WO2013073485A1 - 半導体発光素子およびその製造方法 - Google Patents

半導体発光素子およびその製造方法 Download PDF

Info

Publication number
WO2013073485A1
WO2013073485A1 PCT/JP2012/079196 JP2012079196W WO2013073485A1 WO 2013073485 A1 WO2013073485 A1 WO 2013073485A1 JP 2012079196 W JP2012079196 W JP 2012079196W WO 2013073485 A1 WO2013073485 A1 WO 2013073485A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
light emitting
contact
electrode
Prior art date
Application number
PCT/JP2012/079196
Other languages
English (en)
French (fr)
Inventor
豊田 達憲
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US14/357,998 priority Critical patent/US20140327034A1/en
Publication of WO2013073485A1 publication Critical patent/WO2013073485A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Definitions

  • the present invention relates to a semiconductor light emitting device and a method for manufacturing the same, and more particularly to a semiconductor light emitting device capable of improving the light emission output without increasing the forward voltage so much and a method for manufacturing the same.
  • LEDs light emitting diodes
  • fields such as sterilization, water purification, medical treatment, lighting, and high-density optical recording
  • LEDs that emit light in the ultraviolet region, particularly ultraviolet LEDs with an emission wavelength of 350 nm or less
  • light emission A deep ultraviolet LED having a wavelength of 300 nm or less has attracted attention.
  • an LED having an element structure formed using an AlGaN-based thin film, a diamond thin film, or the like, which is a group III nitride semiconductor is known as an element material. That is, a semiconductor laminate composed of a light emitting layer, a p-type semiconductor layer and an n-type semiconductor layer sandwiched between the light-emitting layers, a p-side electrode on the p-type semiconductor layer side, and an n-side on the n-type semiconductor layer side A semiconductor light emitting element having an electrode.
  • Patent Document 1 discloses that a p-type contact layer and a positive electrode are formed by providing irregularities on the surface of a p-type contact layer and forming a positive electrode of an ITO film on almost the entire surface including the irregularities.
  • a semiconductor light emitting device is described in which the adhesion is improved and the contact area is increased to reduce the operating voltage.
  • Examples of the characteristics of the semiconductor light emitting device include light emission output and forward voltage, and it is important to improve these characteristics in a balanced manner.
  • a p-side electrode In a semiconductor light emitting device, for example, when a p-side electrode is formed directly on a p-type semiconductor layer, the contact resistance between the two is high, and good ohmic contact cannot be obtained. Therefore, it is usual to provide a p-type contact layer having a low contact resistance and a low resistance between the p-type semiconductor layer and the p-side electrode.
  • a p-type contact layer having a low contact resistance and a low resistance between the p-type semiconductor layer and the p-side electrode.
  • an LED that emits light in the ultraviolet light region or blue light region
  • an AlGaN-based thin film that is a group III nitride semiconductor when an AlGaN-based thin film that is a group III nitride semiconductor is used as a semiconductor laminate, the AlGaN thin film has a higher resistance as p-type conduction increases as the Al composition ratio increases. Become.
  • the p-type contact layer does not include an AlGaN layer having a small Al composition ratio or Al.
  • a GaN layer must be used.
  • the p type contact layer has a lower Al composition than the AlGaN layer of the light emitting layer. Since the band gap is reduced, it has been found that the p-type contact layer can easily absorb the light emitted from the light emitting layer. Therefore, when a p-type contact layer such as GaN is provided on the entire surface of the p-type semiconductor layer, the ohmic contact between the p-type semiconductor layer and the p-side electrode can be improved to obtain a low forward voltage. It has been found that high light emission output cannot be obtained as a result of the type contact layer absorbing light. For this reason, there has been a problem that it is very difficult to improve the light emission efficiency by satisfying both a low forward voltage and a high light emission output in the light emitting element.
  • an ohmic electrode layer capable of forming a good ohmic contact with the p-type contact layer for example, a metal electrode such as Ni / Au and an electrode such as ITO has a low transmittance with respect to ultraviolet light, and also absorbs ultraviolet light. Since these electrodes have a certain high transmittance with respect to visible light such as blue, they can be used as full-surface electrodes in a light emitting element that emits blue as in Patent Document 1. However, there is no knowledge about the use of these ohmic electrode layers in the same form as visible light emitting elements for semiconductor light emitting elements that emit ultraviolet light, and according to studies by the present inventors, semiconductor light emitting elements that emit ultraviolet light. Then, it was found that as a result of the absorption of ultraviolet light, the light output is greatly reduced.
  • the present invention achieves both suppression of light absorption in the contact portion composed of the contact layer and the ohmic electrode layer and good ohmic contact between the electrode and the semiconductor layer, and increases the forward voltage much.
  • An object of the present invention is to provide a semiconductor light emitting device capable of improving the light emission output without any problem and a method for manufacturing the same.
  • the gist of the present invention is as follows. (1) a semiconductor stacked body including a semiconductor layer of a first conductivity type, a light emitting layer, and a semiconductor layer of a second conductivity type different from the first conductivity type in this order; A contact portion formed by laminating a contact layer and an ohmic electrode layer on the first conductive semiconductor layer; A plurality of island-shaped openings exposing the first conductive semiconductor layer formed in the contact portion; A first electrode in contact with the ohmic electrode layer and electrically connected to the first conductive semiconductor layer; A second electrode electrically connected to the second conductive semiconductor layer; A semiconductor light emitting element comprising:
  • a semiconductor stacked body including, in this order, a second conductive type semiconductor layer, a light emitting layer, and a first conductive type semiconductor layer different from the second conductive type on the substrate; Forming a contact portion formed by laminating a contact layer and an ohmic electrode layer on the first conductive semiconductor layer; Forming a mask on a part of the contact portion; Removing a portion of the contact portion exposed without the mask being formed by etching, and forming a plurality of island-shaped openings in the contact portion to expose the first conductive semiconductor layer; Forming a first electrode in contact with the ohmic electrode layer and electrically connected to the first conductive semiconductor layer; Forming a second electrode electrically connected to the second conductive semiconductor layer; A method for manufacturing a semiconductor light emitting device, comprising:
  • the mask forming step includes Forming an aluminum oxide film on the contact portion by aluminum deposition in an oxygen atmosphere; Partially etching the aluminum oxide film;
  • the opening is provided in the contact portion formed by laminating the contact layer and the ohmic electrode layer of the semiconductor light emitting device, so that the light absorption in the contact portion is suppressed and the electrode and the semiconductor layer are excellent. It is possible to achieve compatibility with ohmic contact. As a result, the light emission output can be improved without increasing the forward voltage so much.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor light emitting device 100 according to the present invention.
  • FIG. 3 is a schematic top view of the semiconductor light emitting device 100 shown in FIG. 1.
  • (A) to (H) are schematic cross-sectional views showing an example of a method for manufacturing the semiconductor light emitting device 100 according to the present invention. It is a schematic cross section which shows the semiconductor light-emitting device 100 which performed the mounting of the Philip chip type.
  • (A) And (B) is the SEM image of the upper surface of the contact part in Example 1 and Example 2, respectively.
  • FIG. 6 is an enlarged SEM image of FIG. 10 is a SEM image of a contact portion in Example 3. 6 is an enlarged SEM image of a contact portion in Example 4.
  • a semiconductor light emitting device 100 is formed by stacking a buffer layer 102, a semiconductor stacked body 106, a contact layer 107, and an ohmic electrode layer 108 on a substrate 101. And a contact portion 109 in this order.
  • the semiconductor stacked body 106 includes a p-type semiconductor layer 105 as a first conductivity type semiconductor layer, a light emitting layer 104, and an n-type semiconductor layer 103 as a second conductivity type semiconductor layer different from the first conductivity type. Become. In this embodiment, the n-type semiconductor layer 103, the light emitting layer 104, and the p-type semiconductor layer 105 are formed in this order from the buffer layer 102 side.
  • the p-type electrode 113 as the first electrode is located on the contact portion 109, more specifically, on a part of the ohmic electrode layer 108, is in contact with the ohmic electrode layer 108, and is in contact with the contact portion.
  • the p-type semiconductor layer 105 is electrically connected through 109.
  • the n-side electrode 112 as the second electrode is formed on the n-type semiconductor layer 103 side of the semiconductor stacked body 106.
  • the n-side electrode 112 is electrically connected to the n-type semiconductor layer 103.
  • the contact portion 109 and a part of the semiconductor stacked body 106 are removed in a part of the region of the semiconductor light emitting device 100 to expose the surface of the n-type semiconductor layer 103, thereby exposing the exposed n-type semiconductor.
  • 1 schematically shows a typical “lateral” light-emitting device in which an n-type electrode 112 is provided on a layer 103.
  • the substrate 101 it is preferable to use a substrate resistant to the temperature of epitaxial growth of the semiconductor stacked body 106.
  • a substrate resistant to the temperature of epitaxial growth of the semiconductor stacked body 106 For example, a sapphire substrate or an AlN template in which an AlN single crystal layer is formed on a substrate such as sapphire can be used.
  • the buffer layer 102 is epitaxially grown on the substrate 101 by using a known method such as MOCVD, MOVPE, HVPE, MBE.
  • a laminate of an AlN layer or a plurality of AlGaN layers having a thickness of 20 to 1500 nm, preferably 500 to 1500 nm, more preferably 800 to 1000 nm can be used.
  • the buffer layer 102 functions as a strain buffer layer between the substrate 101 and the n-type semiconductor layer 103.
  • the buffer layer 102 can also include a composition gradient layer and a superlattice strain buffer layer.
  • the n-type semiconductor layer 103 and the p-type semiconductor layer 105 can be formed by epitaxially growing an Al x Ga 1-x N material (0 ⁇ x ⁇ 1) using a known method such as an MOCVD method. If absorption at a desired emission wavelength is not a problem, B and In may be included as a group III element, and As may be included as a group V element. Examples of the p-type impurity include Be and Mg, and examples of the n-type impurity include Si and Ge.
  • Examples of the light emitting layer 104 include an AlInGaN / AlInGaN multiple quantum well structure. This can be grown and formed by the MOCVD method or the like.
  • the light-emitting layer 104 can be made of a material having a relatively wide band gap that can emit ultraviolet light having an emission center wavelength of 380 nm or less, visible light (blue or purple) of 495 nm or less, and the like.
  • a light-emitting layer that emits ultraviolet light with an emission center wavelength of 365 nm or less that does not substantially transmit through the GaN layer, and further emits ultraviolet light with an emission center wavelength of 350 nm or less It can be.
  • the emission wavelength can be controlled mainly by the Al composition ratio of the well layer.
  • each layer can be, for example, 1000 to 5000 nm for the n-type semiconductor layer 103, 10 to 100 nm for the light emitting layer 104, and 50 to 300 nm for the p-type semiconductor layer 105.
  • the p-type contact layer 107 is epitaxially grown on the p-type semiconductor layer 105.
  • the contact layer 107 is a layer in which low resistance p-type conduction is obtained and the contact resistance with the p-side electrode 113 is lower than that of the p-type semiconductor layer 105.
  • the contact layer preferably has a lattice match with the p-type semiconductor layer 105 and has a lattice constant that allows epitaxial growth on the p-type semiconductor layer 105.
  • the effect of the present invention is very large. In this case, the problem of absorption of light emitted from the light emitting layer 104 by the contact layer 107 is remarkable.
  • the Al composition of the contact layer 107 is such that the band gap is narrower than the light emitting layer, or the transmittance with respect to the emission center wavelength from the light emitting layer is less than 50%.
  • the effect of the present invention is very large when the composition is as follows.
  • the Al composition of the contact layer 107 is, for example, preferably 0 ⁇ x ⁇ 0.5, and 0 ⁇ x ⁇ 0.05, although it depends on the emission wavelength when the composition formula is Al x Ga 1-x N. Is more preferable.
  • the p-side ohmic electrode layer 108 is formed on the p-type contact layer 107.
  • the ohmic electrode layer 108 is a layer having a low contact resistance that is suitable for forming an ohmic contact with the p-type contact layer 107.
  • an ohmic electrode layer made of a combination of a metal such as Ni, Co, ITO, or Pt and a metal such as Au or Rh is preferable.
  • the p-side ohmic electrode layer 108 needs to be capable of metal bonding with the p-side electrode 113.
  • the contact layer 107 and the ohmic electrode layer 108 constituting the contact portion 109 both absorb light generated in the light emitting layer 104.
  • the contact portion 109 may absorb a part of the light and transmit or reflect a part of the light, but the effect of the present invention is easily obtained when absorbing 50% or more with respect to the emission center wavelength.
  • the characteristic configuration of the present invention is that the contact portion 109 has an island-shaped opening 111 through which the p-type semiconductor layer 105 is exposed.
  • the opening 111 on the p-type semiconductor layer 105 light generated in the light emitting layer 104 is not absorbed by the contact layer 107 and the ohmic electrode layer 108 constituting the contact portion 109. Therefore, light can be effectively extracted from the opening 111 to the outside.
  • the p-type semiconductor layer 105 and the p-side electrode 113 can obtain good ohmic contact via the ohmic electrode layer 108 and the contact layer 107. I can do it.
  • the present invention by providing the opening 111 in the contact portion 109, it is possible to achieve both suppression of light absorption by the contact portion and good ohmic contact between the electrode and the semiconductor layer. As a result, it is possible to improve the light emission output without significantly increasing the forward voltage.
  • the isolated contact portion since the island portion, that is, the isolated opening 111 exists in the contact portion 109, the isolated contact portion is not formed, and as shown in FIG. A state of being electrically connected to the side electrode 113 can be realized. Therefore, it is possible to sufficiently flow the current not only to the semiconductor stacked body directly under the p-side electrode 113 but also to the semiconductor stacked body below the region where the contact portion 109 is located and the vicinity thereof. This leads to an improvement in luminous efficiency.
  • the position of the p-side electrode 113 is not particularly limited to FIG. 2 as long as the p-side electrode 113 is in contact with a part of the ohmic electrode layer 108 of the contact portion 109.
  • the present invention is effective when the first conductive semiconductor layer, that is, the semiconductor layer exposed from the opening, is a p-type semiconductor layer as in this embodiment. Since the p-type semiconductor layer 105 is less likely to spread current in the layer than the n-type semiconductor layer, the contact portion 109 extends not only directly under the p-side electrode 113 but also over as wide a range as possible on the p-type semiconductor layer 105. This is because it is preferable. That is, by forming the contact portion 109 on the entire surface of the p-type semiconductor layer 105 and forming a part of the contact portion 109 as the opening portion 111, it is possible to further increase the light emission efficiency while obtaining light emission in a wider range.
  • the plurality of openings 111 are dispersed on the p-type semiconductor layer 105, that is, viewed from the upper surface of the element. Sometimes, it is preferable that the openings 111 are distributed and distributed over the entire surface. As a result, the contact portion 109 is also laid on the entire p-type semiconductor layer 105, and the current supplied from the p-side electrode 113 can be supplied to the entire p-type semiconductor layer 105.
  • the arrangement pattern of the openings 111 in the contact portion 109 as viewed from the upper surface of the element is not particularly limited, and may be formed in a regular pattern as illustrated in the schematic diagram of FIG. You may form with a simple pattern.
  • the shape of the opening as viewed from the upper surface of the element is not particularly limited, but it is preferably nonuniform as shown in FIG. 5, that is, the shape of the plurality of openings is not regular and irregular. Since a part of the side surface of the p-type semiconductor layer 105 exists under the contact portion 109 as a side surface of the opening 111, if the opening 111 has a non-uniform shape, the exposed area of the p-type semiconductor layer 105 as viewed from above is Even if the aperture ratio is the same (the aperture ratio is the same), the total exposed area of the p-type semiconductor layer 105 including the area of the side surface of the opening is increased, so that the light extraction efficiency from the opening 111 is improved.
  • the area where the contact portion 109 is provided on the p-type semiconductor layer 105 is S1, and the total area of the opening 111 is S2.
  • the aperture ratio (S2 / (S1 + S2)) is preferably in the range of 0.05 to 0.65, and more preferably in the range of 0.2 to 0.4. If the aperture ratio is 0.05 or more, the effect of improving the light extraction by the openings can be reliably obtained, and if the ratio of the openings is 0.65 or less, a portion where the contact portion 111 becomes discontinuous occurs. This is because it is difficult and sufficient ohmic contact can be obtained.
  • n-side electrode 112 for example, a Ti / Al electrode in which a Ti-containing film and an Al-containing film are sequentially deposited by a vacuum deposition method can be used because of low contact resistance with the n-type semiconductor 103.
  • p-side electrode 113 for example, a Ni / Au electrode and a Ni / Pt electrode in which a Ni-containing film and an Au-containing film are sequentially deposited by a vacuum deposition method are used because the contact resistance with the p-type semiconductor layer 105 is low. Can be used.
  • the group III nitride semiconductor light emitting device 100 has been described with the first conductivity type in the present invention being p-type and the second conductivity type being n-type, but the present invention is not limited to this, and the first conductivity type is not limited to this.
  • the n-type and the second conductivity type may be p-type.
  • the material of the ohmic electrode layer 108 is preferably a metal such as Ti / Al, Mo / Al, or the like that forms a relatively good ohmic contact with n-AlGaN, which is an n-type semiconductor layer.
  • the buffer layer 102 is formed over the substrate 101 by using, for example, the MOCVD method.
  • the second conductive type n-type semiconductor layer 103, the light emitting layer 104, and the second conductive type are different on the buffer layer 102 by using, for example, the MOCVD method.
  • the first conductivity type p-type semiconductor layer 105 and the p-type contact layer 107 are epitaxially grown in this order to form the semiconductor stacked body 106 and the p-type contact layer 107.
  • the p-side ohmic electrode layer 108 is stacked over the p-type contact layer 107 to form the contact portion 109.
  • the p-side ohmic electrode layer can be formed by sputtering, vacuum deposition, or the like.
  • An annealing step is preferably performed after the p-side ohmic electrode layer is formed.
  • a mask 110 is formed on a part on the contact portion 109, strictly on a part on the ohmic electrode layer.
  • a layer of a mask material is formed on the entire surface (FIG. 3D), and then this layer is patterned (FIG. 3E). This is to prevent etching of the lower portion of the mask 110 when the contact layer 107 and the ohmic electrode layer 108 are partially etched in the next step.
  • the shape of the contact portion 109 and the opening portion 111 is determined by the shape of the mask 110. Therefore, the mask 110 is formed to have a shape in which openings of a predetermined or random shape such as a rectangle or a circle are irregularly or regularly scattered when viewed from above.
  • the pattern forming method of the mask 110 is not particularly limited, and a mask material layer is formed on the entire surface of the ohmic electrode 108, a resist pattern is formed on the mask material layer using a photolithographic method, and an exposed mask is formed. By etching only the material layer portion, a mask having the same pattern as the photomask can be formed.
  • a general method using such a photomask has an advantage that a mask 110 having a desired pattern can be obtained by using an arbitrary photomask.
  • the finer the opening the easier it is for electricity to flow on the exposed p-type semiconductor layer 105, which is preferable.
  • Due to design limitations, a fine opening shape is formed with a photomask pattern width of 1 to 2 ⁇ m or less. This is difficult and the process is complicated.
  • This mask forming step includes a step of forming a metal oxide film 110 on the entire surface of the contact portion 109 by metal vapor deposition in an oxygen atmosphere, and a step of partially etching the metal oxide film 110.
  • Any metal can be used for the mask formation step as long as it can be used as a mask for later etching and can form a plurality of non-uniform openings without using a photomask.
  • aluminum is preferable.
  • the inventors of the present invention have found that an aluminum oxide film formed by aluminum vapor deposition in an oxygen atmosphere is partially etched and non-uniform in size and shape by simply exposing it to a wet etching environment without using a photomask. It has been found that a mask 110 (FIG. 3E) having a pattern in which a plurality of fine openings are dispersed on the ohmic electrode layer 108 can be formed.
  • the fine opening is, for example, an opening having a width of 2 ⁇ m or less.
  • the aluminum oxide film formed by aluminum deposition under an oxygen atmosphere under specific conditions has a non-uniform oxygen concentration in the surface and can be used as a mask for dry etching. It is considered that aluminum or aluminum oxides having different oxidation numbers are formed. This is considered to be due to a difference in etching property within the surface.
  • a mask manufactured by this method openings having irregular, fine and non-uniform shapes can be appropriately dispersed and formed.
  • the contact portion 109 maintains electrical continuity on the entire p-type semiconductor layer 105 when the openings are appropriately dispersed. Open as much as possible.
  • the electrical continuity of the contact portion 109 is a preferable form, but is not essential.
  • the aperture ratio can be controlled depending on the formation conditions and etching conditions of the aluminum oxide film, and the process is simpler than the method using a photomask, which is more preferable.
  • the conditions for depositing the aluminum oxide film are not particularly limited as long as the above-described opening can be formed.
  • the flow rate of oxygen is about 5 to 15 sccm
  • the internal pressure of the EB vapor deposition apparatus is about 5.0 ⁇ 10 ⁇ 3 to 5.0 ⁇ 10 ⁇ 2 Pa.
  • the film formation rate is 0.5 to 2.0 mm / sec, and the film thickness may be about 500 to 5000 mm.
  • the etching conditions for the aluminum oxide film are not particularly limited, but may be immersed in, for example, 63 BHF for about 3 to 10 minutes.
  • a plurality of openings having non-uniform dimensions and shapes are formed in the aluminum oxide film.
  • dry etching may be performed subsequently.
  • the pressure is about 1.0 to 4.0 Pa
  • the etching gas is CF 4 / O 2
  • the flow rate is about 10 to 25 sccm / 2 to 5 sccm, respectively
  • the etching time is about 0.5 to 3.0 minutes. That's fine.
  • the portion of the contact portion 109 that is exposed without the mask 110 being formed is selectively removed by etching, so that an island-shaped structure in which the p-type semiconductor layer 105 is exposed.
  • An opening 111 is formed.
  • a dry etching method using a chlorine-based gas or Ar gas can be used, and may be appropriately selected depending on the material of the contact layer 107 and the ohmic electrode layer 108.
  • the contact layer 107 can be reliably removed by etching.
  • the light that has entered the p-type semiconductor layer 105 under the contact portion 109 is formed in the opening 111 made of the p-type semiconductor layer 105. It is emitted smoothly by this unevenness on the side surface. For this reason, less light is absorbed by the contact layer by reflection at this side surface, and the light emission output is improved.
  • the mask 110 is removed by etching (FIG. 3G).
  • the mask can be removed by wet etching using, for example, hydrogen fluoride.
  • a first electrode 113 that is electrically connected to the p-type semiconductor layer 105 is formed over part of the ohmic electrode layer 108, and the n-type semiconductor layer 103 is further electrically connected.
  • the second electrode 112 to be connected is formed.
  • the n-side electrode 112 is formed by removing a part of the semiconductor stacked body 106 by, for example, dry etching or wet etching to expose the surface of the n-type semiconductor layer 103, and sputtering the exposed n-type semiconductor layer 103. Alternatively, it can be formed by a vacuum deposition method or the like.
  • the p-side electrode 113 can be directly formed on the contact portion 109 and part of the p-type semiconductor layer 105 by the same sputtering method or vacuum deposition method.
  • the manufacturing method of the lateral type semiconductor light emitting device 100 has been described above. However, the present invention can also be applied to a Philip chip type and a vertical type semiconductor light emitting device. Below, an example of the manufacturing method is shown.
  • the manufacturing method in the case of the Philip chip type is the same as that shown in FIG. 3G as the manufacturing method of Embodiment 1 until the step of forming the contact portion 109 having the opening 111, and thereafter
  • the p-side electrode 113 is directly formed on the entire surface of the contact portion 109 and the opening 111 on the p-type semiconductor layer by sputtering or vacuum deposition.
  • a metal with high reflectivity for the p-side electrode 113 and examples thereof include Mo, Ru, Rh, and W.
  • the n-side electrode 112 is formed by removing a part of the semiconductor stacked body 106 by, for example, dry etching or wet etching to expose the surface of the n-type semiconductor layer 103, and sputtering the exposed n-type semiconductor layer 103. Alternatively, it can be formed by a vacuum deposition method or the like.
  • bumps 114 are used as shown in FIG. Also in this embodiment, since the light reaching the opening is reflected by the p-side electrode 113 without being absorbed by the contact portion 109, the light emission efficiency can be improved.
  • the manufacturing method of the first embodiment is shown in FIG. 3 until the step of forming the contact portion 109 having the opening 111 (FIG. 3G) except that a material that can be lifted off is used for the buffer layer. Then, a p-side electrode, an adhesive metal layer, and a support substrate are sequentially formed on the contact portion 109.
  • the p-side electrode is directly formed on the entire surface of the contact portion and the opening on the p-type semiconductor layer by sputtering or vacuum deposition. At this time, it is preferable to use a highly reflective metal for the p-side electrode, and examples of the ultraviolet light include Mo, Ru, Rh, and W.
  • the adhesive metal layer is preferably made of an Au-containing material, more preferably Au or AuSn, when connecting to the support substrate by bonding.
  • a noble metal such as Au, Pt, or Pd, or a material containing either Ni or Cu. It is also desirable to select a metal that is resistant to the etchant used when peeling the substrate by the chemical lift-off method.
  • a barrier layer for stopping the diffusion of Au from the adhesive metal layer a barrier layer made of a Pt-containing material may be further formed between the adhesive metal layer and the p-side electrode.
  • the support substrate can be made of a material with good heat dissipation, and for example, a conductive Si substrate or a substrate made of Mo, W, Ni, Cu and alloys thereof is preferably used. Although it may be formed directly by a plating method as described above, in that case, it is preferable to select a material having resistance to an etching solution for subsequent chemical lift-off.
  • the buffer layer is removed by etching or the like, and the substrate is peeled off from the semiconductor stacked body. Then, an n-side electrode is formed on the n-type semiconductor layer exposed by the peeling. In this way, a vertical semiconductor light emitting device can be manufactured.
  • the buffer layer is a metal material capable of chemical lift-off, which is chromium (Cr), scandium (Sc), hafnium (Hf), zirconium. (Zr) or the like, or these metal nitrides are preferable.
  • Example 1 On the AlN template having an AlN epitaxial layer on the sapphire substrate (0001) surface, an AlN layer is laminated as an initial layer by MOCVD, and then an AlN / GaN superlattice layer, an i-type AlGaN layer as a superlattice strain buffer layer, AlGaN as the n-type nitride semiconductor layer (Al composition of the contact layer and cladding layer: 0.23), InAlGaN quantum well structure (Al composition of the well layer: 0.15) as the light emitting layer having an emission wavelength of 340 nm, p-type AlGaN (Al composition of the block layer: 0.47, Al composition of the guide layer and the clad layer: 0.22, thickness of the clad layer: 160 nm) was sequentially epitaxially grown as a nitride semiconductor layer to form a semiconductor stacked body.
  • the first layer is GaN
  • the superlattice layer I is formed by alternately stacking 20 pairs of AlN layers (thickness 9 nm) and GaN layers (thickness 2.1 nm), and AlN.
  • Superlattice layer II in which 30 pairs of layers (thickness: 2.7 nm) and GaN layers (thickness: 2.1 nm) are alternately stacked, AlN layer (thickness: 0.9 nm), and GaN layer (thickness: 2.1 nm) ) And a superlattice layer III in which 50 pairs are alternately laminated, and Mg is added to the GaN layer (first layer).
  • a p-side ohmic electrode layer (Ni: thickness 10 nm and Au: thickness 20 nm) was formed on the p-type contact layer by sputtering. Thereafter, heat treatment was performed at 550 ° C.
  • an aluminum oxide film (thickness: 200 nm) was formed as a mask material on the p-side ohmic electrode film by depositing Al while introducing oxygen gas after evacuation with an EB vapor deposition machine. At this time, the oxygen gas was 10 sccm and 1 ⁇ 10 ⁇ 2 Pa, and the film was formed at 1 cm / sec. Then, when immersed in BHF for 10 minutes, the aluminum oxide film was partially etched, and a mask having island-like holes in which the p-side ohmic electrode layer was partially exposed was formed.
  • the p-side ohmic electrode layer not covered by the mask is removed by dry etching with chlorine gas having a flow rate of 20 sccm for 3 minutes at a pressure of 1 Pa, and further, the flow rate is 22.5 sccm at a pressure of 4 Pa.
  • the p-type contact layer not covered with the mask was removed by exposure to a mixed gas of chlorine gas and 7.5 sccm of silicon tetrachloride gas for 1.5 minutes. As a post-treatment, it was exposed to argon gas at a flow rate of 20 sccm at a pressure of 1 Pa for 3.5 minutes.
  • the aluminum oxide film mask was completely removed by dipping in 45% hydrofluoric acid (HF) for 15 seconds.
  • 5A shows a SEM photograph (magnification 10,000 times) of the surface after removing the mask. In this way, a contact portion having a plurality of island-shaped openings was formed. The shape of the plurality of openings as viewed from the upper surface of the element was non-uniform. An enlarged photograph of this surface (magnification of 50,000 times) is shown in FIG. Thus, irregularities were observed on the side and bottom of the opening having the p-type semiconductor layer. The aperture ratio calculated from the area ratio of the SEM photograph was 30.3%.
  • n-side electrode Ti / Al
  • p-side electrode Ti / Al
  • Example 2 After forming a mask having an island-shaped hole in which the p-side ohmic electrode layer is partially exposed, a mixed gas of tetrafluoromethane gas having a flow rate of 21 sccm and oxygen gas having 4 sccm is applied for 2.5 minutes at a pressure of 4 Pa.
  • a semiconductor light emitting device was produced in the same manner as in Example 1 except that the step of exposing was added.
  • FIG. 5B shows a SEM photograph (magnification 10,000 times) of the surface after removing the mask. The shape of the plurality of openings as viewed from the upper surface of the element was non-uniform.
  • the hole of the mask was expanded by the above process, and the aperture ratio calculated from the area ratio of the SEM photograph was 38.3%. Moreover, when the opening part which has a p-type semiconductor layer was observed, the unevenness
  • Example 3 After heat treatment after the p-side ohmic electrode layer formed in the procedure of Example 1, by forming a SiO 2 film by CVD instead of aluminum oxide film as a mask material on the p-side ohmic electrode film, SiO 2 film A photoresist pattern having a plurality of openings each having a diameter of 5 ⁇ m and a center-to-center spacing of 10 ⁇ m was formed by photolithography. Thereafter, the SiO 2 film was etched by a dry etching method using the resist pattern as a mask to remove the resist.
  • the p-side ohmic electrode and the p-contact layer are etched by the same dry etching method as in Example 1, and then immersed in BHF.
  • the SiO 2 mask was removed.
  • FIG. 7 shows an SEM photograph (5,000 magnifications) of the surface after removing the mask.
  • a semiconductor light emitting device was produced in the same manner as in Example 1.
  • openings having a shape corresponding to the photomask pattern were formed in the contact portion, that is, openings having a diameter of 5 ⁇ m were uniformly formed at a pitch of 10 ⁇ m.
  • the aperture ratio was 19% in terms of photomask design, and was 20% when calculated from the area ratio of the SEM photograph.
  • Example 4 Except that the immersion time in BHF of the mask material after forming an aluminum oxide film (thickness: 200 nm) as a mask material on the p-side ohmic electrode film was changed from 10 minutes to 6 minutes, the same operation as in Example 1 was performed. It was. An enlarged photograph of the contact portion (magnification of 50,000 times) is shown in FIG. The shape of the opening was uneven. The aperture ratio was 20% when calculated from the area ratio of the SEM photograph. The shape of the plurality of openings as viewed from the upper surface of the element is the same as that of Example 1, and the shape of the opening is different from that of Example 3, but the aperture ratio is the same.
  • Example 5 After completely removing the mask of the aluminum oxide film, a reflective electrode (Ru, thickness 50 nm) is formed by sputtering so as to cover the entire surface of the opening and the contact portion, and a p-side electrode (Ti / Au) is formed. The same procedure as in Example 1 was performed except that the electrode was formed on the reflective electrode.
  • a reflective electrode Ru, thickness 50 nm
  • a p-side electrode Ti / Au
  • Example 6 A semiconductor light emitting device was formed in the same manner as in Example 2 except that an InGaN quantum well structure having an emission wavelength of 465 nm was used as the light emitting layer.
  • the light emitting output Po and the forward voltage Vf when a current of 20 mA, 50 mA, or 100 mA was passed to the obtained light emitting element using a constant current voltage power source were measured.
  • the Po ratios of Examples 1 to 6 are relative values when the Po value in Comparative Examples 1 to 6 is 1, respectively.
  • ⁇ Vf of Examples 1 to 6 is a value obtained by subtracting the measured value of Vf in Comparative Examples 1 to 6 from the measured value of Vf in each test example.
  • ⁇ Vf indicates that the smaller the contact area, the smaller the influence of contact area reduction, and the better the characteristics.
  • the larger the relative value the greater the light output improvement effect and the better the characteristics. Note that Po was measured for the light extracted from the sapphire substrate side by reflection in Example 5 in which the reflective electrode was formed, and was measured for the light extracted from the p-type nitride semiconductor layer side having the opening otherwise. .
  • Example 3 and Example 4 having the same aperture ratio were compared, it was found that Po of Example 4 was higher than Example 3.
  • ⁇ Vf of Example 3 was higher than Example 4. This is considered to be due to the fact that the central part of each opening in Example 3 is far from the contact part, so that it is difficult for electricity to flow and Vf tends to rise.
  • Example 3 Furthermore, from the SEM photograph, it was found that the bottom surface of the opening in Example 3 was relatively flat, but the bottom surface of the opening in Example 4 was uneven as compared with Example 3. Since the opening shape is non-uniform, the etching rate in the opening surface is also non-uniform, and the unevenness of the surface of the p-type nitride semiconductor layer in the opening is considered to contribute to the improvement of the light emission output. .
  • Example 6 using a blue light emitting diode, an improvement effect of about 14% was obtained with respect to Po as compared with Comparative Example 6.
  • Examples 1 to 5 were more effective. This is considered to be because the device has a longer wavelength than that of Example 2 of the ultraviolet light-emitting diode and has less light absorption by the contact layer. Therefore, it has been found that the effect of the present invention is very effective for a light emitting element in which the band gap of the contact layer is narrower than the band gap of the light emitting layer, particularly a light emitting element that emits ultraviolet light.
  • Example 5 Even when the reflective electrode in Example 5 was formed, an improvement effect of about 30% was obtained for Po, and it was confirmed that the effect of the present invention was obtained. In addition, since there is a difference in measurement conditions, the reason that the ratio was smaller than that in Example 1 has not been clarified. One reason is that the reflectivity of the reflective electrode was not 100%, and the actual reflectivity was low.
  • ScN was used as the lift-off layer
  • Ru having high ultraviolet light reflectivity was formed on the entire surface as the p-side electrode
  • AuSn was used as the connection metal to form a vertical semiconductor light emitting device bonded to the conductive Si substrate. Even in the case, a similar effect could be obtained.
  • the opening is provided in the contact portion formed by laminating the contact layer and the ohmic electrode layer of the semiconductor light emitting device, so that the light absorption in the contact portion is suppressed and the electrode and the semiconductor layer are excellent. It is possible to achieve compatibility with ohmic contact. As a result, the light emission output can be improved without increasing the forward voltage so much.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 コンタクト部における光吸収の抑制と、電極と半導体層との良好なオーミック接触との両立を図り、順方向電圧をさほど上昇させることなく発光出力を向上させることが可能な紫外光を発する半導体発光素子およびその製造方法を提供する。 本発明の半導体発光素子100は、第1伝導型の半導体層105と、発光層104と、第2伝導型の半導体層103とをこの順に含む半導体積層体106と、第1伝導型半導体層105上に、コンタクト層107とオーミック電極層108とが積層してなるコンタクト部109と、オーミック電極層108に接し、第1伝導型半導体層105と電気的に接続する第1電極113と、第2伝導型半導体層103に電気的に接続する第2電極112と、を有し、コンタクト部109には第1伝導型半導体層105が露出する複数の島状の開口部111を有することを特徴とする。

Description

半導体発光素子およびその製造方法
 本発明は、半導体発光素子およびその製造方法に関し、特に、順方向電圧をさほど上昇させることなく、発光出力を向上させることが可能な半導体発光素子およびその製造方法に関する。
 近年、殺菌、浄水、医療、照明、高密度光記録などの分野で用いることができる発光ダイオード(LED)として、紫外光領域で発光するLED、特に発光波長が350nm以下の紫外LED、さらには発光波長が300nm以下の深紫外LEDが注目されている。
 ここで、このような紫外光を発するLEDとしては、素子材料としてIII族窒化物半導体であるAlGaN系薄膜、ダイヤモンド薄膜等を用いて素子構造を形成したものが知られている。すなわち、発光層と、この発光層を挟んで形成されるp型半導体層およびn型半導体層とからなる半導体積層体と、p型半導体層側のp側電極およびn型半導体層側のn側電極とを有する半導体発光素子である。
 このような半導体発光素子として、特許文献1には、p型コンタクト層の表面に凹凸を設け、凹凸を含むほぼ全面にITO膜の正電極を形成することにより、p型コンタクト層と正電極との密着性を高めるとともに接触面積を増加させ、動作電圧を低減させた半導体発光素子が記載されている。
特開2005−259970号公報
 半導体発光素子の特性としては、例えば発光出力や順方向電圧が挙げられ、これらの特性をバランスよく向上させることが重要である。
 半導体発光素子では、例えばp型半導体層に直接p側電極を形成すると、両者の接触抵抗が高く、良好なオーミック接触を得ることができない。そのため、p型半導体層とp側電極との間に、p側電極との接触抵抗が小さく、かつ、低抵抗であるp型コンタクト層を設けるのが通常である。紫外光領域や青色領域の波長の光を発するLEDの例としてIII族窒化物半導体であるAlGaN系薄膜を半導体積層体とした場合、AlGaN薄膜はAl組成比が高くなるほどp型伝導は高抵抗となる。このように現状では、実用的な高Al組成のp型コンタクト層が得られ難いため、順方向電圧を低くするためには、p型コンタクト層としてAl組成比の小さいAlGaN層またはAlを含まないGaN層を使用せざるを得ない。
 しかし、本発明者らが高Al組成でバンドギャップが広い発光層を有する発光素子を開発するにあたり、発光層のAlGaN層よりもp型コンタクト層が低Al組成であるほど、p型コンタクト層のバンドギャップが小さくなることから、発光層が発した光をp型コンタクト層が吸収しやすくなることが判明した。そのため、p型半導体層の全面にGaNのようなp型コンタクト層を設けた場合、p型半導体層とp側電極とのオーミック接触を良好にして低い順方向電圧を得ることはできるものの、p型コンタクト層が光を吸収する結果、高い発光出力を得ることができないことがわかった。このため、発光素子において低い順方向電圧と高い発光出力とを両立させて発光効率を向上させることが非常に困難であるという問題があった。
 さらに、p型コンタクト層に対して良好なオーミック接触を形成できるオーミック電極層、例えばNi/Auなどの金属電極およびITOなどの電極は、紫外光に対する透過率が低く、やはり紫外光を吸収する。これらの電極は青色などの可視光に対してはある程度高い透過率を有しているため、特許文献1のように青色を発する発光素子では全面電極として使用できる。しかしながら、紫外光を発する半導体発光素子に対してこれらのオーミック電極層を可視光発光素子と同じ形態で用いることについての知見はなく、本発明者らの検討によると、紫外光を発する半導体発光素子では紫外光が吸収される結果、発光出力が非常に下がることが判明した。
 このような問題はn型半導体層とn側電極との間にもあてはまる。
 そこで本発明は、上記課題に鑑み、コンタクト層およびオーミック電極層からなるコンタクト部における光吸収の抑制と、電極と半導体層との良好なオーミック接触との両立を図り、順方向電圧をさほど上昇させることなく発光出力を向上させることが可能な半導体発光素子およびその製造方法を提供することを目的とする。
 上記課題に鑑み、本発明の要旨構成は以下の通りである。
 (1)第1伝導型の半導体層と、発光層と、前記第1伝導型とは異なる第2伝導型の半導体層とをこの順に含む半導体積層体と、
 前記第1伝導型半導体層上に、コンタクト層とオーミック電極層とが積層してなるコンタクト部と、
 前記コンタクト部に形成される前記第1伝導型半導体層が露出する複数の島状の開口部と、
 前記オーミック電極層に接し、前記第1伝導型半導体層と電気的に接続する第1電極と、
 前記第2伝導型半導体層に電気的に接続する第2電極と、
 を有することを特徴とする半導体発光素子。
 (2)素子上面から見た複数の前記開口部の形状が不均一である、上記(1)に記載の半導体発光素子。
 (3)前記コンタクト層のバンドギャップが、前記発光層のバンドギャップよりも狭い、上記(1)または(2)に記載の半導体発光素子。
 (4)前記半導体積層体がIII族窒化物半導体からなり、前記コンタクト層がAlGa1−xN(0≦x<0.5)である、上記(3)に記載の半導体発光素子。
 (5)前記発光層は紫外光を発する、上記(1)~(4)のいずれか1項に記載の半導体発光素子。
 (6)前記第1伝導型半導体層がp型半導体層である、上記(1)~(5)のいずれか1項に記載の半導体発光素子。
 (7)基板上に、第2伝導型の半導体層と、発光層と、前記第2伝導型とは異なる第1伝導型の半導体層とをこの順に含む半導体積層体を形成する工程と、
 前記第1伝導型半導体層上に、コンタクト層とオーミック電極層とが積層してなるコンタクト部を形成する工程と、
 前記コンタクト部上の一部にマスクを形成する工程と、
 該マスクが形成されず露出した前記コンタクト部の部分をエッチングにより除去して、前記第1伝導型半導体層が露出する複数の島状の開口部を前記コンタクト部に形成する工程と、
 前記オーミック電極層に接し、前記第1伝導型半導体層と電気的に接続する第1電極を形成する工程と、
 前記第2伝導型半導体層に電気的に接続する第2電極を形成する工程と、
 を有することを特徴とする半導体発光素子の製造方法。
 (8)素子上面から見た複数の前記開口部の形状が不均一である、上記(7)に記載の半導体発光素子の製造方法。
 (9)前記マスク形成工程が、
 酸素雰囲気下のアルミニウム蒸着により、前記コンタクト部上にアルミニウム酸化膜を形成する工程と、
 該アルミニウム酸化膜を部分的にエッチングする工程と、
を有する上記(7)または(8)に記載の半導体発光素子の製造方法。
 (10)前記発光層は紫外光を発する、上記(7)~(9)のいずれか1項に記載の半導体発光素子の製造方法。
 本発明によれば、半導体発光素子のコンタクト層とオーミック電極層とが積層してなるコンタクト部に開口部を設けたことにより、コンタクト部における光吸収の抑制と、電極と半導体層との良好なオーミック接触との両立を図ることができる。その結果、順方向電圧をさほど上昇させることなく発光出力を向上させることが可能となる。
本発明に従う半導体発光素子100を示す模式断面図である。 図1に示した半導体発光素子100の模式上面図である。 (A)~(H)は、本発明に従う半導体発光素子100の製造方法の一例を示す模式断面図である。 フィリップチップ型の実装を行った半導体発光素子100を示す模式断面図である。 (A)および(B)は、それぞれ実施例1および実施例2におけるコンタクト部の上面のSEM画像である。 図5(A)の拡大SEM画像である。 実施例3におけるコンタクト部のSEM画像である。 実施例4におけるコンタクト部の拡大SEM画像である。
 以下、図面を参照しつつ本発明をより詳細に説明する。なお、発光素子の模式断面図においては、説明の便宜上、各層を基板に対して実状とは異なる比率で誇張して示す。なお、図1は図2のI−I断面である。
 本発明の一実施形態である半導体発光素子100は、図1に示すとおり、基板101上に、バッファ層102と、半導体積層体106と、コンタクト層107とオーミック電極層108とが積層してなるコンタクト部109と、をこの順に有している。
 半導体積層体106は、第1伝導型の半導体層としてのp型半導体層105と、発光層104と、第1伝導型とは異なる第2伝導型の半導体層としてのn型半導体層103とからなる。本実施形態では、バッファ層102側からn型半導体層103、発光層104、p型半導体層105の順に形成される。
 第1電極としてのp型電極113は、図1および図2に示すように、コンタクト部109、より厳密にはオーミック電極層108の一部上に位置し、オーミック電極層108に接し、コンタクト部109を介してp型半導体層105と電気的に接続されている。第2電極としてのn側電極112は、半導体積層体106のn型半導体層103側に形成される。n側電極112は、n型半導体層103と電気的に接続されている。図1では、その一例として、半導体発光素子100の一部の領域においてコンタクト部109および半導体積層体106の一部を除去して、n型半導体層103の表面を露出させ、露出したn型半導体層103上にn型電極112を設ける、典型的な「ラテラル(lateral)型」発光素子を模式的に示す。
 基板101としては、半導体積層体106のエピタキシャル成長の温度に耐性のある基板を用いるのが好ましく、例えばサファイア基板や、AlN単結晶層をサファイアなどの基板上に形成したAlNテンプレートが使用できる。
 バッファ層102は、MOCVD法、MOVPE法、HVPE法、MBE法などの既知の手法を用いて基板101上にエピタキシャル成長させる。例えば、厚さ20~1500nm、好ましくは500~1500nm、より好ましくは800~1000nmのAlN層や複数のAlGaN層による積層体を用いることができる。バッファ層102は、基板101とn型半導体層103との歪緩衝層として機能する。また、バッファ層102は組成傾斜層や超格子歪緩衝層を含むこともできる。
 n型半導体層103およびp型半導体層105は、AlGa1−xN材料(0<x≦1)を、MOCVD法など既知の手法を用いてエピタキシャル成長させることにより形成することができる。なお、所望の発光波長での吸収が問題にならないのであれば、III族元素として、B、Inが含まれていても良く、V族元素として、Asが含まれていても良い。p型不純物としては、Be、Mg、n型不純物としては、Si、Geが例示できる。
 発光層104は、例えばAlInGaN/AlInGaNの多重量子井戸構造を挙げることができる。これは、MOCVD法などにより成長させて形成することができる。発光層104は、発光中心波長が380nm以下の紫外光や、495nm以下の可視光(青色、紫色)などを発することが可能な、比較的広いバンドギャップを有する材料とすることができる。紫外光を発する発光層104の場合、例えばGaN(x=0)層を通過する際に吸収が起こり、発光中心波長に対する透過率が50%以下となる、発光中心波長が380nm以下の紫外光を発する発光層とすることができ、GaN層をほぼ透過しない発光中心波長が365nm以下の紫外光を発する発光層とすることができ、さらには、発光中心波長が350nm以下の紫外光を発する発光層とすることができる。なお、AlInGaN/AlInGaNの多重量子井戸構造の場合、発光波長は主に井戸層のAl組成比で制御することができる。
 各層の厚みは、例えばn型半導体層103は1000~5000nm、発光層104は10~100nm、p型半導体層105は50~300nmとすることができる。
 ここで、コンタクト部109について説明する。
 まず、p型のコンタクト層107をp型半導体層105上にエピタキシャル成長させる。コンタクト層107は、低抵抗なp型伝導が得られ、p側電極113との接触抵抗がp型半導体層105よりも低い層である。さらに、コンタクト層はp型半導体層105と格子整合がよく、p型半導体層105上にエピタキシャル成長可能な格子定数を有することが好ましい。
 コンタクト層107のバンドギャップは、発光層104のバンドギャップよりも狭い場合に、本発明の効果が非常に大きい。この場合、発光層104から発した光のコンタクト層107による吸収の問題が顕著に生じるためである。
 半導体積層体106が例えばIII族窒化物半導体からなる場合、コンタクト層107のAl組成は、発光層よりもバンドギャップが狭くなる組成、または、発光層からの発光中心波長に対する透過率が50%未満となる組成である場合に本発明の効果が非常に大きい。コンタクト層107のAl組成は、組成式をAlGa1−xNとした場合、発光波長にもよるが、例えば0≦x<0.5とすることが好ましく、0≦x≦0.05がより好ましい。この場合コンタクト層107は、Al含有量が少ない、または、Alを含まないため、p型半導体層105との格子整合が良く、また、p側電極113との接触抵抗がp型半導体層105よりも十分に低いからである。すなわち、x<0.5とすれば、キャリア密度が大幅に減少することがなく好ましく、x≦0.05とすれば、GaNと同様に低いコンタクト抵抗を得ることが容易であるためより好ましい。なお、発光中心波長が350nm以下の紫外光を発する発光層の場合、コンタクト層をx=0.05とした場合であっても、コンタクト層による光の吸収が大きい。なお、コンタクト層はInなど他の同族元素を少量含んでいてもよい。
 次に、p側のオーミック電極層108を、p型コンタクト層107上に形成する。オーミック電極層108は、p型コンタクト層107とのオーミック接触を形成するのに適した、接触抵抗の低い層とする。例えば、Ni、Co、ITO、Pt等の金属とAu、Rhなどの金属との組み合わせによるオーミック電極層が好ましい。また、p側オーミック電極層108は、p側電極113と金属接合ができることが必要である。
 コンタクト部109を構成するコンタクト層107およびオーミック電極層108は、いずれも発光層104で発生する光を吸収するものである。なお、コンタクト部109は該光の一部を吸収し一部を透過または反射させてもよいが、発光中心波長に対し50%以上吸収する場合に本発明の効果が得られやすい。
 ここで、本発明の特徴的構成は、図1および図2に示すように、コンタクト部109が、p型半導体層105が露出する島状の開口部111を有することである。p型半導体層105上の開口部111では、発光層104で発生した光が、コンタクト部109を構成するコンタクト層107およびオーミック電極層108に吸収されることがない。そのため、開口部111から光を外部に有効に取り出すことができる。一方で、p型半導体層105上のコンタクト部109を形成した領域では、p型半導体層105とp側電極113とは、オーミック電極層108およびコンタクト層107を介して良好なオーミック接触を得ることが出来る。このように本発明では、コンタクト部109に開口部111を設けたことにより、コンタクト部による光吸収の抑制と、電極と半導体層との良好なオーミック接触との両立を図ることができる。その結果、順方向電圧をさほど上昇させることなく、発光出力を向上させることが可能となる。
 また、本発明ではコンタクト部109の中に島状の、すなわち孤立した開口部111が存在する構成なので、孤立したコンタクト部を形成せず、図2に示すように、コンタクト部109の全体がp側電極113と電気的に接続されている状態を実現しうる。よって、p側電極113の直下の半導体積層体のみならず、コンタクト部109の位置する領域およびその近傍の下方の半導体積層体にも十分に電流を流すことができる。これが発光効率の向上につながる。
 p側電極113の位置は、p側電極113がコンタクト部109のオーミック電極層108の一部と接触していれば、特に図2には限定されない。
 本発明は、本実施形態のように、第1伝導型半導体層すなわち開口部から露出する半導体層がp型半導体層であると効果的である。p型半導体層105は、n型半導体層に比べて層内を電流が広がりにくいため、コンタクト部109をp側電極113直下のみならず、p型半導体層105上のなるべく広い範囲に延在させることが好ましいためである。つまり、p型半導体層105上の全面にコンタクト部109を形成し、その一部を開口部111とすることにより、より広い範囲で発光を得つつ、発光効率をより高めることが可能となる。
 また、開口部から露出する半導体層がp型半導体層である場合、図2に示すように、複数の開口部111がp型半導体層105上に分散している、すなわち、素子上面から見たときに、開口部111がその面全体に分散して分布していることが好ましい。その結果、コンタクト部109もp型半導体層105上全体に敷設することになり、p側電極113から供給される電流を、p型半導体層105の全体に供給できるからである。
 素子上面から見たコンタクト部109中の開口部111の配置パターンは特に限定されず、図2の模式図に例示するような規則的なパターンで形成してもよいし、図5のようなランダムなパターンで形成してもよい。
 素子上面から見た開口部の形状は特に限定されないが、図5のように不均一である、すなわち、複数の開口部の形状は規則性が無く不揃いであることが好ましい。p型半導体層105の一部の側面が開口部111の側面としてコンタクト部109下に存在するため、開口部111が不均一な形状であれば、上面からみたp型半導体層105の露出面積が同じ(開口率が同じ)であっても開口部の側面の面積を含めたp型半導体層105の合計露出面積が大きくなることから開口部111からの光取り出し効率が向上する。
 ここで、良好なオーミック接触と高い光取り出し効率との両立を十分に得る観点から、p型半導体層105上のコンタクト部109を設けた面積をS1とし、開口部111の総和の面積をS2としたとき、開口率(S2/(S1+S2))は0.05~0.65の範囲であることが好ましく、0.2~0.4の範囲がさらに好ましい。開口率が0.05以上であれば、開口部による光取り出し向上の効果が確実に得られ、開口部の割合が0.65以下であれば、コンタクト部111が不連続となる箇所が発生しにくく、十分なオーミック接触を得ることができるからである。
 n側電極112としては、n型半導体103との接触抵抗が低いという理由から、例えば真空蒸着法によりTi含有膜およびAl含有膜を順次蒸着させたTi/Al電極を用いることができる。p側電極113としては、p型半導体層105との接触抵抗が低いという理由から、例えば真空蒸着法によりNi含有膜およびAu含有膜を順次蒸着させたNi/Au電極、およびNi/Pt電極を用いることができる。
 これまで、本発明における第1伝導型をp型、第2伝導型をn型として、III族窒化物半導体発光素子100を説明したが、本発明はこれに限定されず、第1伝導型をn型、第2伝導型をp型としても良いことは勿論である。この場合、オーミック電極層108の材料としては、n型半導体層であるn−AlGaNと比較的良好なオーミック接触を形成するTi/Al、Mo/Al、などの金属とすることが好ましい。
 次に、半導体発光素子100の製造方法の一例を、図3を用いて説明する。まず、図3(A)に示すように、例えばMOCVD法を用いて、基板101上にバッファ層102を形成する。次に、図3(B)に示すように、例えばMOCVD法を用いて、バッファ層102上に第2伝導型であるn型の半導体層103、発光層104、および第2伝導型とは異なる第1伝導型であるp型の半導体層105、p型のコンタクト層107を順にエピタキシャル成長させて、半導体積層体106およびp型のコンタクト層107を形成する。次に、図3(C)に示すように、p型のコンタクト層107上にp側のオーミック電極層108を積層し、コンタクト部109を形成する。p側オーミック電極層は、スパッタ法、真空蒸着法などにより製膜することができる。p側オーミック電極層形成後、アニール工程を行うことが好ましい。
 次に、図3(D)および(E)に示すように、コンタクト部109上の一部、厳密にはオーミック電極層108上の一部にマスク110を形成する。まず、マスク材料の層を全面に形成し(図3(D))、その後、この層をパターニングする(図3(E))。これは、次工程でコンタクト層107およびオーミック電極層108を部分的にエッチングする際、マスク110の下部のエッチングを防ぐためである。このマスク110の形状により、コンタクト部109および開口部111の形状が決まる。そのため、マスク110は上面視で、矩形または円形などの所定またはランダム形状の開口部が不規則または規則的に点在する形状となるように形成する。
 マスク110のパターン形成方法は特に限定されず、マスク材料の層をオーミック電極108上の全面に形成し、フォトリソグラフ法を用いてそのマスク材料の層上にレジストパターンを形成して、露出したマスク材料層部分のみエッチングすることにより、フォトマスクと同じパターンを有するマスクを形成することができる。
 このようなフォトマスクを用いる一般的手法では、任意のフォトマスクを用いることで所望のパターンのマスク110が得られるという利点がある。しかし、開口部は微細であるほど、露出したp型半導体層105上で電気が流れ易いため好ましいところ、設計上の制限からフォトマスクパターン幅を1~2μm以下にして微細な開口形状を形成することは困難であり、また、工程が煩雑である。
 本発明者らは、フォトリソグラフ法を用いない効果的なマスク形成工程を開発した。このマスク形成工程は、酸素雰囲気下の金属蒸着により、コンタクト部109の全面上に金属酸化膜110を形成する工程と、この金属酸化膜110を部分的にエッチングする工程と、を有する。このマスク形成工程に用いる金属としては、後のエッチング用のマスクとして用いることができ、さらにフォトマスクを用いることなく不均一な複数の開口部を形成できるものであればどのような金属を用いてもよいが、例えばアルミニウムが好ましい。本発明者らは、酸素雰囲気下のアルミニウム蒸着により形成したアルミニウム酸化膜は、フォトマスクを用いることなく、単にウェットエッチング環境下にさらすのみで、部分的にエッチングされ、寸法および形状が不均一な複数の微細な形状の開口部がオーミック電極層108上に分散したパターンのマスク110(図3(E))を形成できることを見出した。微細な開口部とは例えば幅が2μm以下の開口部である。
 特定の条件の酸素雰囲気下のアルミニウム蒸着により形成したアルミニウム酸化膜は、面内の酸素濃度が不均一であり、ドライエッチング用のマスクとして利用できる酸化アルミニウム(Al)以外に、部分的にアルミニウムまたは酸化数の異なるアルミニウム酸化物が形成されると考えられる。このことに起因して、面内でのエッチング性の相違が発生するためであると考えられる。この方法で作製したマスクを用いると、不規則で微細かつ不均一な形状の開口部を適度に分散して形成することができる。なお、第1電極をコンタクト部109上の一部に形成する場合において、開口部を適度に分散して形成するとは、コンタクト部109がp型半導体層105上全体で電気的な連続性を維持できる程度に開口させることである。電流の広がりを維持し開口による順方向電圧の上昇を抑制するためである。第1電極をコンタクト部109上全面に形成する場合においては、このコンタクト部109の電気的な連続性は好ましい形態であるが必須ではない。また、アルミニウム酸化膜の形成条件やエッチング条件によって開口率を制御できるうえ、フォトマスクを用いる方法に比べて工程が簡易であるという利点があるためより好ましい。
 アルミニウム酸化膜の蒸着条件は上記のような開口部が形成できる条件であれば特に限定されないが、例えば以下のようなものとすればよい。酸素の流量は5~15sccm程度、EB蒸着装置の内部圧力は5.0×10−3~5.0×10−2Pa程度とする。成膜速度は0.5~2.0Å/秒で、500~5000Å程度の厚みで形成すればよい。
 アルミニウム酸化膜のエッチング条件は特に限定されないが、例えば63BHFに3~10分程度浸漬させればよい。また、アルミニウム酸化膜に寸法および形状が不均一な複数の開口部が形成される。この開口部を拡大するべく、引き続きドライエッチングを行ってもよい。このとき、圧力は1.0~4.0Pa程度、エッチングガスはCF/Oとして、流量はそれぞれ10~25sccm/2~5sccm程度、エッチング時間は0.5~3.0分程度とすればよい。
 マスク110の形成後、図3(F)に示すように、マスク110が形成されず露出したコンタクト部109の部分をエッチングにより選択的に除去して、p型半導体層105が露出する島状の開口部111を形成する。この選択エッチングの方法としては、例えば塩素系ガスやArガスを用いたドライエッチング法を用いることができ、コンタクト層107およびオーミック電極層108の材料により適宜選択すればよい。
 図3(F)に示すように、p型半導体層105が例えば10~200nm程度削れるまでエッチングすることが好ましい。これにより、コンタクト層107を確実にエッチング除去することができる。また、開口部111におけるp型半導体層105の側面には複雑な凹凸形状が形成されるため、コンタクト部109下のp型半導体層105に侵入した光はp型半導体層105からなる開口部111の側面のこの凹凸によってスムーズに出射する。このため、この側面で反射することによりコンタクト層に吸収される光は少なく、発光出力が向上する。
 その後、エッチングによりマスク110を除去する(図3(G))。マスクは、例えばフッ化水素を用いたウェットエッチングで除去することができる。
 その後、図3(H)に示すように、オーミック電極層108の一部上に、p型半導体層105と電気的に接続する第1電極113を形成し、さらに、n型半導体層103に電気的に接続する第2電極112を形成する。n側電極112は、例えばドライエッチングまたはウェットエッチングなどにより、半導体積層体106の一部を除去して、n型半導体層103の表面を露出させ、露出したn型半導体層103上に、スパッタ法または真空蒸着法などにより形成することができる。p側電極113は、同じくスパッタ法または真空蒸着法などにより、コンタクト部109上およびp型半導体層105上の一部に、直接形成することができる。
 以上、ラテラル型の半導体発光素子100の製造方法を説明したが、本発明は、フィリップチップ型、および、垂直(Vertical)型の半導体発光素子に適用することもできる。以下に、その製造方法の一例を示す。
 フィリップチップ型とする場合の製造方法は、開口部111を有するコンタクト部109を形成する工程までは、実施形態1の製造方法として図3(G)までに示した工程と同様であり、その後、p側電極113は、スパッタ法または真空蒸着法などにより、コンタクト部109および開口部111のp型半導体層上の全面に直接形成する。このとき、p側電極113には反射率の高い金属を用いることが好ましく、例えばMo、Ru、Rh、Wが挙げられる。n側電極112は、例えばドライエッチングまたはウェットエッチングなどにより、半導体積層体106の一部を除去して、n型半導体層103の表面を露出させ、露出したn型半導体層103上に、スパッタ法または真空蒸着法などにより形成することができる。そして、実装する際には、図4のようにバンプ114を用いる。本実施形態でも、開口部に到達した光はコンタクト部109に吸収されることなくp側電極113に反射されるため、発光効率を向上させることができる。
 垂直型とする場合は、バッファ層にリフトオフ可能な材料を用いる以外は、開口部111を有するコンタクト部109を形成する工程(図3(G))までは、実施形態1の製造方法として図3で示した工程と同様であり、その後、コンタクト部109上に順次、p側電極、接着金属層、サポート基板を形成する。
 p側電極は、スパッタ法または真空蒸着法などにより、コンタクト部および開口部のp型半導体層上の全面に直接形成する。このとき、p側電極には反射率の高い金属を用いることが好ましく、紫外光に対しては例えばMo、Ru、Rh、Wが挙げられる。
 接着金属層は、接合によりサポート基板と接続する場合は、Au含有材料とするのが好ましく、より好ましくはAuまたはAuSnとする。めっき法によりサポート基板を形成する場合はAu、Pt、Pdなどの貴金属やNi,Cuのいずれかを含む材料を用いるのが好ましい。また、ケミカルリフトオフ法により基板を剥離する際に使用するエッチング液に対して耐性を持つ金属を選択することが望ましい。接着金属層からのAuの拡散を止めるバリア層として、接着金属層とp側電極との間に、Pt含有材料からなるバリア層をさらに形成してもよい。
 サポート基板は、放熱性の良い材料からなるものとすることができ、例えば導電性Si基板やMo、W、Ni、Cuおよびこれらの合金を材料とする基板を用いるのが好ましい。上記のようにめっき法により直接形成してもよいが、その場合は、その後のケミカルリフトオフのエッチング液に対する耐性を有する材料を選択することが好ましい。
 続いて、バッファ層をエッチングなどにより除去し、半導体積層体から基板を剥離する。そして、この剥離により露出したn型半導体層上にn側電極を形成する。このようにして、垂直型の半導体発光素子を製造することができる。なお、垂直型の場合、このようにバッファ層を除去する必要があるため、バッファ層は、ケミカルリフトオフが可能な金属材料である、クロム(Cr)、スカンジウム(Sc)、ハフニウム(Hf)、ジルコニウム(Zr)などか、または、これらの金属窒化物で作製することが好ましい。
 上述したところはいずれも代表的な実施形態の例を示したものであって、本発明はこれらの実施形態に限定されるものではない。また、以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 (実施例1)
 サファイア基板(0001)面上にAlNエピタキシャル層を有するAlNテンプレートの上に、MOCVD法により、初期層としてAlN層を積層後、超格子歪緩衝層としてAlN/GaN超格子層、i型AlGaN層、n型窒化物半導体層としてAlGaN(コンタクト層、クラッド層のAl組成:0.23)、発光波長が340nmの発光層としてInAlGaN量子井戸型構造(井戸層のAl組成:0.15)、p型窒化物半導体層としてAlGaN(ブロック層のAl組成:0.47、ガイド層とクラッド層のAl組成:0.22、クラッド層の厚さ:160nm)、を順次エピタキシャル成長させ、半導体積層体を形成した。さらに、最上層のp型AlGaNクラッド層上にp型コンタクト層としてGaN(厚み:50nm)をエピタキシャル成長させた。なお、上記の超格子歪緩衝層は第1の層をGaNとし、AlN層(厚さ9nm)とGaN層(厚さ2.1nm)とを交互に20組積層した超格子層Iと、AlN層(厚さ2.7nm)とGaN層(厚さ2.1nm)とを交互に30組積層した超格子層IIと、AlN層(厚さ0.9nm)とGaN層(厚さ2.1nm)とを交互に50組積層した超格子層IIIとを順次積層した構造とし、GaN層(第1の層)には、Mgを添加した。
 p型コンタクト層上に、p側オーミック電極層(Ni:厚さ10nmおよびAu:厚さ20nm)をスパッタ法により形成した。その後、550℃による熱処理を行った。
 その後、EB蒸着機にて真空引き後に酸素ガスを導入しながらAlを蒸着することにより、p側オーミック電極膜上にマスク材としてアルミニウム酸化膜(厚さ200nm)を成膜した。このとき、酸素ガスは10sccm、1×10−2Paとし、1Å/secにて成膜した。その後、BHFに10分間浸漬したところ、アルミニウム酸化膜が部分的にエッチングされ、p側オーミック電極層が部分的に露出した島状の穴を有するマスクが形成された。その後、1Paの圧力で、流量が20sccmの塩素ガスによる3分間のドライエッチングによりマスクに覆われていない部分のp側オーミック電極層を除去し、さらに、4Paの圧力で、流量が22.5sccmの塩素ガスと7.5sccmの4塩化ケイ素ガスとの混合ガスに1.5分間曝露することによりマスクに覆われていない部分のp型コンタクト層を除去した。後処理として、1Paの圧力で、流量が20sccmのアルゴンガスに3.5分曝露した。45%フッ化水素酸(HF)に15秒間浸漬して、アルミニウム酸化膜のマスクを完全に除去した。マスク除去後の表面のSEM写真(倍率1万倍)を図5(A)に示す。このように、複数の島状の開口部を有するコンタクト部が形成された。素子上面から見た複数の開口部の形状は不均一な形状であった。また、この表面の拡大写真(倍率5万倍)を図6に示す。このように、p型半導体層を有する開口部の側部と底部には凹凸が見られた。開口率は、SEM写真の面積比から計算したところ、30.3%であった。
 ドライエッチング法によりn型窒化物半導体層の表面を一部露出させ、n側電極(Ti/Al)をn型窒化物半導体層上に形成し、550℃でアニール後、p側電極(Ti/Au)を、上記開口部を有するコンタクト部上に形成し、本発明にかかる半導体発光素子を作製した。
 (実施例2)
 p側オーミック電極層が部分的に露出した島状の穴を有するマスクを形成した後に、4Paの圧力で、流量が21sccmの4フッ化メタンガスと4sccmの酸素ガスとの混合ガスに2.5分間曝露する工程を追加したこと以外は、実施例1と同様の方法で、半導体発光素子を作製した。マスク除去後の表面のSEM写真(倍率1万倍)を図5(B)に示す。素子上面から見た複数の開口部の形状は不均一な形状であった。このように、上記処理によってマスクの穴が拡張し、開口率は、SEM写真の面積比から計算したところ、38.3%であった。また、p型半導体層を有する開口部を観察したところ、実施例1にみられたような凹凸が見られた。
 (実施例3)
 実施例1の手順においてp側オーミック電極層形成後の熱処理を行った後、p側オーミック電極膜上にマスク材としてアルミニウム酸化膜の代わりにCVD法によるSiO膜を成膜し、SiO膜上にフォトリソグラフ法により直径5μm、中心間間隔10μmの開口部を複数有するフォトレジストのパターンを形成した。その後、レジストパターンをマスクとしてドライエッチング法によりSiO膜のエッチングを行い、レジストを除去した。こうして形成したSiO膜パターンを複数の島状の開口を有するマスクとして使用し、実施例1と同様のドライエッチング法によりp側オーミック電極およびp−コンタクト層をエッチングし、その後、BHFに浸漬してSiOマスクを除去した。マスク除去後の表面のSEM写真(倍率5千倍)を図7に示す。その後、実施例1と同様にして半導体発光素子を作成した。その結果、コンタクト部には、フォトマスクのパターンと対応した形状の開口部が形成され、すなわち、直径5μmの開口部が10μmピッチで均一に形成された。開口率は、フォトマスク設計上は19%であり、SEM写真の面積比から計算したところ、20%であった。
 (実施例4)
 p側オーミック電極膜上にマスク材としてアルミニウム酸化膜(厚さ200nm)を成膜した後のマスク材のBHFへの浸漬時間を10分から6分に変えた以外は、実施例1と同様に行った。コンタクト部の拡大写真(倍率5万倍)を図8に示す。開口部の形状は不均一な形状であった。開口率は、SEM写真の面積比から計算したところ、20%であった。なお、素子上面から見た複数の開口部の形状は実施例1と同様であり、実施例3とは開口部の形状が異なるが開口率は等しかった。
 (実施例5)
 アルミニウム酸化膜のマスクを完全に除去した後に、開口部およびコンタクト部の全面を覆うように、スパッタ法により反射電極(Ru、厚さ50nm)を形成し、p側電極(Ti/Au)を、上記の反射電極上に形成した以外は、実施例1と同様に行った。
 (実施例6)
 発光層として、発光波長が465nmのInGaN量子井戸型構造を用いた以外は、実施例2と同様に半導体発光素子を形成した。
 (比較例1~6)
 マスク形成およびドライエッチングによるコンタクト部の開口部の形成をしない以外は、それぞれ実施例1~6と同様に半導体発光素子を形成した。
 (評価方法)
 得られた発光素子に定電流電圧電源を用いて20mA、50mAまたは100mAの電流を流したときの発光出力Poおよび順方向電圧Vfを測定した。表1中、実施例1~6のPo比は、それぞれ比較例1~6におけるPo値を1とした場合の相対値である。表1中実施例1~6のΔVfは、それぞれの試験例におけるVfの実測値からそれぞれ比較例1~6におけるVfの実測値を差し引いた値である。ΔVfは、小さいほどコンタクト面積減少の影響が小さく優れた特性であることを示す。Poについては、相対値が大きいほど発光出力向上効果が大きく優れた特性であることを示す。なお、Poは、反射電極を形成した実施例5は反射によりサファイア基板側から取り出された光について測定し、それ以外は開口部を有するp型窒化物半導体層側から取り出された光について測定した。
Figure JPOXMLDOC01-appb-T000001
 (評価結果)
 実施例1~5は比較例1~5に対し、Poについては概ね1.3倍から2倍以上となり、Vfについては僅かな上昇しかなかった。よって、順方向電圧をさほど上昇させることなく、発光出力を大幅に向上させることができた。また、開口率が大きいほど出力向上効果が大きくなる傾向を示した。
 さらに、開口率の等しい実施例3と実施例4とを比較すると、実施例3よりも実施例4のPoは高いことが判明した。フォトリソグラフ法では、フォトマスクパターン幅の設計上の制限から1~2μm以下の微細な開口部を形成することは容易ではなかったため、実施例3では各々の開口部が大きく、実施例4のような各々が幅2μm以下の微細かつ複雑な形状であって不均一な開口形状の集まりではないということも要因として考えられる。また、実施例4よりも実施例3のΔVfは高いことが判明した。これは、実施例3における各々の開口部の中心部は、コンタクト部から遠いために電気が流れにくく、Vfが上昇しやすいことが要因として考えられる。さらには、SEM写真から、実施例3の開口部底面は比較的平坦であるが、実施例4の開口部底面は実施例3に比べると凹凸を有することが分かった。不均一な開口形状であるので開口面内のエッチング速度も不均一となり、開口部のp型窒化物半導体層の表面が凹凸となったことも発光出力の向上に寄与していると推察される。
 また、青色発光ダイオードでの実施例6は、比較例6に対してPoについて14%程度の向上効果が得られた。ただし、実施例1~5のほうがより効果が得られた。これは、紫外発光ダイオードの実施例2と比較して波長が長く、コンタクト層による光の吸収が少ない素子であるためと考えられる。よって、本発明の効果は、コンタクト層のバンドギャップが発光層のバンドギャップよりも狭い発光素子、特に紫外光を発する発光素子に対して非常に有効な効果を有することが判明した。
 実施例5における反射電極を形成した場合であっても、Poについて30%程度の向上効果が得られており、本発明の効果を有することが確認された。なお、測定条件の違いもあるため、実施例1に対して割合が小さかったことの理由は判明していない。理由の一つとしては、反射電極の反射率は100%ではなく、実質の反射率が低かったことが挙げられる。
 なお、リフトオフ層としてScNを用い、p側電極として紫外光の反射率の高いRuを全面に形成し、接続金属としてAuSnを用いて導電性Si基板に接合した垂直型の半導体発光素子を形成した場合でも、類似の効果を得ることができた。
 本発明によれば、半導体発光素子のコンタクト層とオーミック電極層とが積層してなるコンタクト部に開口部を設けたことにより、コンタクト部における光吸収の抑制と、電極と半導体層との良好なオーミック接触との両立を図ることができる。その結果、順方向電圧をさほど上昇させることなく発光出力を向上させることが可能となる。
 100 半導体発光素子
 101 基板
 102 バッファ層
 103 n型半導体層(第2伝導型半導体層)
 104 発光層
 105 p型半導体層(第1伝導型半導体層)
 106 半導体積層体
 107 コンタクト層
 108 オーミック電極層
 109 コンタクト部
 110 マスク
 111 開口部
 112 n側電極(第2電極)
 113 p側電極(第1電極)
 114 バンプ

Claims (10)

  1.  第1伝導型の半導体層と、発光層と、前記第1伝導型とは異なる第2伝導型の半導体層とをこの順に含む半導体積層体と、
     前記第1伝導型半導体層上に、コンタクト層とオーミック電極層とが積層してなるコンタクト部と、
     前記コンタクト部に形成される前記第1伝導型半導体層が露出する複数の島状の開口部と、
     前記オーミック電極層に接し、前記第1伝導型半導体層と電気的に接続する第1電極と、
     前記第2伝導型半導体層に電気的に接続する第2電極と、
     を有することを特徴とする半導体発光素子。
  2.  素子上面から見た複数の前記開口部の形状が不均一である、請求項1に記載の半導体発光素子。
  3.  前記コンタクト層のバンドギャップが、前記発光層のバンドギャップよりも狭い、請求項1または2に記載の半導体発光素子。
  4.  前記半導体積層体がIII族窒化物半導体からなり、前記コンタクト層がAlGa1−xN(0≦x<0.5)である、請求項3に記載の半導体発光素子。
  5.  前記発光層は紫外光を発する、請求項1~4のいずれか1項に記載の半導体発光素子。
  6.  前記第1伝導型半導体層がp型半導体層である、請求項1~5のいずれか1項に記載の半導体発光素子。
  7.  基板上に、第2伝導型の半導体層と、発光層と、前記第2伝導型とは異なる第1伝導型の半導体層とをこの順に含む半導体積層体を形成する工程と、
     前記第1伝導型半導体層上に、コンタクト層とオーミック電極層とが積層してなるコンタクト部を形成する工程と、
     前記コンタクト部上の一部にマスクを形成する工程と、
     該マスクが形成されず露出した前記コンタクト部の部分をエッチングにより除去して、前記第1伝導型半導体層が露出する複数の島状の開口部を前記コンタクト部に形成する工程と、
     前記オーミック電極層に接し、前記第1伝導型半導体層と電気的に接続する第1電極を形成する工程と、
     前記第2伝導型半導体層に電気的に接続する第2電極を形成する工程と、
     を有することを特徴とする半導体発光素子の製造方法。
  8.  素子上面から見た複数の前記開口部の形状が不均一である、請求項7に記載の半導体発光素子の製造方法。
  9.  前記マスク形成工程が、
     酸素雰囲気下のアルミニウム蒸着により、前記コンタクト部上にアルミニウム酸化膜を形成する工程と、
     該アルミニウム酸化膜を部分的にエッチングする工程と、
    を有する請求項7または8に記載の半導体発光素子の製造方法。
  10.  前記発光層は紫外光を発する、請求項7~9のいずれか1項に記載の半導体発光素子の製造方法。
PCT/JP2012/079196 2011-11-14 2012-11-06 半導体発光素子およびその製造方法 WO2013073485A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/357,998 US20140327034A1 (en) 2011-11-14 2012-11-06 Semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011249141A JP5988568B2 (ja) 2011-11-14 2011-11-14 半導体発光素子およびその製造方法
JP2011-249141 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073485A1 true WO2013073485A1 (ja) 2013-05-23

Family

ID=48429545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079196 WO2013073485A1 (ja) 2011-11-14 2012-11-06 半導体発光素子およびその製造方法

Country Status (4)

Country Link
US (1) US20140327034A1 (ja)
JP (1) JP5988568B2 (ja)
TW (1) TWI544656B (ja)
WO (1) WO2013073485A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003374A1 (ja) * 2016-06-30 2018-01-04 Dowaエレクトロニクス株式会社 半導体光デバイスの製造方法および半導体光デバイス
WO2019082817A1 (ja) * 2017-10-27 2019-05-02 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362306B2 (ja) * 2013-07-11 2018-07-25 一般財団法人電力中央研究所 イオン性素子モジュールおよび電子機器、ならびにイオン性素子の駆動方法
JP6266910B2 (ja) * 2013-07-11 2018-01-24 一般財団法人電力中央研究所 イオン性素子および電子機器
JP2015082612A (ja) * 2013-10-23 2015-04-27 旭化成株式会社 窒化物発光素子および窒化物発光素子の製造方法
US20150171274A1 (en) * 2013-12-17 2015-06-18 Industrial Technology Research Institute Led structure
US11322643B2 (en) 2014-05-27 2022-05-03 Silanna UV Technologies Pte Ltd Optoelectronic device
KR102427203B1 (ko) 2014-05-27 2022-07-29 실라나 유브이 테크놀로지스 피티이 리미티드 n-형 및 p-형 초격자를 포함하는 전자 디바이스
CN106663718B (zh) 2014-05-27 2019-10-01 斯兰纳Uv科技有限公司 光电装置
WO2015181657A1 (en) 2014-05-27 2015-12-03 The Silanna Group Pty Limited Advanced electronic device structures using semiconductor structures and superlattices
KR102329719B1 (ko) * 2015-02-23 2021-11-23 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 및 이를 구비한 라이트 유닛
KR102387253B1 (ko) * 2015-06-15 2022-04-18 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자
KR102373677B1 (ko) 2015-08-24 2022-03-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
KR20170075291A (ko) * 2015-12-23 2017-07-03 엘지이노텍 주식회사 발광소자
EP3474337A4 (en) 2016-06-20 2019-06-12 LG Innotek Co., Ltd. SEMICONDUCTOR DEVICE
US10340415B2 (en) 2016-09-01 2019-07-02 Lg Innotek Co., Ltd. Semiconductor device and semiconductor device package including the same
WO2018048275A1 (ko) 2016-09-10 2018-03-15 엘지이노텍 주식회사 반도체 소자
US10910519B2 (en) 2016-09-13 2021-02-02 Lg Innotek Co., Ltd. Semiconductor device having layers including aluminum and semiconductor device package including same
US10903395B2 (en) 2016-11-24 2021-01-26 Lg Innotek Co., Ltd. Semiconductor device having varying concentrations of aluminum
JP6733588B2 (ja) * 2017-03-24 2020-08-05 豊田合成株式会社 半導体装置の製造方法
JP6438542B1 (ja) * 2017-07-27 2018-12-12 日機装株式会社 半導体発光素子
KR102390828B1 (ko) 2017-08-14 2022-04-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
DE102017119931A1 (de) * 2017-08-30 2019-02-28 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
KR102524809B1 (ko) * 2017-12-19 2023-04-24 삼성전자주식회사 자외선 반도체 발광소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174340A (ja) * 1998-12-04 2000-06-23 Mitsubishi Cable Ind Ltd GaN系半導体発光素子
JP2005123501A (ja) * 2003-10-20 2005-05-12 Toyoda Gosei Co Ltd 半導体発光素子
JP2008171941A (ja) * 2007-01-10 2008-07-24 Ngk Insulators Ltd 発光素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142728A (ja) * 2001-11-02 2003-05-16 Sharp Corp 半導体発光素子の製造方法
JP4077312B2 (ja) * 2001-12-28 2008-04-16 株式会社東芝 発光素子の製造方法および発光素子
KR100491968B1 (ko) * 2002-03-25 2005-05-27 학교법인 포항공과대학교 갈륨나이트라이드계 광소자의 p형 오믹 전극의 제조방법
US7569863B2 (en) * 2004-02-19 2009-08-04 Panasonic Corporation Semiconductor light emitting device
JP2006100475A (ja) * 2004-09-29 2006-04-13 Toyoda Gosei Co Ltd 半導体発光素子
JP4543378B2 (ja) * 2004-11-15 2010-09-15 エルピーダメモリ株式会社 半導体装置の製造方法
KR100682872B1 (ko) * 2004-12-08 2007-02-15 삼성전기주식회사 고효율 반도체 발광 소자 및 그 제조방법
WO2006109760A1 (ja) * 2005-04-08 2006-10-19 Mitsubishi Cable Industries, Ltd. 半導体素子およびその製造方法
KR100736623B1 (ko) * 2006-05-08 2007-07-09 엘지전자 주식회사 수직형 발광 소자 및 그 제조방법
JP2008244425A (ja) * 2007-02-21 2008-10-09 Mitsubishi Chemicals Corp GaN系LED素子および発光装置
KR100941616B1 (ko) * 2008-05-15 2010-02-11 주식회사 에피밸리 반도체 발광소자
KR101103892B1 (ko) * 2009-12-08 2012-01-12 엘지이노텍 주식회사 발광소자 및 발광소자 패키지
JP5719110B2 (ja) * 2009-12-25 2015-05-13 日亜化学工業株式会社 発光素子
JP2011221207A (ja) * 2010-04-08 2011-11-04 Konica Minolta Opto Inc アルミニウム表面反射鏡
JP5849215B2 (ja) * 2010-06-21 2016-01-27 パナソニックIpマネジメント株式会社 紫外半導体発光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174340A (ja) * 1998-12-04 2000-06-23 Mitsubishi Cable Ind Ltd GaN系半導体発光素子
JP2005123501A (ja) * 2003-10-20 2005-05-12 Toyoda Gosei Co Ltd 半導体発光素子
JP2008171941A (ja) * 2007-01-10 2008-07-24 Ngk Insulators Ltd 発光素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003374A1 (ja) * 2016-06-30 2018-01-04 Dowaエレクトロニクス株式会社 半導体光デバイスの製造方法および半導体光デバイス
JP2018006495A (ja) * 2016-06-30 2018-01-11 Dowaエレクトロニクス株式会社 半導体光デバイスの製造方法および半導体光デバイス
US11417793B2 (en) 2016-06-30 2022-08-16 Dowa Electronics Materials Co., Ltd. Method of manufacturing semiconductor optical device and semiconductor optical device
WO2019082817A1 (ja) * 2017-10-27 2019-05-02 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター
JP2019083232A (ja) * 2017-10-27 2019-05-30 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター
JP7110580B2 (ja) 2017-10-27 2022-08-02 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター
US11670911B2 (en) 2017-10-27 2023-06-06 Seiko Epson Corporation Light emitting device and method of manufacturing same, and projector

Also Published As

Publication number Publication date
TW201320390A (zh) 2013-05-16
TWI544656B (zh) 2016-08-01
US20140327034A1 (en) 2014-11-06
JP2013105917A (ja) 2013-05-30
JP5988568B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5988568B2 (ja) 半導体発光素子およびその製造方法
US9263642B2 (en) III nitride semiconductor light emitting device and method for manufacturing the same
JP5232972B2 (ja) 半導体発光素子及び半導体発光素子の製造方法
JP4325232B2 (ja) 窒化物半導体素子
WO2009084325A1 (ja) Led素子およびled素子の製造方法
JP5829453B2 (ja) 半導体発光素子
KR20110029085A (ko) 반도체 발광 장치 및 반도체 발광 장치의 제조 방법
JP2008153676A (ja) 窒化ガリウム系半導体発光素子及びその製造方法
JP2005244201A (ja) 半導体発光素子及びその製造方法
US20120223357A1 (en) Semiconductor Light-Emitting Device
JP2005268581A (ja) 窒化ガリウム系化合物半導体発光素子
JP2011151393A (ja) バーチカル型iii族窒化物半導体発光素子およびその製造方法
JP2005191575A (ja) 窒化ガリウム系発光ダイオードの構造とその製造方法
JP2012511249A (ja) 半導体発光素子
JP4835376B2 (ja) 半導体発光素子
JP2021097148A (ja) 半導体発光素子
JP2012084779A (ja) 半導体発光素子
TW201411883A (zh) 半導體紫外發光元件
JP2006024913A (ja) 窒化ガリウム系化合物半導体発光素子用透光性正極および発光素子
JP6153351B2 (ja) 半導体発光装置
JP6190591B2 (ja) 半導体発光素子
JP4787562B2 (ja) pn接合型発光ダイオード
JP2007073590A (ja) 発光素子
JP2013179150A (ja) 発光ダイオードの製造方法
TWI251257B (en) Gallium nitride series light-emitting apparatus having void structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849258

Country of ref document: EP

Kind code of ref document: A1