WO2013094800A1 - 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체 - Google Patents

단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체 Download PDF

Info

Publication number
WO2013094800A1
WO2013094800A1 PCT/KR2011/010332 KR2011010332W WO2013094800A1 WO 2013094800 A1 WO2013094800 A1 WO 2013094800A1 KR 2011010332 W KR2011010332 W KR 2011010332W WO 2013094800 A1 WO2013094800 A1 WO 2013094800A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
resin
binder
weight
parts
Prior art date
Application number
PCT/KR2011/010332
Other languages
English (en)
French (fr)
Inventor
김동희
김일진
김승환
조사은
김종한
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2013094800A1 publication Critical patent/WO2013094800A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to expandable polystyrene, a process for producing the same, and a foam formed therefrom. More specifically, the present invention relates to a foamed polystyrene having excellent heat insulating properties and flame retardancy by forming a coating layer containing heat insulating particles on the surface of a foamable resin particle, a method of manufacturing the same, and a foam formed therefrom.
  • foamed molded articles of expandable polystyrene have high strength, light weight, buffering capacity, waterproofness, thermal insulation, and heat insulation, and are used as packaging materials for household appliances, agricultural product boxes, rich people, and home insulation materials.
  • more than 70% of the domestic demand for foam polystyrene is used as a core material for housing insulation or sandwich panels.
  • KR 10-0492199 discloses a method of improving thermal insulation by introducing carbon black, metal oxides, metal powders and the like into foams.
  • KR 10-0492199 discloses a method for producing expanded polystyrene (polymerization one-stage method) by polymerizing styrene in an aqueous suspension in the presence of graphite, which is one of heat insulating materials, and subsequently injecting pentane gas, and in KR 10-0703823, carbon 10
  • Disclosed is a method for producing expandable polystyrene by mixing a particle with a styrene resin to prepare a pellet and then injecting a blowing agent into the prepared pellet (extrusion two-stage method).
  • EP 0072536 discloses a method for producing a polystyrene foam through extrusion foaming by adding a heat-free material such as graphite or carbol black together with a blowing agent (extrusion single step method).
  • a method (coating method) of coating or embedding an insulation improving material on the surface of foamed polystyrene foam granules or polyfoam particles not yet foamed is introduced.
  • KR 10-0876211 discloses a method for producing expanded styrene particles by coating a surface of a plate-like talc, which is one of heat insulating materials, with resin and adding the coated talc to polymerization. There is a problem in that the heat-insulating material must be coated with a resin before the material is added to the polymerization.
  • the investment cost for the initial manufacturing equipment is high, and It is difficult to uniformly disperse the foaming agent in the interior, so that the cells of the foam are not uniform, which makes it difficult to manufacture a foam having a low density.
  • the foaming resin manufacturing method by the coating method there is an advantage that the foaming resin can be manufactured by a relatively low production cost and a relatively simple manufacturing process, but the peeling of the coated heat-insulating material is easily generated, resulting in fusion between the foam granules. There is a problem in that the strength of the foam is lowered.
  • KR 10-1028523 coats a foamed polystyrene particle with a coating liquid mixed with an insulating material in an organic solvent such as toluene, and then coats the insulating material on the foamed styrene resin surface, and then re-coats a water-soluble resin such as PVA.
  • a water-soluble resin such as PVA
  • the thermally insulating material introduced into the foamable resin has a problem of lowering the flame resistance of the final product. .
  • a method of adding an additional flame retardant is used, but a problem arises in that the manufacturing cost increases.
  • An object of the present invention is to provide an expandable polystyrene excellent in flame retardancy without applying a flame retardant.
  • Another object of the present invention is to provide a foamable polystyrene excellent in the strength of the foam because the peeling of the coating layer does not occur.
  • Another object of the present invention is to provide a polystyrene foam having excellent heat insulation and strength.
  • Still another object of the present invention is to provide a coating liquid in which exfoliation with the expandable resin particles does not occur for the preparation of the expandable polystyrene.
  • the expandable polystyrene having excellent thermal insulation and flame retardancy may be formed of expandable resin particles; And a coating layer formed on the foamed resin particle surface, wherein the coating layer includes a binder and heat insulating particles, and the binder includes a halogen-containing resin.
  • the heat insulating particles may be about 1 to 10 parts by weight based on 100 parts by weight of the expandable resin particles.
  • the coating layer may surround part or all of the surface of the expandable resin particles.
  • the binder may have a glass transition temperature of about 110 ° C. or less.
  • the halogen-containing resin may include at least one selected from the group consisting of vinyl chloride resin, vinyl acetate-vinyl chloride copolymer, dicarboxylic acid-vinyl acetate-vinyl chloride copolymer, brominated epoxy resin, brominated epoxy acrylate resin, and fluorine resin. Can be.
  • the heat insulating particles may be selected from one or more of carbon particles, metal particles, metal oxide particles, airgel, zeolite and vermiculite.
  • Another aspect of the present invention relates to a method for producing expandable polystyrene having excellent thermal insulation and flame retardancy.
  • the method comprises a volatile solvent; bookbinder; And coating the coating liquid including the insulating particles to the expandable resin particles; And drying the coated expandable resin particles, wherein the binder comprises a halogen-containing resin.
  • the method comprises contacting the insulating resin particles with the insulating resin particles to form the insulating particles on the surface of the foaming resin particles; Coating the expandable resin particles having the heat insulating particles formed on the surface thereof with a mixed solution containing a binder and a volatile solvent; And drying the coated expandable resin particles, wherein the binder comprises a halogen-containing resin.
  • the heat insulating particles may be coated with about 1 to 10 parts by weight based on 100 parts by weight of the expandable resin particles.
  • the coating solution may include 100 parts by weight of a volatile solvent, about 1 to 100 parts by weight of a binder, and about 5 to 100 parts by weight of insulating particles.
  • the mixed solution may include about 1 to 100 parts by weight of the binder based on 100 parts by weight of the volatile solvent.
  • the volatile solvent is characterized by having solubility in a binder containing a halogen-containing resin.
  • the heat insulating particles may be selected from one or more of carbon particles, metal particles, metal oxide particles, airgel, zeolite and vermiculite.
  • the coating solution is a volatile solvent; Halogen-containing resins; And heat insulating particles.
  • the coating solution may include 100 parts by weight of a volatile solvent, about 1 to 100 parts by weight of a binder, and about 5 to 100 parts by weight of insulating particles.
  • the volatile solvent may have solubility in a binder containing a halogen-containing resin.
  • the binder may have a glass transition temperature of about 110 ° C. or less.
  • the heat insulating particles may be selected from one or more of carbon particles, metal particles, metal oxide particles, airgel, zeolite and vermiculite.
  • Another aspect of the present invention relates to a polystyrene foam formed by foaming the polystyrene.
  • the foam is formed by foaming the expandable polystyrene, the compressive strength by KS M 3808 is about 5 N / cm 2 or more, the flexural strength by KS M 3808 is about 20 N / cm 2 or more, and according to KS L 9016
  • the thermal conductivity is about 0.034 W / m ⁇ K or less, the combustion time according to KS M ISO 9772 is within about 120 seconds, and the combustion length is about 60 mm or less.
  • the present invention is excellent in flame retardancy even without applying a flame retardant, excellent strength of the foam due to the peeling of the coating layer does not occur, low cost production cost and a relatively simple manufacturing process can be produced in the foamed polystyrene and the manufacturing method and the foamed polystyrene It has the effect of providing the polystyrene foam excellent in heat insulation and strength, and the coating liquid which does not peel with foamable resin particle for manufacture of said expandable polystyrene.
  • FIG. 1 is a schematic cross-sectional view of an expandable polystyrene according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of expandable polystyrene according to another embodiment of the present invention.
  • the expandable polystyrene of the present invention includes expandable resin particles; And a coating layer formed on the foamed resin particle surface.
  • the expandable resin particles ordinary expandable styrene resin particles may be used.
  • the expandable resin particles may be expandable polystyrene beads prepared by suspension polymerization.
  • the expandable resin particles may be expandable polystyrene beads formed by extrusion.
  • the expandable resin particles may contain a blowing agent.
  • blowing agents are well known in the art and include C 3-6 hydrocarbons such as propane, butane isobutane, n-pentane, isopentane, neopentane, cyclopentane, hexane, cyclohexane; Halogenated hydrocarbons such as trichlorofluoromethane, dichlorofluoromethane, dichlorotetrafluoroethane and the like can be used. Most preferred is double pentane.
  • the expandable resin particles may include nucleating agents, antioxidants, carbon particles, fillers, antistatic agents, plasticizers, pigments, dyes, heat stabilizers, UV absorbers, flame retardants and the like. These additives can be used individually or in mixture of 2 or more types.
  • the carbon particles may be graphite, carbon black, carbon fiber, carbon nanotubes, or the like, and may further increase heat insulating performance.
  • the size of the expandable resin particles is not particularly limited. For example, it may be about 0.1 to about 5 mm, preferably about 0.5 to about 3 mm.
  • the coating layer may be formed by coating the surface of the foamable resin particles with a coating solution and then drying.
  • the coating solution is a volatile solvent; bookbinder; And insulating particles, wherein the binder comprises a halogen-containing resin.
  • the coating solution may be 100 parts by weight of the volatile solvent, about 1 to 100 parts by weight of the binder and about 5 to 100 parts by weight of the insulating particles.
  • the volatile solvent may be one having solubility in a binder containing a halogen-containing resin.
  • hydrocarbons, ketones, etc. having 1 to 20 carbon atoms may be used. Specific examples include cyclohexane, normal hexane, methyl ethyl ketone, toluene, styrene monomer, methyl methacrylate monomer, methacrylate monomer, acetone, chloroform, tetrahydrofuran, dimethylacetamide, dimethylformamide, N-methylpi And the like, and there is, but is not limited to, so long as it has solubility in a binder containing a halogen-containing resin.
  • These solvents can be used individually or in mixture of 2 or more types.
  • the binder includes a halogen containing resin.
  • the binder may use only the halogen-containing resin, or may mix and use a halogen-free resin with the halogen-containing resin.
  • the flame retardancy it can be used in the range of 50% by weight or less of the total binder component.
  • the halogen-containing resin may have a glass transition temperature of about 110 ° C. or less, and may be applied alone or in combination of two or more kinds of resins that are easily dissolved in the volatile solvent.
  • vinyl chloride resin vinyl acetate-vinyl chloride copolymer, dicarboxylic acid-vinyl acetate-vinyl chloride copolymer, brominated epoxy resin, brominated epoxy acrylate resin, fluororesin and the like can be used.
  • the halogen-free resin may have a glass transition temperature of about 110 ° C. or less, and may be used without limitation as long as it is soluble in a volatile solvent.
  • styrene-containing polymers, alkyl (meth) acrylates having 1 to 10 carbon atoms, copolymers thereof, or blends thereof may be applied by mixing with the halogen-containing resin.
  • polystyrene, styrene-butadiene copolymer, polymethyl methacrylate, polybutyl methacrylate, polybutyl acrylate, styrene-methyl methacrylate copolymer and the like may be used.
  • the halogen-containing resin can be used in about 50 to 100% by weight of the total binder component. Excellent flame retardancy can be obtained in the above range.
  • the halogen-free resin may be used at about 0 to 50% by weight, preferably about 0 to 10% by weight of the total binder component. Excellent flame retardancy can be obtained in the above range.
  • the binder may be used in an amount of about 1 to 100 parts by weight, preferably about 10 to 50 parts by weight, based on 100 parts by weight of the volatile solvent.
  • the thermally insulating particles have a thermal conductivity of about 0.031 W / m ⁇ K or less, preferably about 0.0001 to 0.030 W / m ⁇ K. Excellent heat insulation can be provided in the said range.
  • the insulating particles may have an average particle size (D50) of about 0.01 to 100 ⁇ m, preferably about 0.1 to 50 ⁇ m. It has a uniform coatability and excellent workability in the above range.
  • D50 average particle size
  • the heat insulating particles may be carbon particles, metal particles, metal oxide particles, aerogels, zeolites, vermiculite, and the like. These can be applied individually or in mixture of 2 or more types. Among them, preferred are metal particles containing gold, silver, copper, zinc, aluminum, platinum and the like and carbon particles containing graphite and carbon black.
  • the heat insulating particles may be used in an amount of about 5 to 100 parts by weight, preferably about 5 to 70 parts by weight, and more preferably about 10 to 50 parts by weight, based on 100 parts by weight of the volatile solvent. It has excellent dispersibility and workability in the above range.
  • the coating solution of the present invention may add additives such as antiblocking agents, nucleating agents, antioxidants, fillers, antistatic agents, plasticizers, pigments, dyes, heat stabilizers, UV absorbers, flame retardants, etc., as needed, in addition to volatile solvents, binders, and insulating particles. .
  • the prepared coating liquid is coated on the surface of the expandable resin particles.
  • the coating method may be a method such as spraying, dipping, mixing, etc., but is not necessarily limited thereto.
  • the coating liquid may be coated on the expandable resin particles using a planetary mixer.
  • the coating liquid may be used based on 100 parts by weight of the expandable resin particles.
  • the weight ratio of the heat insulating particles and the expandable resin particles is coated with about 1 to 10 parts by weight of the heat insulating particles based on about 100 parts by weight of the expandable resin particles. It is excellent in the thermal insulation improvement effect in the above range, it may have a balance of compression and flexural strength.
  • the coating layer is a first step of contacting the heat insulating particles to the expandable resin particles to form the heat insulating particles on the surface of the expandable resin particles;
  • the insulating particles may be formed by coating the expandable resin particles formed on the surface with a mixed solution containing a binder and a volatile solvent.
  • the heat insulating particles may be coated with about 1 to 10 parts by weight based on 100 parts by weight of the expandable resin particles.
  • the mixed solution may include about 1 to 100 parts by weight of the binder based on 100 parts by weight of the volatile solvent.
  • the mixed solution may be used in about 5 to 30 parts by weight of the mixed solution based on 100 parts by weight of the expandable resin particles.
  • the drying conditions may be dried for about 0.1 to 5 hours at about 20 ⁇ 60 °C.
  • the coating layer formed on the surface of the expandable resin particles is substantially removed from the solvent to leave a binder and a heat insulating particle component containing a halogen-containing resin.
  • FIG. 1 is a schematic cross-sectional view of an expandable polystyrene according to one embodiment of the present invention.
  • the coating layer 20 is formed on the surface of the expandable resin particles 10, the coating layer 20 includes a binder 22 and the heat insulating particles 21 containing a halogen-containing resin.
  • the coating layer may surround part or all of the surface of the expandable resin particles. Preferably about 90 to 100% of the surface area of the particles (A) can be wrapped. In a specific embodiment, the coating layer may be wrapped around the surface of the expandable resin particles to a certain thickness.
  • FIG. 2 is a schematic cross-sectional view of expandable polystyrene according to another embodiment of the present invention.
  • the coating layer 20 may cover a part of the surface of the expandable resin particle 10.
  • the coating layer 20 includes a binder 22 and a heat insulating particle 21 containing a halogen-containing resin.
  • the insulating particles may be uniformly dispersed in the coating layer as a whole, and as shown in FIG. 2, the density of the insulating particles may be higher as adjacent to the expandable resin particles. .
  • Another aspect of the present invention relates to a polystyrene foam formed by foaming the expandable polystyrene.
  • the foam has a compressive strength of about 5 N / cm 2 or more by KS M 3808, a flexural strength of about 20 N / cm 2 or more by KS M 3808, and a thermal conductivity of about 0.034 W / m ⁇ by KS L 9016. K or less, the combustion time according to KS M ISO 9772 may be within about 120 seconds, and the combustion length may be about 60 mm or less.
  • the foam of the present invention can be applied to both packaging materials, agricultural and marine products boxes, home insulation materials and the like.
  • Insulating particles Graphite (TI-2 SAL)
  • the obtained expandable polystyrene prepared a foam having excellent thermal insulation by using the foaming and molding method of ordinary expandable styrene resin particles.
  • the foam prepared as described above was cut into 300 mm ⁇ 300 mm ⁇ 50 mm size, dried at least 60 hours at a temperature of 60 ° C. or higher, and then stored at room temperature for 24 hours, and then insulated plate No. 4 and beads prescribed in KS M 3808.
  • Compressive strength, flexural strength and thermal insulation (initial thermal conductivity according to KS L 9016) were measured according to the criteria for the two methods.
  • Example 2 The same procedure as in Example 1 was carried out except that dicarboxylic acid-vinyl acetate-vinyl chloride copolymer (Hanhwa Chemical TP-400M) was used as the halogen-containing resin.
  • dicarboxylic acid-vinyl acetate-vinyl chloride copolymer (Hanhwa Chemical TP-400M) was used as the halogen-containing resin.
  • Example 2 The same procedure as in Example 1 was carried out except that polyvinyl chloride (Hanhwa Chemical P-700) was used as the halogen-containing resin.
  • the mixed liquid A ' is prepared using only a resin containing a volatile solvent and halogen particles without mixing the insulating particles, and the insulating particles are precoated with 1.67 parts by weight based on 100 parts by weight of the foamable resin particles. 18.3 parts by weight of the mixed solution (A ') was mixed and coated, followed by drying for 2 hours at 40 ° C. using a fluidized bed dryer to obtain coated foamable resin particles.
  • Example 2 The procedure was the same as in Example 1 except that no halogen-containing resin was used and a styrene-butadiene copolymer (ASAHI CHEM Co., Ltd. ASAPRENE 420P) was used.
  • ASAHI CHEM Co., Ltd. ASAPRENE 420P a styrene-butadiene copolymer
  • Comparative Example 1-2 Although the thermal insulation (thermal conductivity), compression and flexural strength meet the criteria, but could not ensure flame retardancy. In the case of the embodiment has been confirmed the physical properties of the KS standard or higher in all cases, it can be seen that excellent flame retardancy can be achieved without applying a flame retardant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

본 발명의 단열성 및 난연성이 우수한 발포성 폴리스티렌은 발포성 수지 입자; 및 상기 발포 수지 입자 표면에 형성된 코팅층으로 이루어지며, 상기 코팅층은 바인더 및 단열성 입자를 포함하며, 상기 바인더는 할로겐 함유 수지를 포함하는 것을 특징으로 한다.

Description

단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체
본 발명은 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체에 관한 것이다. 보다 구체적으로 본 발명은 발포성 수지 입자 표면에 단열성 입자를 함유하는 코팅층을 형성시켜 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체에 관한 것이다.
일반적으로 발포성 폴리스티렌의 발포 성형품은 높은 강도, 경량성, 완충성, 방수성, 보온성 및 단열성이 우수하여 가전제품의 포장재, 농수산물 상자, 부자, 주택 단열재 등으로 사용되고 있다. 그 중에서 특히 발포성 폴리스티렌은 국내 수요의 70% 이상이 주택 단열재나 샌드위치 판넬의 심재로 이용되고 있다.
최근에 에너지 절약등의 추세로 보다 우수한 단열성을 갖는 발포체에 대한 요구가 증가하고 있다.
KR 10-0492199에서는 카본블랙, 금속 산화물, 금속 분말등을 발포체에 도입함으로써 단열성을 향상시키는 방법을 개시하고 있다. 또한 KR 10-0492199에서는 단열성 재료의 하나인 흑연의 존재하에 수성현탁액 중에서 스티렌을 중합시키고 후속해서 펜탄가스를 주입하여 발포성 폴리스티렌의 제조 방법(중합 1단법)을 개시하고 있으며, KR 10-0703823에서는 탄소입자를 스티렌수지와 혼합하여 펠렛을 제조한 후 제조된 펠렛에 발포제를 주입하여 발포성 폴리스티렌의 제조 방법을 개시하고 있다(압출 2단법). 유럽특허 0072536호에는 흑연이나 카볼블랙과 같은 무열재료를 발포제와 함께 투입하여 압출 발포를 통해 폴리스티렌 발포체를 제조하는 방법을 개시하고 있다(압출 1단법). 이 밖에도 발포화된 폴리스티렌 발포립의 표면 또는 아직 미발포된 폴리스티렌 입자에 단열성 향상재료를 코팅 또는 매립하는 방법(코팅법)등이 소개 되어 있다.
그러나, 중합 1단법의 경우 현탁 중합과정에서 흑연과 같은 단열성 향상재료를 수지와 함께 혼합하여 중합 반응을 진행함에 따라서, 상대적으로 흡수율이 높고, 제조된 발포성 수지의 입자 크기가 불균일하며, 흑연등에 의해 현탁 안정성을 확보가 어렵다. 이를 해결하기 위한 수단으로 KR 10-0876211에서는 단열성 향상 재료중의 하나인 판상형 활석을 미리 수지로 표면을 코팅하고 코팅된 활석을 중합에 투입하여 발포성 스티렌 입자의 제조 방법이 공지되어 있으나, 이 경우에는 단열성 향상 재료를 중합에 투입하기 이전에 별도로 수지로 코팅해야 하는 문제점이 있다.
한편, 압출 2단법(압출 + 중합)의 경우 압출을 이용하여 단열성 향상 재료를 수지와 혼합한 후 수중펠렛화 장치(Underwater pelletizing system)를 이용하여 마이크펠렛을 제조한 후 이를 다시 현탁화하여 발포제를 주입하는 공정을 거침에 따라 제조 단가가 높다는 단점이 있다.
또한 마이크로펠렛을 현탁화하여 발포제를 주입하는 공정을 거치지 않고, 압출과정에서 발포제와 단열성향상 재료를 함께 혼합하여 발포성 수지를 제조하는 압출 1단법의 경우에는 초기 제조 설비에 대한 투자 비용이 높고, 수지내 발포제의 균일한 분산이 어려워 발포체의 셀이 균일하지 않아 낮은 밀도의 발포체를 제조하기 어렵다는 단점이 있다.
한편, 코팅법에 의한 발포성 수지 제조방법의 경우 상대적으로 저렴한 생산 단가 및 비교적 단순한 제조 공정으로 발포성 수지를 제조할 수 있는 장점이 있으나, 코팅된 단열성 향상 재료의 박리가 쉽게 발생하여 발포립간의 융착이 저하되어 발포체의 강도가 저하되는 문제점이 있다. 이와 같은 문제점을 개선하기 위하여 KR 10-1028523에서는 톨루엔과 같은 유기 용매에 단열성 물질을 혼합한 코팅액을 발포성 폴리스티렌 입자에 코팅하여 단열성 물질을 발포성 스티렌 수지 표면에 코팅한 후 PVA와 같은 수용성 수지를 다시 코팅하는 방법이 소개되어 있다. 그러나, 이와 같은 방법은 발포후 발포립간의 융착 및 단열성 물질의 박리는 개선할 수 있으나, 2회에 걸쳐서 코팅을 행함에 따라 작업성이 현저히 저하되는 단점이 있다.
또한, 상기의 중합 1단법, 압출 2단법, 코팅법의 공통점인 단열성 물질을 발포성 수지에 도입하여 단열성능을 향상하는 것이지만, 발포성 수지에 도입되는 단열성 물질은 최종 제품의 난연성을 저하시키는 문제점이 있다. 이러한 문제점을 해결하기 위해서 별도의 난연제를 추가 투입하는 방법을 사용하지만 제조 원가가 상승하는 문제점이 발생한다.
본 발명의 목적은 난연제를 적용하지 않고도 난연성이 우수한 발포성 폴리스티렌을 제공하는 것이다.
본 발명의 다른 목적은 코팅층의 박리가 발생하지 않아 발포체의 강도가 우수한 발포성 폴리스티렌을 제공하는 것이다.
본 발명의 또 다른 목적은 저렴한 생산 단가 및 비교적 단순한 제조 공정으로 단열성 및 난연성이 우수한 발포성 폴리스티렌의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 단열성 및 강도가 우수한 폴리스티렌 발포체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발포성 폴리스티렌의 제조를 위해 발포성 수지 입자와 박리가 일어나지 않는 코팅액을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 상세히 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 하나의 관점은 단열성 및 난연성이 우수한 발포성 폴리스티렌에 관한 것이다. 상기 단열성 및 난연성이 우수한 발포성 폴리스티렌은 발포성 수지 입자; 및 상기 발포 수지 입자 표면에 형성된 코팅층으로 이루어지며, 상기 코팅층은 바인더 및 단열성 입자를 포함하며, 상기 바인더는 할로겐 함유 수지를 포함하는 것을 특징으로 한다.
상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부일 수 있다.
상기 코팅층은 발포성 수지 입자 표면의 일부 또는 전부를 감쌀 수 있다.
상기 바인더는 유리전이온도가 약 110 ℃ 이하일 수 있다.
상기 할로겐 함유 수지는 염화비닐수지, 아세트산비닐-염화비닐 공중합체, 디카르복실산-아세트산비닐-염화비닐 공중합체, 브롬화에폭시수지, 브롬화에폭시아크릴레이트수지, 불소수지로 이루어진 군으로부터 하나 이상 포함할 수 있다.
상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
본 발명의 다른 관점은 단열성 및 난연성이 우수한 발포성 폴리스티렌의 제조방법에 관한 것이다. 하나의 구체예에서 상기 방법은 휘발성 용제; 바인더; 및 단열성 입자를 포함하는 코팅액을 발포성 수지 입자에 코팅하고; 그리고 상기 코팅된 발포성 수지 입자를 건조하는 단계를 포함하며, 상기 바인더는 할로겐 함유 수지를 포함하는 것을 특징으로 한다.
다른 구체예에서 상기 방법은 발포성 수지 입자에 단열성 입자를 접촉시켜 발포성 수지 입자 표면에 단열성 입자를 형성시키고; 상기 단열성 입자가 표면에 형성된 발포성 수지 입자를 바인더와 휘발성 용제를 포함하는 혼합액으로 코팅하고; 그리고 상기 코팅된 발포성 수지입자를 건조하는 단계를 포함하며, 상기 바인더는 할로겐 함유 수지를 포함하는 것을 특징으로 한다.
상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부로 코팅할 수 있다.
상기 코팅액은 휘발성 용제 100 중량부, 바인더 약 1~100중량부 및 단열성 입자 약 5~100 중량부을 포함할 수 있다.
상기 혼합액은 휘발성 용제 100 중량부에 대하여 바인더 약 1~100중량부를 포함할 수 있다.
상기 휘발성 용제는 할로겐 함유 수지를 포함하는 바인더에 용해성을 갖는 것을 특징으로 한다.
상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
본 발명의 또 다른 관점은 발포성 수지 입자 코팅액에 관한 것이다. 상기 코팅액은 휘발성 용제; 할로겐 함유 수지; 및 단열성 입자를 포함한다.
상기 코팅액은 휘발성 용제 100 중량부, 바인더 약 1~100중량부 및 단열성 입자 약 5~100 중량부을 포함할 수 있다.
상기 휘발성 용제는 할로겐 함유 수지를 포함하는 바인더에 용해성을 가질 수 있다.
상기 바인더는 유리전이온도가 약 110 ℃ 이하일 수 있다.
상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
본 발명의 다른 관점은 상기 폴리스티렌를 발포시켜 형성된 폴리스티렌계 발포체에 관한 것이다. 상기 발포체는 상기 발포성 폴리스티렌를 발포시켜 형성되며, KS M 3808에 의한 압축강도가 약 5 N/cm2 이상이고, KS M 3808에 의한 굴곡강도가 약 20 N/cm2 이상이며, KS L 9016에 의한 열전도율이 약 0.034 W/m·K 이하이고, KS M ISO 9772에 의한 연소시간이 약 120 초 이내이고, 연소길이가 약 60 mm 이하인 것을 특징으로 한다.
본 발명은 난연제를 적용하지 않아도 난연성이 우수하고, 코팅층의 박리가 발생하지 않아 발포체의 강도가 우수하며, 저렴한 생산 단가 및 비교적 단순한 제조 공정으로 제조될 수 있는 발포성 폴리스티렌 및 그 제조방법과 상기 발포성 폴리스티렌을 이용하여 단열성 및 강도가 우수한 폴리스티렌 발포체와 상기 발포성 폴리스티렌의 제조를 위해 발포성 수지 입자와 박리가 일어나지 않는 코팅액을 제공하는 발명의 효과를 갖는다.
도 1은 본 발명의 하나의 구체예에 따른 발포성 폴리스티렌의 개략적인 단면도이다.
도 2는 본 발명의 다른 구체예에 따른 발포성 폴리스티렌의 개략적인 단면도이다.
본 발명의 발포성 폴리스티렌은 발포성 수지 입자; 및 상기 발포 수지 입자 표면에 형성된 코팅층으로 이루어진다.
상기 발포성 수지 입자는 통상의 발포성 스티렌 수지 입자가 사용될 수 있다. 하나의 구체예에서 상기 발포성 수지 입자는 현탁중합하여 제조된 발포성 폴리스티렌 비드일 수 있다. 다른 구체예에서는 상기 발포성 수지 입자는 압출하여 형성된 발포성 폴리스티렌 비드일 수 있다.
상기 발포성 수지 입자는 발포제를 함유할 수 있다. 상기 발포제는 본 발명이 속하는 기술분야에 잘 알려져 있으며, C3-6 의 탄화수소, 예컨대 프로판, 부탄 이소부탄, n-펜탄, 이소펜탄, 네오펜탄, 시클로펜탄, 헥산, 시클로헥산; 트리클로로플루오로메탄, 디클로로플루오로메탄, 디클로로테트라플루오로에탄 등과 같은 할로겐화 탄화수소 등이 사용될 수 있다. 이중 펜탄이 가장 바람직하다.
또한 상기 발포성 수지 입자는 핵제, 산화방지제, 탄소 입자, 충전제, 대전방지제, 가소제, 안료, 염료, 열안정제, UV 흡수제, 난연제 등이 포함될 수 있다. 이들 첨가제는 단독 또는 2종 이상 혼합되어 사용될 수 있다. 상기 탄소입자는 흑연, 카본블랙, 카본파이버, 카본나노튜브 등이 사용될 수 있으며, 단열성능을 더 높일 수 있다.
상기 발포성 수지 입자의 크기는 특별한 제한이 없다. 예를 들면, 약 0.1 내지 약 5 mm, 바람직하게는 약 0.5 내지 약 3 mm 일 수 있다.
상기 코팅층은 발포성 수지 입자 표면을 코팅액으로 코팅한 후, 건조하여 형성될 수 있다.
상기 코팅액은 휘발성 용제; 바인더; 및 단열성 입자를 포함하며, 상기 바인더는 할로겐 함유 수지를 포함하는 것을 특징으로 한다. 구체예에서, 상기 코팅액은 휘발성 용제 100 중량부, 바인더 약 1~100중량부 및 단열성 입자 약 5~100 중량부일 수 있다.
상기 휘발성 용제는 할로겐 함유 수지를 포함하는 바인더에 용해성을 갖는 것이 사용될 수 있다. 예를 들면, 탄소수 1~20의 탄화수소, 케톤 등이 사용될 수 있다. 구체예로는 사이클로헥산, 노르말헥산, 메틸에틸케톤, 톨루엔, 스티렌모노머, 메틸메타크릴레이트모노머, 메타크릴레이트모노머, 아세톤, 클로로포름, 테트라하이드로퓨란, 디메틸아세트아미드, 디메틸포름아미드, N-메틸피롤리돈 등이 있으며, 할로겐 함유 수지를 포함하는 바인더에 용해성을 갖는 것이면 이에 제한되지 않는다. 이들 용제는 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 바인더는 할로겐 함유 수지를 포함한다. 구체예에서는 상기 바인더는 상기 할로겐 함유 수지만을 사용하거나, 상기 할로겐 함유 수지와 함께 할로겐 비함유 수지를 혼합하여 사용할 수 있다. 다만 난연성을 고려하여 전체 바인더 성분중 50 중량% 이하의 범위로 사용될 수 있다.
상기 할로겐 함유 수지로는 유리전이온도가 약 110 ℃ 이하이며, 상기 휘발성 용제에 용해가 용이한 수지를 단독 또는 2종 이상 혼합하여 적용할 수 있다. 예를 들면 염화비닐수지, 아세트산비닐-염화비닐 공중합체, 디카르복실산-아세트산비닐-염화비닐 공중합체, 브롬화에폭시수지, 브롬화에폭시아크릴레이트수지, 불소수지 등이 사용될 수 있다.
상기 할로겐 비함유 수지로는 유리전이온도가 약 110 ℃ 이하이며, 휘발성 용제에 용해성이 있으면 제한없이 사용될 수 있다. 예를 들면 스티렌 함유 중합체, 탄소수 1~10의 알킬 (메타)아크릴레이트, 이들의 공중합체 또는 이들의 블렌드도 상기 할로겐 함유 수지와 혼합하여 적용될 수 있다. 구체예에서는 폴리스티렌, 스티렌-부타디엔 공중합체, 폴리메틸메타크릴레이트, 폴리부틸메타크릴레이트, 폴리부틸아크릴레이트, 스티렌-메틸메타크릴레이트 공중합체 등이 사용될 수 있다.
할로겐 함유 수지는 전체 바인더 성분중 약 50 ~ 100 중량%로 사용할 수 있다. 상기 범위에서 우수한 난연성을 얻을 수 있다.
할로겐 비함유 수지는 전체 바인더 성분중 약 0 ~ 50 중량%, 바람직하게는 약 0~10 중량%로 사용할 수 있다. 상기 범위에서 우수한 난연성을 얻을 수 있다.
상기 바인더는 휘발성 용제 100 중량부에 대하여 약 1~100 중량부, 바람직하게는 약 10~50 중량부로 사용될 수 있다.
상기 단열성 입자는 열전도율이 약 0.031 W/m·K 이하, 바람직하게는 약 0.0001~0.030 W/m·K 이다. 상기 범위에서 우수한 단열성을 부여할 수 있다.
또한 상기 단열성 입자는 평균입자크기(D50)가 약 0.01~100㎛, 바람직하게는 약 0.1~50㎛ 일 수 있다. 상기 범위에서 균일한 코팅성과 우수한 작업성을 갖는다.
상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 이중 바람직하게는 금, 은, 구리, 아연, 알루미늄, 백금 등을 포함하는 금속입자 및 흑연, 카본블랙을 포함하는 탄소입자이다.
상기 단열성 입자는 휘발성 용제 100 중량부에 대하여 약 5~100 중량부, 바람직하게는 약 5~70 중량부, 더욱 바람직하게는 약 10~50 중량부로 사용될 수 있다. 상기 범위에서 우수한 분산성 및 작업성을 갖는다.
본 발명의 코팅액은 휘발성 용제, 바인더 및 단열성 입자외에도 필요에 따라 블로킹방지제, 핵제, 산화방지제, 충전제, 대전방지제, 가소제, 안료, 염료, 열안정제, UV 흡수제, 난연제 등의 첨가제를 부가할 수 있다.
상기 제조된 코팅액은 발포성 수지 입자의 표면에 코팅된다. 코팅방법은 스프레이, 침지, 믹싱 등의 방법이 사용될 수 있으며, 반드시 이에 제한되는 것은 아니다. 구체예에서는 플레너터리 믹서를 이용하여 발포성 수지 입자에 코팅액을 코팅할 수 있다.
구체예에서는 상기 발포성 수지 입자 100 중량부에 대하여 코팅액 약 20~100 중량부로 사용될 수 있다. 바람직하게는 상기 단열성 입자와 발포성 수지 입자의 중량비는 발포성 수지 입자 약 100 중량부에 대하여 상기 단열성 입자를 약 1~10 중량부로 코팅한다. 상기 범위에서 단열성 향상효과가 우수하며, 압축 및 굴곡 강도의 발란스를 가질 수 있다.
다른 구체예에서 상기 코팅층은 발포성 수지 입자에 단열성 입자를 먼저 접촉시켜 발포성 수지 입자 표면에 단열성 입자를 형성시키고; 상기 단열성 입자가 표면에 형성된 발포성 수지 입자를 바인더와 휘발성 용제를 포함하는 혼합액으로 코팅하여 형성될 수도 있다.
이 경우 상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부로 코팅할 수 있다.
상기 혼합액은 휘발성 용제 100 중량부에 대하여 바인더 약 1~100중량부를 포함할 수 있다.
상기 혼합액은 발포성 수지 입자 100 중량부에 대하여 상기 혼합액 약 5~30 중량부로 사용될 수 있다.
이와 같이 코팅과정을 거친 후 건조시켜 휘발성 용제를 제거한다. 구체예에서 건조 조건은 약 20~60 ℃에서 약 0.1~5 시간 건조할 수 있다.
상기 건조과정을 거친 후 발포성 수지 입자 표면에 형성된 코팅층은 용매가 실질적으로 제거되어 할로겐 함유 수지를 포함하는 바인더 및 단열성 입자 성분이 남게 된다.
도 1은 본 발명의 하나의 구체예에 따른 발포성 폴리스티렌의 개략적인 단면도이다. 도시된 바와 같이, 발포성 수지 입자(10)의 표면에는 코팅층(20)이 형성되어 있으며, 상기 코팅층(20)은 할로겐 함유 수지를 포함하는 바인더(22)와 단열성 입자(21)를 포함한다.
상기 코팅층은 발포성 수지 입자 표면의 일부 또는 전부를 감쌀 수 있다. 바람직하게는 입자(A) 표면적의 약 90~100 % 감쌀 수 있다.구체예에서는 상기 코팅층은 발포성 수지 입자 표면에 일정한 두께로 감쌀 수 있다.
도 2는 본 발명의 다른 구체예에 따른 발포성 폴리스티렌의 개략적인 단면도이다. 도 2에 도시된 바와 같이 코팅층(20)이 발포성 수지 입자(10) 표면의 일부를 감쌀 수 있다. 상기 코팅층(20)은 할로겐 함유 수지를 포함하는 바인더(22)와 단열성 입자(21)를 포함한다.
또한 본 발명의 코팅층은 도 1에 도시된 바와 같이 단열성 입자가 코팅층에 전체적으로 균일하게 분산되어 있을 수 있으며, 도 2에 도시된 바와 같이 발포성 수지 입자에 인접될 수록 단열성 입자의 분포밀도가 높을 수도 있다.
본 발명의 또 다른 관점은 상기 발포성 폴리스티렌를 발포시켜 형성된 폴리스티렌계 발포체에 관한 것이다. 상기 발포체는 KS M 3808에 의한 압축강도가 약 5 N/cm2 이상이고, KS M 3808에 의한 굴곡강도가 약 20 N/cm2 이상이며, KS L 9016에 의한 열전도율이 약 0.034 W/m·K 이하이고, KS M ISO 9772에 의한 연소시간이 약 120 초 이내이고, 연소길이가 약 60 mm 이하일 수 있다.
본 발명의 발포체는 가전제품의 포장재, 농수산물 상자, 주택 단열재 등에 모두 적용될 수 있다.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
실시예
(a) 바인더
(a1) 아세트산비닐-염화비닐 공중합체(한화케미칼 CP-430)
(a2) 디카르복실산-아세트산비닐-염화비닐 공중합체(한화케미칼 TP-400M)
(a3)폴리비닐염화물(한화케미칼 P-700)
(a4)브롬화에폭시수지(국도화학 YDB-400H)
(a5)폴리스티렌(KAOFU사 GPS550P)
(a6)스티렌-부타디엔 공중합체(ASAHI CHEM사 ASAPRENE 420P)
(b) 휘발성 용제: 메틸에틸케톤(대정화금)
(c) 단열성 입자 : 흑연(TIMCAL사 S-249)
(d) 발포성 수지 입자(제일모직 SF-200H)
실시예 1
휘발성 용제로 메틸에틸케톤(대정화금) 100 중량부에 바인더로 할로겐 함유 수지인 아세트산비닐-염화비닐 공중합체(한화케미칼 CP-430) 10중량부를 용해한 후 단열성 입자로 흑연(TIMCAL사 S-249) 10중량부와 혼합하여 코팅액을 준비하였다. 발포성 수지 입자(제일모직 SF-200H) 100중량부에 상기 코팅액 20중량부를 헨셀 믹서를 이용하여 발포성 수지 입자에 코팅액를 코팅 후 코팅액에 혼합된 휘발성 용재를 제거하기 위하여 유동층 건조기를 이용하여 40℃에서 2시간 건조하여 코팅된 발포성 폴리스티렌를 얻었다. 얻어진 발포성 폴리스티렌는 통상의 발포성 스티렌수지 입자의 발포 및 성형 방법을 이용하여 단열성 이 우수한 발포체를 제조하였다. 상기와 같이 제조된 발포체를 300㎜×300㎜×50㎜크기로 절단 후 60℃ 이상의 온도에서 24시간 이상 건조 후 이를 다시 상온에서 24시간 보관한 다음 KS M 3808에서 규정하고 있는 단열판 4호, 비드법 2종에 대한 기준에 준하여 압축강도, 굴곡강도 및 단열성( KS L 9016에 의한 초기 열전도율)을 측정하였다.
실시예 2
할로겐 함유 수지로 디카르복실산-아세트산비닐-염화비닐 공중합체(한화케미칼 TP-400M) 을 사용하는 것을 제외하고 상기 실시예 1과 동일하게 수행하였다.
실시예 3
할로겐 함유 수지로 폴리비닐염화물(한화케미칼 P-700)를 사용하는 것을 제외하고 상기 실시예 1과 동일하게 수행하였다.
실시예 4
할로겐 함유 수지로 브롬화에폭시수지(국도화학 YDB-400H)를 사용하는 것을 제외하고 상기 실시예 1과 동일하게 수행하였다.
실시예 5
코팅액 제조시 단열성 입자를 혼합하지 않고 휘발성 용제와 할로겐입자를 포함하는 수지만을 사용하여 혼합액(A')을 제조하고, 단열성 입자를 발포성 수지 입자 100 중량부에 대하여 1.67중량부를 사전 코팅한 후 제조된 혼합액(A')을 18.3중량부를 혼합 코팅한 후 유동층 건조기를 이용하여 40℃에서 2시간 건조하여 코팅된 발포성 수지 입자를 얻는 것을 제외하고 실시예 1과 동일하게 진행하였다.
실시예 6
코팅액 제조시 할로겐 원소를 포함하는 수지 아세트산비닐-염화비닐 공중합체(한화케미칼 CP-430)를 휘발성 용매100 중량부에 대해서 5중량부를 사용하고, 폴리스티렌(KAOFU사 GPS550P) 5 중량부를 사용하는 것을 제외하고 실시예 1과 동일하게 진행하였다.
표 1
실시예
1 2 3 4 5 6
(a) 바인더 (a1) 10 - - - 10 5
(a2) - 10 - - - -
(a3) - - 10 - - -
(a4) - - - 10 - -
(a5) - - - - - 5
(b)용제 100 100 100 100 100 100
(c)단열성 입자 10 10 10 - 1.67 10
코팅액 : 발포성수지입자의 중량비[(a)+(b)+(c)] : (d) 20/100 20/100 20/100 20/100 - -
혼합액 : 발포성수지입자의 중량비[(a)+(b)] : (d) - - - - 18.3/100 -
밀도(Kg/㎥) 16.2 15.4 15.1 15.8 15.3 15.8
압축강도(N/㎠) 9.7 11.6 10.2 9.5 12.5 10.3
굴곡강도(N/㎠) 23.3 24.2 22.5 23.1 26.3 24.3
열전도율(W/m·K) 0.033 0.0034 0.034 0.034 0.033 0.033
연소성 연소시간 60 63 58 54 67 102
연소길이 37 35 36 31 39 45
물성측정방법
(1) 밀도: KS M 3808에 규정된 방법으로 측정하였다. KS 규격 기준은 단열판 4호의 경우 15kg/㎥ 이상이다.
(2) 압축강도(N/cm2): 샘플 비중이 15Kg/㎥±1.5Kg/㎥에서 한국공업규격 KS M 3808에 규정된 단열판 4호, 비드법 2종에 대한 기준의 압축강도 측정 방법에 준하여 측정하였다. KS 규격 기준은 약 5 N/cm2이상이다.
(3) 굴곡강도(N/cm2): 샘플 비중이 15Kg/㎥±1.5Kg/㎥에서 한국공업규격 KS M 3808에 규정된 단열판 4호, 비드법 2종에 대한 기준의 굴곡강도 측정 방법에 준하여 측정하였다. KS 규격 기준은 약 20 N/cm2이상이다.
(4) 열전도율(W/m·K): 샘플의 비중이 15Kg/㎥±1.5Kg/㎥에서 NETZSCH Gerate bau GmbH의 Heat Flow Meter(Model : HFM 436)를 이용하여 한국산업규격 KS L 9016에 규정된 보온재의 열전도율 측정 방법으로 측정하였다. KS 규격 (KS M 3808) 기준은 단열판 4호의 경우 약 0.034 W/m·K 이하이다.
비교실시예 1
할로겐 함유 수지를 사용하지 않고, 폴리스티렌(KAOFU사 GPS550P)를 사용한 것을 제외하고는 실시예 1과 동일하게 진행하였다.
비교실시예 2
할로겐 함유 수지를 사용하지 않고, 스티렌-부타디엔 공중합체(ASAHI CHEM사 ASAPRENE 420P)를 사용한 것을 제외하고는 실시예 1과 동일하게 진행하였다.
표 2
비교실시예
1 2
(a) 바인더 (a5) 10 -
(a6) - 10
(b)용제 100 100
(c)단열성 입자 10 10
코팅액 : 발포성수지입자의 중량비[(a)+(b)+(c)] : (d) 20/100 20/100
밀도(Kg/㎥) 15.3 15.5
압축강도(N/㎠) 10.2 11.7
굴곡강도(N/㎠) 22.4 24.7
열전도율(W/m·K) 0.033 0.034
연소성 연소시간 132 141
연소길이 77 82
상기 표 1 및 2에 나타난 바와 같이, 비교예 1-2는 단열성(열전도율), 압축 및 굴곡 강도는 기준에 부합되지만, 난연성을 확보할 수 없었다. 실시예의 경우 모든 경우에 KS 규격 기준 이상의 물성 확인되었으며, 난연제를 적용하지 않고도 우수한 난연성을 달성할 수 있음을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (18)

  1. 발포성 수지 입자; 및
    상기 발포 수지 입자 표면에 형성된 코팅층;
    으로 이루어지며, 상기 코팅층은 바인더 및 단열성 입자를 포함하며,
    상기 바인더는 할로겐 함유 수지를 포함하는 단열성 및 난연성이 우수한 발포성 폴리스티렌.
  2. 제1항에 있어서, 상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부인 것을 특징으로 하는 단열성 및 난연성이 우수한 발포성 폴리스티렌.
  3. 제1항에 있어서, 상기 코팅층은 발포성 수지 입자 표면의 일부 또는 전부를 감싸는 것을 특징으로 하는 단열성 및 난연성이 우수한 발포성 폴리스티렌.
  4. 제1항에 있어서, 상기 바인더는 유리전이온도가 약 110 ℃ 이하인 단열성 및 난연성이 우수한 발포성 폴리스티렌.
  5. 제1항에 있어서, 상기 할로겐 함유 수지는 염화비닐수지, 아세트산비닐-염화비닐 공중합체, 디카르복실산-아세트산비닐-염화비닐 공중합체, 브롬화에폭시수지, 브롬화에폭시아크릴레이트수지, 불소수지로 이루어진 군으로부터 하나 이상 포함하는 것을 특징으로 하는 단열성 및 난연성이 우수한 발포성 폴리스티렌.
  6. 제1항에 있어서, 상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 단열성 및 난연성이 우수한 발포성 폴리스티렌.
  7. 휘발성 용제, 바인더, 및 단열성 입자를 포함하는 코팅액을 발포성 수지 입자에 코팅하고; 그리고
    상기 코팅된 발포성 수지 입자를 건조하는;
    단계를 포함하고,
    상기 바인더는 할로겐 함유 수지를 포함하는 것을 특징으로 하는 단열성 및 난연성이 우수한 발포성 폴리스티렌의 제조방법.
  8. 발포성 수지 입자에 단열성 입자를 접촉시켜 발포성 수지 입자 표면에 단열성 입자를 형성시키고;
    상기 단열성 입자가 표면에 형성된 발포성 수지 입자를 바인더와 휘발성 용제를 포함하는 혼합액으로 코팅하고; 그리고
    상기 코팅된 발포성 수지입자를 건조하는;
    단계를 포함하고, 상기 바인더는 할로겐 함유 수지를 포함하는 것을 특징으로 하는 단열성 및 난연성이 우수한 발포성 폴리스티렌의 제조방법.
  9. 제7항 및 제8항중 어느 한 항에 있어서, 상기 단열성 입자는 발포성 수지 입자 100 중량부에 대하여 약 1~10 중량부로 코팅하는 것을 특징으로 하는 단열성 및 난연성이 우수한 발포성 폴리스티렌의 제조방법.
  10. 제7항에 있어서, 상기 코팅액은 휘발성 용제 100 중량부, 바인더 약 1~100 중량부 및 단열성 입자 약 5~100 중량부을 포함하는 것을 특징으로 하는 방법.
  11. 제8항에 있어서, 상기 혼합액은 휘발성 용제 100 중량부에 대하여 바인더 약 1~100 중량부를 포함하는 것을 특징으로 하는 방법.
  12. 제7항 및 제8항중 어느 한 항에 있어서, 상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 방법.
  13. 휘발성 용제; 바인더; 및 단열성 입자를 포함하며,
    상기 바인더는 할로겐 함유 수지를 포함하는 것을 특징으로 하는 발포성 수지 입자 코팅액.
  14. 제13항에 있어서, 상기 코팅액은 휘발성 용제 100 중량부, 바인더 약 1~100 중량부 및 단열성 입자 약 5~100 중량부인 것을 특징으로 하는 코팅액.
  15. 제14항에 있어서, 상기 휘발성 용제는 바인더에 용해성을 갖는 것을 특징으로 하는 코팅액.
  16. 제13항에 있어서, 상기 바인더는 유리전이온도가 약 110 ℃ 이하인 것을 특징으로 하는 코팅액.
  17. 제13항에 있어서, 상기 단열성 입자는 탄소입자, 금속입자, 금속 산화물 입자, 에어로겔, 제올라이트, 질석으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 코팅액.
  18. 제1항 내지 제6항중 어느 한 항의 발포성 폴리스티렌를 발포시켜 형성되며, KS M 3808에 의한 압축강도가 약 5 N/cm2 이상이고, KS M 3808에 의한 굴곡강도가 약 20 N/cm2 이상이며, KS L 9016에 의한 열전도율이 약 0.034 W/m·K 이하이고, KS M ISO 9772에 의한 연소시간이 약 120 초 이내이고, 연소길이가 약 60 mm 이하인 폴리스티렌계 발포체.
PCT/KR2011/010332 2011-12-20 2011-12-29 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체 WO2013094800A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0138671 2011-12-20
KR1020110138671A KR20130071268A (ko) 2011-12-20 2011-12-20 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체

Publications (1)

Publication Number Publication Date
WO2013094800A1 true WO2013094800A1 (ko) 2013-06-27

Family

ID=48668670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010332 WO2013094800A1 (ko) 2011-12-20 2011-12-29 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체

Country Status (2)

Country Link
KR (1) KR20130071268A (ko)
WO (1) WO2013094800A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100315A (zh) * 2019-12-20 2020-05-05 中广核俊尔(浙江)新材料有限公司 具有良好阻燃性和热稳定性的热膨胀性微球及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501412B1 (ko) * 2014-04-03 2015-03-10 정임 한 난연성 발포 폴리스티렌계 비드 및 이의 제조방법
KR101662546B1 (ko) * 2014-11-17 2016-10-05 현대이피 주식회사 단열성이 향상된 발포성 폴리스티렌의 제조방법
KR101577957B1 (ko) * 2015-04-09 2015-12-16 김재천 플라즈마로 표면 처리한 발포성 폴리스티렌 중합체 조성물
KR102200084B1 (ko) 2019-03-04 2021-01-19 (주)파인스 소풍구 교체용 운반리프팅 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839651B1 (ko) * 2006-01-17 2008-06-19 주식회사 동부하이텍 알루미늄 입자로 코팅된 발포성 폴리스티렌 비드, 및 그제조 방법
KR100927667B1 (ko) * 2007-05-14 2009-11-20 김재천 단열성과 난연성이 향상된 발포성 폴리스티렌 입자 및 그제조방법
US7772294B2 (en) * 2002-12-18 2010-08-10 Synbra Technology B.V. Fire resistant materials
KR101028523B1 (ko) * 2009-05-19 2011-04-11 남가연 고단열성 발포성 폴리스티렌 입자 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772294B2 (en) * 2002-12-18 2010-08-10 Synbra Technology B.V. Fire resistant materials
KR100839651B1 (ko) * 2006-01-17 2008-06-19 주식회사 동부하이텍 알루미늄 입자로 코팅된 발포성 폴리스티렌 비드, 및 그제조 방법
KR100927667B1 (ko) * 2007-05-14 2009-11-20 김재천 단열성과 난연성이 향상된 발포성 폴리스티렌 입자 및 그제조방법
KR101028523B1 (ko) * 2009-05-19 2011-04-11 남가연 고단열성 발포성 폴리스티렌 입자 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100315A (zh) * 2019-12-20 2020-05-05 中广核俊尔(浙江)新材料有限公司 具有良好阻燃性和热稳定性的热膨胀性微球及其制备方法

Also Published As

Publication number Publication date
KR20130071268A (ko) 2013-06-28

Similar Documents

Publication Publication Date Title
WO2013094800A1 (ko) 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체
WO2010134736A2 (ko) 고단열성 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로부터 제조된 스티로폴
CA2561824C (en) Ceramifying composition for fire protection
WO2010128760A2 (ko) 성형성이 우수한 스킨층을 갖는 발포폴리스티렌 입자와 그 제조방법, 이를 이용한 발포폴리스티렌 성형물
WO2012005424A1 (ko) 난연성 발포 폴리스티렌계 비드 및 그 제조방법
WO2012023695A2 (ko) 불연성 도막 형성용 조성물 및 이로부터 얻어진 불연성 도막
WO2015030273A1 (ko) 단열성 발포성 폴리스티렌 입자 및 단열성 발포성 폴리스티렌 입자의 제조방법
CN111849344B (zh) 一种环保建筑防火涂料及其制备方法
WO2016056717A1 (ko) 발포 폴리스티렌용 난연성 코팅제 조성물
CN103342845B (zh) 防火材料及其制备方法,轻质防火铝塑板
WO2013069845A1 (ko) 단열성 및 작업성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체
CN114181457A (zh) 一种无卤阻燃母粒及其制备方法、增强聚丙烯复合材料
WO2012091381A2 (ko) 발포 폴리스티렌계 비드 및 그 제조방법
WO2012020894A1 (ko) 난연성 발포 폴리스티렌계 중합형 비드 및 그 제조방법
KR20150000051A (ko) 발포 폴리스타이렌 폼 난연성 조성물 및 그 제조방법
CZ296454B6 (cs) Polyolefinová mekcená penová hmota a zpusob její výroby
WO2022139218A1 (ko) 발포기공을 갖는 비구속형 제진 금속판 및 그 제조방법
CN115895134A (zh) 一种建筑节能保温隔热材料及其制备方法和应用
KR101345148B1 (ko) 염소화파라핀이 침투된 발포성 폴리스티렌 입자 및 그 제조방법
WO2014104591A1 (ko) 화학가교 폴리비닐클로라이드계 난연 발포단열재 및 그의 제조방법
CN114133675A (zh) 一种阻燃性好的聚苯乙烯泡沫材料及其制备工艺
WO2019103376A2 (ko) 발포 폴리 스티렌 입자의 제조 방법 및 발포 폴리 스티렌 입자
WO2018124625A1 (ko) 발포성 수지 조성물, 이를 이용한 발포체 및 제조방법
CN110982196A (zh) 一种适用于充电站的泡沫防火材料
KR20220021801A (ko) 난연성 eps 비드 제조용 유무기복합 난연성조성물, 상기 조성물로 코팅된 난연성 eps 비드 및 상기 난연성 eps 비드 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878303

Country of ref document: EP

Kind code of ref document: A1