraining force in the narrowing process is increased. Can.
  • the surface roughness of both the pressing surfaces 83 and 84 and the support surface 71 can be increased. Even if the surface roughness of the armature 42 is increased, the same effect as described above can be expected.
  • the means for increasing the restraining force is not limited to increasing the surface roughness. For example, when a minute projection is provided on at least one of the pressing surfaces 83 and 84 and the support surface 71, the projection bites into the armature 42, so the same effect as increasing the surface roughness can be expected.
  • Frictional force of a portion corresponding to the pressed portion 47 The pressed portion 47 of the armature 42 is buckled around the groove 44 when a force to the outside shown by the arrow y is strong at the time of narrowing processing. There is a risk that plastic flow will occur. In order to prevent this, it is preferable that the constraining force in the planar direction be increased to facilitate processing of the pressed portion 47 downward. Therefore, it is recommended that the surface of the pressing portion 61 of the pressing die 60 have a coefficient of friction with the armature 42 raised. For that purpose, means of increasing the surface roughness of the surface of the pressing portion 61 or coating a material having a large coefficient of friction can be applied.
  • the coefficient of friction of the surface of the recess 72 of the lower die 70 when the coefficient of friction of the surface of the recess 72 of the lower die 70 is lowered, the deformation of the pressed portion 47 in the recess 72 becomes easy, and the desired plastic flow is easily obtained. Therefore, means for reducing the surface roughness of the portion, applying a lubricant to the portion, or coating with a material having a low coefficient of friction, such as a fluorocarbon resin, can be applied.
  • the coefficient of friction of the surface of the depression 72 is relatively lowered than the surface of the pressing portion 61.
  • the pressing part 61 of the said embodiment has a shape which protrudes downward, it can also be set as the flat pressing part 61, as shown in FIG. If the pressing portion 61 is flat, the component in the plane direction of the pressing force against the armature 42, in particular, the outward component becomes smaller, as in the case of flattening the entire support surface 71 of the lower die 70, and plastic flow is prioritized inward. Can be oriented.
  • (3) Control of Flow (Deformation) of Pressed Portion 47 In the present embodiment, the plastic flow occurs in the pressed portion 47, so that the width of the groove 44 can be narrowed, but the width is irregularly narrowed. It is desirable to avoid For that purpose, as shown in FIG.
  • a displacement restricting body 63 can be provided which protrudes from the top of the pressing portion 61.
  • the displacement restricting body 63 is formed in an arc shape along the top of the pressing portion 61 except for the position corresponding to the bridge 50.
  • the displacement restricting body 63 is inserted into the groove 44 of the armature 42 in the narrowing process as shown in FIG. 11B, so that the deformation of the pressed portion 47 inward in the planar direction is caused. regulate.
  • the displacement restricting body 63 is provided to the push-in die 60 is shown, but may be provided to the lower die 70 as described below, and a member independent of the push-in die 60 and the lower die 70 You can also
  • Both the upper and lower molds have a convex structure
  • a lower mold 65 provided with a projecting pressing portion 66 can be used as in the case of the push-in mold 60 corresponding to the upper mold.
  • a narrowed recess 42c is formed on both the front and back sides of the armature 42. Therefore, as shown in FIG. 13 (c), the surface is polished or the like to be flat so as to eliminate the recess 42c on one of the surfaces.
  • the narrow groove is realized by pressing the periphery of the groove using the armature material in which the groove is formed from the beginning, the present invention is not limited to this method, and the armature provided with the narrow groove. Can be produced.
  • the gist of the third embodiment is to form a groove using a punching die after thinning a region where the groove of the armature material 42r is to be formed and the periphery thereof.
  • a third embodiment will be described based on FIG. 14 and FIG. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the third embodiment comprises a thinning process (FIGS. 14A and 14B) of the armature material 42r and a punching process (FIGS. 14C and 14D).
  • the thinning process is performed using the push die 90, the lower die 95, and the press die 80.
  • the pressing die 90 has a hollow cylindrical shape, and a pressing portion 91 is formed on one end side in the axial direction.
  • the pressing portion 91 is formed to have a central portion excluding the inner peripheral edge and the outer peripheral edge as the top.
  • a slit 96 extending in the thickness direction of the lower mold 95 is formed instead of the recess 72 of the lower mold 70 of the first embodiment.
  • the slits 96 are formed along the circumferential direction of the lower mold 95.
  • the positions of the pressing die 90 and the lower die 95 are determined relative to each other such that the center in the width direction of the pressing portion 91 and the center in the width direction of the slit 96 coincide with each other.
  • the pressing die 80 includes an inner cylindrical portion 81 and an outer cylindrical portion 82 as in the second embodiment.
  • the pressing die 90 is lowered to locally thin the armature material 42r (FIG. 13 (a ), (B)).
  • the armature material 42 r is thinned at the side facing the push-in die 90, and the part where the flow is generated enters the slit 96 at the side facing the lower die 95.
  • the push-in die 90 and the presser die 80 are retracted and the width of the slit 96 of the lower die 95 is increased.
  • the punching die 98 is disposed to face the thin portion 48 of the armature material 42r and then lowered to form the groove 44 (FIGS. 14 (c) and (d)).
  • a thin portion 48 based on the thinning process is provided around the groove 44.
  • the thickness of the thin portion 48 is continuously increased toward both sides in the width direction.
  • the punching resistance is reduced and the processability of the narrow groove 44 is improved.
  • the punching step is the final step, high dimensional accuracy can be obtained for the grooves 44 without processing.
  • the third embodiment flattens the bottom of the thin portion 48, this is only a preferred form, and includes a form in which the thickness changes continuously as in the periphery of the thin portion 48.
  • the thin portion 48 has a surface area larger than the opening area of the groove 44.
  • the upper die 100 having the functions of both the pressing die 90 and the punching die 98 can be used as described below.
  • the upper mold 100 is composed of three elements, an inner cylindrical portion 101, a middle cylindrical portion 102, and an outer cylindrical portion 103, which are arranged in order from the inside.
  • the middle cylinder portion 102 can be raised and lowered independently with respect to the inner cylinder portion 101 and the outer cylinder portion 103.
  • the inner cylindrical portion 101, the middle cylindrical portion 102 and the outer cylindrical portion 103 operate in synchronization with the armature material 42r to form the thin portion 48. Do.
  • the inner cylinder portion 101, the middle cylinder portion 102 and the outer cylinder portion 103 are once raised and retracted from the armature material 42r, and then the middle cylinder portion 102 is lowered as shown in FIG. And punch out. That is, the middle cylinder portion 102 functions as a punching die.
  • the fourth embodiment is summarized in that the groove is formed using a punching die after thinning the area where the groove of the armature material 42r is to be formed and the periphery thereof.
  • a fourth embodiment will be described based on FIGS.
  • the same components as those in the first and third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the fourth embodiment includes a thinning process (FIGS. 16A and 16B) of the armature material 42r and a punching process (FIGS. 16C and 16D).
  • the thinning process is performed using the pressing die 110 and the lower die 115.
  • the pressing die 110 has a hollow cylindrical shape, and the pressing portion 111 is formed on one end side in the axial direction.
  • the pressing portion 111 can be formed into a shape having a flat surface, and can also be formed into a shape with the central portion in the radial direction as the top.
  • the lower mold 115 is divided in the radial direction, and is composed of an inner mold 115a disposed inside the divided position and an outer mold 115b disposed outside the divided position.
  • the inner mold 115a and the outer mold 115b are in contact with each other in the thinning process, but are configured such that spaces 116 are formed between each other in the punching process.
  • the relative positions of the pressing die 110 and the lower die 115 are determined such that the center in the width direction of the pressing portion 111 and the center in the width direction of the space 116 coincide.
  • the pusher die 110 is lowered with respect to the armature material 42r supported by the lower die 115 to locally thin the armature material 42r (FIGS. 16A and 16B). At this time, the armature material 42r is thinned at a portion facing the pressing portion 111, and flows around the pressing die 110 to generate a protrusion 130.
  • the push-in mold 110 is retracted, and the inner mold 115 a and the outer mold 115 b of the lower mold 115 are separated from each other to form a space 116.
  • the punching die 98 is disposed opposite to the thin portion 48 of the armature material 42r, it is lowered to form a groove 44 (FIGS. 16 (c) and (d)).
  • a thin portion 48 based on the thinning process is provided around the groove 44. The thickness of the thin portion 48 is continuously increased toward both sides in the width direction.
  • the bumps 130 produced in the thinning step are removed by cutting, for example, and flattened. Removal of the ridges 130 may occur after the stamping step, but may also occur prior to the stamping step. The removal of the ridges 130 can be performed by machining such as polishing and pressing other than cutting.
  • the punching resistance is lowered and the processability of the narrow groove 44 is improved. Further, also in the fourth embodiment, since the punching step is the final step, high dimensional accuracy can be obtained for the groove 44 without further processing.
  • the bottom of the thin-walled portion 48 is flat, but this is only a preferred form, and the thickness changes continuously like the periphery of the thin-walled portion 48. Including the form. However, in consideration of obtaining processability by thinning, as shown here, it is preferable to use a thin portion 48 with a flat bottom.
  • the thin portion 48 has a surface area larger than the opening area of the groove 44.
  • the pressing mold 120 can be used together with the punching mold 117.
  • the pressing die 120 includes a cylindrical inner cylindrical portion 121 and a hollow cylindrical outer cylindrical portion 122, and the inner cylindrical portion 121 is coaxially disposed inside the outer cylindrical portion 122.
  • the punching die 117 is disposed between the inner cylindrical portion 121 and the outer cylindrical portion 122, and is disposed slidably in the axial direction with respect to the inner cylindrical portion 121 and the outer cylindrical portion 122. That is, the punching die 117 and the pressing die 120 can be moved up and down independently.
  • the punching accuracy can be improved by disposing the punching die 117 so as to face the thin portion 48 of the armature material 42 while restraining the armature material 42r with the presser die 120 and lowering the punching die 117 for punching.
  • the punching process is performed. (FIG. 18 (c), (d)) can also be performed. Removal of the ridges 130 of the armature material 42r may be performed after the punching process, but may be performed before the punching process. Also in this case, it goes without saying that the pressing die 120 can be used together with the punching die 117.
  • the lower mold 115 having a divided structure is used in the example described above, for example, a single lower mold as shown in FIGS. 9A and 9B can be used.
  • the single lower die is retracted before the punching step, and another lower die having a space through which the punching die 98 can be inserted is disposed, and then the punching step may be performed. it can.
  • the configuration of the scroll compressor 10 has been described, but the configuration of the other parts other than the configuration related to the main part of the present invention is not limited at all.
  • the pressing die 60 is integrally formed, it may be a die divided in the circumferential direction.
  • the bridge 50 becomes narrow after the narrowing processing. Therefore, in the armature 42 at the material stage to be subjected to the narrowing process, it is preferable to make the size of the bridge 50 wider than the design value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Forging (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

 アーマチャ及びロータの外径を大きくすることなく、アーマチャとロータの接触面積を増やすことでアーマチャとロータとの吸引力を増加させることのできる電磁クラッチを提供する。アーマチャ42のロータ接触面46aが、アーマチャ42と同心状に形成された磁束遮断用の環状の溝44によって、径方向に複数のリング形状に分割され、電磁コイルの磁力によりアーマチャ42をロータ43の接触面に吸引し、両者を一体結合させて動力を伝達する電磁クラッチにおいて、アーマチャ42は、幅がw1とされた溝44が形成されたアーマチャ素材42を得る素材作製工程と、アーマチャ素材42の溝44の周囲の被押圧部47に、押圧力を付与してアーマチャ素材42の平面方向に塑性流動を起こさせることで、溝の幅をw1よりも小さいw2に狭小化する狭小化加工工程と、を経て作製される。

Description

電磁クラッチ及び電磁クラッチのアーマチャ製造方法
 本発明は、たとえば車両用空調装置等に適用されて動力の伝達を行う電磁クラッチのアーマチャの改良に関するものである。
 従来、車両用空調装置に用いられる圧縮機は、駆動源との間に配設して動力の伝達を行う電磁クラッチを備えている。
 電磁クラッチは、電磁力により動力の伝達、もしくは非伝達を選択して行なうことができ、たとえば図19に示すように、電磁コイル1の磁力によりアーマチャ(armature)2をロータ(rorter)3へ吸引することで、アーマチャ2とロータ3とを一体に結合させて動力の伝達を行うように構成されている(例えば、特許文献1参照。)。図示の構成例では、アーマチャ2の半径方向幅が2分割され、かつ、ロータ3の半径方向幅が3分割されることにより、アーマチャ2とロータ3との接触面(ギャップ)4は、半径方向に4分割されたものとなる。なお、以下の説明では、接触面4のロータ3側についてはアーマチャ接触面4aと呼び、アーマチャ2側についてはロータ接触面4bと呼ぶことにする。
 また、ロータ3のアーマチャ接触面4aは、たとえば図20(a)に示すように、半径方向が2本の溝幅をaとした溝5によって3分割され、内周リング3a、中央リング3b及び外周リング3cが形成されている。そして、2本の溝5は、内周リング3a、中央リング3b及び外周リング3cを繋ぐブリッジ6により、円周方向が複数箇所で分断されている。
 また、アーマチャ2の半径方向についても、たとえば図20(b)に示すように、溝幅をbとした溝7により内周部2a及び外周部2bに2分割されている。そして、アーマチャ2側の溝7についても、内周部2a及び外周部2bを繋ぐブリッジ8により、円周方向が複数に分断されている。この場合のアーマチャ2は、板状素材から打ち抜き加工により作製される。
 溝5、7は、よく知られているように、磁束又は磁気を遮断するために形成されており、磁気ギャップとも称される。
特開2003-314584号公報
 上述した従来の電磁クラッチは、アーマチャ2とロータ3との間に十分な吸引力を確保できない場合には、トルク伝達能力の余裕が減少する。すなわち、吸引力不足に起因してトルク伝達能力の余裕が減少するような場合には、アーマチャ2とロータ3との間に滑りが発生するという問題を有している。
 この問題に対して、アーマチャ2とロータ3の接触面積を増大させることが考えられる。そのためには、アーマチャ2及びロータ3の外径を大きくすればよいが、電磁クラッチの外径寸法が大きくなるため好ましくない。
 本発明は、このような課題に基づいてなされたもので、アーマチャ及びロータの外径を大きくすることなく、アーマチャとロータの間の吸引力を増加させることのできる電磁クラッチのアーマチャ製造方法及び電磁クラッチを提供することを目的とする。
 アーマチャ2とロータ3の接触面積を増大させるには、アーマチャ及びロータの外径を大きくする以外に、アーマチャ2の溝7の幅を狭くすればよいことは容易に予測できる。この溝7は、従来、打ち抜き加工により成形されている。ところが、溝7の幅が狭くなるとその分だけ打ち抜き型の剛性が不足して欠けやすくなるので、量産を前提にすると、溝幅を狭くするのには限界があった。もちろん、打ち抜き型を頻繁に取り替えれば、幅の狭い溝を成形することは可能であるが、アーマチャの製造コストが著しく高くなる。
 本発明者は、圧力を付与することでアーマチャ素材を部分的に薄肉化することが、打ち抜き型の負担を抑えながら、量産においても幅の狭い溝を無理なく成形できることを知見した。この薄肉化は少なくとも二つの形態を含んでいる。
 一つ目の形態は、始めに、アーマチャ素材に磁気ギャップとなる、打ち抜きにより、幅の広い溝を形成する。次に、その溝の周囲に押圧力を付与することで、溝の幅を狭くする。つまり、溝の周囲に塑性流動を起こさせることで溝の幅を狭くし、その分だけアーマチャとロータの接触面積を増大させるのである。打ち抜きで形成するのは幅の広い溝であるから、剛性の高い打ち抜き型を用いることができるので、打ち抜き型の負担を抑えることができる。
 二つ目の形態は、始めに、溝の形成が予定され領域に押圧力を付与することで、アーマチャ素材に局部的に薄肉化された領域を形成する。次に、打ち抜きにより磁気ギャップとなる幅の狭い溝を形成する。当該領域は、薄肉化されているので、打ち抜き型への抵抗が小さい。したがって、幅が狭く剛性の低い打ち抜き型を用いても、付与される負担を抑えることができる。
 以上の通りであり、二つの形態ともに、量産において幅の狭い溝を無理なく成形できる。
 そこでなされた本発明の電磁クラッチは、アーマチャのロータ接触面が、当該アーマチャと同心状に形成された磁束遮断用の環状の溝によって、径方向に複数のリング形状に分割され、電磁コイルの磁力によりアーマチャをロータの接触面に吸引し、前記アーマチャと前記ロータとを一体結合させて動力を伝達するものである。
 この電磁クラッチは、アーマチャが、ロータ接触面に形成された溝の周囲に、当該周囲に隣接するアーマチャの外周側周囲よりも肉厚の薄い薄肉部を備えていることを特徴とする。つまり、この電磁クラッチは、溝の周囲に向けて肉厚が薄くなる薄肉部を備えている。
 このアーマチャは、上述した一つ目の形態によるものである。
 本発明の電磁クラッチにおける次の特徴としては、ロータ接触面に形成された溝が、溝の幅方向の中央に向けて塑性流動されたアーマチャの周縁により区画される。
 このアーマチャは、塑性流動されたアーマチャの周縁である被押圧部は、その周囲よりも厚さが薄い、という形状的な特徴を備えている。
 本発明にかかる電磁クラッチのアーマチャは、上述したように二つの形態により製造できるが、いずれもアーマチャ素材が局部的に薄肉化されている。すなわち本発明による電磁クラッチのアーマチャの製造方法は、アーマチャのロータ接触面が、当該アーマチャと同心状に形成された磁束遮断用の環状の溝によって、径方向に複数のリング形状に分割され、電磁コイルの磁力によりアーマチャをロータの接触面に吸引し、アーマチャとロータとを一体結合させて動力を伝達する電磁クラッチのアーマチャの製造方法に関し、溝が形成される周囲の領域が薄肉化されたアーマチャ素材を用いて作製されることを特徴とする。
 上述した一つ目の形態は、幅がw1の溝が形成されたアーマチャ素材を得る素材作製工程と、アーマチャ素材の溝の周囲の被押圧部に、押圧力を付与してアーマチャ素材の平面方向に塑性流動を起こさせることで、溝の幅をw1よりも小さいw2に狭小化する狭小化加工工程と、を経て作製されることを特徴とする。
 一つ目の形態によれば、溝の幅を狭くすることで、アーマチャ及びロータの外径を大きくすることなく、アーマチャとロータの間の吸引力を増加できる。しかも、素材作製工程においては、打ち抜き型の剛性が不足しない範囲で打ち抜きにより幅w1の溝を形成すればよいのでコストの上昇を伴わず、その後の押圧力を付与する狭小化加工は低コストで済むから、本発明によれば、コストの上昇を最小限に抑えることができる。
 本発明の狭小化加工工程において、押圧力を付与する方法は任意であるが、下型の支持面に支持されたアーマチャに、被押圧部に対応する押圧部を備える押込み型を押し付けることができる。この方法は、二つの対向する型を同軸上で相対的に接近、離間させる簡易な機構で実現できる。なお本発明において、他の方法として、下型に支持されたアーマチャの被押圧部をローラ状の工具を用いて押圧力を付与することもできる。
 押込み型及び下型を用いて押圧力を付与する場合、アーマチャを支持する下型の支持面は、アーマチャの被押圧部に対応する部位に窪みが形成されていてもよいし、アーマチャの被押圧部に対応する部位を含め平坦に形成されていてもよい。
 また本発明の狭小化加工工程において、押込み型の周囲に設けられる押さえ型と、下型と、により挟むことでアーマチャを拘束しながら、押込み型により押圧力を被押圧部に付与することが好ましい。被押圧部に生ずる塑性流動が、溝の幅方向の中央に向かうように規制する効果が得られる。
 押さえ型を用いる場合には、下型の支持面、及び、押さえ型がアーマチャと接触する面、の一方又は双方に、摩擦力増加処理が施されていることが、その効果を顕著にする上で好ましい。ただし、この場合、被押圧部に対応する部位は摩擦力増加処理の対象から除かれる。被押圧部は、逆に、摩擦力が低いほうが、塑性流動が生じやすいからである。そこで、押込み型の押圧部、及び、下型における被押圧部に対応する部位、の一方又は双方に、摩擦力低減処理を施すことが好ましい。
 本発明において、押込み型の押圧部は、アーマチャとの接触部位が、湾曲していてもよいし、平坦な形状をしていてもよい。例えば、くぼみがある下型には湾曲した形状の押圧部を有する押込み型が好ましく、支持面の全面が平坦な下型には平坦な形状の押圧部を有する押込み型が好ましい。
 上述した二つ目の形態は、溝の形成が予定される領域である被押圧部に押圧力を付与することで、アーマチャ素材に局部的に薄肉部を形成する薄肉化工程と、薄肉部を打ち抜き型で打抜いて溝を形成する打ち抜き工程と、を経てアーマチャが作製されることを特徴とする。
 二つ目の形態においては、薄肉化工程における押圧力が、下型の支持面に支持されたアーマチャ素材に、被押圧部に対応する押圧部を備える押込み型を押し付けることにより付与されるものとし、さらに、下型には、押込み型を押し付けることでアーマチャ素材に生ずる塑性流動を受け入れるスリットが形成されていることが好ましい。薄肉化を容易にするためである。
 二つ目の形態において、薄肉化工程を行う押込み型と打ち抜き工程を行う打ち抜き型とを異なる型で行うことができるが、押込み型を、その一部が打ち抜き型を兼ねる分割構造をなしていることが好ましい。薄肉化工程と打ち抜き工程とで型替えを行う必要がなくなるので、加工時間を短縮できる。
 本発明によれば、溝の幅を狭くすることで、アーマチャ及びロータの外径を大きくすることなく、アーマチャとロータの間の吸引力を増加できる。しかも、素材作製工程においては、剛性が不足しない範囲で打ち抜きにより溝を形成すればよいのでコストの上昇を伴わない。加えて、上述した一つ目の形態によれば、その後の押圧力を付与する狭小化加工は低コストで済むから、コストの上昇を最小限に抑えることができる。また、二つ目の形態によれば、打ち抜き工程が最終工程になるので、その後に加工を施すことなく、高い寸法精度の溝が得られる。
本実施の形態における電磁クラッチを備えたスクロール型圧縮機の構成例を示す縦断面図である。 電磁クラッチの斜視断面図である。 (a)はアーマチャの平面図、(b)はロータの平面図である。 アーマチャとロータの圧着部分を示す拡大断面図である。 第1実施形態によるアーマチャの溝幅狭小化の手順を示す拡大部分断面図である。 第1実施形態によるアーマチャの溝幅狭小化に用いる押込み型を示す図であり、(a)は平面図、(b)は(a)の6b-6b矢視断面図である。 第2実施形態によるアーマチャの溝幅狭小化の手順を示す拡大部分断面図である。 第2実施形態によるアーマチャの溝幅狭小化に用いる押込み型を示す図であり、(a)は平面図、(b)は(a)の8b-8b矢視断面図である。 変形例によるアーマチャの溝幅狭小化の手順を示す拡大部分断面図である。 変形例によるアーマチャの溝幅狭小化の手順を示す拡大部分断面図である。 変形例によるアーマチャの溝幅狭小化の手順を示す拡大部分断面図である。 変形例による下型を示す拡大部分断面図である。 変形例による下型の他の例を示す拡大部分断面図である。 第3実施形態によるアーマチャの製造手順を示し、(a)、(b)は薄肉化工程を、(c)、(d)は打ち抜き工程を示す。 第3実施形態の変形例を示す拡大部分断面図である。 第4実施形態によるアーマチャの製造手順を示し、(a)、(b)は薄肉化工程を、(c)、(d)は打ち抜き工程を示す。 第4実施形態によるアーマチャの製造手順を示し、(a)、(b)は薄肉化工程を、(c)、(d)は図16(c),(d)に示す打ち抜き工程において、押さえ型を用いた場合を示す。 第4実施形態によるアーマチャの製造手順を示し、(a)、(b)は薄肉化工程を、(c)、(d)は図16(c),(d)に示す打ち抜き工程において、アーマチャ素材の隆起を下型に対向させた配置した場合を示す。 従来の電磁クラッチの斜視断面図、およびアーマチャとロータの圧着部分を示す拡大断面図である。 (a)は従来のロータの平面図、(b)はアーマチャの平面図である。
 以下、本発明による電磁クラッチ及びこれを備えた圧縮機について、その一実施形態を図面に基づいて説明する。
 図1は、電磁クラッチを備えたスクロール型圧縮機の構成例を示す縦断面図である。このスクロール型圧縮機(圧縮機)10は、フロントハウジング11とリアハウジング12とを備え、これらフロントハウジング11とリアハウジング12とをボルト(図示せず)により一体的に締め付け固定したハウジング13を備えている。
 フロントハウジング11の内部には、メイン軸受(ニードル軸受)15及びサブ軸受(ニードル軸受)16を介してクランク軸(回転軸)14がその回転軸線L回りに回転自在に支持されている。クランク軸14の一端側(図1において左側)は小径軸部14aとされ、この小径軸部14aは、フロントハウジング11を貫通して一端側に突出している。小径軸部14aの突出部には、電磁クラッチMが装着され、フロントハウジング11の一端側の小径ボス部11aの外周面に軸受17を介して回転自在に設けられているプーリー18との間で動力が断続されるようになっている。プーリー18には、図示していないエンジン等の外部駆動源からVベルト等を介して動力が伝達されることとなる。
 なお、メイン軸受15とサブ軸受16との間には、メカニカルシール(リップシール)19が設けられており、これによってハウジング13内と大気との間を気密にシールしている。
 一方、クランク軸14の他端側(図1において右側)には、大径軸部14bが設けられており、この大径軸部14bには、クランク軸14の回転軸線Lよりも所定寸法だけ偏心した状態で偏心ピン14cが一体に設けられている。そして、これらクランク軸14の大径軸部14b及び小径軸部14aが、それぞれメイン軸受15及びサブ軸受16を介してフロントハウジング11に回転自在に支持されることとなる。
 また、偏心ピン14cには、バランスブッシュ20及びドライブ軸受21を介して、旋回スクロール部材22が連結されており、クランク軸14が回転されることにより、旋回スクロール部材22が旋回駆動されるようになっている。
 バランスブッシュ20には、旋回スクロール部材22が旋回駆動されることにより生じるアンバランス荷重を除去するためのバランスウェイト20aが形成されており、旋回スクロール部材22の旋回駆動とともに旋回されるようになっている。
 ハウジング13の内部には、スクロール型圧縮機構23を構成する一対の固定スクロール部材24と旋回スクロール部材22が組み込まれている。
 固定スクロール部材24は、固定端板24aと、この固定端板24aから立設された渦巻き状ラップ24bとを備えており、一方、旋回スクロール部材22は、旋回端板22aと、この旋回端板22aから立設された渦巻き状ラップ22bとを備えている。
 固定スクロール部材24及び旋回スクロール部材22は、各々の中心を旋回半径分だけ離すとともに、渦巻き状ラップ24b、22bどうしが180度位相をずらせて噛み合わせた状態で組み込まれる。これによって、両スクロール部材24、22間には、端板24a、22aと渦巻き状ラップ24b、22bとにより区画された(仕切られた)一対の圧縮室Cがスクロールの中心に対して対称に形成されることとなる。
 固定スクロール部材24は、ボルト25を介してリアハウジング12の内面(底面)に固定されている。旋回スクロール部材22は、旋回端板22aの背面に設けられているボス部26に、クランク軸14の一端側に設けられている偏心ピン14cが、バランスブッシュ20及びドライブ軸受21を介して嵌め込まれることによりクランク軸14に連結されている。
 また、旋回スクロール部材22は、フロントハウジング11に形成されているスラスト受け面11bに旋回端板22aの背面が支持されており、このスラスト受け面11bと旋回スクロール部材22の背面との間に介装される自転阻止用ピンリング機構27により、旋回スクロール部材22は、自転を阻止されながら固定スクロール部材24に対して公転旋回駆動されるように構成されている。
 この自転阻止用ピンリング機構27は、ピン27aとリング27bとを備えており、旋回スクロール部材22の旋回端板22aの背面またはスラスト受け面11bの一方にピン27aを立てるピン穴11cが、他方にリング27bを嵌合するリング穴22cが設けられている。本実施形態では、スラスト受け面11bにピン27aを立てるピン穴11cが設けられ、旋回スクロール部材22にリング27bを嵌めるリング穴22cが設けられている。
 なお、これらピン穴11c及びリング穴22cは、周方向に複数箇所、一般的には3ないし4箇所(本実施形態では4箇所)設けられている。
 さらに、固定スクロール部材24の固定端板24aの中央部には、圧縮された冷媒ガスを吐出する吐出ポート24cが開口されており、この吐出ポート24cには、固定端板24aにリテーナ28を介して取り付けられる吐出リード弁(図示せず)が設けられている。
 また、固定スクロール部材24の固定端板24aの背面には、リアハウジング12の内面に密接されるようOリング等のシール部材(図示せず)が設置され、リアハウジング12との間でハウジング13の内部空間(密閉空間)から区画された吐出チャンバー29が形成されている。これにより、吐出チャンバー29を除くハウジング13の内部空間が、吸入チャンバー30として機能するようになっている。
 吸入チャンバー30には、フロントハウジング11に設けられている吸入口(図示せず)を介して冷凍サイクルから戻ってくる冷媒ガスが吸入され、この吸入チャンバー30を経て固定スクロール部材24と旋回スクロール部材22との間に形成される圧縮室Cに冷媒ガスが吸い込まれるようになる。
 なお、フロントハウジング11とリアハウジング12との間の接合面には、Oリング等のシール部材31が設置され、ハウジング13内の吸入チャンバー30を大気から気密にシールしている。
 さて、上述したスクロール型圧縮機10は、圧縮機構のクランク軸14に装着されて動力を伝達する電磁クラッチMを備えている。この電磁クラッチMは、電磁コイル41の磁力により磁性体のアーマチャ42をロータ43の接触面に吸引し、アーマチャ42とロータ43とを一体結合させて動力を伝達するものである。
 本実施形態の電磁クラッチMは、たとえば図2、図3(a)に示すように、アーマチャ42の半径方向が、幅bとしてアーマチャ42の表裏を貫通する溝(中間溝)44により2分割され、内周リング42a、外周リング42bを形成している。そして、溝44は、内周リング42aおよび外周リング42bを繋ぐブリッジ50により、円周方向が複数箇所で分断されている。ブリッジ50により分割された溝44は、それぞれが溝幅をbとする同一幅の円弧を形成している。
 また、本実施形態の電磁クラッチMは、たとえば図2、図3(b)に示すように、ロータ43の半径方向が幅aとした2本の溝(内周溝)45A、溝(外周溝)45Bにより3分割され、内周リング43a、中央リング43b及び外周リング43cを形成している。そして、2本の溝45A、45Bは、内周リング43a、中央リング43b及び外周リング43cを繋ぐブリッジ51A、51Bにより、円周方向が複数箇所で分断されている。ブリッジ51A、51Bにより分割された溝45A、45Bは、それぞれが溝幅をaとする同一幅の円弧を形成している。
 このようにして形成される溝44、45A、45Bにより、アーマチャ42のロータ接触面46aとロータ43のアーマチャ接触面46bは、ロータ43の内周リング43aがアーマチャ42の内周リング42aに対向する環状の第一接触面A1と、アーマチャ42の内周リング42aがロータ43の中央リング43bに対向する環状の第二接触面A2と、アーマチャ42の外周リング42bがロータ43の中央リング43bに対向する環状の第三接触面A3と、ロータ43の外周リング43cがアーマチャ42の外周リング42bに対向する環状の第四接触面A4とで、互いに吸引力を発生させる。
 ここで、第一接触面A1、第二接触面A2、第三接触面A3、第四接触面A4は、その吸引力が均等になるよう、その環状のエリアの面積が互いにほぼ等しくなるように溝44、45A、45Bを形成するのが好ましい。また、アーマチャ42とロータ43とが互いに吸引したときの回転トルクに対する力を高めるために、第一接触面A1、第二接触面A2、第三接触面A3、第四接触面A4のうち、最外周の第四接触面A4の面積が最大となるようにしても良い。
 本実施形態は、図4に示すように、アーマチャ42は、図中の上面における溝44の周囲がテーパ状の窪み42cを備えている。この薄肉化された窪み42cは、溝44の幅方向の中心に向けて溝44の周囲を塑性流動(又は塑性変形)することにより形成される。そして、溝44は、塑性流動する前に比べて、幅が狭くなっている。
[第1実施形態]
 以下、この溝44の幅を狭くする狭小化加工の第1実施形態を図5、図6に基づいて説明する。
 図5、図6に示すように、溝44の幅を狭くするために、押込み型60及び下型70を用意する。
 押込み型60は、図6に示すように、中空円筒状をなしており、軸線方向の一端側に押圧部61が形成される。押圧部61は、径方向の中央部を頂部とする山形状に形成されている。
 下型70は、リング状をなしており、支持面71に窪み72が形成されている。窪み72は周方向に沿って形成されており、幅方向の中央部を頂部とする山形状に窪んでいる。
 押込み型60及び下型70は、図5(a)に示すように、突出の頂点と窪みの頂点とを一致させ、かつ、これら頂点とアーマチャ42(アーマチャ素材)の溝44の幅方向の中央が一致するように配置されて、溝44の狭小化加工をアーマチャ42に施す。なお、図5(a)は、理解を容易にするために、アーマチャ42を下型70から離して示しているが、狭小化加工を行なう前に、アーマチャ42は下型70に載せられる。
 押込み型60及び下型70は、JIS SKD11に代表される冷間金型用鋼、及び冷間金型用鋼と同等以上の強度、耐摩耗性を備えた材料で構成される。これら材料は、アーマチャ42を構成する磁性材料に比べて、硬度及び強度が高い。
 さて、アーマチャ42の溝44は、狭小化加工前(アーマチャ素材)の溝44の幅がw1、厚さがt1とされている。溝44は、アーマチャ42の素材を打ち抜き加工することで形成される。前述したように工業的な生産規模において、打ち抜き加工で形成できる溝44の限界幅は2mm程度である。本実施形態は、打ち抜き加工で形成された溝44の幅w1を押込み型60及び下型70を用いた狭小化加工によって狭くする。
 そのために、下型70により支持されたアーマチャ42に対して押込み型60を下降させる(図5(b))。押込み型60の押圧部61がアーマチャ42の表面に触れ、さらに押込み型60を下降させると、押圧部61に接する溝44の周囲の被押圧部47は、押込み型60と下型70に挟まれて加圧力を受けて厚さがt1より薄いt2になる。被押圧部47は薄肉化された分だけ溝44の幅方向の中央に向けて延びる。このように被押圧部47が塑性流動を起こすことで狭小化された溝44は、塑性流動された被押圧部47、つまりアーマチャ42の周縁により区画され、その幅w2は例えば0.5~1.5mm程度とされる。
 狭小化加工されたアーマチャ42は、押込み型60の押圧部61及び下型70の窪み72の形状に倣い、被押圧部47がロータ接触面46の側が突出する。そのままでは、ロータ43のアーマチャ接触面46bと干渉してしまうので、図5(c)に示すように、ロータ接触面46aと面一になるように、突出部分を例えば切削により除去して平坦にする。突出部分の除去は、切削の他に、研磨、プレスといった機械加工を適用することができる。また、狭小化加工された側の面を、被押圧部47の窪みをなくして平坦に機械加工することもできる。つまり、本発明は、狭小化加工された後に、被押圧部47が属する表面、及び、表面と対向する裏面の一方又は双方を平坦に加工することを許容する。
 以上説明したように、本実施形態によれば、当初は打ち抜き加工で無理のない幅で溝44を形成しておき、その後、溝44の周囲を塑性流動させることで溝幅を狭小化させるが、狭小化は押込み型60及び下型70により押圧力を負荷するものであるから、これら型の寿命は打ち抜き型に比べて長い。したがって、本実施形態によると、コストの上昇を抑えながらも、アーマチャ42及びロータ43の外径を大きくすることなく両者の接触面積を増大させることで、アーマチャ42とロータ43との吸引力が増加された電磁クラッチMが提供される。
[第2実施形態]
 次に、狭小化加工の第2実施形態を、図7、図8に基づいて説明する。なお、第1実施形態と同じ構成部分には、図7、図8に図5、図6と同じ符号を付して、その説明を省く。
 第2実施形態は、押込み型60、下型70に加えて、押さえ型80を用いる。押さえ型80は、円柱状の内筒部81と、中空円筒状の外筒部82と、を備え、内筒部81は外筒部82の内部に同軸状に配置される。押込み型60は、内筒部81と外筒部82の間に配置され、内筒部81と外筒部82に対して、軸線方向に摺動可能に配置される。つまり、押込み型60と押さえ型80は、各々独立して昇降が可能である。なお、内筒部81の外径と押込み型60の内径は、及び、外筒部82の内径と押込み型60の外径は、この摺動を許容する寸法に仕上げられる。また、押さえ型80も、押込み型60、下型70と同様の材料で構成すればよい。
 さて、第2実施形態は、アーマチャ42を下型70の所定位置に載せた後に、押込み型60はアーマチャ42から離したままにして、押さえ型80のみを降ろしてアーマチャ42を下型70とともに挟む。これにより、アーマチャ42は機械的に拘束される。
 次に、押さえ型80と下型70でアーマチャ42を拘束したままで、押込み型60を下降させてアーマチャ42の溝44の周囲を薄肉化することで溝44の幅を狭くする。この狭小化加工の作用は第1実施形態と同じである。
 第2実施形態が第1実施形態と異なるのは、アーマチャ42が上記のように拘束されている点である。そのため、狭小化加工において、アーマチャ42は以下の挙動を示す。
 狭小化加工の際に、アーマチャ42が押込み型60で押圧されると、被押圧部47及びその周囲に溝44よりも矢印yで示す外側への力が加わり、被押圧部47及びその周囲には外側(矢印y)に向けて逃げが生じる。そうすると、塑性流動により得られる溝44の狭小化の一部が相殺される。そこで第2実施形態は、この逃げを生じさせないように、押さえ型80と下型70でアーマチャ42を平面方向に機械的に拘束するのである。このように、第2実施形態によると、狭小化加工の際の塑性流動の向きを溝44の中央に可能な限り限定することで、溝44の狭小化をより確実なものにする。
 第2実施形態は、その目的を果たすために、以下の要素を備えることが好ましい。
(1)押さえ型80と下型70によるアーマチャ42の拘束力向上
 押さえ型80(内筒部81、外筒部82)がアーマチャ42と接触する押圧面83、84の面粗度を大きくするか、又は、下型70がアーマチャ42と接触する支持面71の面粗度を大きくする。前述したように、押さえ型80及び下型70は、通常、アーマチャ42よりも高硬度である。したがって、面粗度を大きくすることで形成される表面の凹凸がアーマチャ42に接触することで、各々とアーマチャ42の間の摩擦力が大きくなり、狭小化加工の際の拘束力を大きくすることができる。もちろん、押圧面83、84及び支持面71の両者の面粗度を大きくすることができる。アーマチャ42の面粗度を大きくしても、以上と同様の効果が期待できる。
 拘束力を大きくする手段は、面粗度を大きくすることに限らない。例えば、押圧面83、84及び支持面71の少なくとも一方に微小な突起を設けると、この突起がアーマチャ42に食い込むので、面粗度を大きくするのと同様の効果が期待できる。
(2)被押圧部47に対応する部位の摩擦力
 アーマチャ42の被押圧部47は、狭小化加工の際に、矢印yで示す外側への力が強いと、溝44の周囲に座屈が生じ、塑性流動が妨げられるおそれがある。これを防止するためには、平面方向の拘束力を大きくして、被押圧部47が下向きに加工されやすくすることが好ましい。そこで、押込み型60の押圧部61の表面は、アーマチャ42に対する摩擦係数を上げることが推奨される。そのためには、押圧部61の表面の表面粗度を大きくする、あるいは、摩擦係数の大きい材料を被覆する、という手段を適用できる。
 一方、下型70の窪み72の表面の摩擦係数を下げると、被押圧部47の窪み72での変形が容易になり、所期の塑性流動が得られやすい。したがって、当該部位の表面粗度を小さくする、当該部位に潤滑剤を塗布する、あるいは、摩擦係数の低い材料、例えばフッ素樹脂で被覆する、という手段を適用することができる。
 このように、押圧部61の表面よりも窪み72の表面の摩擦係数を相対的に下げることが第1実施形態において好ましい。
[要素の変更例]
 以上説明した第1(第2)実施形態は、以下説明するように、その要素を変更することができる。
(1)下型70の支持面71の形状
 上記実施形態の下型70は、支持面71に窪み72を設けているが、これは本発明において必須ではない。つまり、図9に示すように、下型70の支持面71の全面を平坦な面のみで構成することができる。
 そうすることにより、上記実施形態では必要な狭小化加工の後の突出部分の除去工程を省くことができる。また、アーマチャ42に対する押圧力の平面方向、特に外向き(図中のyの向き)の成分が小さくなり、塑性流動を内側に優先的に向けることができる利点がある。
(2)押込み型60の押圧部61
 上記実施形態の押圧部61は、下向きに突出する形状を有しているが、図10に示すように、平坦な押圧部61とすることもできる。
 押圧部61が平坦だと、下型70の支持面71の全面を平坦にするのと同様に、アーマチャ42に対する押圧力の平面方向、特に外向きの成分が小さくなり、塑性流動を内側に優先的に向けることができる。
(3)被押圧部47の流動(変形)規制
 本実施形態は、被押圧部47に塑性流動が生じる結果、溝44の幅を狭くすることができるが、無秩序に幅が狭小化されるのを避けることが望ましい。そのために、図11に示すように、押圧部61の頂部から突出する変位規制体63を設けることができる。変位規制体63は、ブリッジ50に対応する位置を除いて、押圧部61の頂部に沿って円弧状に形成される。
 変位規制体63は、狭小化加工の際に、図11(b)に示すように、アーマチャ42の溝44の内部に挿入されることで、平面方向の内側への被押圧部47の変形を規制する。
 なお、変位規制体63は、ここでは押込み型60に設ける例を示したが、以下に説明するように下型70に設けてもよいし、押込み型60及び下型70とは独立した部材とすることもできる。
(4)下型70の分割構造
 特に下型70は、狭小化加工時に、窪み72の底部72aに応力が集中する。そこで、図12(a)に示すように、窪み72の底部72aで径方向に分割し、分割された位置よりも内側に配置される内型70aと、分割された位置よりも外側に配置される外型70bとで下型70を構成するとで、応力集中による亀裂発生を回避することができる。
 この場合、図12(b)に示すように、上記(3)の変位規制体63と同じ機能を果たすリング状の変位規制体70cを、内型70aと外型70bの間に設けることもできる。この変位規制体70cが欠損した場合には、それだけを交換すれば足りるので、下型70全体を交換するのに比べてコスト低減に寄与する。
(5)上・下型がともに凸構造
 図13(a)に示すように、上型に相当する押し込み型60と同様に突状の押圧部66を備える下型65を用いることができる。
 上・下の型ともに突状の押圧部61、66を備える場合、図13(b)に示すように狭小化された窪み42cが、アーマチャ42の表裏両面に形成される。そこで、図13(c)に示すように、いずれか一方の面は、窪み42cがなくなるように、表面を研磨などして平坦面にする。
[第3実施形態]
 以上では、溝が当初より形成されたアーマチャ素材を用い、溝の周囲を押圧することで幅の狭い溝を実現しているが、本発明はこの手法に限らず、幅の狭い溝を備えるアーマチャを作製できる。第3実施形態は、アーマチャ素材42rの溝の形成が予定される領域及びその周囲を薄肉化した後に、打ち抜き型を用いて溝を形成することを要旨とする。以下、第3実施形態を、図14、図15に基づいて説明する。なお、第1実施形態と同じ構成部分には、同じ符号を付して、その説明を省く。
 第3実施形態は、アーマチャ素材42rの薄肉化工程(図14(a),(b))と、打ち抜き工程(図14(c),(d))とからなる。
 薄肉化工程は、押し込み型90と、下型95と、押さえ型80とを用いて行なわれる。
 押し込み型90は、中空円筒状をなしており、軸線方向の一端側に押圧部91が形成される。押圧部91は、内周縁及び外周縁を除く中央部を頂部とする形状に形成されている。
 下型95は、第1実施形態の下型70の窪み72の代わりに、下型95の厚さ方向に延びるスリット96が形成されている。スリット96は下型95の周方向に沿って形成されている。
 押込み型90と下型95は、押圧部91の幅方向中央とスリット96の幅方向中央が一致するように相対的な位置が定められている。
 押さえ型80は、第2実施形態と同様に、内筒部81及び外筒部82とを備える。
 さて、第3実施形態は、押さえ型90と下型95によりアーマチャ素材42rを機械的に拘束した状態で、押込み型90を下降させてアーマチャ素材42rを局所的に薄肉化する(図13(a),(b))。このとき、アーマチャ素材42rは、押込み型90に対向する側が薄肉化するとともに、下型95に対向する側は流動を起こした部分がスリット96の中に入り込む。
 必要とされる薄肉化ができたならば、押込み型90及び押さえ型80を退避させるとともに、下型95のスリット96の幅を広げる。ついで、打ち抜き型98をアーマチャ素材42rの薄肉部48に対向して配置した後に下降させて溝44を形成する(図14(c)、(d))。こうして得られたアーマチャ42は、溝44の周囲に薄肉化工程に基づく薄肉部48が設けられる。この薄肉部48は、その幅方向の両側に向けて連続的に肉厚が厚くされている。
 第3実施形態は、溝44の形成が予定される領域を薄肉化することで、打ち抜きの抵抗を下げ、幅の狭い溝44の加工性を向上する。
 また、第3実施形態は、打ち抜き工程が最終工程になるので、その後に加工を施すことなく、溝44について高い寸法精度が得られる。
 第3実施形態は、薄肉部48の底を平坦にしているが、これは好ましい形態に過ぎず、薄肉部48の周囲のように厚さが連続的に変化する形態を包含する。ただし、薄肉化することで加工容易性を得ることを考慮すると、ここで示したように、底が平坦な薄肉部48とすることが好ましい。この薄肉部48は、溝44の開口面積よりも広い表面積を有している。
 以上説明した例では、押し込み型90と打ち抜き型98を独立して用意したが、以下説明するように、押し込み型90と打ち抜き型98の両方の機能を備える上型100を用いることができる。
 上型100は、図15に示すように、内側から順に配列される内筒部101、中筒部102及び外筒部103と3つの要素からなる。中筒部102は、内筒部101及び外筒部103に対して、独立して昇降が可能とされる。
 薄肉化工程においては、図15(a)に示すように、内筒部101、中筒部102及び外筒部103が同期してアーマチャ素材42rに対して動作することで、薄肉部48を形成する。
 打ち抜き工程においては、内筒部101、中筒部102及び外筒部103を一旦上昇させてアーマチャ素材42rから退避させたのちに、図15(b)に示すように、中筒部102を下降して打ち抜きを行う。つまり、中筒部102は打ち抜き型として機能する。
 上型100を内筒部101、中筒部102及び外筒部103に分割し、中筒部102に打ち抜き型の機能を持たせる変形例においても、第3実施形態と同様の効果を奏するのに加えて、打ち抜き型を個別に設ける必要がない。また、第3実施形態のように押し込み型90を加工領域外に退避させるのに比べると、この変形例は薄肉化工程から打ち抜きか工程への移行を迅速に行える。したがって、本変形例は、加工時間の短縮を通じて製造コストを低減できる。
[第4実施形態]
 第4実施形態は、第3実施形態と同様に、アーマチャ素材42rの溝の形成が予定される領域及びその周囲を薄肉化した後に、打ち抜き型を用いて溝を形成することを要旨とする。以下、第4実施形態を、図16~18に基づいて説明する。なお、第1実施形態および第3実施形態と同じ構成部分には、同じ符号を付して、その説明を省く。
 第4実施形態は、アーマチャ素材42rの薄肉化工程(図16(a),(b))と、打ち抜き工程(図16(c),(d))とからなる。
 薄肉化工程は、押し込み型110と、下型115とを用いて行われる。
 押し込み型110は、中空円筒状をなしており、軸線方向の一端側に押圧部111が形成される。押圧部111は、平坦な面を有する形状に形成することができ、また、径方向の中央部を頂部とする形状に形成することもできる。
 下型115は、径方向に分割し、分割された位置よりも内側に配置される内型115aと、分割された位置よりも外側に配置される外型115bとで構成される。内型115aと外型115bは、薄肉化工程においては互いに接触しているが、打ち抜き工程においては互いの間にスペース116が形成されるように構成されている。
 押込み型110と下型115は、押圧部111の幅方向中央とスペース116の幅方向中央が一致するように相対的な位置が定められている。
 第4実施形態は、下型115に支持されたアーマチャ素材42rに対して押し込み型110を下降させてアーマチャ素材42rを局所的に薄肉化する(図16(a),(b))。このとき、アーマチャ素材42rは、押圧部111に対向する部分が薄肉化するとともに、押し込み型110の周囲が流動し隆起130が生じる。
 必要とされる薄肉化ができたならば、押込み型110を退避させ、下型115の内型115aと外型115bとを互いに離しスペース116を形成する。打ち抜き型98をアーマチャ素材42rの薄肉部48に対向して配置した後に下降させて溝44を形成する(図16(c)、(d))。こうして得られたアーマチャ42は、溝44の周囲に薄肉化工程に基づく薄肉部48が設けられる。この薄肉部48は、その幅方向の両側に向けて連続的に肉厚が厚くされている。
 薄肉化工程で生じた隆起130は、例えば切削により除去して平坦にする。隆起130の除去は、打ち抜き工程の後に行うことができるが、打ち抜き工程の前に行ってもよい。隆起130の除去は、切削の他、研磨、プレスといった機械加工を適用することができる。
 第4実施形態は、第3実施形態と同様に、溝44の形成が予定される領域を薄肉化することで、打ち抜きの抵抗を下げ、幅の狭い溝44の加工性を向上する。
 また、第4実施形態においても、打ち抜き工程が最終工程になるので、その後に加工を施すことなく、溝44について高い寸法精度が得られる。
 第4実施形態は、第3実施形態と同様に、薄肉部48の底を平坦にしているが、これは好ましい形態に過ぎず、薄肉部48の周囲のように厚さが連続的に変化する形態を包含する。ただし、薄肉化することで加工容易性を得ることを考慮すると、ここで示したように、底が平坦な薄肉部48とすることが好ましい。この薄肉部48は、溝44の開口面積よりも広い表面積を有している。
 さらに、以上説明した打ち抜き工程では、図17(c),(d)に示すように、打ち抜き型117とともに押さえ型120を用いることができる。押さえ型120は、円柱状の内筒部121と、中空円筒状の外筒部122と、を備え、内筒部121は外筒部122の内部に同軸状に配置される。打ち抜き型117は、内筒部121と外筒部122の間に配置され、内筒部121と外筒部122に対して、軸線方向に摺動可能に配置される。つまり、打ち抜き型117と押さえ型120は、各々独立して昇降が可能である。押さえ型120でアーマチュア素材42rを拘束しながら打ち抜き型117をアーマチュア素材42の薄肉部48に対向して配置し下降させて打ち抜き加工を行うことにより、打ち抜きの精度を向上させることができる。
 また、図18に示すように、薄肉化工程(図18(a),(b))の後にアーマチュア素材42rの隆起130が下型115に対向するようにアーマチュア素材42rを配置してから打ち抜き工程(図18(c),(d))を行うこともできる。アーマチュア素材42rの隆起130の除去は、打ち抜き工程の後に行うことができるが、打ち抜き工程の前に行ってもよい。また、この場合においても、打ち抜き型117とともに押さえ型120を用いることができることは言うまでもない。
 以上説明した例では、分割構造を有する下型115を用いたが、例えば、図9(a),(b)で示すような単体の下型を用いることもできる。この場合、薄肉化工程の後、打ち抜き工程の前に単体の下型を退避させ、打ち抜き型98の挿通が可能なスペースを有した別の下型を配置してから、打ち抜き工程を行うことができる。
 以上の第1~4実施形態では、スクロール型圧縮機10の構成について説明したが、本発明の要部に関連する構成以外の他の部分の構成については何ら限定するものではない。また、電磁クラッチMについても同様である。
 これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。例えば、押込み型60は一体的に形成されているが、周方向に分割した型とすることもできる。
 また、溝44の周囲の被押圧部47に塑性流動が生じる結果、狭小化加工後にはブリッジ50が狭くなることが想定される。そこで、狭小化加工に供される素材段階のアーマチャ42は、ブリッジ50の寸法を設計値よりも広くしておくことが好ましい。
10   スクロール型圧縮機
41   電磁コイル
42   アーマチャ(アーマチャ素材)
42a 内周リング
42b 外周リング
42c 窪み
42r アーマチャ素材
43   ロータ
43a 内周リング
43b 中央リング
43c 外周リング
44,45A  溝
46   ロータ接触面
46a ロータ接触面
46b アーマチャ接触面
47   被押圧部
48   薄肉部
60,90,110   押込み型
61,91,111   押圧部
63   変位規制体
65   下型
66,111  押圧部
70,95,115   下型
70a,115(a) 内型
70b,115(b) 外型
70c 変位規制体
71   支持面
72   窪み
80,120  押さえ型
81,121  内筒部
82,122  外筒部
83   押圧面
96   スリット
98,117  打ち抜き型
116 スペース
130 隆起
・ M   電磁クラッチ

Claims (18)

  1.  アーマチャのロータ接触面が、当該アーマチャと同心状に形成された磁束遮断用の環状の溝によって、径方向に複数のリング形状に分割され、
     電磁コイルの磁力により前記アーマチャをロータの接触面に吸引し、前記アーマチャと前記ロータとを一体結合させて動力を伝達する電磁クラッチにおいて、
     前記アーマチャは、前記ロータ接触面に形成された前記溝の周囲に、当該周囲に隣接する前記アーマチャの外周側周囲よりも肉厚の薄い薄肉部が設けられている、
    ことを特徴とする電磁クラッチ。
  2.  アーマチャのロータ接触面が、当該アーマチャと同心状に形成された磁束遮断用の環状の溝によって、径方向に複数のリング形状に分割され、
     電磁コイルの磁力により前記アーマチャをロータの接触面に吸引し、前記アーマチャと前記ロータとを一体結合させて動力を伝達する電磁クラッチにおいて、
     前記アーマチャの前記ロータ接触面に形成された前記溝は、
     前記溝の幅方向の中央に向けて塑性流動された前記アーマチャの周縁により区画される、
    ことを特徴とする電磁クラッチ。
  3.  塑性変形された前記アーマチャの前記周縁は、その周囲よりも厚さが薄い、
    請求項2に記載の電磁クラッチ。
  4.  アーマチャのロータ接触面が、当該アーマチャと同心状に形成された磁束遮断用の環状の溝によって、径方向に複数のリング形状に分割され、
     電磁コイルの磁力により前記アーマチャをロータの接触面に吸引し、前記アーマチャと前記ロータとを一体結合させて動力を伝達する電磁クラッチにおいて、
     前記アーマチャは、
     前記溝が形成される周囲の領域が薄肉化されたアーマチャ素材を用いて作製される、
    ことを特徴とする電磁クラッチのアーマチャの製造方法。
  5.  アーマチャのロータ接触面が、当該アーマチャと同心状に形成された磁束遮断用の環状の溝によって、径方向に複数のリング形状に分割され、
     電磁コイルの磁力により前記アーマチャをロータの接触面に吸引し、前記アーマチャと前記ロータとを一体結合させて動力を伝達する電磁クラッチにおいて、
     前記アーマチャは、
     幅がw1とされた前記溝が形成されたアーマチャ素材を得る素材作製工程と、
     前記アーマチャ素材の前記溝の周囲の被押圧部に、押圧力を付与して前記アーマチャ素材の平面方向に塑性流動を起こさせることで、前記溝の幅をw1よりも小さいw2に狭小化する狭小化加工工程と、
    を経て作製されることを特徴とする電磁クラッチのアーマチャの製造方法。
  6.  前記狭小化加工工程における前記押圧力は、
     下型の支持面に支持された前記アーマチャに、前記被押圧部に対応する押圧部を備える押込み型を押し付けることにより付与される、
    請求項5に記載のアーマチャの製造方法。
  7.  前記下型の前記支持面は、
     前記アーマチャの前記被押圧部に対応する部位に窪みが形成されている、
    請求項6に記載のアーマチャの製造方法。
  8.  前記下型の前記支持面は、
     前記アーマチャの前記被押圧部に対応する部位を含め平坦に形成されている、
    請求項5に記載のアーマチャの製造方法。
  9.  前記狭小化加工工程において、
     前記押込み型の周囲に設けられる押さえ型と、前記下型と、により挟むことで前記アーマチャを拘束しながら、前記押込み型により前記押圧力を前記被押圧部に付与する、
    請求項6~8のいずれか一項に記載のアーマチャの製造方法。
  10.  前記被押圧部に対応する部位を除いて、
     前記下型の前記支持面、及び、前記押さえ型が前記アーマチャと接触する面の一方又は双方に、摩擦力増加処理が施されている、
    請求項6に記載のアーマチャの製造方法。
  11.  前記押込み型の前記押圧部、及び、前記下型における前記被押圧部に対応する部位の一方又は双方に、摩擦力低減処理が施されている、請求項6に記載のアーマチャの製造方法。
  12.  前記押込み型の前記押圧部は、
     前記アーマチャとの接触部位が、湾曲又は平坦な形状をなしている、
    請求項6に記載のアーマチャの製造方法。
  13.  前記下型は、
     前記窪みの底部で分割され、
     分割された位置よりも内側に配置される内型と、
     分割された位置よりも外側に配置される外型と、からなる、
    請求項7に記載のアーマチャの製造方法。
  14.  前記狭小化加工工程において、前記アーマチャの前記溝の内部に挿入されることで、平面方向の内側への被押圧部の変形を規制する変位規制体を設ける、
    請求項5に記載のアーマチャの製造方法。
  15.  前記狭小化加工工程の後に、前記被押圧部が属する表面、及び、前記表面と対向する裏面の一方又は双方を平坦に加工する、
    請求項6に記載のアーマチャの製造方法。
  16.  アーマチャのロータ接触面が、当該アーマチャと同心状に形成された磁束遮断用の環状の溝によって、径方向に複数のリング形状に分割され、
     電磁コイルの磁力により前記アーマチャをロータの接触面に吸引し、前記アーマチャと前記ロータとを一体結合させて動力を伝達する電磁クラッチにおいて、
     前記アーマチャは、
     前記溝の形成が予定される領域である被押圧部に押圧力を付与することで、アーマチャ素材に局部的に薄肉部を形成する薄肉化工程と、
     前記薄肉部を打ち抜き型で打抜いて前記溝を形成する打ち抜き工程と、
    を経て作製されることを特徴とする電磁クラッチのアーマチャの製造方法。
  17.  前記薄肉化工程における前記押圧力は、
     下型の支持面に支持された前記アーマチャ素材に、前記被押圧部に対応する押圧部を備える押込み型を押し付けることにより付与され、
     前記下型には、前記押込み型を押し付けることで前記アーマチャ素材に生ずる塑性流動を受け入れるスリットが形成されている、
    請求項16に記載のアーマチャの製造方法。
  18.  前記押込み型は、その一部が前記打ち抜き型を兼ねる分割構造をなしている、
    請求項16又は17に記載のアーマチャの製造方法。
PCT/JP2012/002160 2011-11-24 2012-03-28 電磁クラッチ及び電磁クラッチのアーマチャ製造方法 WO2013076883A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/241,850 US9261148B2 (en) 2011-11-24 2012-03-28 Electromagnetic clutch and method for producing armature for electromagnetic clutch
EP12851664.8A EP2752594B1 (en) 2011-11-24 2012-03-28 Electromagnetic clutch and method for producing armature for electromagnetic clutch
CN201280048294.4A CN103842680B (zh) 2011-11-24 2012-03-28 电磁离合器及电磁离合器的电枢制造方法
JP2013545752A JP5813132B2 (ja) 2011-11-24 2012-03-28 電磁クラッチ及び電磁クラッチのアーマチャ製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-255783 2011-11-24
JP2011255783 2011-11-24

Publications (1)

Publication Number Publication Date
WO2013076883A1 true WO2013076883A1 (ja) 2013-05-30

Family

ID=48469357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002160 WO2013076883A1 (ja) 2011-11-24 2012-03-28 電磁クラッチ及び電磁クラッチのアーマチャ製造方法

Country Status (5)

Country Link
US (1) US9261148B2 (ja)
EP (1) EP2752594B1 (ja)
JP (1) JP5813132B2 (ja)
CN (1) CN103842680B (ja)
WO (1) WO2013076883A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477873B2 (ja) * 2015-05-28 2019-03-06 株式会社デンソー クラッチ
KR102460908B1 (ko) * 2017-02-22 2022-11-01 한온시스템 주식회사 전자클러치 및 이를 포함하는 압축기
DE102017214210A1 (de) * 2017-08-15 2019-02-21 Wolfgang Rixen Verfahren zur Herstellung eines Sacklochs
KR102625094B1 (ko) 2018-09-20 2024-01-16 한온시스템 주식회사 압축기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932869A (ja) * 1995-07-20 1997-02-04 Hitachi Ltd 電磁クラッチにおけるロータおよびアマチュアの製造方法
JPH11141572A (ja) * 1997-11-11 1999-05-25 Mitsubishi Heavy Ind Ltd 電磁クラッチ
JP2003254350A (ja) * 2002-02-28 2003-09-10 Denso Corp クラッチ及びクラッチ板の製造方法
JP2003314584A (ja) 2002-04-19 2003-11-06 Mitsubishi Heavy Ind Ltd 電磁クラッチ
JP2008249068A (ja) * 2007-03-30 2008-10-16 Minebea Co Ltd 電磁クラッチ
WO2011142229A1 (ja) * 2010-05-14 2011-11-17 サンデン株式会社 電磁クラッチ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125255A (en) * 1991-06-27 1992-06-30 Dana Corporation Method of making an electromagnetic coupling disc
US5920981A (en) * 1997-03-25 1999-07-13 Dana Corporation Method of manufacturing a rotor for an electromagnetic clutch assembly
JP2002361345A (ja) 2001-05-31 2002-12-17 Kyocera Mita Corp 電磁クラッチ用ロータ、その製造方法及び電磁クラッチ
JP2009108927A (ja) 2007-10-30 2009-05-21 Sanden Corp 電磁クラッチ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932869A (ja) * 1995-07-20 1997-02-04 Hitachi Ltd 電磁クラッチにおけるロータおよびアマチュアの製造方法
JPH11141572A (ja) * 1997-11-11 1999-05-25 Mitsubishi Heavy Ind Ltd 電磁クラッチ
JP2003254350A (ja) * 2002-02-28 2003-09-10 Denso Corp クラッチ及びクラッチ板の製造方法
JP2003314584A (ja) 2002-04-19 2003-11-06 Mitsubishi Heavy Ind Ltd 電磁クラッチ
JP2008249068A (ja) * 2007-03-30 2008-10-16 Minebea Co Ltd 電磁クラッチ
WO2011142229A1 (ja) * 2010-05-14 2011-11-17 サンデン株式会社 電磁クラッチ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752594A4

Also Published As

Publication number Publication date
EP2752594A1 (en) 2014-07-09
EP2752594A4 (en) 2016-08-10
CN103842680A (zh) 2014-06-04
US20140311852A1 (en) 2014-10-23
JPWO2013076883A1 (ja) 2015-04-27
CN103842680B (zh) 2016-08-17
EP2752594B1 (en) 2017-09-06
JP5813132B2 (ja) 2015-11-17
US9261148B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
KR101660581B1 (ko) 스크롤 타입 압축기의 자전 방지 링의 제조 방법 및 스크롤 타입 압축기의 자전 방지 기구
WO2013076883A1 (ja) 電磁クラッチ及び電磁クラッチのアーマチャ製造方法
JP4438848B2 (ja) 回転ディスクの製造方法
JP5341031B2 (ja) 多気筒回転式圧縮機、その組み立て方法及びその製造装置
JP3769874B2 (ja) 多段プーリおよびその製造方法
JP5411119B2 (ja) 多気筒ロータリ圧縮機
WO2010146864A1 (ja) 電磁クラッチ、圧縮機、電磁クラッチの製造方法
JP2012137000A (ja) スクロール圧縮機
JP2873359B2 (ja) スクロール流体機械におけるリテーナリング並びにその製造方法
CN103270307B (zh) 具有分体式固定涡盘的涡旋式压缩机
US20230039866A1 (en) Method of forming a splined component
JP2004116383A (ja) 流体圧装置のシューおよびその製造方法
JP5473425B2 (ja) 電磁クラッチ、圧縮機、電磁クラッチの製造方法
KR101934761B1 (ko) 자동차 압축기용 풀리 제조방법
WO2003067088A1 (fr) Piston pour compresseur et procede de fabrication
JP6391591B2 (ja) 担持体リングと横断部材とを備える駆動ベルト
JP2006125456A (ja) シェル型ニードル軸受の製造方法
WO2021227369A1 (zh) 轴、包括该轴的设备及用于该轴的加工方法
JP4363306B2 (ja) スラストニードル軸受用のレースの製造方法
JP2006249930A (ja) 密閉型スクロール圧縮機
JP3533652B2 (ja) 圧縮機およびその製造方法
JP2007078109A (ja) 円錐ころ軸受の内輪の製造方法
JP2011002020A (ja) 電磁クラッチ、圧縮機、電磁クラッチの製造方法
JP2005048685A (ja) スクロール圧縮機
KR20030080303A (ko) 내연 기관용 밸브 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545752

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012851664

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14241850

Country of ref document: US