JP5447513B2 - 有機光電変換素子、それを用いた太陽電池及び光センサアレイ - Google Patents

有機光電変換素子、それを用いた太陽電池及び光センサアレイ Download PDF

Info

Publication number
JP5447513B2
JP5447513B2 JP2011515963A JP2011515963A JP5447513B2 JP 5447513 B2 JP5447513 B2 JP 5447513B2 JP 2011515963 A JP2011515963 A JP 2011515963A JP 2011515963 A JP2011515963 A JP 2011515963A JP 5447513 B2 JP5447513 B2 JP 5447513B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
organic photoelectric
group
layer
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011515963A
Other languages
English (en)
Other versions
JPWO2010137449A1 (ja
Inventor
康 大久保
弘志 北
隆彦 野島
宏明 伊東
晃矢子 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011515963A priority Critical patent/JP5447513B2/ja
Publication of JPWO2010137449A1 publication Critical patent/JPWO2010137449A1/ja
Application granted granted Critical
Publication of JP5447513B2 publication Critical patent/JP5447513B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、有機光電変換素子、太陽電池及び光センサアレイに関し、更に詳しくは、バルクヘテロジャンクション型の有機光電変換素子、この有機光電変換素子を用いた太陽電池及び光アレイセンサに関する。
近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体材料)などの化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)などが提案・実用化されている。
しかしながら、これらの太陽電池で発電するコストは、未だ化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストが高くなる一因であった。
このような状況に対し、化石燃料による発電コストよりも低コストな発電コストを達成しうる太陽電池として、透明電極と対電極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合された光電変換層を挟んだバルクヘテロジャンクション型光電変換素子が提案されている(例えば、非特許文献1参照)。
これらのバルクヘテロジャンクション型太陽電池においては、陽極・陰極以外は塗布プロセスで形成されているため、高速且つ安価な製造が可能であると期待され、前述の発電コストの課題を解決できる可能性がある。更に、上記のSi系太陽電池・化合物半導体系太陽電池・色素増感太陽電池などと異なり、160℃より高温のプロセスがないため、安価且つ軽量なプラスチック基板上への形成も可能であると期待される。
前記非特許文献1では、5%を超える変換効率を達成するにいたっているが、これはチオフェン環とベンゾチアジアゾール環との間の分子内電荷移動を利用することで非常な長波長(〜900nm)までの幅広い太陽光を吸収することが可能となったためである。
他方で太陽電池には耐久性も要求されるが、例えば、上記と同じ材料を用いた太陽電池の報告(例えば、非特許文献2参照)に記載されているように、未だ有機薄膜太陽電池の耐久性は不十分なものであった。
このような分子内電荷移動を利用して、吸収波長が長く、且つ耐久性の高い有機材料として、本発明者らは一部の写真用感光材料に用いられていた色素に着目した。これらの色素は比較的長波な吸収特性を有し、耐久性も高い構造であった。これらの理由は、筆者らは縮環構造内でドナー・アクセプター構造を形成できるためではないかと推定した。前述の非特許文献1や2の材料は、分子内のドナーとアクセプターは単結合および二重結合で結合しているだけであるため、分解が起こりやすい。他方で一部の写真用感光色素母核は、2つの縮合環の橋頭位にSp1窒素原子を有しており、縮合環の橋頭位以外の位置にSp2窒素原子を有しているといった構造である。このような構造において、橋頭位のSp1窒素原子がドナーとして働き、橋頭位以外のSp2窒素原子がアクセプターとして働くことで、長波な吸収を得ることができている。更に、ドナーとアクセプターが環構造を形成しているために、良好な耐久性を有していたのではないかと推定した。
従って、このような長波まで吸収可能で、且つ耐久性の高い部分構造を有する光電変換材料を用いることで、高効率、且つ耐久性の高い太陽電池が得られることを見出し、本発明を完成させるに至った。
A.Heeger;Nature Mat.,vol.6(2007),p497 A.Heeger;Nature Mat.,vol.6(2007),p222
本発明は、上記課題に鑑みなされたものであり、その目的は光電変換効率及び耐久性の高い有機光電変換素子、この有機光電変換素子を用いた太陽電池、及び光アレイセンサを提供することにある。
本発明の上記目的は、下記構成により達成される。
1.透明電極、対電極、及びp型半導体材料とn型半導体材料が混合された光電変換層を有する有機光電変換素子において、該光電変換層に下記一般式(1)で表される構造を有する化合物を含有することを特徴とする有機光電変換素子。
(式中、Z、Zは5員または6員環を形成する原子群であり、ZとZ はともに橋頭位の窒素原子以外にも窒素原子を有する複素芳香族環である。
.前記一般式(1)において、Z、Zがともに含窒素5員環であることを特徴とする前記1に記載の有機光電変換素子。
.前記一般式(1)が下記一般式(2)で表されることを特徴とする前記1または2に記載の有機光電変換素子。
(式中、XからXは置換または無置換の炭素原子または窒素原子を表し、XからXの少なくとも一つとXからXの少なくとも一つは窒素原子である。)
.前記一般式(2)において、X、X及びXが窒素原子であることを特徴とする前記に記載の有機光電変換素子。
.前記一般式(2)が下記一般式(3)で表されることを特徴とする前記またはに記載の有機光電変換素子。
(式中、Y、Yは置換または無置換の窒素原子、酸素原子、硫黄原子、珪素原子を表し、RからRは置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、ヘテロアリールオキシ基、アミノ基から選ばれる置換基を表す。)
.前記一般式(3)において、Y及びYが硫黄原子であることを特徴とする前記に記載の有機光電変換素子。
.前記一般式(1)で表される構造と
下記一般式(4)で表わされる構造と、が交互に結合された構造を有する化合物を含有することを特徴とする前記1からのいずれか1項に記載の有機光電変換素子。
(式中、Yは置換または無置換の窒素原子、炭素原子、酸素原子、硫黄原子、珪素原子を表す。)
.前記一般式(4)において、Yが珪素原子であることを特徴とする前記に記載の有機光電変換素子。
.前記一般式(1)で表される構造を有する化合物が低分子化合物であることを特徴とする前記1からのいずれか1項に記載の有機光電変換素子。
10.前記光電変換層が溶液塗布法によって作製されたことを特徴とする前記1からのいずれか1項に記載の有機光電変換素子。
11.前記1から10のいずれか1項に記載の有機光電変換素子を具備したことを特徴とする太陽電池。
12.前記1から10のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなることを特徴とする光センサアレイ。
本発明により、光電変換効率及び耐久性の高い有機光電変換素子、この有機光電変換素子を用いた太陽電池、及び光アレイセンサを提供することができた。
バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図である。 p−i−nの三層構成の光電変換層を備える有機光電変換素子からなる太陽電池を示す断面図である。 タンデム型の光電変換層を備える有機光電変換素子からなる太陽電池を示す断面図である。 光センサアレイの構成を示す図である。
以下、本発明について詳述する。
本発明の有機光電変換素子は、光電変換層に前記一般式(1)で表される構造を有する化合物を含有することを特徴とする。
以下、本発明を更に詳しく説明する。
(有機光電変換素子及び太陽電池の構成)
図1は、バルクヘテロジャンクション型の有機光電変換素子を示す断面図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、透明電極(一般に陽極)12、正孔輸送層17、光電変換層14、電子輸送層18及び対極(一般に陰極)13が順次積層されている。
基板11は、順次積層された透明電極12、光電変換層14及び対極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は必須ではなく、例えば、光電変換層14の両面に透明電極12及び対極13を形成することで、バルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。
光電変換層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合した光電変換層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。
ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。
図1において、基板11を介して透明電極12から入射された光は、光電変換層14の光電変換層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は内部電界、例えば、透明電極12と対極13の仕事関数が異なる場合では透明電極12と対極13との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。
例えば、透明電極12の仕事関数が対極13の仕事関数よりも大きい場合では、電子は透明電極12へ、正孔は対極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、透明電極12と対極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
なお、図1には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。
更に好ましい構成としては、前記光電変換層14が、所謂p−i−nの三層構成となっている構成(図2)である。通常の光電変換層は、p型半導体材料とn型半導体層が混合した14i層単体であるが、p型半導体材料単体からなる14p層、及びn型半導体材料単体からなる14n層で挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。
更に、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型の光電変換層を備える有機光電変換素子を示す断面図である。
タンデム型構成の場合、基板11上に順次透明電極12、第1の光電変換層14′を積層した後、電荷再結合層15を積層した後、第2の光電変換層16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の光電変換層16は、第1の光電変換層14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また、第1の光電変換層14′、第2の光電変換層16がともに前述のp−i−nの三層構成であってもよい。
以下に、これらの層を構成する材料について述べる。
〔p型半導体材料〕
本発明において、p型半導体材料としては前記一般式(1)で表される構造を有する化合物が用いられる。
一般式(1)において、Z、Zは5員または6員環を形成する原子群であり、ZとZの少なくとも一方は橋頭位の窒素原子以外にも窒素原子を有する原子群である。
、Zで形成される5員または6員環としては、例えば、ピロール、ピラゾール、イミダゾール、トリアゾール、チアゾール、チアジアゾール、オキサゾール、オキサジアゾール、トリアジン、ピリミジン、ピリジン、ピラジン、ピリダジンなどが挙げられ、Z、Zがともに橋頭位の窒素原子以外にも窒素原子を有する複素芳香族環であることが好ましく、更にはZ、Zがともに含窒素5員環であることが好ましい。具体的には、ピラゾール、イミダゾール、トリアゾールが挙げられる。
、Zで形成される5員または6員環は置換基を有してもよく、置換基としては、例えば、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えば、メチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシルなどが挙げられる。)、シクロアルキル基(好ましくは炭素数4〜8であり、例えば、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えば、ビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えば、プロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えば、フェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えば、メトキシ、エトキシ、ブトキシなどが挙げられる。)、シクロアルキルオキシ基(好ましくは炭素数4〜8であり、例えば、シクロペンチルオキシ、シクロヘキシルオキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えば、フェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、アセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えば、フェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えば、アセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えば、メトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えば、フェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えば、スルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、カルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えば、フェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、ウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、ジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロアリール基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子、具体的には、例えば、イミダゾリル、ピリジル、キノリル、フリル、ピペリジル、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。
また、一般式(1)は前記一般式(2)で表されることが好ましい。
一般式(2)中、X〜Xは置換または無置換の炭素原子または窒素原子を表し、X〜Xの少なくとも一つとX〜Xの少なくとも一つは窒素原子であり、X、X及びXが窒素原子であることが好ましい。
より具体的には、一般式(2)は前記一般式(3)で表されることが好ましい。ここで、一般式(2)、一般式(3)において、[ ]内は繰り返し単位を表す。
一般式(3)中、Y、Yは置換または無置換の窒素原子、酸素原子、硫黄原子、珪素原子を表し、R〜Rは置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルコキシ基、シクロアルキルオキシ基、アリールオキシ基、ヘテロアリールオキシ基、アミノ基から選ばれる置換基を表す。
アルキル基としては、好ましくは炭素数1〜20、より好ましくは炭素数4〜16、特に好ましくは炭素数6〜12であり、例えば、メチル、エチル、iso−プロピル、tert−ブチル、n−ペンチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。
シクロアルキル基としては、好ましくは炭素数4〜8であり、例えば、シクロペンチル、シクロヘキシルなどが挙げられる。
アリール基としては、好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えば、フェニル、p−メチルフェニル、ナフチルなどが挙げられる。
ヘテロアリール基としては、好ましくは炭素数1〜12、より好ましくは炭素数3〜9であり、ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子、具体的には、例えば、イミダゾリル、ピリジル、キノリル、フリル、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。
アルコキシ基としては、好ましくは炭素数1〜20、より好ましくは炭素数4〜16、特に好ましくは炭素数6〜12であり、例えば、ブトキシ、ヘキシルオキシ、ドデシルオキシなどが挙げられる。
シクロアルキルオキシ基としては、好ましくは炭素数4〜8であり、例えば、シクロペンチルオキシ、シクロヘキシルオキシなどが挙げられる。
アリールオキシ基としては、好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。
ヘテロアリールオキシ基としては、好ましくは炭素数1〜12、より好ましくは炭素数3〜9であり、ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子、具体的には、例えば、イミダゾリルオキシ、ピリジルオキシ、キノリルオキシ、フリルオキシ、ベンズオキサゾリルオキシ、ベンズイミダゾリルオキシ、ベンズチアゾリルオキシなどが挙げられる。
アミノ基としては、好ましくは炭素数0〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数6〜16であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。
一般式(3)においては、Y及びYが硫黄原子であることが最も好ましい。
さらに好ましくは、前記一般式(1)から(3)で表される構造を有する化合物と、下記一般式(4)で表わされる構造が交互に結合された化合物である。
このような構造は平面性が高く高い移動度が期待されるため、このような構造を導入することで一層高い光電変換効率を期待することができる。
式中、Yは置換または無置換の窒素原子、炭素原子、酸素原子、硫黄原子、珪素原子を表すが、高い移動度と高い溶解性の両立が期待できる炭素原子および珪素原子が好ましく、最も好ましくは珪素原子である。
以下、本発明の一般式(1)〜(3)で表される構造を有する化合物の具体例を挙げるが、本発明はこれらに限定されない。
また、本発明の構造を有する化合物としては、低分子化合物と高分子化合物があるが、一般に高分子化合物は、p型材料とn型材料のモルホロジーを制御しやすく光電変換効率の高い化合物を得やすい傾向がある半面、重合時に使用する金属触媒、モノマーの反応性基などは有機光電変換素子の寿命と関連するため、もう一方の重要な光電変換素子の特性である寿命を向上させにくいと言った傾向がある。したがって、寿命の観点からはp型半導体材料は低分子化合物であることが好ましい。なお、本発明において低分子化合物とは、化合物の分子量に分布のない、単一分子であることを意味する。分子量が5000未満の化合物を低分子化合物と区分する。より好ましくは3000以下、更に好ましくは2000以下である。他方、高分子化合物とは、所定のモノマーを反応させることによって一定の分子量分布を有する化合物の集合体であることを意味する。しかし、実用上分子量によって定義をする際には、好ましくは分子量が5000以上の化合物を高分子化合物と区分する。より好ましくは10000以上、さらに好ましくは30000以上である。他方、高分子量になるほど溶解性が低下するため、分子量は100万以下、より好ましくは10万以下であることが好ましい。なお、分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。また、分子量に応じた精製も分取用のゲルパーミエーションクロマトグラフィー(GPC)で精製することができる。
このような構造を有する化合物は、特開2004−217884号公報、特願2005−142378号、特許3907142号公報、Adv.Mater.2007,vol.19,p2295等を参考として合成することができる。
本発明においては、上記p型半導体材料と下記のp型半導体材料を併用することも可能である。
本発明において、併用可能なp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーが挙げられる。
縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンジチアテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。
また、上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号、国際公開第03/28125号、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基を有するペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol.127,No14.4986、J.Amer.Chem.Soc.,vol.123,p9482、J.Amer.Chem.Soc.,vol.130,(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
共役系ポリマーとしては、例えば、下記構造式で表されるポリ3−ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Mat.,(2006),vol.5,p328に記載のポリチオフェン−チエノチオフェン共重合体、国際公開第08/664号に記載のポリチオフェン−ジケトピロロピロール共重合体、Adv Mater.,2007,p4160に記載のポリチオフェン−チアゾロチアゾール共重合体、Nature Mat.,vol.6(2007),p497に記載のポリ(シクロペンタジチオフェン−ベンゾチアジアゾール)共重合体(PCPDTBT)等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。
また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。
〔n型半導体材料〕
本発明に係る光電変換層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
しかし、この中でもn型半導体材料としては、各種のp型半導体材料と高速(〜50フェムト秒)且つ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
中でもN−Methylfulleropyrrolidine、下記構造式で表される[6,6]−フェニルC61−ブチリックアシッドメチルエステル(略称PCBM)、[6,6]−フェニルC61−ブチリックアシッド−nブチルエステル(PCBnB)、[6,6]−フェニルC61−ブチリックアシッド−イソブチルエステル(PCBiB)、[6,6]−フェニルC61−ブチリックアシッド−n−ヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis−PCBM、特開2006−199674号公報等のアミノ化フラーレン、特開2008−130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレン、J.Amer.Chem.Soc.,(2009)vol.130,p15429に記載のSIMEF、Appl.Phys.Lett.,Vol.87(2005)、p203504に記載のC60MC12等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
〔光電変換層の形成方法〕
電子受容体と電子供与体とが混合された光電変換層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また、塗布法は製造速度にも優れている。
この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ワイヤーバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。
塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。その結果、光電変換層の正孔と電子(キャリア)の移動度が向上し、高い効率を得ることができるようになる。
光電変換層は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで形成することが可能となる。
〔電子輸送層(正孔ブロック層)〕
本発明の有機光電変換素子は、光電変換層と陰極との中間に電子輸送層を形成することで、光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
電子輸送層とは、このように陰極とバルクヘテロジャンクション層の中間に位置して、バルクヘテロジャンクション層と電極との間で電子の授受をより効率的にすることのできる層のことである。より具体的には、バルクヘテロジャンクション層のn型半導体材料のLUMO準位と陰極の仕事関数との中間のLUMO準位を有する化合物が電子輸送層として適切である。より好ましくは、電子移動度が10−4以上の化合物である。
電子輸送層の中には、バルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれる。より好ましくは、n型半導体のHOMO準位よりも深いHOMO準位を有する材料を電子輸送層として用いることである。また、正孔を阻止する特性から、正孔移動度が10−6よりも低い化合物を用いることが好ましい。
電子輸送層としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、国際公開第04/095889号に記載のカルボリン化合物等を用いることができるが、同様に、光電変換層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。より好ましくは、n型半導体のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。
このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用する方が好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、光電変換層に用いたn型半導体材料単体からなる層を用いることもできる。
これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
〔正孔輸送層(電子ブロック層)〕
本発明の有機光電変換素子は、光電変換層と陽極との中間には正孔輸送層を、光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
これらの層を構成する材料としては、例えば、正孔輸送層としては、スタルクヴイテック製、商品名BaytronP等のPEDOT(ポリ−3,4−エチレンジオキシチオフェン)−PSS(ポリスチレンスルホン酸)、ポリアニリン及びそのドープ材料、国際公開第06/019270号等に記載のシアン化合物、などを用いることができる。なお、光電変換層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、光電変換層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用する方が好ましい。
このような材料としては、特開平5−271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、光電変換層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。光電変換層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。
また、同様に正孔を輸送する特性から10−4よりも高い正孔移動度を有していることが好ましく、また電子を阻止する特性から、電子移動度が10−6よりも低い化合物を用いることが好ましい。
〔その他の層〕
エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。
〔電極〕
本発明の有機光電変換素子においては、少なくとも陽極と陰極とを有する。また、タンデム構成をとる場合には、中間電極を用いることでタンデム構成を達成することができる。なお、本発明においては、主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。
また、透光性があるかどうかといった機能から、透光性のある電極を透明電極と呼び、透光性のない電極を対電極と呼び分ける場合がある。通常、陽極は透光性のある透明電極であり、陰極は透光性のない対電極である。
〔陽極〕
本発明の陽極は、好ましくは380〜800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層または金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等を用いることができる。
また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて陽極とすることもできる。
〔陰極〕
陰極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。陰極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
陰極の導電材として金属材料を用いれば、陰極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。
また、陰極は、金属(例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤ、ナノ構造体であってもよく、ナノワイヤの分散物であれば、透明で導電性の高い陰極を塗布法により形成でき好ましい。
また、陰極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の陰極に適した導電性材料を薄く1〜20nm程度の膜厚で作製した後、上記陽極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性陰極とすることができる。
〔中間電極〕
また、前記図3のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記陽極で用いたような材料(ITO、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層または金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。
〔基板〕
基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。
例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380〜800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。
中でも、透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
〔光学機能層〕
本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けてもよい。
反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
また、光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層などを挙げることができる。
〔パターニング〕
本発明に係る電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
光電変換層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。
電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチングまたはリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。
〔封止〕
また、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子などで公知の手法によって封止することが好ましい。
例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化珪素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化珪素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
〔光センサアレイ〕
次に、以上説明したバルクヘテロジャンクション型の有機光電変換素子を応用した光センサアレイについて詳細に説明する。光センサアレイは、前記のバルクヘテロジャンクション型の有機光電変換素子が受光によって電流を発生することを利用して、前記の光電変換素子を細かく画素状に並べて作製し、光センサアレイ上に投影された画像を電気的な信号に変換する効果を有するセンサである。
図4は、光センサアレイの構成を示す図である。図4(A)は上面図であり、図4(B)は図4(A)のA−A’線断面図である。
図4において、光センサアレイ20は、保持部材としての基板21上に、下部電極としての陽極22、光エネルギーを電気エネルギーに変換する光電変換部24及び陽極22と対をなし、上部電極としての陰極23が順次積層されたものである。光電変換部24は、p型半導体材料とn型半導体材料とを一様に混合した光電変換層24bと、バッファ層24aとの2層で構成される。図4に示す例では、6個のバルクヘテロジャンクション型の有機光電変換素子が形成されている。
これら基板21、陽極22、光電変換部24b及び陰極23は、前述したバルクヘテロジャンクション型の有機光電変換素子10における陽極12、光電変換層14及び陰極13と同等の構成及び役割を示すものである。
基板21には、例えば、ガラスが用いられ、陽極22には、例えば、ITOが用いられ、陰極23には、例えば、アルミニウムが用いられる。そして、光電変換層24bのp型半導体材料には、例えば、前記例示化合物11が用いられ、n型半導体材料には、例えば、PCBM(フロンティアカーボン製、Nanom Spectra E100H)が用いられる。また、バッファ層24aには、PEDOT(ポリ−3,4−エチレンジオキシチオフェン)−PSS(ポリスチレンスルホン酸)導電性高分子(スタルクヴイテック製、商品名BaytronP)が用いられる。このような光センサアレイ20は、次のようにして製作された。
ガラス基板上にスパッタリングによりITO膜を形成し、フォトリソグラフィにより所定のパターン形状に加工した。ガラス基板の厚さは、0.7mm、ITO膜の厚さは、200nm、フォトリソグラフィ後のITO膜における測定部面積(受光面積)は、0.5mm×0.5mmであった。次に、このガラス基板21上に、スピンコート法(条件;回転数=1000rpm、フィルター径=1.2μm)によりPEDOT−PSS膜を形成した。その後、該基板を、オーブンで140℃、10分加熱し、乾燥させた。乾燥後のPEDOT−PSS膜の厚さは30nmであった。
次に、上記PEDOT−PSS膜の上に、例示化合物11とPCBMの1:4混合膜を、スピンコート法(条件;回転数=3300rpm、フィルター径=0.8μm)により形成した。このスピンコートに際しては、例示化合物11及びPCBMをクロロベンゼン溶媒に=1:4で混合し、これを攪拌(5分)して得た混合液を用いた。例示化合物11とPCBMの混合膜の形成後、窒素ガス雰囲気下においてオーブンで180℃、30分加熱しアニール処理を施した。アニール処理後の例示化合物11とPCBMの混合膜の厚さは70nmであった。
その後、所定のパターン開口を備えたメタルマスクを用い、例示化合物11とPCBMの混合膜の上に、電子輸送層としてバソキュプロインを5nm蒸着し、次いで陰極としてのアルミニウム層を蒸着法により形成(厚さ=10nm)した。その後、PVA(polyvinyl alcohol)をスピンコートで1μm形成し、150℃で焼成することで図略のパッシベーション層を作製した。以上により、光センサアレイ20が作製された。この光センサアレイ20上に、所定のパターンを有する光を照射したところ、光の当たったセルのみから光電流が検出され、光センサとして機能することが確認された。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
〔比較の有機光電変換素子1の作製〕
ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を110nm堆積したもの(表面抵抗率13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて2mm幅にパターニングして、透明電極を形成した。
パターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック製)を30nmの膜厚でスピンコートした後、140℃で大気中10分間加熱乾燥した。
これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。
クロロベンゼンにp型半導体材料として、P3HT(プレクトストロニクス製、プレックスコアOS2100)を1.0質量%、n型半導体材料としてPCBM(フロンティアカーボン製、Nanom Spectra E100H)を0.8質量%を溶解した液を作製し、0.45μmのフィルタでろ過をかけながら700rpmで60秒、次いで2200rpmで1秒間のスピンコートを行い、室温で30分乾燥し、光電変換層を得た。
次に、上記有機層を成膜した基板を真空蒸着装置内に設置した。2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10−3Pa以下まで真空蒸着機内を減圧した後、フッ化リチウムを0.5nm、Alを80nmを蒸着した。最後に120℃で30分間の加熱を行い、比較の有機光電変換素子1を得た。なお、蒸着速度はいずれも2nm/秒で蒸着し、2mm角のサイズとした。
得られた有機光電変換素子1は、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570−B1)を用いて封止を行った後に、ソーラシミュレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧−電流特性を測定し、初期の変換効率を測定した。
〔本発明の有機光電変換素子2〜10の作製〕
上記有機光電変換素子1の作製において、p型半導体材料をP3HTに代えて、表1に記載した本発明に係る例示化合物に変更し、溶解濃度を0.36質量%とし、PCBMの濃度を1.44質量%とした以外は、比較の有機光電変換素子1と同様にして本発明の有機光電変換素子2〜10を得た。
得られた有機光電変換素子2〜10は、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂を用いて封止を行った後に大気下に取り出し、ソーラシミュレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧−電流特性を測定し、初期の変換効率を測定した。
(変換効率の評価)
上記作製した光電変換素子に、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、曲線因子(フィルファクター)FFを、同素子上に形成した4箇所の受光部をそれぞれ測定し、平均値を求めた。また、Jsc、Voc、FFから式1に従ってエネルギー変換効率η(%)を求めた。
式1 η(%)=Jsc(mA/cm)×Voc(V)×FF
(耐久性評価)
ソーラシミュレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧−電流特性を測定し、初期の変換効率を測定した。更にこの時の初期変換効率を100とし、陽極と陰極の間に抵抗を接続したまま100mW/cmの照射強度で1000時間照射し続けた後の変換効率を評価し、相対効率低下を算出した。
式2 相対効率低下(%)=(1−暴露後の変換効率/暴露前の変換効率)×100
表1から、本発明に係るp型半導体材料を利用した方が変換効率も高く、耐久性も高いものが得られることがわかる。また、高分子化合物に比して低分子化合物を用いた方が相対効率低下の小さい、耐久性の高い素子が得られることがわかる。
10 バルクヘテロジャンクション型の有機光電変換素子
11 基板
12 陽極
13 陰極
14 光電変換層
14p p層
14i i層
14n n層
14′ 第1の光電変換層
15 電荷再結合層
16 第2の光電変換層
17 正孔輸送層
18 電子輸送層
20 光センサアレイ
21 基板
22 陽極
23 陰極
24 光電変換部
24a バッファ層
24b 光電変換層
25 測定部(受光部)

Claims (12)

  1. 透明電極、対電極、及びp型半導体材料とn型半導体材料が混合された光電変換層を有する有機光電変換素子において、該光電変換層に下記一般式(1)で表される構造を有する化合物を含有することを特徴とする有機光電変換素子。
    (式中、Z、Zは5員または6員環を形成する原子群であり、ZとZ はともに橋頭位の窒素原子以外にも窒素原子を有する複素芳香族環である。)
  2. 前記一般式(1)において、Z、Zがともに含窒素5員環であることを特徴とする請求項1に記載の有機光電変換素子。
  3. 前記一般式(1)が下記一般式(2)で表されることを特徴とする請求項1または2に記載の有機光電変換素子。
    (式中、XからXは置換または無置換の炭素原子または窒素原子を表し、XからXの少なくとも一つとXからXの少なくとも一つは窒素原子である。)
  4. 前記一般式(2)において、X、X及びXが窒素原子であることを特徴とする請求項に記載の有機光電変換素子。
  5. 前記一般式(2)が下記一般式(3)で表されることを特徴とする請求項またはに記載の有機光電変換素子。
    (式中、Y、Yは置換または無置換の窒素原子、酸素原子、硫黄原子、珪素原子を表し、RからRは置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、ヘテロアリールオキシ基、アミノ基から選ばれる置換基を表す。)
  6. 前記一般式(3)において、Y及びYが硫黄原子であることを特徴とする請求項に記載の有機光電変換素子。
  7. 前記一般式(1)で表される構造と
    下記一般式(4)で表わされる構造と、が交互に結合された構造を有する化合物を含有することを特徴とする請求項1からのいずれか1項に記載の有機光電変換素子。
    (式中、Yは置換または無置換の窒素原子、炭素原子、酸素原子、硫黄原子、珪素原子を表す。)
  8. 前記一般式(4)において、Yが珪素原子であることを特徴とする請求項に記載の有機光電変換素子。
  9. 前記一般式(1)で表される構造を有する化合物が低分子化合物であることを特徴とする請求項1からのいずれか1項に記載の有機光電変換素子。
  10. 前記光電変換層が溶液塗布法によって作製されたことを特徴とする請求項1からのいずれか1項に記載の有機光電変換素子。
  11. 請求項1から10のいずれか1項に記載の有機光電変換素子を具備したことを特徴とする太陽電池。
  12. 請求項1から10のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなることを特徴とする光センサアレイ。
JP2011515963A 2009-05-25 2010-05-10 有機光電変換素子、それを用いた太陽電池及び光センサアレイ Active JP5447513B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011515963A JP5447513B2 (ja) 2009-05-25 2010-05-10 有機光電変換素子、それを用いた太陽電池及び光センサアレイ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009125091 2009-05-25
JP2009125091 2009-05-25
PCT/JP2010/057864 WO2010137449A1 (ja) 2009-05-25 2010-05-10 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2011515963A JP5447513B2 (ja) 2009-05-25 2010-05-10 有機光電変換素子、それを用いた太陽電池及び光センサアレイ

Publications (2)

Publication Number Publication Date
JPWO2010137449A1 JPWO2010137449A1 (ja) 2012-11-12
JP5447513B2 true JP5447513B2 (ja) 2014-03-19

Family

ID=43222564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011515963A Active JP5447513B2 (ja) 2009-05-25 2010-05-10 有機光電変換素子、それを用いた太陽電池及び光センサアレイ

Country Status (2)

Country Link
JP (1) JP5447513B2 (ja)
WO (1) WO2010137449A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782703B2 (ja) * 2009-10-29 2015-09-24 住友化学株式会社 高分子化合物及びそれを用いた電子素子
CN103165742B (zh) * 2011-12-16 2016-06-08 清华大学 太阳能电池的制备方法
CN103165719B (zh) 2011-12-16 2016-04-13 清华大学 太阳能电池
CN103165690B (zh) 2011-12-16 2015-11-25 清华大学 太阳能电池
CN102646794A (zh) * 2012-04-23 2012-08-22 华北电力大学 一种p-i-n型聚合物太阳能电池及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357809A (ja) * 1999-06-15 2000-12-26 Fuji Photo Film Co Ltd 光電変換材料、光電変換素子及びポリメチン色素
JP2002100420A (ja) * 2000-09-25 2002-04-05 Konica Corp 光電変換効率が良好で耐久性に優れた光電変換材料用半導体、光電変換素子、太陽電池
JP2005332737A (ja) * 2004-05-21 2005-12-02 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子及び太陽電池
WO2007121252A2 (en) * 2006-04-11 2007-10-25 Konarka Technologies, Inc. Tandem photovoltaic cells
JP2007335760A (ja) * 2006-06-16 2007-12-27 Fujifilm Corp 光電変換膜、並びに、該光電変換膜を含む太陽電池、光電変換素子、又は撮像素子
JP2008109097A (ja) * 2006-09-28 2008-05-08 Toray Ind Inc 光起電力素子用材料および光起電力素子
JP2008166339A (ja) * 2006-12-27 2008-07-17 Toray Ind Inc 光起電力素子用材料および光起電力素子
WO2009007340A1 (de) * 2007-07-10 2009-01-15 Basf Se Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
JP2009096946A (ja) * 2007-10-19 2009-05-07 Toray Ind Inc 発光素子材料および発光素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357809A (ja) * 1999-06-15 2000-12-26 Fuji Photo Film Co Ltd 光電変換材料、光電変換素子及びポリメチン色素
JP2002100420A (ja) * 2000-09-25 2002-04-05 Konica Corp 光電変換効率が良好で耐久性に優れた光電変換材料用半導体、光電変換素子、太陽電池
JP2005332737A (ja) * 2004-05-21 2005-12-02 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子及び太陽電池
WO2007121252A2 (en) * 2006-04-11 2007-10-25 Konarka Technologies, Inc. Tandem photovoltaic cells
JP2007335760A (ja) * 2006-06-16 2007-12-27 Fujifilm Corp 光電変換膜、並びに、該光電変換膜を含む太陽電池、光電変換素子、又は撮像素子
JP2008109097A (ja) * 2006-09-28 2008-05-08 Toray Ind Inc 光起電力素子用材料および光起電力素子
JP2008166339A (ja) * 2006-12-27 2008-07-17 Toray Ind Inc 光起電力素子用材料および光起電力素子
WO2009007340A1 (de) * 2007-07-10 2009-01-15 Basf Se Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
JP2009096946A (ja) * 2007-10-19 2009-05-07 Toray Ind Inc 発光素子材料および発光素子

Also Published As

Publication number Publication date
WO2010137449A1 (ja) 2010-12-02
JPWO2010137449A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5655568B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5447521B2 (ja) 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP5464088B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP6024776B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5648641B2 (ja) 有機光電変換素子
JP5699524B2 (ja) 有機光電変換素子および太陽電池
JP5476969B2 (ja) 有機光電変換素子、太陽電池、及び光センサアレイ
JP5493496B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5447513B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
WO2010090123A1 (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP2011155185A (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5568972B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2012049352A (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5590041B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP2010283003A (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5440208B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5691449B2 (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5440508B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5413055B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5445086B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2011124469A (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5447089B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP2012015390A (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP2011155034A (ja) 有機光電変換素子、太陽電池、及び光センサアレイ
JP2011119382A (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5447513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350