WO2013069657A1 - 立方晶窒化硼素焼結体 - Google Patents

立方晶窒化硼素焼結体 Download PDF

Info

Publication number
WO2013069657A1
WO2013069657A1 PCT/JP2012/078774 JP2012078774W WO2013069657A1 WO 2013069657 A1 WO2013069657 A1 WO 2013069657A1 JP 2012078774 W JP2012078774 W JP 2012078774W WO 2013069657 A1 WO2013069657 A1 WO 2013069657A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
cubic boron
sintered body
nitride sintered
binder phase
Prior art date
Application number
PCT/JP2012/078774
Other languages
English (en)
French (fr)
Inventor
雄一郎 福島
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to JP2013542993A priority Critical patent/JP5664795B2/ja
Priority to EP12847199.2A priority patent/EP2778146B1/en
Priority to US14/356,812 priority patent/US9327352B2/en
Publication of WO2013069657A1 publication Critical patent/WO2013069657A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5068Titanium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a cubic boron nitride sintered body having a high cubic boron nitride content.
  • Cubic boron nitride has excellent strength as a tool material that has the second highest hardness and excellent thermal conductivity after diamond and has a lower affinity with iron than diamond.
  • many studies have been made on a cubic boron nitride sintered body having a high cubic boron nitride content.
  • cubic boron nitride sintered bodies having a high cubic boron nitride content include cubic boron nitride: 88 to 97% by volume, carbides, nitrides, borides of W, Co, and Al, and solid solutions thereof.
  • a cubic boron nitride sintered body composed of a binder phase consisting of at least one selected from the above and inevitable impurities: the balance, wherein the binder phase contains B 6 Co 21 W 2 and B 6
  • the binder phase contains B 6 Co 21 W 2 and B 6
  • the intensity ratio indicating the ratio of Iw to Ib is Iw / Ib.
  • a cubic boron nitride sintered body having a 0.10 to 0.40 is known (see, for example, Patent Document 1).
  • cubic boron nitride molded body including a polycrystalline lump of cubic boron nitride particles present in an amount of at least 70 volume percent and a binder phase that is a metal in nature (see, for example, Patent Document 2). .).
  • the invention of the above-mentioned Patent Document 1 has a problem that it has become unable to sufficiently meet the demands in recent cutting work in terms of fracture resistance and toughness.
  • the binder phase which is a metal is easily worn and wear resistance is low.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a cubic boron nitride sintered body excellent in wear resistance and fracture resistance.
  • the inventor has conducted research on a cubic boron nitride sintered body, and as a result of improving the binder phase, the bonding of cubic boron nitride particles becomes stronger, and the toughness of the cubic boron nitride sintered body is improved. I got the knowledge. In addition, it was also found that the wear of the cubic boron nitride sintered body can be suppressed by changing the binder phase of the cubic boron nitride sintered body from a metal to a compound, thereby reducing the wear of the binder phase.
  • the gist of the present invention is as follows.
  • Cubic boron nitride is composed of 85 to 95% by volume, and a binder phase and inevitable impurities: 5 to 15% by volume, and the binder phase includes Al, V, Cr, Mn, Co, Ni, Nb and Consisting of three or more compounds selected from the group consisting of carbides, nitrides, carbonitrides, oxides and their mutual solid solutions selected from the group consisting of Mo and included in the cubic boron nitride sintered body
  • the amount of aluminum element to be added is 0.5 to 5% by mass with respect to the total mass of the cubic boron nitride sintered body, provided that the binder phase does not include simple metals and alloys. Boron sintered body.
  • the binder phase is a carbide, nitride, or carbonitride of an element selected from the group consisting of at least one compound of AlN and Al 2 O 3 and V, Cr, Mn, Co, Ni, Nb, and Mo. And a cubic boron nitride sintered body according to (1), which comprises two or more compounds selected from the group consisting of a solid solution and a mutual solid solution thereof.
  • the binder phase is selected from the group consisting of at least one compound of AlN and Al 2 O 3 and Co 5.47 N, Cr 2 N, CrN, Cr 3 C 2 , Mo 2 C and VC.
  • the amount of tungsten element contained in the cubic boron nitride sintered body is 5% by mass or less based on the total mass of the cubic boron nitride sintered body, according to any one of (1) to (5) Cubic boron nitride sintered body.
  • the simple metal and alloy not included in the binder phase are metals in which the single metal is composed of one kind of metal element, and the alloy is a metal composed of two or more kinds of metal elements
  • (1) The coated cubic boron nitride sintered body according to any one of (6) to (6).
  • At least one metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, and Si, and at least one oxide or carbide of these metals The coated cubic boron nitride sintered body according to (9), comprising at least one selected from the group consisting of nitrides, borides, and mutual solid solutions thereof.
  • the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance, fracture resistance and toughness. Therefore, when the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are used as a cutting tool or a wear-resistant tool, an effect that the tool life can be extended is obtained.
  • the cubic boron nitride sintered body of the present invention has a cubic boron nitride: 85 to 95% by volume with respect to the total mass of the cubic boron nitride sintered body, a binder phase and inevitable impurities: cubic boron nitride sintered.
  • the cubic boron nitride sintered body is composed of 5 to 15% by volume with respect to the total mass of the body, and the total of these is 100% by volume.
  • the amount of cubic boron nitride exceeds 95% by volume and the binder phase and unavoidable impurities are less than 5% by volume, the cubic boron nitride particles easily fall off.
  • cubic boron nitride when the cubic boron nitride is less than 85% by volume and the binder phase and inevitable impurities are more than 15% by volume, the wear resistance of the cubic boron nitride sintered body is lowered. Therefore, cubic boron nitride was set to 85 to 95% by volume, and the binder phase and unavoidable impurities were set to 5 to 15% by volume. Among them, cubic boron nitride: 89 to 95% by volume, and the balance is preferably a binder phase and inevitable impurities.
  • the cubic boron nitride and the content (volume%) of the binder phase and inevitable impurities were photographed at 1000 to 5000 times by photographing the cross-sectional structure of the cubic boron nitride sintered body with an SEM (scanning electron microscope).
  • the cross-sectional structure photograph can be image-analyzed and obtained from each surface area ratio.
  • the binder phase of the present invention is selected from the group consisting of carbides, nitrides, carbonitrides, oxides and their mutual solid solutions of elements selected from Al, V, Cr, Mn, Co, Ni, Nb and Mo. It consists of three or more compounds. Preferably, at least one of AlN (PDF card No. 25-1133) and Al 2 O 3 (PDF card No. 10-0173), V, Cr, Mn, Co, Ni, Nb, Mo carbide, nitriding And two or more selected from the group consisting of solids, carbonitrides and their mutual solid solutions.
  • PDF card no. Is a number identifying a substance described in Powder Diffraction File PDF-2 Release 2004 of International Center for Diffraction Data. Since the binder phase of the present invention is composed of these compounds and does not contain simple metals or alloys, the wear of the binder phase can be suppressed.
  • the simple metal means a metal composed of one kind of metal element
  • the alloy means a metal composed of two or more kinds of metal elements.
  • an intermetallic compound in which two or more metal elements are bonded at a certain ratio is a kind of alloy, and the binder phase of the present invention does not include an intermetallic compound. That is, since the entire cubic boron nitride sintered body does not contain a single metal or an alloy, the effect of improving the wear resistance of the cubic boron nitride sintered body can be obtained.
  • the binder phase of the present invention is selected from the group consisting of at least one of AlN and Al 2 O 3 and Co 5.47 N, CrN, Cr 2 N, Cr 3 C 2 , Mo 2 C and VC 2 More preferably, it comprises more than seeds, and among them, it is more preferred that the binder phase contains Co 5.47 N and Cr 2 N, and among these, the binder phase comprises Al 2 O 3 , AlN, Co 5.47 N and Cr 2 N. More preferably.
  • the cubic boron nitride sintered body of the present invention contains 0.5 to 5% by mass of aluminum element with respect to the total mass of the cubic boron nitride sintered body.
  • Aluminum element combines with oxygen adsorbed on the raw material powder, and has the effect of strengthening the bond between cubic boron nitride particles and the binder phase.
  • the amount of aluminum element contained in the cubic boron nitride sintered body is less than 0.5% by mass, the action of combining with oxygen is insufficient and the cubic boron nitride particles are likely to fall off.
  • the amount of aluminum element contained in the cubic boron nitride sintered body of the present invention is set to 0.5 to 5% by mass with respect to the total mass of the cubic boron nitride sintered body.
  • the aluminum element amount is preferably 0.5 to 4% by mass with respect to the total mass of the cubic boron nitride sintered body.
  • the amount of aluminum element in the cubic boron nitride sintered body of the present invention can be measured using an EDS (energy dispersive X-ray analyzer) or the like.
  • the average particle size of the cubic boron nitride of the present invention is not particularly limited. However, when the average particle size of the cubic boron nitride is less than 0.5 ⁇ m, the surface adsorbed oxygen amount of the cubic boron nitride increases and the average particle size is increased. The sintering reaction tends to be hindered and the sinterability tends to decrease. When the average particle size exceeds 5 ⁇ m, the binder phase tends to aggregate and the thickness of the brittle binder phase is larger than that of cubic boron nitride. Therefore, the average particle size of the cubic boron nitride of the present invention is preferably 0.5 to 5 ⁇ m. Among these, the average particle diameter of cubic boron nitride is more preferably 1 to 3 ⁇ m.
  • Examples of impurities inevitably contained in the cubic boron nitride sintered body of the present invention include lithium element mixed from the raw material powder and tungsten element mixed in the mixing step of the raw material powder.
  • the total amount of inevitable impurities is generally 5% by mass or less with respect to the total mass of the cubic boron nitride sintered body, and more preferably 3% by mass or less.
  • tungsten element is contained in the cubic boron nitride sintered body as a compound such as WC and WB. There is a tendency for the cutting performance of the boron nitride sintered body to decrease.
  • the amount of tungsten element contained in the cubic boron nitride sintered body of the present invention is preferably 5% by mass or less with respect to the total mass of the cubic boron nitride sintered body because cutting performance is improved. More preferably, the amount of tungsten element is 3% by mass or less. Most of the tungsten element contained as an inevitable impurity in the cubic boron nitride sintered body of the present invention is derived from a cemented carbide ball used for ball mill mixing.
  • the amount of tungsten element contained in the cubic boron nitride sintered body of the present invention is adjusted by adjusting the composition of the cemented carbide ball, the amount of the cemented carbide ball used, the size of the cylinder, and the ball mill mixing time. Can be adjusted.
  • the amount of tungsten element contained in the cubic boron nitride sintered body of the present invention can be measured using an EDS (energy dispersive X-ray analyzer) or the like.
  • At least one metal selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al and Si, at least one oxide of these metals, carbide Mention may be made of at least one selected from the group consisting of nitrides, borides and their mutual solid solutions. Specific examples include TiN, TiC, TiCN, TiAlN, TiSiN, and CrAlN.
  • the coating is preferably either a single layer or a laminate of two or more layers, and is also preferably an alternately laminated film in which thin films having different film thicknesses of 5 to 200 nm are alternately laminated. When the average film thickness is less than 0.5 ⁇ m, the effect of extending the tool life is reduced. When the average film thickness exceeds 15 ⁇ m, the fracture resistance tends to decrease. It is preferably 15 ⁇ m, more preferably 1 to 10 ⁇ m, and most preferably 1.5 to 5 ⁇ m.
  • the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance, fracture resistance and toughness, they are preferably used as cutting tools and wear resistant tools. More preferably, it is used as a tool, and more preferably, it is used as a cutting tool for sintered metal or a cutting tool for cast iron.
  • the cubic boron nitride sintered body of the present invention can be obtained, for example, by the following manufacturing method.
  • raw material powders cubic boron nitride powder having an average particle size of 0.5 to 8 ⁇ m, aluminum powder having an average particle size of 5 to 20 ⁇ m, and V, Cr, Mn, Co, Ni, having an average particle size of 0.5 to 5 ⁇ m
  • a binder phase forming powder composed of two or more selected from the group consisting of Nb, Mo metal, carbide, nitride, carbonitride, and their mutual solid solution is prepared.
  • the average particle diameter of the raw material powder is measured by the Fisher method (Fisher Sub-Sieve Sizer (FSSS)) described in American Society for Testing and Materials (ASTM) standard B330.
  • the prepared raw material powders consisted of cubic boron nitride powder: 85 to 95% by volume, aluminum powder: 0.5 to 8% by volume, and binder phase forming powder: 3 to 14.5% by volume. It mix
  • the shape of aluminum powder is not specifically limited, In this invention, it can be used even if it is any shape, such as spherical shape, scale shape, and needle shape. Paraffin is added to the blended raw material powder and mixed.
  • the obtained mixture is molded and subjected to vacuum heat treatment at a temperature of 700 to 1000 ° C. in a vacuum of 5 ⁇ 10 ⁇ 3 Pa or less to remove organic substances such as paraffin, and then put into an ultrahigh pressure and high temperature generator. It is obtained by sintering under conditions of pressure 6 to 8 GPa, temperature 1700 to 2000 ° C. and holding time 20 to 60 minutes.
  • the cubic boron nitride sintered body of the present invention is processed into a predetermined shape by a laser cutting machine or the like to produce a cutting tool or wear-resistant tool provided with the cubic boron nitride sintered body of the present invention. Can do.
  • the coated cubic boron nitride sintered body of the present invention can be obtained by forming a film on the surface of the cubic boron nitride sintered body of the present invention by a conventional CVD method or PVD method.
  • cBN Cubic boron nitride
  • Cr powder having an average particle size of 4.9 ⁇ m
  • Cr 2 N powder having an average particle size of 3.0 ⁇ m
  • Cr 3 having an average particle size of 2.7 ⁇ m C 2 powder
  • VC powder with an average particle size of 2.7 ⁇ m
  • Mo 2 C powder with an average particle size of 2.5 ⁇ m
  • TiN powder with an average particle size of 1.8 ⁇ m
  • WC powder with an average particle size of 2.2 ⁇ m
  • Co powder and a scaly aluminum (Al) powder having an average particle size of 20 ⁇ m were prepared and blended in the blending composition shown in Table 1.
  • the average particle diameter of the raw material powder was measured by the Fisher method (Fisher Sub-Sieve Sizer (FSSS)) described in American Society for Testing and Materials (ASTM) standard B330.
  • the blended raw material powder was placed in a ball mill cylinder together with a cemented carbide ball, an n-hexane solvent and paraffin, and ball mill mixing was performed for 24 hours. After the mixed powder obtained by mixing and pulverizing with a ball mill was compacted, it was deparaffinized under conditions of a pressure of 5 ⁇ 10 ⁇ 3 Pa and a temperature of 750 ° C.
  • the compacted body that has been deparaffinized is enclosed in a metal capsule, the metal capsule is placed in an ultra-high pressure and high temperature generator, and sintered under a pressure of 7.0 GPa, a temperature of 1900 ° C., and a holding time of 30 minutes. Cubic boron nitride sintered bodies were obtained.
  • the cross-sectional structure of the cubic boron nitride sintered body thus obtained was observed using SEM (HITACHI SEM S-3000H), and the composition was analyzed using EDS (HORIBA EMAX EX-300).
  • EDS HORIBA EMAX EX-300.
  • the cBN content (% by volume) and the binder phase content (% by volume) were determined from the respective surface areas.
  • the amount of aluminum (Al) element (mass%) and the amount of tungsten (W) element (mass%) contained in the entire cubic boron nitride sintered body were quantitatively analyzed by EDS.
  • the cubic boron nitride sintered body is cut into a predetermined shape with a laser cutting machine, brazed to a cemented carbide base material, and subjected to grinding finish processing to form an ISO standard CNGA120408 cutting insert
  • the cutting tool was obtained.
  • the following cutting tests (1) and (2) were performed using these cutting inserts. The results are shown in Table 3.
  • Cutting test (1) Perimeter continuous wet cutting (turning), Work material: Carburized and quenched sintered metal (chemical component C: 0.2 to 1.0 mass%, Fe: remainder, other: 1 mass% or less (equivalent to the former JIS standard SMF4040), HRA 63 to 65), Work material shape: Cylinder ⁇ 45mm ⁇ 85mm, Cutting speed: 250 m / min, Cutting depth: 0.2 mm, Feed: 0.1 mm / rev, Insert shape: CNGA120408, Holder: DCLNR2525M12, Evaluation: Cutting time until the corner wear amount VBc reaches 0.15 mm or cutting time until a defect.
  • Cutting test (2) Peripheral intermittent wet cutting (turning), Work material: Sintered metal (Chemical component C: 0.2 to 1.0 mass%, Fe: remainder, others: 1 mass% or less (equivalent to the former JIS standard SMF4040), HRB 77 to 80), Work material shape: Gear shape ⁇ 45mm (tooth height 8mm) x 30mm, Cutting speed: 300 m / min, Cutting depth: 0.2 mm, Feed: 0.1 mm / rev, Insert shape: CNGA120408, Holder: DCLNR2525M12, Evaluation: Cutting time until the corner wear amount VBc reaches 0.15 mm or cutting time until a defect.
  • the cubic boron nitride sintered body of the present invention is superior in wear resistance and fracture resistance, and therefore has a longer tool life than the comparative cubic boron nitride sintered body.
  • Example 2 The raw material powder of Example 1 was blended in the blending composition shown in Table 4, and a cubic boron nitride sintered body was produced by the same production method as in Example 1.
  • the obtained cubic boron nitride sintered body was subjected to various measurements by the same measurement method as in Example 1. The results are shown in Table 5.
  • a cubic boron nitride sintered body was processed in the same manner as in Example 1 to obtain a cutting tool having an ISO standard CNGA120408 cutting insert shape. Using these cutting inserts, cutting tests (1) and (2) under the same test conditions as in Example 1 were performed. The results are shown in Table 6.
  • Example 3 The raw material powder of Example 1 was blended in the blending composition shown in Table 7, and a cubic boron nitride sintered body was produced by the same production method as in Example 1.
  • a cubic boron nitride sintered body was processed in the same manner as in Example 1 to obtain a cutting tool having an ISO standard CNGA120408 cutting insert shape. Using these cutting inserts, cutting tests (1) and (2) under the same test conditions as in Example 1 were performed. The results are shown in Table 9.
  • Example 4 The surface of Invention 1 of Example 1 was coated using a PVD apparatus.
  • Inventive product 17 was obtained by forming a TiN film having an average film thickness of 3 ⁇ m on the surface of Invention product 1
  • Invented product 18 was formed by forming a TiAlN film having an average film thickness of 3 ⁇ m on the surface of Invention product 1.
  • the inventive products 17 and 18 were subjected to the same cutting tests (1) and (2) as in Example 1. The results are shown in Table 10.
  • Inventive products 17 and 18 with a coating formed could have a longer tool life than Invention 1 without a coating.
  • a cubic boron nitride sintered body and a coated cubic boron nitride sintered body excellent in wear resistance, fracture resistance and toughness can be provided.
  • the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are used as a cutting tool or a wear-resistant tool, an effect that the tool life can be extended is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 本発明は、耐摩耗性および耐欠損性に優れた立方晶窒化硼素焼結体を提供することを目的とし、立方晶窒化硼素:85~95体積%と、結合相および不可避的不純物:5~15体積%とから構成され、結合相は、Al、V、Cr、Mn、Co、Ni、NbおよびMoから成る群より選択された元素の炭化物、窒化物、炭窒化物、酸化物およびこれらの相互固溶体から成る群より選択された3種以上の化合物とからなり、立方晶窒化硼素焼結体に含まれるアルミニウム元素量は立方晶窒化硼素焼結体の全質量に対して0.5~5質量%であり、但し、結合相中に金属単体および合金は含まれないことを特徴とする立方晶窒化硼素焼結体を提供する。

Description

立方晶窒化硼素焼結体
 本発明は、立方晶窒化硼素含有率の高い立方晶窒化硼素焼結体に関する。
 立方晶窒化硼素(cBN)は、ダイヤモンドに次ぐ高い硬度と優れた熱伝導性を持ち、しかもダイヤモンドに比べて鉄との親和性が低いという工具材料としての優れた長所を有している。近年、立方晶窒化硼素含有率の高い立方晶窒化硼素焼結体について多くの検討がなされている。
 立方晶窒化硼素含有率が高い立方晶窒化硼素焼結体の従来技術としては、立方晶窒化硼素:88~97体積%と、W、Co、Alの炭化物、窒化物、硼化物およびこれらの固溶体の中から選ばれた少なくとも1種からなる結合相と不可避不純物:残部とで構成された立方晶窒化硼素焼結体であって、結合相はB6Co212を含有するとともに、B6Co212の(420)面のX線回折強度をIw、立方晶窒化硼素の(111)面のX線回折強度をIbと表したとき、Ibに対するIwの割合を示す強度比Iw/Ibが0.10~0.40となる立方晶窒化硼素焼結体が知られている(例えば、特許文献1参照。)。
 また、少なくとも70体積パーセントの量で存在する立方晶窒化硼素粒子の多結晶塊と、性質上金属であるバインダ相とを含む立方晶窒化硼素成形体が知られている(例えば、特許文献2参照。)。
特開2004-331456号公報 特開2010-512300号公報
 しかしながら、上記特許文献1の発明は、耐欠損性および靭性の点で、近年の切削加工における要求に対して十分に応えられなくなってきたという問題がある。また、上記特許文献2の発明では、金属である結合相が摩耗しやすく、耐摩耗性が低いという問題がある。本発明は、上記問題を解決するためになされたもので、耐摩耗性および耐欠損性に優れた立方晶窒化硼素焼結体を提供することを目的とする。
 本発明者は、立方晶窒化硼素焼結体に関する研究を行ってきたところ、結合相を改良することで立方晶窒化硼素粒子の結合が強固となり、立方晶窒化硼素焼結体の靭性が向上するとの知見を得た。また、立方晶窒化硼素焼結体の結合相を金属から化合物にすることにより、結合相の摩耗が抑えられ、立方晶窒化硼素焼結体の耐摩耗性が向上するとの知見をも得た。
 本発明の要旨は次の通りである。
(1)立方晶窒化硼素:85~95体積%と、結合相および不可避的不純物:5~15体積%とから構成され、結合相は、Al、V、Cr、Mn、Co、Ni、NbおよびMoから成る群より選択された元素の炭化物、窒化物、炭窒化物、酸化物およびこれらの相互固溶体から成る群より選択された3種以上の化合物からなり、立方晶窒化硼素焼結体に含まれるアルミニウム元素量は立方晶窒化硼素焼結体の全質量に対して0.5~5質量%であり、但し、結合相中に金属単体および合金は含まれないことを特徴とする立方晶窒化硼素焼結体。
(2)結合相は、AlNおよびAl23の少なくとも1種の化合物と、V、Cr、Mn、Co、Ni、NbおよびMoから成る群より選択された元素の炭化物、窒化物、炭窒化物およびこれらの相互固溶体から成る群より選択された2種以上の化合物とからなる(1)に記載の立方晶窒化硼素焼結体。
(3)結合相は、AlNおよびAl23の少なくとも1種の化合物と、Co5.47N、Cr2N、CrN、Cr32、Mo2CおよびVCから成る群より選択された2種以上の化合物とからなる(1)または(2)に記載の立方晶窒化硼素焼結体。
(4)結合相は、少なくともCo5.47NおよびCr2Nを含有する(1)~(3)のいずれかに記載の立方晶窒化硼素焼結体。
(5)結合相は、Al23、AlN、Co5.47NおよびCr2Nからなる(1)~(4)のいずれかに記載の立方晶窒化硼素焼結体。
(6)立方晶窒化硼素焼結体に含まれるタングステン元素量は、立方晶窒化硼素焼結体の全質量に対して5質量%以下である(1)~(5)のいずれかに記載の立方晶窒化硼素焼結体。
(7)結合相中に含まれない金属単体および合金は、金属単体が1種の金属元素から構成される金属であり、合金が2種以上の金属元素から構成される金属である(1)~(6)のいずれかに記載の被覆立方晶窒化硼素焼結体。
(8)切削工具または耐摩耗工具として使用される(1)~(7)のいずれかに記載の立方晶窒化硼素焼結体。
(9)(1)~(7)のいずれかに記載の立方晶窒化硼素焼結体の表面に被膜を形成した被覆立方晶窒化硼素焼結体。
(10)被膜がTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiから成る群より選択された少なくとも1種の金属、これら金属の少なくとも1種の酸化物、炭化物、窒化物、硼化物およびこれらの相互固溶体から成る群より選択された少なくとも1種からなる(9)に記載の被覆立方晶窒化硼素焼結体。
(11)被膜がTiN、TiC、TiCN、TiAlN、TiSiNおよびCrAlNから成る群より選択された少なくとも1種からなる(9)または(10)に記載の被覆立方晶窒化硼素焼結体。
(12)被膜の平均膜厚が、0.5~15μmである(9)~(11)のいずれかに記載の被覆立方晶窒化硼素焼結体。
(13)切削工具または耐摩耗工具として使用される(9)~(12)のいずれかに記載の被覆立方晶窒化硼素焼結体。
 本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性および靭性に優れる。そのため、本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体を切削工具や耐摩耗工具として使用すると工具寿命を延長することができるという効果が得られる。
 本発明の立方晶窒化硼素焼結体は、立方晶窒化硼素:立方晶窒化硼素焼結体の全質量に対して85~95体積%と、結合相および不可避的不純物:立方晶窒化硼素焼結体の全質量に対して5~15体積%とから構成され、これらの合計は100体積%になる立方晶窒化硼素焼結体である。立方晶窒化硼素が95体積%を超えて多くなり結合相および不可避的不純物が5体積%未満になると、立方晶窒化硼素粒子が脱落しやすくなる。逆に立方晶窒化硼素が85体積%未満になり結合相および不可避的不純物が15体積%を超えて多くなると、立方晶窒化硼素焼結体の耐摩耗性が低下する。このことから、立方晶窒化硼素:85~95体積%と、結合相および不可避的不純物:5~15体積%とした。その中でも、立方晶窒化硼素:89~95体積%であり、残部が結合相および不可避的不純物であることが好ましい。立方晶窒化硼素と、結合相および不可避的不純物の含有量(体積%)は、立方晶窒化硼素焼結体の断面組織をSEM(走査型電子顕微鏡)で撮影し、1000~5000倍で撮影された断面組織写真を画像解析し、それぞれの表面積率から求めることができる。
 本発明の結合相は、Al、V、Cr、Mn、Co、Ni、NbおよびMoから選択された元素の炭化物、窒化物、炭窒化物、酸化物およびこれらの相互固溶体から成る群より選択された3種以上の化合物から成る。好ましくは、AlN(PDFカードNo.25-1133)およびAl23(PDFカードNo.10-0173)の少なくとも1種と、V、Cr、Mn、Co、Ni、Nb、Moの炭化物、窒化物、炭窒化物およびこれらの相互固溶体から成る群より選択された2種以上とからなるものである。AlNおよびAl23の少なくとも1種と、V、Cr、Mn、Co、Ni、NbおよびMoから選択された元素の炭化物、窒化物、炭窒化物およびこれらの相互固溶体から成る群より選択された2種以上とからなる結合相とすることにより、立方晶窒化硼素粒子の結合が強固となり、立方晶窒化硼素焼結体の靭性を向上させることができた。V、Cr、Mn、Co、Ni、NbおよびMoの炭化物、窒化物、炭窒化物およびこれらの相互固溶体として具体的には、CrN(PDFカードNo.11-0065)、Cr2N(PDFカードNo.35-0803)、Cr32(PDFカードNo.35-0804)、CoN(PDFカードNo.16-0116)、Co5.47N(PDFカードNo.41-0943)、VC(PDFカードNo.35-0786)、Mo2C(PDFカードNo.35-0787)などを挙げることができる。ここで、PDFカードNo.とは、International Centre for Diffraction DataのPowder Diffraction File PDF-2 Release 2004に記載されている、物質を特定する番号である。本発明の結合相は、これらの化合物からなり、金属単体および合金を含まないので、結合相の摩耗が抑えられる。本発明において、金属単体とは1種の金属元素から構成される金属を意味し、合金とは2種以上の金属元素から構成される金属を意味する。なお、2種以上の金属元素が一定の比率で結合した金属間化合物は合金の1種であり、本発明の結合相は金属間化合物を含まない。すなわち、立方晶窒化硼素焼結体全体が金属単体および合金を含まないので、立方晶窒化硼素焼結体の耐摩耗性が向上するという効果が得られる。その中でも、本発明の結合相が、AlNおよびAl23の少なくとも1種と、Co5.47N、CrN、Cr2N、Cr32、Mo2CおよびVCから成る群より選択された2種以上とからなるとさらに好ましく、その中でも、結合相がCo5.47NおよびCr2Nを含有すると、さらに好ましく、その中でも、結合相がAl23とAlNとCo5.47NとCr2Nとからなると、さらに好ましい。
 本発明の立方晶窒化硼素焼結体は、アルミニウム元素を立方晶窒化硼素焼結体の全質量に対して0.5~5質量%含有する。アルミニウム元素は、原料粉末に吸着した酸素と結合して、立方晶窒化硼素粒子や結合相の結合を強化する作用がある。立方晶窒化硼素焼結体に含まれるアルミニウム元素量が0.5質量%未満になると酸素と結合する作用が不足して立方晶窒化硼素粒子が脱落しやすくなる。逆にアルミニウム元素量が5質量%を超えて多くなると、窒化アルミニウムや硼化アルミニウムが必要以上に多く生成して立方晶窒化硼素焼結体の耐摩耗性が低下する。そのため、本発明の立方晶窒化硼素焼結体に含まれるアルミニウム元素量を立方晶窒化硼素焼結体の全質量に対して0.5~5質量%とした。その中でも、アルミニウム元素量は立方晶窒化硼素焼結体の全質量に対して0.5~4質量%であることが好ましい。なお、本発明の立方晶窒化硼素焼結体のアルミニウム元素量はEDS(エネルギー分散型X線分析装置)などを用いて測定することができる。
 本発明の立方晶窒化硼素の平均粒径は特に限定されることはないが、立方晶窒化硼素の平均粒径が0.5μm未満となると立方晶窒化硼素の表面吸着酸素量が増加して焼結反応が阻害され、焼結性が低下する傾向がみられ、平均粒径が5μmを超えて大きくなると結合相が凝集しやすくなり立方晶窒化硼素と比較して脆弱な結合相の厚みが大となり耐欠損性が低下する傾向がみられるので、本発明の立方晶窒化硼素の平均粒径は0.5~5μmであると好ましい。その中でも、立方晶窒化硼素の平均粒径は1~3μmであることがさらに好ましい。
 本発明の立方晶窒化硼素焼結体に不可避的に含有される不純物としては、原料粉末から混入されるリチウム元素や、原料粉末の混合工程で混入されるタングステン元素を挙げることができる。不可避的不純物の合計量は、一般的には立方晶窒化硼素焼結体の全質量に対して5質量%以下であり、3質量%以下に抑えることができればさらに好ましい。本発明の立方晶窒化硼素焼結体に含まれる不可避的不純物の中でもタングステン元素はWCやWBなどの化合物として立方晶窒化硼素焼結体中に含まれるが、タングステン元素が多く含まれると立方晶窒化硼素焼結体の切削性能が低下する傾向が見られる。そのため、本発明の立方晶窒化硼素焼結体に含まれるタングステン元素量が立方晶窒化硼素焼結体の全質量に対して5質量%以下であると、切削性能が向上するので好ましく、その中でもタングステン元素量が3質量%以下であると、さらに好ましい。本発明の立方晶窒化硼素焼結体の不可避的不純物として含まれるタングステン元素のほとんどが、ボールミル混合に用いる超硬合金製ボールに由来する。そのため、超硬合金製ボールの組成、超硬合金製ボールの使用量、シリンダーの大きさ、ボールミル混合時間を調整することで、本発明の立方晶窒化硼素焼結体に含まれるタングステン元素量を調整することができる。なお、本発明の立方晶窒化硼素焼結体に含まれるタングステン元素量はEDS(エネルギー分散型X線分析装置)などを用いて測定することができる。
 本発明の被膜としては、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiから選択された少なくとも1種の金属、これら金属の少なくとも1種の酸化物、炭化物、窒化物、硼化物およびこれらの相互固溶体から成る群より選択された少なくとも1種からなるものを挙げることができる。具体的には、TiN、TiC、TiCN、TiAlN、TiSiNおよびCrAlNなどを挙げることができる。被膜は単層または2層以上の積層のいずれでも好ましく、組成が異なる膜厚5~200nmの薄膜を交互に積層した交互積層膜でも好ましい。被膜全体の総膜厚は、平均膜厚として、0.5μm未満であると工具寿命を延長させる効果が小さくなり、15μmを超えると耐欠損性が低下する傾向を示すことから、0.5~15μmであると好ましく、その中でも1~10μmがさらに好ましく、その中でも1.5~5μmがさらに好ましい。
 本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性および靭性に優れるため、切削工具や耐摩耗工具として使用されると好ましく、その中でも切削工具として使用されるとさらに好ましく、その中でも焼結金属用切削工具や鋳鉄用切削工具として使用されるとさらに好ましい。
 本発明の立方晶窒化硼素焼結体は、例えば、以下の製造方法によって得ることができる。原料粉末として、平均粒径0.5~8μmの立方晶窒化硼素粉末と、平均粒径5~20μmのアルミニウム粉末と、平均粒径0.5~5μmのV、Cr、Mn、Co、Ni、Nb、Moの金属、炭化物、窒化物、炭窒化物およびこれらの相互固溶体から成る群より選択された2種以上からなる結合相形成用粉末とを用意する。なお、原料粉末の平均粒径は米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定されたものである。用意した原料粉末を、立方晶窒化硼素粉末:85~95体積%と、アルミニウム粉末:0.5~8体積%と、結合相形成用粉末:3~14.5体積%とからなり、これらの合計が100体積%となるように配合する。なお、アルミニウム粉末の形状は特に限定されず、本発明においては、球状、鱗片状、針状等いずれの形状であっても使用することができる。配合した原料粉末にパラフィンを加えて混合する。得られた混合物を成型し、圧力5×10-3Pa以下の真空中にて温度700~1000℃で真空熱処理を行って、パラフィンなどの有機物を除去した後、超高圧高温発生装置に入れて、圧力6~8GPa、温度1700~2000℃、保持時間20~60分の条件で焼結することで得られる。また、本発明の立方晶窒化硼素焼結体をレーザーカット加工機などにより所定の形状に加工して、本発明の立方晶窒化硼素焼結体を具えた切削工具または耐摩耗工具を製造することができる。また、本発明の立方晶窒化硼素焼結体の表面に、従来からあるCVD法またはPVD法によって被膜を形成することにより、本発明の被覆立方晶窒化硼素焼結体を得ることができる。
[実施例1]
 平均粒径2μmの立方晶窒化硼素(以下、cBNと表す。)粉末、平均粒径4.9μmのCr粉末、平均粒径3.0μmのCr2N粉末、平均粒径2.7μmのCr32粉末、平均粒径2.7μmのVC粉末、平均粒径2.5μmのMo2C粉末、平均粒径1.8μmのTiN粉末、平均粒径2.2μmのWC粉末、平均粒径0.9μmのCo粉末、平均粒径20μmの鱗片状アルミニウム(Al)粉末を用意して、表1に示す配合組成に配合した。なお、原料粉末の平均粒径は米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定した。配合した原料粉末を超硬合金製ボールとn-ヘキサン溶媒とパラフィンとともにボールミル用のシリンダーに入れてボールミル混合を24時間行った。ボールミルで混合粉砕して得られた混合粉末を圧粉成型した後、圧力5×10-3Pa、温度750℃の条件で脱パラフィン処理をした。脱パラフィン処理をした圧粉成型体を金属カプセルに封入し、金属カプセルを超高圧高温発生装置に入れて、圧力7.0GPa、温度1900℃、保持時間30分の条件で焼結して、発明品および比較品の立方晶窒化硼素焼結体を得た。
Figure JPOXMLDOC01-appb-T000001
 こうして得られた立方晶窒化硼素焼結体の断面組織を、SEM(HITACHI製SEM S-3000H)を用いて観察し、EDS(HORIBA製EMAX EX-300)を用いて組成を分析した。SEMにより3000倍で撮影された断面組織写真を画像解析することで、それぞれの表面積からcBNの含有量(体積%)と結合相の含有量(体積%)を求めた。また、立方晶窒化硼素焼結体全体に含まれるアルミニウム(Al)元素量(質量%)とタングステン(W)元素量(質量%)をEDSで定量分析した。次に、株式会社リガク製X線回折装置RINT-TTRIIIを用いて、出力:50kV、250mA、Cu-Kα、入射側ソーラースリット:5°、発散縦スリット:1/2°、発散縦制限スリット:10mm、散乱スリット2/3°、受光側ソーラースリット:5°、受光スリット:0.15mm、BENTモノクロメータ、受光モノクロスリット:0.8mm、サンプリング幅:0.02°、スキャンスピード:0.1°/min、2θ/θ法、2θ測定範囲:30~80°という測定条件で、立方晶窒化硼素焼結体のX線回折測定を行い、立方晶窒化硼素焼結体の各相(Al23(PDFカードNo.10-0173)、AlN(PDFカードNo.25-1133)、cBN(PDFカードNo.35-1365)、Co(PDFカードNo.15-0806)、Co5.47N(PDFカードNo.41-0943)、Cr(PDFカードNo.06-0694)、CrN(PDFカードNo.11-0065)、Cr2N(PDFカードNo.35-0803)、Cr32(PDFカードNo.35-0804)、Mo2C(PDFカードNo.35-0787)、TiN(PDFカードNo.38-1420)、VC(PDFカードNo.35-0786)、WC(PDFカードNo.51-0939)、WB(PDFカードNo.06-0541)など)を同定した。それらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 発明品および比較品について、立方晶窒化硼素焼結体をレーザーカット加工機で、所定の形状にカットして超硬合金基材にろう付けし、研削仕上げ加工をしてISO規格CNGA120408切削インサート形状の切削工具を得た。これらの切削インサートを用いて、下記の切削試験(1)および(2)を行った。それらの結果を表3に示す。
切削試験(1)
外周連続湿式切削(旋削)、
被削材:浸炭焼入れした焼結金属(化学成分 C:0.2~1.0質量%,Fe:残部,その他:1質量%以下(旧JIS規格SMF4040相当)、HRA63~65)、
被削材形状:円柱φ45mm×85mm、
切削速度:250m/min、
切込み量:0.2mm、
送り:0.1mm/rev、
インサート形状:CNGA120408、
ホルダー:DCLNR2525M12、
評価:コーナ摩耗量VBcが0.15mmに達するまでの切削時間あるいは欠損までの切削時間。
切削試験(2)
外周断続湿式切削(旋削)、
被削材:焼結金属(化学成分 C:0.2~1.0質量%,Fe:残部,その他:1質量%以下(旧JIS規格SMF4040相当)、HRB77~80)、
被削材形状:ギア形状φ45mm(歯高8mm)×30mm、
切削速度:300m/min、
切込み量:0.2mm、
送り:0.1mm/rev、
インサート形状:CNGA120408、
ホルダー:DCLNR2525M12、
評価:コーナ摩耗量VBcが0.15mmに達するまでの切削時間あるいは欠損までの切削時間。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、本発明の立方晶窒化硼素焼結体は耐摩耗性および耐欠損性に優れるため、比較の立方晶窒化硼素焼結体よりも工具寿命が長いことがわかる。
[実施例2]
 実施例1の原料粉末を表4に示す配合組成に配合し、実施例1と同様の製造方法により立方晶窒化硼素焼結体を作製した。
Figure JPOXMLDOC01-appb-T000004
 得られた立方晶窒化硼素焼結体について、実施例1と同様の測定方法により各種測定を行った。それらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 発明品および比較品について、実施例1と同様な方法で立方晶窒化硼素焼結体を加工して、ISO規格CNGA120408切削インサート形状の切削工具を得た。これらの切削インサートを用いて、実施例1と同じ試験条件の切削試験(1)および(2)を行った。それらの結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、本発明の立方晶窒化硼素焼結体は耐摩耗性および耐欠損性に優れるため、比較の立方晶窒化硼素焼結体よりも工具寿命が長いことがわかる。
[実施例3]
 実施例1の原料粉末を表7に示す配合組成に配合し、実施例1と同様の製造方法により立方晶窒化硼素焼結体を作製した。
Figure JPOXMLDOC01-appb-T000007
 得られた立方晶窒化硼素焼結体について、実施例1と同様の測定方法により各種測定を行った。それらの結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 発明品および比較品について、実施例1と同様な方法で立方晶窒化硼素焼結体を加工して、ISO規格CNGA120408切削インサート形状の切削工具を得た。これらの切削インサートを用いて、実施例1と同じ試験条件の切削試験(1)および(2)を行った。それらの結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示されるように、本発明の立方晶窒化硼素焼結体は耐摩耗性および耐欠損性に優れるため、比較の立方晶窒化硼素焼結体よりも工具寿命が長いことがわかる。
[実施例4]
 実施例1の発明品1の表面にPVD装置を用いて被覆処理を行った。発明品1の表面に平均膜厚3μmのTiN膜を形成したものを発明品17、発明品1の表面に平均膜厚3μmのTiAlN膜を形成したものを発明品18とした。発明品17、18について実施例1と同じ切削試験(1)および(2)を行った。それらの結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 被膜を形成した発明品17、18は、被膜を形成していない発明品1よりも工具寿命をさらに長くすることができた。
 本発明によれば、耐摩耗性、耐欠損性および靭性に優れた立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体を提供することができる。本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体を切削工具や耐摩耗工具として使用した場合、工具寿命を延長することができるという効果が得られる。

Claims (13)

  1.  立方晶窒化硼素:85~95体積%と、結合相および不可避的不純物:5~15体積%とから構成され、結合相は、Al、V、Cr、Mn、Co、Ni、NbおよびMoから成る群より選択された元素の炭化物、窒化物、炭窒化物、酸化物およびこれらの相互固溶体から成る群より選択された3種以上の化合物とからなり、立方晶窒化硼素焼結体に含まれるアルミニウム元素量は立方晶窒化硼素焼結体の全質量に対して0.5~5質量%であり、但し、結合相中に金属単体および合金は含まれないことを特徴とする立方晶窒化硼素焼結体。
  2.  結合相は、AlNおよびAl23の少なくとも1種の化合物と、V、Cr、Mn、Co、Ni、NbおよびMoから成る群より選択された元素の炭化物、窒化物、炭窒化物およびこれらの相互固溶体から成る群より選択された2種以上の化合物とからなる請求項1に記載の立方晶窒化硼素焼結体。
  3.  結合相は、AlNおよびAl23の少なくとも1種の化合物と、Co5.47N、Cr2N、CrN、Cr32、Mo2CおよびVCから成る群より選択された2種以上の化合物とからなる請求項1または2に記載の立方晶窒化硼素焼結体。
  4.  結合相は、少なくともCo5.47NおよびCr2Nを含有する請求項1~3のいずれか1項に記載の立方晶窒化硼素焼結体。
  5.  結合相は、Al23とAlNとCo5.47NとCr2Nとからなる請求項1~4のいずれか1項に記載の立方晶窒化硼素焼結体。
  6.  立方晶窒化硼素焼結体に含まれるタングステン元素量は、立方晶窒化硼素焼結体の全質量に対して5質量%以下である請求項1~5のいずれか1項に記載の立方晶窒化硼素焼結体。
  7.  結合相中に含まれない金属単体および合金は、金属単体が1種の金属元素から構成される金属であり、合金が2種以上の金属元素から構成される金属である請求項1~6のいずれか1項に記載の被覆立方晶窒化硼素焼結体。
  8.  切削工具または耐摩耗工具として使用される請求項1~7のいずれか1項に記載の立方晶窒化硼素焼結体。
  9.  請求項1~7のいずれか1項に記載の立方晶窒化硼素焼結体の表面に被膜を形成した被覆立方晶窒化硼素焼結体。
  10.  被膜がTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiから成る群より選択された少なくとも1種の金属、これら金属の少なくとも1種の酸化物、炭化物、窒化物、硼化物およびこれらの相互固溶体から成る群より選択された少なくとも1種からなる請求項9に記載の被覆立方晶窒化硼素焼結体。
  11.  被膜がTiN、TiC、TiCN、TiAlN、TiSiNおよびCrAlNから成る群より選択された少なくとも1種からなる請求項9または10に記載の被覆立方晶窒化硼素焼結体。
  12.  被膜の平均膜厚が、0.5~15μmである請求項9~11のいずれか1項に記載の被覆立方晶窒化硼素焼結体。
  13.  切削工具または耐摩耗工具として使用される請求項9~12のいずれか1項に記載の被覆立方晶窒化硼素焼結体。
PCT/JP2012/078774 2011-11-07 2012-11-07 立方晶窒化硼素焼結体 WO2013069657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013542993A JP5664795B2 (ja) 2011-11-07 2012-11-07 立方晶窒化硼素焼結体
EP12847199.2A EP2778146B1 (en) 2011-11-07 2012-11-07 Cubic boron nitride sintered body
US14/356,812 US9327352B2 (en) 2011-11-07 2012-11-07 Cubic boron nitride sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011243261 2011-11-07
JP2011-243261 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013069657A1 true WO2013069657A1 (ja) 2013-05-16

Family

ID=48290031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078774 WO2013069657A1 (ja) 2011-11-07 2012-11-07 立方晶窒化硼素焼結体

Country Status (4)

Country Link
US (1) US9327352B2 (ja)
EP (1) EP2778146B1 (ja)
JP (1) JP5664795B2 (ja)
WO (1) WO2013069657A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168841A1 (ja) * 2016-03-30 2017-10-05 住友電工ハードメタル株式会社 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具
CN110818422A (zh) * 2018-08-13 2020-02-21 Skc索密思株式会社 碳化硼烧结体及包含该碳化硼烧结体的蚀刻装置
JPWO2018220910A1 (ja) * 2017-05-29 2020-03-26 住友電気工業株式会社 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具
KR20210025018A (ko) * 2018-06-28 2021-03-08 다이아몬드 이노베이션즈, 인크. Pcbn 소결 콤팩트
EP4299214A1 (en) 2022-06-30 2024-01-03 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126702B1 (ja) * 2011-09-12 2013-01-23 三菱マテリアル株式会社 立方晶窒化ほう素基焼結材料製切削工具
CN104245626A (zh) * 2011-12-05 2014-12-24 戴蒙得创新股份有限公司 烧结的立方氮化硼切削工具
CN104072138B (zh) * 2014-06-18 2015-10-28 河海大学 一种碳化钨-立方氮化硼复合材料及其制备方法
JP6607470B2 (ja) 2016-11-17 2019-11-20 住友電工ハードメタル株式会社 焼結体およびそれを含む切削工具
US10391724B2 (en) 2017-02-15 2019-08-27 General Electric Company Method of forming pre-form ceramic matrix composite mold and method of forming a ceramic matrix composite component
CN107382325B (zh) * 2017-06-12 2020-04-21 金华中烨超硬材料有限公司 一种高端刀具用聚晶立方氮化硼复合片及其生产方法
CN107434415B (zh) * 2017-06-12 2020-10-02 金华中烨超硬材料有限公司 一种高热稳定性和良好导热性的聚晶立方氮化硼复合片及其生产方法
US10377671B2 (en) 2017-10-20 2019-08-13 King Fahd University Of Petroleum And Minerals Structural and mechanical properties of nano and micro Al2O3-cBN composites prepared by spark plasma sintering
JP6744520B1 (ja) * 2018-09-19 2020-08-19 住友電気工業株式会社 立方晶窒化硼素焼結体、およびそれを含む切削工具
KR20220035124A (ko) * 2019-07-18 2022-03-21 스미토모덴키고교가부시키가이샤 입방정 질화붕소 소결체 및 그 제조 방법
WO2021010474A1 (ja) 2019-07-18 2021-01-21 住友電気工業株式会社 立方晶窒化硼素焼結体
JP6990338B2 (ja) * 2019-12-16 2022-01-12 住友電気工業株式会社 立方晶窒化硼素焼結体
JP6990339B2 (ja) * 2019-12-16 2022-02-03 住友電気工業株式会社 立方晶窒化硼素焼結体
CN114269711B (zh) * 2019-12-16 2023-05-05 住友电工硬质合金株式会社 立方晶氮化硼烧结体
CN114867700B (zh) * 2019-12-16 2023-06-27 住友电工硬质合金株式会社 立方晶氮化硼烧结体
GB202001369D0 (en) 2020-01-31 2020-03-18 Element Six Ltd Polycrystalline cubic boron nitride material
CN113286770B (zh) * 2020-03-24 2022-04-26 昭和电工株式会社 立方晶氮化硼烧结体及其制造方法和工具
KR20240026232A (ko) * 2021-08-02 2024-02-27 스미또모 덴꼬오 하드메탈 가부시끼가이샤 입방정 질화붕소 소결체 및 그것을 이용한 히트 싱크

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226273A (ja) * 2001-01-30 2002-08-14 Showa Denko Kk 焼結体
JP2004331456A (ja) 2003-05-08 2004-11-25 Tungaloy Corp 立方晶窒化硼素焼結体
JP2006315898A (ja) * 2005-05-12 2006-11-24 Tungaloy Corp 立方晶窒化硼素焼結体
JP2008222485A (ja) * 2007-03-12 2008-09-25 Sumitomo Electric Hardmetal Corp 被覆複合焼結体、切削工具および切削方法
JP2010512300A (ja) 2006-12-11 2010-04-22 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 立方体窒化ホウ素成形体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451730B (sv) * 1979-03-29 1987-10-26 Sumitomo Electric Industries Sintrad presskropp for bearbetningsverktyg
US4361543A (en) * 1982-04-27 1982-11-30 Zhdanovich Gennady M Process for producing polycrystals of cubic boron nitride
JP3146747B2 (ja) * 1993-04-01 2001-03-19 三菱マテリアル株式会社 耐摩耗性および耐欠損性のすぐれた立方晶窒化ほう素基超高圧焼結材料製切削工具
JPH08109070A (ja) * 1994-10-05 1996-04-30 Toshiba Tungaloy Co Ltd 工具用高硬度焼結体およびその製造方法
JPH08253837A (ja) * 1995-03-16 1996-10-01 Mitsubishi Materials Corp 耐欠損性に優れたcBN基超高圧焼結体
US6008153A (en) * 1996-12-03 1999-12-28 Sumitomo Electric Industries, Ltd. High-pressure phase boron nitride base sinter
EP1184354B1 (en) * 1999-02-12 2010-08-25 Sumitomo Electric Industries, Ltd. High strength sintered impact having excellent resistance to cratering
US6461990B1 (en) * 1999-06-30 2002-10-08 Showa Denko K.K. Cubic boron nitride composite particle
US6331497B1 (en) * 1999-07-27 2001-12-18 Smith International, Inc. Polycrystalline cubic boron nitride cutting tool
US20030054940A1 (en) 2001-01-30 2003-03-20 Showa Denko Kabushiki Kaisha Sintered body
US7932199B2 (en) * 2004-02-20 2011-04-26 Diamond Innovations, Inc. Sintered compact
JP5157056B2 (ja) * 2005-09-22 2013-03-06 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体、並びにそれらからなる焼入鋼用切削工具
EP1932816B1 (en) * 2005-10-04 2015-11-18 Sumitomo Electric Hardmetal Corp. CBN SINTERED BODY FOR HIGH-QUALITY SURFACE ASPECT MACHINING AND CUTTING TOOL OF cBN SINTERED BODY
JPWO2011129422A1 (ja) * 2010-04-16 2013-07-18 株式会社タンガロイ 被覆cBN焼結体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226273A (ja) * 2001-01-30 2002-08-14 Showa Denko Kk 焼結体
JP2004331456A (ja) 2003-05-08 2004-11-25 Tungaloy Corp 立方晶窒化硼素焼結体
JP2006315898A (ja) * 2005-05-12 2006-11-24 Tungaloy Corp 立方晶窒化硼素焼結体
JP2010512300A (ja) 2006-12-11 2010-04-22 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 立方体窒化ホウ素成形体
JP2008222485A (ja) * 2007-03-12 2008-09-25 Sumitomo Electric Hardmetal Corp 被覆複合焼結体、切削工具および切削方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2778146A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168841A1 (ja) * 2016-03-30 2017-10-05 住友電工ハードメタル株式会社 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具
JPWO2017168841A1 (ja) * 2016-03-30 2018-04-05 住友電工ハードメタル株式会社 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具
CN108778583A (zh) * 2016-03-30 2018-11-09 住友电工硬质合金株式会社 表面被覆立方氮化硼烧结体以及包括该烧结体的切削工具
JPWO2018220910A1 (ja) * 2017-05-29 2020-03-26 住友電気工業株式会社 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具
JP7016866B2 (ja) 2017-05-29 2022-02-07 住友電気工業株式会社 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具
KR20210025018A (ko) * 2018-06-28 2021-03-08 다이아몬드 이노베이션즈, 인크. Pcbn 소결 콤팩트
JP2021529720A (ja) * 2018-06-28 2021-11-04 ダイヤモンド イノヴェーションズ インコーポレイテッド Pcbn焼結コンパクト
KR102472999B1 (ko) 2018-06-28 2022-11-30 다이아몬드 이노베이션즈, 인크. Pcbn 소결 콤팩트
JP7269967B2 (ja) 2018-06-28 2023-05-09 ダイヤモンド イノヴェーションズ インコーポレイテッド Pcbn焼結コンパクト
US11976345B2 (en) 2018-06-28 2024-05-07 Diamond Innovations, Inc. PCBN sintered compact
CN110818422A (zh) * 2018-08-13 2020-02-21 Skc索密思株式会社 碳化硼烧结体及包含该碳化硼烧结体的蚀刻装置
EP4299214A1 (en) 2022-06-30 2024-01-03 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Also Published As

Publication number Publication date
EP2778146A1 (en) 2014-09-17
JPWO2013069657A1 (ja) 2015-04-02
JP5664795B2 (ja) 2015-02-04
EP2778146B1 (en) 2018-05-09
EP2778146A4 (en) 2015-06-24
US20140315015A1 (en) 2014-10-23
US9327352B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP5664795B2 (ja) 立方晶窒化硼素焼結体
JP5614460B2 (ja) cBN焼結体工具および被覆cBN焼結体工具
JP6082650B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP5660034B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6634647B2 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
WO2011129422A1 (ja) 被覆cBN焼結体
US8822361B2 (en) Cubic boron nitride sintered body tool
JP6032409B2 (ja) 立方晶窒化ほう素基超高圧焼結体を工具基体とする切削工具、表面被覆切削工具
JP2010031308A (ja) サーメット
JP2019156692A (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
WO2010104094A1 (ja) サーメットおよび被覆サーメット
JP6843096B2 (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
JP6283985B2 (ja) 焼結体
JP7400692B2 (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
JP6365228B2 (ja) 焼結体
JP7336063B2 (ja) 立方晶窒化硼素焼結体及び被覆立方晶窒化硼素焼結体
JP7336062B2 (ja) 立方晶窒化硼素焼結体及び被覆立方晶窒化硼素焼結体
JP3729463B2 (ja) フライス切削用強靭性超硬合金および被覆超硬合金
JP2001114562A (ja) セラミックス焼結体部品および被覆セラミックス焼結体部品
CN117326873A (zh) 立方氮化硼烧结体和涂覆立方氮化硼烧结体
JP2024033530A (ja) 立方晶窒化硼素焼結体
JP2003089005A (ja) Wc基超硬合金製積層チップおよびその製造方法
JPH03131573A (ja) 高密度相窒化ホウ素基焼結体及びこれを用いた複合焼結体
JP2024055371A (ja) 立方晶窒化硼素焼結体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542993

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14356812

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012847199

Country of ref document: EP