WO2013073581A1 - 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ - Google Patents

有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ Download PDF

Info

Publication number
WO2013073581A1
WO2013073581A1 PCT/JP2012/079527 JP2012079527W WO2013073581A1 WO 2013073581 A1 WO2013073581 A1 WO 2013073581A1 JP 2012079527 W JP2012079527 W JP 2012079527W WO 2013073581 A1 WO2013073581 A1 WO 2013073581A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
photoelectric conversion
optionally substituted
substituted
Prior art date
Application number
PCT/JP2012/079527
Other languages
English (en)
French (fr)
Inventor
貴宗 服部
大久保 康
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US14/358,333 priority Critical patent/US9318707B2/en
Priority to JP2013544299A priority patent/JP6020463B2/ja
Publication of WO2013073581A1 publication Critical patent/WO2013073581A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element, and a solar cell and an optical sensor array using the organic photoelectric conversion element. More specifically, the present invention relates to a bulk heterojunction type organic photoelectric conversion element, and a solar cell and an optical sensor using the organic photoelectric conversion element. For arrays.
  • an electron donor layer p-type semiconductor layer
  • an electron acceptor layer p-type semiconductor layer
  • a bulk heterojunction photoelectric conversion element sandwiching a photoelectric conversion layer mixed with an n-type semiconductor layer) has been proposed, and an efficiency exceeding 5% has been reported (for example, see Non-Patent Document 1).
  • Solar cells using these bulk heterojunction photoelectric conversion elements can be formed by coating other than the anode and cathode, so they can be manufactured at high speed and at low cost. There is a possibility. Furthermore, unlike the Si-based solar cells, semiconductor-based solar cells, dye-sensitized solar cells, etc., since there is no manufacturing process at a temperature higher than 160 ° C., it can be formed on a cheap and lightweight plastic substrate. Be expected.
  • the reverse layer type solar cell has an unfavorable structure from the viewpoint of utilization of light because the conductive polymer layer inferior in light transmittance exists between the metal electrode and the power generation layer. Is required by simulation to be thicker than a normal layer solar cell (see, for example, Non-Patent Document 2). Therefore, there is a demand for a material that can generate power even with a thick film (from 150 nm). Although many materials have good efficiency in the power generation layer of a thin film (100 nm or less), many materials have a low fill factor (FF) in the power generation layer of a thick film (100 nm or more), and are materials that can achieve high efficiency. It had the problem of being very few.
  • FF fill factor
  • Non-Patent Document 3 a polymer having a naphthobisthiadiazole group can generate power with an efficiency of 6%. Although this report has a normal layer configuration, when an organic thin film solar cell having a reverse layer configuration is used, it is expected that a solar cell having both high photoelectric conversion efficiency and durability will be obtained.
  • the durability of organic thin-film solar cells is not only determined by the work function of the electrode material, but is also related to the photo-oxidation stability of the power generation layer material itself, and the oxygen level ( If it does not have a HOMO level deeper than ⁇ 5.3 to ⁇ 5.4 eV), it is photooxidatively deteriorated by irradiation with light in the presence of oxygen, and the photoelectric conversion efficiency decreases with time. There was a problem that said. From this point of view, the naphthobisthiadiazole group-containing polymer described in Non-Patent Document 3 has a HOMO level of ⁇ 5.19 eV, which is not yet sufficiently deep, and has insufficient durability against photooxidation.
  • Another object of the present invention is to provide an organic thin film solar cell having at least one of a high fill factor, an open circuit voltage, and a photoelectric conversion efficiency and having durability, and an organic semiconductor material constituting the organic thin film solar cell. .
  • An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate, An organic photoelectric conversion element, wherein the photoelectric conversion layer contains a conjugated polymer compound having a partial structure represented by the following general formula (1) as the p-type organic semiconductor material;
  • R 3 to R 7 are independently of each other a hydrogen atom, an alkyl group having 1 to 30 carbon atoms that may be substituted, an alkoxy group having 1 to 30 carbon atoms that may be substituted, An alkyl ester group having 2 to 30 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 30 carbon atoms that may be substituted, an alkylaminocarbonyl group having 2 to 40 carbon atoms that may be substituted, and a substituent An optionally substituted acyl group having 2 to 30 carbon atoms, an optionally substituted amino group, an optionally substituted acyl group having 2 to 30 carbon atoms, and an optionally substituted aryl having 6 to 30 carbon atoms Or a heterocyclic group having 3 to 30 carbon atoms which may be substituted, and when R 6 and R 7 are aryl groups, they may be bonded to each other to form a ring.
  • X 1 And X 2 is at the
  • the photoelectric conversion layer contains a conjugated polymer compound having a partial structure represented by the following general formula (1) as a p-type organic semiconductor material.
  • the conjugated polymer compound includes one or more partial structures represented by the general formula (1).
  • X 1 and X 2 in the partial structures are included.
  • R 1 to R 7 may be the same as or different from each other.
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted alkoxy group having 1 to 30 carbon atoms.
  • An optionally substituted alkyl ester group having 2 to 30 carbon atoms, a halogen atom, an optionally substituted alkoxycarbonyl group having 2 to 30 carbon atoms, and an optionally substituted alkylamino group having 2 to 40 carbon atoms A carbonyl group, an optionally substituted acyl group having 2 to 30 carbon atoms, an optionally substituted amino group, an optionally substituted acylamino group having 2 to 30 carbon atoms, an optionally substituted carbon atom 6
  • the above alkyl group having 1 to 30 carbon atoms is a linear, branched or cyclic alkyl group.
  • the alkyl group having 1 to 30 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • n-pentyl group isopentyl group, tert-pentyl group, neopentyl group, 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, 1,3-dimethylbutyl group, 1-isopropylpropyl group, 1, 2-dimethylbutyl group, n-heptyl group, 1,4-dimethylpentyl group, 3-ethylpentyl group, 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, n-octyl group, 2 -Ethylhexyl group, 3-methyl-1-isopropylbutyl group, 2-methyl-1-isopropyl group, 1-t-butyl-2-methyl Lopyl group, n-nonyl group, 3,5,5-trimethylhexyl group, n-decyl group, isodecyl group, 1,
  • a linear or branched alkyl group having 4 to 30 carbon atoms is preferable, and a linear or branched chain having 6 to 20 carbon atoms is preferable from the viewpoint of imparting high solubility and not inhibiting the alignment between polymers.
  • the alkyl group is more preferably.
  • alkoxy group having 1 to 30 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a 2-ethylhexyloxy group, an octyloxy group, and a nonyloxy group.
  • the alkyl ester group having 2 to 30 carbon atoms is not particularly limited, and examples thereof include a methyl ester group, an ethyl ester group, an n-propyl ester group, an i-propyl ester group, and an n-butyl ester.
  • Group, 2-methylpropyl ester group, 1-methylpropyl group, t-butyl ester group, pentyl ester group, hexyl ester group, heptyl ester group, octyl ester group, nonyl ester group, decyl ester group, undecyl ester group, A dodecyl ester group etc. are mentioned. From the viewpoint of imparting high solubility and not inhibiting the alignment between polymers, an alkyl ester group having 5 to 30 carbon atoms is preferable, and an alkyl ester group having 7 to 20 carbon atoms is more preferable.
  • the halogen atom is not particularly limited, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of maintaining the planarity of the polymer, a fluorine atom, a chlorine atom and a bromine atom having a small atomic radius are preferred, a fluorine atom and a chlorine atom are more preferred, and a fluorine atom is more preferred.
  • the alkoxycarbonyl group having 2 to 30 carbon atoms is not particularly limited, and examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, a tert-butoxycarbonyl group, and an n-hexyloxycarbonyl.
  • a methoxycarbonyl group an ethoxycarbonyl group
  • an isopropoxycarbonyl group a tert-butoxycarbonyl group
  • an n-hexyloxycarbonyl n-octyloxycarbonyl group, n-decyloxycarbonyl group, n-hexadecyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, 2-hexyldecyloxycarbonyl group and the like.
  • an alkoxycarbonyl group having 2 to 30 carbon atoms is preferable, an alkoxycarbonyl group having 2 to 20 carbon atoms is more preferable, and an alkoxycarbonyl group having 6 to 20 carbon atoms.
  • the group is particularly preferred.
  • the alkylaminocarbonyl group having 2 to 40 carbon atoms is not particularly limited, and examples thereof include a dimethylaminocarbonyl group, a diethylaminocarbonyl group, a diisopropylaminocarbonyl group, and methyl-tert-butyl.
  • Examples include aminocarbonyl group, dihexylaminocarbonyl group, dioctylaminocarbonyl group, didecylaminocarbonyl group, dihexadecylaminocarbonyl group, di2-ethylhexylaminocarbonyl group, di2-hexyldecylaminocarbonyl group and the like.
  • an alkylaminocarbonyl group having 9 to 40 carbon atoms is preferable, and an alkoxycarbonyl group having 13 to 20 carbon atoms is more preferable.
  • the acyl group having 2 to 30 carbon atoms is not particularly limited, and examples thereof include, for example, acetyl group, propionyl group, butyryl group, isobutyryl group, tert-butyryl group, pentanoyl group, valeryl group, Isovaleryl group, pivaloyl group, hexanoyl group, heptanoyl group, octanoyl group, decanoyl group, dodecanoyl group, hexadecanoyl group, octadecanoyl group, cyclohexanecarbonyl group, benzoyl group, 2-ethylhexylcarbonyl group, 2-hexyldecylcarbonyl group Etc.
  • a linear or branched acyl group having 5 to 30 carbon atoms is preferable, and an acyl group having 7 to 30 carbon atoms is more preferable.
  • the acylamino group having 2 to 30 carbon atoms is not particularly limited, and examples thereof include an acetamide group, an ethylamide group, and a propylamide group.
  • the aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include non-condensed hydrocarbon groups such as a phenyl group, a biphenyl group, and a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, Heptalenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group, triphenylenyl group, pyrenyl group , Condensed polycyclic hydrocarbon groups such as a chrycenyl group and a naphthacenyl group.
  • the heterocyclic group having 3 to 30 carbon atoms is not particularly limited, and examples thereof include pyrrolyl, imidazolyl, imidazolidinyl, benzimidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furazanyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, Furanyl, pyranyl, thienyl, benzothiophenyl, thiopyranyl, isothiochromenyl, thiochromenyl, thioxanthrenyl, thiantenyl, phenoxathiinyl, pyrrolidinyl, 1H-1-pyrindinyl, indonidinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolidinyl, Isoquinol
  • R 1 and R 2 are preferably a hydrogen atom, an alkyl group, an alkoxy group, an alkyl ester group, a halogen atom, an alkoxycarbonyl group, an alkylaminocarbonyl group, or an acyl group.
  • These alkyl group, alkoxy group, alkyl ester group, halogen atom, alkoxycarbonyl group, alkylaminocarbonyl group, and acyl group may have a substituent.
  • R 1 and R 2 are alkyl groups having 1 to 30 carbon atoms, alkoxy groups having 1 to 30 carbon atoms, alkyl ester groups having 2 to 30 carbon atoms, alkoxycarbonyl groups having 2 to 30 carbon atoms, An alkylaminocarbonyl group having 2 to 40 carbon atoms, an acyl group having 2 to 30 carbon atoms, an amino group, an acylamino group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or 3 carbon atoms
  • substituents include alkyl groups, halogenated alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, acyl groups, alkoxycarbonyl groups, (alkyl ) Amino group, alkoxy group, cycloalkyloxy group, aryloxy group, aryloxycarbonyl group, alkyl ester group,
  • R 1 and R 2 substituents which exists depending on the case is not the same as R 1 and R 2 to be substituted.
  • R 1 or R 2 is an alkyl group, it is not further substituted with an alkyl group.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and specific examples thereof include the alkyl groups described above.
  • the halogenated alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • Specific examples include chloromethyl group, bromomethyl group, trifluoro Examples thereof include a methyl group, a chloroethyl group, a 2,2,2-trichloroethyl group, a bromoethyl group, a chloropropyl group, and a bromopropyl group.
  • the alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms, and examples thereof include vinyl, allyl, 2-butenyl, and 3-pentenyl. .
  • the alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include propargyl and 3-pentenyl.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and specific examples thereof include the aryl groups described above.
  • the heteroaryl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, specifically, for example, imidazolyl, Examples include pyridyl, quinolyl, furyl, piperidyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, thienyl and the like.
  • the acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and specific examples thereof include the acyl groups described above.
  • the alkoxycarbonyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, and specific examples thereof include the alkoxycarbonyl groups described above.
  • the (alkyl) amino group preferably has 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, and particularly preferably 0 to 6 carbon atoms.
  • the alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and specific examples thereof include the alkoxy groups described above.
  • the cycloalkyloxy group preferably has 4 to 8 carbon atoms, and examples thereof include cyclopentyloxy and cyclohexyloxy.
  • the aryloxy group preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, and particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy and 2-naphthyloxy.
  • the aryloxycarbonyl group preferably has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably 7 to 10 carbon atoms, and examples thereof include phenyloxycarbonyl.
  • the alkyl ester group preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and specific examples thereof include the alkyl ester groups described above.
  • the acylamino group preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and specific examples thereof include the acylamino groups described above.
  • the alkoxycarbonylamino group preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino.
  • the aryloxycarbonylamino group preferably has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino.
  • the sulfonylamino group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfonylamino and benzenesulfonylamino.
  • the sulfamoyl group preferably has 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms.
  • sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamo Moyl etc. are mentioned.
  • the carbamoyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. Examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, and phenylcarbamoyl.
  • the alkylthio group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methylthio and ethylthio.
  • the arylthio group preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio.
  • the sulfonyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include mesyl and tosyl.
  • the sulfinyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl.
  • the ureido group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include ureido, methylureido, and phenylureido.
  • the phosphoric acid amide group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include diethyl phosphoric acid amide and phenyl phosphoric acid amide. .
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 1 and R 2 contained in one partial structure may be the same as or different from each other, but considering the symmetry of the partial structure, R 1 and R 2 may be the same as each other preferable.
  • X 1 and X 2 are independently from each other
  • the naphthobisthiadiazole group-containing polymer described in Non-Patent Document 3 has a HOMO level of ⁇ 5.19 eV, which is not yet sufficiently deep, and has insufficient durability against photooxidation.
  • the inventors of the present invention have synthesized naphthobisoxadiazole in which oxadiazole is condensed to the naphthalene skeleton as represented by the general formula (1), naphthobistriazole in which triazole is condensed, and imidazole is condensed.
  • Naphthobisimidazole, naphthobispyrazine structure in which pyrazine is condensed have a deep HOMO level and a narrow band gap, and an element having a high open-circuit voltage and a short-circuit current can be obtained even when the film thickness is increased.
  • the polymer which has these structures was used, it discovered that an organic photoelectric conversion element with high durability and a solar cell of an organic thin film could be obtained.
  • At least one of X 1 and X 2 is
  • both X 1 and X 2 are
  • the naphthobisthiadiazole skeleton disclosed in Patent Document 1 is a tetra-fused compound having no functional group, and a polymer containing such a skeleton has low solubility in an organic solvent, and thus a device is produced. There was a problem that the applicability was poor.
  • a naphthobistriazole, naphthobisimidazole, or naphthobispyrazine skeleton since it can have a substituent (R 3 to R 7 ), solubility in an organic solvent is improved.
  • R 3 to R 7 substituent
  • solubility in an organic solvent is improved.
  • the solubility in an organic solvent is high, an optimum molecular weight is easily reached when a polymer is synthesized, which is advantageous for synthesis.
  • it dissolves in an organic solvent it can be applied without repelling when the adjacent layer is an organic solvent system, which is advantageous in terms of device manufacturing.
  • At least one of X 1 and X 2 is
  • both X 1 and X 2 are
  • the naphthobisimidazole and naphthobispyrazine skeletons are preferable because they can have two substituents (R 4 and R 5 , or R 6 and R 7 ), so that the solubility in an organic solvent is increased.
  • R 4 and R 5 , or R 6 and R 7 substituents
  • X 1 and X 2 have a naphthobisimidazole or naphthobispyrazine skeleton, this effect is more exhibited.
  • At least one of X 1 and X 2 is
  • both X 1 and X 2 are
  • X 1 and X 2 When at least one of X 1 and X 2 has a naphthobispyrazine skeleton, higher photoelectric conversion efficiency can be obtained. In addition, durability is improved. When both X 1 and X 2 have a naphthobispyrazine skeleton, this effect is more exhibited.
  • the pyrazine skeleton has no sp3 carbon (the carbon to which the substituent is bonded is the sp2 carbon), so it can be considered to have high planarity and therefore give high mobility.
  • R 3 to R 7 are each a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, or an optionally substituted carbon atom having 2 to 30 alkyl ester groups, halogen atoms, optionally substituted alkoxycarbonyl groups having 2 to 30 carbon atoms, optionally substituted alkylaminocarbonyl groups having 2 to 40 carbon atoms, optionally substituted carbon atoms An acyl group having 2 to 30 carbon atoms, an amino group which may be substituted, an acylamino group having 2 to 30 carbon atoms which may be substituted, an aryl group having 6 to 30 carbon atoms which may be substituted, or a substituted group; It is a good heterocyclic group having 3 to 30 carbon atoms.
  • Specific examples and preferred ranges of the substituents present are the same as those described in the R 1 and R 2 columns.
  • R 3 to R 7 are preferably a hydrogen atom, an optionally substituted alkyl group, an alkyl ester group or an aryl group from the viewpoint of photoelectric conversion efficiency.
  • an alkyl group, an alkyl ester group, or an aryl group is more preferable. More preferred are a linear or branched alkyl group having 4 to 30 carbon atoms, an alkyl ester group having 5 to 30 carbon atoms, and an aryl group having 6 to 12 carbon atoms, which may be substituted.
  • R 3 to R 5 are particularly preferably a linear or branched alkyl group having 6 to 20 carbon atoms, which may be substituted.
  • R 4 and R 5 included in one partial structure may be the same or different from each other, but considering the symmetry of the partial structure, R 4 and R 5 are the same. It is preferable.
  • R 6 and R 7 may be substituted aryl group having 6 to 30 carbon atoms or branched alkyl group having 4 to 30 carbon atoms that may be substituted.
  • both R 6 and R 7 are an optionally substituted aryl group having 6 to 30 carbon atoms or an optionally substituted branched alkyl group having 4 to 30 carbon atoms. Is more preferable. This is considered to be caused by having two soluble groups in one unit and having high solubility.
  • the alkyl group which may be substituted is more preferably a branched alkyl group having 6 to 20 carbon atoms.
  • Preferred examples of the aryl group when at least one of R 6 and R 7 is an optionally substituted aryl group having 6 to 30 carbon atoms include non-condensed carbon such as a phenyl group, a biphenyl group, and a terphenyl group Hydrogen group: pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acepheenyl group It is a nantrirenyl group, an aseantrirenyl group, a triphenylenyl group, a pyrenyl group, a chrycenyl group, or a
  • R 6 and R 7 are aryl groups, they may be bonded to each other to form a ring.
  • R 6 and R 7 are biphenyl-2,2′-diyl groups as in A412, which will be described later.
  • both R 6 and R 7 are a halogen atom, a halogenated alkyl group having 1 to 20 carbon atoms, a cyano group, an acyl group having 2 to 20 carbon atoms, or a nitro group. It is preferably a substituent substituted with a group, more preferably a halogen atom, a halogenated alkyl group, a cyano group, an acyl group having 2 to 20 carbon atoms, or an aryl group substituted with a nitro group.
  • a phenyl group substituted with a halogen atom, a halogenated alkyl group, a cyano group, an acyl group having 2 to 20 carbon atoms, or a nitro group is more preferable.
  • the introduction of electron withdrawing groups such as halogen atoms, halogenated alkyl groups, cyano groups, acyl groups, or nitro groups deepens the HOMO level of the compound, and narrows the band gap to improve open circuit voltage. It is thought to do.
  • the number of substituents is not particularly limited and is 1 to 5, preferably 1. ⁇ 3, more preferably 1 or 2, and still more preferably 1.
  • the substitution position of the substituent is not particularly limited, but it is preferable that the substituent is present at least in the para position.
  • halogen atom halogenated alkyl group
  • acyl group examples include the halogen atom, halogenated alkyl group, and acyl group described in the columns of R 1 and R 2 .
  • R 6 and R 7 are included in one partial structure may be identical to each other or may be different, but considering the symmetry of the partial structures, R 6 and R 7 are identical to each other It is preferable.
  • the structure of the general formula (1) is a structure generally called an acceptor, and is a material having a narrow band gap, that is, a material that can efficiently absorb sunlight to a long wavelength by being combined with a unit that functions as a donor. It becomes.
  • the proportion of the partial structure represented by Chemical Formula 1 is larger in the acceptor unit included in the conjugated polymer compound.
  • the number of partial structures represented by Chemical Formula 1 is preferably 50% or more and 70% or more with respect to the total number of acceptor units contained in the conjugated polymer compound. Is more preferably 90% or more, particularly preferably 95% or more, and most preferably 100%.
  • the LUMO level or the HOMO level is higher than the hydrocarbon aromatic ring (benzene, naphthalene, anthracene, etc.) having the same number of ⁇ electrons. If it is a shallow unit, it can be used without restriction.
  • it is a structure containing a hetero five-membered ring such as a thiophene ring, a furan ring, a pyrrole ring, cyclopentadiene, silacyclopentadiene and the like as a condensed ring.
  • a hetero five-membered ring such as a thiophene ring, a furan ring, a pyrrole ring, cyclopentadiene, silacyclopentadiene and the like as a condensed ring.
  • fluorene examples include fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosylcyclopentadiene, dithienopyrrole, and benzodithiophene.
  • the conjugated polymer compound of the present invention further includes a partial structure represented by the following general formula (2) or the following general formula (2 ').
  • T represents an atom selected from carbon, silicon, and germanium
  • R 8 and R 11 are each independently a hydrogen atom, a halogen atom, or an optionally substituted alkyl group having 1 to 20 carbon atoms.
  • R 9 and R 10 are each independently an alkyl group having 1 to 20 carbon atoms which may be substituted.
  • R 12 and R 15 are each independently a hydrogen atom, a halogen atom or an optionally substituted alkyl group having 1 to 20 carbon atoms, and R 13 and R 14 are each independently substituted.
  • Such a structure has a high mobility thiophene structure condensed on the other side and a larger ⁇ -conjugated plane, and has a substituent capable of imparting solubility. Both can be achieved and higher photoelectric conversion efficiency can be expected.
  • a structure in which the atom represented by T is a silicon atom is preferable. This is because, as described in AdvMatter 2010p367, when T is a silicon atom, the crystallinity is high and high mobility tends to be obtained.
  • a halogen atom an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an optionally present substituent on the alkyl group or alkoxy group.
  • Specific examples and suitable ranges are the same as those described in the R 1 and R 2 columns of the general formula (1).
  • R 8 , R 11 , R 12 and R 15 have a bulky structure, the planarity of the polymer is hindered. Therefore, those which are not sterically bulky as much as possible are preferable. From such a viewpoint, R 8 , R 11 , R 12 and R 15 are preferably a hydrogen atom, a halogen atom, or a linear alkyl group having 1 to 3 carbon atoms. More preferably.
  • R 9 and R 10 are preferably a linear or branched alkyl group having 1 to 12 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 8 carbon atoms.
  • R 13 and R 14 are preferably a linear or branched alkyl group or alkoxy group having 1 to 12 carbon atoms, and preferably a linear or branched alkyl group or alkoxy group having 1 to 8 carbon atoms. More preferred.
  • R 9 and R 10 ; R 8 and R 11 ; R 13 and R 14 ; R 12 and R 15 included in one partial structure may be the same as or different from each other, In view of the symmetry of the partial structure, R 9 and R 10 ; R 8 and R 11 ; R 13 and R 14 ; R 12 and R 15 are preferably the same as each other.
  • R 8 to R 15 in the partial structures are the same as each other. It may be different or different.
  • the conjugated polymer compound of the present invention further includes a partial structure represented by the following general formula (3).
  • Such a structure has a higher ⁇ -conjugate plane due to condensation of a high-mobility thiazole structure, so that it has higher mobility, and higher photoelectric conversion efficiency can be expected.
  • a more preferred embodiment of the structure represented by the general formula (3) is a structure represented by the following general formula (3 ′).
  • R 16 and R 17 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted alkoxy group having 1 to 30 carbon atoms.
  • substituents include those described in the above R 1 and R 2 columns.
  • a hydrogen atom and an alkyl group are preferable, an alkyl group is more preferable, and a linear or branched alkyl group having 4 to 30 carbon atoms is more preferable from the viewpoint of solubility.
  • R may have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a halogenated alkyl group which may have a substituent, or a substituent.
  • substituents a hydrogen atom or an alkyl group which may have a substituent is preferable. Specific examples of these substituents include those described in the above R 1 and R 2 columns.
  • each R may be the same substituent and may be different substituents.
  • the donor unit group is not particularly limited as long as it includes one or more donor units, and may be composed of only one donor unit or two or more donor units connected together. May be.
  • the donor unit group has a structure in which a first donor unit, a second donor unit, and a third donor unit are linearly connected in this order. At this time, the first donor unit and the third donor unit located at both ends of the donor unit group are adjacent to the acceptor unit.
  • the conjugated polymer compound has a structure in which an acceptor unit and a second donor unit are connected via a first donor unit or a third donor unit.
  • the molecular weight of the conjugated polymer compound of this embodiment is not particularly limited, but preferably has an appropriate molecular weight in order to give morphology to the conjugated polymer compound.
  • the weight average molecular weight of the conjugated polymer compound is preferably 10,000 to 100,000, more preferably 15,000 to 50,000, and 15,000 to 30,000. More preferably.
  • a low molecular compound (for example, fullerene derivative) used as an n-type organic semiconductor is widely used in constituting a bulk heterojunction type photoelectric conversion layer, but a conjugated polymer compound used as a p-type organic semiconductor When the molecular weight is within the above range, a microphase separation structure is formed well, and a carrier path for carrying holes and electrons generated at the pn junction interface is easily formed.
  • the weight average molecular weight in this specification can be measured by gel permeation chromatography (GPC; standard material polystyrene).
  • the combination of the acceptor unit exemplified above and the donor unit is not particularly limited, and a conjugated polymer compound is appropriately combined with any acceptor unit and any donor unit. Can be synthesized and used. In Examples described later, conjugated polymer compounds having the combinations shown in Table 1 below were synthesized and their performance was evaluated, but the technical scope of the present invention is not limited to these examples.
  • n falls within the above-mentioned molecular weight.
  • n is about 10 to 200 in order to fall within the range of the number average molecular weight 10,000 to 100,000. There must be.
  • Organic photoelectric conversion element (Configuration of organic photoelectric conversion element and solar cell)
  • the organic photoelectric conversion element of this invention and the solar cell using this element are demonstrated.
  • the layer structure same as the layer structure of the organic photoelectric conversion element of this invention is used for the layer structure of the solar cell of this invention.
  • FIG. 1 is a schematic view showing an example of a normal layer type organic photoelectric conversion element.
  • a bulk heterojunction type organic photoelectric conversion element 10 includes a transparent electrode (generally an anode) 12, a hole transport layer 17, a photoelectric conversion layer 14, an electron transport layer 18, and a counter electrode (generally, on one surface of a substrate 11.
  • Cathode 13 is sequentially laminated.
  • the substrate 11 is a member that holds the transparent electrode 12, the photoelectric conversion layer 14, and the counter electrode 13 that are sequentially stacked.
  • the substrate 11 can transmit the light subjected to photoelectric conversion, that is, transparent to the wavelength of the light to be photoelectrically converted. It is an important member.
  • the substrate 11 is, for example, a glass substrate or a resin substrate.
  • the substrate 11 is not essential.
  • the bulk heterojunction type organic photoelectric conversion element 10 may be configured by forming the transparent electrode 12 and the counter electrode 13 on both surfaces of the photoelectric conversion layer 14.
  • the photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and includes a photoelectric conversion layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material functions relatively as an electron donor (donor)
  • the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are “an electron donor in which when electrons are absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which don't just donate or accept electrons like an electrode, but donate or accept electrons by photoreaction.
  • the generated electric charge has an internal electric field
  • the work functions of the transparent electrode 12 and the counter electrode 13 are different, electrons pass between the electron acceptors and holes are transferred between the electron donors due to the potential difference between the transparent electrode 12 and the counter electrode 13. And is carried to different electrodes, and photocurrent is detected.
  • the counter electrode 13 needs to use a metal having a shallow work function and easily oxidized. When this metal is oxidized, the conductivity is lost, or conversely, the work function is deepened, and the contact resistance of the correlation is greatly increased, degrading the electrical characteristics of the device. It was a big factor with low nature.
  • FIG. 2 is a schematic diagram showing an example of the reverse layer type organic photoelectric conversion device.
  • the work function relationship is reversed as described above, and the hole transport layer 17 and the electron in FIG.
  • the forward layer type An organic photoelectric conversion element having a reverse layer configuration is preferable because higher stability than that of the element can be provided.
  • a hole blocking layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer may be included.
  • FIG. 3 is a schematic diagram illustrating an example of an organic photoelectric conversion element including a tandem photoelectric conversion layer.
  • the transparent electrode 12 and the first photoelectric conversion layer 14 ′ are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion layer 16, and then the counter electrode 13. By stacking, a tandem structure can be obtained.
  • the second photoelectric conversion layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion layer 14 ′ or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. is there.
  • each of the photoelectric conversion layers 14 ′ and 16 preferably has a reverse layer configuration as shown in FIG.
  • a conjugated polymer containing a conjugated polymer compound having a partial structure represented by the general formula (1) as a p-type organic semiconductor material, and preferably having a structure combined with a donor unit Contains compounds.
  • p-type semiconductor materials may be added in addition to the compound having the partial structure.
  • examples of other p-type semiconductor materials used for the bulk heterojunction layer include various condensed polycyclic aromatic low-molecular compounds and conjugated polymers.
  • condensed polycyclic aromatic low molecular weight compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthanthene, bisanthene, zeslene.
  • TTF tetrathiafulvalene
  • TCNQ tetracyanoquinodimethane
  • BEDTTTTF bisethylenetetrathiafulvalene
  • Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A.
  • conjugated polymer for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and its oligomer, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer described in WO2008 / 000664, a polythiophene-diketopyrrolopyrrole copolymer described in WO2008 / 000664, an Adv Mater, a polythiophene-thiazolothiazole copolymer described in 2007p4160, Nature Mat. vol.
  • P3HT poly-3-hexylthiophene
  • polypyrrole and its oligomer polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as ⁇ -conjugated polymers such as polysilane and polygermane.
  • oligomeric materials not polymer materials, include thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3 Oligomers such as -butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • Such materials include materials that can be insolubilized by polymerizing the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or a material in which soluble substituents react and become insoluble (pigmented) by applying energy such as heat, as described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834 And so on.
  • the content of the other p-type organic semiconductor material is not particularly limited.
  • the ratio of the conjugated polymer compound to the total amount of the p-type organic semiconductor is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. More preferably, it is particularly preferably 95% by mass or more, and most preferably 100% by mass.
  • the n-type semiconductor material used in the bulk heterojunction layer of the present invention is not particularly limited.
  • a perfluoro compound perfluoro compound in which hydrogen atoms of a p-type semiconductor such as fullerene and octaazaporphyrin are substituted with fluorine atoms. Pentacene, perfluorophthalocyanine, etc.), naphthalene tetracarboxylic anhydride, naphthalene tetracarboxylic diimide, perylene tetracarboxylic anhydride, perylene tetracarboxylic diimide Examples thereof include molecular compounds.
  • fullerene derivatives that can perform charge separation with various p-type semiconductor materials at high speed (up to 50 fs) and efficiently are preferable.
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc.
  • PCBM [6,6] -phenyl C61-butyric acid methyl ester
  • PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
  • PCBiB [6,6] -phenyl C61-buty Rick acid-isobutyl ester
  • PCBH [6,6] -phenyl C61-butyric acid-n-hexyl ester
  • fullerene derivative having a substituent and having improved solubility such as fullerene having an ether group.
  • the junction form of the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer is not particularly limited, and may be a planar heterojunction or a bulk heterojunction.
  • a planar heterojunction is a junction in which a p-type organic semiconductor layer containing a p-type organic semiconductor and an n-type organic semiconductor layer containing an n-type organic semiconductor are stacked, and the surface where these two layers contact is the pn junction interface. It is a form.
  • a bulk heterojunction is formed by applying a mixture of a p-type organic semiconductor and an n-type organic semiconductor. In this single layer, a domain of the p-type organic semiconductor and a domain of the n-type organic semiconductor are formed.
  • the junction between the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer is preferably a bulk heterojunction.
  • the bulk heterojunction layer is formed of a single layer (i layer) in which a normal p-type organic semiconductor material and an n-type organic semiconductor layer are mixed, and the i layer is made of a p-type organic semiconductor. In some cases, it has a three-layer structure (pin structure) sandwiched between a p layer and an n layer made of an n-type organic semiconductor. Such a pin structure has higher rectification of holes and electrons, reduces loss due to charge-separated hole-electron recombination, and can achieve higher photoelectric conversion efficiency. .
  • the mixing ratio of the p-type organic semiconductor and the n-type organic semiconductor contained in the photoelectric conversion layer is preferably in the range of 2: 8 to 8: 2, more preferably 4: 6 to 6: 4. Range.
  • the film thickness of one photoelectric conversion layer is preferably 50 to 400 nm, more preferably 80 to 300 nm, and particularly preferably 100 to 200 nm. In general, from the viewpoint of absorbing more light, it is preferable that the thickness of the photoelectric conversion layer is larger. However, as the film thickness increases, the extraction efficiency of carriers (holes / electrons) decreases, so the photoelectric conversion efficiency decreases. Tend to.
  • the film thickness is 100 nm or more compared to a photoelectric conversion layer using a conventional p-type organic semiconductor material. Even in this case, since the extraction efficiency of carriers (holes / electrons) is difficult to decrease, high photoelectric conversion efficiency can be maintained.
  • a method for forming the photoelectric conversion layer of the organic photoelectric conversion device of the present invention is a vapor deposition method.
  • a coating method including a casting method and a spin coating method.
  • the coating method is preferable in order to increase the area of the interface where holes and electrons are separated by charge and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed.
  • the coating method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, wire bar coating, gravure coating, and spray coating. Furthermore, it can pattern by printing methods, such as an inkjet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, a flexographic printing method.
  • annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized and the photoelectric conversion layer can have an appropriate phase separation structure. As a result, the mobility of holes and electrons (carriers) in the photoelectric conversion layer is improved, and high efficiency can be obtained.
  • the photoelectric conversion layer may be composed of a single layer in which an electron acceptor and an electron donor are uniformly mixed, or may be composed of a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. Good. In this case, it can be formed by using a material that can be insolubilized after coating as described above.
  • the organic photoelectric conversion element 10 of the present invention can take out charges generated in the bulk heterojunction layer more efficiently by forming the electron transport layer 18 between the bulk heterojunction layer and the cathode. It is preferable to have this layer.
  • octaazaporphyrin and a p-type semiconductor perfluoro can be used as the electron transport layer 18.
  • a HOMO of a p-type semiconductor material used for a bulk heterojunction layer is given a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the cathode side.
  • a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport layer.
  • Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.
  • phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide, N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • a layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
  • the means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
  • the hole transport layer 17 is more efficiently taken out between the bulk heterojunction layer and the anode, and charges generated in the bulk heterojunction layer are extracted more efficiently. It is preferable to have these layers.
  • the hole transport layer 17 PEDOT / PSS made by Stark Vitec Co., Ltd., trade name BaytronP and the like, polyaniline and its doped material, cyan described in WO2006 / 019270, etc. Compounds, etc. can be used.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the anode side. It has an electronic block function.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • triarylamine compounds described in JP-A-5-271166 metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used.
  • a layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used.
  • the means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
  • Forming a coating film in the lower layer before forming has an effect of leveling the coating surface, which is preferable because influences such as leakage are reduced.
  • the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the organic photoelectric conversion element of the present invention has at least a first electrode and a second electrode. Moreover, when taking a tandem configuration, the tandem configuration can be achieved by using an intermediate electrode.
  • an electrode through which holes mainly flow is called an anode, and an electrode through which electrons mainly flow is called a cathode.
  • the first electrode is a transparent electrode.
  • Transparent means that the light transmittance is 50% or more.
  • the light transmittance is the total light transmittance in the visible light wavelength region measured by a method in accordance with “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1 (corresponding to ISO 13468-1). Say.
  • the translucent electrode is sometimes referred to as a transparent electrode
  • the non-translucent electrode is sometimes referred to as a counter electrode.
  • a reverse layer configuration is preferable.
  • the first electrode is a light-transmitting cathode (cathode)
  • the second electrode is an anode (anode).
  • the transparent electrode of the present invention is preferably an electrode that transmits light of 380 nm to 800 nm.
  • the constituent material of the transparent electrode for example, indium tin oxide (ITO), AZO, FTO, SnO 2 , ZnO, a transparent metal oxide such as titanium oxide, a very thin metal layer such as Ag, Al, Au, Pt or the like
  • ITO indium tin oxide
  • AZO zinc oxide
  • FTO zinc oxide
  • SnO 2 zinc oxide
  • ZnO zinc oxide
  • a transparent metal oxide such as titanium oxide
  • a very thin metal layer such as Ag, Al, Au, Pt or the like
  • Metal nanowires, nanowires such as carbon nanotubes, layers containing nanoparticles, conductive polymer materials such as PEDOT: PSS, polyaniline, and the like
  • Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form a cathode.
  • the counter electrode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination.
  • the work function of the transparent electrode which is the cathode
  • the carriers generated in the bulk heterojunction layer diffuse and reach each electrode. It is preferable that the work function difference between the cathodes is as large as possible.
  • the conductive material of the anode a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electrode material include gold, silver, copper, platinum, rhodium, indium, nickel, palladium, and the like.
  • silver is most preferable from the viewpoint of hole extraction performance, light reflectance, and durability against oxidation.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the anode side is made light transmissive
  • a conductive material suitable for a cathode such as aluminum and aluminum alloy
  • silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the transparent electrode A light-transmitting cathode can be obtained by providing the conductive light-transmitting material film mentioned in the description.
  • the intermediate electrode material required in the case of the tandem structure as shown in FIG. 3 is preferably a layer using a compound having both transparency and conductivity.
  • Transparent metal oxides such as ITO, AZO, FTO, SnO 2 , ZnO and titanium oxide, very thin metal layers such as Ag, Al, Au and Pt, or layers containing nanowires and nanoparticles such as metal nanowires and carbon nanotubes PEDOT: PSS, conductive polymer materials such as polyaniline, etc.
  • conductive polymer materials such as polyaniline, etc.
  • the substrate is a transparent substrate, and the term “transparent” has the same meaning as described above for the electrodes.
  • a glass substrate or a resin substrate is preferably exemplified, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
  • a transparent resin film which can be preferably used as a transparent substrate by this invention,
  • the material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
  • polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given. If the resin film transmittance of 80% or more in ⁇ 800 nm), can be preferably applied to a transparent resin film according to the present invention.
  • biaxially stretched polyethylene terephthalate film preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • the method and process for patterning the electrode, the power generation layer, the hole transport layer, the electron transport layer, and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
  • the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • the said organic photoelectric conversion element Since the said organic photoelectric conversion element has the outstanding photoelectric conversion efficiency and durability, it can be used suitably for a solar cell.
  • the solar cell of the present invention comprises the above-described organic photoelectric conversion element, has a structure in which optimum design and circuit design are performed for sunlight, and optimum photoelectric conversion is performed when sunlight is used as a light source. .
  • the photoelectric conversion layer has a structure that can be irradiated with sunlight, and when the solar cell of the present invention is configured, the photoelectric conversion layer and each electrode are housed in a case and sealed, Alternatively, it is preferable to seal them entirely with resin.
  • the produced organic photoelectric conversion element is not deteriorated by oxygen, moisture, etc. in the environment, it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method. .
  • a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive.
  • Method, spin coating of organic polymer material with high gas barrier property (polyvinyl alcohol, etc.), inorganic thin film with high gas barrier property (silicon oxide, aluminum oxide, etc.) or organic film (parylene etc.) are deposited under vacuum. Examples thereof include a method and a method of laminating these in a composite manner.
  • optical sensor array Next, an optical sensor array to which the bulk heterojunction type organic photoelectric conversion element 10 described above is applied will be described in detail.
  • the optical sensor array is produced by arranging the photoelectric conversion elements in a fine pixel form by utilizing the fact that the bulk heterojunction type organic photoelectric conversion elements generate a current upon receiving light, and projected onto the optical sensor array.
  • FIG. 4 is a diagram showing the configuration of the optical sensor array. 4A is a top view, and FIG. 4B is a cross-sectional view taken along line A-A ′ of FIG. 4A.
  • an optical sensor array 20 is paired with an anode 22 as a lower electrode, a photoelectric conversion unit 24 for converting light energy into electrical energy, and an anode 22 on a substrate 21 as a holding member.
  • a cathode 23 is sequentially laminated.
  • the photoelectric conversion unit 24 includes two layers, a photoelectric conversion layer 24b having a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed, and a buffer layer 24a. In the example shown in FIG. 4, six bulk heterojunction type organic photoelectric conversion elements are formed.
  • the substrate 21, the anode 22, the photoelectric conversion layer 24 b, and the cathode 23 have the same configuration and role as the transparent electrode 12, the photoelectric conversion layer 14, and the counter electrode 13 in the bulk heterojunction photoelectric conversion element 10 described above.
  • the buffer layer 24a is made of PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) conductive polymer (trade name BaytronP, manufactured by Stark Vitec).
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • Such an optical sensor array 20 is manufactured as follows.
  • An ITO film is formed on a glass substrate by sputtering and processed into a predetermined pattern shape by photolithography.
  • the thickness of the glass substrate is 0.7 mm
  • the thickness of the ITO film is 200 nm
  • the measurement area (light receiving area) of the ITO film after photolithography is 0.5 mm ⁇ 0.5 mm.
  • the thickness of the PEDOT-PSS film after drying is 30 nm.
  • a mixed solution obtained by mixing a compound having a partial structure represented by the general formula (1) and PCBM in a chlorobenzene solvent at 1: 1 and stirring (5 minutes) is used.
  • annealing is performed by heating in an oven at 180 ° C. for 30 minutes in a nitrogen gas atmosphere.
  • the thickness of the mixed film of the conjugated polymer compound having a partial structure represented by the general formula (1) and PCBM after the annealing treatment is 70 nm.
  • PVA polyvinyl alcohol
  • Exemplified compound 101 is obtained by a polymerization reaction of compound (A) and compound (B ′).
  • Compound (A) can be synthesized by the following scheme.
  • Compound (C) can be synthesized with reference to non-patent literature (USDn Journal of Organic Chemistry Volume 38, Number 5, 699-708).
  • Compound (D) can be synthesized with reference to non-patent literature (J. Med. Chem, 1968, P305).
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform, and then orthodichlorobenzene, and 0.53 g of exemplified compound P101 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound P102 is obtained by a polymerization reaction of compound (A) and compound (E ′).
  • Soluble components are extracted from the collected precipitate by Soxhlet extraction using heptane, chloroform and then orthodichlorobenzene, and 0.65 g of Exemplified Compound 102 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound 103 is obtained by a polymerization reaction of compound (F) and compound (B).
  • Compound (F) can be synthesized by the following synthesis route.
  • Compound (G) is a non-patent document J. Am. Chem. Soc. , 2011, 133 (25), pp9638-9641.
  • Compound (H) is a non-patent document bulletin of the chem. Soc of Japan, 1992, P2221 was used as a reference to synthesize from compound (G).
  • Compound (F) was synthesized from compound (H) with reference to non-patent literature JACS, 1957, P4395.
  • Soluble components are extracted from the collected precipitate by Soxhlet extraction using heptane, chloroform, and then orthodichlorobenzene, and 0.47 g of Exemplified Compound 103 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound 104 is obtained by polymerization reaction of compound (F) and compound (E).
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform and then orthodichlorobenzene, and 0.78 g of Exemplified Compound 104 is obtained by reprecipitation of the orthodichlorobenzene extract into 500 ml of methanol. It was.
  • Exemplified compound 105 is obtained by a polymerization reaction of compound (I) and compound (B ′).
  • Compound (I) can be synthesized by the following conversion.
  • Soluble components are extracted from the collected precipitate by Soxhlet extraction using heptane, chloroform and then orthodichlorobenzene, and 0.40 g of Exemplified Compound 105 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • the exemplified compound 106 is obtained by a polymerization reaction of the compound (I) and the compound (E ′).
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform, and then orthodichlorobenzene, and 0.61 g of Exemplified Compound P106 is obtained by reprecipitation of the orthodichlorobenzene extract into 500 ml of methanol. It was.
  • Exemplified compound 107 is obtained by polymerization reaction of compound (J) and compound (B).
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform and then orthodichlorobenzene, and 0.61 g of Exemplified Compound 107 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound 108 is obtained by a polymerization reaction of compound (J) and compound (E).
  • Soluble components are extracted from the collected precipitate by Soxhlet extraction using heptane, chloroform, and then orthodichlorobenzene, and 0.44 g of Exemplified Compound 108 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound 109 is obtained by polymerization reaction of compound (K) and compound (B).
  • Compound (K) can be synthesized by the following conversion.
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform, and then orthodichlorobenzene, and 0.66 g of Exemplified Compound 109 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound 110 is obtained by a polymerization reaction of compound (K) and compound (E).
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform, and then orthodichlorobenzene, and 0.65 g of Exemplified Compound 110 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound 111 is obtained by a polymerization reaction of compound (N) and compound (B).
  • Soluble components are extracted from the collected precipitate by Soxhlet extraction using heptane, chloroform and then orthodichlorobenzene, and 0.12 g of Exemplified Compound 111 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound P112 is obtained by polymerization reaction of compound (N) and compound (E).
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform and then orthodichlorobenzene, and 0.51 g of Exemplified Compound 112 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound P113 is obtained by a polymerization reaction of compound (M) and compound (B ′).
  • Exemplified compound P114 is obtained by a polymerization reaction of compound (M) and compound (E ′).
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform and then orthodichlorobenzene, and 0.77 g of Exemplified Compound P114 is obtained by reprecipitation of the orthodichlorobenzene extract into 500 ml of methanol. It was.
  • Exemplified compound 115 is obtained by a polymerization reaction of compound (N) and compound (O).
  • Compound (O) can be synthesized with reference to Macromolecules 2011, 44, 6245.
  • Soluble components are extracted from the collected precipitate by soxhlet extraction using heptane, chloroform, and then orthodichlorobenzene, and 1.0 g of exemplary compound 115 is obtained by reprecipitation of the orthodichlorobenzene extract in 500 ml of methanol. It was.
  • Exemplified compound P116 is obtained by a polymerization reaction of compound (Q) and compound (R).
  • Compound (Q) can be synthesized by the following scheme.
  • Exemplified compound P117 is obtained by a polymerization reaction of compound (F ′) and compound (R).
  • Exemplified Compound 117 was synthesized in the same manner as Example Compound 116 except that Compound (F ′) was changed to 190 mg instead of Compound (Q).
  • Exemplified compound P118 is obtained by a polymerization reaction of compound (J) and compound (R).
  • Exemplified Compound 118 was synthesized in the same manner as in Exemplified Compound 116 except that Compound (J) was changed to 205 mg instead of Compound (Q).
  • ITO indium tin oxide
  • the substrate on which the transparent electrode was formed was placed in a glove box (oxygen concentration 10 ppm, dew point temperature ⁇ 80 degrees), and spin-coated with a 150 mM TiOx precursor solution on the transparent electrode (rotation speed 2000 rpm, rotation time) in a nitrogen atmosphere. 60 seconds) and wiped off in a predetermined pattern. Then, this was left in the air for 2 hours to hydrolyze the TiOx precursor, and then heat-treated at 150 ° C. for 1 hour to form an electron transport layer composed of a 30 nm TiOx layer.
  • the 150 mM TiOx precursor solution was prepared by the following method (sol-gel method). In a 100 mL three-necked flask, 12.5 mL of 2-methoxyethanol and 6.25 mmol of titanium tetraisopropoxide were placed and cooled in an ice bath for 10 minutes. Next, 12.5 mmol of acetylacetone was slowly added and stirred in an ice bath for 10 minutes. Next, this mixed solution was heated at 80 ° C. for 2 hours and then refluxed for 1 hour. This was cooled to room temperature (25 ° C.) and adjusted to a concentration of 150 mM using 2-methoxyethanol to obtain a TiOx precursor solution. The above steps were all performed in a nitrogen atmosphere.
  • a silver electrode layer was vacuum-deposited so as to have a film thickness of about 100 nm, followed by heat treatment at 150 ° C. for 10 minutes, thereby forming a counter electrode (anode).
  • the reverse layer type organic photoelectric conversion element 1-2 was completed through the above steps.
  • Example 2-2 to 18-2 Except that the compounds 102 to 118 synthesized in Synthesis Examples 2-1 to 18-1 were used as p-type organic semiconductors in the formation of the photoelectric conversion layer, respectively, the same method as in Example 1-2 above, A reverse layer type organic photoelectric conversion element was produced.
  • a reverse layer type organic photoelectric conversion element was produced in the same manner as in Example 1-2, except that Comparative Compounds 1 and 2 were used as the p-type organic semiconductor.
  • Examples 1-3 to 18-3 and Comparative Examples 1-3 to 2-3 In Examples 1-2 to 15-2 and Comparative Examples 1-2 to 2-2, after the photoelectric conversion layer was formed, from a glove box (GB) (oxygen concentration 10 ppm, dew point temperature ⁇ 80 degrees) under a nitrogen atmosphere The reverse layers of Examples 1-3 to 18-3 and Comparative Examples 1-3 to 2-3 were formed in the same manner except that the formation of the hole transport layer was formed in the glove box without taking it out. A type organic photoelectric conversion element was prepared.
  • GB oxygen concentration 10 ppm, dew point temperature ⁇ 80 degrees
  • the durability evaluation of the element in each of the examples in which the hole transport layer was formed in the atmosphere and in the glove box, the durability was remarkably improved as compared with the comparative example (LT80 was in the atmosphere). : 2.4-5 times, in GB: 6.2-12.6 times increase).
  • the improvement width of the durability in the reverse layer type element was larger than the improvement width of the durability in the normal layer type element described later.
  • the example in which the hole transport layer is formed in a glove box with little oxygen and moisture is compared to the example in which the hole transport layer is formed in the atmosphere, and the photoelectric conversion efficiency, FF (curve factor), and durability of the device It was shown that the property is further improved.
  • Example 7-4 (Formation of transparent electrode (anode)) A transparent electrode functioning as an anode was formed in the same manner as “(Formation of transparent electrode (cathode))” in Example 1-2.
  • a mixed solution was prepared by dissolving 0.6% by mass of the compound 107 synthesized in Synthesis Example 7-1 as a p-type organic semiconductor and 0.9% by mass of PCBM as an n-type organic semiconductor in chlorobenzene.
  • the mixed solution was filtered using a 0.45 ⁇ m filter, and spin-coated (700 rpm for 60 seconds, then 2200 rpm for 1 second) to a film thickness of 160 nm after drying on the hole transport layer. Thereafter, this was dried at room temperature (25 ° C.) for 30 minutes to form a photoelectric conversion layer.
  • the obtained laminate was placed in a vacuum deposition apparatus without being exposed to the atmosphere.
  • the laminate was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, the inside of the vacuum deposition apparatus was depressurized to 10 ⁇ 3 Pa or less, and then 100 nm of silver was deposited as a counter electrode.
  • the deposition rate was 2 nm / second, and the size was 2 mm square.
  • an electron transport layer and a counter electrode were formed by heating at 120 ° C. for 30 minutes.
  • the obtained laminate was subjected to transparent barrier film GX (water vapor transmission rate 0.05 g / m 2 / d, Toppan Printing Co., Ltd.) using a UV curable resin (UV RESIN XNR5570-B1, manufactured by Nagase ChemteX) under a nitrogen atmosphere.
  • UV curable resin UV RESIN XNR5570-B1, manufactured by Nagase ChemteX
  • the organic photoelectric conversion element was completed by sticking together and sealing, and taken out in the atmosphere.
  • Example 7-4 Example 7-4 above, except that in the formation of the photoelectric conversion layer, the compounds 111, 114, and 115 synthesized in Synthesis Examples 11-1, 14-1, and 15-1 were used as p-type organic semiconductors, respectively.
  • a normal layer type organic photoelectric conversion element was produced in the same manner as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

【課題】光電変換効率と耐久性とを両立させた有機光電変換素子を提供することにある。 【解決手段】透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、 前記光電変換層が、該p型有機半導体材料として下記一般式(1)で表わされる部分構造を有する共役系高分子化合物を含有することを特徴とする有機光電変換素子;(1) この際、RおよびRは互いに独立して、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基、置換されてもよい炭素原子数6~30のアリール基、または置換されてもよい炭素原子数3~30の複素環基であり、 XおよびXは互いに独立して、 (2) この際、R~Rは互いに独立して、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基、置換されてもよい炭素原子数6~30のアリール基、または置換されてもよい炭素原子数3~30の複素環基であり、RおよびRがアリール基である場合には、互いに結合して環を形成していてもよい、であるが、XおよびXが同時に (3) になることはない。

Description

有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
 本発明は、有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイに関し、さらに詳しくは、バルクへテロジャンクション型の有機光電変換素子、この有機光電変換素子を用いた太陽電池及び光センサアレイに関する。
 近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体材料)等の化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)等が提案・実用化されている。
 しかしながら、これらの太陽電池で発電するコストは、未だ化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストが高くなる一因であった。
 このような状況に対し、化石燃料による発電コストよりも低い発電コストを達成しうる太陽電池として、透明電極と対電極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合された光電変換層を挟んだバルクへテロジャンクション型光電変換素子が提案され、5%を超える効率が報告されている(例えば、非特許文献1参照)。
 これらのバルクへテロジャンクション型光電変換素子を用いた太陽電池においては、アノード・カソード以外は塗布により形成することができるため、高速且つ安価で製造が可能であり、前述の発電コストの課題を解決できる可能性がある。更に、上記のSi系太陽電池、半導体系太陽電池、色素増感型太陽電池等と異なり、160℃より高温の製造工程がないため、安価且つ軽量なプラスチック基板上への形成も可能であると期待される。
 しかしながら、実用化に向けては高効率化のほかに耐久性の向上も求められている。このような課題に対しては、電極等の劣化が起こりにくい、高い仕事関数を有する金属を対電極として用い、太陽光入射側をカソードとするタイプの太陽電池(いわゆる逆層型太陽電池)において耐久性が向上することが知られているため(例えば、特許文献1参照)、逆層構成において高い光電変換効率を出せる材料が求められている。
 しかし逆層型太陽電池は、光透過性に劣る導電性ポリマー層が金属電極と発電層の間に存在する関係から、光の利用の観点からいえば不利な構成であるため、最適な膜厚が順層型太陽電池に比して厚くなることがシミュレーションから求められている(例えば、非特許文献2参照)。したがって、厚膜(150nm~)でも発電する材料が求められている。多くの材料は薄膜(100nm以下)の発電層では良好な効率が出るものの、厚膜(100nm以上)の発電層では多くの材料は曲線因子(FF)が低下し、高い効率を達成できる材料が非常に少ないと言う課題を有していた。
 最近、非特許文献3において、ナフトビスチアジアゾール基を有するポリマーによって、6%の効率で発電できることが報告された。この報告は順層構成であるが、逆層構成の有機薄膜太陽電池とした際には高い光電変換効率と耐久性の両立された太陽電池が得られると期待される。
特開2009-146981号公報
Nature Mat.,vol.6(2007),p497、A.Heeger等 Adv.Mater.2006,Vol.18,p789(C.J.Brabec等) J.Am.Chem.Soc.,2011,133(25),pp 9638-9641
 しかしながら、有機薄膜太陽電池における耐久性は、電極材料の仕事関数だけで決まるものではなく、発電層素材自体の光酸化安定性も関係しており、通常の有機色素と同様に酸素の準位(-5.3~-5.4eV)よりも十分深いHOMO準位を有していないと、酸素存在下に光を照射されることで光酸化劣化され、経時で光電変換効率が低下していくと言った課題があった。このような観点からは、前記非特許文献3に記載のナフトビスチアジアゾール基含有のポリマーはHOMO準位が-5.19eVとまだ十分深くなく、光酸化に対する耐久性が不十分であった。
 本発明の他の目的は、高い曲線因子、開放電圧、および光電変換効率の少なくとも一を有し、かつ耐久性を有する有機薄膜太陽電池、およびそれを構成する有機半導体材料を提供することにある。
 本発明の上記目的は、以下の構成により達成することができる。
 透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、前記光電変換層が、該p型有機半導体材料として下記一般式(1)で表わされる部分構造を有する共役系高分子化合物を含有することを特徴とする有機光電変換素子;
Figure JPOXMLDOC01-appb-C000011
 この際、RおよびRは互いに独立して、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基、置換されてもよい炭素原子数6~30のアリール基、または置換されてもよい炭素原子数3~30の複素環基であり、
 XおよびXは互いに独立して、
Figure JPOXMLDOC01-appb-C000012
 この際、R~Rは互いに独立して、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基、置換されてもよい炭素原子数6~30のアリール基、または置換されてもよい炭素原子数3~30の複素環基であり、RおよびRがアリール基である場合には、互いに結合して環を形成していてもよい、であるが、XおよびXが同時に
Figure JPOXMLDOC01-appb-C000013
になることはない。
本発明の有機光電変換素子の構成の例を示す概略断面図である。 本発明の有機光電変換素子の構成の他の例を示す概略断面図である。 タンデム型の光電変換層を備えた、本発明の有機光電変換素子の例を示す概略断面図である。 光センサアレイの構成を示す図である。
 以下、本発明の好ましい形態を説明する。
 本発明の有機光電変換素子は、光電変換層が、p型有機半導体材料として下記一般式(1)で表わされる部分構造を有する共役系高分子化合物を含有する。かような構成を採ることにより、高い変換効率を達成可能で、耐久性が高く、安価な製造を可能とする塗布プロセスに対応可能な有機光電変換素子を提供することができる。
 まず、本発明における一般式(1)で表される部分構造を有する共役系高分子化合物について説明する。
 なお、共役系高分子化合物には、一般式(1)で表される部分構造が1または2以上含まれるが、当該部分構造が2以上存在する場合には、部分構造におけるX、X、R~Rは、互いに同一であってもよいし、異なってもよい。
 一般式(1)において、RおよびRは互いに独立して、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基、置換されてもよい炭素原子数6~30のアリール基、または置換されてもよい炭素原子数3~30の複素環基である。
 上記炭素原子数1~30のアルキル基とは、直鎖、分岐鎖または環状のアルキル基である。炭素原子数1~30のアルキル基としては、特に制限はないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、1,3-ジメチルブチル基、1-イソプロピルプロピル基、1,2-ジメチルブチル基、n-ヘプチル基、1,4-ジメチルペンチル基、3-エチルペンチル基、2-メチル-1-イソプロピルプロピル基、1-エチル-3-メチルブチル基、n-オクチル基、2-エチルヘキシル基、3-メチル-1-イソプロピルブチル基、2-メチル-1-イソプロピル基、1-t-ブチル-2-メチルプロピル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基、イソデシル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基、n-ヘンエイコシル基、n-ドコシル基、n-トリコシル基、n-テトラコシル基、n-ペンタコシル基、n-ヘキサコシル基、n-ヘプタコシル基、n-オクタコシル基、n-トリアコンチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などが挙げられる。高い溶解性を付与しながら、ポリマー同士の配列を阻害しないという観点からは、炭素原子数4~30の直鎖または分岐鎖のアルキル基が好ましく、炭素原子数6~20の直鎖または分岐鎖のアルキル基であることがより好ましい。
 炭素原子数1~30のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、エイコシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基などが挙げられる。高い溶解性を付与しながら、ポリマー同士の配列を阻害しないという観点からは、炭素原子数4~30のアルコキシ基が好ましく、6~20のアルコキシ基であることがより好ましい。
 上記炭素原子数2~30のアルキルエステル基(-OCOR)としては、特に制限はないが、例えば、メチルエステル基、エチルエステル基、n-プロピルエステル基、i-プロピルエステル基、n-ブチルエステル基、2-メチルプロピルエステル基、1-メチルプロピル基、t-ブチルエステル基、ペンチルエステル基、ヘキシルエステル基、ヘプチルエステル基、オクチルエステル基、ノニルエステル基、デシルエステル基、ウンデシルエステル基、ドデシルエステル基などが挙げられる。高い溶解性を付与しながら、ポリマー同士の配列を阻害しないという観点からは、炭素原子数5~30のアルキルエステル基が好ましく、7~20のアルキルエステル基であることがより好ましい。
 上記ハロゲン原子としては、特に制限はないが、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。ポリマーの平面性を保持するという観点からは、原子半径の小さいフッ素原子、塩素原子、臭素原子が好ましく、フッ素原子、塩素原子がより好ましく、フッ素原子がさらに好ましい。
 上記炭素原子数2~30のアルコキシカルボニル基(-COOR)としては、特に制限はないが、例えば、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基、n-ヘキシルオキシカルボニル基、n-オクチルオキシカルボニル基、n-デシルオキシカルボニル基、n-ヘキサデシルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、2-ヘキシルデシルオキシカルボニル基などが挙げられる。高い溶解性を付与しながら、ポリマー同士の配列を阻害しないという観点からは、炭素原子数2~30のアルコキシカルボニル基が好ましく、2~20のアルコキシカルボニル基がさらに好ましく、6~20のアルコキシカルボニル基が特に好ましい。
 上記炭素原子数2~40のアルキルアミノカルボニル基(-CONHRまたは-CONRR’)としては、特に制限はないが、例えば、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、ジイソプロピルアミノカルボニル基、メチル-tert-ブチルアミノカルボニル基、ジヘキシルアミノカルボニル基、ジオクチルアミノカルボニル基、ジデシルアミノカルボニル基、ジヘキサデシルアミノカルボニル基、ジ2-エチルヘキシルアミノカルボニル基、ジ2-ヘキシルデシルアミノカルボニル基などが挙げられる。高い溶解性を付与しながら、ポリマー同士の配列を阻害しないという観点からは、炭素原子数9~40のアルキルアミノカルボニル基が好ましく、13~20のアルコキシカルボニル基がさらに好ましい。
 上記炭素原子数2~30のアシル基(-COR)としては、特に制限はないが、例えば、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、tert-ブチリル基、ペンタノイル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、デカノイル基、ドデカノイル基、ヘキサデカノイル基、オクタデカノイル基、シクロヘキサンカルボニル基、ベンゾイル基、2-エチルヘキシルカルボニル基、2-ヘキシルデシルカルボニル基などが挙げられる。高い溶解性を付与しながら、ポリマー同士の配列を阻害しないという観点からは、炭素原子数5~30の直鎖または分岐鎖のアシル基が好ましく、7~30のアシル基であることがより好ましい。
 上記炭素原子数2~30のアシルアミノ基(-NHCOR)としては、特に制限はないが、例えば、アセトアミド基、エチルアミド基、プロピルアミド基などが挙げられる。
 上記炭素原子数6~30のアリール基としては、特に制限はないが、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。
 上記炭素原子数3~30の複素環基としては、特に制限はないが、例えば、ピロリル、イミダゾリル、イミダゾリジニル、ベンゾイミダゾリル、ピラゾリル、チアゾリル、イソチアゾリル、オキサゾリル、イソオキサゾリル、フラザニル、ピリジニル、ピラジニル、ピリミジニル、ピリダジニル、フラニル、ピラニル、チエニル、ベンゾチオフェニル、チオピラニル、イソチオクロメニル、チオクロメニル、チオキサントレニル、チアントレニル、フェノキサチイニル、ピロリジニル、1H-1-ピリンジニル、インドニジニル、イソインドリル、インドリル、インダゾリル、プリニル、キノリジニル、イソキノリニル、キノリニル、ナフチリジニル、フタラジニル、キノキサニリル、キナゾリニル、シンノリニル、プテリジニル、カルバゾリル、β-カルボリニル、フェナントリジニル、アクリジニル、ペリミジニル、フェナントロリニル、フェナジニル、フェノチアジニル、フェノキサジニル、アンチジニル、イソベンゾフラニル、ベンゾフラニル、イソクロメニル、クロメニル、キサンテニル、パラチアジニル、トリアゾリル、またはテトラゾリル等が挙げられる。
 RおよびRは、水素原子、アルキル基、アルコキシ基、アルキルエステル基、ハロゲン原子、アルコキシカルボニル基、アルキルアミノカルボニル基、アシル基であることが好ましい。これら、アルキル基、アルコキシ基、アルキルエステル基、ハロゲン原子、アルコキシカルボニル基、アルキルアミノカルボニル基、アシル基は置換基を有していてもよい。
 上記RおよびRが、炭素原子数1~30のアルキル基、炭素原子数1~30のアルコキシ基、炭素原子数2~30のアルキルエステル基、炭素原子数2~30のアルコキシカルボニル基、炭素原子数2~40のアルキルアミノカルボニル基、炭素原子数2~30のアシル基、アミノ基、炭素原子数2~30のアシルアミノ基、炭素原子数6~30のアリール基、または炭素原子数3~30の複素環基であるときに、場合によって存在する置換基としては、アルキル基、ハロゲン化アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシカルボニル基、(アルキル)アミノ基、アルコキシ基、シクロアルキルオキシ基、アリールオキシ基、アリールオキシカルボニル基、アルキルエステル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、シリル基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ハロゲン原子、ヒドロキシル基、メルカプト基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基等を挙げることができる。
 なお、場合によって存在する置換基は、置換するRおよびRと同じとなることはない。例えば、RまたはRがアルキル基の場合には、さらにアルキル基で置換されることはない。
 アルキル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、具体的には上記で記載したアルキル基が挙げられる。
 ハロゲン化アルキル基としては、好ましくは、炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、具体的には、クロロメチル基、ブロモメチル基、トリフルオロメチル基、クロロエチル基、2,2,2-トリクロロエチル基、ブロモエチル基、クロロプロピル基、ブロモプロピル基などが挙げられる。
 アルケニル基としては、好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えば、ビニル、アリル、2-ブテニル、3-ペンテニル等が挙げられる。
 アルキニル基としては、好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えば、プロパルギル、3-ペンテニル等が挙げられる。
 アリール基としては、好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、具体的には上記で記載したアリール基が挙げられる。
 ヘテロアリール基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子、具体的には、例えば、イミダゾリル、ピリジル、キノリル、フリル、ピペリジル、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、チエニル等が挙げられる。
 アシル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、具体的には上記で記載したアシル基が挙げられる。
 アルコキシカルボニル基としては、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、具体的には上記で記載したアルコキシカルボニル基が挙げられる。
 (アルキル)アミノ基としては、好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ等が挙げられる。
 アルコキシ基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、具体的には上記で記載したアルコキシ基が挙げられる。
 シクロアルキルオキシ基としては、好ましくは炭素数4~8であり、例えば、シクロペンチルオキシ、シクロヘキシルオキシ等が挙げられる。
 アリールオキシ基としては、好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルオキシ、2-ナフチルオキシ等が挙げられる。
 アリールオキシカルボニル基としては、好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~10であり、例えば、フェニルオキシカルボニル等が挙げられる。
 アルキルエステル基としては、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、具体的には上記で記載したアルキルエステル基が挙げられる。
 アシルアミノ基としては、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、具体的には上記で記載したアシルアミノ基が挙げられる。
 アルコキシカルボニルアミノ基としては、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えば、メトキシカルボニルアミノ等が挙げられる。
 アリールオキシカルボニルアミノ基としては、好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ等が挙げられる。
 スルホニルアミノ基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メタンスルホニルアミノ、ベンゼンスルホニルアミノ等が挙げられる。
 スルファモイル基としては、好ましくは炭素数0~20、より好ましくは炭素数0~16、特に好ましくは炭素数0~12であり、例えば、スルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイル等が挙げられる。
 カルバモイル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、カルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等が挙げられる。
 アルキルチオ基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メチルチオ、エチルチオ等が挙げられる。
 アリールチオ基としては、好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ等が挙げられる。
 スルホニル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メシル、トシル等が挙げられる。
 スルフィニル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メタンスルフィニル、ベンゼンスルフィニル等が挙げられる。
 ウレイド基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、ウレイド、メチルウレイド、フェニルウレイド等が挙げられる。
 リン酸アミド基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、ジエチルリン酸アミド、フェニルリン酸アミド等が挙げられる。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 なお、これらの置換基はさらに置換されてもよい。
 1つの部分構造に含まれるRおよびRは、互いに同一であってもよいし、異なってもよいが、部分構造の対称性を考慮すると、RおよびRは互いに同一であることが好ましい。
 一般式(1)において、XおよびXは互いに独立して、
Figure JPOXMLDOC01-appb-C000014
を表す。
 ただし、XおよびXが同時に
Figure JPOXMLDOC01-appb-C000015
になることはない。
 上述したように、前記非特許文献3に記載のナフトビスチアジアゾール基含有のポリマーはHOMO準位が-5.19eVとまだ十分深くなく、光酸化に対する耐久性が不十分であった。そして、本発明者らは、前記一般式(1)で表されるようなナフタレン骨格にオキサジアゾールが縮環したナフトビスオキサジアゾール、トリアゾールが縮環したナフトビストリアゾール、イミダゾールが縮環したナフトビスイミダゾール、ピラジンが縮環しているナフトビスピラジン構造等は深いHOMO準位および狭いバンドギャップを有しており、厚膜化しても高い開放電圧および短絡電流を有する素子を得ることができることを見い出した。これは、オキサジアゾール等がチアジアゾールに比べより電子が欠乏しているためであると考えられる。また、これらの構造を有するポリマーを用いると、耐久性も高い有機光電変換素子及び有機薄膜の太陽電池を得ることができることを見出した。
 また、XおよびXの少なくとも一方が、
Figure JPOXMLDOC01-appb-C000016
であることが好ましい。好ましくは、XおよびX双方が、
Figure JPOXMLDOC01-appb-C000017
である。
 特許文献1で開示されているナフトビスチアジアゾール骨格は、官能基を有していない4縮環化合物であり、このような骨格を含んだポリマーは有機溶媒への溶解性が低く、デバイスを作成する際の塗布性が悪いという問題点があった。ナフトビストリアゾール、ナフトビスイミダゾール、ナフトビスピラジンの骨格を有する場合、置換基(R~R)を有することが出来るため、有機溶媒への溶解性が向上する。有機溶媒への溶解性が高いと、高分子を合成する際に、最適な分子量に到達しやすく、合成上有利である。また、有機溶剤に溶解するので、隣接する層が有機溶媒系の場合に、はじくことなく塗布することができるのでデバイス製造の点でも有利である。
 また、XおよびXの少なくとも一方が、
Figure JPOXMLDOC01-appb-C000018
であることがより好ましい。
 好ましくは、XおよびX双方が、
Figure JPOXMLDOC01-appb-C000019
である。
 ナフトビスイミダゾール、ナフトビスピラジン骨格は置換基を2つ有することが出来る(RおよびR、またはRおよびR)ために、有機溶媒への溶解性が高くなるため好ましい。XおよびXの双方が、ナフトビスイミダゾール、ナフトビスピラジン骨格骨格を有すると、この効果はより発揮される。
 さらに、XおよびXの少なくとも一方が、
Figure JPOXMLDOC01-appb-C000020
であることが好ましい。
 好ましくは、XおよびX双方が、
Figure JPOXMLDOC01-appb-C000021
である。
 XおよびXの少なくとも一方が、ナフトビスピラジン骨格を有すると、さらに高い光電変換効率が得られる。また、耐久性も向上する。XおよびXの双方が、ナフトビスピラジン骨格を有すると、この効果はより発揮される。ピラジン骨格はsp3炭素を有しない(置換基が結合している炭素がsp2炭素である)ために高い平面性を有することが出来、それゆえ高い移動度を与えるためであると考えらえる。
 R~Rは、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基、置換されてもよい炭素原子数6~30のアリール基、または置換されてもよい炭素原子数3~30の複素環基である。
 ここで、アルキル基、アルコキシ基、アルキルエステル基、ハロゲン原子、アルコキシカルボニル基、アルキルアミノカルボニル基、アシル基、アミノ基、アシルアミノ基、アリール基、または複素環基、およびこれらの置換基に場合によって存在する置換基の具体的例示および好適な範囲については、RおよびRの欄で説明したものと同様である。
 R~Rは、光電変換効率の点から、水素原子、置換されてもよい、アルキル基、アルキルエステル基またはアリール基であることが好ましい。溶解性の観点から、アルキル基、アルキルエステル基またはアリール基であることがより好ましい。さらに好ましくは、置換されてもよい、炭素原子数4~30の直鎖または分岐鎖のアルキル基、炭素原子数5~30のアルキルエステル基、炭素原子数6~12のアリール基である。また、溶解性の観点から、R~Rは、置換されてもよい、炭素原子数6~20の直鎖または分岐鎖のアルキル基であることが特に好ましい。
 なお、1つの部分構造に含まれるRおよびRは、互いに同一であってもよいし、異なってもよいが、部分構造の対称性を考慮すると、RおよびRは互いに同一であることが好ましい。
 さらに、光電変換効率の点からは、RおよびRの少なくとも一方が置換されてもよい炭素原子数6~30のアリール基または置換されてもよい炭素原子数4~30の分岐鎖のアルキル基であることが好ましく、RおよびRの双方が置換されてもよい炭素原子数6~30のアリール基または置換されてもよい炭素原子数4~30の分岐鎖のアルキル基であることがより好ましい。これは1つのユニットに2つの溶解性基を有しており、高い溶解性を有している事が要因であると考えられる。置換されてもよいアルキル基は、炭素原子数6~20の分岐鎖のアルキル基であることがさらに好ましい。
 RおよびRの少なくとも一方が、置換されてもよい炭素原子数6~30のアリール基である場合のアリール基の好適な例は、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基であり、フェニル基がより好ましい。また、RおよびRがアリール基である場合には、互いに結合して環を形成していてもよい。一例を挙げると、後述のA412のように、RおよびRがビフェニル-2,2’-ジイル基である形態が挙げられる。このように、RおよびRが互いに結合して環を形成している場合、共役系高分子化合物全体として高い平面性を保持することができる。
 また、開放電圧の向上の観点からは、RおよびRの双方が、ハロゲン原子、炭素原子数1~20のハロゲン化アルキル基、シアノ基、炭素原子数2~20のアシル基、またはニトロ基で置換されている置換基であることが好ましく、ハロゲン原子、ハロゲン化アルキル基、シアノ基、炭素原子数2~20のアシル基、またはニトロ基で置換されているアリール基であることがより好ましく、ハロゲン原子、ハロゲン化アルキル基、シアノ基、炭素原子数2~20のアシル基、またはニトロ基で置換されているフェニル基がさらに好ましい。ハロゲン原子、ハロゲン化アルキル基、シアノ基、アシル基、またはニトロ基などの電子吸引基が導入されることで化合物のHOMO準位が深くなり、またバンドギャップが狭くなったことで開放電圧が向上するものと考えられる。
 フェニル基がハロゲン原子、ハロゲン化アルキル基、シアノ基、アシル基、またはニトロ基で置換される場合の置換基の数は特に限定されるものではなく、1~5個であるが、好ましくは1~3個、より好ましくは1または2個、さらに好ましくは1個である。また、置換基の置換位置は特に限定されるものではないが、少なくともパラ位に該置換基が存在することが好ましい。
 上記ハロゲン原子、ハロゲン化アルキル基またはアシル基は、具体的にはRおよびRの欄で記載したハロゲン原子、ハロゲン化アルキル基またはアシル基が挙げられる。
 なお、1つの部分構造に含まれるRおよびRは、互いに同一であってもよいし、異なってもよいが、部分構造の対称性を考慮すると、RおよびRは互いに同一であることが好ましい。
 以下、本発明の一般式(1)で表される部分構造の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 なお、前記一般式(1)の構造は、一般的にアクセプターと呼ばれる構造であり、ドナーとして機能するユニットと結合させることで狭いバンドギャップの材料、すなわち太陽光を長波長まで効率良く吸収できる材料となる。
 ただし、より高い光電変換効率を達成するためには、共役系高分子化合物に含まれるアクセプター性ユニットのうち、上記化学式1で表される部分構造の割合が多いほど好ましい。具体的には、共役系高分子化合物に含まれる全アクセプター性ユニットの数に対して、上記化学式1で表される部分構造の数が50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることがさらに好ましく、95%以上であることが特に好ましく、100%であることが最も好ましい。
 共役系高分子化合物に含まれうるドナー性ユニット群に含まれるドナー性ユニットとしては、同じπ電子数を有する炭化水素芳香環(ベンゼン、ナフタレン、アントラセンなど)よりもLUMO準位またはHOMO準位が浅くなるようなユニットであれば、制限なく使用できる。例えば、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエンなどの複素5員環、およびこれらの縮合環を含むユニットである。
 より好ましくは、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエン等の複素5員環およびこれらを縮合環として含む構造である。
 具体的には、フルオレン、シラフルオレン、カルバゾール、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェン等を挙げることができる。
 好ましくは、本発明の共役系高分子化合物は、下記一般式(2)または下記一般式(2’)で表される部分構造をさらに含む。
Figure JPOXMLDOC01-appb-C000027
 式中、Tは炭素、珪素、ゲルマニウムから選ばれる原子を表し、RおよびR11は互いに独立して、水素原子、ハロゲン原子または置換されてもよい炭素原子数1~20のアルキル基であり、RおよびR10は互いに独立して、置換されてもよい炭素原子数1~20のアルキル基である。
Figure JPOXMLDOC01-appb-C000028
 式中、R12およびR15は互いに独立して、水素原子、ハロゲン原子または置換されてもよい炭素原子数1~20のアルキル基であり、R13およびR14は互いに独立して、置換されてもよい炭素原子数1~20のアルキル基または置換されてもよい炭素原子数1~20のアルコキシ基である。
 このような構造は、移動度の高いチオフェン構造が縮合してさらに大きなπ共役平面を有している半面、溶解性を付与可能な置換基を有しているため、溶解性と高移動度の両立を可能とし、一層高い光電変換効率が期待できるようになる。
 中でもTで表わされる原子が珪素原子である構造であることが好ましい。これはAdvMater2010p367に記載されているように、Tが珪素原子である場合に結晶性が高く、高い移動度が得られる傾向があるためである。
 上記一般式(2)または(2’)における、ハロゲン原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、およびアルキル基またはアルコキシ基に場合によって存在する置換基の具体例および好適な範囲は、上記一般式(1)のRおよびR欄で述べたものと同様である。
 R、R11、R12およびR15は、構造が嵩高いものであると、高分子の平面性が阻害されるので、できる限り立体的に嵩高くないものが好ましい。かような観点からは、R、R11、R12およびR15は、水素原子、ハロゲン原子、炭素原子数1~3の直鎖のアルキル基であることが好ましく、水素原子またはハロゲン原子であることがより好ましい。
 RおよびR10は、炭素原子数1~12の直鎖または分岐鎖のアルキル基が好ましく、炭素原子数1~8の直鎖または分岐鎖のアルキル基であることがより好ましい。
 R13およびR14は、炭素原子数1~12の直鎖または分岐鎖のアルキル基あるいはアルコキシ基が好ましく、炭素原子数1~8の直鎖または分岐鎖のアルキル基またはアルコキシ基であることがより好ましい。
 なお、1つの部分構造に含まれるRおよびR10;RおよびR11;R13およびR14;R12およびR15は、それぞれ互いに同一であってもよいし、異なってもよいが、部分構造の対称性を考慮すると、RおよびR10;RおよびR11;R13およびR14;R12およびR15は、互いに同一であることが好ましい。
 なお、共役系高分子化合物が、上記一般式(2)、または(2’)で表される部分構造を1または2以上含む場合には、当該部分構造におけるR~R15は、互いに同一であってもよいし、異なってもよい。
 また、好ましくは、本発明の共役系高分子化合物は、下記一般式(3)で表される部分構造をさらに含む。
Figure JPOXMLDOC01-appb-C000029
 このような構造は、移動度の高いチアゾール構造が縮合してさらに大きなπ共役平面を有しているためさらなる高移動度を有し、一層高い光電変換効率を期待できるようになる。
 さらに、一般式(3)で表される構造のより好適な一実施形態は、下記一般式(3’)で表される構造である。
Figure JPOXMLDOC01-appb-C000030
 一般式(3’)において、R16およびR17は互いに独立して、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基である。これらの置換基としては、具体的には上記RおよびRの欄で説明したものが挙げられる。これらの置換基の中でも、水素原子、アルキル基が好ましく、アルキル基がより好ましく、溶解性の観点からは、炭素原子数4~30の直鎖または分岐鎖のアルキル基がさらに好ましい。
 以下、ドナー性ユニットの好ましい形態を例示する。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 ここで、上記ドナー性ユニットにおいて、Rは、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいハロゲン化アルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアシル基、置換基を有してもよいアルキルアミノカルボニル基、または置換基を有してもよいアシルアミノ基を表わす。これらの置換基の中でも、水素原子または置換基を有していてもよいアルキル基であることが好ましい。これらの置換基としては、具体的には上記RおよびRの欄で説明したものが挙げられる。なお、上記ドナー性ユニット中、Rが複数存在する場合には、各Rは同一の置換基であってもよいし、異なる置換基であってもよい。
Figure JPOXMLDOC01-appb-C000034
 ドナー性ユニット群は、ドナー性ユニットを1以上含む限りにおいて特に制限はなく、1つのドナー性ユニットのみからなるものであってもよいし、2以上のドナー性ユニットが連結されてなるものであってもよい。好ましくは、ドナー性ユニット群は、第一のドナー性ユニット、第二のドナー性ユニット、第三のドナー性ユニットが、この順に直鎖状に連結されてなる構造を有する。この際、ドナー性ユニット群の両端に位置する第一のドナー性ユニットおよび第三のドナー性ユニットは、アクセプター性ユニットと隣接している。言い換えると、当該共役系高分子化合物は、アクセプター性ユニットと、第二のドナー性ユニットとが、第一のドナー性ユニットまたは第三のドナー性ユニットを介して連結されてなる構造を有する。
 本形態の共役系高分子化合物の分子量は特に制限はないが、共役系高分子化合物にモルフォロジを与えるためには、適度な分子量を有することが好ましい。具体的には、共役系高分子化合物の重量平均分子量が10,000~100,000であることが好ましく、15,000~50,000であることがより好ましく、15,000~30,000であることがより好ましい。バルクヘテロジャンクション型の光電変換層を構成する場合に、n型有機半導体として使用される低分子化合物(例えば、フラーレン誘導体)が広く用いられているが、p型有機半導体として用いられる共役系高分子化合物の分子量が上記範囲内であると、ミクロ相分離構造が良好に形成されるため、pn接合界面で発生した正孔と電子とを運ぶキャリアパスが形成されやすくなるためである。本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC;標準物質ポリスチレン)で測定することができる。
 なお、本形態において、以上で例示したアクセプター性ユニットと、ドナー性ユニットとの組み合わせは、特に制限はなく、任意のアクセプター性ユニットと、任意のドナー性ユニットとを適宜組み合わせて共役系高分子化合物を合成し、使用することが可能である。後述の実施例では、下記表1に示す組み合わせの共役系高分子化合物を合成しその性能を評価しているが、本発明の技術的範囲は、これらの例にのみに制限されない。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 上記化合物に置いて、nで表わされる数は前述の分子量に入るような値となれば十分であるが、例えば数平均分子量10000~100000の範囲に入るためにはnはおよそ10~200程度である必要がある。
 <有機光電変換素子>
 (有機光電変換素子および太陽電池の構成)
 本発明の有機光電変換素子及び該素子を用いた太陽電池について説明する。尚、本発明の太陽電池の層構成は、本発明の有機光電変換素子の層構成と同一の層構成が用いられる。
 図1は、順層型の有機光電変換素子の一例を示す模式図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、透明電極(一般に陽極)12、正孔輸送層17、光電変換層14、電子輸送層18及び対極(一般に陰極)13が順次積層されている。
 基板11は、順次積層された透明電極12、光電変換層14及び対極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材である。
 基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は必須ではなく、例えば、光電変換層14の両面に透明電極12及び対極13を形成することで、バルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。
 光電変換層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合した光電変換層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。
 ここで、電子供与体及び電子受容体は、「光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体」であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。
 図1において、基板11を介して透明電極12から入射された光は、光電変換層14の光電変換層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。
 発生した電荷は内部電界、例えば、透明電極12と対極13の仕事関数が異なる場合では透明電極12と対極13との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。
 ここで、通常透明電極12の仕事関数は対極13の仕事関数よりも大きいため、正孔は透明電極12へ、電子は対極13へ輸送される。つまり対極13は仕事関数が浅く酸化されやすい金属を使う必要がある。この金属が酸化されると、導電性がなくなったり、逆に仕事関数が深くなって相関の接触抵抗が大幅に増加して素子の電気特性が劣化してしまうことが、順層型素子において耐久性が低い大きな要因であった。
 即ち、透明電極(第一の電極)12の仕事関数よりも対極(第二の電極)13の仕事関数を大きくすることで、電子を透明電極12へ、正孔を対極13へと輸送するように設計することで、対極13を酸化されにくく安定な、仕事関数の大きい金属を使用することができる。
 図2は、逆層型の有機光電変換素子の一例を示す模式図であり、図2の素子では、前述のように仕事関数の関係を逆転させ、さらに図1における正孔輸送層17と電子輸送層18の位置を入れ替えた、図2に示されるような逆層構成の有機光電変換素子とすることで、対極の酸化に起因する素子の劣化を大幅に抑制することができ、順層型の素子よりも更に高い安定性を提供できるため、逆層構成の有機光電変換素子であることが好ましい。
 なお、図1、図2には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。
 更に、本発明の有機光電変換素子を太陽電池として用いる場合を想定し、太陽光利用率(光電変換効率)の向上を目的として、図3に記載のように光電変換層を積層したタンデム型の構成としてもよい。尚、図3は、タンデム型の光電変換層を備える有機光電変換素子の一例を示す模式図である。
 タンデム型構成の場合、基板11上に順次透明電極12、第1の光電変換層14’を積層した後、電荷再結合層15を積層した後、第2の光電変換層16、次いで対極13を積層することで、タンデム型の構成とすることができる。
 第2の光電変換層16は、第1の光電変換層14’の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。
 また、第1の光電変換層14’、第2の光電変換層16と各電極の間には、正孔輸送層17や電子輸送層18を有していても良いが、本発明においてはタンデム構成においてもそれぞれの光電変換層14’、16は、図2に示されるような逆層構成を有していることが好ましい。
 以下に、本発明の化合物のほかに有機光電変換素子および太陽電池の層を構成する材料について述べる。
 〔p型半導体材料〕
 本発明では、p型有機半導体材料として上記一般式(1)で表される部分構造を有する共役系高分子化合物を含有し、好ましくは、ドナー性ユニットと結合させた構造を有する共役系高分子化合物を含有する。
 上記部分構造を有する化合物以外に他のp型半導体材料を添加してもよい。その他のバルクへテロジャンクション層に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーが挙げられる。
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。
 また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、WO2008/000664に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。
 また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。
 またバルクへテロジャンクション層上にさらに溶液プロセスで電子輸送層や正孔ブロック層を形成する際には、一度塗布した層の上にさらに塗布することができれば、容易に積層することができるが、通常溶解性の良い材料からなる層の上にさらに層を溶液プロセスによって積層使用とすると、下地の層を溶かしてしまうために積層することができないという課題を有していた。したがって、溶液プロセスで塗布した後に不溶化できるような材料を含んでいてもよい。
 このような材料としては、Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、および特開2008-16834等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。
 なお、本形態の光電変換層に含まれるp型有機半導体は、上述の共役系高分子化合物を含む限りにおいては、上記他のp型有機半導体材料の含有量は特に制限はない。ただし、より高い光電変換効率を達成するためには、光電変換層に含まれるp型有機半導体の総量(光電変換層が2層以上含まれる場合には、全ての層における総量)に対して、上述の共役系高分子化合物の割合が多いほど好ましい。具体的には、p型有機半導体の総量に対する共役系高分子化合物の割合が、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、100質量%であることが最も好ましい。
 [n型半導体材料]
 本発明のバルクへテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
 しかし、各種のp型半導体材料と高速(~50fs)かつ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
 中でも[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
 光電変換層における、p型有機半導体およびn型有機半導体の接合形態は、特に制限はなく、平面へテロ接合であってもよいし、バルクへテロ接合(バルクヘテロジャンクション)であってもよい。平面ヘテロ接合とは、p型有機半導体を含むp型有機半導体層と、n型有機半導体を含むn型有機半導体層とが積層され、これら2つの層が接触する面がpn接合界面となる接合形態である。一方、バルクヘテロジャンクションとは、p型有機半導体とn型有機半導体との混合物を塗布することにより形成され、この単一の層中において、p型有機半導体のドメインとn型有機半導体のドメインとがミクロ相分離構造をとっている。したがって、バルクヘテロジャンクションでは、平面へテロ接合と比較して、pn接合界面が層全体にわたって数多く存在することになる。よって、光吸収により生成した励起子の多くがpn接合界面に到達できることになり、電荷分離に至る効率を高めることができる。このような理由から、光電変換層における、p型有機半導体とn型有機半導体との接合は、バルクヘテロジャンクションであることが好ましい。
 また、バルクヘテロジャンクション層は、通常の、p型有機半導体材料とn型有機半導体層が混合されてなる単一の層(i層)からなる場合の他に、当該i層がp型有機半導体からなるp層およびn型有機半導体からなるn層により挟持されてなる3層構造(p-i-n構造)を有する場合がある。このようなp-i-n構造は、正孔および電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。
 本発明において、光電変換層に含まれるp型有機半導体とn型有機半導体との混合比は、質量比で2:8~8:2の範囲が好ましく、より好ましくは4:6~6:4の範囲である。また、光電変換層1層の膜厚は、好ましくは50~400nmであり、より好ましくは80~300nmであり、特に好ましくは100~200nmである。一般に、より多くの光を吸収させる観点から、光電変換層の膜厚は大きい方が好ましいが、膜厚が大きくなるとキャリア(正孔・電子)の取り出し効率が低下するために光電変換効率が低下する傾向がある。しかしながら、上述の共役系高分子化合物をp型有機半導体材料として用いて光電変換層を形成すると、従来のp型有機半導体材料を用いた光電変換層と比較して、100nm以上の膜厚とした場合であってもキャリア(正孔・電子)の取り出し効率が低下しにくいため、高い光電変換効率を維持することができる。
 [光電変換層の作製方法]
 本発明の有機光電変換素子の光電変換層(本発明では、電子受容体と電子供与体とが混合されたような光電変換層、バルクへテロジャンクション層が好ましい)の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また、塗布法は製造速度にも優れている。
 この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ワイヤーバーコート法、グラビアコート法、スプレ-コート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングできる。
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。その結果、光電変換層の正孔と電子(キャリア)の移動度が向上し、高い効率を得ることができるようになる。
 光電変換層は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで形成可能である。
 [電子輸送層・正孔ブロック層]
 本発明の有機光電変換素子10は、バルクヘテロジャンクション層と陰極との中間に電子輸送層18を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
 電子輸送層18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、バルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。より好ましくは、n型半導体のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。
 このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。上記の化合物の他に、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。
 これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
 [正孔輸送層・電子ブロック層] 本発明の有機光電変換素子10は、バルクヘテロジャンクション層と陽極との中間には正孔輸送層17を、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
 これらの層を構成する材料としては、例えば、正孔輸送層17としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT/PSS、ポリアニリン及びそのドープ材料、WO2006/019270号等に記載のシアン化合物、などを用いることができる。なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。
 これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。
 [その他の層]
 エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。
 [電極]
 本発明の有機光電変換素子においては、少なくとも第一の電極、第二の電極を有する。また、タンデム構成をとる場合には、中間電極を用いることでタンデム構成を達成することができる。なお、本発明においては、主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。
 本発明において、第一の電極は、透明な電極である。透明な、とは、光透過率が50%以上であるものをいう。光透過率とは、JIS K 7361-1(ISO 13468-1に対応)の「プラスチック-透明材料の全光線透過率の試験方法」に準拠した方法で測定した可視光波長領域における全光線透過率をいう。
 また、透光性があるかどうかといった機能から、透光性のある電極を透明電極と呼び、透光性のない電極を対極と呼び分ける場合がある。本発明においては、逆層構成であることが好ましく、この場合、第一の電極は、透光性のある陰極(カソード)であり、第二の電極は、陽極(アノード)である。
 [透明電極]
 本発明の透明電極は、好ましくは380nm~800nmの光を透過する電極である。
 透明電極の構成材料としては、例えば、インジウムチンオキシド(ITO)、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層または金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等を用いることができる。
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせてカソードとすることもできる。
 [対極]
 対極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。
 カソードである透明電極の仕事関数がおよそ-5.0eV~-4.0eVであるため、バルクヘテロジャンクション層で生成したキャリアが拡散してそれぞれの電極に到達するためには、ビルトインポテンシャル、すなわちアノードとカソード間の仕事関数の差がなるべく大きいことが好ましい。
 したがって、アノードの導電材としては、仕事関数の大きい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、金、銀、銅、白金、ロジウム、インジウム、ニッケル、パラジウム等が挙げられる。
 これらの中で、正孔の取り出し性能、光の反射率、及び酸化等に対する耐久性の点から、銀が最も好ましい。
 アノードはこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。
 また、アノード側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の陰極に適した導電性材料を薄く1~20nm程度の膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性陰極とすることができる。
 [中間電極]
 また、前記図3のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記陽極で用いたような材料(ITO、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層または金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
 なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。
 [基板]
 本発明において、基板は透明な基板であるが、透明な、とは前述の電極の記載と同様の意味を有する。
 基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。
 中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
 [光学機能層]
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していて良い。光学機能層としては、たとえば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けても良い。
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
 また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層などを挙げることができる。
 [パターニング]
 本発明に係る電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
 バルクへテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取っても良いし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしても良い。
 電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチング又はリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成しても良い。
 [太陽電池]
 上記有機光電変換素子は、優れた光電変換効率および耐久性を有するため、太陽電池に好適に使用されうる。
 本発明の太陽電池は、上記有機光電変換素子を具備し、太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。
 即ち、光電変換層に太陽光が照射されうる構造となっており、本発明の太陽電池を構成する際には、前記光電変換層及び各々の電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。
 封止の方法としては、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子等で公知の手法によって封止することが好ましい。
 例えば、アルミまたはガラスで出来たキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化珪素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化珪素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
 [光センサアレイ]
 次に、以上説明したバルクヘテロジャンクション型の有機光電変換素子10を応用した光センサアレイについて詳細に説明する。光センサアレイは、前記のバルクヘテロジャンクション型の有機光電変換素子が受光によって電流を発生することを利用して、前記の光電変換素子を細かく画素状に並べて作製し、光センサアレイ上に投影された画像を電気的な信号に変換する効果を有するセンサである。
 図4は、光センサアレイの構成を示す図である。図4(A)は、上面図であり、図4(B)は、図4(A)のA-A’線断面図である。
 図4において、光センサアレイ20は、保持部材としての基板21上に、下部電極としての陽極22、光エネルギーを電気エネルギーに変換する光電変換部24及び陽極22と対をなし、上部電極としての陰極23が順次積層されたものである。光電変換部24は、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有してなる光電変換層24bと、バッファ層24aとの2層で構成される。図4に示す例では、6個のバルクヘテロジャンクション型の有機光電変換素子が形成されている。
 これら基板21、陽極22、光電変換層24b及び陰極23は、前述したバルクヘテロジャンクション型の光電変換素子10における透明電極12、光電変換層14及び対極13と同等の構成及び役割を示すものである。
 基板21には、例えば、ガラスが用いられ、陽極22には、例えば、ITOが用いられ、陰極23には、例えば、アルミニウムが用いられる。そして、光電変換層24bのp型半導体材料には、一般式(1)で表わされる部分構造を有する共役系高分子化合物が用いられ、n型半導体材料には、例えば、PCBMが用いられる。また、バッファ層24aには、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)導電性高分子(スタルクヴイテック社製、商品名BaytronP)が用いられる。このような光センサアレイ20は、次のようにして製作される。
 ガラス基板上にスパッタリングによりITO膜を形成し、フォトリソグラフィにより所定のパターン形状に加工する。ガラス基板の厚さは、0.7mm、ITO膜の厚さは、200nm、フォトリソグラフィ後のITO膜における測定部面積(受光面積)は、0.5mm×0.5mmである。次に、このガラス基板21上に、スピンコート法(条件;回転数=1000rpm、フィルター径=1.2μm)によりPEDOT-PSS膜を形成した。その後、該基板を、オーブンで140℃、10分加熱し、乾燥させる。乾燥後のPEDOT-PSS膜の厚さは30nmである。
 次に、上記PEDOT-PSS膜の上に、一般式(1)で表わされる部分構造を有する化合物とPCBMの1:1混合膜を、スピンコート法(条件;回転数=3300rpm、フィルター径=0.8μm)により形成する。このスピンコートに際しては、一般式(1)で表わされる部分構造を有する化合物およびPCBMをクロロベンゼン溶媒に=1:1で混合し、これを攪拌(5分)して得た混合液を用いる。一般式(1)で表わされる部分構造を有する共役系高分子化合物とPCBMの混合膜の形成後、窒素ガス雰囲気下においてオーブンで180℃、30分加熱しアニール処理を施す。アニール処理後の一般式(1)で表わされる部分構造を有する共役系高分子化合物とPCBMの混合膜の厚さは70nmである。
 その後、所定のパターン開口を備えたメタルマスクを用い、一般式(1)で表わされる部分構造を有する共役系高分子化合物とPCBMの混合膜の上に、電子輸送層として本発明の化合物16を5nm蒸着し、ついで陰極としてのアルミニウム層を蒸着法により形成(厚さ=10nm)する。その後、PVA(polyvinyl alcohol)をスピンコートで1μm形成し、150℃で焼成することで図略のパッシベーション層を作製した。以上により、光センサアレイ20が作製される。この光センサアレイ20上に、所定のパターンを有する光を照射すると、光の当たったセルのみから光電流が検出され、光センサとして機能することが確認される。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。
 なお、以下の例示化合物101~115は、上記表1の各化合物に対応する。
 [合成例1-1]
 (例示化合物101(P101)の合成)
Figure JPOXMLDOC01-appb-C000041
 例示化合物101は化合物(A)と化合物(B’)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000042
 化合物(A)は以下のスキームにより合成可能である。
Figure JPOXMLDOC01-appb-C000043
 化合物(C)は非特許文献(Russian Journal of Organic Chemistry Volume 38,Number 5,699-708)を参考に合成できる。
 化合物(D)は非特許文献(J.Med.Chem,1968,P305)を参考に合成できる。
 化合物(D)の合成
 十分に窒素置換された100mlの3口フラスコに化合物(C)0.25gを20mlのKOHで飽和されたエタノールに溶解した。得られた次亜塩素酸ナトリウム1.0gを徐々に加え、1時間激しく攪拌した。反応終了後、500mlの氷冷水を加え、析出物をろ取し、回収したろ取物を、100mlのエタノールに溶解させ、0.3gのヒドロキシルアミン塩酸塩を加えた。得られた溶液を氷冷し、0.9gの水酸化カリウムを徐々に加えた。加えた後、1時間室温で攪拌し、その後溶媒を留去し、残渣を100℃で5時間加熱した。得られた固体を水で洗浄し、粗化合物(D)を得た。
 化合物(A)の合成
 十分に窒素置換された100mlの3口フラスコに粗化合物(D)0.2gを20mlの濃硫酸に溶解した。得られた溶液にNBS0.4gを徐々に加え、8時間100℃で加熱攪拌した。反応終了後、反応液を500mlの氷冷水に加えた。沈殿物をろ取し、水でよく洗浄することで化合物(A)を得た。
 化合物(B’)の合成
 化合物(B’)は非特許文献J.AM.CHEM.SOC.2008,130,16144-16145に記載の合成を参考に合成した。
 例示化合物P101の合成
 十分に窒素置換された100mlの3口フラスコに化合物(A)を0.37g、化合物(B’)を0.96g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物P101を0.53g得た。
 例示化合物101の分子量を測定したところ、Mw=40,000、多分散度(polydispersity index:PDI)=1.8であった。
 [合成例2-1]
 (例示化合物102(P101)の合成)
Figure JPOXMLDOC01-appb-C000044
 例示化合物P102は化合物(A)と化合物(E’)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000045
 化合物(E’)の合成
 化合物(E’)は非特許文献J.AM.CHEM.SOC.2009,131,7792-7799を参考に合成した。
 例示化合物102の合成
 十分に窒素置換された100mlの3口フラスコに化合物(A)を0.37g、化合物(E’)を0.99g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物102を0.65g得た。
 例示化合物102の分子量を測定したところ、Mw=36,000、PDI=1.7であった。
 [合成例3-1]
 (例示化合物103(P103)の合成)
Figure JPOXMLDOC01-appb-C000046
 例示化合物103は化合物(F)と化合物(B)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000047
 化合物(F)は以下の合成ルートで合成できる。
Figure JPOXMLDOC01-appb-C000048
 化合物(G)は非特許文献J.Am.Chem.Soc.,2011,133(25),pp9638-9641を参考に合成した。
 化合物(H)は非特許文献bulletin of the chem.Soc of Japan,1992,P2221を参考にして化合物(G)から合成した。
 化合物(H)の合成
 十分に窒素置換された100mlの3口フラスコに化合物(G)を0.40gをとり、20mlの濃塩酸に溶解した。得られた溶液に塩化スズを2.00gを徐々に加え、加えた後に3時間70℃で還流した。反応終了後、水酸化ナトリウムを用いて中和し、中和後、酢酸エチルで抽出し、硫酸マグネシウムで乾燥させ、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物(H)を得た。
 化合物(F)は非特許文献JACS,1957,P4395を参考にして化合物(H)から合成した。
 化合物(F)の合成
 十分に窒素置換された100mlの3口フラスコに化合物(H)を0.34g、硝酸ナトリウムを0.25g取り、20mlの水に溶解した。得られた溶液を3時間加熱還流した。反応終了後、析出物をろ取し、回収したろ取物を、100mlの1規定水酸化ナトリウムしう溶液に溶解させ、0.50gのヨウ化オクチルを加えた。得られた溶液を3時間加熱還流した。反応終了後、酢酸エチルで抽出し、硫酸マグネシウムで乾燥させ、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物(F)を得た。
 例示化合物103の合成
 十分に窒素置換された100mlの3口フラスコに化合物(F)を0.59g、化合物(B)を0.75g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物103を0.47g得た。
 例示化合物103の分子量を測定したところ、Mw=44,000,PDI=2.0であった。
 [合成例4-1]
 (例示化合物104(P104)の合成)
Figure JPOXMLDOC01-appb-C000049
 例示化合物104は化合物(F)と化合物(E)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000050
 例示化合物104の合成
 十分に窒素置換された100mlの3口フラスコに化合物(F)を0.59g、化合物(E)を0.77g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物104を0.78g得た。
 例示化合物104の分子量を測定したところ、Mw=34,000,PDI=1.6であった。
 [合成例5-1]
 (例示化合物105(P105)の合成)
Figure JPOXMLDOC01-appb-C000051
 例示化合物105は化合物(I)と化合物(B’)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000052
 化合物(I)は以下の変換により合成できる。
Figure JPOXMLDOC01-appb-C000053
 化合物(I)の合成
 化合物(I)は、J.Mater.Chem.,2010,20,p6517を参考に合成した。
 化合物(H)を0.35g、アセトンを20ml、酢酸を2.0ml、およびテトラヒドロフラン(THF)を20ml加え、5時間70℃で還流を行った。放冷後、酢酸エチルを加えて水洗し、有機層を抽出して硫酸マグネシウムで乾燥後、溶媒を留去した。褐色のオイル成分をシリカゲルカラムクロマトグラフィーにて精製し、固体を得、その固体へTHFを20ml、酸化マンガンを3.5g加えて室温で5時間撹拌を行った。酸化マンガンを濾別後、溶媒を留去し、得られた橙色オイル成分をシリカゲルカラムクロマトグラフィーで精製を行い、化合物(I)を得た。
 例示化合物105の合成
 十分に窒素置換された100mlの3口フラスコに化合物(I)を0.42g、化合物(B’)を0.97g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物105を0.40g得た。
 例示化合物105の分子量を測定したところ、Mw=37,000,PDI=2.1であった。
 [合成例6-1]
 (例示化合物106の合成)
Figure JPOXMLDOC01-appb-C000054
 例示化合物106は化合物(I)と化合物(E’)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000055
 化合物106の合成
 十分に窒素置換された100mlの3口フラスコに化合物(I)を0.42g、化合物(E’)を0.99g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物P106を0.61g得た。
 例示化合物106の分子量を測定したところ、Mw=30,000,PDI=1.9であった。
 [合成例7-1]
 (例示化合物107の合成)
Figure JPOXMLDOC01-appb-C000056
 例示化合物107は化合物(J)と化合物(B)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000057
 化合物(J)は、上記化合物(I)の合成において、アセトンを9-ヘプタデカノンに変更することで合成した。
 化合物P107の合成
 十分に窒素置換された100mlの3口フラスコに化合物(J)を0.82g、化合物(B)を0.75g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物107を0.61g得た。
 例示化合物107の分子量を測定したところ、Mw=45,000,PDI=1.8であった。
 [合成例8-1]
 (例示化合物108の合成)
Figure JPOXMLDOC01-appb-C000058
 例示化合物108は化合物(J)と化合物(E)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000059
 化合物108の合成
 十分に窒素置換された100mlの3口フラスコに化合物(J)を0.82g、化合物(E)を0.77g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物108を0.44g得た。
 例示化合物108の分子量を測定したところ、Mw=44,000,PDI=2.2であった。
 [合成例9-1]
 (例示化合物109の合成)
Figure JPOXMLDOC01-appb-C000060
 例示化合物109は化合物(K)と化合物(B)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000061
 化合物(K)は以下の変換により合成できる。
Figure JPOXMLDOC01-appb-C000062
 化合物(K)の合成
 化合物(H)を0.34g、9,10-オクタデカンジオン(Jornal of Organic Chemistry,2002,P9073を参考に合成)を0.5g、酢酸を2.0mlを加え、加熱還流を12時間行った。放冷後、酢酸エチルを加えて水洗し、有機層を抽出して硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、化合物(K)を得た。
 例示化合物109の合成
 十分に窒素置換された100mlの3口フラスコに化合物(K)を0.84g、化合物(B)を0.75g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物109を0.66g得た。
 例示化合物109の分子量を測定したところ、Mw=39,000,PDI=2.4であった。
 [合成例10-1]
 (例示化合物110(P110)の合成)
Figure JPOXMLDOC01-appb-C000063
 例示化合物110は化合物(K)と化合物(E)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000064
 例示化合物110の合成
 十分に窒素置換された100mlの3口フラスコに化合物(K)を0.84g、化合物(E)を0.77g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物110を0.65g得た。
 例示化合物P110の分子量を測定したところ、Mw=39,000,PDI=2.1であった。
 [合成例11-1]
 (例示化合物111(P111)の合成)
Figure JPOXMLDOC01-appb-C000065
 例示化合物111は化合物(N)と化合物(B)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000066
 化合物(N)の合成上記化合物(K)の合成において、9,10オクタデカンジオンを5,10-ジエチル7,8-テトラデカンジオン(Organic LETTERS,2008,P3513を参考に合成)に変更することで合成した。
 例示化合物111の合成
 十分に窒素置換された100mlの3口フラスコに化合物(N)を0.70g、化合物(B)を0.75g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物111を0.12g得た。
 例示化合物111の分子量を測定したところ、Mw=25,000,PDI=2.0であった。
 [合成例12-1]
 (例示化合物112(P112)の合成)
Figure JPOXMLDOC01-appb-C000067
 例示化合物P112は化合物(N)と化合物(E)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000068
 例示化合物P112の合成
 十分に窒素置換された100mlの3口フラスコに化合物(N)を0.70g、化合物(E)を0.77g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物112を0.51g得た。
 例示化合物112の分子量を測定したところ、Mw=30,000,PDI=2.4であった。
 [合成例13-1]
 (例示化合物113(P113)の合成)
Figure JPOXMLDOC01-appb-C000069
 例示化合物P113は化合物(M)と化合物(B’)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000070
 化合物(M)の合成
 上記化合物(K)の合成において、9,10オクタデカンジオンをジトリフルオロメチルベンジルに変更することで合成した。
 例示化合物113の合成
 十分に窒素置換された100mlの3口フラスコに化合物(M)を0.97g、化合物(B’)を0.97g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物113を0.71g得た。
 例示化合物113の分子量を測定したところ、Mw=24,000,PDI=1.8であった。
 [合成例14-1]
 (例示化合物114(P114)の合成)
Figure JPOXMLDOC01-appb-C000071
 例示化合物P114は化合物(M)と化合物(E’)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000072
 例示化合物114の合成
 十分に窒素置換された100mlの3口フラスコに化合物(M)を0.75g、化合物(E’)を0.99g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物P114を0.77g得た。
 例示化合物P114の分子量を測定したところ、Mw=23,000,PDI=2.4であった。
 [合成例15-1]
 (例示化合物115(P115)の合成)
Figure JPOXMLDOC01-appb-C000073
 例示化合物115は化合物(N)と化合物(O)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000074
 化合物(O)はMacromolecules 2011,44,6245を参考に合成可能である。
 例示化合物P115の合成
 十分に窒素置換された100mlの3口フラスコに化合物(N)を0.84g、化合物(O)を1.3g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。回収した沈殿物を、ヘプタン、クロロホルム、ついでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、オルトジクロロベンゼン抽出物をメタノール500mlに再沈殿を行うことで例示化合物115を1.0g得た。
 例示化合物115の分子量を測定したところ、Mw=39,000,PDI=2.4であった。
 [合成例16-1]
 (例示化合物116(P116)の合成)
Figure JPOXMLDOC01-appb-C000075
 例示化合物P116は化合物(Q)と化合物(R)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000076
 化合物(Q)は以下のスキームにより合成可能である。
Figure JPOXMLDOC01-appb-C000077
 化合物(P)の合成
 非特許文献3を参考として、化合物Pを合成した。3-[2-デシルテトラデシル]-1-トリブチルスタンニルチオフェンを1.70g(2.4mmol)と、化合物Aを407mg(1.1mmol)とをトルエン50mlに溶解し、95mgのトリス(ジベンジリデンアセトン)ジパラジウム(0)と、126mgのトリス(o-トリル)ホスフィンとを加えた。この溶液をさらに15分間、窒素でパージした。その後、110~120℃まで溶液を加熱し、4時間反応させた。放冷後、トルエンを留去し、トルエン:ヘプタン=100:0~100:10の溶離液でシリカゲルカラムクロマトグラフィーで精製を行うことにより、化合物(P)を335mg(収率29%)得た。
 化合物(Q)の合成
 335mg(0.32mmol)の化合物PをTHF20mlに溶解し、Nブロモスクシンイミド(NBS)125mg(0.70mmol)を加え、50℃で3時間半撹拌を行った。反応終了後、溶媒を留去し、トルエン:ヘプタン=100:0~100:10の溶離液でシリカゲルカラムクロマトグラフィーで精製を行うことにより、化合物(Q)を330mg(収率85%)得た。
 化合物(R)の合成
 化合物(R)は国際公開第2011/85004号に記載に従って合成した。
 例示化合物P116の合成
 上記化合物(Q)を300mg(0.25mmol)と、化合物(R)を256mg(0.25mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、6.3mg(0.007mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、16.7mg(0.055mmol)のトリス(o-トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110~120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2-トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2-ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで220mgの純粋なポリマー(例示化合物116)を得た。
 例示化合物116の分子量を測定したところ、Mw=55,000、PDI=2.5であった。
 [合成例17-1]
 (例示化合物117(P117)の合成)
Figure JPOXMLDOC01-appb-C000078
 例示化合物P117は化合物(F’)と化合物(R)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000079
 化合物(F’)の合成
 化合物(F)の合成において、ヨウ化オクチルをヨウ化テトラデシルに変更することで合成した。
 例示化合物117の合成
 前記例示化合物116の合成に置いて、化合物(Q)の代わりに化合物(F’)を190mgに変更した以外は同様にして例示化合物117を合成した。
 例示化合物117の分子量を測定したところ、Mw=35,000、PDI=2.3であった。
 [合成例18-1]
 (例示化合物118(P118)の合成)
Figure JPOXMLDOC01-appb-C000080
 例示化合物P118は化合物(J)と化合物(R)の重合反応により得られる。
Figure JPOXMLDOC01-appb-C000081
 例示化合物118の合成
 前記例示化合物116の合成に置いて、化合物(Q)の代わりに化合物(J)を205mgに変更した以外は同様にして例示化合物117を合成した。
 例示化合物118の分子量を測定したところ、Mw=47,000、PDI=2.7であった。
 [実施例1-2]
 <逆層型の有機光電変換素子の作製>
 特開2009-146981号公報の記載を参考として、以下のようにして逆層型の有機光電変換素子を作製した。
 (透明電極(陰極)の形成)
 ガラス基板上に、インジウムスズ酸化物(ITO)透明導電膜を110nm堆積させ(表面抵抗率13Ω/□)、これをフォトリソグラフィおよび塩酸エッチングを用いて2mm幅にパターニングした。そして、これを界面活性剤および超純水の混合液により超音波洗浄した後、さらに超純水により超音波洗浄し、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄することにより、透明電極(陰極)を形成した。
 (電子輸送層の形成)
 上記透明電極が形成された基板をグローブボックス(酸素濃度10ppm、露点温度-80度)に入れ、窒素雰囲気下で、150mMのTiOx前駆体溶液を透明電極上にスピンコート(回転速度2000rpm、回転時間60秒間)し、所定のパターンに拭き取った。そして、これを空気中で2時間放置して、TiOx前駆体を加水分解させた後、150℃で1時間加熱処理することにより30nmのTiOx層からなる電子輸送層を形成した。
 なお、上記150mMのTiOx前駆体溶液は、次の方法(ゾルゲル法)により調製した。100mL三口フラスコに、2-メトキシエタノール12.5mLと、6.25mmolのチタニウムテトライソプロポキシドとを入れ、氷浴中で10分間冷却した。次に、12.5mmolのアセチルアセトンをゆっくり加えて、氷浴中で10分間撹拌した。次に、この混合溶液を80℃で2時間加熱後、1時間還流した。これを室温(25℃)まで冷却し、2-メトキシエタノールを用いて濃度150mMに調整し、TiOx前駆体溶液を得た。なお、上記工程は全て窒素雰囲気で行った。
 (光電変換層の形成)
 クロロベンゼン(溶媒)に、p型有機半導体として合成例1-1で合成した化合物101を1.0質量%、およびn型有機半導体としてPCBM(Nanom Spectra E100、フロンティアカーボン社製)を0.8質量%溶解させた混合溶液を調製した。この混合溶液を0.45μmのフィルタを用いて濾過しながら、上記電子輸送層の上に乾燥後膜厚160nmとなるようにスピンコート(700rpmで60秒間、次いで2200rpmで1秒間)した。その後、これを室温(25℃)で30分間乾燥することにより光電変換層を形成し、グローブボックスから取り出した。
 (正孔輸送層の形成)
 大気下(相対湿度40%)において、上記光電変換層の上に、有機溶剤系PEDOT:PSSの分散液(エノコートHC200、化研産業社製)をスピンコート(2000rpm、60秒間)し、これを風乾することにより、正孔輸送層を形成した。
 (対電極(陽極)の形成)
 上記正孔輸送層の上に、銀電極層を膜厚約100nmになるように真空蒸着し、その後150℃で10分間加熱処理を行うことにより、対電極(陽極)を形成した。以上の工程により、逆層型の有機光電変換素子1-2を完成させた。
 [実施例2-2~18-2]
 光電変換層の形成において、p型有機半導体として合成例2-1~18-1で合成した化合物102~118をそれぞれ用いたことを除いては、上記実施例1-2と同様の方法で、逆層型の有機光電変換素子を作製した。
 [比較例1-2~2-2]
 非特許文献J.Am.Chem.Soc.,2011,133(25),pp9638-9641、J.AM.CHEM.SOC.2008,130,16144-16145およびJ.AM.CHEM.SOC.2009,131,7792-7799を参考にして比較化合物1、2を合成した。
Figure JPOXMLDOC01-appb-C000082
 光電変換層の形成において、p型有機半導体として比較化合物1~2を用いたことを除いては、上記実施例1-2と同様の方法で、逆層型の有機光電変換素子を作製した。
 [実施例1-3~18-3ならびに比較例1-3~2-3]
 上記実施例1-2~15-2ならびに比較例1-2~2-2において、光電変換層を作成後、窒素雰囲気下のグローブボックス(GB)(酸素濃度10ppm、露点温度-80度)から取り出すことなく、そのままグローブボックス内で正孔輸送層の形成を形成したことを除いては、同様の方法で実施例1-3~18-3ならびに比較例1-3~2-3の逆層型の有機光電変換素子の作製を行った。
 <逆層型の有機光電変換素子の評価>
 (開放電圧、曲線因子、および光電変換効率の評価)
 上記有機光電変換素子を、それぞれエポキシ樹脂とガラスキャップとで封止した。これにソーラーシミュレーター(AM1.5Gフィルタ)を用いて100mW/cmの強度の光を照射し、有効面積を1cmにしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)、および曲線因子FF測定した。得られたJsc、Voc、およびFFの値から、下記式1に従って光電変換効率η[%]を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-M000083
 (耐久性評価)
 作成したすべての有機光電変換素子を、温度80℃、湿度80%に保持した容器内に保存し、定期的に取りだしてIV特性を測定し、初期の光電変換効率を100として、初期の効率の80%の効率まで低下した時間をLT80[時間]として評価した。LT80の値が大きいほど、耐久性が良好であることを意味する。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
 表2の結果より、本発明の共役系高分子化合物を用いた実施例は、比較例と比べて高い光電変換効率が得られることが示された。また、Voc(開放電圧)、FF(曲線因子)についても、実施例では、比較例よりも高い値が得られた。
 また、素子の耐久性評価については、正孔輸送層を大気下で形成した場合およびグローブボックス内で形成した場合のいずれの実施例も、比較例よりも著しく耐久性が向上(LT80が大気下:2.4~5倍、GB内:6.2~12.6倍増大)した。この逆層型の素子における耐久性の向上幅は、後述の順層型の素子における耐久性の向上幅よりも大きかった。
 さらに、酸素および水分が少ないグローブボックス内で正孔輸送層を形成した例は、大気下で正孔輸送層を形成した例と比較して、光電変換効率、FF(曲線因子)、素子の耐久性がより一層向上することが示された。
 <順層型の有機光電変換素子の作製>
 [実施例7-4]
 (透明電極(陽極)の形成)
 実施例1-2の「(透明電極(陰極)の形成)」と同様の方法で、陽極として機能する透明電極を形成した。
 (正孔輸送層の形成)
 上記透明電極上に、導電性高分子であるBaytron(登録商標)P4083(スタルクヴィテック社製)を30nmの膜厚となるようにスピンコートした後、140℃の大気中で10分間加熱乾燥した。そして、これをグローブボックス内に持ち込み、再度140℃の窒素雰囲気下で10分間加熱処理することにより、正孔輸送層を形成した。
 なお、これ以降の作業についても、グローブボックス中、窒素雰囲気下で行った。
 (光電変換層の形成)
 クロロベンゼンに、p型有機半導体として合成例7-1で合成した化合物107を0.6質量%、およびn型有機半導体としてPCBM0.9質量%を溶解させた混合溶液を調製した。この混合溶液を0.45μmのフィルタを用いて濾過しながら、上記正孔輸送層上に乾燥後膜厚160nmとなるようにスピンコート(700rpmで60秒間、次いで2200rpmで1秒間)した。その後これを室温(25℃)で30分間乾燥することにより、光電変換層を形成した。
 [電子輸送層化合物Tの合成]
 Adv. Mater. 2007, 19, 2010を参考として、化合物Sを合成した。化合物Sの重量平均分子量は4400であった。
 この化合物S 1.0gと、アルドリッチ社製3,3’-イミノビス(N,N-ジメチルプロピルアミン)9.0gとをテトラヒドロフラン100mlおよびN,N-ジメチルホルムアミド100mlに溶解し、室温で48時間撹拌を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、化合物Tを1.3g得た(収率90%)。得られた化合物について、H-NMRによって構造を特定した。結果を下記に示す。
 7.6~8.0ppm(br), 2.88ppm(br), 2.18ppm(m), 2.08ppm(s), 1.50ppm(m), 1.05ppm(br).
Figure JPOXMLDOC01-appb-C000086
 (電子輸送層の形成)
 続いて、上記化合物Tを0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調整し、乾燥膜厚が約5nmになるようにブレードコーターを用いて光電変換層上に塗布乾燥した。その後、100℃の温風で2分間加熱処理し電子輸送層を製膜した。
 (対電極(陰極)の形成ならびに封止)
 得られた積層体を大気に晒すことなく真空蒸着装置内に設置した。2mm幅のシャドウマスクが透明電極と直交するように積層体をセットし、10-3Pa以下に真空蒸着装置内を減圧した後、対電極として銀を100nm蒸着した。なお蒸着速度は2nm/秒で、2mm角のサイズとした。最後に120℃で30分間の加熱を行うことにより、電子輸送層および対電極を形成した。
 得られた積層体を、窒素雰囲気下でUV硬化樹脂(UV RESIN XNR5570-B1、ナガセケムテックス社製)を用いて透明バリアフィルムGX(水蒸気透過率0.05g/m/d、凸版印刷社製)と貼り合わせて封止することにより、有機光電変換素子を完成させ、大気下に取り出した。
 [実施例11-4、14-4、15-4]
 光電変換層の形成において、p型有機半導体として合成例11-1、14-1、15-1で合成した化合物111、114、115をそれぞれ用いたことを除いては、上記実施例7-4と同様の方法で、順層型の有機光電変換素子を作製した。
 [比較例1-4~2-4]
 光電変換層の形成において、p型有機半導体として比較化合物1~2をそれぞれ用いたことを除いては、上記実施例7-4と同様の方法で、順層型の有機光電変換素子を作製した。
 <順層型の有機光電変換素子の評価>
 (開放電圧、曲線因子、および光電変換効率の評価)
 上記<逆層型の有機光電変換素子の評価>と同様の方法で、開放電圧、曲線因子、光電変換効率について評価を行った。結果を表3に示す。
 (耐久性評価)
 上記<逆層型の有機光電変換素子の評価>と同様の方法で、耐久性について評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000087
 表3の結果より、本形態の共役系高分子化合物を用いた実施例の順層型の有機光電変換素子は、比較例よりも、高い光電変換効率が得られることが示された。また、Voc(開放電圧)、FF(曲線因子)についても、実施例の順層型の有機光電変換素子では比較例よりも高い値が得られた。さらに、実施例の順層型の有機光電変換素子は、比較例よりも素子の耐久性が向上(LT80が5~10倍増大)することが示された。
 本出願は、2011年11月15日に出願された日本特許出願番号2011-250144号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
 10 有機光電変換素子、
 11 基板、
 12 透明電極、
 13 対極、
 14 光電変換層、
 14’ 第1の光電変換層、
 15 電荷再結合層、
 16 第2の光電変換層、
 17 正孔輸送層、
 18 電子輸送層、
 20 光センサアレイ、
 21 基板、
 22 陽極、
 23 陰極、
 24 光電変換部、
 24a バッファ層、
 24b 光電変換層。

Claims (14)

  1.  透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、
     前記光電変換層が、該p型有機半導体材料として下記一般式(1)で表わされる部分構造を有する共役系高分子化合物を含有することを特徴とする有機光電変換素子;
    Figure JPOXMLDOC01-appb-C000001
     この際、RおよびRは互いに独立して、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基、置換されてもよい炭素原子数6~30のアリール基、または置換されてもよい炭素原子数3~30の複素環基であり、
     XおよびXは互いに独立して、
    Figure JPOXMLDOC01-appb-C000002
     この際、R~Rは互いに独立して、水素原子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、置換されてもよい炭素原子数2~30のアシルアミノ基、置換されてもよい炭素原子数6~30のアリール基、または置換されてもよい炭素原子数3~30の複素環基であり、RおよびRがアリール基である場合には、互いに結合して環を形成していてもよい、であるが、XおよびXが同時に
    Figure JPOXMLDOC01-appb-C000003
    になることはない。
  2.  前記XおよびXの少なくとも一方が、
    Figure JPOXMLDOC01-appb-C000004
    である、請求項1に記載の有機光電変換素子。
  3.  前記XおよびXの少なくとも一方が、
    Figure JPOXMLDOC01-appb-C000005
    である、請求項2に記載の有機光電変換素子。
  4.  前記XおよびXの少なくとも一方が、
    Figure JPOXMLDOC01-appb-C000006
    である、請求項3に記載の有機光電変換素子。
  5.  前記RおよびRの少なくとも一方が、置換されてもよい炭素原子数6~30のアリール基または置換されてもよい炭素原子数4~30の分岐鎖のアルキル基である、請求項1~4のいずれか1項に記載の有機光電変換素子。
  6.  前記RおよびRの双方が、置換されてもよい炭素原子数6~30のアリール基または置換されてもよい炭素原子数4~30の分岐鎖のアルキル基である、請求項5に記載の有機光電変換素子。
  7.  前記RおよびRの双方が、ハロゲン原子、炭素原子数1~20のハロゲン化アルキル基、シアノ基、炭素原子数2~20のアシル基、またはニトロ基で置換されている置換基である、請求項1~6のいずれか1項に記載の有機光電変換素子。
  8.  前記一般式(1)で表される部分構造を有する共役系高分子化合物が下記一般式(3)で表される部分構造をさらに含有する、請求項1~7のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000007
  9.  前記一般式(1)で表される部分構造を有する共役系高分子化合物が下記一般式(3’)で表される部分構造をさらに含有する、請求項8に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000008
     一般式(3’)において、R16およびR17は互いに独立して、水素原
    子、置換されてもよい炭素原子数1~30のアルキル基、置換されてもよい炭素原子数1~30のアルコキシ基、置換されてもよい炭素原子数2~30のアルキルエステル基、ハロゲン原子、置換されてもよい炭素原子数2~30のアルコキシカルボニル基、置換されてもよい炭素原子数2~40のアルキルアミノカルボニル基、置換されてもよい炭素原子数2~30のアシル基、置換されてもよいアミノ基、または置換されてもよい炭素原子数2~30のアシルアミノ基である。
  10.  前記一般式(1)で表される部分構造を有する共役系高分子化合物が、下記一般式(2)または一般式(2’)で表される部分構造をさらに有する、請求項1~9のいずれか1項に記載の有機光電変換素子;
    Figure JPOXMLDOC01-appb-C000009
     式中、Tは炭素、珪素、ゲルマニウムから選ばれる原子を表し、RおよびR11は互いに独立して、水素原子、ハロゲン原子または置換されてもよい炭素原子数1~20のアルキル基であり、RおよびR10は互いに独立して、置換されてもよい炭素原子数1~20のアルキル基であり、
    Figure JPOXMLDOC01-appb-C000010
     式中、R12およびR15は互いに独立して、水素原子、ハロゲン原子または置換されてもよい炭素原子数1~20のアルキル基であり、R13およびR14は互いに独立して、置換されてもよい炭素原子数1~20のアルキル基または置換されてもよい炭素原子数1~20のアルコキシ基である。
  11.  前記光電変換層が、溶液塗布法によって作製される光電変換層である、請求項1~10のいずれか1項に記載の有機光電変換素子。
  12.  前記第一の電極の仕事関数が、第二の電極の仕事関数よりも小さい、逆層構成である、請求項1~11のいずれか1項に記載の有機光電変換素子。
  13.  請求項1~12のいずれか1項に記載の有機光電変換素子を有する、太陽電池。
  14.  請求項1~12のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなる、光センサアレイ。
PCT/JP2012/079527 2011-11-15 2012-11-14 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ WO2013073581A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/358,333 US9318707B2 (en) 2011-11-15 2012-11-14 Organic photoelectric conversion element, and solar cell and optical sensor array each using same
JP2013544299A JP6020463B2 (ja) 2011-11-15 2012-11-14 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-250144 2011-11-15
JP2011250144 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073581A1 true WO2013073581A1 (ja) 2013-05-23

Family

ID=48429636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079527 WO2013073581A1 (ja) 2011-11-15 2012-11-14 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ

Country Status (3)

Country Link
US (1) US9318707B2 (ja)
JP (1) JP6020463B2 (ja)
WO (1) WO2013073581A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021145A1 (ja) * 2012-08-03 2014-02-06 住友化学株式会社 高分子化合物及びそれを用いた有機トランジスタ
WO2015029432A1 (ja) * 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 光電変換素子
WO2015100441A1 (en) * 2013-12-26 2015-07-02 Raynergy Tek Incorporation Conjugated polymers and devices incorporating the same
JP2016017117A (ja) * 2014-07-07 2016-02-01 国立研究開発法人理化学研究所 高分子化合物、有機半導体材料、光電変換素子及びトランジスタ
JPWO2016039063A1 (ja) * 2014-09-11 2017-06-22 東洋紡株式会社 光電変換素子、およびこれに用いられる有機半導体化合物
KR102673658B1 (ko) * 2016-05-20 2024-06-10 삼성전자주식회사 유기 광전 소자 및 이미지 센서

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722027B1 (ko) * 2012-05-03 2017-04-03 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
US9908967B2 (en) * 2015-07-12 2018-03-06 Flexterra, Inc. Polymeric semiconductors and related devices
KR102491494B1 (ko) 2015-09-25 2023-01-20 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 및 이미지 센서
US10077262B2 (en) 2015-11-10 2018-09-18 Flexterra, Inc. Thienothiadiazole compounds and related semiconductor devices
CN107004690B (zh) * 2015-11-12 2021-05-14 松下知识产权经营株式会社 光传感器
KR102529631B1 (ko) 2015-11-30 2023-05-04 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102557864B1 (ko) 2016-04-06 2023-07-19 삼성전자주식회사 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
US10236461B2 (en) * 2016-05-20 2019-03-19 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor
KR102605375B1 (ko) 2016-06-29 2023-11-22 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102589215B1 (ko) 2016-08-29 2023-10-12 삼성전자주식회사 유기 광전 소자, 이미지 센서 및 전자 장치
GB2554404A (en) * 2016-09-26 2018-04-04 Sumitomo Chemical Co Solvent systems for preparation of photosensitive organic electronic devices
CN110139867A (zh) 2016-12-27 2019-08-16 国立大学法人大阪大学 萘并双硫属二唑衍生物及其制造方法
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
CN108059714A (zh) * 2018-01-16 2018-05-22 华南协同创新研究院 一种含不对称萘二杂环共轭聚合物及其在有机光电器件中的应用
CN109096284B (zh) * 2018-09-28 2020-01-31 山东师范大学 一种具有双光子吸收特性的有机化合物及其制备方法和应用
CN117402326B (zh) * 2023-12-14 2024-03-22 烟台九目化学股份有限公司 一种萘并双咪唑型膜材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282024A (ja) * 1992-02-14 2000-10-10 Mitsubishi Chemicals Corp 有機電界発光素子
WO2007116750A1 (ja) * 2006-03-30 2007-10-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子
WO2010114116A1 (ja) * 2009-04-03 2010-10-07 コニカミノルタホールディングス株式会社 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP2011502363A (ja) * 2007-10-31 2011-01-20 コナルカ テクノロジーズ インコーポレイテッド 有機光電池を製造するための処理添加剤
WO2012111811A1 (ja) * 2011-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機光電変換素子および太陽電池
WO2012133793A1 (ja) * 2011-03-31 2012-10-04 株式会社クラレ ブロック共重合体および光電変換素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146981A (ja) 2007-12-12 2009-07-02 Kanazawa Univ 有機薄膜太陽電池及び有機薄膜太陽電池筐体封止パネル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282024A (ja) * 1992-02-14 2000-10-10 Mitsubishi Chemicals Corp 有機電界発光素子
WO2007116750A1 (ja) * 2006-03-30 2007-10-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子
JP2011502363A (ja) * 2007-10-31 2011-01-20 コナルカ テクノロジーズ インコーポレイテッド 有機光電池を製造するための処理添加剤
WO2010114116A1 (ja) * 2009-04-03 2010-10-07 コニカミノルタホールディングス株式会社 有機光電変換素子、それを用いた太陽電池および光センサアレイ
WO2012111811A1 (ja) * 2011-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機光電変換素子および太陽電池
WO2012133793A1 (ja) * 2011-03-31 2012-10-04 株式会社クラレ ブロック共重合体および光電変換素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021145A1 (ja) * 2012-08-03 2014-02-06 住友化学株式会社 高分子化合物及びそれを用いた有機トランジスタ
WO2015029432A1 (ja) * 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 光電変換素子
JP2015050297A (ja) * 2013-08-30 2015-03-16 Jx日鉱日石エネルギー株式会社 光電変換素子
WO2015100441A1 (en) * 2013-12-26 2015-07-02 Raynergy Tek Incorporation Conjugated polymers and devices incorporating the same
JP2017503875A (ja) * 2013-12-26 2017-02-02 レイナジー テック インコーポレイション 共役ポリマーおよびそれを組み込んでいるデバイス
JP2016017117A (ja) * 2014-07-07 2016-02-01 国立研究開発法人理化学研究所 高分子化合物、有機半導体材料、光電変換素子及びトランジスタ
JPWO2016039063A1 (ja) * 2014-09-11 2017-06-22 東洋紡株式会社 光電変換素子、およびこれに用いられる有機半導体化合物
KR102673658B1 (ko) * 2016-05-20 2024-06-10 삼성전자주식회사 유기 광전 소자 및 이미지 센서

Also Published As

Publication number Publication date
US9318707B2 (en) 2016-04-19
JPWO2013073581A1 (ja) 2015-04-02
US20140319509A1 (en) 2014-10-30
JP6020463B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6020463B2 (ja) 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
JP5838975B2 (ja) 有機光電変換素子および太陽電池
JP5573066B2 (ja) 有機光電変換素子と、それを用いた太陽電池及び光センサアレイ
WO2011004807A1 (ja) 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP6024776B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5920341B2 (ja) 有機光電変換素子、その製造方法及び太陽電池
JP5699524B2 (ja) 有機光電変換素子および太陽電池
WO2010095517A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5839033B2 (ja) 共役系高分子およびこれを用いた有機光電変換素子
JP5686141B2 (ja) 有機光電変換素子および太陽電池
WO2010090123A1 (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP2013143486A (ja) 有機光電変換素子、ならびにそれを用いた太陽電池および光センサアレイ
JP5447513B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2012234877A (ja) 有機光電変換素子及び太陽電池
JP2012124297A (ja) 有機光電変換素子および太陽電池
JP2012049352A (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5568972B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
WO2011052341A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5691810B2 (ja) 共役系高分子およびこれを用いた有機光電変換素子
JP5691449B2 (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP2012109365A (ja) 有機光電変換素子および太陽電池
JP5413055B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2013091712A (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP5445086B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5447089B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14358333

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12849702

Country of ref document: EP

Kind code of ref document: A1