WO2013073561A1 - 複合粒子、その製造方法、二次電池用電極材料及び二次電池 - Google Patents

複合粒子、その製造方法、二次電池用電極材料及び二次電池 Download PDF

Info

Publication number
WO2013073561A1
WO2013073561A1 PCT/JP2012/079482 JP2012079482W WO2013073561A1 WO 2013073561 A1 WO2013073561 A1 WO 2013073561A1 JP 2012079482 W JP2012079482 W JP 2012079482W WO 2013073561 A1 WO2013073561 A1 WO 2013073561A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
lithium
group
chain
composite particles
Prior art date
Application number
PCT/JP2012/079482
Other languages
English (en)
French (fr)
Inventor
川崎 卓
吉野 信行
村田 弘
澤井 岳彦
愼治 齊藤
和憲 浦尾
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CA2859113A priority Critical patent/CA2859113C/en
Priority to JP2013544289A priority patent/JP6358493B2/ja
Priority to CN201280055622.3A priority patent/CN103975468B/zh
Priority to KR1020147016088A priority patent/KR101980796B1/ko
Priority to US14/358,307 priority patent/US10873073B2/en
Priority to EP12850167.3A priority patent/EP2782170B1/en
Publication of WO2013073561A1 publication Critical patent/WO2013073561A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the present invention relates to an electrode material for a lithium ion secondary battery.
  • the lithium ion secondary battery in which the negative electrode is formed using a material capable of occluding and releasing lithium ions can suppress the deposition of dendride compared to the lithium secondary battery in which the negative electrode is formed using metallic lithium. Therefore, there is an advantage that a battery having a high capacity and a high energy density can be provided while safety is improved by preventing a short circuit of the battery.
  • Patent Documents 2 to 4 there has been a device using a carbon conductive material for reducing the electrode resistance with respect to the large current charge / discharge of the lithium ion secondary battery.
  • Patent Documents 2 to 4 when the charge / discharge cycle with a large current is repeated, the conductive path of the positive / negative electrode particles is damaged due to the expansion / contraction of the positive / negative electrode material, and as a result, there is a problem that a large current cannot flow quickly.
  • Lithium-containing phosphates such as LiFePO 4 , LiMnPO 4 , LiMn x Fe (1-x) PO 4 , LiCoPO 4, or Li 3 V 2 (PO 4 ) 3 have attracted attention.
  • the first feature of the lithium-containing phosphate is that the negative ion is a polyanion (phosphate ion: PO 4 3 ⁇ ) that is more stable than the oxide ion (O 2 ⁇ ). It does not generate oxygen (O 2 ), which is a combustion-supporting substance. For this reason, when it uses as a positive electrode active material, the safety
  • the second feature of lithium-containing phosphate is that the resistance of the material itself is large. Therefore, high conductivity is a major issue (Patent Documents 5 and 6), and as a countermeasure, the surface of the lithium-containing phosphate particles is coated with carbon as a conductive material to form a positive electrode material, or lithium-containing phosphate and Various studies have been made such as compounding carbon (Patent Documents 7 to 13). By such examination, the performance of the positive electrode material using phosphate has been improved.
  • the positive electrode active material is required not only to transfer and receive electrons but also to absorb and release lithium ions that serve as charge carriers together with electrons during discharging and charging. Therefore, it is necessary to facilitate not only the movement of electrons but also the diffusion associated with the insertion and extraction of lithium ions during large current charge / discharge.
  • lithium ions diffuse in the electrolyte and are occluded and released by the positive electrode active material and the negative electrode active material.
  • the carbon coating of the positive electrode active material improves the electron conductivity, it intervenes between the electrolytic solution and the positive electrode active material, and therefore becomes an obstacle to the insertion and extraction of lithium ions.
  • the performance improvement of the positive electrode material by the carbon coating cannot be said to be sufficient at the time of large current charge / discharge.
  • the composite of lithium-containing phosphate and carbon does not hinder the insertion and release of lithium ions unlike carbon coating, but carbon itself does not have a function to improve lithium ion conductivity, For this reason, the diffusion of lithium ions is not essentially facilitated by the composite of lithium-containing phosphate and carbon, so it has not been able to fundamentally improve the performance degradation during large current charge / discharge. .
  • the present invention has been made to address the problems of the positive electrode material for lithium ion secondary batteries, and is intended for use in lithium ion secondary batteries capable of maintaining large current charging and discharging over the life of the battery.
  • An object is to provide a positive electrode material.
  • the present invention adopts the following means (1) in order to solve the above problems.
  • 1 selected from the group consisting of (1) (i) a fibrous carbon material, (ii) a chain carbon material, and (iii) a carbon material in which the fibrous carbon material and the chain carbon material are interconnected.
  • Some composite particles are employed.
  • (2) The composite particle according to (1), which is coated with carbon.
  • the chain carbon material is carbon black in which primary particles having an average particle size of 10 to 100 nm are bonded in a chain shape, according to any one of the above (1) to (3), The composite particle as described.
  • the lithium-containing phosphate is LiFePO 4 , LiMnPO 4 , LiMn X Fe (1-X) PO 4 , LiCoPO 4 or Li 3 V 2 (PO 4 ) 3 .
  • (6) The composite particles according to any one of (1) to (5), wherein the average primary particle diameter is 0.02 to 20 ⁇ m.
  • (7) 1 selected from the group consisting of (i) a fibrous carbon material, (ii) a chain carbon material, and (iii) a carbon material in which the fibrous carbon material and the chain carbon material are interconnected
  • a first step of surface-treating the carbon material of at least two species a second step of mixing one or more carbon materials selected from the group subjected to the surface treatment and a lithium-containing phosphate raw material, The mixture is heated to form a composite particle comprising one or more carbon materials selected from the above-mentioned surface-treated group and a lithium-containing phosphate precursor and / or a lithium-containing phosphate.
  • a fourth step of heating the composite particles to make at least one of the pores starting from one or more carbon materials selected from the above group into pores that lead to the outside of the composite particles The method for producing composite particles according to any one of (1) to (6) above. (8) The method for producing composite particles according to (7), wherein a compound that decomposes by heating to generate carbon is added to one or more of the second to fourth steps. (9) The method for producing composite particles according to (7) or (8), wherein the third step and the fourth step are continuously performed.
  • (10) 1 selected from the group consisting of (i) a fibrous carbon material, (ii) a chain carbon material, and (iii) a carbon material in which the fibrous carbon material and the chain carbon material are interconnected
  • (11) 1 selected from the group consisting of (i) a fibrous carbon material, (ii) a chain carbon material, and (iii) a carbon material in which the fibrous carbon material and the chain carbon material are interconnected
  • the method for producing composite particles according to any one of the above (7) to (9), wherein the surface treatment method of the carbon material of at least two species is a method using a surfactant.
  • (12) 1 selected from the group consisting of (i) a fibrous carbon material, (ii) a chain carbon material, and (iii) a carbon material in which the fibrous carbon material and the chain carbon material are interconnected
  • (13) 1 selected from the group consisting of (i) a fibrous carbon material, (ii) a chain carbon material, and (iii) a carbon material in which the fibrous carbon material and the chain carbon material are interconnected
  • a method of mixing a surface-treated carbon material of more than one species with a lithium-containing phosphate raw material includes a solvent other than lithium ion (Li + ), phosphate ion (PO 4 3 ⁇ ), and a metal other than lithium.
  • the manufacturing method of the composite particle of description The manufacturing method of the composite particle of description.
  • (16) 1 selected from the group consisting of (i) a fibrous carbon material, (ii) a chain carbon material, and (iii) a carbon material in which the fibrous carbon material and the chain carbon material are interconnected
  • the composite particle containing at least one kind of carbon material and lithium-containing phosphate is heated, and at least one of pores starting from one or more kinds of carbon material selected from the above group is led out of the composite particle.
  • composite particles containing at least one surface-treated carbon material selected from the above group and a lithium-containing phosphate precursor and / or a lithium-containing phosphate are selected from the above group.
  • An electrode material for a lithium ion secondary battery comprising the composite particles according to any one of the above (1) to (6) in an amount of 60% by mass to 95% by mass, the balance comprising a conductive auxiliary material and a binder .
  • a lithium ion secondary battery comprising:
  • the composite particle of the present invention as an electrode material for a lithium ion secondary battery, as a first effect, (i) a fibrous carbon material, (ii) a chain carbon material, and (iii) )
  • the electron conduction network is improved by one or more carbon materials selected from the group consisting of carbon materials in which fibrous carbon materials and chain carbon materials are connected to each other, and lithium-containing phosphate particles and conduction aids are improved. Transfer of electrons between materials is performed smoothly.
  • pores leading to the composite particles starting from one or more kinds of carbon materials selected from the above group are filled with an electrolyte when producing a lithium ion secondary battery.
  • the carbon material is (i) a fibrous carbon material, (ii) a chain carbon material, (iii) a carbon material formed by interconnecting a fibrous carbon material and a chain carbon material, or It is a mixture of these.
  • the fibrous carbon material include carbon nanotubes, carbon nanofibers, vapor grown carbon fibers, polyacrylonitrile (PAN) based carbon fibers, and pitch based carbon fibers.
  • PAN polyacrylonitrile
  • pitch based carbon fibers carbon nanotubes having an average fiber diameter of 5 to 200 nm are preferable.
  • chain carbon materials examples include acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) or furnace black (SUPER-P manufactured by Timcal Graphite & Carbon Co., Ketjen Black manufactured by Ketjen Black International Co., Ltd.), etc. Carbon black. Among them, carbon black having an average primary particle diameter of 10 to 100 nm is preferable, and acetylene black is particularly preferable among carbon blacks.
  • the method for connecting the fibrous carbon material and the chain carbon material is not particularly limited.
  • a method of introducing a fibrous carbon material during hydrocarbon pyrolysis and connecting it with the generated carbon black, pyrolysis of acetylene gas A method of supplying and linking hydrocarbons containing a fibrous carbonization catalyst in the state in which the acetylene gas is thermally decomposed in the middle and / or acetylene gas (Patent Document 14), carbon such as hydrocarbons and alcohols, etc.
  • a method of carbonizing the carbonized raw material liquid by dispersing it in the carbonized raw material liquid and performing the operation such as heating in a liquid or gasified state, and after mixing the fibrous carbonization catalyst and carbon black in advance, the raw material gas of fibrous carbon A method of generating fibrous carbon at the same time as contacting with carbon black and connecting it to carbon black, and mechanochemically using fibrous carbon and carbon black using a solid medium Method of connecting by law, and the like.
  • the connection by a mechanochemical method is connection using a medium stirring type mixer such as a bead mill, a vibration mill, or a ball mill.
  • the average fiber diameter of the fibrous carbon material and the average particle diameter of the primary particles of the chain carbon material can be determined, for example, by SEM image observation, and may be a number average fiber diameter and a number average particle diameter, respectively.
  • the average fiber diameter may be, for example, 5, 10, 15, 20, 30, 50, 100, 150, or 200 nm, and may be in the range of any two of them.
  • the average particle size of the primary particles of the chain carbon particles may be, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nm, and within the range of any two of them. It may be.
  • the lithium-containing phosphate is a phosphate capable of occluding and releasing lithium ions, specifically, LiFePO 4 , LiMnPO 4 , LiMn X Fe (1-X) PO 4. LiCoPO 4 or Li 3 V 2 (PO 4 ) 3 .
  • LiFePO 4 and LiMn X Fe (1-X) PO 4 are preferable.
  • the average primary particle diameter of the composite particles is 0.02 to 20 ⁇ m, more preferably 0.05 to 5 ⁇ m. If the average particle diameter is smaller than this, the particles are too small, and it becomes difficult to coexist the carbon material, the lithium-containing phosphate, and the pores inside the particles. If the average particle size is larger than this, it becomes difficult to uniformly disperse the carbon material, lithium-containing phosphate, and pores inside the particles, and the distribution tends to be biased. As a result, a region in which the conductive path of electrons and lithium ions becomes long inside the particle, and the resistance increases.
  • the average particle diameter may be, for example, 0.02, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, or 20 ⁇ m, and is within the range of any two of them. Also good. This average particle diameter can be determined by, for example, SEM image observation, and may be a number average particle diameter.
  • the composite particles are subjected to surface treatment of the carbon material, and then mixed with a lithium-containing phosphate raw material, heated, and subjected to the surface treatment of the carbon material and the lithium-containing phosphate precursor. It can be produced by forming composite particles containing lithium phosphate and / or heating the composite particles.
  • the carbon material is subjected to a surface treatment as a first step.
  • This method includes, for example, an oxidation treatment, a treatment using a surfactant or a polymer dispersant, and the like.
  • the oxidation treatment is a function including a hydroxyl group (—OH), a carbonyl group (> C ⁇ O), a carboxyl group (—COOH), an ether bond or an ester bond by causing an oxidizing substance to act on the surface of the carbon material. Is to introduce a group.
  • the carbon material is heated in an atmosphere containing oxygen (vapor phase oxidation), (ii) held in an atmosphere or solution containing ozone (ozone oxidation), iii) heating in a solution containing a compound having oxidizing power (sulfuric acid, nitric acid, perchloric acid, hydrogen peroxide, potassium permanganate, osmic acid, etc.) (iv) water, hydroxyl group (—OH) or carbonyl group
  • a wet jet mill treatment may be performed in an organic solvent having a functional group such as (> C ⁇ O) (eg, ethanol, isopropyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, etc.) or a mixed solution thereof.
  • a functional group such as (> C ⁇ O) (eg, ethanol, isopropyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, etc.) or a mixed solution thereof.
  • the treatment using the surfactant is a method in which the carbon material and the surfactant are mixed in a polar solvent such as water or alcohol.
  • Surfactants include, for example, anionic surfactants such as sodium dodecyl sulfate (SDS), cationic surfactants such as dodecyltrimethylammonium chloride (C12TAC) or hexadecyltrimethylammonium bromide (C16TAB), cocamidopropyl betaine or Amphoteric surfactants such as cocamidopropylhydroxysultain, or nonionic surfactants such as polyvinyl alcohol and polyoxyethylene octylphenyl ether (trade name: TritonTrX-100).
  • anionic surfactants such as sodium dodecyl sulfate (SDS)
  • cationic surfactants such as dodecyltrimethylammonium chloride (C12TAC) or hexadecyltrimethyl
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2005-123107
  • acetone is easily volatilized when used as a surfactant. Since the above-mentioned objective cannot be achieved, it is excluded from the surfactant of the present invention.
  • the treatment using the polymer dispersant is a method of mixing the carbon material and the polymer dispersant in water or an organic solvent.
  • the polymer dispersant include polyvinyl pyrrolidone (PVP) and polyallylamine hydrochloride (PAH).
  • the carbon material that has been surface-treated by any one of the methods described above is mixed with a lithium-containing phosphate raw material.
  • the raw material of the lithium-containing phosphate varies depending on the type of lithium-containing phosphate to be manufactured and the manufacturing method.
  • lithium iron phosphate LiFePO 4
  • Li 2 CO 3 lithium carbonate
  • oxalic acid first Using iron dihydrate (FeC 2 O 4 .2H 2 O) and ammonium dihydrogen phosphate ((NH 4 ) H 2 PO 4 ) or ferric phosphate dihydrate (FePO 4 .2H 2 O), etc.
  • lithium hydroxide monohydrate LiOH.H 2 O
  • lithium sulfate monohydrate Li 2 SO 4 .H 2 O
  • lithium formate monohydrate Li (HCOO) ⁇ H 2 O
  • lithium nitrate LiNO 3
  • ferrous oxalate dihydrate and / or sulfate ferric heptahydrate FeSO 4 ⁇ 7H O
  • ferrous chloride tetrahydrate FeCl 2 ⁇ 4H 2 O
  • phosphoric acid H 3 PO 4
  • ammonium dihydrogen phosphate monohydrogen phosphate ammonium ((NH 4) 2 HPO 4 )
  • / or ammonium phosphate (NH 4 ) 3 PO 4 ) or the like
  • the raw material for producing lithium manganese phosphate is ferrous oxalate dihydrate, ferric phosphate dihydrate, ferric sulfate heptahydrate in the case of lithium iron phosphate.
  • iron compounds such as ferrous chloride tetrahydrate, for example, manganese carbonate (MnCO 3 ), manganese dioxide (MnO 2 ), manganese sulfate monohydrate (MnSO 4 .H 2 O) , Manganese nitrate tetrahydrate (Mn (NO 3 ) 2 .4H 2 O) and / or manganese acetate tetrahydrate ((CH 3 COO) 2 Mn ⁇ 4H 2 O) are used.
  • the raw material of lithium iron phosphate and the raw material of lithium manganese phosphate are used simultaneously.
  • the raw material for producing cobalt lithium phosphate is, for example, cobalt sulfate heptahydrate (CoSO 4 ⁇ 7H 2 O) instead of the iron compound in the case of lithium iron phosphate. It is done.
  • the raw material for producing lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) is, for example, divanadium pentoxide (V 2 O 5 ) instead of the iron compound in the case of lithium iron phosphate.
  • the components of the raw material exist in the solvent as metal ions other than lithium ions (Li + ), phosphate ions (PO 4 3 ⁇ ), and lithium. Since the carbon material is dispersed and mixed, the uniformity of the raw material mixing is improved as compared with the case where the solid raw material is mixed as it is.
  • the composite particles may be coated with carbon to further improve the electronic conductivity.
  • the raw material for carbon coating is added to the said raw material.
  • the raw material for carbon coating is a compound that decomposes by heating to generate carbon.
  • glucose C 6 H 12 O 6
  • sucrose C 12 H 22 O 11
  • dextrin ((C 6 H 12 O 5 ) n
  • ascorbic acid C 6 H 8 O 6
  • carboxymethyl cellulose coal pitch, and the like.
  • carbon materials which are surface-treated by heating the surface-treated carbon material and the lithium iron phosphate raw material simultaneously with the mixing of the surface-treated carbon material and the lithium-containing phosphate raw material.
  • / or lithium-containing phosphate precursors and / or lithium-containing phosphates can be added after forming the particles.
  • the method of mixing the surface-treated carbon material and raw material is to mix the solid raw material as it is in the form of a ball mill, vibration mill, Henschel mixer, planetary mixer, kneader, ribbon blender, V-type mixing. And a W-type mixer can be used.
  • a rotating blade stirring tank, an ultrasonic liquid mixing device, a homogenizer, or the like can be used.
  • the solvent in this case, water, alcohol or a mixed solvent of water and alcohol is preferable.
  • surfactant or a polymer dispersing agent you may process previously before mixing with a raw material, and may process simultaneously with raw material mixing.
  • the surface-treated carbon material and the raw material are heated to include the surface-treated carbon material and a lithium-containing phosphate precursor and / or a lithium-containing phosphate.
  • Form particles It is preferable to heat the mixture obtained by mixing solid raw material materials in a solid state in an inert atmosphere, a reducing atmosphere, or a mixed atmosphere of an inert gas and a reducing gas.
  • the atmospheric pressure is preferably normal pressure or reduced pressure.
  • the inert gas is argon (Ar), helium (He), or nitrogen (N 2 ), and the reducing gas is hydrogen (H 2 ) or ammonia (NH 3 ).
  • the heating temperature is preferably from 100 to 400 ° C, more preferably from 200 to 400 ° C.
  • the heating temperature may be, for example, 100, 150, 200, 250, 300, 350, or 400 ° C., and may be in the range of any two of them.
  • Heating is preferably performed while stirring using a rotating blade stirring tank or the like.
  • the heating temperature is preferably 60 to 100 ° C., but when the reaction rate is desired to be improved, a method using a pressurized and heated solvent of 100 to 250 ° C. (hydrothermal synthesis method) is preferable.
  • the heating in this case is performed using a pressure vessel such as an autoclave.
  • the heating temperature may be, for example, 60, 80, 100, 150, 200, or 250 ° C., and may be in the range of any two values thereof.
  • ammonia NH 3
  • phosphorous may be added to a solution prepared by dissolving lithium ions (Li + ), phosphate ions (PO 4 3 ⁇ ), and metal ions other than lithium, if necessary.
  • acid H 3 PO 4
  • sulfuric acid H 2 SO 4
  • a pH adjusting agent such as.
  • the composite material containing the surface-treated carbon material and the lithium-containing phosphate precursor and / or the lithium-containing phosphate is further heated to contain oxygen from the surface of the surface-treated carbon material.
  • the method of volatilizing the functional group or the method of decomposing the surfactant or the polymer dispersant at least one of the pores starting from the carbon material is made a pore that leads to the outside of the composite particle.
  • Particles containing salt are heated as they are or after being crushed when aggregated particles are present, and then heated in a vacuum, in an inert atmosphere, or in a reducing atmosphere.
  • the surface-treated carbon material obtained in the previous step and the particles containing the lithium-containing phosphate precursor and / or the lithium-containing phosphate are removed by filtration, centrifugation, drying, etc. And after crushing if there are aggregated particles, they are heated in vacuum, in an inert atmosphere or in a reducing atmosphere.
  • the heating temperature is preferably 400 to 900 ° C, more preferably 500 to 800 ° C.
  • This heating temperature may be, for example, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, or 900 ° C., and may be in the range of any two of them.
  • the said surface-treated carbon material and lithium containing phosphate precursor and / or lithium containing which are the previous processes are included. You may heat continuously with the heating of the formation process of the particle
  • the oxygen-containing functional group volatilizes or the surfactant or the polymer dispersant is decomposed.
  • any of the volatile component derived from the oxygen-containing functional group or the decomposition component of the surfactant or polymer dispersant is Since the gas is also a gas, the volume is significantly expanded as compared with the original solid or liquid to form bubbles. Since the gas confined in the bubbles gradually increases in pressure, it diffuses out of the composite particles at a low pressure.
  • the diameter of the pore is about several to 10 nm.
  • the diameter of this pore may be, for example, 0.5, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nm, and any two of these ranges of values It may be within.
  • An electrode material for a lithium ion secondary battery can be formed by mixing composite particles, a conductive auxiliary material, and a binder according to an embodiment of the present invention.
  • a conductive auxiliary material carbon black such as acetylene black or furnace black and / or carbon nanotube or carbon nanofiber can be used.
  • the binder polyvinylidene fluoride (PVDF) can be used.
  • the mixing ratio in one embodiment of the present invention for example, the composite particles are 60% by mass or more and 95% by mass or less, and the balance is the conductive auxiliary material and the binder. When the composite particles are less than 60% by mass, the charge / discharge capacity of the lithium ion secondary battery is reduced.
  • the amount exceeds 95% by mass the electrical conductivity of the positive electrode material is increased due to a shortage of the conductive auxiliary material, the binder is insufficient and the shape retention of the positive electrode material becomes insufficient, and the positive electrode material becomes a current collector during charge and discharge. Problems such as easy peeling off (mainly made of aluminum) occur.
  • the positive electrode material is used in a lithium ion secondary battery as a positive electrode formed on a current collector.
  • examples of other materials used for the lithium ion secondary battery include a separator, an electrolytic solution, and a negative electrode material.
  • the separator electrically insulates the positive electrode and the negative electrode to hold the electrolytic solution, and a separator made of a synthetic resin such as polyethylene or polypropylene can be used.
  • a porous film In order to improve the retention of the electrolytic solution, it is preferable to use a porous film.
  • a non-aqueous electrolyte containing a lithium salt or an ion conductive polymer as an electrolyte in which the electrode group is immersed.
  • the nonaqueous solvent for the nonaqueous electrolyte in the nonaqueous electrolyte containing a lithium salt include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). Is mentioned.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), lithium trifluoromethanesulfonate (LiSO 3 CF 3 ), and the like. .
  • the negative electrode active material a material that can reversibly store and release Li ions as in the case of the positive electrode, has low reactivity with the electrolytic solution, and has a lower redox potential than the positive electrode material is preferable.
  • graphite, lithium titanate, silicon (Si), tin (Sn), or the like can be used at the same time.
  • these materials are put to practical use as a negative electrode material formed on a current collector (mainly copper or the like in the case of the negative electrode) together with a conductive auxiliary material and a binder.
  • a lithium ion secondary battery is formed by enclosing it in a container.
  • the shape and material of the container are appropriately selected according to the purpose of use. For example, in the case of a light charge / discharge test or the like, a coin-type battery (coin cell) sealed in a metal disc-shaped container such as stainless steel is formed.
  • a positive electrode material, a separator, and a negative electrode material are alternately wound to form a wound battery that is sealed in a metal cylindrical or rectangular container.
  • a positive electrode material, a separator, and a negative electrode material are alternately laminated to form a laminated battery (aluminum pouch cell) sealed in a package such as an aluminum laminate.
  • the organic functional group introduced on the surface of the carbon material by the oxidation treatment is obtained by subjecting the treated carbon material to a temperature programmed desorption device (manufactured by Agilent, double shot pyrolyzer 7683B), gas chromatograph device (manufactured by Hewlett-Packard Company, HP6890) and a mass spectrometer (5973, manufactured by Hewlett-Packard Company), and measured by temperature-programmed desorption gas chromatography / mass spectrometry (TDS-GC / MS method).
  • TDS-GC / MS method temperature-programmed desorption gas chromatography / mass spectrometry
  • Examples 8-14 (2nd step: Mixing of surface-treated carbon material and lithium-containing phosphate raw material) and (3rd step: Heating of the mixture of surface-treated carbon material and raw material)
  • the surface-treated carbon material produced in the first step (Examples 1 to 7) was used, mixed with the raw material under the conditions shown in Tables 3 to 4, and then heated under the conditions shown in Tables 3 to 4.
  • Examples 15-21 Frth step Further heating the composite particles containing the surface-treated carbon material and the lithium-containing phosphate precursor and / or the lithium-containing phosphate
  • the composite particles produced in the first to third steps were further heated under the conditions shown in Table 5 to produce composite particles as one example of the present invention.
  • the crystal phase of the composite particles was identified by powder X-ray diffraction measurement (X-ray diffractometer RU-200A manufactured by Rigaku, X-ray source: Cu-K ⁇ , voltage: 40 kV, current: 30 mA).
  • the average primary particle diameter of the composite particles was measured by a scanning electron microscope (SEM: JEOL scanning electron microscope JSM-6301F, acceleration voltage 1 kV, observation magnification 10,000 to 50,000 times). Further, the presence or absence of pores was observed with a transmission electron microscope (TEM: transmission electron microscope 2000FX manufactured by JEOL Ltd., acceleration voltage 200 kV, observation magnification 200,000 times). The pore diameter was measured by a BJH method using a pore distribution measuring device (BELSORP-miniII, manufactured by Nippon Bell Co., Ltd.).
  • Comparative Examples 1 to 21 Without performing the first step (surface treatment of the carbon material), only the second to fourth steps were performed to produce composite particles (Comparative Examples 15 to 21). These conditions and results are also shown in Tables 6 to 9.
  • Examples 22 to 28 The composite particles of Examples 15 to 21, carbon as a conductive auxiliary, and polyvinylidene fluoride as a binder (manufactured by Kureha, KF polymer solution) were blended in a predetermined ratio shown in Table 10. To this was added N-methylpyrrolidone (manufactured by Sigma-Aldrich, product number 328634) as a dispersion solvent to prepare a kneaded positive electrode mixture (slurry). Using this as a positive electrode material, a laminate type battery was produced and charge / discharge characteristics were evaluated. An example of a positive electrode and a laminate type battery manufacturing method is shown below.
  • the composite particles of Examples 15 to 21 were applied to a 20 ⁇ m-thick aluminum foil as a positive electrode mixture slurry, dried, and then pressed and cut into 40 mm squares to obtain positive electrodes for lithium secondary batteries.
  • Graphite artificial graphite MCMB6-28 manufactured by Osaka Gas Co., Ltd.
  • a slurry was prepared in the same manner as the positive electrode, and applied to a 10 ⁇ m thick copper foil and dried. Then, it was cut into a 45 mm square with a press to obtain a negative electrode for a lithium secondary battery.
  • LiPF 6 lithium hexafluorophosphate
  • MEC methyl ethyl carbonate, manufactured by Aldrich
  • the rate characteristic is the ratio (%) of 10 C charge / discharge capacity to 0.2 C charge / discharge capacity.
  • DCR direct current resistance
  • Comparative Examples 22 to 28 A laminated battery was formed in the same manner as in Examples 22 to 28 except that the composite particles of Comparative Examples 15 to 21 were used instead of Examples 22 to 28, and the battery discharge performance test was performed. This is shown in FIG.
  • the battery using the composite particles of the present invention has markedly improved rate characteristics of the battery.
  • the positive electrode material for lithium ion secondary batteries of the present invention is expected to be thermally stable and highly safe, while using a lithium-containing phosphate having a disadvantage of high resistance as a positive electrode active material. In addition to the above, it has excellent electronic conduction performance and ionic conduction performance which have not been obtained conventionally.
  • the positive electrode material of the present invention eliminates the disadvantages of the lithium-containing phosphate, and as a result, a lithium ion secondary battery that can be repeatedly charged and discharged with a large current and has high safety can be realized.
  • the lithium ion secondary battery using the positive electrode material of the present invention can be suitably used for applications requiring large current charge / discharge, such as electric tools and hybrid cars.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 安全性が高く、大電流充放電が可能で、しかも長寿命なリチウムイオン二次電池用正極材料を提供する。 (i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料と、リチウム含有リン酸塩を含む複合粒子であり、前記の群より選ばれた1種以上の炭素材料を起点とした細孔の少なくとも一つが複合粒子外へ通じる細孔である複合粒子。複合粒子は炭素で被覆されていることが好ましい。繊維状炭素材料は、平均繊維径が5~200nmのカーボンナノチューブであることが好ましい。鎖状炭素材料は、平均粒径10~100nmの一次粒子が鎖状に結合してなるカーボンブラックであることが好ましい。

Description

複合粒子、その製造方法、二次電池用電極材料及び二次電池
 本発明はリチウムイオン二次電池用電極材料に関するものである。
 リチウムイオンの吸蔵、放出が可能な材料を用いて負極を形成したリチウムイオン二次電池は、金属リチウムを用いて負極を形成したリチウム二次電池に比べてデンドライドの析出を抑制することができる。そのため、電池の短絡を防止して安全性を高めた上で高容量なエネルギー密度の高い電池を提供できるという利点を有している。
 近年ではこのリチウムイオン二次電池のさらなる高容量化が求められる一方、パワー系用途の電池として電池抵抗の低減による大電流充放電性能の向上が求められている。この点で従来では電池反応物質であるリチウム金属酸化物正極材や炭素系負極材自体の高容量化、またはこれら反応物質粒子の小粒径化、粒子比表面積や電池設計による電極面積の増加、さらにはセパレータの薄形化による液拡散抵抗の低減等の工夫がなされてきた。しかし、一方では小粒径化や比表面積の増加によりバインダーの増加を招き、結果として高容量化に逆行したり、さらには正・負極材が集電体である金属箔から剥離・脱落して電池内部短絡を生じ、電池の電圧低下や発熱暴走などによりリチウムイオン二次電池の安全性が損なわれることがあった。そこで箔との結着性を増加させるためにバインダー種類を変更する検討がなされた(特許文献1)。
 しかしながら、バインダー種類の変更によっては、容量は増大できるものの抵抗低減による大電流充放電特性の改善という点では不十分であり、ニカド電池やニッケル水素電池等の二次電池と比較して、リチウムイオン二次電池の大きな性能障壁であった大電流充放電が必要とされる電動工具やハイブリッドカー用途への展開は困難であった。
 また、リチウムイオン二次電池の大電流充放電化に対しては電極抵抗の低減を目的にカーボン導電材を用いて工夫するものがあった(特許文献2~4)。しかし、大電流による充放電サイクルを繰り返すと正・負極材の膨張収縮により正・負極間粒子の導電パスが損なわれ、結果として早期に大電流が流せなくなってしまう問題があった。
 一方、近年リチウムイオン二次電池用の正極活物質として、従来のLiCoO、LiNiO、LiMnO又はLiCoNiMn(x+y+z=1)等の金属酸化物に対して、LiFePO、LiMnPO、LiMnFe(1-x)PO、LiCoPO又はLi(PO等のリチウム含有リン酸塩が注目されている。
 リチウム含有リン酸塩の第一の特徴は、負イオンが酸化物イオン(O2-)よりも安定なポリアニオン(リン酸イオン:PO 3-)であり、金属酸化物と異なり分解しても支燃性物質である酸素(O)を発生することがないことである。このため正極活物質として用いた場合にリチウムイオン二次電池の安全性を高めることができる。
 リチウム含有リン酸塩の第二の特徴は、材料自体の抵抗が大きい点である。このため高導電化が大きな課題であり(特許文献5、6)、対策としてリチウム含有リン酸塩粒子の表面に導電材料である炭素を被覆して正極材とする、或いはリチウム含有リン酸塩と炭素を複合化する等、各種の検討がなされてきた(特許文献7~13)。かかる検討によって、リン酸塩を用いた正極材の性能は向上してきた。
特開平5-226004号公報 特開2005-19399号公報 特開2001-126733号公報 特開2003-168429号公報 特表2000-509193号公報 特開平9-134724号公報 特開2002-75364号公報 特開2002-110162号公報 特開2004-63386号公報 特開2005-123107号公報 特開2006-302671号公報 特開2007-80652号公報 特開2010-108889号公報 特表2009-503182号公報
 しかしながら、正極活物質は放電、充電時に、電子の授受だけではなく、電子と共に電荷の担体となるリチウムイオンの吸蔵、放出を行う必要がある。従って大電流充放電時においては電子の移動だけでなく、リチウムイオンの吸蔵、放出に伴う拡散をも容易にする必要がある。一般的なリチウムイオン二次電池においてリチウムイオンは電解液中を拡散して正極活物質及び負極活物質に吸蔵、放出される。正極活物質の炭素被覆は、電子伝導性は向上させるものの、電解液と正極活物質の中間に介在するためリチウムイオンの吸蔵、放出に対してはかえって障害になってしまう。このため炭素被覆による正極材の性能改善は、大電流充放電時においては充分なものとは言えなかった。一方、リチウム含有リン酸塩と炭素の複合化は、炭素被覆とは異なりリチウムイオンの吸蔵、放出の障害にはならないものの、炭素自体はリチウムイオン伝導性を向上させる機能は有しておらず、このためリチウム含有リン酸塩と炭素の複合化によってもリチウムイオンの拡散が本質的に容易になるわけではないので、大電流充放電時における性能低下を根本的に改善するには至っていなかった。
 本発明は、かかるリチウムイオン二次電池用正極材料が有する課題に対処するためになされたものであり、大電流充放電を電池の寿命中の長きに渡って維持できるリチウムイオン二次電池用の正極材料を提供することを目的とする。
 すなわち、本発明は上記の課題を解決するために、下記(1)の手段を採用する。
 (1)(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料と、リチウム含有リン酸塩を含む複合粒子であり、前記の群より選ばれた1種以上の炭素材料を起点とした細孔の少なくとも一つが複合粒子外へ通じる細孔である複合粒子。
 また、好ましくは、以下の手段を採用する。
 (2)炭素で被覆されてなる前記(1)に記載の複合粒子。
 (3)繊維状炭素材料は、平均繊維径が5~200nmのカーボンナノチューブである、前記(1)又は(2)に記載の複合粒子。
 (4)鎖状炭素材料は、平均粒径10~100nmの一次粒子が鎖状に結合してなるカーボンブラックであることを特徴とする、前記(1)~(3)のいずれか一項に記載の複合粒子。
 (5)リチウム含有リン酸塩は、LiFePO、LiMnPO、LiMnFe(1-X)PO、LiCoPO又はLi(POである前記(1)~(4)のいずれか一項に記載の複合粒子。
 (6)平均一次粒子径が0.02~20μmである、前記(1)~(5)のいずれか一項に記載の複合粒子。
 (7)(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料を表面処理する第一の工程と、表面処理した前記の群より選ばれた1種以上の炭素材料とリチウム含有リン酸塩の原料物質とを混合する第二の工程と、前記混合物を加熱して、表面処理した前記の群より選ばれた1種以上の炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子を形成する第三の工程と、前記複合粒子を加熱して、前記の群より選ばれた1種以上の炭素材料を起点とした細孔の少なくとも一つを複合粒子外へ通じる細孔とする第四の工程を含む、前記(1)~(6)のいずれか一項に記載の複合粒子の製造方法。
 (8)第二~第四の工程の一つ以上の工程に、加熱により分解して炭素を生じる化合物を加える、前記(7)に記載の複合粒子の製造方法。
 (9)第三の工程と第四の工程とを連続して行う、前記(7)又は(8)に記載の複合粒子の製造方法。
 (10)(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料の表面処理の方法が酸化処理である、前記(7)~(9)のいずれか一項に記載の複合粒子の製造方法。
 (11)(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料の表面処理の方法が界面活性剤を用いた方法である、前記(7)~(9)のいずれか一項に記載の複合粒子の製造方法。
 (12)(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料の表面処理の方法が高分子分散剤を用いた方法である、前記(7)~(9)のいずれか一項に記載の複合粒子の製造方法。
 (13)(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の表面処理された炭素材料と、リチウム含有リン酸塩の原料物質とを混合する方法が、溶媒に、リチウムイオン(Li)、リン酸イオン(PO 3-)及びリチウム以外の金属イオンを溶解させてなる溶液に、前記の群より選ばれた1種以上の表面処理された炭素材料を分散させて混合する方法である、前記(7)~(12)のいずれか一項に記載の複合粒子の製造方法。
 (14)溶媒が、水、アルコール又は水とアルコールの混合溶媒である、前記(13)に記載の複合粒子の製造方法。
 (15)溶媒に、リチウムイオン(Li)、リン酸イオン(PO 3-)及びリチウム以外の金属イオンを溶解させてなる溶液に、(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の表面処理された炭素材料を分散させて混合した後加熱し、前記の群より選ばれた1種以上の表面処理された炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子を形成する方法が、加圧・加熱溶媒を用いて行う方法である、前記(13)又は(14)に記載の複合粒子の製造方法。
 (16)(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料と、リチウム含有リン酸塩を含む複合粒子を加熱して、前記の群より選ばれた1種以上の炭素材料を起点とした細孔の少なくとも一つを複合粒子外へ通じる細孔とする方法が、前記の群より選ばれた1種以上の表面処理された炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子を、真空中、不活性雰囲気中又は還元性雰囲気中で加熱して、前記の群より選ばれた1種以上の表面処理された炭素材料の表面の酸素含有官能基を揮発させる方法、又は界面活性剤若しくは高分子分散剤を分解させる方法である前記(7)~(15)のいずれか一項に記載の複合粒子の製造方法。
 (17)前記(1)~(6)のいずれか一項に記載の複合粒子を60質量%以上95質量%以下含有し、残部は導電補助材及びバインダーからなるリチウムイオン二次電池用電極材料。
 (18)前記(17)に記載の電極材料を用いて形成された正極と、負極と、電解液と、前記正極と前記負極とを電気的に絶縁して前記電解液を保持するセパレータとを有することを特徴とする、リチウムイオン二次電池。
 本発明の複合粒子をリチウムイオン二次電池用電極材料に用いることにより、第一の効果として正極活物質粒子に含まれる(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料によって電子伝導ネットワークが向上し、リチウム含有リン酸塩粒子と導電補助材の間における電子の授受が円滑に行われる。さらに第二の効果として、前記の群より選ばれた1種以上の炭素材料を起点とした複合粒子外へ通じる細孔が、リチウムイオン二次電池を作製する際に電解液で充満されることによって活物質内部におけるリチウムイオンの拡散経路が確保され、リチウムイオンの吸蔵、放出時における拡散抵抗が低減される。これら二つの効果によって、正極電極内の電子伝導の抵抗及びイオンの拡散抵抗の両方が低減されるため電池のレート特性が向上し、大電流充放電を電池の寿命中の長きに渡って維持することが可能になる。
 以下、本発明の実施形態を詳細に説明する。
 本発明の一実施形態において炭素材料は(i)繊維状炭素材料、(ii)鎖状炭素材料、(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料、又はこれらの混合物である。
 繊維状炭素材料とは、例えばカーボンナノチューブ、カーボンナノファイバー、気相成長炭素繊維、ポリアクリロニトリル(PAN)系炭素繊維又はピッチ系炭素繊維などである。中でも平均繊維径が5~200nmのカーボンナノチューブが好ましい。
 鎖状炭素材料とは、例えばアセチレンブラック(電気化学工業社製デンカブラック等)又はファーネスブラック(ティムカル・グラファイト・アンド・カーボン社製SUPER -P、ケッチェン・ブラック・インターナショナル社製ケッチェンブラック等)などのカーボンブラックである。中でも一次粒子の平均径が10~100nmのカーボンブラックが好ましく、カーボンブラックの中でもアセチレンブラックが特に好ましい。
 繊維状炭素材料と鎖状炭素材料との連結の方法は特に限定されないが、例えば、炭化水素熱分解中に繊維状炭素材料を導入し、発生するカーボンブラックと連結する方法、アセチレンガスの熱分解中及び/又はアセチレンガスを熱分解させた状態で、繊維状炭素化触媒を含む炭化水素を供給し、連結する方法(特許文献14)、繊維状炭素とカーボンブラックを炭化水素やアルコールなどの炭素化原料液中に分散させて、炭素化原料液を液状またはガス化した状態で加熱等の操作により炭素化する方法、繊維状炭素化触媒とカーボンブラックを予め混合した後に繊維状炭素の原料ガスに接触させて、繊維状炭素を発生させると同時にカーボンブラックと連結する方法、繊維状炭素及びカーボンブラックを、固体媒体を用いたメカノケミカル的手法によって連結する方法、などである。メカノケミカル的手法による連結とは、例えばビーズミル、振動ミル又はボールミル等の媒体撹拌型混合機を用いた連結である。繊維状炭素材料の平均繊維径、及び鎖状炭素材料の一次粒子の平均粒子径は、例えば、SEM像観察により求めることができ、それぞれ数平均繊維径、数平均粒子径であってもよい。平均繊維径は、例えば、5、10、15、20、30、50、100、150、又は200nmであってもよく、それらいずれか2つの値の範囲内であってもよい。鎖状炭素粒子の一次粒子の平均粒子径は、例えば、10、20、30、40、50、60、70、80、90、又は100nmであってもよく、それらいずれか2つの値の範囲内であってもよい。
 本発明の一実施形態においてリチウム含有リン酸塩は、リチウムイオンの吸蔵、放出が可能なリン酸塩であり、具体的には、LiFePO、LiMnPO、LiMnFe(1-X)PO、LiCoPO又はLi(POなどである。特にLiFePO、LiMnFe(1-X)POが好ましい。
 本発明の一実施形態において複合粒子の平均一次粒子径は、0.02~20μm、さらに好ましくは0.05~5μmである。平均粒径がこれよりも小さいと、粒子が小さすぎるため、粒子内部に炭素材料と、リチウム含有リン酸塩と、細孔とを共存させることが困難になる。平均粒径がこれよりも大きいと、粒子内部の炭素材料と、リチウム含有リン酸塩と、細孔とを均等に分散させて共存させることが困難になり、分布に偏りが生じやすくなる。その結果、粒子内部において電子やリチウムイオンの導電経路が長くなる領域が生じてしまい、抵抗が増大してしまう。なお平均粒子径は、例えば、0.02、0.05、0.1、0.5、1、2、3、4、5、10、15、又は20μmであってもよく、それらいずれか2つの値の範囲内であってもよい。この平均粒子径は、例えば、SEM像観察により求めることができ、数平均粒子径であってもよい。
 本発明の一実施形態において複合粒子は、前記炭素材料を表面処理した後、リチウム含有リン酸塩の原料物質と混合、加熱して、表面処理した前記炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子を形成し、更にこれを加熱することによって製造することができる。
 第一の工程として前記炭素材料の表面処理を行うが、この方法は、例えば酸化処理、界面活性剤又は高分子分散剤を用いた処理などである。
 酸化処理とは、前記炭素材料の表面に酸化性物質を作用させることによって、水酸基(-OH)、カルボニル基(>C=O)、カルボキシル基(-COOH)、エーテル結合又はエステル結合を含む官能基を導入することである。酸化処理の具体的な方法は例えば前記炭素材料を、(i)酸素を含む雰囲気内で加熱する(気相酸化)、(ii)オゾンを含む雰囲気又は溶液内で保持する(オゾン酸化)、(iii)酸化力を有する化合物(硫酸、硝酸、過塩素酸、過酸化水素、過マンガン酸カリウム、オスミウム酸など)を含む溶液の中で加熱する(iv)水、水酸基(-OH)若しくはカルボニル基(>C=O)などの官能基を有する有機溶剤(例えばエタノール、イソプロピルアルコール、メチルエチルケトン、メチルイソブチルケトンなど)又はこれらの混合溶液中で湿式ジェットミル処理を行う方法などである。湿式ジェットミル処理装置は、例えばスギノマシン製スターバースト、常光製ナノジェットパル、アドバンスト・ナノ・テクノロジィ製ナノメーカー、パウレック製マイクロフルイダイザーなどが好適である。
 界面活性剤を用いた処理とは、前記炭素材料と界面活性剤を水又はアルコールなどの極性溶媒中で混合する方法である。界面活性剤は、例えばドデシル硫酸ナトリウム(SDS)などのアニオン系界面活性剤、塩化ドデシルトリメチルアンモニウム(C12TAC)若しくは臭化ヘキサデシルトリメチルアンモニウム(C16TAB)などのカチオン系界面活性剤、コカミドプロピルベタイン若しくはコカミドプロピルヒドロキシスルタインなどの両性界面活性剤、又はポリビニルアルコール、ポリオキシエチレンオクチルフェニルエーテル(商品名:Triton X-100)などの非イオン系界面活性剤などである。なお、特許文献10(特開2005-123107号公報)の段落(0015)及び(0028)に界面活性剤としてアセトンの例示があるが、アセトンは界面活性剤として使用した場合、揮発しやすく本発明の目的を達成することができないため、本発明の界面活性剤からは除外する。
 高分子分散剤を用いた処理とは、前記炭素材料と高分子分散剤を、水又は有機溶媒中で混合する方法である。高分子分散剤は、例えばポリビニルピロリドン(PVP)、ポリアリルアミン塩酸塩(PAH)などである。
 第二の工程として、前記の何れかの方法によって表面処理を行った炭素材料を、リチウム含有リン酸塩の原料物質と混合する。リチウム含有リン酸塩の原料物質は、製造するリチウム含有リン酸塩の種類や製造方法によって異なる。例えば、リン酸鉄リチウム(LiFePO)を、固体の原料物質を固体のままで混合して加熱する方法(固相反応)で製造する場合、炭酸リチウム(LiCO)、シュウ酸第一鉄二水和物(FeC・2HO)及びリン酸二水素アンモニウム((NH)HPO)又はリン酸第二鉄二水和物(FePO・2HO)などを用いてもよく、固体又は液体の原料を溶媒に溶解、混合して加熱する方法(溶液反応)で製造する場合、水酸化リチウム一水和物(LiOH・HO)、硫酸リチウム一水和物(LiSO・HO)、ギ酸リチウム一水和物(Li(HCOO)・HO)及び/又は硝酸リチウム(LiNO)、シュウ酸第一鉄二水和物及び/又は硫酸第二鉄七水和物(FeSO・7HO)及び/又は塩化第一鉄四水和物(FeCl・4HO)並びにリン酸(HPO)、リン酸二水素アンモニウム、リン酸一水素アンモニウム((NHHPO)及び/又はリン酸アンモニウム((NHPO)などを用いてもよい。
 リン酸マンガンリチウム(LiMnPO)を製造する場合の原料物質は、前記リン酸鉄リチウムの場合におけるシュウ酸第一鉄二水和物、リン酸第二鉄二水和物、硫酸第二鉄七水和物及び/又は塩化第一鉄四水和物などの鉄化合物の代わりに、例えば、炭酸マンガン(MnCO)、二酸化マンガン(MnO)、硫酸マンガン一水和物(MnSO・HO)、硝酸マンガン四水和物(Mn(NO・4HO)及び/又は酢酸マンガン四水和物((CHCOO)Mn・4HO)などが用いられる。リン酸鉄マンガンリチウム(LiMnFe(1-X)PO)を製造する場合は、前記リン酸鉄リチウムの原料とリン酸マンガンリチウムの原料が同時に用いられる。
 リン酸コバルトリチウム(LiCoPO)を製造する場合の原料物質は、前記リン酸鉄リチウムの場合における鉄化合物の代わりに、例えば、硫酸コバルト七水和物(CoSO・7HO)などが用いられる。リン酸バナジウムリチウム(Li(PO)を製造する場合の原料物質は、前記リン酸鉄リチウムの場合における鉄化合物の代わりに、例えば、五酸化二バナジウム(V)及び/又は酸化硫酸バナジウム水和物(VOSO・xHO)(x=3~4)などが用いられる。固体又は液体の原料を溶媒に溶解させる場合は、原料の成分が溶媒中でリチウムイオン(Li)、リン酸イオン(PO 3-)及びリチウム以外の金属イオンとして存在し、これに表面処理した前記炭素材料を分散させて混合するため、固体の原料物質を固体のままで混合する場合と比較して原料混合の均一性が向上する。
 本発明の一実施形態において複合粒子は、電子伝導性をさらに向上させるために炭素を被覆しても良い。その場合は、上記原料に炭素被覆用の原料を追加する。炭素被覆用の原料は加熱により分解して炭素を生じる化合物であり、例えばグルコース(C6126)、ショ糖(C122211)、デキストリン((C612)、アスコルビン酸(C)、カルボキシメチルセルロース、石炭ピッチなどである。これらは表面処理した前記炭素材料とリチウム含有リン酸塩の原料物質との混合と同時か、又は表面処理した前記炭素材料とリン酸鉄リチウムの原料の混合物を加熱して表面処理した前記炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む粒子を形成した後に追加することができる。
 表面処理を行った炭素材料と原料物質の混合方法は、固体の原料物質を固体のままで混合する場合には、ボールミル、振動ミル、ヘンシェルミキサー、プラネタリーミキサー、ニーダー、リボンブレンダー、V型混合機、W型混合機などを用いることができる。また、固体又は液体の原料を溶媒に溶解させて表面処理を行った炭素材料と混合する場合には、回転翼撹拌槽、超音波液体混合装置、ホモジナイザーなどを用いることができる。この場合の溶媒としては、水、アルコール又は水とアルコールの混合溶媒が好適である。なお、表面処理を界面活性剤又は高分子分散剤を用いて行う場合は、原料との混合前に予め処理しても良いし、原料混合と同時に処理しても良い。
 第三の工程として、表面処理を行った前記炭素材料と原料物質との混合物を加熱して、表面処理した前記炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む粒子を形成する。固体の原料物質を固体のままで混合して得た混合物の加熱は、不活性雰囲気、還元性雰囲気又は不活性ガスと還元性ガスの混合雰囲気下で行うことが好ましい。雰囲気圧力は、常圧又は減圧が好ましい。不活性ガスはアルゴン(Ar)、ヘリウム(He)又は窒素(N)などであり、還元性ガスは水素(H)又はアンモニア(NH)などである。加熱温度は100~400℃が好ましく、200~400℃がさらに好ましい。この加熱温度は、例えば、100、150、200、250、300、350、又は400℃であってもよく、それらいずれか2つの値の範囲内であってもよい。
 溶媒に、リチウムイオン(Li)、リン酸イオン(PO 3-)及びリチウム以外の金属イオンを溶解させてなる溶液に、表面処理した前記炭素材料を分散させて混合して得た混合物の加熱は、回転翼撹拌槽などを用い撹拌しながら行うことが好ましい。加熱温度は60~100℃が好適であるが、反応速度を向上させたい場合には100~250℃の加圧・加熱溶媒を用いて行う方法(水熱合成法/hydrothermal synthesis method)が好ましい。この場合の加熱はオートクレーブなどの耐圧容器を用いて行う。加熱温度は、例えば、60、80、100、150、200、又は250℃であってもよく、それらいずれか2つの値の範囲内であってもよい。なお、溶媒を用いる方法においては、リチウムイオン(Li)、リン酸イオン(PO 3-)及びリチウム以外の金属イオンを溶解させてなる溶液に、必要に応じてアンモニア(NH)、リン酸(HPO)又は硫酸(HSO)などのpH調整剤を添加しても良い。
 第四の工程として、表面処理した前記炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子をさらに加熱して、表面処理した前記炭素材料の表面から酸素含有官能基を揮発させる方法、又は界面活性剤若しくは高分子分散剤を分解させる方法によって、前記炭素材料を起点とした細孔の少なくとも一つを複合粒子外へ通じる細孔とする。
 固体の原料物質を固体のままで混合して得た混合物を出発物質とする場合には、前工程で得た表面処理した前記炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む粒子を、そのまま若しくは凝集粒子が存在する場合には解砕した後に、真空中、不活性雰囲気中又は還元性雰囲気中で加熱する。溶媒に、リチウムイオン(Li)、リン酸イオン(PO 3-)及びリチウム以外の金属イオンを溶解させてなる溶液に、表面処理した前記炭素材料を分散させて混合して得た混合物を出発物質とする場合には、前工程で得た表面処理した前記炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む粒子を、濾過、遠心分離、乾燥などによって溶媒と分離し、そのまま若しくは凝集粒子が存在する場合には解砕した後に、真空中、不活性雰囲気中又は還元性雰囲気中で加熱する。加熱温度は、400~900℃が好ましく、500~800℃がさらに好ましい。この加熱温度は、例えば、400、450、500、550、600、650、700、750、800、850、又は900℃であってもよく、それらいずれか2つの値の範囲内であってもよい。なお、前記固体の原料物質を固体のままで混合して得た混合物を出発物質とする場合には、前工程である表面処理した前記炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む粒子の形成工程の加熱と連続して加熱しても良い。
 第四の工程によって、表面処理した(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料の表面において酸素含有官能基が揮発する、又は界面活性剤若しくは高分子分散剤が分解するが、この際、酸素含有官能基由来の揮発成分、又は界面活性剤若しくは高分子分散剤の分解成分は、何れも気体であるため、元の固体ないし液体と比較して著しく体積が膨張して、気泡を形成する。気泡に閉じ込められた気体は次第に圧力が上昇するため、圧力が低い複合粒子外へ拡散するが、この際の気体の拡散経路が細孔として残存するため、前記炭素材料を起点とした細孔が複合粒子外へ通じる細孔となることを本発明者等は新たに知得した。細孔の径は数~10nm程度である。酸素含有官能基、界面活性剤又は高分子分散剤の量や、第四の工程における加熱時の昇温速度が大きいほど、細孔の径も大きくなる。この細孔の径は、例えば0.5、0.8、1、2、3、4、5、6、7、8、9、10、11、又は12nmであってもよく、それらいずれか2つの値の範囲内であってもよい。
 本発明の一実施形態に係る複合粒子、導電補助材及びバインダーを混合することによって、リチウムイオン二次電池用電極材を形成することができる。導電補助材としては、アセチレンブラック若しくはファーネスブラックなどのカーボンブラック及び/又はカーボンナノチューブ若しくはカーボンナノファイバーなどを用いることができる。バインダーとしては、ポリフッ化ビニリデン(PVDF)を用いることができる。本発明の一実施形態における混合割合は、例えば、複合粒子が60質量%以上95質量%以下で残部が導電補助材及びバインダーである。複合粒子が60質量%未満であるとリチウムイオン二次電池の充放電容量が小さくなる。また95質量%を超えると、導電補助材が不足して正極材の電気抵抗が大きくなり、バインダーが不足して正極材の保形性が不充分になり、充放電時に正極材が集電体(主にアルミニウム製)から剥落しやすくなる等の問題が生じる。
 本発明の一実施形態において正極材は、集電体上に成形された正極電極として、リチウムイオン二次電池に使用される。リチウムイオン二次電池に使用される他の材料としては、セパレータ、電解液、負極材等が挙げられる。セパレータは、正極および負極を電気的に絶縁して電解液を保持するものであり、ポリエチレン、ポリプロピレン製等の合成樹脂製のものを使用することができる。電解液の保持性を向上させるために、多孔性フィルム状のものを用いることが好ましい。
 また、本発明の一実施形態では正極電極を用いたリチウム二次電池において、当該電極群が浸漬される電解液としては、リチウム塩を含む非水電解液またはイオン伝導ポリマーなどを用いることが好ましい。リチウム塩を含む非水電解液における非水電解質の非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等が挙げられる。また、上記非水溶媒に溶解できるリチウム塩としては、六フッ化リン酸リチウム(LiPF)、ホウ四フッ化リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiSOCF)等が挙げられる。
 負極活物質としては、正極と同様に可逆的にLiイオンを吸蔵、放出することが可能であり、電解液との反応性に乏しく、しかも酸化還元電位が正極材よりも低い材料が好ましい。例えば黒鉛、チタン酸リチウム、シリコン(Si)又はスズ(Sn)等であり、必要に応じてこれらの2種類以上を同時に用いることも可能である。これらは正極の場合と同様に、導電補助材やバインダーと共に集電体(負極の場合は主に銅など)上に成形された負極材として実用に供される。
 段落(0029)~(0031)に記載した材料を組み合わせ、さらに外気との接触、変形、破損を防止するために、容器に封入してリチウムイオン二次電池が形成される。容器の形状や材質は、使用目的に応じて適宜選択される。例えば、軽微な充放電試験等の場合はステンレス等の金属製の円板型容器に封入するコイン型電池(コインセル)が形成される。
 産業用又は民生用として高容量・長寿命が必要な場合は正極材、セパレーター及び負極材を交互に捲回して金属製の円筒型又は角型の容器に封入する捲回型電池が形成される。両者の中間的な用途の場合は正極材、セパレーター及び負極材を交互に積層して、アルミラミネート等のパッケージに封入するラミネート型電池(アルミパウチセル)が形成される。
 以下、実施例及び比較例により、本発明に係る複合粒子、その製造方法、二次電池用電極材料及び二次電池を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 実施例1~7
 (第一の工程、炭素材料の表面処理)
処理に用いた炭素材料、処理の方法を表1~2にまとめて示す。なお、酸化処理によって炭素材料表面に導入された有機官能基は、処理後の炭素材料を、昇温脱離装置(アジレント社製、ダブルショットパイロライザー7683B)、ガスクロマトグラフ装置(ヒューレットパッカード社製、HP6890)及び質量分析計(ヒューレットパッカード社製、5973)を用い、昇温脱離ガスクロマトグラフ/質量分析法(TDS-GC/MS法)によって測定することによって、水(質量数=18)、一酸化炭素(質量数=28)及び二酸化炭素(質量数=44)に帰属される質量スペクトルの有無によって定性的に分析した。なお、200℃以下で検出された質量スペクトルは、吸着ガスの脱離によるものと見なして無視した。また昇温脱離装置と同じ条件(真空下、200℃まで及び1000℃まで、25℃/分の昇温速度で加熱)にて炭素材料10gを電気炉で加熱して、加熱前後の質量変化を測定した。次式にて、質量減少分を算出し、有機官能基の含有量と見なした。

 [有機官能基の含有量(質量%)]=[{(200℃加熱後の炭素材質量)-(1000℃加熱後の炭素材質量)}÷(200℃加熱後の炭素材質量)]×100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例8~14
 (第二の工程  表面処理済みの炭素材料とリチウム含有リン酸塩の原料物質との混合)及び(第三の工程  表面処理済み炭素材料と原料物質との混合物の加熱)
 第一の工程(実施例1~7)で作製した表面処理済みの炭素材料を用い、表3~4に示す条件にて原料物質と混合し、その後表3~4に示す条件で加熱した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例15~21
 (第四の工程 表面処理済み炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子をさらに加熱)
 第一から第三の工程(実施例8~14)で作製した複合粒子を、表5に示す条件にてさらに加熱して本発明の一実施例としての複合粒子を作製した。粉末X線回折測定(リガク製のX線回折装置RU-200A、X線源:Cu-Kα、電圧:40kV、電流:30mA)にて複合粒子の結晶相を同定した。また走査型電子顕微鏡(SEM:日本電子製走査型電子顕微鏡JSM-6301F、加速電圧1kV、観察倍率1万倍~5万倍)によって複合粒子の平均一次粒子径を測定した。さらに透過型電子顕微鏡(TEM:日本電子製透過型電子顕微鏡2000FX、加速電圧200kV、観察倍率20万倍)によって、細孔の有無を観察した。細孔径は、細孔分布測定装置(日本ベル株式会社製、BELSORP-miniII)を用い、BJH法により測定した。
Figure JPOXMLDOC01-appb-T000005
 比較例1~21 
 第一の工程(炭素材料の表面処理)を行わずに、第二から第四の工程のみを実施して複合粒子を作製した(比較例15~21)。これらの条件及び結果は、表6~9に併せて示した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例22~28
 実施例15~21の複合粒子、導電補助材としての炭素及びバインダーとしてのポリフッ化ビニリデン(クレハ製、KFポリマー溶液)を表10に示す所定の割合で配合した。これに分散溶媒としてN-メチルピロリドン(シグマアルドリッチ製、品番328634)を添加し、混練した正極合剤(スラリー)を作製した。これを正極材として用い、ラミネート型電池を作製して充放電特性を評価した。正極電極およびラミネート型電池作製方法の一例を以下に示す。実施例15~21の複合粒子を正極合剤スラリーとして、厚さ20μmのアルミニウム箔に塗布、乾燥し、その後、プレス、40mm角に裁断して、リチウム二次電池用正極電極を得た。負極には黒鉛(大阪ガス製人造黒鉛MCMB6-28)を用い、バインダーとしてのポリフッ化ビニリデンを所定の割合で混合後、正極と同様にスラリーを作製し、厚さ10μmの銅箔に塗布、乾燥し、その後、プレス、45mm角に裁断して、リチウム二次電池用負極電極を得た。これらを電気的に隔離するセパレータとして50mm角のオレフィン繊維製不織布を用いた。電解液にはEC(エチレンカーボネート、Aldrich製)、MEC(メチルエチルカーボネート、Aldrich製)を体積比で30:70 に混合した溶液中に六フッ化リン酸リチウム(LiPF、ステラケミファ製)を1mol/L 溶解したものを用いた。正極と負極に端子を接続した後、全体をアルミラミネート製パッケージに封入して60mm角ラミネート型電池を形成した。
 電池の放電性能試験としては、電池を初充電後、充放電効率が100%近傍になることを確認後、0.7mA/cmの電流密度にて定電流放電を2.1Vまで行った際の放電容量を測定し、正極活物質量で除した容量密度(mAh/g)を算出した。この容量(mAh)を1時間で充放電可能な電流値を「1C」とした。
 初回充放電後、充電は4.2V(実施例26~27、比較例26~27のみ、4.8V)(0.2C定電流、0.05C電流時終了)、放電はサイクル毎に、0.2C、0.33C、0.5C、1C、5C、10C(定電流、2.1V時終了)と徐々に電流値を増加させて、休止はそれぞれの間に10分間行って充放電を行い、0.2Cの充放電容量に対する10Cの充放電容量の比(%)をレート特性とした。さらに、SOC(充電深度)50%時におけるI-V特性より、電池の直流抵抗(DCR)を算出した。充電時における直流抵抗を「充電DCR」、放電時を「放電DCR」とした。これらの結果は、表10にまとめて示した。
 比較例22~28
 実施例22~28の代わりに比較例15~21の複合粒子を用いた他は、実施例22~28と同様にしてラミネート型電池を形成して電池の放電性能試験を実施し、結果を表10に示した。
Figure JPOXMLDOC01-appb-T000010
 実施例と比較例から本発明の複合粒子を用いた電池は、電池のレート特性が格段に向上している。
 本発明のリチウムイオン二次電池用正極材料は、熱的に安定で高い安全性が期待される反面、抵抗値が高いという短所を有するリチウム含有リン酸塩を正極活物質として使用しながら、短所を補って従来にない優れた電子伝導性能及びイオン伝導性能を有している。本発明の正極材料によって、リチウム含有リン酸塩の短所が解消され、その結果、大電流充放電が繰り返し可能で、しかも高い安全性を有するリチウムイオン二次電池が実現できる。本発明の正極材を用いたリチウムイオン二次電池は、電動工具やハイブリッドカーなど大電流充放電が必要とされる用途に好適に利用できる。
 

Claims (18)

  1. (i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料と、リチウム含有リン酸塩を含む複合粒子であり、前記の群より選ばれた1種以上の炭素材料を起点とした細孔の少なくとも一つが複合粒子外へ通じる細孔である複合粒子。
  2. 炭素で被覆されてなる請求項1に記載の複合粒子。
  3. 繊維状炭素材料は、平均繊維径が5~200nmのカーボンナノチューブである、請求項1又は2に記載の複合粒子。
  4. 鎖状炭素材料は、平均粒径10~100nmの一次粒子が鎖状に結合してなるカーボンブラックである請求項1~3のいずれか一項に記載の複合粒子。
  5. リチウム含有リン酸塩は、LiFePO、LiMnPO、LiMnFe(1-X)PO、LiCoPO又はLi(POである請求項1~4のいずれか一項に記載の複合粒子。
  6. 平均一次粒子径が0.02~20μmである、請求項1~5のいずれか一項に記載の複合粒子。
  7. (i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料を表面処理する第一の工程と、表面処理した前記の群より選ばれた1種以上の炭素材料とリチウム含有リン酸塩の原料物質とを混合する第二の工程と、前記混合物を加熱して、表面処理した前記の群より選ばれた1種以上の炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子を形成する第三の工程と、前記複合材料を加熱して、前記の群より選ばれた1種以上の炭素材料を起点とした細孔の少なくとも一つを複合粒子外へ通じる細孔とする第四の工程を含む、請求項1~6のいずれか一項に記載の複合粒子の製造方法。
  8. 第二~第四の工程の一つ以上の工程に、加熱により分解して炭素を生じる化合物を加える、請求項7に記載の複合粒子の製造方法。
  9. 第三の工程と第四の工程とを連続して行う、請求項7又は8に記載の複合粒子の製造方法。
  10. (i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料の表面処理の方法が酸化処理である、請求項7~9のいずれか一項に記載の複合粒子の製造方法。
  11. (i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料の表面処理の方法が界面活性剤を用いた方法である、請求項7~9のいずれか一項に記載の複合粒子の製造方法。
  12. (i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料の表面処理の方法が高分子分散剤を用いた方法である、請求項7~9のいずれか一項に記載の複合粒子の製造方法。
  13. (i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の表面処理された炭素材料と、リチウム含有リン酸塩の原料物質とを混合する方法が、溶媒に、リチウムイオン(Li)、リン酸イオン(PO 3-)及びリチウム以外の金属イオンを溶解させてなる溶液に、前記の群より選ばれた1種以上の表面処理された炭素材料を分散させて混合する方法である、請求項7~12のいずれか一項に記載の複合粒子の製造方法。
  14. 溶媒が、水、アルコール又は水とアルコールの混合溶媒である、請求項13に記載の複合粒子の製造方法。
  15. 溶媒に、リチウムイオン(Li)、リン酸イオン(PO 3-)及びリチウム以外の金属イオンを溶解させてなる溶液に、(i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の表面処理された炭素材料を分散させて混合した後加熱し、前記の群より選ばれた1種以上の表面処理された炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子を形成する方法が、加圧・加熱溶媒を用いて行う方法である、請求項13又は14に記載の複合粒子の製造方法。
  16. (i)繊維状炭素材料、(ii)鎖状炭素材料、および(iii)繊維状炭素材料と鎖状炭素材料とが相互に連結してなる炭素材料からなる群より選ばれた1種以上の炭素材料と、リチウム含有リン酸塩を含む複合粒子を加熱して、前記の群より選ばれた1種以上の炭素材料を起点とした細孔の少なくとも一つを複合粒子外へ通じる細孔とする方法が、前記の群より選ばれた1種以上の表面処理された炭素材料とリチウム含有リン酸塩前駆体及び/又はリチウム含有リン酸塩とを含む複合粒子を、真空中、不活性雰囲気中又は還元性雰囲気中で加熱して、前記の群より選ばれた1種以上の表面処理された炭素材料の表面の酸素含有官能基を揮発させる方法、又は界面活性剤若しくは高分子分散剤を分解させる方法である請求項7~15のいずれか一項に記載の複合粒子の製造方法。
  17. 請求項1~6のいずれか一項に記載の複合粒子を60質量%以上95質量%以下含有し、残部は導電補助材及びバインダーからなるリチウムイオン二次電池用電極材料。
  18. 請求項17に記載の電極材料を用いて形成された正極と、負極と、電解液と、前記正極と前記負極とを電気的に絶縁して前記電解液を保持するセパレータとを有することを特徴とする、リチウムイオン二次電池。
PCT/JP2012/079482 2011-11-15 2012-11-14 複合粒子、その製造方法、二次電池用電極材料及び二次電池 WO2013073561A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2859113A CA2859113C (en) 2011-11-15 2012-11-14 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
JP2013544289A JP6358493B2 (ja) 2011-11-15 2012-11-14 複合粒子、その製造方法、二次電池用電極材料及び二次電池
CN201280055622.3A CN103975468B (zh) 2011-11-15 2012-11-14 复合粒子及其制造方法、二次电池用电极材料及二次电池
KR1020147016088A KR101980796B1 (ko) 2011-11-15 2012-11-14 복합 입자, 그 제조 방법, 이차전지용 전극재료 및 이차전지
US14/358,307 US10873073B2 (en) 2011-11-15 2012-11-14 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
EP12850167.3A EP2782170B1 (en) 2011-11-15 2012-11-14 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-249968 2011-11-15
JP2011249968 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073561A1 true WO2013073561A1 (ja) 2013-05-23

Family

ID=48429617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079482 WO2013073561A1 (ja) 2011-11-15 2012-11-14 複合粒子、その製造方法、二次電池用電極材料及び二次電池

Country Status (8)

Country Link
US (1) US10873073B2 (ja)
EP (1) EP2782170B1 (ja)
JP (2) JP6358493B2 (ja)
KR (1) KR101980796B1 (ja)
CN (1) CN103975468B (ja)
CA (1) CA2859113C (ja)
TW (1) TWI631755B (ja)
WO (1) WO2013073561A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127872A (ja) * 2011-12-16 2013-06-27 Samsung Sdi Co Ltd 二次電池用正極及び二次電池
JP2015171990A (ja) * 2014-02-19 2015-10-01 大阪ガスケミカル株式会社 可溶化炭素材の製造方法
WO2015178479A1 (ja) * 2014-05-23 2015-11-26 国立大学法人東京農工大学 正極材料、二次電池、正極材料の製造方法および二次電池の製造方法
US20170194648A1 (en) * 2015-12-30 2017-07-06 Toyota Motor Engineering & Manufacturing North America, Inc. Functionalization of carbon for embedding in chalcogen particles to enhance electronic conductivity

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448099A (zh) * 2018-04-10 2018-08-24 烟台卓能电池材料股份有限公司 一种纳米锆酸锂修饰的磷酸铁锂复合材料及其制备方法
EP3859843A4 (en) * 2018-09-27 2022-04-27 Murata Manufacturing Co., Ltd. ELECTROCONDUCTIVE SUBSTANCE, POSITIVE ELECTRODE AND SECONDARY BATTERY
CN111370678B (zh) * 2020-05-27 2020-10-27 湖南雅城新材料有限公司 一种改性包覆锂电池用磷酸铁锂材料的制备方法
WO2023184871A1 (zh) * 2022-03-28 2023-10-05 深圳市德方纳米科技股份有限公司 复合正极材料及其制备方法和应用

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226004A (ja) 1991-09-13 1993-09-03 Asahi Chem Ind Co Ltd 二次電池
JPH09134724A (ja) 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
JP2000509193A (ja) 1996-04-23 2000-07-18 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 2次(再充電)リチウム電池用陰極材料
JP2001126733A (ja) 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2002075364A (ja) 2000-08-30 2002-03-15 Sony Corp 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法
JP2002110162A (ja) 2000-09-29 2002-04-12 Sony Corp 正極活物質及び非水電解質電池
JP2003168429A (ja) 2001-11-29 2003-06-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004063386A (ja) 2002-07-31 2004-02-26 Mitsui Eng & Shipbuild Co Ltd 2次電池正極材料の製造方法、および2次電池
JP2005019399A (ja) 2003-06-06 2005-01-20 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2005123107A (ja) 2003-10-20 2005-05-12 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法および前記活物質を用いた電気化学素子
JP2006302671A (ja) 2005-04-20 2006-11-02 Mitsui Mining Co Ltd リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
JP2007022894A (ja) * 2005-07-21 2007-02-01 Seimi Chem Co Ltd リチウム鉄複合酸化物の製造方法
WO2007034823A1 (ja) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質の製造方法およびそれを用いた非水電解質電池
JP2007080652A (ja) 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2009503182A (ja) 2005-07-27 2009-01-29 デンカ シンガポール プライベート リミテッド カーボンブラック、その製造方法および用途
WO2010047334A1 (ja) * 2008-10-20 2010-04-29 古河電池株式会社 オリビン構造を有する多元系リン酸リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
JP2010108889A (ja) 2008-09-30 2010-05-13 Denki Kagaku Kogyo Kk 二次電池用正極
JP2011515813A (ja) * 2008-03-28 2011-05-19 ビーワイディー カンパニー リミテッド リチウム二次電池用のリン酸鉄リチウム正極材料を調製する方法
JP2011100592A (ja) * 2009-11-05 2011-05-19 Tayca Corp 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
JP2011108522A (ja) * 2009-11-18 2011-06-02 Denki Kagaku Kogyo Kk リチウムイオン二次電池用正極材及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100573981C (zh) * 2003-10-27 2009-12-23 三井造船株式会社 用于二次电池的正极材料、其生产方法以及二次电池
JP4536561B2 (ja) 2005-03-18 2010-09-01 住友大阪セメント株式会社 電極材料の製造方法
JP5405126B2 (ja) * 2006-02-17 2014-02-05 エルジー・ケム・リミテッド リチウム−金属複合酸化物の製造方法
JP2007250417A (ja) 2006-03-17 2007-09-27 Sumitomo Osaka Cement Co Ltd 電極材料及びその製造方法並びにリチウムイオン電池
JP4210710B2 (ja) 2007-04-09 2009-01-21 花王株式会社 リチウム電池用正極活物質の製造方法
JP5118877B2 (ja) * 2007-04-27 2013-01-16 トヨタ自動車株式会社 二次電池
EP2065887A1 (en) 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing magnetic disk unit
JP5462445B2 (ja) 2008-04-30 2014-04-02 三菱マテリアル株式会社 リチウムイオン二次電池
CN101714627A (zh) * 2008-10-08 2010-05-26 中国科学院金属研究所 一种碳纳米管/磷酸铁锂复合正极材料及其原位制备方法
EP2415107A1 (en) 2009-04-01 2012-02-08 University Of The Western Cape Method for producing a carbon composite material
US9147879B2 (en) * 2009-06-25 2015-09-29 Nagasaki University Composite nano porous electrode material, process for production thereof, and lithium ion secondary battery
CN102754248B (zh) * 2009-12-18 2017-10-13 设计纳米管有限责任公司 含有剥离微管和空间受控附着纳米颗粒和纳米层的高性能能量存储和收集装置
JP5581065B2 (ja) * 2010-01-14 2014-08-27 Jfeケミカル株式会社 リン酸鉄リチウムの製造方法
JP5858395B2 (ja) 2010-03-31 2016-02-10 日本ケミコン株式会社 金属化合物ナノ粒子とカーボンの複合体の製造方法
KR101113976B1 (ko) * 2010-10-27 2012-03-13 한국과학기술연구원 자기조립된 전극 활물질-탄소 나노튜브 복합체와 그 제조 방법 및 이를 포함하는 이차전지

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226004A (ja) 1991-09-13 1993-09-03 Asahi Chem Ind Co Ltd 二次電池
JPH09134724A (ja) 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
JP2000509193A (ja) 1996-04-23 2000-07-18 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 2次(再充電)リチウム電池用陰極材料
JP2001126733A (ja) 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2002075364A (ja) 2000-08-30 2002-03-15 Sony Corp 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法
JP2002110162A (ja) 2000-09-29 2002-04-12 Sony Corp 正極活物質及び非水電解質電池
JP2003168429A (ja) 2001-11-29 2003-06-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004063386A (ja) 2002-07-31 2004-02-26 Mitsui Eng & Shipbuild Co Ltd 2次電池正極材料の製造方法、および2次電池
JP2005019399A (ja) 2003-06-06 2005-01-20 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2005123107A (ja) 2003-10-20 2005-05-12 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法および前記活物質を用いた電気化学素子
JP2006302671A (ja) 2005-04-20 2006-11-02 Mitsui Mining Co Ltd リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
JP2007022894A (ja) * 2005-07-21 2007-02-01 Seimi Chem Co Ltd リチウム鉄複合酸化物の製造方法
JP2009503182A (ja) 2005-07-27 2009-01-29 デンカ シンガポール プライベート リミテッド カーボンブラック、その製造方法および用途
JP2007080652A (ja) 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
WO2007034823A1 (ja) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質の製造方法およびそれを用いた非水電解質電池
JP2011515813A (ja) * 2008-03-28 2011-05-19 ビーワイディー カンパニー リミテッド リチウム二次電池用のリン酸鉄リチウム正極材料を調製する方法
JP2010108889A (ja) 2008-09-30 2010-05-13 Denki Kagaku Kogyo Kk 二次電池用正極
WO2010047334A1 (ja) * 2008-10-20 2010-04-29 古河電池株式会社 オリビン構造を有する多元系リン酸リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
JP2011100592A (ja) * 2009-11-05 2011-05-19 Tayca Corp 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
JP2011108522A (ja) * 2009-11-18 2011-06-02 Denki Kagaku Kogyo Kk リチウムイオン二次電池用正極材及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782170A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127872A (ja) * 2011-12-16 2013-06-27 Samsung Sdi Co Ltd 二次電池用正極及び二次電池
JP2015171990A (ja) * 2014-02-19 2015-10-01 大阪ガスケミカル株式会社 可溶化炭素材の製造方法
WO2015178479A1 (ja) * 2014-05-23 2015-11-26 国立大学法人東京農工大学 正極材料、二次電池、正極材料の製造方法および二次電池の製造方法
JPWO2015178479A1 (ja) * 2014-05-23 2017-04-20 国立大学法人東京農工大学 正極材料、二次電池、正極材料の製造方法および二次電池の製造方法
US20170194648A1 (en) * 2015-12-30 2017-07-06 Toyota Motor Engineering & Manufacturing North America, Inc. Functionalization of carbon for embedding in chalcogen particles to enhance electronic conductivity
US11316166B2 (en) * 2015-12-30 2022-04-26 Toyota Motor Engineering & Manufacturing North America, Inc. Functionalization of carbon for embedding in chalcogen particles to enhance electronic conductivity

Also Published As

Publication number Publication date
JPWO2013073561A1 (ja) 2015-04-02
CA2859113C (en) 2020-04-14
CN103975468B (zh) 2017-10-17
EP2782170B1 (en) 2017-03-22
KR101980796B1 (ko) 2019-05-21
TW201328002A (zh) 2013-07-01
US10873073B2 (en) 2020-12-22
JP6596779B2 (ja) 2019-10-30
EP2782170A1 (en) 2014-09-24
EP2782170A4 (en) 2015-06-03
US20140335419A1 (en) 2014-11-13
CN103975468A (zh) 2014-08-06
JP6358493B2 (ja) 2018-07-18
JP2018139213A (ja) 2018-09-06
CA2859113A1 (en) 2013-05-23
KR20140096120A (ko) 2014-08-04
TWI631755B (zh) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6086246B2 (ja) 複合粒子、その製造方法、二次電池用電極材料及び二次電池
JP6596779B2 (ja) 複合粒子、その製造方法、二次電池用電極材料及び二次電池
KR101655859B1 (ko) 복합 전극 재료
JP5155498B2 (ja) リチウム二次電池用正極活物質の製造方法
WO2011062019A1 (ja) リチウムイオン二次電池用正極材及びその製造方法
TWI628836B (zh) Electrode material for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery
KR20230145493A (ko) 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리
JP2013201120A (ja) 炭素ナノチューブ−オリビン型リチウムマンガン系リン酸化物複合体の製造方法およびこれを利用したリチウム2次電池
JP2013214493A (ja) リチウムイオン2次電池用リチウムマンガン酸化物正極活物質およびそれを含むリチウムイオン2次電池
KR101578974B1 (ko) 비수 전해질 이차전지용 정극 활물질, 그 제조 방법 및 비수 전해질 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14358307

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012850167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012850167

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2859113

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147016088

Country of ref document: KR

Kind code of ref document: A