WO2013069845A1 - 단열성 및 작업성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체 - Google Patents

단열성 및 작업성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체 Download PDF

Info

Publication number
WO2013069845A1
WO2013069845A1 PCT/KR2011/010246 KR2011010246W WO2013069845A1 WO 2013069845 A1 WO2013069845 A1 WO 2013069845A1 KR 2011010246 W KR2011010246 W KR 2011010246W WO 2013069845 A1 WO2013069845 A1 WO 2013069845A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
parts
weight
binder
polystyrene
Prior art date
Application number
PCT/KR2011/010246
Other languages
English (en)
French (fr)
Inventor
김동희
박세진
조사은
김일진
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2013069845A1 publication Critical patent/WO2013069845A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene

Definitions

  • the present invention relates to expandable polystyrene, a process for producing the same, and a foam formed therefrom. More specifically, the present invention relates to a foamed polystyrene having excellent heat insulating properties and workability by forming a coating layer containing heat insulating particles on the surface of the expandable resin particles, a method of manufacturing the same, and a foam formed therefrom.
  • foamed molded articles of expandable polystyrene have high strength, light weight, buffering capacity, waterproofness, thermal insulation, and heat insulation, and are used as packaging materials for household appliances, agricultural product boxes, rich people, and home insulation materials.
  • more than 70% of the domestic demand for foam polystyrene is used as a core material for housing insulation or sandwich panels.
  • KR 10-0492199 discloses a method of improving thermal insulation by introducing carbon black, metal oxides, metal powders and the like into foams.
  • KR 10-0492199 discloses a method for producing expanded polystyrene (polymerization one-stage method) by polymerizing styrene in an aqueous suspension in the presence of graphite, which is one of heat insulating materials, and subsequently injecting pentane gas, and in KR 10-0703823, carbon 10
  • Disclosed is a method for producing expandable polystyrene by mixing a particle with a styrene resin to prepare a pellet and then injecting a blowing agent into the prepared pellet (extrusion two-stage method).
  • EP 0072536 discloses a method for producing a polystyrene foam through extrusion foaming by adding a heat-free material such as graphite or carbol black together with a blowing agent (extrusion single step method).
  • a method (coating method) of coating or embedding an insulation improving material on the surface of foamed polystyrene foam granules or polyfoam particles not yet foamed is introduced.
  • KR 10-0876211 discloses a method for producing expanded styrene particles by coating a surface of a plate-like talc, which is one of heat insulating materials, with resin and adding the coated talc to polymerization. There is a problem in that the heat-insulating material must be coated with a resin before the material is added to the polymerization.
  • the investment cost for the initial manufacturing equipment is high, and It is difficult to uniformly disperse the foaming agent in the interior, so that the cells of the foam are not uniform, which makes it difficult to manufacture a foam having a low density.
  • the foaming resin manufacturing method by the coating method there is an advantage that the foaming resin can be manufactured by a relatively low production cost and a relatively simple manufacturing process, but the peeling of the coated heat-insulating material is easily generated, resulting in fusion between the foam granules. There is a problem in that the strength of the foam is lowered.
  • KR 10-1028523 coats a foamed polystyrene particle with a coating liquid mixed with an insulating material in an organic solvent such as toluene, and then coats the insulating material on the foamed styrene resin surface, and then re-coats a water-soluble resin such as PVA.
  • a water-soluble resin such as PVA
  • An object of the present invention is to provide an expandable polystyrene having excellent thermal insulation and workability.
  • Another object of the present invention is to provide a foamable polystyrene excellent in the strength of the foam because the peeling of the coating layer does not occur.
  • Another object of the present invention is to provide a polystyrene foam having excellent heat insulation and strength.
  • Still another object of the present invention is to provide a coating liquid in which exfoliation with the expandable resin particles does not occur for the preparation of the expandable polystyrene.
  • the expandable polystyrene having excellent thermal insulation and workability may be expanded resin particles; And a coating layer formed on the foam resin particle surface, wherein the coating layer includes a binder and heat insulating particles, and the heat insulating particles are about 1 to 10 parts by weight based on 100 parts by weight of the foamable resin particles.
  • the coating layer may cover part or all of the surface of the expandable resin particles.
  • the binder may have a glass transition temperature of about 110 ° C. or less.
  • the binder may be a styrene containing polymer, an alkyl (meth) acrylate containing copolymer having 1 to 10 carbon atoms, or a blend thereof.
  • the binder is polystyrene, styrene-butadiene copolymer, polymethylmethacrylate, polybutylmethacrylate, polybutylacrylate, polybutylacrylate-styrene-acrylonitrile copolymer and styrene-methylmethacryl It can contain 1 or more types of a rate copolymer.
  • the thermally insulating particles may have a thermal conductivity of about 0.031 W / m ⁇ K or less.
  • the heat insulating particles may be selected from the group consisting of carbon particles, metal particles, metal oxide particles, airgel, zeolite, vermiculite.
  • the insulating particles may have an average particle size (D50) of about 0.01 ⁇ 100 ⁇ m.
  • Another aspect of the present invention relates to a method for producing expandable polystyrene having excellent thermal insulation and workability.
  • the method comprises a volatile solvent; bookbinder; And preparing a coating solution including the insulating particles; Coating the coating solution on the foamable resin particles; And drying the coated expandable resin particles; It comprises a step, wherein the insulating particles are characterized in that the coating of about 1 to 10 parts by weight based on 100 parts by weight of the expandable resin particles.
  • the coating solution may be 100 parts by weight of the volatile solvent, about 1 to 100 parts by weight of the binder and about 5 to 100 parts by weight of the insulating particles.
  • the volatile solvent may be soluble in the binder.
  • the binder has a glass transition temperature of about 110 ° C. or less, and may be a styrene-containing polymer, an alkyl (meth) acrylate-containing copolymer having 1 to 10 carbon atoms, or a blend thereof.
  • the heat insulating particles may have a thermal conductivity of about 0.031 W / m ⁇ K or less and an average particle size (D50) of about 0.01 to 100 ⁇ m.
  • the heat insulating particles may be selected from the group consisting of carbon particles, metal particles, metal oxide particles, airgel, zeolite, vermiculite.
  • the foamable resin particle coating liquid is a volatile solvent; bookbinder; And heat insulating particles.
  • the coating solution may be 100 parts by weight of the volatile solvent, about 1 to 100 parts by weight of the binder and about 5 to 100 parts by weight of the insulating particles.
  • the volatile solvent may have solubility in a binder.
  • the binder has a glass transition temperature of about 110 ° C. or less, and may be a styrene-containing polymer, an alkyl (meth) acrylate-containing copolymer having 1 to 10 carbon atoms, or a blend thereof.
  • the thermally insulating particles may have a thermal conductivity of about 0.031 W / m ⁇ K or less, and an average particle size (D50) of about 0.01 to 100 ⁇ m.
  • the heat insulating particles may be selected from one or more of carbon particles, metal particles, metal oxide particles, airgel, zeolite and vermiculite.
  • Another aspect of the present invention relates to a polystyrene foam formed by foaming the expandable polystyrene.
  • the foam has a compressive strength of about 16 N / cm 2 or more by KS M 3808, a flexural strength of about 35 N / cm 2 or more by KS M 3808, and a thermal conductivity based on KS L 9016 and No. 1 insulation sheet. It may be 0.031 W / m ⁇ K or less.
  • the present invention is excellent in thermal insulation and workability, excellent strength of the foam because the peeling of the coating layer does not occur, low-cost production cost and relatively simple manufacturing process that can be produced by the expanded polystyrene and its manufacturing method and using the expanded polystyrene
  • the present invention has an effect of providing a polystyrene foam having excellent thermal insulation and strength and a coating liquid in which exfoliation does not occur with the expandable resin particles for producing the expandable polystyrene.
  • FIG. 1 is a schematic cross-sectional view of an expandable polystyrene according to one embodiment of the present invention.
  • the expandable polystyrene of the present invention includes expandable resin particles; And a coating layer formed on the foamed resin particle surface.
  • the expandable resin particles ordinary expandable styrene resin particles may be used.
  • the expandable resin particles may be expandable polystyrene beads prepared by suspension polymerization.
  • the expandable resin particles may be expandable polystyrene beads formed by extrusion.
  • the expandable resin particles may contain a blowing agent.
  • blowing agents are well known in the art and include C 3-6 hydrocarbons such as propane, butane isobutane, n-pentane, isopentane, neopentane, cyclopentane, hexane, cyclohexane; Halogenated hydrocarbons such as trichlorofluoromethane, dichlorofluoromethane, dichlorotetrafluoroethane and the like can be used. Most preferred is double pentane.
  • the expandable resin particles may include nucleating agents, antioxidants, carbon particles, fillers, antistatic agents, plasticizers, pigments, dyes, heat stabilizers, UV absorbers, flame retardants and the like. These additives can be used individually or in mixture of 2 or more types.
  • the carbon particles may be graphite, carbon black, carbon fiber, carbon nanotubes, or the like, and may further increase heat insulating performance.
  • the size of the expandable resin particles is not particularly limited. For example, it may be about 0.1 to about 5 mm, preferably about 0.5 to about 3 mm.
  • the coating layer may be formed by coating the surface of the foamable resin particles with a coating solution and then drying.
  • the coating solution is a volatile solvent; bookbinder; And heat insulating particles.
  • the coating solution may be 100 parts by weight of the volatile solvent, about 1 to 100 parts by weight of the binder and about 5 to 100 parts by weight of the insulating particles.
  • the volatile solvent may have solubility in a binder.
  • hydrocarbons, ketones, etc. having 1 to 20 carbon atoms may be used. Specific examples include cyclohexane, normal hexane, methyl ethyl ketone, toluene, styrene monomer, methyl methacrylate monomer, methacrylate monomer, acetone, chloroform, tetrahydrofuran, dimethylacetamide, dimethylformamide, N-methylpi Or the like, and there is a solubility in the binder.
  • These solvents can be used individually or in mixture of 2 or more types. Of which preferably
  • a resin miscible with the expandable resin particles may be used.
  • the glass transition temperature is about 110 ° C. or less, and easy to dissolve the resin in the volatile solvent may be applied alone or in combination of two or more thereof.
  • an aromatic vinyl resin, an acrylic resin, or the like may be applied.
  • the aromatic vinyl resin may be a homopolymer of a styrene monomer, a copolymer of a styrene monomer and a monomer copolymerizable therewith, or a mixture thereof. In other embodiments, the mixture may be a styrene-based resin and another resin.
  • styrene-containing polymers such as polystyrene, styrene-butadiene copolymers, styrene-acrylonitrile copolymers, polymethylmethacrylates, polybutylmethacrylates, polybutylacrylates, styrene-methylmethacrylate copolymers, and the like.
  • Alkyl (meth) acrylate-containing copolymers having 1 to 10 carbon atoms or blends thereof.
  • the binder has a weight average molecular weight. About 5,000 to 300,000 g / mol. In the above range, there is an advantage in the mechanical strength, such as foamability, compressive strength, flexural strength and the like.
  • the binder may be used in an amount of about 1 to 100 parts by weight, preferably about 10 to 50 parts by weight, based on 100 parts by weight of the volatile solvent.
  • the thermally insulating particles have a thermal conductivity of about 0.031 W / m ⁇ K or less, preferably about 0.0001 to 0.030 W / m ⁇ K. Excellent heat insulation can be provided in the said range.
  • the insulating particles may have an average particle size (D50) of about 0.01 to 100 ⁇ m, preferably about 0.1 to 50 ⁇ m. It has a uniform coatability and excellent workability in the above range.
  • D50 average particle size
  • the heat insulating particles may be carbon particles, metal particles, metal oxide particles, aerogels, zeolites, vermiculite, and the like. These can be applied individually or in mixture of 2 or more types. Among them, preferred are metal particles containing gold, silver, copper, zinc, aluminum, platinum and the like and carbon particles containing graphite and carbon black.
  • the heat insulating particles may be used in an amount of about 5 to 100 parts by weight, preferably about 10 to 50 parts by weight, based on 100 parts by weight of a volatile solvent. It has excellent dispersibility and workability in the above range.
  • the coating solution of the present invention may add additives such as antiblocking agents, nucleating agents, antioxidants, fillers, antistatic agents, plasticizers, pigments, dyes, thermal stabilizers, UV absorbers, flame retardants, and the like. .
  • the prepared coating liquid is coated on the surface of the expandable resin particles.
  • the coating method may be a method such as spraying, dipping, mixing, etc., but is not necessarily limited thereto.
  • the coating liquid may be coated on the expandable resin particles using a planetary mixer.
  • the coating liquid may be used based on 100 parts by weight of the expandable resin particles.
  • the weight ratio of the heat insulating particles and the expandable resin particles coats the heat insulating particles to about 1 to 10 parts by weight based on 100 parts by weight of the expandable resin particles. In the above range, there is an effect of improving heat insulation, and excellent compression and flexural strength.
  • the drying conditions may be dried for about 1 to 5 hours at about 20 ⁇ 60 °C.
  • the coating layer formed on the surface of the expandable resin particles substantially removes the solvent, leaving the binder and the heat insulating particles.
  • FIG. 1 is a schematic cross-sectional view of an expandable polystyrene according to one embodiment of the present invention. As shown, the coating layer 20 is formed on the surface of the expandable resin particles 10, the coating layer 20 includes a binder 22 and the heat insulating particles (21).
  • the coating layer may surround part or all of the surface of the expandable resin particles. Preferably about 90 to 100% of the surface area of the particles (A) can be wrapped. In a specific embodiment, the coating layer may be wrapped around the surface of the expandable resin particles to a certain thickness.
  • Another aspect of the present invention relates to a polystyrene foam formed by foaming the expandable polystyrene.
  • the foam has a compressive strength of about 16 N / cm 2 or more by KS M 3808, a flexural strength of about 35 N / cm 2 or more by KS M 3808, and a thermal conductivity of KS L 9016 based on insulation plate 1. It may be 0.031 W / m ⁇ K or less.
  • the foam has a compressive strength of about 16 to 50 N / cm 2 by KS M 3808, a flexural strength of about 35 to 60 N / cm 2 by KS M 3808, and a thermal conductivity of KS L 9016 to a heat insulating plate. It may be about 0.020 ⁇ 0.031 W / m ⁇ K based on No. 1.
  • the foam of the present invention can be applied to both packaging materials, agricultural and marine products boxes, home insulation materials and the like.
  • a coating solution (A) was prepared by mixing with 10 parts by weight of (Ac).
  • the obtained expandable polystyrene (C) produced a foam having excellent thermal insulation by using the foaming and molding method of ordinary expandable styrene resin particles.
  • the foam prepared as described above was cut into 200 mm ⁇ 200 mm ⁇ 50 mm size and dried for at least 24 hours at a temperature of 60 ° C. or higher, and then stored at room temperature for 24 hours again. (Thermal conductivity) was measured.
  • Example 2 The same process as in Example 1 was carried out except that methyl ethyl ketone (large gold) was used as the volatile solvent.
  • Example 2 The same process as in Example 1 was carried out except that 15 parts by weight of aluminum paste (METAFLAKE Co., Ltd. M9-30MS) was mixed with the insulating particles (A-c).
  • Example 1 Example 2
  • Example 3 Coating solution solvent Cyclohexane 100 - 100 100 MEK - 100 - bookbinder SBR 20 20 - 20 ASA - - 20 - Insulating particles black smoke 10 10 10 - aluminum - - - 15
  • Coating solution Weight ratio of foamable resin particles 70/100 70/100 70/100 70/100 Density (Kg / m3) 29.7 31.2 30.7 31.0 Compressive strength (N / cm2) 18.5 18.7 16.4 17.3 Flexural Strength (N / cm2) 39.4 38.0 38.6 37.8 Thermal Conductivity (W / mK) 0.029 0.029 0.030 0.031
  • KS standard is more than 30kg / m3 for insulation board 1.
  • Example 1 The same procedure as in Example 1 was conducted except that no binder was used.
  • Example 2 It proceeded in the same manner as in Example 1 except that the content of the insulating particles (A-c) was coated so that 0.77 parts by weight based on 100 parts by weight of the expandable resin particles (B).
  • Example 2 It proceeded in the same manner as in Example 1 except that the content of the heat insulating particles (A-c) was coated so as to be 13 parts by weight based on 100 parts by weight of the expandable resin particles (B).

Abstract

본 발명의 단열성 및 작업성이 우수한 발포성 폴리스티렌은 발포성 수지 입자; 및 상기 발포 수지 입자 표면에 형성된 코팅층으로 이루어지며, 상기 코팅층은 바인더 및 단열성 입자를 포함하며, 상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부인 것을 특징으로 한다.

Description

단열성 및 작업성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체
본 발명은 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체에 관한 것이다. 보다 구체적으로 본 발명은 발포성 수지 입자 표면에 단열성 입자를 함유하는 코팅층을 형성시켜 단열성 및 작업성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체에 관한 것이다.
일반적으로 발포성 폴리스티렌의 발포 성형품은 높은 강도, 경량성, 완충성, 방수성, 보온성 및 단열성이 우수하여 가전제품의 포장재, 농수산물 상자, 부자, 주택 단열재 등으로 사용되고 있다. 그 중에서 특히 발포성 폴리스티렌은 국내 수요의 70% 이상이 주택 단열재나 샌드위치 판넬의 심재로 이용되고 있다.
최근에 에너지 절약등의 추세로 보다 우수한 단열성을 갖는 발포체에 대한 요구가 증가하고 있다.
KR 10-0492199에서는 카본블랙, 금속 산화물, 금속 분말등을 발포체에 도입함으로써 단열성을 향상시키는 방법을 개시하고 있다. 또한 KR 10-0492199에서는 단열성 재료의 하나인 흑연의 존재하에 수성현탁액 중에서 스티렌을 중합시키고 후속해서 펜탄가스를 주입하여 발포성 폴리스티렌의 제조 방법(중합 1단법)을 개시하고 있으며, KR 10-0703823에서는 탄소입자를 스티렌수지와 혼합하여 펠렛을 제조한 후 제조된 펠렛에 발포제를 주입하여 발포성 폴리스티렌의 제조 방법을 개시하고 있다(압출 2단법). 유럽특허 0072536호에는 흑연이나 카볼블랙과 같은 무열재료를 발포제와 함께 투입하여 압출 발포를 통해 폴리스티렌 발포체를 제조하는 방법을 개시하고 있다(압출 1단법). 이 밖에도 발포화된 폴리스티렌 발포립의 표면 또는 아직 미발포된 폴리스티렌 입자에 단열성 향상재료를 코팅 또는 매립하는 방법(코팅법)등이 소개 되어 있다.
그러나, 중합 1단법의 경우 현탁 중합과정에서 흑연과 같은 단열성 향상재료를 수지와 함께 혼합하여 중합 반응을 진행함에 따라서, 상대적으로 흡수율이 높고, 제조된 발포성 수지의 입자 크기가 불균일하며, 흑연등에 의해 현탁 안정성을 확보가 어렵다. 이를 해결하기 위한 수단으로 KR 10-0876211에서는 단열성 향상 재료중의 하나인 판상형 활석을 미리 수지로 표면을 코팅하고 코팅된 활석을 중합에 투입하여 발포성 스티렌 입자의 제조 방법이 공지되어 있으나, 이 경우에는 단열성 향상 재료를 중합에 투입하기 이전에 별도로 수지로 코팅해야 하는 문제점이 있다.
한편, 압출 2단법(압출 + 중합)의 경우 압출을 이용하여 단열성 향상 재료를 수지와 혼합한 후 수중펠렛화 장치(Underwater pelletizing system)를 이용하여 마이크펠렛을 제조한 후 이를 다시 현탁화하여 발포제를 주입하는 공정을 거침에 따라 제조 단가가 높다는 단점이 있다.
또한 마이크로펠렛을 현탁화하여 발포제를 주입하는 공정을 거치지 않고, 압출과정에서 발포제와 단열성향상 재료를 함께 혼합하여 발포성 수지를 제조하는 압출 1단법의 경우에는 초기 제조 설비에 대한 투자 비용이 높고, 수지내 발포제의 균일한 분산이 어려워 발포체의 셀이 균일하지 않아 낮은 밀도의 발포체를 제조하기 어렵다는 단점이 있다.
한편, 코팅법에 의한 발포성 수지 제조방법의 경우 상대적으로 저렴한 생산 단가 및 비교적 단순한 제조 공정으로 발포성 수지를 제조할 수 있는 장점이 있으나, 코팅된 단열성 향상 재료의 박리가 쉽게 발생하여 발포립간의 융착이 저하되어 발포체의 강도가 저하되는 문제점이 있다. 이와 같은 문제점을 개선하기 위하여 KR 10-1028523에서는 톨루엔과 같은 유기 용매에 단열성 물질을 혼합한 코팅액을 발포성 폴리스티렌 입자에 코팅하여 단열성 물질을 발포성 스티렌 수지 표면에 코팅한 후 PVA와 같은 수용성 수지를 다시 코팅하는 방법이 소개되어 있다. 그러나, 이와 같은 방법은 발포후 발포립간의 융착 및 단열성 물질의 박리는 개선할 수 있으나, 2회에 걸쳐서 코팅을 행함에 따라 작업성이 현저히 저하되는 단점이 있다.
본 발명의 목적은 단열성 및 작업성이 우수한 발포성 폴리스티렌을 제공하는 것이다.
본 발명의 다른 목적은 코팅층의 박리가 발생하지 않아 발포체의 강도가 우수한 발포성 폴리스티렌을 제공하는 것이다.
본 발명의 또 다른 목적은 저렴한 생산 단가 및 비교적 단순한 제조 공정으로 단열성 및 작업성이 우수한 발포성 폴리스티렌의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 단열성 및 강도가 우수한 폴리스티렌 발포체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발포성 폴리스티렌의 제조를 위해 발포성 수지 입자와 박리가 일어나지 않는 코팅액을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 상세히 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 하나의 관점은 단열성 및 작업성이 우수한 발포성 폴리스티렌에 관한 것이다. 상기 단열성 및 작업성이 우수한 발포성 폴리스티렌은 발포성 수지 입자; 및 상기 발포 수지 입자 표면에 형성된 코팅층으로 이루어지며, 상기 코팅층은 바인더 및 단열성 입자를 포함하며, 상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부인 것을 특징으로 한다.
구체예에서, 상기 코팅층은 발포성 수지 입자 표면의 일부 또는 전부를 감쌀 수 있다.
구체예에서, 상기 바인더는 유리전이온도가 약 110 ℃이하일 수 있다.
구체예에서, 상기 바인더는 스티렌 함유 중합체, 탄소수 1~10의 알킬 (메타)아크릴레이트 함유 공중합체 또는 이들의 블렌드일 수 있다.
구체예에서, 상기 바인더는 폴리스티렌, 스티렌-부타디엔 공중합체, 폴리메틸메타크릴레이트, 폴리부틸메타크릴레이트, 폴리부틸아크릴레이트, 폴리부틸아크릴레이트-스티렌-아크릴로니트릴 공중합체 및 스티렌-메틸메타크릴레이트 공중합체중 1 종 이상 포함할 수 있다.
구체예에서, 상기 단열성 입자는 열전도율이 약 0.031 W/m·K 이하 일 수 있다.
구체예에서, 상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
구체예에서, 상기 단열성 입자는 평균입자크기(D50)가 약 0.01~100㎛ 일 수 있다.
본 발명의 다른 관점은 단열성 및 작업성이 우수한 발포성 폴리스티렌의 제조방법에 관한 것이다. 상기 방법은 휘발성 용제; 바인더; 및 단열성 입자를 포함하는 코팅액을 제조하고; 상기 코팅액을 발포성 수지 입자에 코팅하고; 그리고 상기 코팅된 발포성 수지 입자를 건조하는; 단계를 포함하며, 상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부로 코팅하는 것을 특징으로 한다.
구체예에서, 상기 코팅액은 휘발성 용제 100 중량부, 바인더 약 1~100중량부 및 단열성 입자 약 5~100 중량부일 수 있다.
구체예에서, 상기 휘발성 용제는 바인더에 용해성을 가질 수 있다.
구체예에서, 상기 바인더는 유리전이온도가 약 110 ℃이하이며, 스티렌 함유 중합체, 탄소수 1~10의 알킬 (메타)아크릴레이트 함유 공중합체 또는 이들의 블렌드일 수 있다.
구체예에서, 상기 단열성 입자는 열전도율이 약 0.031 W/m·K 이하이고, 평균입자크기(D50)가 약 0.01~100㎛ 일 수 있다.
구체예에서, 상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
본 발명의 또 다른 관점은 상기 발포성 수지 입자의 코팅액에 관한 것이다. 상기 발포성 수지 입자 코팅액은 휘발성 용제; 바인더; 및 단열성 입자를 포함한다.
구체예에서, 상기 코팅액은 휘발성 용제 100 중량부, 바인더 약 1~100중량부 및 단열성 입자 약 5~100 중량부일 수 있다.
상기 휘발성 용제는 바인더에 용해성을 가질 수 있다.
상기 바인더는 유리전이온도가 약 110 ℃이하이며, 스티렌 함유 중합체, 탄소수 1~10의 알킬 (메타)아크릴레이트 함유 공중합체 또는 이들의 블렌드일 수 있다.
상기 단열성 입자는 열전도율이 약 0.031 W/m·K 이하이고, 평균입자크기(D50)가 약 0.01~100㎛ 일 수 있다.
상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
본 발명의 또 다른 관점은 상기 발포성 폴리스티렌를 발포시켜 형성된 폴리스티렌계 발포체에 관한 것이다. 상기 발포체는 KS M 3808에 의한 압축강도가 약 16 N/cm2 이상이고, KS M 3808에 의한 굴곡강도가 약 35 N/cm2 이상이며, KS L 9016 및 단열판 1호 기준에 의한 열전도율이 약 0.031 W/m·K 이하일 수 있다.
본 발명은 단열성 및 작업성이 우수하고, 코팅층의 박리가 발생하지 않아 발포체의 강도가 우수하며, 저렴한 생산 단가 및 비교적 단순한 제조 공정으로 제조될 수 있는 발포성 폴리스티렌 및 그 제조방법과 상기 발포성 폴리스티렌을 이용하여 단열성 및 강도가 우수한 폴리스티렌 발포체와 상기 발포성 폴리스티렌의 제조를 위해 발포성 수지 입자와 박리가 일어나지 않는 코팅액을 제공하는 발명의 효과를 갖는다.
도 1은 본 발명의 하나의 구체예에 따른 발포성 폴리스티렌의 개략적인 단면도이다.
본 발명의 발포성 폴리스티렌은 발포성 수지 입자; 및 상기 발포 수지 입자 표면에 형성된 코팅층으로 이루어진다.
상기 발포성 수지 입자는 통상의 발포성 스티렌 수지 입자가 사용될 수 있다. 하나의 구체예에서 상기 발포성 수지 입자는 현탁중합하여 제조된 발포성 폴리스티렌 비드일 수 있다. 다른 구체예에서는 상기 발포성 수지 입자는 압출하여 형성된 발포성 폴리스티렌 비드일 수 있다.
상기 발포성 수지 입자는 발포제를 함유할 수 있다. 상기 발포제는 본 발명이 속하는 기술분야에 잘 알려져 있으며, C3-6 의 탄화수소, 예컨대 프로판, 부탄 이소부탄, n-펜탄, 이소펜탄, 네오펜탄, 시클로펜탄, 헥산, 시클로헥산; 트리클로로플루오로메탄, 디클로로플루오로메탄, 디클로로테트라플루오로에탄 등과 같은 할로겐화 탄화수소 등이 사용될 수 있다. 이중 펜탄이 가장 바람직하다.
또한 상기 발포성 수지 입자는 핵제, 산화방지제, 탄소 입자, 충전제, 대전방지제, 가소제, 안료, 염료, 열안정제, UV 흡수제, 난연제 등이 포함될 수 있다. 이들 첨가제는 단독 또는 2종 이상 혼합되어 사용될 수 있다. 상기 탄소입자는 흑연, 카본블랙, 카본파이버, 카본나노튜브 등이 사용될 수 있으며, 단열성능을 더 높일 수 있다.
상기 발포성 수지 입자의 크기는 특별한 제한이 없다. 예를 들면, 약 0.1 내지 약 5 mm, 바람직하게는 약 0.5 내지 약 3 mm 일 수 있다.
상기 코팅층은 발포성 수지 입자 표면을 코팅액으로 코팅한 후, 건조하여 형성될 수 있다.
상기 코팅액은 휘발성 용제; 바인더; 및 단열성 입자를 포함한다. 구체예에서, 상기 코팅액은 휘발성 용제 100 중량부, 바인더 약 1~100중량부 및 단열성 입자 약 5~100 중량부일 수 있다.
상기 휘발성 용제는 바인더에 용해성을 가질 수 있다. 예를 들면, 탄소수 1~20의 탄화수소, 케톤 등이 사용될 수 있다. 구체예로는 사이클로헥산, 노르말헥산, 메틸에틸케톤, 톨루엔, 스티렌모노머, 메틸메타크릴레이트모노머, 메타크릴레이트모노머, 아세톤, 클로로포름, 테트라하이드로퓨란, 디메틸아세트아미드, 디메틸포름아미드, N-메틸피롤리돈 등이 있으며, 바인더에 용해성을 갖는 것이면 이에 제한되지 않는다. 이들 용제는 단독 또는 2종 이상 혼합하여 사용될 수 있다. 이중 바람직하게는
상기 바인더로는 발포성 수지 입자와 혼화성이 있는 수지가 사용될 수 있다. 바람직하게는 유리전이온도가 약 110 ℃이하이며, 상기 휘발성 용제에 용해가 용이한 수지를 단독 또는 2종 이상 혼합하여 적용할 수 있다. 예를 들면 방향족 비닐계 수지, 아크릴계 수지 등이 적용될 수 있다. 상기 방향족 비닐계 수지는 스티렌계 단량체의 호모폴리머, 스티렌계 단량체와 이와 공중합 가능한 단량체의 공중합체 또는 이들의 혼합물일 수 있다. 다른 구체예에서는 스티렌계 수지와 다른 수지와의 혼합물일 수 있다. 구체예로는 폴리스티렌, 스티렌-부타디엔 공중합체, 스티렌-아크릴로니트릴 공중합체, 폴리메틸메타크릴레이트, 폴리부틸메타크릴레이트, 폴리부틸아크릴레이트, 스티렌-메틸메타크릴레이트 공중합체 등과 같이 스티렌 함유 중합체, 탄소수 1~10의 알킬 (메타)아크릴레이트 함유 공중합체 또는 이들의 블렌드일 수 있다. 구체예에서 상기 바인더는 중량평균분자량 약 5,000∼300,000 g/mol일 수 있다. 상기 범위에서 발포성, 압축강도, 굴곡강도 등의 기계적 강도가 우수한 장점이 있다.
상기 바인더는 휘발성 용제 100 중량부에 대하여 약 1~100 중량부, 바람직하게는 약 10~50 중량부로 사용될 수 있다.
상기 단열성 입자는 열전도율이 약 0.031 W/m·K 이하, 바람직하게는 약 0.0001~0.030 W/m·K 이다. 상기 범위에서 우수한 단열성을 부여할 수 있다.
또한 상기 단열성 입자는 평균입자크기(D50)가 약 0.01~100㎛, 바람직하게는 약 0.1~50㎛ 일 수 있다. 상기 범위에서 균일한 코팅성과 우수한 작업성을 갖는다.
상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 이중 바람직하게는 금, 은, 구리, 아연, 알루미늄, 백금 등을 포함하는 금속입자 및 흑연, 카본블랙을 포함하는 탄소입자이다.
상기 단열성 입자는 휘발성 용제 100 중량부에 대하여 약 5~100 중량부, 바람직하게는 약 10~50 중량부로 사용될 수 있다. 상기 범위에서 우수한 분산성 및 작업성을 갖는다.
본 발명의 코팅액은 휘발성 용제, 바인더 및 단열성 입자외에도 필요에 따라 블로킹방지제, 핵제, 산화방지제, 충전제, 대전방지제, 가소제, 안료, 염료, 열안정제, UV 흡수제, 난연제 등의 첨가제를 부가할 수 있다.
상기 제조된 코팅액은 발포성 수지 입자의 표면에 코팅된다. 코팅방법은 스프레이, 침지, 믹싱 등의 방법이 사용될 수 있으며, 반드시 이에 제한되는 것은 아니다. 구체예에서는 플레너터리 믹서를 이용하여 발포성 수지 입자에 코팅액을 코팅할 수 있다.
구체예에서는 상기 발포성 수지 입자 100 중량부에 대하여 코팅액 약 20~100 중량부로 사용될 수 있다. 바람직하게는 상기 단열성 입자와 발포성 수지 입자의 중량비는 발포성 수지 입자 100 중량부에 대하여 상기 단열성 입자를 약 1~10 중량부로 코팅한다. 상기 범위에서 단열성 향상 효과가 있으며, 압축 및 굴곡 강도가 우수하다.
이와 같이 코팅과정을 거친 후 건조시켜 휘발성 용제를 제거한다. 구체예에서 건조 조건은 약 20~60 ℃에서 약 1~5 시간 건조할 수 있다.
상기 건조과정을 거친 후 발포성 수지 입자 표면에 형성된 코팅층은 용매가 실질적으로 제거되어 바인더 및 단열성 입자 성분이 남게 된다.
도 1은 본 발명의 하나의 구체예에 따른 발포성 폴리스티렌의 개략적인 단면도이다. 도시된 바와 같이, 발포성 수지 입자(10)의 표면에는 코팅층(20)이 형성되어 있으며, 상기 코팅층(20)은 바인더(22)와 단열성 입자(21)를 포함한다.
상기 코팅층은 발포성 수지 입자 표면의 일부 또는 전부를 감쌀 수 있다. 바람직하게는 입자(A) 표면적의 약 90~100 % 감쌀 수 있다.구체예에서는 상기 코팅층은 발포성 수지 입자 표면에 일정한 두께로 감쌀 수 있다.
본 발명의 또 다른 관점은 상기 발포성 폴리스티렌를 발포시켜 형성된 폴리스티렌계 발포체에 관한 것이다. 상기 발포체는 KS M 3808에 의한 압축강도가 약 16 N/cm2 이상이고, KS M 3808에 의한 굴곡강도가 약 35 N/cm2 이상이며, KS L 9016에 의한 열전도율이 단열판 1호 기준으로 약 0.031 W/m·K 이하일 수 있다. 구체예에서는 상기 발포체는 KS M 3808에 의한 압축강도가 약 16~50 N/cm2 이고, KS M 3808에 의한 굴곡강도가 약 35~60 N/cm2 이며, KS L 9016에 의한 열전도율이 단열판 1호 기준으로 약 0.020~0.031 W/m·K 일 수 있다.
본 발명의 발포체는 가전제품의 포장재, 농수산물 상자, 주택 단열재 등에 모두 적용될 수 있다.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해 될 수 있으며, 하기의 실시예는 본 발명의 예시목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
실시예
실시예 1
휘발성 용제로 사이클로헥산(동성하이켐)(A-a) 100 중량부에 바인더로 스티렌-부타디엔 공중합체(ASAHI CHEM사 ASAPRENE 420P)(A-b) 20중량부를 용해한 후 단열성 입자로 흑연(TIMCAL사 S-249)(A-c) 10중량부와 혼합하여 코팅액(A)을 준비하였다. 발포성 수지 입자(제일모직 SF-200)(B) 100중량부에 상기 코팅액(A) 70중량부를 플레너터리 믹서를 이용하여 발포성 수지 입자(B)에 코팅액(A)를 코팅 후 유동층 건조기를 이용하여 40℃에서 2시간 건조하여 코팅된 발포성 폴리스티렌(C)를 얻었다. 얻어진 발포성 폴리스티렌(C)는 통상의 발포성 스티렌수지 입자의 발포 및 성형 방법을 이용하여 단열성 이 우수한 발포체를 제조하였다. 상기와 같이 제조된 발포체를 200㎜×200㎜×50㎜크기로 절단 후 60℃ 이상의 온도에서 24시간 이상 건조 후 이를 다시 상온에서 24시간 보관한 다음 KS M 3808에 준하여 압축강도, 굴곡강도 및 단열성(열전도율)을 측정하였다.
실시예 2
휘발성 용제로 메틸에틸케톤(대정화금)을 사용하는 것을 제외하고 상기 실시예 1과 동일하게 수행하였다.
실시예 3
바인더로 ASA수지(UMG사 A600N)를 사용하는 것을 제외하고 상기 실시예 1과 동일하게 수행하였다.
실시예 4
단열성 입자(A-c)로 알루미늄페이스트(METAFLAKE사 M9-30MS)를 15 중량부를 혼합하는 것을 제외하고 실시예 1과 동일하게 진행하였다.
표 1
실시예 1 실시예 2 실시예 3 실시예 4
코팅액 용제 사이클로헥산 100 - 100 100
MEK - 100 -
바인더 SBR 20 20 - 20
ASA - - 20 -
단열성입자 흑연 10 10 10 -
알루미늄 - - - 15
코팅액 : 발포성수지입자의 중량비 70/100 70/100 70/100 70/100
밀도(Kg/㎥) 29.7 31.2 30.7 31.0
압축강도(N/㎠) 18.5 18.7 16.4 17.3
굴곡강도(N/㎠) 39.4 38.0 38.6 37.8
열전도율(W/m·K) 0.029 0.029 0.030 0.031
물성측정방법
(1) 밀도: KS M 3808에 규정된 방법으로 측정하였다. KS 규격 기준은 단열판 1호의 경우 30kg/㎥ 이상이다.
(2) 압축강도(N/cm2): 샘플 비중이 30kg/㎥ ±1.5 kg/㎥ 에서 한국공업규격 KS M 3808에 규정된 단열판 1호, 비드법 2종에 대한 기준의 압축강도 측정 방법에 준하여 측정하였다. KS 규격 기준은 약 16 N/cm2이상이다.
(3) 굴곡강도(N/cm2): 샘플 비중이 30kg/㎥ ±1.5 kg/㎥ 에서 한국공업규격 KS M 3808에 규정된 단열판 1호, 비드법 2종에 대한 기준의 굴곡강도 측정 방법에 준하여 측정하였다. KS 규격 기준은 약 35 N/cm2이상이다.
(4) 열전도율(W/m·K): 샘플의 비중이 30kg/㎥ ±1.5 kg/㎥ 에서 KYOTO ELECTRONICS사의 Thermal Conductivity Meter를 이용하여 한국산업규격 KS L 9016에 규정된 보온재의 열전도율 측정 방법으로 측정하였다. KS 규격 기준은 단열판 1호의 경우 약 0.031 W/m·K 이하이다.
비교실시예 1
바인더를 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 진행하였다.
비교실시예 2
휘발성 용제로 메틸에틸케톤을 사용하는 것을 제외하고 비교실시예 1과 동일하게 진행하였다.
비교실시예 3
휘발성 용제로 스티렌모노머를 사용하는 것을 제외하고 비교실시예 1과 동일하게 진행하였다.
비교실시예 4
단열성 입자(A-c)의 함량이 발포성 수지 입자(B) 100중량부에 대하여 0.77중량부가 되도록 코팅한 것을 제외하고 실시예 1과 동일하게 진행하였다.
비교실시예 5
단열성 입자(A-c)의 함량이 발포성 수지 입자(B) 100중량부에 대하여 13중량부가 되도록 코팅한 것을 제외하고 실시예 1과 동일하게 진행하였다.
표 2
비교실시예
1 2 3 4 5
코팅액 용제 사이클로헥산 100 - - 100 100
MEK - 100 - - -
SM - - 100 - -
바인더 SBR - - - 20 20
ASA - - - - -
단열성입자 흑연 10 10 10 10 10
알루미늄 - - - - -
코팅액 : 발포성수지입자의 중량비 70/100 70/100 70/100 10/100 170/100
밀도(Kg/㎥) 30.4 30.9 29.3 31.2 28.8
압축강도(N/㎠) 14.3 15.7 14.4 16.2 15.2
굴곡강도(N/㎠) 25.8 28.3 22.5 36.3 22.4
열전도율(W/m·K) 0.031 0.031 0.030 0.036 0.029
상기 표 1 및 2에 나타난 바와 같이, 실시예의 경우 모든 경우에 KS 규격 기준 이상의 물성 확인되었으며, 2회 이상의 코팅 공정을 거치지 않고 1회의 코팅 공정만 실시됨에 따라 작업성이 현저히 향상되었다. 비교실시예 1, 2 및 3의 경우에는 단열성(열전도율)은 기준에 부합되지만, 발포성 수지(B) 표면에 코팅된 단열성 물질에 의해 압축 및 굴곡 강도가 규격 미달되는 것을 확인할 수 있고, 발포성 수지 입자(B) 100 중량부에 대하여 단열성 입자가 1중량부 미만 조건으로 실시한 비교실시예 4의 경우에는 단열성 향상이 관찰되지 않았으며, 반대로 발포성 수지 입자(B) 100 중량부에 대하여 단열성 입자가 10중량부를 초과하는 조건으로 실시한 비교실시예 5의 경우에는 단열성능의 추가 적인 향상 효과가 확인되지 않으면서, 과도한 코팅량으로 인한 압축 및 굴곡 강도가 저하되는 것 뿐만 아니라, 다량의 코팅 혼합물 투입에 따른 발포성 수지 입자(B)와의 코팅 과정에서 발포성 수지 입자(C)가 서로 엉겨붙어 작업성이 저하되는 문제점이 확인 되었다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (22)

  1. 발포성 수지 입자; 및
    상기 발포 수지 입자 표면에 형성된 코팅층;
    으로 이루어지며, 상기 코팅층은 바인더 및 단열성 입자를 포함하는 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  2. 제1항에 있어서, 상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부인 것을 특징으로 하는 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  3. 제1항에 있어서, 상기 코팅층은 발포성 수지 입자 표면의 일부 또는 전부를 감싸는 것을 특징으로 하는 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  4. 제1항에 있어서, 상기 바인더는 유리전이온도가 약 110 ℃이하인 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  5. 제4항에 있어서, 상기 바인더는 스티렌 함유 중합체, 탄소수 1~10의 알킬 (메타)아크릴레이트 함유 공중합체 또는 이들의 블렌드인 것을 특징으로 하는 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  6. 제5항에 있어서, 상기 바인더는 폴리스티렌, 스티렌-부타디엔 공중합체, 폴리메틸메타크릴레이트, 폴리부틸메타크릴레이트, 폴리부틸아크릴레이트, 폴리부틸아크릴레이트-스티렌-아크릴로니트릴 공중합체 및 스티렌-메틸메타크릴레이트 공중합체중 1 종 이상 포함하는 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  7. 제1항에 있어서, 상기 단열성 입자는 열전도율이 약 0.031 W/m·K 이하인 것을 특징으로 하는 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  8. 제1항에 있어서, 상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  9. 제1항에 있어서, 상기 단열성 입자는 평균입자크기(D50)가 약 0.01~100㎛ 인 것을 특징으로 하는 단열성 및 작업성이 우수한 발포성 폴리스티렌.
  10. 휘발성 용제; 바인더; 및 단열성 입자를 포함하는 코팅액을 제조하고;
    상기 코팅액을 발포성 수지 입자에 코팅하고; 그리고
    상기 코팅된 발포성 수지 입자를 건조하는;
    단계를 포함하며, 상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부로 코팅하는 것을 특징으로 하는 단열성 및 작업성이 우수한 발포성 폴리스티렌의 제조방법.
  11. 제10항에 있어서, 상기 코팅액은 휘발성 용제 약 100 중량부, 바인더 약 1~100중량부 및 단열성 입자 약 5~100 중량부인 것을 특징으로 하는 방법.
  12. 제10항에 있어서, 상기 휘발성 용제는 바인더에 용해성을 갖는 것을 특징으로 하는 방법.
  13. 제10항에 있어서, 상기 바인더는 유리전이온도가 약 110 ℃이하이며, 스티렌 함유 중합체, 탄소수 1~10의 알킬 (메타)아크릴레이트 함유 공중합체 또는 이들의 블렌드인 것을 특징으로 하는 방법.
  14. 제10항에 있어서, 상기 단열성 입자는 열전도율이 약 0.031 W/m·K 이하이고, 평균입자크기(D50)가 약 0.01~100㎛인 것을 특징으로 하는 방법.
  15. 제10항에 있어서, 상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 방법.
  16. 휘발성 용제; 바인더; 및 단열성 입자를 포함하는 발포성 수지 입자 코팅액.
  17. 제16항에 있어서, 상기 코팅액은 휘발성 용제 약 100 중량부, 바인더 약 1~100중량부 및 단열성 입자 약 5~100 중량부인 것을 특징으로 하는 코팅액.
  18. 제16항에 있어서, 상기 휘발성 용제는 바인더에 용해성을 갖는 것을 특징으로 하는 코팅액.
  19. 제16항에 있어서, 상기 바인더는 유리전이온도가 약 110 ℃이하이며, 스티렌 함유 중합체, 탄소수 1~10의 알킬 (메타)아크릴레이트 함유 공중합체 또는 이들의 블렌드인 것을 특징으로 하는 코팅액.
  20. 제21항에 있어서, 상기 단열성 입자는 열전도율이 약 0.031 W/m·K 이하이고, 평균입자크기(D50)가 약 0.01~100㎛ 인 것을 특징으로 하는 코팅액.
  21. 제16항에 있어서, 상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 코팅액.
  22. 제1항 내지 제9항중 어느 한 항의 발포성 폴리스티렌를 발포시켜 형성되며, KS M 3808에 의한 압축강도가 약 16 N/cm2 이상이고, KS M 3808에 의한 굴곡강도가 약 35 N/cm2 이상이며, KS L 9016에 의한 열전도율이 약 0.031 W/m·K 이하인 폴리스티렌계 발포체.
PCT/KR2011/010246 2011-11-11 2011-12-28 단열성 및 작업성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체 WO2013069845A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0117816 2011-11-11
KR20110117816 2011-11-11

Publications (1)

Publication Number Publication Date
WO2013069845A1 true WO2013069845A1 (ko) 2013-05-16

Family

ID=48290193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010246 WO2013069845A1 (ko) 2011-11-11 2011-12-28 단열성 및 작업성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체

Country Status (2)

Country Link
KR (1) KR20130052484A (ko)
WO (1) WO2013069845A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017167650A1 (de) * 2016-03-30 2017-10-05 Evonik Röhm Gmbh Verkürzung der abkühlphase beim partikelschäumen durch die wärmeleitung erhöhende additive

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501412B1 (ko) * 2014-04-03 2015-03-10 정임 한 난연성 발포 폴리스티렌계 비드 및 이의 제조방법
KR102351140B1 (ko) * 2021-08-09 2022-01-13 유훈근 압축 실링지 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839651B1 (ko) * 2006-01-17 2008-06-19 주식회사 동부하이텍 알루미늄 입자로 코팅된 발포성 폴리스티렌 비드, 및 그제조 방법
KR100927667B1 (ko) * 2007-05-14 2009-11-20 김재천 단열성과 난연성이 향상된 발포성 폴리스티렌 입자 및 그제조방법
KR100927550B1 (ko) * 2009-05-06 2009-11-20 (주)폴머 성형성이 개선된 스킨층을 갖는 발포 폴리스티렌 입자와 이를 이용한 폴리스티렌 발포 성형물
US7772294B2 (en) * 2002-12-18 2010-08-10 Synbra Technology B.V. Fire resistant materials
KR20100129706A (ko) * 2009-06-01 2010-12-09 제일모직주식회사 난연성이 우수한 발포성 폴리스티렌 수지 조성물, 난연 폴리스티렌 발포체 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772294B2 (en) * 2002-12-18 2010-08-10 Synbra Technology B.V. Fire resistant materials
KR100839651B1 (ko) * 2006-01-17 2008-06-19 주식회사 동부하이텍 알루미늄 입자로 코팅된 발포성 폴리스티렌 비드, 및 그제조 방법
KR100927667B1 (ko) * 2007-05-14 2009-11-20 김재천 단열성과 난연성이 향상된 발포성 폴리스티렌 입자 및 그제조방법
KR100927550B1 (ko) * 2009-05-06 2009-11-20 (주)폴머 성형성이 개선된 스킨층을 갖는 발포 폴리스티렌 입자와 이를 이용한 폴리스티렌 발포 성형물
KR20100129706A (ko) * 2009-06-01 2010-12-09 제일모직주식회사 난연성이 우수한 발포성 폴리스티렌 수지 조성물, 난연 폴리스티렌 발포체 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017167650A1 (de) * 2016-03-30 2017-10-05 Evonik Röhm Gmbh Verkürzung der abkühlphase beim partikelschäumen durch die wärmeleitung erhöhende additive

Also Published As

Publication number Publication date
KR20130052484A (ko) 2013-05-22

Similar Documents

Publication Publication Date Title
WO2013094800A1 (ko) 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체
WO2010134736A2 (ko) 고단열성 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로부터 제조된 스티로폴
WO2015030273A1 (ko) 단열성 발포성 폴리스티렌 입자 및 단열성 발포성 폴리스티렌 입자의 제조방법
WO2010128760A2 (ko) 성형성이 우수한 스킨층을 갖는 발포폴리스티렌 입자와 그 제조방법, 이를 이용한 발포폴리스티렌 성형물
WO2013069845A1 (ko) 단열성 및 작업성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체
WO2012005424A1 (ko) 난연성 발포 폴리스티렌계 비드 및 그 제조방법
CN111004412A (zh) 一种防火隔热组合物、防火隔热复合板及其制备方法
CN111849344B (zh) 一种环保建筑防火涂料及其制备方法
WO2016056717A1 (ko) 발포 폴리스티렌용 난연성 코팅제 조성물
WO2012091381A2 (ko) 발포 폴리스티렌계 비드 및 그 제조방법
CN113502077A (zh) 一种石墨烯高性能防火涂料的制备方法
WO2010150955A1 (en) Method for preparing polyisocyanurate foam by using liquid nucleating agent and polyisocyanurate foam prepared by the same
WO2012020894A1 (ko) 난연성 발포 폴리스티렌계 중합형 비드 및 그 제조방법
CN115073921B (zh) 一种可陶瓷化阻燃涂层涂覆硅橡胶泡沫及其制备工艺
CN115895134A (zh) 一种建筑节能保温隔热材料及其制备方法和应用
CN103509318B (zh) 高性能无卤阻燃pc/abs复合材料及其制备方法
CN112625342B (zh) 一种石墨烯改性塑料及其制备方法和应用
WO2014104591A1 (ko) 화학가교 폴리비닐클로라이드계 난연 발포단열재 및 그의 제조방법
WO2018117473A1 (ko) 발포성 수지 조성물, 그 제조방법 및 이를 이용한 발포체
WO2019103376A2 (ko) 발포 폴리 스티렌 입자의 제조 방법 및 발포 폴리 스티렌 입자
WO2018124625A1 (ko) 발포성 수지 조성물, 이를 이용한 발포체 및 제조방법
Feng et al. Microporous-micronucleus composite structure endowing heterogenous polyamide 6 with low-temperature toughness, low dielectric constant, fire retardancy and antibacterial activity
CN110982196A (zh) 一种适用于充电站的泡沫防火材料
CN114410056B (zh) 一种阻燃abs复合材料及其制备方法
WO2018105987A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875497

Country of ref document: EP

Kind code of ref document: A1