WO2010114116A1 - 有機光電変換素子、それを用いた太陽電池および光センサアレイ - Google Patents

有機光電変換素子、それを用いた太陽電池および光センサアレイ Download PDF

Info

Publication number
WO2010114116A1
WO2010114116A1 PCT/JP2010/056060 JP2010056060W WO2010114116A1 WO 2010114116 A1 WO2010114116 A1 WO 2010114116A1 JP 2010056060 W JP2010056060 W JP 2010056060W WO 2010114116 A1 WO2010114116 A1 WO 2010114116A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
organic photoelectric
conversion element
general formula
compound
Prior art date
Application number
PCT/JP2010/056060
Other languages
English (en)
French (fr)
Inventor
康 大久保
隆彦 野島
宏明 伊東
晃矢子 和地
智寛 押山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011507302A priority Critical patent/JP5494651B2/ja
Publication of WO2010114116A1 publication Critical patent/WO2010114116A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • C08G2261/374Metal complexes of Os, Ir, Pt, Ru, Rh, Pd
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications

Definitions

  • the present invention relates to an organic photoelectric conversion element, a solar cell using the same, and an optical sensor array.
  • Solar cells using single-crystal / polycrystal / amorphous Si, GaAs, CIGS (copper (Cu), indium (In) ), Semiconductor materials comprising gallium (Ga) and selenium (Se)) compound-based solar cells, dye-sensitized photoelectric conversion elements (Gretzel cells), and the like have been proposed and put to practical use.
  • an electron donor layer p-type semiconductor layer
  • an electron acceptor are provided between the transparent electrode and the counter electrode.
  • a bulk heterojunction photoelectric conversion element has been proposed in which a bulk heterojunction layer mixed with a layer (n-type semiconductor layer) is sandwiched (see, for example, Non-Patent Document 1).
  • these bulk heterojunction solar cells are formed by a coating process except for the anode and cathode, it is expected that they can be manufactured at high speed and at low cost, and may solve the above-mentioned problem of power generation cost. . Furthermore, unlike the Si solar cells, compound semiconductor solar cells, and dye-sensitized solar cells described above, there is no process at a temperature higher than 160 ° C., so it can be formed on a cheap and lightweight plastic substrate. Is done.
  • Non-Patent Document 1 in order to efficiently absorb the solar spectrum, a long wavelength is used. By using an organic polymer capable of absorbing up to 5%, conversion efficiency exceeding 5% has been achieved.
  • AFPO-Green1 As a compound that can absorb longer wavelengths than benzothiadiazole, a compound called AFPO-Green1 has been reported as a material for organic photoelectric conversion elements (see Non-Patent Document 6), and the absorption wavelength has reached about 1000 nm. However, the photoelectric conversion efficiency remained as low as 0.3%.
  • the photoelectric conversion layer material In order to transmit the charge generated by absorbing light to the electrode, not only is the wave length increased, but the photoelectric conversion layer material requires high carrier mobility.
  • the host nucleus has low symmetry and low crystallinity, so it is assumed that high photoelectric conversion efficiency cannot be obtained, and the present inventors searched for a structure that has high symmetry and can absorb up to a long wavelength. However, the present inventors have found that the compound having a partial structure of the present invention has an absorption spectrum up to a very long wavelength and can achieve high photoelectric conversion efficiency, thereby completing the present invention.
  • the present invention has been made in view of the above problems, and in order to efficiently absorb the solar spectrum, an organic photoelectric conversion element having a host nucleus with high electron acceptability that can be absorbed up to a long wavelength, To provide a solar cell and an optical sensor array using an organic photoelectric conversion element.
  • An organic photoelectric conversion element having a transparent electrode, a counter electrode, and a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are mixed, and the portion represented by the following general formula (1) in the bulk heterojunction layer
  • An organic photoelectric conversion element comprising a compound having a structure.
  • X 1 represents a substituted or unsubstituted 5-membered or 6-membered heteroaromatic ring.
  • X 1 represents a substituted or unsubstituted 5-membered or 6-membered heteroaromatic ring.
  • X 1 represents a substituted or unsubstituted carbon, nitrogen, oxygen, sulfur or selenium atom.
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • X 2 represents a substituted or unsubstituted carbon, nitrogen, oxygen, silicon, sulfur or selenium atom.
  • Z 2 and Z 3 are each independently a 5-membered or 6-membered hydrocarbon aromatic ring or heterocycle. Represents an aromatic ring.) 6). 6. The organic photoelectric conversion device as described in 5 above, wherein in the general formula (3), the atom represented by X 2 is a substituted or unsubstituted nitrogen atom.
  • a solar cell comprising the organic photoelectric conversion device as described in any one of 1 to 9 above.
  • An optical sensor array comprising the organic photoelectric conversion elements according to any one of 1 to 9 arranged in an array.
  • an organic photoelectric conversion element having high photoelectric conversion efficiency and high durability, and a solar cell and an optical sensor array using the element can be provided.
  • the present inventors have focused on the benzodithiadiazole mother nucleus as a compound necessary for absorbing long-wavelength sunlight, and have succeeded in producing an excellent organic photoelectric conversion device.
  • the organic photoelectric conversion element of the present invention is characterized by containing a compound having a partial structure represented by the general formula (1).
  • a compound having a partial structure represented by the general formula (2) is preferred, and a compound having a partial structure represented by the general formula (3) is further preferably contained. With such a structure, light up to a relatively long wave region can be absorbed.
  • the compound having the partial structure represented by the general formula (1) includes a low molecular compound and a high molecular compound.
  • a low molecular weight compound is particularly preferred from the viewpoint of durability from the viewpoint that high-purity purification is possible.
  • the low molecular compound means a single molecule having no distribution in the molecular weight of the compound.
  • the polymer compound means an aggregate of compounds having a molecular weight distribution by reacting a predetermined monomer.
  • a compound having a molecular weight of 5000 or more is preferably classified as a polymer compound. More preferably, it is 10,000 or more, More preferably, it is 30000 or more.
  • the molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less.
  • the molecular weight can be measured by mass spectrum or gel permeation chromatography (GPC).
  • the compound of the present invention may function as a p-type semiconductor material or an n-type semiconductor material in the bulk heterojunction layer, but preferably functions as a p-type semiconductor material.
  • p-type and n-type are classified as p-type materials that are mainly holes and n-type materials that are mainly electrons that contribute to electrical conduction in semiconductor materials.
  • X 1 each independently represents a substituted or unsubstituted 5-membered or 6-membered heteroaromatic ring.
  • X 1 represents a substituted or unsubstituted 5- or 6-membered heteroaromatic ring
  • X 1 —N—C—C—N is: This means that it represents a 5- or 6-membered heteroaromatic ring.
  • the elements represented by X 1 , N, and C may have a substituent.
  • the substituent represents a halogen atom, a substituted or unsubstituted alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a silyl group, an ether group, a thioether group, an amino group, or the like.
  • Examples of the 5- or 6-membered heteroaromatic ring formed by X 1 include a thiadiazole ring, an imidazole ring, an oxadiazole ring, a selenadiazole ring, a triazole ring, a pyrazine ring, a triazine ring, and the like, and these are condensed.
  • a condensed aromatic ring By including such a condensed ring structure in the molecule, it is possible to obtain a semiconductor material for a power generation layer that has absorption at a long wavelength and is stable.
  • the heteroaromatic ring formed by X 1 is a 5-membered heteroaromatic ring. This is because by using a 5-membered heteroaromatic ring, twisting from the conjugated plane is reduced and absorption is possible up to a longer wavelength.
  • Such a strong electron-accepting mother nucleus is preferably adjacent to a thiophene ring that is a strong electron-donating mother nucleus.
  • a compound represented by the general formula (2) is preferable.
  • each X 1 independently represents a substituted or unsubstituted carbon, nitrogen, oxygen, silicon, sulfur or selenium atom, preferably a sulfur atom.
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • substituent represented by R 1 and R 2 include a halogen atom, a substituted or unsubstituted alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a silyl group, an ether group, and a thioether group.
  • the compound having a partial structure represented by the general formula (1) or the general formula (2) according to the present invention preferably further has a partial structure represented by the general formula (3) in the molecule.
  • X 2 represents a substituted or unsubstituted carbon, nitrogen, oxygen, silicon, sulfur, or selenium atom.
  • X 2 is preferably a nitrogen atom.
  • Z 2 and Z 3 each independently represent a 5-membered or 6-membered hydrocarbon aromatic ring or heteroaromatic ring, more preferably at least one aromatic ring of Z 2 and / or Z 3 is It is a nitrogen-containing aromatic 6-membered ring, and particularly preferably both Z 2 and Z 3 are pyridine rings.
  • the position of nitrogen in the pyridine ring is preferably the ⁇ -position when the ⁇ -position, ⁇ -position, ⁇ -position, and ⁇ -position are sequentially arranged from the X 2 side in the general formula (3). With such a structure, the open-circuit voltage Voc of the photoelectric conversion element can be further improved.
  • the compound having a partial structure represented by the general formula (1) or the general formula (2) of the present invention is mainly used as a p-type semiconductor material.
  • a tandem photoelectric conversion element described later when a tandem photoelectric conversion element described later is used, at least A compound having a partial structure represented by the general formula (1) or the general formula (2) may be used for one bulk heterojunction layer, and various condensed polycyclic aromatic compounds or conjugates may be used for the other bulk heterojunction layer.
  • a polymer or the like may be used.
  • the structure by which the compound other than this invention was blended to the bulk heterojunction layer may be sufficient.
  • condensed polycyclic aromatic compound examples include compounds such as anthracene, tetracene, pentacene, anthradithiophene, porphyrin, benzoporphyrin, phthalocyanine, naphthalocyanine, and derivatives and precursors thereof (for example, International Publication No. 03/16599).
  • a pentacene derivative having a substituent described in a pamphlet, International Publication No. 03/28125 pamphlet, US Pat. No. 6,690,029, JP-A-2004-107216, US Patent Application Publication No. 2003/136964 Examples of pentacene precursors, substituted acenes described in J. Amer. Chem. Soc., Vol 127.
  • No 14.4986, and derivatives thereof, and conjugated compounds include, for example, polythiophene and oligomers thereof, Polypi Lumpur and oligomers thereof, polyaniline, can be exemplified polyphenylene and oligomers thereof, polyphenylene vinylene and oligomers thereof, polythienylenevinylene and its oligomers, polyacetylene, polydiacetylene, tetrathiafulvalene compounds and derivatives thereof.
  • conjugated polymer for example, polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, polysilane, polygermane, etc.
  • Polythiophene such as poly-3-hexylthiophene (P3HT) and oligomers thereof, or polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225, Nature Materia 200 vol.
  • the present invention is a low band gap polymer having absorption up to a wavelength longer than 650 nm, Adv. Mater. , Vol.
  • PCDTBT polythiophene-carbazole-benzothiadiazole copolymer
  • the organic photoelectric conversion device of the present invention is characterized by being applied to a bulk heterojunction layer in which an n-type semiconductor material and a p-type semiconductor material are mixed.
  • the compound of the present invention is preferably used as the p-type semiconductor material, and the n-type semiconductor material is used.
  • the semiconductor material is not particularly limited.
  • p-type semiconductor perfluoro compounds perfluoropentacene, perfluorophthalocyanine, etc.
  • naphthalenetetracarboxylic anhydride naphthalenetetracarboxylic diimide
  • perylene examples thereof include aromatic carboxylic acid anhydrides such as tetracarboxylic acid anhydride and perylenetetracarboxylic acid diimide, and polymer compounds containing the imidized product thereof as a skeleton.
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc.
  • PCBM [6,6] -phenyl C61-butyric acid methyl ester
  • PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
  • PCBiB [6,6]- Phenyl C61-butyric acid-isobutyl ester
  • PCBH PChenyl C61-butyric acid-n-hexyl ester
  • a fullerene derivative having a substituent and having improved solubility such as a fullerene having a fluorinated alkyl group such as 20 (2008) p1.
  • a polymer type fullerene obtained by polymerizing fullerene such as fullerene having a cyclic ether group such as US Pat. No. 7,329,709 may be used.
  • FIG. 1 is a cross-sectional view showing a bulk heterojunction organic photoelectric conversion element.
  • a bulk heterojunction type organic photoelectric conversion element 10 has a transparent electrode 12, a bulk heterojunction layer photoelectric conversion unit 14, and a counter electrode 13 sequentially stacked on one surface of a substrate 11.
  • the substrate 11 is a member that holds the transparent electrode 12, the photoelectric conversion unit 14, and the counter electrode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member.
  • the substrate 11 for example, a glass substrate or a resin substrate is used.
  • the substrate 11 is not essential.
  • the bulk heterojunction type organic photoelectric conversion element 10 may be configured by forming the transparent electrode 12 and the counter electrode 13 on both surfaces of the photoelectric conversion unit 14.
  • the transparent electrode 12 is an electrode that can transmit light that is photoelectrically converted in the photoelectric conversion unit 14, and is preferably an electrode that transmits light having a wavelength of 300 to 2500 nm included in sunlight.
  • materials include transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, or nanoparticle / nanowire layers, and conductive polymers. Can be used.
  • the counter electrode 13 may be made of metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon, or the material of the transparent electrode 12, but is not limited thereto.
  • the photoelectric conversion unit 14 is sandwiched between the transparent electrode 12 and the counter electrode 13, but the pair of comb-like electrodes are arranged on one side of the photoelectric conversion unit 14.
  • the back contact type organic photoelectric conversion element 10 may be configured such that the back contact type organic photoelectric conversion element 10 is disposed.
  • the photoelectric conversion unit 14 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material functions relatively as an electron donor (donor)
  • the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • the compound of the present invention is used as the p-type semiconductor material. And as an n-type semiconductor material, in order to implement
  • any method such as a vapor deposition method and a coating method (including a casting method and a spin coating method) may be used.
  • a coating method that excels in resistance is preferable.
  • the bulk heterojunction layer of the photoelectric conversion part 14 is annealed at a predetermined temperature during the manufacturing process to be partially crystallized in order to improve the photoelectric conversion rate.
  • the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
  • FIG. 1 light incident from the transparent electrode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the photoelectric conversion unit 14, and electrons move from the electron donor to the electron acceptor.
  • a hole-electron pair charge separation state
  • the generated electric charge is caused by an internal electric field, for example, when the work functions of the transparent electrode 12 and the counter electrode 13 are different, the electrons pass between the electron acceptors due to the potential difference between the transparent electrode 12 and the counter electrode 13, and the holes are , Passed between the electron donors and carried to different electrodes, and photocurrent is detected.
  • the transport direction of electrons and holes can be controlled.
  • the photoelectric conversion unit 14 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, but the mixing ratio of the electron acceptor and the electron donor is changed. You may comprise by the changed multiple layer.
  • Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency.
  • After coating it is preferable to perform heating in order to cause removal of residual solvent, moisture and gas, and improvement of mobility and absorption longwave due to crystallization of the semiconductor material.
  • the bulk heterojunction type organic photoelectric conversion element 10 includes the transparent electrode 12, the bulk heterojunction layer photoelectric conversion unit 14 and the counter electrode 13 which are sequentially stacked on the substrate 11, but is not limited thereto.
  • there are other layers such as a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, or a smoothing layer between the transparent electrode 12 or the counter electrode 13 and the photoelectric conversion unit 14 and bulk hetero
  • the junction type organic photoelectric conversion element 10 may be configured.
  • a hole transport layer 17 is placed between the bulk heterojunction layer and the anode (usually the transparent electrode 12 side), and a cathode (usually the counter electrode 13 side). Since it is possible to more efficiently take out the charges generated in the bulk heterojunction layer by forming the electron transport layer 18, it is preferable to have these layers.
  • the hole transport layer 17 PEDOT such as trade name BaytronP manufactured by Stark Vitec Co., polyaniline and its doping material, cyan compound described in WO2006 / 019270 pamphlet, etc. , Etc. can be used.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the anode side. It has an electronic block function.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • triarylamine compounds described in JP-A-5-271166 metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used.
  • a layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used.
  • the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method.
  • octaazaporphyrin a p-type semiconductor perfluoro product (perfluoropentacene, perfluorophthalocyanine, etc.) can be used.
  • a p-type semiconductor material used for a bulk heterojunction layer is used.
  • the electron transport layer having a HOMO level deeper than the HOMO level is provided with a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the cathode side.
  • Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.
  • Such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • a layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
  • FIG. 3 is a cross-sectional view showing a solar cell composed of an organic photoelectric conversion element including a tandem bulk heterojunction layer.
  • the transparent electrode 12 and the first photoelectric conversion unit 14 are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion unit 16, and then the counter electrode 13.
  • the tandem configuration can be obtained.
  • the second photoelectric conversion unit 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion unit 14 or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum.
  • the material of the charge recombination layer 15 is preferably a layer using a compound having both transparency and conductivity, such as transparent metal oxides such as ITO, AZO, FTO, and titanium oxide, Ag, Al, and Au.
  • a very thin metal layer such as PEDOT: PSS or a conductive polymer material such as polyaniline is preferable.
  • the organic photoelectric conversion element 10 it is preferable to seal the organic photoelectric conversion element 10 by a known method so that the produced organic photoelectric conversion element 10 is not deteriorated by oxygen, moisture, or the like in the environment.
  • optical sensor array Next, an optical sensor array to which the bulk heterojunction type organic photoelectric conversion element 10 described above is applied will be described in detail.
  • the optical sensor array is produced by arranging the photoelectric conversion elements in a fine pixel form by utilizing the fact that the bulk heterojunction type organic photoelectric conversion elements generate a current upon receiving light, and projected onto the optical sensor array.
  • FIG. 4 is a diagram showing the configuration of the optical sensor array. 4A is a top view, and FIG. 4B is a cross-sectional view taken along the line AA ′ in FIG. 4A.
  • the optical sensor array 20 is paired with a transparent electrode 22 as a lower electrode, a photoelectric conversion unit 24 that converts light energy into electric energy, and a transparent electrode 22 on a substrate 21 as a holding member.
  • the counter electrode 23 is sequentially laminated.
  • the photoelectric conversion unit 24 includes two layers of a photoelectric conversion layer 24b having a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed, and a hole transport layer 24a. In the example shown in FIG. 4, six bulk heterojunction type organic photoelectric conversion elements are formed.
  • the substrate 21, the transparent electrode 22, the photoelectric conversion layer 24 b, and the counter electrode 23 have the same configuration and role as the transparent electrode 12, the photoelectric conversion unit 14, and the counter electrode 13 in the bulk heterojunction photoelectric conversion element 10 described above. It is.
  • the hole transport layer 24a is made of PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) conductive polymer (trade name Baytron P4083 manufactured by Starck Vitec).
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • Such an optical sensor array 20 was manufactured as follows.
  • An ITO film was formed on the glass substrate by sputtering and processed into a predetermined pattern shape by photolithography.
  • the thickness of the glass substrate was 0.7 mm
  • the thickness of the ITO film was 200 nm
  • the measurement area (light receiving area) of the ITO film after photolithography was 1 mm ⁇ 1 mm.
  • the thickness of the PEDOT-PSS film after drying was 30 nm.
  • the optical sensor array 20 was produced as described above.
  • the manufactured photosensor array 20 having 2 rows ⁇ 3 columns of pixels is irradiated with light so that only two pixels in the center column are exposed to light, and the 6 pixels are sequentially placed between ⁇ 0.
  • the current value was read by applying a voltage of 5 V, the current was observed only in the pixels that were exposed to light, and no current flowed in the pixels that were not exposed to light. Therefore, it was confirmed that the optical sensor array 20 operates as an optical sensor.
  • Example 1 Preparation of Comparative Organic Photoelectric Conversion Element 1> An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 110 nm (sheet resistance 13 ⁇ / ⁇ ) is patterned to a width of 2 mm using a normal photolithography technique and hydrochloric acid etching, and transparent An electrode was formed.
  • ITO indium tin oxide
  • the patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • Baytron P4083 manufactured by Starck Vitec, which is a conductive polymer, was spin-coated with a film thickness of 30 nm, and then dried by heating at 140 ° C. in the air for 10 minutes.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 140 ° C. for 3 minutes in a nitrogen atmosphere.
  • a liquid prepared by dissolving 1.0% by mass of the following comparative compound 1 as a p-type semiconductor material and 1.0% by mass of the following PCBM (manufactured by Frontier Carbon Co.) as an n-type semiconductor material in chlorobenzene was prepared. While being filtered through a filter, spin coating was performed at 500 rpm for 60 seconds, then at 2200 rpm for 1 second, and dried at room temperature for 30 minutes.
  • the substrate on which the organic layer was formed was placed in a vacuum evaporation apparatus.
  • the element was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 ⁇ 3 Pa or less, and then 5 nm of lithium fluoride and 80 nm of Al were evaporated.
  • the heating for 30 minutes was performed at 120 degreeC, and the comparative organic photoelectric conversion element 1 was obtained.
  • the vapor deposition rate was 2 nm / second for all, and the size was 2 mm square.
  • the obtained organic photoelectric conversion element 1 was sealed with an aluminum cap and a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) in a nitrogen atmosphere, and then a solar simulator (AM1.5G). ) was irradiated at an irradiation intensity of 100 mW / cm 2 , voltage-current characteristics were measured, and initial conversion efficiency was measured. Furthermore, assuming that the initial conversion efficiency at this time is 100, the conversion efficiency after 100 hours of irradiation with an irradiation intensity of 100 mW / cm 2 with a resistor connected between the anode and the cathode is evaluated, and the relative efficiency reduction rate is calculated. Calculated. These results are shown in Table 1.
  • Comparative Compound 1 was synthesized with reference to Non-Patent Document 4.
  • the obtained organic photoelectric conversion elements 2 to 8 were sealed with an aluminum cap and a UV curable resin in a nitrogen atmosphere, and then taken out into the atmosphere.
  • the light from a solar simulator (AM1.5G) was 100 mW / cm 2.
  • the initial conversion efficiency was measured by measuring the voltage-current characteristics. Furthermore, assuming that the initial conversion efficiency at this time is 100, the conversion efficiency after 100 hours of irradiation with an irradiation intensity of 100 mW / cm 2 is continuously evaluated with a resistance connected between the anode and the cathode, and the relative efficiency reduction rate is calculated. did.
  • the organic photoelectric conversion element of the present invention has high conversion efficiency and durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Light Receiving Elements (AREA)

Abstract

 太陽光スペクトルを効率よく吸収するために、長波長まで吸収可能な、電子受容性の高い母核を有する有機光電変換素子、この有機光電変換素子を用いた太陽電池および光センサアレイを提供するに当たり、透明電極、対電極、およびp型半導体材料とn型半導体材料が混合されたバルクヘテロジャンクション層を有する有機光電変換素子であって、前記バルクヘテロジャンクション層内に下記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする。 (下記式中、Xは、置換または無置換の5員または6員の複素芳香族環を表す。)

Description

有機光電変換素子、それを用いた太陽電池および光センサアレイ
 本発明は有機光電変換素子、それを用いた太陽電池および光センサアレイに関する。
 近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体材料)化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)などが提案・実用化されている。
 しかしながら、これらの太陽電池で発電するコストは未だ化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストが高くなる一因であった。
 このような状況に対し、化石燃料による発電コストよりも低コストな発電コストを達成しうる太陽電池として、透明電極と対電極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合されたバルクヘテロジャンクション層を挟んだバルクヘテロジャンクション型光電変換素子が提案されている(例えば、非特許文献1参照。)。
 これらのバルクヘテロジャンクション型太陽電池においては、陽極・陰極以外は塗布プロセスで形成されているため、高速かつ安価な製造が可能であると期待され、前述の発電コストの課題を解決できる可能性がある。さらに、上記のSi系太陽電池・化合物半導体系太陽電池・色素増感太陽電池などと異なり、160℃より高温のプロセスがないため、安価かつ軽量なプラスチック基板上への形成も可能であると期待される。
 なお発電コストには、初期の製造コスト以外にも発電効率及び素子の耐久性も含めて算出されなければならないが、前記非特許文献1では、太陽光スペクトルを効率よく吸収するために、長波長まで吸収可能な有機高分子を用いることによって、5%を超える変換効率を達成するに至っている。
 しかしより高効率な有機光電変換素子を得るには、2000nm程度まである太陽光スペクトルからなるべく多くの波長の光を変換できるよう、一層長波長まで吸収できる材料の開発が必須である。このような目的に対し、分子内に電子供与性母核と電子受容性母核とを組み合わせることで、長波長まで吸収可能な材料を得ている(例えば非特許文献1~5)。しかしながら、多くの材料の電子受容性母核として用いられるベンゾチアジアゾール構造では、その電子受容性から約900nm程度までしか吸収することができず、より電子受容性の高い母核を有する太陽電池用材料の開発が望まれていた。
 類似の構造として、特許文献1の撮像素子用の有機光電変換素子があるが、ここで開示されている3環縮環の化合物は、外側の6員環が芳香族環でないため、電子受容性が弱く、吸収波長は緑色領域であることが開示されており、エネルギー手段としての光電変換素子としては不十分である。
 また、ベンゾチアジアゾールより長波長まで吸収可能な化合物として、AFPO-Green1という化合物が有機光電変換素子用材料として報告(非特許文献6参照。)されており、吸収波長は1000nm前後まで到達しているが、その光電変換効率は0.3%と低いものに留まっていた。
 光を吸収して発生した電荷を電極まで伝達するためには、単に長波化するだけではなく光電変換層材料には高いキャリア移動度が必要とされるが、前記非特許文献6で使用している母核は対称性が低く、結晶性が低いために高い光電変換効率が得られないものと推定し、本発明者らは高い対称性を有しつつ長波長まで吸収可能な構造を探索したところ、本発明の部分構造を有する化合物が非常に長波長まで吸収スペクトルを有し、かつ高い光電変換効率を達成できることを見出し、本発明を完成させた。
特開2007-59467号公報
A.Heeger:Nature Mat.;vol.6(2007),p497 APPLIED PHYSICS LETTERS 92,033307 2008 J.AM.CHEM.SOC.9VOL.128,NO.27,2006 8981 Adv.Mater. 2007,19,2295 Macromolecules 2008,41,8302 Appl.,Phys.,Lett.,vol.85(2004)p5081
 本発明は、上記課題に鑑みなされたものであり、その目的、太陽光スペクトルを効率よく吸収するために、長波長まで吸収可能な、電子受容性の高い母核を有する有機光電変換素子、この有機光電変換素子を用いた太陽電池および光センサアレイを提供することである。
 上記課題は、本発明の構成により解決することができた。
 1.透明電極、対電極、およびp型半導体材料とn型半導体材料が混合されたバルクヘテロジャンクション層を有する有機光電変換素子であって、前記バルクヘテロジャンクション層内に下記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする有機光電変換素子。
Figure JPOXMLDOC01-appb-C000004
(式中、Xは置換または無置換の5員または6員の複素芳香族環を表す。)
 2.前記一般式(1)において、Xであらわされる複素芳香族環が5員の複素芳香族環であることを特徴とする前記1に記載の有機光電変換素子。
 3.前記一般式(1)で表される部分構造を有する化合物が、下記一般式(2)で表される部分構造を有する化合物であることを特徴とする前記1または2に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000005
(式中、Xは置換または無置換の炭素、窒素、酸素、硫黄またはセレン原子を表す。RおよびRは、各々独立に水素原子又は置換基を表す。)
 4.前記一般式(2)において、Xで表される原子が硫黄原子であることを特徴とする前記3に記載の有機光電変換素子。
 5.前記一般式(1)または(2)で表される部分構造を有する化合物が、さらに下記一般式(3)で表される部分構造を有することを特徴とする前記1~4のいずれか1項に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000006
(式中、Xは置換または無置換の炭素、窒素、酸素、珪素、硫黄またはセレン原子を表す。ZおよびZは、各々独立に5員または6員の炭化水素芳香族環または複素芳香族環を表す。)
 6.前記一般式(3)において、Xで表される原子が置換または無置換の窒素原子であることを特徴とする前記5に記載の有機光電変換素子。
 7.前記一般式(3)において、ZまたはZで表される芳香族環の少なくとも一方が、含窒素複素芳香族6員環であることを特徴とする前記5または6に記載の有機光電変換素子。
 8.前記一般式(1)または(2)で表される部分構造を有する化合物が、低分子化合物であることを特徴とする前記1~7のいずれか1項に記載の有機光電変換素子。
 9.前記バルクヘテロジャンクション層が、溶液塗布法によって作製されたことを特徴とする前記1~8のいずれか1項に記載の有機光電変換素子。
 10.前記1~9のいずれか1項に記載の有機光電変換素子からなることを特徴とする太陽電池。
 11.前記1~9のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなることを特徴とする光センサアレイ。
 本発明により、光電変換効率の高い、且つ耐久性の高い有機光電変換素子およびその素子を用いた太陽電池および光センサアレイを提供することができた。
バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の層構成を示す断面図である。 バルクヘテロジャンクション型の有機光電変換素子の層構成の他の例を示す断面図である。 タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。 光センサアレイの構成を示す図である。
 本発明者らは、長波長の太陽光を吸収するのに必要な化合物として、ベンゾジチアジアゾール母核に注目し、優れた有機光電変換素子とすることができたものである。
 以下、本発明を詳細に説明する。
 本発明の有機光電変換素子は、前記一般式(1)で表される部分構造を有する化合物を含有することが特徴である。好ましくは前記一般式(2)で表される部分構造を有する化合物であり、且つ一般式(3)で表される部分構造を有する化合物を含有することが更に好ましい。このような構造とすることで、比較的長波の領域までの光を吸収することができるようになる。
 本発明において、前記一般式(1)で表される部分構造を有する化合物としては、低分子化合物および高分子化合物を包含するものである。
 また本発明においては、高純度の精製が可能な点から、特に耐久性の観点で低分子化合物であることが好ましい。なお、低分子化合物とは、化合物の分子量に分布のない、単一分子であることを意味する。一方、高分子化合物とは、所定のモノマーを反応させることによって分子量分布を有する化合物の集合体であることを意味する。
 しかし、実用上分子量によって定義をする際には、好ましくは分子量が5000以上の化合物を高分子化合物と区分する。より好ましくは10000以上、さらに好ましくは30000以上である。他方、高分子量になるほど溶解性が低下するため、分子量は100万以下、より好ましくは10万以下であることが好ましい。なお、分子量はマススペクトルやゲルパーミエーションクロマトグラフィー(GPC)等によって測定することができる。
 〔p型半導体材料〕
 本発明の化合物はバルクヘテロジャンクション層内においてp型半導体材料として働いても良いし、n型半導体材料として働いても良いが、p型半導体材料として働くことが好ましい。なお一般に、p型、n型とは、半導体材料で電気伝導に寄与するのが、主に正孔である材料をp型、主に電子である材料をn型として分類する。
 前記一般式(1)中、Xは、各々独立に置換または無置換の5員または6員の複素芳香族環を表す。
 尚、本発明で言う「Xは、置換または無置換の5員または6員の複素芳香族環を表す。」とは、X-N-C-C-Nで形成される環が、5員または6員の複素芳香族環を表すという意味である。
 ここでX、N、Cであらわされる元素は置換基を有していて良い。置換基としては、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基等を表す。
 Xにより形成される5員または6員の複素芳香族環としては、チアジアゾール環、イミダゾール環、オキサジアゾール環、セレナジアゾール環、トリアゾール環、ピラジン環、トリアジン環等、更にはこれらが縮合した縮合芳香族環が挙げられる。このような縮環構造を分子中に含むことによって、長波長に吸収を有し、かつ安定な発電層用の半導体材料を得ることができる。
 より好ましくは、Xにより形成される複素芳香族環が5員の複素芳香族環であることである。5員の複素芳香族環とすることで、共役平面からのねじれが減少し、より長波長まで吸収可能となるためである。
 このような強い電子受容性母核には、強い電子供与性母核であるチオフェン環が隣接することが好ましい。このようなシークエンスとすることで、長波長まで吸収可能となる。すなわち、前記一般式(2)で表されるような化合物であることが好ましい。前記一般式(2)中、Xは、各々独立に置換または無置換の炭素、窒素、酸素、珪素、硫黄またはセレン原子を表し、好ましくは硫黄原子である。
 RおよびRは、各々独立に水素原子又は置換基を表す。RおよびRで表される置換基としては、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基等を表し、更にRおよびRが互いに結合して環構造を形成しても良い。
 本発明に係る一般式(1)若しくは一般式(2)で表される部分構造を有する化合物は、更に一般式(3)で表される部分構造を分子中に有することが好ましい。このような構造を導入すると、得られる化合物の溶解性を向上させたり、得られる光電変換素子の開放電圧Vocを向上できるといった効果がある。
 一般式(3)中、Xは置換または無置換の炭素、窒素、酸素、珪素、硫黄またはセレン原子を表す。Xは好ましくは窒素原子である。ZおよびZは、各々独立に5員または6員の炭化水素芳香族環または複素芳香族環を表し、より好ましくはZおよび/またはZのうちの少なくとも一方の芳香族環が、含窒素芳香族6員環であることであり、特に好ましくはZおよびZのいずれもがピリジン環であることである。また、ピリジン環における窒素の位置は、一般式(3)中のX側から順にα位、β位、γ位、δ位とした場合、γ位であることが好ましい。このような構造とすることで、一層光電変換素子の開放電圧Vocを向上することができる。
 前記一般式(1)若しくは一般式(2)で表される部分構造を有する化合物、更には一般式(3)で表される部分構造を有する化合物の具体例を下記に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明の前記一般式(1)若しくは一般式(2)で表される部分構造を有する化合物は、主にp型半導体材料として用いられるが、後述するタンデム型光電変換素子とする際は、少なくとも一方のバルクヘテロジャンクション層に前記一般式(1)若しくは一般式(2)で表される部分構造を有する化合物が用いられれば良く、他方のバルクヘテロジャンクション層には種々の縮合多環芳香族化合物や共役系ポリマー等を用いても良い。また、バルクヘテロジャンクション層に本発明以外の化合物がブレンドされた構成であっても良い。
 縮合多環芳香族化合物としては、例えば、アントラセン、テトラセン、ペンタセン、アントラジチオフェン、ポルフィリン、ベンゾポルフィリン、フタロシアニン、ナフタロシアニン等の化合物、及びこれらの誘導体や前駆体(例えば国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986等に記載の置換アセン類及びその誘導体等)、共役系化合物としては、例えば、ポリチオフェン及びそのオリゴマー、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、テトラチアフルバレン化合物及びこれらの誘導体を挙げることができる。
 共役系ポリマーとしては、例えば、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、WO2008000664に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv.Mater,2007,p4160に記載のポリチオフェン-チアゾロチアゾール共重合体、APPLIED PHYSICS LETTERS vol.92,p033307(2008)に記載のPFDTBT、J.AM.CHEM.SOC.,vol.131,p7792(2009)に記載のPTB1~6などが挙げられるが、中でも本発明においては650nmよりも長波長まで吸収を有する低バンドギャップポリマーである、Adv.Mater.,vol.19(2007)p2295に記載のポリチオフェン-カルバゾール-ベンゾチアジアゾール共重合体(PCDTBT)、Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体が好ましい。
 〔n型半導体材料〕
 本発明の有機光電変換素子は、n型半導体材料及びp型半導体材料を混合したバルクヘテロジャンクション層に適用することが特徴であり、p型半導体材料として本発明の化合物を用いることが好ましく、n型半導体材料としては特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
 しかし、本発明のベンゾジチアジアゾール縮合環を有する材料をp型半導体材料として用いる場合、効率的な電荷分離を行えるフラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
 中でもN-Methylfulleropyrrolidine、[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号等のアミノ化フラーレン、特開2008-130889号等のメタロセン化フラーレン、Adv.Mater.vol.20(2008)p1等のフッ化アルキル基を有するフラーレンのような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。また、US7329709等の環状エーテル基を有するフラーレン等のようなフラーレンを重合したような、高分子型フラーレンを用いても良い。
 (有機光電変換素子および太陽電池の層構成)
 図1は、バルクヘテロジャンクション型の有機光電変換素子を示す断面図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、透明電極12、バルクヘテロジャンクション層の光電変換部14及び対電極13が順次積層されている。
 基板11は、順次積層された透明電極12、光電変換部14及び対電極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、光電変換部14の両面に透明電極12及び対電極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。
 透明電極12は、光電変換部14において光電変換される光を透過させることが可能な電極であり、好ましくは太陽光に含まれる波長である300~2500nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、またはナノ粒子・ナノワイヤー層、および、導電性高分子を用いることができる。
 対電極13は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素、あるいは透明電極12の材料等を用いることができるが、これに限らない。
 なお、図1に示すバルクヘテロジャンクション型の有機光電変換素子10では、光電変換部14が透明電極12と対電極13とでサンドイッチされているが、一対の櫛歯状電極を光電変換部14の片面に配置するといった、バックコンタクト型の有機光電変換素子10が構成されてもよい。
 光電変換部14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。
 p型半導体材料としては、本発明の化合物が用いられる。そして、n型半導体材料としては、比較的高い光電変換効率を実現するために、フラーレン誘導体が用いられることが好ましい。
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等のいずれでも良いが、本発明においては、製造速度に優れる塗布法が好ましい。
 そして、光電変換部14のバルクヘテロジャンクション層は、光電変換率を向上すべく、製造工程中において所定の温度でアニール処理され、微視的に一部結晶化されていることが好ましい。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。
 図1において、基板11を介して透明電極12から入射された光は、光電変換部14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、透明電極12と対電極13の仕事関数が異なる場合では透明電極12と対電極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、透明電極12の仕事関数が対電極13の仕事関数よりも大きい場合では、電子は、透明電極12へ、正孔は、対電極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、透明電極12と対電極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
 図1に戻って、なお、光電変換部14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。
 また、上述のバルクヘテロジャンクション型の有機光電変換素子10は、順次に基板11上に積層された透明電極12、バルクヘテロジャンクション層の光電変換部14及び対電極13で構成されたが、これに限られず、例えば透明電極12や対電極13と光電変換部14との間に正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、あるいは平滑化層等の他の層を有してバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。これらの中でも、図2で示されるように、バルクヘテロジャンクション層と陽極(通常、透明電極12側)との中間には正孔輸送層17を、陰極(通常、対電極13側)との中間には電子輸送層18を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
 これらの層を構成する材料としては、例えば、正孔輸送層17としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、WO2006/019270号パンフレット等に記載のシアン化合物、などを用いることができる。なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
 また電子輸送層18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、バルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
 さらに、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板11上に、順次透明電極12、第1の光電変換部14を積層した後、電荷再結合層15を積層した後、第2の光電変換部16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の光電変換部16は、第1の光電変換部14の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また、電荷再結合層15の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等が好ましい。
 また、作製した有機光電変換素子10が環境中の酸素、水分等で劣化しないために、公知の手法によって封止することが好ましい。例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上10を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
 (光センサアレイ)
 次に、以上説明したバルクヘテロジャンクション型の有機光電変換素子10を応用した光センサアレイについて詳細に説明する。光センサアレイは、前記のバルクヘテロジャンクション型の有機光電変換素子が受光によって電流を発生することを利用して、前記の光電変換素子を細かく画素状に並べて作製し、光センサアレイ上に投影された画像を電気的な信号に変換する効果を有するセンサである。
 図4は、光センサアレイの構成を示す図である。図4(a)は、上面図であり、図4(b)は、図4(a)のA-A′線断面図である。
 図4において、光センサアレイ20は、保持部材としての基板21上に、下部電極としての透明電極22、光エネルギーを電気エネルギーに変換する光電変換部24及び透明電極22と対をなし、上部電極としての対電極23が順次積層されたものである。光電変換部24は、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有してなる光電変換層24bと、正孔輸送層24aとの2層で構成される。図4に示す例では、6個のバルクヘテロジャンクション型の有機光電変換素子が形成されている。
 これら基板21、透明電極22、光電変換層24b及び対電極23は、前述したバルクヘテロジャンクション型の光電変換素子10における透明電極12、光電変換部14及び対電極13と同等の構成及び役割を示すものである。
 基板21には、例えば、ガラスが用いられ、透明電極22には、例えば、ITOが用いられ、対電極23には、例えば、アルミニウムが用いられる。そして、光電変換層24bのp型半導体材料には、本発明の低分子化合物12が用いられ、n型半導体材料には、例えば、PCBMが用いられる。また、正孔輸送層24aには、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)導電性高分子(スタルクヴイテック社製、商品名Baytron P4083)が用いられる。このような光センサアレイ20は、次のようにして製作された。
 ガラス基板上にスパッタリングによりITO膜を形成し、フォトリソグラフィにより所定のパターン形状に加工した。ガラス基板の厚さは、0.7mm、ITO膜の厚さは、200nm、フォトリソグラフィ後のITO膜における測定部面積(受光面積)は、1mm×1mmであった。次に、このガラス基板21上に、スピンコート法(条件;回転数=1000rpm、フィルター径=1.2μm)によりPEDOT-PSS膜を形成した。その後、該基板を、オーブンで140℃、10分加熱し、乾燥させた。乾燥後のPEDOT-PSS膜の厚さは30nmであった。
 次に、上記PEDOT-PSS膜の上に、例示化合物12とbis-PCBMの1:1混合物からなるバルクヘテロジャンクション層を、スピンコート法(条件;回転数=500rpm、フィルター径=0.4μm)により形成した。バルクヘテロジャンクション層の形成後、窒素ガス雰囲気下においてオーブンで140℃、30分加熱しアニール処理を施した。
 その後、所定のパターン開口を備えたメタルマスクを用い、バルクヘテロジャンクション層の上に、フッ化リチウムを0.5nm、上部電極としてのアルミニウム層を100nm、蒸着法により形成した。
 その後、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂を用いて封止を行った。以上により、光センサアレイ20が作製された。
 作製された、2行×3列の画素を有する光センサアレイ20に対し、中央の列の2画素のみに光があたる様に光を照射し、6画素に順次陽極・陰極間に-0.5Vの電圧を印加して電流値を読み取ったところ、光のあたっている画素のみで電流が観測され、光のあたっていない画素では電流が流れなかった。したがって、前記光センサアレイ20は、光センサとして動作することを確認できた。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例1
 <比較の有機光電変換素子1の作製>
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を110nm堆積したもの(シート抵抗13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて2mm幅にパターニングして、透明電極を形成した。
 パターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を30nmの膜厚でスピンコートした後、140℃で大気中10分間加熱乾燥した。
 これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。
 クロロベンゼンにp型半導体材料として、下記比較化合物1を1.0質量%、n型半導体材料として下記PCBM(フロンティアカーボン社製)を1.0質量%を溶解した液を作製し、0.45μmのフィルタでろ過をかけながら500rpmで60秒、ついで2200rpmで1秒間のスピンコートを行い、室温で30分乾燥した。
Figure JPOXMLDOC01-appb-C000015
 次に、上記有機層を成膜した基板を真空蒸着装置内に設置した。2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下まで真空蒸着機内を減圧した後、フッ化リチウムを5nm、Alを80nmを蒸着した。最後に120℃で30分間の加熱を行い、比較の有機光電変換素子1を得た。なお蒸着速度はいずれも2nm/秒で蒸着し、2mm角のサイズとした。
 得られた有機光電変換素子1は、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後に、ソーラシミュレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧-電流特性を測定し、初期の変換効率を測定した。さらに、この時の初期変換効率を100とし、陽極と陰極の間に抵抗を接続したまま100mW/cmの照射強度で100時間照射し続けた後の変換効率を評価し、相対効率低下率を算出した。これらの結果を表1に示す。
 <本発明の有機光電変換素子2~8の作製>
 上記有機光電変換素子1の作製において、p型半導体材料を比較化合物1に代えて、表1に記載した本発明の例示化合物に変更した以外は、比較の有機光電変換素子1と同様にして有機光電変換素子2~8を得た。
 なお、比較化合物1は、非特許文献4を参考として合成した。
 得られた有機光電変換素子2~8は、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂を用いて封止を行った後に大気下に取り出し、ソーラシミュレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧-電流特性を測定し、初期の変換効率を測定した。さらに、この時の初期変換効率を100とし、陽極と陰極の間に抵抗を接続したまま100mW/cmの照射強度で100h照射し続けた後の変換効率を評価し、相対効率低下率を算出した。
 上記の結果を、表1にまとめた。
Figure JPOXMLDOC01-appb-T000016
 表1から判るように、本発明の有機光電変換素子は、高い変換効率と耐久性を有していることが判る。
 10 バルクヘテロジャンクション型の有機光電変換素子
 11、21 基板
 12、22 透明電極
 13、23 対電極
 14、16、24 光電変換部
 15 電荷再結合層
 17 正孔輸送層
 18 電子輸送層
 20 光センサアレイ

Claims (11)

  1. 透明電極、対電極、およびp型半導体材料とn型半導体材料が混合されたバルクヘテロジャンクション層を有する有機光電変換素子であって、前記バルクヘテロジャンクション層内に下記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは置換または無置換の5員または6員の複素芳香族環を表す。)
  2. 前記一般式(1)において、Xであらわされる複素芳香族環が5員の複素芳香族環であることを特徴とする請求項1に記載の有機光電変換素子。
  3. 前記一般式(1)で表される部分構造を有する化合物が、下記一般式(2)で表される部分構造を有する化合物であることを特徴とする請求項1または2に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは置換または無置換の炭素、窒素、酸素、硫黄またはセレン原子を表す。RおよびRは、各々独立に水素原子又はアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、エーテル基から選ばれる置換基を表す。)
  4. 前記一般式(2)において、Xで表される原子が硫黄原子であることを特徴とする請求項3に記載の有機光電変換素子。
  5. 前記一般式(1)または(2)で表される部分構造を有する化合物が、さらに下記一般式(3)で表される部分構造を有することを特徴とする請求項1~4のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000003

    (式中、Xは置換または無置換の炭素、窒素、酸素、珪素、硫黄またはセレン原子を表す。ZおよびZは、各々独立に5員または6員の炭化水素芳香族環または複素芳香族環を表す。)
  6. 前記一般式(3)において、Xで表される原子が置換または無置換の窒素原子であることを特徴とする請求項5に記載の有機光電変換素子。
  7. 前記一般式(3)において、ZまたはZで表される芳香族環の少なくとも一方が、含窒素複素芳香族6員環であることを特徴とする請求項5または6に記載の有機光電変換素子。
  8. 前記一般式(1)または(2)で表される部分構造を有する化合物が、低分子化合物であることを特徴とする請求項1~7のいずれか1項に記載の有機光電変換素子。
  9. 前記バルクヘテロジャンクション層が、溶液塗布法によって作製されたことを特徴とする請求項1~8のいずれか1項に記載の有機光電変換素子。
  10. 請求項1~9のいずれか1項に記載の有機光電変換素子からなることを特徴とする太陽電池。
  11. 請求項1~9のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなることを特徴とする光センサアレイ。
PCT/JP2010/056060 2009-04-03 2010-04-02 有機光電変換素子、それを用いた太陽電池および光センサアレイ WO2010114116A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011507302A JP5494651B2 (ja) 2009-04-03 2010-04-02 有機光電変換素子、それを用いた太陽電池および光センサアレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-090825 2009-04-03
JP2009090825 2009-04-03

Publications (1)

Publication Number Publication Date
WO2010114116A1 true WO2010114116A1 (ja) 2010-10-07

Family

ID=42828400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056060 WO2010114116A1 (ja) 2009-04-03 2010-04-02 有機光電変換素子、それを用いた太陽電池および光センサアレイ

Country Status (2)

Country Link
JP (1) JP5494651B2 (ja)
WO (1) WO2010114116A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043401A1 (ja) * 2010-09-30 2012-04-05 リンテック株式会社 交互共重合ポリマー、及び有機光電変換素子
JP2012142407A (ja) * 2010-12-28 2012-07-26 Mitsubishi Chemicals Corp 光電変換素子及びその製造方法、並びにインク
WO2012111811A1 (ja) * 2011-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機光電変換素子および太陽電池
WO2013073581A1 (ja) * 2011-11-15 2013-05-23 コニカミノルタ株式会社 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
JP2013519739A (ja) * 2010-02-15 2013-05-30 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 半導体ポリマー
CN104098591A (zh) * 2013-04-09 2014-10-15 河南师范大学 两个小分子有机半导体材料合成方法
WO2015067336A2 (en) 2013-11-06 2015-05-14 Merck Patent Gmbh Conjugated polymers
JP2015172131A (ja) * 2014-03-11 2015-10-01 国立大学法人京都大学 ポリマー、光吸収材料、光電変換材料、電荷輸送材料、有機太陽電池用材料および化合物
JP2016511840A (ja) * 2013-01-31 2016-04-21 日東電工株式会社 色覚異常を矯正するための光学素子
CN106831791A (zh) * 2017-03-06 2017-06-13 大连理工大学 一类乙基化吡嗪并喹喔啉衍生物及其制备方法
JPWO2017006703A1 (ja) * 2015-07-07 2018-03-15 富士フイルム株式会社 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
JP2018129510A (ja) * 2017-02-06 2018-08-16 日本化薬株式会社 撮像素子用有機光電変換材料、これを用いた有機光電変換素素子及び有機撮像素子
EP2734510B1 (en) * 2011-07-22 2018-11-07 Massachusetts Institute of Technology Activators of class i histone deacetlyases (hdacs) and uses thereof
JP2019036724A (ja) * 2017-08-10 2019-03-07 パナソニックIpマネジメント株式会社 光電変換材料および光電変換素子
WO2021156605A1 (en) * 2020-02-04 2021-08-12 Sumitomo Chemical Co., Ltd Photoactive material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231709A (ja) * 2003-01-29 2004-08-19 Jfe Chemical Corp 高分子化合物およびその合成法と使用法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231709A (ja) * 2003-01-29 2004-08-19 Jfe Chemical Corp 高分子化合物およびその合成法と使用法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
C.SHI ET AL.: "Regioregular Copolymers of 3-Alkoxythiophene and Their Photovoltaic Application", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, no. 27, 14 June 2006 (2006-06-14), pages 8980 - 8986 *
E.WANG ET AL.: "High-performance polymer heterojunction solar cells of a polysilafluorene derivative", APPLIED PHYSICS LETTERS, vol. 92, no. 3, 24 January 2008 (2008-01-24), pages 033307 *
E.ZHOU ET AL.: "Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2',3'-d] pyrrole", MACROMOLECULES, vol. 41, no. 22, 30 October 2008 (2008-10-30), pages 8302 - 8305 *
F.ZHANG ET AL.: "High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives", JOURNAL OF MATERIALS CHEMISTRY, vol. 18, no. 45, 13 October 2008 (2008-10-13), pages 5468 - 5474 *
J.PEET ET AL.: "Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols", NATURE MATERIALS, vol. 6, no. 7, 27 May 2007 (2007-05-27), pages 497 - 500 *
K.TVINGSTEDT ET AL.: "Folded reflective tandem polymer solar cell doubles efficiency", APPLIEL PHYSICS LETTERS, vol. 91, no. 12, 17 September 2007 (2007-09-17), pages 123514 *
N.BLOUIN ET AL.: "A Low-Bandgap Poly (2,7-Carbazole) Derivative for Use in High- Performance Solar Cells", ADVANCED MATERIALS, vol. 19, no. 17, 27 August 2007 (2007-08-27), pages 2295 - 2300 *
S.BARRAU ET AL.: "Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance", MACROMOLECULES, vol. 42, no. 13, 5 June 2009 (2009-06-05), pages 4646 - 4650 *
X.WANG ET AL.: "Infrared photocurrent spectral response from plastic solar cell with low-band- gap polyfluorene and fullerene derivative", APPLIED PHYSICS LETTERS, vol. 85, no. 21, 22 November 2004 (2004-11-22), pages 5081 - 5083 *
Y.ZHOU ET AL.: "Observation of a Charge Transfer State in Low-Bandgap Polymer/Fullerene Blend Systems by Photoluminescence and Electroluminescence Studies", ADVANCED FUNCTIONAL MATERIALS, vol. 19, no. 20, 23 October 2009 (2009-10-23), pages 3293 - 3299 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519739A (ja) * 2010-02-15 2013-05-30 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 半導体ポリマー
WO2012043401A1 (ja) * 2010-09-30 2012-04-05 リンテック株式会社 交互共重合ポリマー、及び有機光電変換素子
JP2012142407A (ja) * 2010-12-28 2012-07-26 Mitsubishi Chemicals Corp 光電変換素子及びその製造方法、並びにインク
JP5838975B2 (ja) * 2011-02-18 2016-01-06 コニカミノルタ株式会社 有機光電変換素子および太陽電池
WO2012111811A1 (ja) * 2011-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機光電変換素子および太陽電池
US11084803B2 (en) 2011-07-22 2021-08-10 Massachusetts Institute Of Technology Activators of class I histone deacetylases (HDACs) and uses thereof
US10167277B2 (en) 2011-07-22 2019-01-01 Massachusetts Institute Of Technology Activators of class I histone deacetlyases (HDACs) and uses thereof
EP2734510B1 (en) * 2011-07-22 2018-11-07 Massachusetts Institute of Technology Activators of class i histone deacetlyases (hdacs) and uses thereof
JPWO2013073581A1 (ja) * 2011-11-15 2015-04-02 コニカミノルタ株式会社 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
US9318707B2 (en) 2011-11-15 2016-04-19 Konica Minolta, Inc. Organic photoelectric conversion element, and solar cell and optical sensor array each using same
WO2013073581A1 (ja) * 2011-11-15 2013-05-23 コニカミノルタ株式会社 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
JP2016511840A (ja) * 2013-01-31 2016-04-21 日東電工株式会社 色覚異常を矯正するための光学素子
CN104098591A (zh) * 2013-04-09 2014-10-15 河南师范大学 两个小分子有机半导体材料合成方法
CN104098591B (zh) * 2013-04-09 2017-05-24 河南师范大学 两个小分子有机半导体材料合成方法
WO2015067336A2 (en) 2013-11-06 2015-05-14 Merck Patent Gmbh Conjugated polymers
JP2015172131A (ja) * 2014-03-11 2015-10-01 国立大学法人京都大学 ポリマー、光吸収材料、光電変換材料、電荷輸送材料、有機太陽電池用材料および化合物
US20180145258A1 (en) * 2015-07-07 2018-05-24 Fujifilm Corporation Organic semiconductor element, compound, organic semiconductor composition, organic semiconductor film, and manufacturing method thereof
JPWO2017006703A1 (ja) * 2015-07-07 2018-03-15 富士フイルム株式会社 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
JP2018129510A (ja) * 2017-02-06 2018-08-16 日本化薬株式会社 撮像素子用有機光電変換材料、これを用いた有機光電変換素素子及び有機撮像素子
CN106831791B (zh) * 2017-03-06 2018-10-19 大连理工大学 一类乙基化吡嗪并喹喔啉衍生物及其制备方法
CN106831791A (zh) * 2017-03-06 2017-06-13 大连理工大学 一类乙基化吡嗪并喹喔啉衍生物及其制备方法
JP2019036724A (ja) * 2017-08-10 2019-03-07 パナソニックIpマネジメント株式会社 光電変換材料および光電変換素子
JP7108870B2 (ja) 2017-08-10 2022-07-29 パナソニックIpマネジメント株式会社 光電変換材料および光電変換素子
WO2021156605A1 (en) * 2020-02-04 2021-08-12 Sumitomo Chemical Co., Ltd Photoactive material

Also Published As

Publication number Publication date
JPWO2010114116A1 (ja) 2012-10-11
JP5494651B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5494651B2 (ja) 有機光電変換素子、それを用いた太陽電池および光センサアレイ
Dou et al. 25th anniversary article: a decade of organic/polymeric photovoltaic research
JP5655568B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5516153B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5447521B2 (ja) 有機光電変換素子、それを用いた太陽電池および光センサアレイ
US20140318627A1 (en) Highly efficient polymer solar cell by polymer self-organization
WO2010038721A1 (ja) 有機光電変換素子、及びその製造方法
JP5573066B2 (ja) 有機光電変換素子と、それを用いた太陽電池及び光センサアレイ
JP5648641B2 (ja) 有機光電変換素子
JP5493465B2 (ja) 有機薄膜太陽電池
WO2011148717A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
WO2010095517A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5493496B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5287137B2 (ja) 有機光電変換素子の製造方法
WO2010090123A1 (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5453758B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5447513B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2010283003A (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5652314B2 (ja) 有機光電変換素子およびその製造方法
JP5944120B2 (ja) 有機光電変換素子とその製造方法、およびそれを用いた有機太陽電池
JP5250836B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5413055B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5245123B2 (ja) 有機光電変換素子、太陽電池および光センサアレイ
JP2011124469A (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5447089B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507302

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758883

Country of ref document: EP

Kind code of ref document: A1