WO2021010474A1 - 立方晶窒化硼素焼結体 - Google Patents

立方晶窒化硼素焼結体 Download PDF

Info

Publication number
WO2021010474A1
WO2021010474A1 PCT/JP2020/027901 JP2020027901W WO2021010474A1 WO 2021010474 A1 WO2021010474 A1 WO 2021010474A1 JP 2020027901 W JP2020027901 W JP 2020027901W WO 2021010474 A1 WO2021010474 A1 WO 2021010474A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbn
powder
sintered body
volume
boron nitride
Prior art date
Application number
PCT/JP2020/027901
Other languages
English (en)
French (fr)
Inventor
久也 濱
克己 岡村
顕人 石井
久木野 暁
Original Assignee
住友電気工業株式会社
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ハードメタル株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021503614A priority Critical patent/JP6908799B2/ja
Priority to US17/625,750 priority patent/US11591266B2/en
Priority to CN202080051273.2A priority patent/CN114144391B/zh
Priority to KR1020227001321A priority patent/KR20220035121A/ko
Priority to EP20841409.4A priority patent/EP4000779A4/en
Publication of WO2021010474A1 publication Critical patent/WO2021010474A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Definitions

  • the present disclosure relates to a cubic boron nitride sintered body.
  • This application claims priority based on Japanese Patent Application No. 2019-13302, which was filed on July 18, 2019. All the contents of the Japanese patent application are incorporated herein by reference.
  • cBN sintered body As a high-hardness material used for cutting tools and the like, there is a cubic boron nitride sintered body (hereinafter, also referred to as “cBN sintered body”).
  • the cBN sintered body is usually composed of cubic boron nitride particles (hereinafter, also referred to as “cBN particles”) and a bonded phase, and its characteristics tend to differ depending on the content ratio of the cBN particles.
  • cBN sintered body having a low content of cubic boron nitride (hereinafter, also referred to as “cBN”) (hereinafter, also referred to as “low-cBN sintered body”) is suitable for cutting hardened steel or the like. Can be used for.
  • cBN cubic boron nitride
  • Patent Document 1 describes a cubic boron nitride-based ultrahigh pressure sintered material showing a composition in which cubic boron nitride is 30 to 70 area% by microstructure observation with an electron microscope. The configured cutting tips are disclosed.
  • the cubic boron nitride sintered body of the present disclosure is a cubic boron nitride sintered body comprising 50% by volume or more and less than 80% by volume of cubic boron nitride particles and a bonding phase of more than 20% by volume and 50% by volume or less.
  • the bonded phase is selected from at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum in the periodic table, and a group consisting of nitrogen, carbon, boron and oxygen.
  • the oxygen content is measured in the direction perpendicular to the interface between the cubic boron nitride particles using TEM-EDX, the oxygen content is larger than the average value of the oxygen content of the cubic boron nitride particles.
  • 1 region exists, the interface exists in the first region, and the length of the first region along the direction perpendicular to the interface is 0.1 nm or more and 10 nm or less. It is a unity.
  • FIG. 1 is an image showing an example of a reflected electron image obtained by observing the cBN sintered body of the present disclosure by SEM.
  • FIG. 2 is an image obtained by reading the reflected electron image of FIG. 1 into image processing software.
  • the upper image is a backscattered electron image
  • the lower image is a density cross-sectional graph obtained from the backscattered electron image.
  • FIG. 4 is a diagram for explaining a method of defining a black region and a bonded phase.
  • FIG. 5 is a diagram for explaining the boundary between the black region and the bound phase.
  • FIG. 6 is an image obtained by binarizing the reflected electron image of FIG.
  • FIG. 7 is a diagram schematically showing an example of the second image.
  • FIG. 8 is an example of a graph showing the results of elemental line analysis.
  • FIG. 9 is an example of the second image.
  • FIG. 10 is an example of a graph showing the results of elemental line analysis.
  • the cubic boron nitride sintered body of the present disclosure can extend the life of the tool when used as a material for the tool.
  • the cubic boron nitride sintered body of the present disclosure is A cubic boron nitride sintered body comprising 50% by volume or more and less than 80% by volume of cubic boron nitride particles and a bonding phase of more than 20% by volume and 50% by volume or less.
  • the bonded phase is selected from at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum in the periodic table, and a group consisting of nitrogen, carbon, boron and oxygen.
  • the oxygen content is measured in the direction perpendicular to the interface between the cubic boron nitride particles using TEM-EDX, the oxygen content is larger than the average value of the oxygen content of the cubic boron nitride particles.
  • One region exists, the interface exists in the first region, and the length of the first region along the direction perpendicular to the interface is 0.1 nm or more and 10 nm or less.
  • the cubic boron nitride sintered body of the present disclosure can extend the life of the tool when used as a material for the tool.
  • the content ratio of the cubic boron nitride particles is preferably 55% by volume or more and 75% by volume or less. According to this, when the cubic boron nitride sintered body is used as a material for a tool, it is possible to further extend the life of the tool.
  • the length of the first region along the direction perpendicular to the interface is preferably 0.1 nm or more and 5 nm or less. According to this, when the cubic boron nitride sintered body is used as a material for a tool, it is possible to further extend the life of the tool.
  • the difference between the maximum value of the oxygen content in the first region and the average value of the oxygen content of the cubic boron nitride particles is preferably 0.1 atomic% or more and 5 atomic% or less. According to this, when the cubic boron nitride sintered body is used as a material for a tool, it is possible to further extend the life of the tool.
  • the difference between the maximum value of the oxygen content in the first region and the average value of the oxygen content of the cubic boron nitride particles is 0.1 atomic% or more and 3 atomic% or less. According to this, when the cubic boron nitride sintered body is used as a material for a tool, it is possible to further extend the life of the tool.
  • the present inventors first use group 4 elements and group 5 elements of the periodic table as raw materials for the bonding phase in the low-cBN sintered body. From a compound consisting of at least one element selected from the group consisting of Group 6 elements and aluminum, at least one element selected from the group consisting of nitrogen, carbon, boron and oxygen, and a solid solution derived from the compound. It was decided to use a binder powder containing at least one selected from the above group.
  • the present inventors consider that it is important to further enhance the binding force between cBN particles in order to utilize the high mechanical strength of cBN in the low-cBN sintered body having a low content of cBN particles. ,Study was carried out. As a result, the following findings and considerations (a) to (e) were obtained.
  • Oxygen is present on the surface of the cBN powder which is the raw material of the cBN sintered body, and the oxygen exists in an amorphous state mixed with B 2 O 3 or boron (B).
  • B When a cBN sintered body is produced using the cBN powder, a large amount of oxygen remains in the cBN sintered body.
  • B When the cBN powder and the binder powder are mixed and sintered under ultra-high pressure, the low hardness binder powder (for example, ceramic powder) is crushed first, and the tough and high hardness cBN powder is crushed. Hateful. Therefore, in the sintering process, the cBN particles come into contact with each other and solid-phase sintering is performed.
  • the solid phase sintered portion has a weaker bonding force than the bonded phase, and therefore tends to be a fracture starting point.
  • C Oxygen present on the surface of the cBN powder is considered to reduce the binding force between the cBN particles. Therefore, it is considered that the binding force between the cBN particles can be enhanced by reducing the oxygen.
  • D In the cBN sintered body, boron (B) and / or nitrogen (N) existing on the surface of the cBN particles react with the binder and bond to each other, so that the cBN particles and the bonded phase are bonded. ..
  • E Oxygen present on the surface of the cBN powder is considered to reduce the binding force between the cBN particles and the binding phase. Therefore, it is considered that the binding force between the cBN particles and the bound phase can be enhanced by reducing the oxygen.
  • the notation of the form "A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when the unit is not described in A and the unit is described only in B, A The unit of and the unit of B are the same.
  • a compound or the like when represented by a chemical formula in the present specification, it shall include all conventionally known atomic ratios when the atomic ratio is not particularly limited, and should not necessarily be limited to those in the stoichiometric range.
  • metal elements such as titanium (Ti), aluminum (Al), silicon (Si), tantalum (Ta), chromium (Cr), nitrogen (N), oxygen (O), carbon (C), etc. It is not always necessary for the non-metallic element of the above to form a chemical quantitative composition.
  • the cubic boron nitride sintered body of the present disclosure is a cubic boron nitride sintered body comprising 50% by volume or more and less than 80% by volume of cubic boron nitride particles and a bonding phase of more than 20% by volume and 50% by volume or less.
  • the bonded phase is composed of at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum in the periodic table, and nitrogen, carbon, boron and oxygen.
  • It contains a compound consisting of at least one element selected from the group and at least one selected from the group consisting of a solid solution derived from the compound, and is perpendicular to the interface between cubic boron nitride particles using TEM-EDX.
  • a compound consisting of at least one element selected from the group and at least one selected from the group consisting of a solid solution derived from the compound, and is perpendicular to the interface between cubic boron nitride particles using TEM-EDX.
  • the cubic boron nitride sintered body of the present disclosure includes cubic boron nitride particles of 50% by volume or more and less than 80% by volume, and a bonded phase of more than 20% by volume and 50% by volume or less. That is, the cubic boron nitride sintered body of the present disclosure is a so-called low-cBN sintered body.
  • the cBN sintered body may contain unavoidable impurities due to raw materials, manufacturing conditions, and the like.
  • the total content of cBN particles, the content of the bonded phase, and the content of unavoidable impurities is 100% by volume.
  • the lower limit of the total content of cBN particles and the content of the bonded phase is 95% by volume or more, 96% by volume or more, 97% by volume or more, 98% by volume or more. , 99% by volume or more.
  • the upper limit of the total content of the cBN particles and the content of the bonded phase can be 100% by volume or less and less than 100% by volume.
  • the total content of cBN particles and the content of the bonded phase is 95% by volume or more and 100% by volume or less, 96% by volume or more and 100% by volume or less, 97% by volume. 100% by volume or less, 98% by volume or more and 100% by volume or less, 99% by volume or more and 100% by volume or less, 95% by volume or more and less than 100% by volume, 96% by volume or more and less than 100% by volume, 97% by volume or more and less than 100% by volume. , 98% by volume or more and less than 100% by volume, 99% by volume or more and less than 100% by volume.
  • the content ratio (volume%) of cBN particles and the content ratio (volume%) of the bonded phase in the cBN sintered body are attached to the scanning electron microscope (SEM) (“JSM-7800F” (trade name) manufactured by JEOL Ltd.).
  • SEM scanning electron microscope
  • JSM-7800F Japanese Industrial Standard
  • EDX energy dispersive X-ray analyzer
  • structure observation, elemental analysis, etc. are performed on the cBN sintered body. It can be confirmed by.
  • the method for measuring the content ratio (volume%) of cBN particles is as follows. First, an arbitrary position of the cBN sintered body is cut to prepare a sample containing a cross section of the cBN sintered body. A focused ion beam device, a cross-section polisher device, or the like can be used to prepare the cross section. Next, the cross section is observed by SEM at a magnification of 5000 to obtain a reflected electron image. In the backscattered electron image, the region where the cBN particles are present is the black region, and the region where the bonded phase is present is the gray region or the white region.
  • the reflected electron image is binarized using image analysis software (“WinROOF” of Mitani Shoji Co., Ltd.).
  • WinROOF image analysis software
  • the area ratio of the pixels derived from the dark field (pixels derived from the cBN particles) to the area of the measurement field is calculated.
  • the content ratio (volume%) of the cBN particles can be obtained.
  • the content ratio (volume%) of the coupled phase by calculating the area ratio of the pixels derived from the bright visual field (pixels derived from the coupled phase) to the area of the measurement visual field from the image after the binarization process. Can be done. A specific method of binarization processing will be described with reference to FIGS. 1 to 6.
  • FIG. 1 is an example of a reflected electron image obtained by observing a cBN sintered body with an SEM.
  • the reflected electron image is read into image processing software.
  • the read image is shown in FIG.
  • an arbitrary line Q1 is drawn in the read image.
  • a graph having the line Q1 as the X coordinate and the GRAY value as the Y coordinate (hereinafter, also referred to as “concentration cross-section graph”) is produced.
  • the backscattered electron image of the cBN sintered body and the density cross-sectional graph of the backscattered electron image are shown in FIG. 3 (the upper image is the backscattered electron image and the lower graph is the density cross-sectional graph).
  • the width of the backscattered electron image and the width of the X coordinate of the density cross-sectional graph 23.27 ⁇ m) are the same. Therefore, the distance from the left end of the line Q1 in the backscattered electron image to the specific position on the line Q1 is indicated by the value of the X coordinate of the density cross-section graph.
  • the black region is, for example, a portion indicated by an ellipse of reference numeral f in the reflected electron image of FIG.
  • the GRAY value of each of the three black regions is read from the density cross-sectional graph.
  • the GRAY value of each of the three black regions is the average value of the GRAY values of each of the three portions surrounded by the ellipse of reference numeral f in the density cross-sectional graph of FIG.
  • the average value of the GRAY values of each of the three locations is calculated.
  • the average value is taken as the GRAY value of cBN (hereinafter, also referred to as G cbn ).
  • the bound phase is, for example, the portion represented by the ellipse of reference numeral d in the reflected electron image of FIG.
  • the GRAY value of each of the three bonded phases is read from the concentration cross-sectional graph.
  • the GRAY value of each of the three bonded phases is the average value of the GRAY values at each of the three portions surrounded by the ellipse of reference numeral d in the concentration cross-sectional graph of FIG.
  • the average value of the GRAY values of each of the three locations is calculated.
  • the average value is taken as the GRAY value of the binding phase (hereinafter, also referred to as G bindr ).
  • the GRAY value represented by (G cbn + G binder ) / 2 is defined as the GRAY value at the interface between the black region (cBN particles) and the bonding phase.
  • GRAY value G cbn the black areas (cBN particles) is indicated by the line G cbn
  • GRAY value G binder of the binder phase is indicated by the line G binder
  • the GRAY value indicated by / 2 is indicated by the line G1.
  • the concentration cross-sectional graph by defining the interface between the black region (cBN particles) and the bound phase, the values of the X coordinate and the Y coordinate at the interface between the black region (cBN particles) and the bound phase are read. Can be done.
  • the interface can be specified arbitrarily.
  • the portion including the interface the portion surrounded by the ellipse of the symbol e can be mentioned.
  • the interface between the black region (cBN particles) and the bonded phase is, for example, a portion indicated by an ellipse of reference numeral e.
  • the interface between the black region (cBN particles) corresponding to the ellipse of the above-mentioned symbol e and the bonded phase is the portion indicated by the arrow e.
  • Tip of the arrow e indicates the concentration sectional graphs GRAY value, the line G1 indicating the GRAY value (G cbn + G binder) / 2, the position of the intersection of the.
  • the X-coordinate of the arrow e and the Y-coordinate value of the tip of the arrow e correspond to the X-coordinate and Y-coordinate values at the interface between the black region (cBN particle) and the coupling phase.
  • Binarization processing is performed using the X-coordinate and Y-coordinate values at the interface between the black region (cBN particles) and the binding phase as threshold values.
  • the image after the binarization process is shown in FIG. In FIG. 6, the area surrounded by the dotted line is the area where the binarization process has been performed.
  • the image after the binarization process includes a white area (a portion whiter than the bright field) corresponding to the area that was white in the image before the binarization process. May be good.
  • the area ratio of the pixels derived from the dark field (pixels derived from the cBN particles) to the area of the measurement field of view is calculated.
  • the content ratio (volume%) of the cBN particles can be obtained.
  • the content ratio (volume%) of the coupled phase can be obtained by calculating the area ratio of the pixels derived from the bright visual field (pixels derived from the coupled phase) to the area of the measurement visual field.
  • the content ratio of cBN particles in the cBN sintered body is preferably 55% by volume or more and 75% by volume or less, more preferably 65% by volume or more and 75% by volume or less, and further preferably 70% by volume or more and 75% by volume or less.
  • the content ratio of the bonded phase in the cBN sintered body is preferably 25% by volume or more and 45% by volume or less, more preferably 25% by volume or more and 35% by volume or less, and further preferably 25% by volume or more and 30% by volume or less.
  • the cBN particles have high hardness, strength and toughness, and serve as a skeleton in the cBN sintered body.
  • the D 50 (average particle size) of the cBN particles is not particularly limited, and can be, for example, 0.1 to 10.0 ⁇ m. Generally, the smaller the D 50 , the higher the hardness of the cBN sintered body, and the smaller the variation in particle size, the more homogeneous the properties of the cBN sintered body tend to be.
  • D 50 of the cBN particles for example, preferably set to 0.5 ⁇ 4.0 .mu.m.
  • D 50 of the cBN particles is determined as follows. First, a sample including a cross section of the cBN sintered body is prepared according to the above method for determining the content ratio of cBN particles, and a reflected electron image is obtained. Next, the circle-equivalent diameter of each dark field (corresponding to cBN particles) in the reflected electron image is calculated using image analysis software. It is preferable to calculate the equivalent circle diameter of 100 or more cBN particles by observing 5 or more fields of view.
  • the equivalent circle diameter means the diameter of a circle having the same area as the measured area of the cBN particles.
  • the bonded phase serves to enable cBN particles, which are difficult-to-sinter materials, to be sintered at industrial-level pressure temperatures.
  • cBN particles which are difficult-to-sinter materials
  • the bonded phase since the reactivity with iron is lower than that of cBN, it adds a function of suppressing chemical wear and thermal wear in cutting high-hardness hardened steel. Further, when the cBN sintered body contains a bonded phase, the wear resistance of the high hardness hardened steel in high efficiency machining is improved.
  • the bonding phase includes at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum in the periodic table, and nitrogen, carbon, and the like.
  • a compound composed of at least one element selected from the group consisting of boron and oxygen hereinafter, also referred to as "binding phase compound"
  • binding phase compound a compound composed of at least one element selected from the group consisting of boron and oxygen
  • the Group 4 elements of the periodic table include, for example, titanium (Ti), zirconium (Zr) and hafnium (Hf).
  • Group 5 elements include, for example, vanadium (V), niobium (Nb) and tantalum (Ta).
  • Group 6 elements include, for example, chromium (Cr), molybdenum (Mo) and tungsten (W).
  • first metal elements the elements contained in the Group 4 elements, Group 5 elements, and Group 6 elements are also referred to as "first metal elements”.
  • Examples of the compound (nitride) containing the first metal element and nitrogen include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), and niobide nitride (NbN).
  • Examples of the compound (carbide) containing the first metal element and carbon include titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobide (NbC), and the like.
  • Examples of the compound (boronized product) containing the first metal element and boron include titanium boborated (TiB 2 ), zirconium boron (ZrB 2 ), hafnium boborated (HfB 2 ), and vanadium boborated (VB). 2 ), Niob Boron (NbB 2 ), Tantal Boron (TaB 2 ), Chromium Boron (CrB), Molybdenum Boron (MoB), Tungsten Boron (WB).
  • Examples of the compound (oxide) containing the first metal element and oxygen include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), and vanadium oxide (V 2 O 5 ). , Niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), chromium oxide (Cr 2 O 3 ), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ).
  • Examples of the compound (carbonitride) containing the first metal element, carbon and nitrogen include titanium carbonitride (TiCN), zirconium nitride (ZrCN), and hafnium carbonitride (HfCN).
  • Examples of the compound (oxynitride) composed of the first metal element, oxygen and nitrogen include titanium oxynitride (TiON), zirconium oxynitride (ZrON), hafnium oxynitride (HfON), and vanadium oxynitride (VON). ), Niobium oxynitride (NbON), tantalum oxynitride (TaON), chromium oxynitride (CrON), molybdenum oxynitride (MoON), tungsten oxynitride (WON).
  • Examples of the bonded phase compound containing aluminum include aluminum nitride (AlN), titanium nitride aluminum (TiAlN, Ti 2 AlN, Ti 3 AlN), aluminum bboroide (AlB 2 ), and aluminum oxide (Al 2 O 3 ). be able to.
  • the solid solution derived from the above-mentioned bonded phase compound means a state in which two or more kinds of these compounds are dissolved in each other's crystal structure, and means an invading solid solution or a substituted solid solution.
  • One type of the binding phase compound may be used, or two or more types may be used in combination.
  • the bound phase may contain other components in addition to the above-mentioned bound phase compound.
  • elements constituting other components include nickel (Ni), iron (Fe), manganese (Mn), and rhenium (Re).
  • composition of the bonded phase contained in the cBN sintered body is, for example, XRD (X-ray diffraction measurement, X-ray). It can be identified by Diffraction) and EDX (Energy Dispersive X-ray Spectroscopy).
  • the cBN sintered body of the present disclosure uses TEM-EDX (energy dispersive X-ray spectroscopy (EDX) incidental to a transmission electron microscope (TEM)) and has an oxygen content in a direction perpendicular to the interface between cBN particles. It is characterized in that the following conditions (1) to (3) are satisfied when the above is measured. (1) There is a first region having an oxygen content larger than the average value of the oxygen content of the cBN particles. (2) An interface exists in the first region. (3) The length along the direction perpendicular to the interface of the first region is 0.1 nm or more and 10 nm or less.
  • TEM-EDX The analysis by TEM-EDX is carried out as follows. First, a sample is taken from the cBN sintered body, and the sample is sliced to a thickness of 30 to 100 nm using an argon ion slicer to prepare a section. Next, the section is observed with a TEM (transmission electron microscope, "JEM-2100F / Cs" (trade name) manufactured by JEOL Ltd.) at a magnification of 50,000 to obtain a first image.
  • TEM transmission electron microscope
  • the interface between cBN particles is arbitrarily selected.
  • the cBN particles are observed as a black region, the bound phase is observed as a white region or a gray region, and the interface is observed as a white region or a gray region.
  • the selected interface is positioned so as to pass near the center of the image, and the observation magnification is changed to 2 million times for observation to obtain a second image.
  • the interface extends from one end of the image through the vicinity of the center of the image to the other end facing the one end.
  • the oxygen content is measured in the direction perpendicular to the interface in the second image.
  • the specific measurement method is as follows.
  • the extension direction in which the interface extends (the extension direction in which the region having a high carbon concentration extends) is confirmed, and the element line analysis is performed in the direction perpendicular to the extension direction.
  • the direction perpendicular to the extension direction of the interface means a direction along a straight line intersecting the tangent line in the extension direction at an angle of 90 ° ⁇ 5 °.
  • the beam diameter at that time is 0.3 nm or less, and the scan interval is 0.1 to 0.7 nm.
  • FIG. 7 is a diagram schematically showing an example of the second image.
  • cubic boron nitride particles 1 are adjacent to each other to form an interface 3.
  • Element lines along the direction perpendicular to the extension direction of interface 3 (direction along a straight line intersecting the tangent of the extension direction at an angle of 90 ° ⁇ 5 °) (direction indicated by arrow A in FIG. 7).
  • the direction perpendicular to the extension direction of the interface is a direction perpendicular to the interface (boundary line) between the cBN particles and the bonded phase in the cross section of the sample and parallel to the cross section.
  • FIG. 8 is an example of a graph showing the results of elemental line analysis.
  • the horizontal axis (X-axis) indicates the distance (nm) from the interface
  • the vertical axis (Y-axis) indicates the oxygen content (atomic%).
  • the value on the horizontal axis (X axis) is indicated by "-" (minus)
  • the absolute value corresponds to the distance from the interface. To do.
  • the distance from the intersection B in FIG. 7 to the right along the direction of the element line analysis (arrow A) is shown as a positive numerical value on the horizontal axis (X axis) in the graph of FIG.
  • the distance from the intersection B in FIG. 7 to the left side along the direction of the element line analysis (arrow A) is shown as a negative value on the horizontal axis (X axis) in the graph of FIG.
  • the average value of the oxygen content of the cBN particles is determined by defining a virtual line at a distance of 20 nm from the interface between the cBN particles to the inside of the cBN particles as line L1 in the cross section of the cBN sintered body.
  • a virtual line at a distance of 30 nm from the interface between the cBN particles is defined as the line L2
  • the average value of the oxygen content of the bound phase is a value calculated from a graph showing the result of elemental line analysis.
  • the average value of oxygen content in the range of -20 nm to -30 nm on the horizontal axis (X axis) (the range indicated by a, the distance from the interface is 20 nm or more and 30 nm or less), or
  • the average value of oxygen content in the range of 20 nm to 30 nm on the horizontal axis (X axis) (the range indicated by c, the range of distance from the interface of 20 nm or more and 30 nm or less) is the average value of the oxygen content of cBN particles. It becomes.
  • the average oxygen content of the adjacent cBN particles is different (for example, in the graph of FIG. 8, the average oxygen content in the range indicated by a and the oxygen content in the range indicated by c). (When the average value is different), the larger average value of the oxygen content is taken as the average value of the oxygen content of the cBN particles.
  • the region where the oxygen content is larger than the average value of the oxygen content of the cBN particles calculated above (the range indicated by b) is more oxygen than the average value of the oxygen content of the cBN particles. It corresponds to the first region having a large content.
  • the cubic boron nitride sintered body satisfies the above condition (1) (there is a first region having an oxygen content larger than the average value of the oxygen content of the cBN particles). It will be.
  • the cubic crystal is formed.
  • the boron nitride sintered body satisfies the above condition (3) (the length along the direction perpendicular to the interface of the first region is 0.1 nm or more and 10 nm or less).
  • the cBN sintered body is the cBN of the present disclosure. Considered to be a sintered body.
  • FIG. 9 is an example of the second image. With reference to FIG. 9, it is considered that the black region corresponds to the cBN particles, the white region or the gray region corresponds to the bonding phase, and the white region or the gray region corresponds to the interface.
  • the process returns to the first image and the other interface is touched. Reselect. This is because when the width of the white region or the gray region exceeds 10 nm, it cannot be said that the white region or the gray region corresponds to the “interface between cBN particles”.
  • FIG. 10 is an example of a graph showing the result of the element line analysis of the second image.
  • the horizontal axis is the distance (nm) at which the element line analysis was performed, and the boron content, nitrogen content, carbon content, oxygen content, and aluminum content in the spot calculated from the element line analysis results.
  • the results with the values of silicon content and titanium content (atomic%) on the vertical axis are shown by solid lines.
  • the portion indicated by the reference numeral D is the “length along the direction perpendicular to the interface of the first region”.
  • the cBN sintered body of the present disclosure preferably has a length along the direction perpendicular to the interface of the first region of 0.1 nm or more and 5 nm or less, and more preferably 0.1 nm or more and 2.5 nm or less.
  • the cBN sintered body can further extend the life of the tool when used as a material for the tool.
  • the difference between the maximum value of the oxygen content in the first region and the average value of the oxygen content of the cBN particles is preferably 0.1 atomic% or more and 5 atomic% or less. .. According to this, when the cubic boron nitride sintered body is used as a material for a tool, it is possible to further extend the life of the tool.
  • the maximum value of the oxygen content in the first region and the average value of the oxygen content of the cBN particles are values calculated from a graph showing the results of elemental line analysis of the cBN sintered body.
  • the difference between the maximum value of the oxygen content in the first region and the average value of the oxygen content of the cBN particles is more preferably 0.1 atomic% or more and 3.0 atomic% or less, and 0.1 atomic% or more and 1. More preferably, it is 5 atomic% or less.
  • the maximum value of the oxygen content in the first region is preferably 0.1 atomic% or more and 5 atomic% or less. When the maximum value of the oxygen content exceeds 5 atomic%, the binding force between the cBN particles tends to be insufficient.
  • the maximum value of the oxygen content is preferably 0.1 atomic% or more and 3.0 atomic% or less, and more preferably 0.1 atomic% or more and 1.5 atomic% or less. According to this, the life of the cBN sintered body can be further extended.
  • the average value of the oxygen content of the above-mentioned bonded phase is preferably 0.1 atomic% or more and 10 atomic% or less, and more preferably 0.1 atomic% or more and 5 atomic% or less. According to this, the life of the cBN sintered body can be further extended.
  • the cBN sintered body of the present disclosure can extend the life of the tool when used as a material for the tool. The reason for this is presumed to be as follows.
  • the amount of oxygen present at the interface between the cBN particles is reduced. It is considered that this is because it was difficult for oxygen to inhibit the binding in the manufacturing process. Therefore, it is presumed that the binding force between the cBN particles and between the cBN particles and the binding phase is enhanced.
  • ⁇ Second embodiment Method for manufacturing cBN sintered body> The method for producing the cBN sintered body of the present disclosure will be described.
  • an organic substance is attached to a cubic boron nitride powder (hereinafter, also referred to as “cBN powder”), and an organic substance-adhered cubic boron nitride powder (hereinafter, “organic substance-adhered cBN powder”) is attached.
  • a step of preparing a mixed powder (hereinafter, also referred to as "preparation") and a step of mixing an organic substance-adhered cubic boron nitride powder and a binder powder to prepare a mixed powder (hereinafter, also referred to as “preparation”). It also includes a step (also referred to as a “step”) and a step of sintering the mixed powder to obtain a cubic boron nitride sintered body (hereinafter, also referred to as a "sintering step").
  • the above mixed powder contains organic matter-adhered cubic boron nitride powder of 50% by volume or more and less than 80% by volume, and a binder powder of more than 20% by volume and 50% by volume or less.
  • the above-mentioned binder powder is a group consisting of at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum in the periodic table, and nitrogen, carbon, boron and oxygen. Includes at least one element selected from.
  • each step will be described in detail.
  • This step is a step of adhering an organic substance to the cBN powder to prepare an organic substance-adhered cBN powder.
  • the cBN powder is a raw material powder of cBN particles contained in the cBN sintered body.
  • the cBN powder is not particularly limited, and known cBN powder can be used.
  • the D 50 (average particle size) of the cBN powder is not particularly limited, and can be, for example, 0.1 to 12 ⁇ m.
  • Examples of the method of adhering an organic substance to the cBN powder include a method of using supercritical water and a method of performing plasma treatment.
  • Examples of the method of adding the cBN powder and the organic substance to the supercritical water include a method of adding the cBN powder to the supercritical water in which the organic substance is dissolved. According to this, the surface of the cBN powder is cleaned by the contact between the cBN powder and the supercritical water. Further, the organic matter adheres to the clean surface by the contact between the cBN powder having the cleaned surface (hereinafter, also referred to as “clean surface”) and the organic substance.
  • the organic substances used are preferably amines and hydrocarbon compounds having 5 or more carbon atoms.
  • amines and hydrocarbon compounds having 5 or more carbon atoms are more preferable, and hexylamine is even more preferable.
  • the present inventors have confirmed that when these organic substances are used, the shedding of cBN particles in the cBN sintered body is dramatically reduced.
  • Method of performing plasma treatment A method of performing plasma treatment will be described. Examples of the method include a method in which the cBN powder is exposed to a first gas atmosphere containing carbon and then to a second gas atmosphere containing ammonia in a plasma generator.
  • a first gas CF 4 , CH 4 , C 2 H 2, and the like can be used.
  • a second gas a mixed gas of NH 3 , N 2 and H 2 or the like can be used.
  • an organic substance-adhered cBN powder can be produced by either a method using supercritical water or a method of performing plasma treatment. In this step, it is preferable to adopt a method using supercritical water. This is because it is easy to homogenize the organic matter adhering to the cBN powder, and therefore it is easy to homogenize the organic matter adhering cBN powder.
  • the average particle size of the cBN powder is not particularly limited. From the viewpoint of forming a cBN sintered body having high strength, high wear resistance and high fracture resistance, the average particle size of the cBN powder is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5.0 ⁇ m. preferable.
  • the preferable amount of organic matter adhering to the cBN powder varies depending on the particle size of the cBN powder.
  • hexylamine when used as an organic substance, it is preferable to use 0.1 to 3000 ppm of hexylamine on a mass basis for cBN powder having an average particle size of 1 to 10 ⁇ m. Further, for cBN powder having an average particle size of 0.1 to 1 ⁇ m, it is preferable to use 0.1 to 1000 ppm of hexylamine on a mass basis. In such cases, the desired cBN sintered body tends to be efficiently produced.
  • Organic matter Adhesion The amount of organic matter adhering to the cBN powder can be measured by, for example, gas chromatography-mass spectrometry.
  • This step is a step of mixing the organic substance-adhered cBN powder and the binder powder to prepare a mixed powder.
  • the organic matter-adhered cBN powder is the organic matter-adhered cBN powder obtained by the above-mentioned production step, and the binder powder is a raw material for the bonding phase of the cBN sintered body.
  • the binder powder can be prepared as follows. First, at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum in the periodic table, and at least 1 selected from the group consisting of nitrogen, carbon, boron and oxygen.
  • a compound containing a seed element (hereinafter, also referred to as “binding material compound”) is prepared. One type of binder compound may be used, or two or more types may be used in combination.
  • a binder powder is prepared by pulverizing the binder compound with a wet ball mill, a wet bead mill, or the like.
  • the mixing ratio of the organic matter-adhered cBN powder and the binder powder is such that the ratio of the organic matter-attached cBN powder in the mixed powder is 50% by volume or more and less than 80% by volume, and the ratio of the binder powder is more than 20% by volume and 50% by volume.
  • the mixing ratio of the organic matter-adhered cBN powder in the mixed powder and the binder powder is substantially the same as the ratio of the cBN particles in the cBN sintered body obtained by sintering the mixed powder and the bonded phase. It becomes. This is because the volume of the organic matter in the organic matter-adhered cBN powder is extremely small with respect to the cBN powder. Therefore, by controlling the mixing ratio of the organic matter-adhered cBN powder in the mixed powder and the binder powder, the ratio of the cBN particles and the bonding phase in the cBN sintered body can be adjusted to a desired range. ..
  • the method of mixing the organic matter-adhered cBN powder and the binder powder is not particularly limited, but from the viewpoint of efficient and homogeneous mixing, ball mill mixing, bead mill mixing, planet mill mixing, jet mill mixing and the like can be used. Each mixing method may be wet or dry.
  • the organic matter-adhered cBN powder and the binder powder are mixed by wet ball mill mixing using ethanol, acetone or the like as a solvent. After mixing, the solvent is removed by natural drying. Then, by heat treatment, impurities such as water adsorbed on the surface are volatilized to clean the surface. At this time, the organic matter adhering to the cBN powder is decomposed by the heat treatment, but carbon remains uniformly on the surface and surface modification is realized. As a result, a mixed powder is prepared.
  • the binder powder may contain other components in addition to the above-mentioned binder compound.
  • elements constituting other components include nickel (Ni), iron (Fe), manganese (Mn), rhenium (Re), and the like.
  • This step is a step of sintering the mixed powder to obtain a cBN sintered body.
  • the mixed powder is exposed to high temperature and high pressure conditions and sintered to produce a cBN sintered body.
  • the mixed powder is filled in a container and vacuum-sealed.
  • the vacuum-sealed mixed powder is sintered using an ultra-high temperature and high pressure device.
  • the sintering conditions are not particularly limited, but are preferably 5.5 to 8 GPa and 1500 ° C. or higher and lower than 2000 ° C. for 5 to 120 minutes. In particular, from the viewpoint of the balance between cost and sintering performance, 6 to 7 GPa and 1600 to 1900 ° C. for 5 to 60 minutes are preferable.
  • the organic matter adhering to the organic matter adhering cBN powder is decomposed and remains as carbon on the surface of the cBN powder in the first step.
  • carbon derived from an organic substance remains on the surface of the cBN powder.
  • the carbon remains on the surface of the organic matter attached cBN powder. Therefore, carbon is not unevenly distributed on the surface of the organic matter-adhered cBN powder used in the second step, and is present almost uniformly.
  • a cBN sintered body is produced by passing the mixed powder containing such organic substance-adhered cBN powder through the second step.
  • the cubic boron nitride sintered body of the present disclosure can be used as a material for tools.
  • the tool can include the above cBN sintered body as a base material. Further, the tool may have a coating film on the surface of the cBN sintered body as the base material.
  • the shape and use of the tool are not particularly limited.
  • Examples include a tip for pin milling of a shaft.
  • the tool according to the present embodiment is not limited to a tool in which the entire tool is made of a cBN sintered body, and a tool in which only a part of the tool (particularly a cutting edge portion (cutting edge portion) etc.) is made of a cBN sintered body. Also includes.
  • the tool according to the present embodiment also includes a tool in which only the cutting edge portion of a substrate (support) made of cemented carbide or the like is composed of a cBN sintered body.
  • the cutting edge portion is regarded as a tool in terms of wording.
  • the cBN sintered body is referred to as a tool even when the cBN sintered body occupies only a part of the tool.
  • the life can be extended.
  • the undiluted solution of hexylamine was continuously added into the above apparatus so that the concentration of hexylamine in the supercritical water was 5% by weight, and the amount of cBN powder in the supercritical water was 10% by weight.
  • cBN powder having an average particle size of 2 ⁇ m was continuously charged into the above apparatus.
  • the charging rate of hexylamine at this time was set to 2 ml / min. As a result, the cBN powder and the organic substance (hexylamine) were put into supercritical water.
  • the inside of the apparatus was returned to normal temperature and pressure, the preparation step was completed, and the entire amount of the obtained slurry was recovered.
  • the slurry was centrifuged (10000 rpm, 5 minutes) to separate excess hexylamine not attached to the cBN powder.
  • the concentrated slurry after separation was dried (-90 ° C., 12 hours), and about 20 g of the powder after supercritical water treatment (that is, organic matter-adhered cBN powder) was recovered.
  • the binder powder was prepared by the following procedure. Titanium (Ti) powder, aluminum (Al) powder, and titanium carbide (TiC) powder are mixed at 37:22:41 (% by weight) and heat-treated at 1500 ° C. for 30 minutes in a vacuum atmosphere to obtain approximately Ti 2. A binder compound having an AlC composition was obtained. The binder compound was pulverized to an average particle size of 0.5 ⁇ m by a ball mill method to prepare a first binder powder. In addition, titanium carbonitride (TiCN) powder was prepared as the second binder powder. The second binder powder and the first binder powder were mixed at a weight ratio of 1: 3 to obtain a binder powder.
  • TiCN titanium carbonitride
  • the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of organic matter-adhered cBN powder: binder powder 70:30, and uniformly mixed by a wet ball mill method using ethanol. Then, a degassing heat treatment was performed at 900 ° C. under vacuum to remove impurities such as moisture on the surface. When the organic matter-adhered cBN powder after the degassing heat treatment was analyzed by Auger electron spectroscopy, it was confirmed that carbon remained on the surface. From the above, a mixed powder was prepared.
  • a cBN sintered body was produced by sintering the obtained mixed powder. Specifically, the mixed powder was filled in a container made of Ta, vacuum-sealed, and sintered at 6.5 GPa and 1700 ° C. for 15 minutes using a belt-type ultrahigh-pressure high-temperature generator. As a result, a cBN sintered body was produced.
  • Example 2 In the preparation step, the hexylamine input rate was 1.5 ml / min, and in the preparation step, the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of organic matter-adhered cBN powder: binder powder 65:35.
  • a cBN sintered body was prepared by the same manufacturing method as that of sample 1 except for the above.
  • Example 3 Except that the hexylamine input rate was set to 2 ml / min in the preparation step, and the organic matter-adhered cBN powder and the binder powder were mixed in a volume% ratio of organic matter-adhered cBN powder: binder powder 75:25 in the preparation step.
  • a cBN sintered body was prepared by the same manufacturing method as that of Sample 1.
  • a cBN sintered body was produced by the same production method as that of Sample 1 except that the hexylamine input rate was set to 3 ml / min.
  • Example 5 Except for the fact that the hexylamine input rate was set to 3 ml / min in the preparation step and the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of the organic matter-adhered cBN powder: binder powder 60:40 in the preparation step.
  • a cBN sintered body was prepared by the same manufacturing method as that of Sample 1.
  • Example 6> In the preparation step, the hexylamine input rate was 3.5 ml / min, and in the preparation step, the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of the organic matter-adhered cBN powder: binder powder 60:40.
  • a cBN sintered body was prepared by the same manufacturing method as that of sample 1 except for the above.
  • Example 7 In the preparation step, the hexylamine input rate was set to 3 ml / min, and in the preparation step, the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of organic matter-adhered cBN powder: binder powder 79:21.
  • a cBN sintered body was prepared by the same manufacturing method as that of Sample 1.
  • Example 8> Except that the hexylamine input rate was set to 3 ml / min in the preparation step, and the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of the organic matter-adhered cBN powder: binder powder 50:50 in the preparation step.
  • a cBN sintered body was prepared by the same manufacturing method as that of Sample 1.
  • sample 9 In the production process, the sample was produced by the same production method as that of sample 1 except that plasma treatment was used instead of the method using supercritical water.
  • a plasma reformer (Dienner Co., low-pressure plasma apparatus FEMTO) sets the cBN powder in a chamber of a vacuum degree: 30 Pa, power: 1500 W, Frequency: introducing CF 4 gas at 13.56MHz conditions And processed for 30 minutes. Subsequently, treated for 30 minutes by introducing NH 3 gas. As a result, an organic substance-adhered cBN powder into which carbon and nitrogen were introduced was prepared.
  • a cBN sintered body was produced by the same production method as that of sample 9, except that the treatment time after introducing the CF 4 gas was changed to 5 minutes.
  • a cBN sintered body was produced by the same production method as that of sample 9, except that the treatment time after the introduction of NH 3 gas was changed to 15 minutes.
  • a cBN sintered body was prepared by the same manufacturing method as that of Sample 9 except that the organic matter-adhered cBN powder and the binder powder were blended in a ratio of organic matter-adhered cBN powder: binder powder 55:45 by volume.
  • a cBN sintered body was prepared by the same manufacturing method as that of Sample 9 except that the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of the organic matter-adhered cBN powder: binder powder 76:24.
  • a cBN sintered body was prepared by the same manufacturing method as in Sample 1 except that the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of the organic matter-adhered cBN powder: binder powder 45:55.
  • a cBN sintered body was prepared by the same manufacturing method as in Sample 1 except that the organic matter-adhered cBN powder and the binder powder were blended in a volume% ratio of organic matter-adhered cBN powder: binder powder 80:20.
  • cBN sintered body was prepared by the same manufacturing method as that of Sample 1 except that the cBN powder and the binder powder were blended in a volume% ratio of cBN powder: binder powder 50:50 without performing the preparation step.
  • the content ratios of the cBN particles and the bonded phase in the cBN sintered body were the organic substance-adhered cBN powder (cBN powder in Sample 16) and the bonded phase powder. It was confirmed that the content ratios of the organic substance-adhered cBN powder (cBN powder in sample 16) and the binder powder in the total (% by volume) (that is, the mixed powder) were maintained.
  • composition of binder >> The composition of the bonded phase of the cBN sintered bodies of Samples 1 to 16 was measured using XRD (X-ray diffraction measurement) and ICP. Since the specific measurement method is described in the first embodiment, the description thereof will not be repeated.
  • the length along the direction perpendicular to the interface of the first region, the maximum value of the oxygen content of the first region, and the average value of the oxygen content of the bound phase >> Regarding the cBN sintered bodies of Samples 1 to 16, the length along the direction perpendicular to the interface of the first region (hereinafter, also referred to as “the length of the first region”) and the maximum oxygen content of the first region.
  • the value and the average value of the oxygen content of the cBN particles were measured by element mapping analysis and element line analysis by TEM-EDX. Since the specific measurement method is described in the first embodiment, the description thereof will not be repeated.
  • the thickness of the sample was 50 nm, the beam diameter in EDX was 0.2 nm, and the scan interval was 0.6 nm.
  • a cutting tool (base material shape: CNGA120408, cutting edge treatment T01215) was prepared using the cBN sintered bodies of Samples 1 to 16. Using this, a cutting test was carried out under the following cutting conditions. Cutting speed: 170 m / min. Feed rate: 0.2 mm / rev. Notch: 0.16 mm Coolant: DRY Cutting method: Intermittent cutting Lathe: LB400 (manufactured by Okuma Corporation) Work material: SKD11 (HRC62) Work with V-groove
  • the cutting edge was observed every 0.2 km of cutting distance, and the amount of chipping was measured.
  • the amount of chipping was measured as the receding width due to wear from the position of the cutting edge ridge line before cutting.
  • the cutting distance at the time when the amount of chipping was 0.02 mm or more was measured. The longer the cutting distance, the longer the life of the cutting tool. The results are shown in the "Cutting distance (km)" column of Table 1.
  • the method for producing the cBN sintered body of Samples 1 to 13 corresponds to Examples.
  • the cBN sintered bodies of Samples 1 to 13 correspond to Examples.
  • the tools using the cBN sintered bodies of Samples 1 to 13 had a long cutting distance and a long tool life.
  • the method for producing the cBN sintered body of Sample 14 corresponds to a comparative example in which the content ratio of the organic matter-adhered cBN powder in the mixed powder is less than 50% by volume.
  • the cBN sintered body of sample 14 has a content ratio of cBN particles of less than 50% by volume, which corresponds to a comparative example.
  • the tool using the cBN sintered body of Sample 14 had a short cutting distance and a short tool life.
  • the method for producing the cBN sintered body of Sample 15 corresponds to a comparative example in which the content ratio of the organic matter-adhered cBN powder in the mixed powder is 80% by volume.
  • the cBN sintered body of the sample 15 and the cBN sintered body has a cBN particle content of 80% by volume, which corresponds to a comparative example.
  • the tool using the cBN sintered body of Sample 15 had a short cutting distance and a short tool life.
  • the method for producing the cBN sintered body of sample 16 does not use organic matter-adhered cBN powder, and corresponds to a comparative example.
  • the cBN sintered body of sample 16 has a length of the first region exceeding 10 nm, which corresponds to a comparative example.
  • the tool using the cBN sintered body of Sample 16 had a short cutting distance and a short tool life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

立方晶窒化硼素焼結体は、50体積%以上80体積%未満の立方晶窒化硼素粒子と、20体積%超50体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、前記結合相は、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含み、TEM-EDXを用いて、前記立方晶窒化硼素粒子同士の界面に垂直な方向に酸素含有量を測定した場合、前記立方晶窒化硼素粒子の酸素含有量の平均値よりも酸素含有量の大きい第1領域が存在し、前記第1領域内に前記界面が存在し、かつ、前記第1領域の前記界面に垂直な方向に沿う長さは0.1nm以上10nm以下である。

Description

立方晶窒化硼素焼結体
 本開示は、立方晶窒化硼素焼結体に関する。本出願は、2019年7月18日に出願した日本特許出願である特願2019-133025号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 切削工具等に用いられる高硬度材料として、立方晶窒化硼素焼結体(以下、「cBN焼結体」ともいう。)がある。cBN焼結体は、通常、立方晶窒化硼素粒子(以下、「cBN粒子」ともいう。)と結合相とからなり、cBN粒子の含有割合によってその特性が異なる傾向がある。
 このため、切削加工の分野においては、被削材の材質、要求される加工精度等によって、切削工具に適用されるcBN焼結体の種類が使い分けられる。例えば、立方晶窒化硼素(以下、「cBN」ともいう。)の含有割合の低いcBN焼結体(以下、「low-cBN焼結体」ともいう。)は、焼入鋼等の切削に好適に用いることができる。
 例えば、特開平11-268956号公報(特許文献1)には、電子顕微鏡による組織観察で、立方晶窒化硼素が30~70面積%である組成を示す立方晶窒化硼素基超高圧焼結材料から構成された切削チップが開示されている。
特開平11-268956号公報
 本開示の立方晶窒化硼素焼結体は、50体積%以上80体積%未満の立方晶窒化硼素粒子と、20体積%超50体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、
 前記結合相は、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含み、
 TEM-EDXを用いて、前記立方晶窒化硼素粒子同士の界面に垂直な方向に酸素含有量を測定した場合、前記立方晶窒化硼素粒子の酸素含有量の平均値よりも酸素含有量の大きい第1領域が存在し、前記第1領域内に前記界面が存在し、かつ、前記第1領域の前記界面に垂直な方向に沿う長さは0.1nm以上10nm以下である、立方晶窒化硼素焼結体である。
図1は、本開示のcBN焼結体をSEMで観察して得られた反射電子像の一例を示す画像である。 図2は、図1の反射電子像を画像処理ソフトに読み込んだ画像である。 図3は、上の画像は反射電子像であり、下の画像は該反射電子像から得られた濃度断面グラフである。 図4は、黒色領域及び結合相の規定方法を説明するための図である。 図5は、黒色領域と結合相との境界を説明するための図である。 図6は、図1の反射電子像を二値化処理した画像である。 図7は、第2画像の一例を模式的に示す図である。 図8は、元素ライン分析の結果を示すグラフの一例である。 図9は、第2画像の一例である。 図10は、元素ライン分析の結果を示すグラフの一例である。
 [本開示が解決しようとする課題]
 近年、機械部品の急速な高機能化に伴い、機械部品となる被削材の難削化が加速している。これに伴い、切削工具の短寿命化によるコスト増という問題が顕在化している。このため、low-cBN焼結体のさらなる改良が望まれる。
 本開示は、工具の材料として用いた場合に、工具の長寿命化を可能とする立方晶窒化硼素焼結体を提供することを目的とする。
[本開示の効果]
 本開示の立方晶窒化硼素焼結体は、工具の材料として用いた場合に、工具の長寿命化を可能とすることができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の立方晶窒化硼素焼結体は、
 50体積%以上80体積%未満の立方晶窒化硼素粒子と、20体積%超50体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、
 前記結合相は、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含み、
 TEM-EDXを用いて、前記立方晶窒化硼素粒子同士の界面に垂直な方向に酸素含有量を測定した場合、前記立方晶窒化硼素粒子の酸素含有量の平均値よりも酸素含有量の大きい第1領域が存在し、前記第1領域内に前記界面が存在し、かつ、前記第1領域の前記界面に垂直な方向に沿う長さは0.1nm以上10nm以下である。
 本開示の立方晶窒化硼素焼結体は、工具の材料として用いた場合に、工具の長寿命化を可能とすることができる。
 (2)前記立方晶窒化硼素粒子の含有割合は、55体積%以上75体積%以下であることが好ましい。これによると、立方晶窒化硼素焼結体は、工具の材料として用いた場合に、工具の更なる長寿命化を可能とすることができる。
 (3)前記第1領域の前記界面に垂直な方向に沿う長さは、0.1nm以上5nm以下であることが好ましい。これによると、立方晶窒化硼素焼結体は、工具の材料として用いた場合に、工具の更なる長寿命化を可能とすることができる。
 (4)前記第1領域の酸素含有量の最大値と、前記立方晶窒化硼素粒子の酸素含有量の平均値との差は、0.1原子%以上5原子%以下であることが好ましい。これによると、立方晶窒化硼素焼結体は、工具の材料として用いた場合に、工具の更なる長寿命化を可能とすることができる。
 (5)前記第1領域の酸素含有量の最大値と、前記立方晶窒化硼素粒子の酸素含有量の平均値との差は、0.1原子%以上3原子%以下である。これによると、立方晶窒化硼素焼結体は、工具の材料として用いた場合に、工具の更なる長寿命化を可能とすることができる。
 [本開示の実施形態の詳細]
 本発明者らはまず、より長寿命化が可能なcBN焼結体を完成させるべく、low-cBN焼結体における結合相の原料として、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、該化合物由来の固溶体からなる群より選ばれる少なくとも1種を含む結合材粉末を用いることとした。これは、本発明者らのこれまでの研究により、このような結合材粉末を用いた場合に、cBN粒子に対する結合相の結合力が特に高く、結果的に、優れたcBN焼結体が得られることを知見しているためである。
 本発明者らは、cBN粒子の含有量の少ないlow-cBN焼結体において、cBNの高い機械的強度を活かすためには、cBN粒子同士との結合力を更に高めることが重要であると考え、検討を行った。その結果、以下(a)~(e)の知見及び考察を得た。
 (a)cBN焼結体の原料であるcBN粉末の表面に酸素が存在し、該酸素は、B又は硼素(B)と混在した非晶質の状態で存在している。該cBN粉末を用いてcBN焼結体を製造した場合、cBN焼結体中に多くの酸素が残存している。
 (b)cBN粉末と結合材粉末とを混合して超高圧焼結させた場合、低硬度の結合材粉末(例えば、セラミクス粉末)が先に破砕し、強靱かつ高硬度のcBN粉末は破砕しにくい。このため、焼結過程においてcBN粒子同士が接触し、固相焼結する。cBN焼結体において、固相焼結部は結合相に比べて結合力が弱いため、破壊起点となりやすい。
 (c)cBN粉末の表面に存在する酸素は、cBN粒子同士の結合力を低下させると考えられる。よって、該酸素を低減させることで、cBN粒子同士の結合力を高め得ると考えられる。
 (d)cBN焼結体において、cBN粒子の表面に存在する硼素(B)及び/又は窒素(N)が結合材と反応して結合することにより、cBN粒子と結合相とが結合している。
 (e)cBN粉末の表面に存在する酸素は、cBN粒子と結合相との結合力を低下させると考えられる。よって、該酸素を低減させることで、cBN粒子と結合相との結合力を高め得ると考えられる。
 上記の知見及び考察を踏まえ、本発明者らは鋭意検討の結果、本開示を完成させた。以下に、本開示の立方晶窒化硼素焼結体、及び、その製造方法の具体例を、図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分又は相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。例えば「TiAlN」と記載されている場合、TiAlNを構成する原子数の比はTi:Al:N=0.5:0.5:1に限られず、従来公知のあらゆる原子比が含まれる。このことは、「TiAlN」以外の化合物の記載についても同様である。本実施形態において、チタン(Ti)、アルミニウム(Al)、ケイ素(Si)、タンタル(Ta)、クロム(Cr)などの金属元素と、窒素(N)、酸素(O)、炭素(C)などの非金属元素とは、必ずしも化学量論的な組成を構成している必要がない。
 <第1の実施形態:立方晶窒化硼素焼結体>
 本開示の立方晶窒化硼素焼結体は、50体積%以上80体積%未満の立方晶窒化硼素粒子と、20体積%超50体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、結合相は、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、該化合物由来の固溶体からなる群より選ばれる少なくとも1種を含み、TEM-EDXを用いて、立方晶窒化硼素粒子同士の界面に垂直な方向に酸素含有量を測定した場合、立方晶窒化硼素粒子の酸素含有量の平均値よりも酸素含有量の大きい第1領域が存在し、第1領域内に界面が存在し、かつ、第1領域の界面に垂直な方向に沿う長さは0.1nm以上10nm以下である。
 本開示の立方晶窒化硼素焼結体は、50体積%以上80体積%未満の立方晶窒化硼素粒子と、20体積%超50体積%以下の結合相と、を備える。すなわち、本開示の立方晶窒化硼素焼結体は、いわゆるlow-cBN焼結体である。なお、cBN焼結体は、原材料、製造条件等に起因する不可避不純物を含み得る。本開示の立方晶窒化硼素焼結体において、cBN粒子の含有割合、結合相の含有割合、及び、不可避不純物の含有割合の合計は、100体積%となる。
 本開示の立方晶窒化硼素焼結体において、cBN粒子の含有割合、及び、結合相の含有割合の合計の下限は、95体積%以上、96体積%以上、97体積%以上、98体積%以上、99体積%以上とすることができる。本開示の立方晶窒化硼素焼結体において、cBN粒子の含有割合、及び、結合相の含有割合の合計の上限は、100体積%以下、100体積%未満とすることができる。本開示の立方晶窒化硼素焼結体において、cBN粒子の含有割合、及び、結合相の含有割合の合計は、95体積%以上100体積%以下、96体積%以上100体積%以下、97体積%以上100体積%以下、98体積%以上100体積%以下、99体積%以上100体積%以下、95体積%以上100体積%未満、96体積%以上100体積%未満、97体積%以上100体積%未満、98体積%以上100体積%未満、99体積%以上100体積%未満とすることができる。
 cBN焼結体におけるcBN粒子の含有割合(体積%)及び結合相の含有割合(体積%)は、走査電子顕微鏡(SEM)(日本電子社製の「JSM-7800F」(商品名))付帯のエネルギー分散型X線分析装置(EDX)(AMETEK社製の「Octane Elect(オクタンエレクト) EDS システム」(商品名))を用いて、cBN焼結体に対し、組織観察、元素分析等を実施することによって確認することができる。
 cBN粒子の含有割合(体積%)の測定方法は下記の通りである。まず、cBN焼結体の任意の位置を切断し、cBN焼結体の断面を含む試料を作製する。断面の作製には、集束イオンビーム装置、クロスセクションポリッシャ装置等を用いることができる。次に、上記断面をSEMにて5000倍で観察して、反射電子像を得る。反射電子像においては、cBN粒子が存在する領域が黒色領域となり、結合相が存在する領域が灰色領域又は白色領域となる。
 次に、上記反射電子像に対して画像解析ソフト(三谷商事(株)の「WinROOF」)を用いて二値化処理を行う。二値化処理後の画像から、測定視野の面積に占める暗視野に由来する画素(cBN粒子に由来する画素)の面積比率を算出する。算出された面積比率を体積%とみなすことにより、cBN粒子の含有割合(体積%)を求めることができる。
 二値化処理後の画像から、測定視野の面積に占める明視野に由来する画素(結合相に由来する画素)の面積比率を算出することにより、結合相の含有割合(体積%)を求めることができる。
 二値化処理の具体的な方法について、図1~図6を用いて説明する。
 図1は、cBN焼結体をSEMで観察して得られた反射電子像の一例である。該反射電子像を画像処理ソフトに読み込む。読み込んだ画像を図2に示す。図2に示されるように、読み込んだ画像において、任意のラインQ1を引く。
 ラインQ1に沿って、濃度断面図の計測を行い、GRAY値を読み取る。ラインQ1をX座標とし、GRAY値をY座標としたグラフ(以下、「濃度断面グラフ」ともいう。)を作製する。cBN焼結体の反射電子像と、該反射電子像の濃度断面グラフを図3に示す(上の画像が反射電子像であり、下のグラフが濃度断面グラフである)。図3において、反射電子像の幅と濃度断面グラフのX座標の幅(23.27μm)とは一致している。従って、反射電子像におけるラインQ1の左側端部から、ラインQ1上の特定の位置までの距離は、濃度断面グラフのX座標の値で示される。
 図3の反射電子像においてcBN粒子が存在する黒色領域を任意に3箇所選ぶ。黒色領域は、例えば、図4の反射電子像において、符号fの楕円で示される部分である。
 該3箇所の黒色領域のそれぞれのGRAY値を濃度断面グラフから読み取る。該3箇所の黒色領域のそれぞれのGRAY値は、図4の濃度断面グラフにおいて、符号fの楕円で囲まれる3箇所の各部分におけるGRAY値の平均値とする。該3箇所のそれぞれのGRAY値の平均値を算出する。該平均値をcBNのGRAY値(以下、Gcbnともいう。)とする。
 図3の反射電子像において灰色で示される結合相が存在する領域を任意に3箇所選ぶ。結合相は、例えば、図4の反射電子像において、符号dの楕円で示される部分である。
 該3箇所の結合相のそれぞれのGRAY値を濃度断面グラフから読み取る。該3箇所の結合相のそれぞれのGRAY値は、図4の濃度断面グラフにおいて、符号dの楕円で囲まれる3箇所の各部分におけるGRAY値の平均値とする。該3箇所のそれぞれのGRAY値の平均値を算出する。該平均値を結合相のGRAY値(以下、Gbinderともいう。)とする。
 (Gcbn+Gbinder)/2で示されるGRAY値を、黒色領域(cBN粒子)と結合相との界面のGRAY値と規定する。例えば、図4の濃度断面グラフにおいて、黒色領域(cBN粒子)のGRAY値GcbnはラインGcbnで示され、結合相のGRAY値GbinderはラインGbinderで示され、(Gcbn+Gbinder)/2で示されるGRAY値はラインG1で示される。
 上記の通り、濃度断面グラフにおいて、黒色領域(cBN粒子)と結合相との界面を規定することにより、黒色領域(cBN粒子)と結合相との界面におけるX座標及びY座標の値を読み取ることができる。界面は任意に規定することができる。例えば、図5の上部の反射電子像では、界面を含む部分の一例として、符号eの楕円で囲まれる部分が挙げられる。図5の反射電子像において、黒色領域(cBN粒子)と結合相との界面は、例えば符号eの楕円で示される部分である。図5の下部の濃度断面グラフにおいて、上記の符号eの楕円に相当する黒色領域(cBN粒子)と結合相との界面は矢印eで示される部分である。該矢印eの先端は、GRAY値の濃度断面グラフと、GRAY値(Gcbn+Gbinder)/2を示すラインG1と、の交点の位置を示す。該矢印eのX座標及び矢印eの先端のY座標の値が、黒色領域(cBN粒子)と結合相との界面におけるX座標及びY座標の値に該当する。
 黒色領域(cBN粒子)と結合相との界面におけるX座標及びY座標の値を閾値として二値化処理を行う。二値化処理後の画像を図6に示す。図6において、点線で囲まれる領域が、二値化処理が行われた領域である。なお、二値化処理後の画像は、明視野と暗視野の他に、二値化処理前の画像において白色であった領域に対応する白色領域(明視野よりも白い箇所)を含んでいてもよい。
 図6において、測定視野の面積に占める暗視野に由来する画素(cBN粒子に由来する画素)の面積比率を算出する。算出された面積比率を体積%とみなすことにより、cBN粒子の含有割合(体積%)を求めることができる。
 図6において、測定視野の面積に占める明視野に由来する画素(結合相に由来する画素)の面積比率を算出することにより、結合相の含有割合(体積%)を求めることができる。
 cBN焼結体中のcBN粒子の含有割合は、55体積%以上75体積%以下が好ましく、65体積%以上75体積%以下がより好ましく、70体積%以上75体積%以下が更に好ましい。
 cBN焼結体中の結合相の含有割合は、25体積%以上45体積%以下が好ましく、25体積%以上35体積%以下がより好ましく、25体積%以上30体積%以下が更に好ましい。
 《cBN粒子》
 cBN粒子は、硬度、強度、靱性が高く、cBN焼結体中の骨格としての役割を果たす。cBN粒子のD50(平均粒径)は特に限定されず、例えば、0.1~10.0μmとすることができる。通常、D50が小さい方がcBN焼結体の硬度が高くなる傾向があり、粒径のばらつきが小さい方が、cBN焼結体の性質が均質となる傾向がある。cBN粒子のD50は、例えば、0.5~4.0μmとすることが好ましい。
 cBN粒子のD50は次のようにして求められる。まず上記のcBN粒子の含有割合の求め方に準じて、cBN焼結体の断面を含む試料を作製し、反射電子像を得る。次いで、画像解析ソフトを用いて反射電子像中の各暗視野(cBN粒子に相当)の円相当径を算出する。5視野以上を観察することによって100個以上のcBN粒子の円相当径を算出することが好ましい。
 次いで、各円相当径を最小値から最大値まで昇順に並べて累積分布を求める。累積分布において累積面積50%となる粒径がD50となる。なお円相当径とは、計測されたcBN粒子の面積と同じ面積を有する円の直径を意味する。
 《結合相》
 結合相は、難焼結性材料であるcBN粒子を工業レベルの圧力温度で焼結可能とする役割を果たす。また、鉄との反応性がcBNより低いため、高硬度焼入鋼の切削において、化学的摩耗及び熱的摩耗を抑制する働きを付加する。また、cBN焼結体が結合相を含有すると、高硬度焼入鋼の高能率加工における耐摩耗性が向上する。
 本開示のcBN焼結体において、結合相は、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物(以下、「結合相化合物」ともいう。)、及び、該結合材化合物由来の固溶体からなる群より選ばれる少なくとも1種を含む。
 ここで、周期律表の第4族元素は、例えば、チタン(Ti)、ジルコニウム(Zr)及びハフニウム(Hf)を含む。第5族元素は、例えば、バナジウム(V)、ニオブ(Nb)及びタンタル(Ta)を含む。第6族元素は、例えば、クロム(Cr)、モリブデン(Mo)及びタングステン(W)を含む。以下、第4族元素、第5族元素及び第6族元素に含まれる元素を「第1金属元素」とも記す。
 上記の第1金属元素と窒素とを含む化合物(窒化物)としては、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(CrN)、窒化モリブデン(MoN)、窒化タングステン(WN)、窒化チタンジルコニウム(TiZrN)、窒化チタンハフニウム(TiHfN)、窒化チタンバナジウム(TiVN)、窒化チタンニオブ(TiNbN)、窒化チタンタンタル(TiTaN)、窒化チタンクロム(TiCrN)、窒化チタンモリブデン(TiMoN)、窒化チタンタングステン(TiWN)、窒化ジルコニウムハフニウム(ZrHfN)、窒化ジルコニウムバナジウム(ZrVN)、窒化ジルコニウムニオブ(ZrNbN)、窒化ジルコニウムタンタル(ZrTaN)、窒化ジルコニウムクロム(ZrCrN)、窒化ジルコニウムモリブデン(ZrMoN)、窒化ジルコニウムタングステン(ZrWN)、窒化ハフニウムバナジウム(HfVN)、窒化ハフニウムニオブ(HfNbN)、窒化ハフニウムタンタル(HfTaN)、窒化ハフニウムクロム(HfCrN)、窒化ハフニウムモリブデン(HfMoN)、窒化ハフニウムタングステン(HfWN)、窒化バナジウムニオブ(VNbN)、窒化バナジウムタンタル(VTaN)、窒化バナジウムクロム(VCrN)、窒化バナジウムモリブデン(VMoN)、窒化バナジウムタングステン(VWN)、窒化ニオブタンタル(NbTaN)、窒化ニオブクロム(NbCrN)、窒化ニオブモリブデン(NbMoN)、窒化ニオブタングステン(NbWN)、窒化タンタルクロム(TaCrN)、窒化タンタルモリブデン(TaMoN)、窒化タンタルタングステン(TaWN)、窒化クロムモリブデン(CrMoN)、窒化クロムタングステン(CrWN)、窒化モリブデンクロム(MoWN)を挙げることができる。
 上記の第1金属元素と炭素とを含む化合物(炭化物)としては、例えば、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化バナジウム(VC)、炭化ニオブ(NbC)、炭化タンタル(TaC)、炭化クロム(Cr)、炭化モリブデン(MoC)、炭化タングステン(WC)を挙げることができる。
 上記の第1金属元素と硼素とを含む化合物(硼化物)としては、例えば、硼化チタン(TiB)、硼化ジルコニウム(ZrB)、硼化ハフニウム(HfB)、硼化バナジウム(VB)、硼化ニオブ(NbB)、硼化タンタル(TaB)、硼化クロム(CrB)、硼化モリブデン(MoB)、硼化タングステン(WB)を挙げることができる。
 上記の第1金属元素と酸素とを含む化合物(酸化物)としては、例えば、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化バナジウム(V)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化クロム(Cr)、酸化モリブデン(MoO)、酸化タングステン(WO)を挙げることができる。
 上記の第1金属元素と炭素と窒素とを含む化合物(炭窒化物)としては、例えば、炭窒化チタン(TiCN)、炭窒化ジルコニウム(ZrCN)、炭窒化ハフニウム(HfCN)を挙げることができる。
 上記の第1金属元素と酸素と窒素とからなる化合物(酸窒化物)としては、例えば、酸窒化チタン(TiON)、酸窒化ジルコニウム(ZrON)、酸窒化ハフニウム(HfON)、酸窒化バナジウム(VON)、酸窒化ニオブ(NbON)、酸窒化タンタル(TaON)、酸窒化クロム(CrON)、酸窒化モリブデン(MoON)、酸窒化タングステン(WON)を挙げることができる。
 アルミニウムを含む結合相化合物としては、例えば、窒化アルミニウム(AlN)、窒化チタンアルミニウム(TiAlN、TiAlN、TiAlN)、硼化アルミニウム(AlB)、酸化アルミニウム(Al)を挙げることができる。
 上記の結合相化合物由来の固溶体とは、2種類以上のこれらの化合物が互いの結晶構造内に溶け込んでいる状態を意味し、侵入型固溶体や置換型固溶体を意味する。
 結合相化合物は、1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。
 結合相は、上記の結合相化合物の他に、他の成分を含んでいてもよい。他の成分を構成する元素としては、例えば、ニッケル(Ni)、鉄(Fe)、マンガン(Mn)、レニウム(Re)を挙げることができる。
 cBN焼結体に含まれる結合相の組成は、例えば、XRD(X線回折測定、X-ray
 Diffraction)及びEDX(エネルギー分散型X線分光法、Energy dispersive X-ray spectrometry)により特定されうる。
 《TEM-EDXによる分析》
 本開示のcBN焼結体は、TEM-EDX(透過型電子顕微鏡(TEM)付帯のエネルギー分散型X線分光法(EDX))を用いて、cBN粒子同士の界面に垂直な方向に酸素含有量を測定した場合に、下記(1)~(3)の条件を満たすことを特徴とする。
(1)cBN粒子の酸素含有量の平均値よりも酸素含有量の大きい第1領域が存在する。
(2)第1領域内に界面が存在する。
(3)第1領域の界面に垂直な方向に沿う長さは0.1nm以上10nm以下である。
 TEM-EDXによる分析は、次のようにして実施される。まず、cBN焼結体からサンプルを採取し、アルゴンイオンスライサーを用いて、サンプルを30~100nmの厚みに薄片化して切片を作製する。次いで、当該切片をTEM(透過型電子顕微鏡、日本電子社製の「JEM-2100F/Cs」(商品名))にて50000倍で観察することにより、第1画像を得る。
 第1画像において、cBN粒子同士の界面を任意に選択する。なお、第1画像において、cBN粒子は黒色領域として観察され、結合相は白色領域又は灰色領域として観察され、界面は白色領域又は灰色領域として観察される。
 次に、選択された界面が、画像の中央付近を通るように位置決めを行い、観察倍率を200万倍に変更して観察することにより、第2画像を得る。得られた第2画像(100nm×100nm)において、界面は、画像の一端から、画像の中央付近を通って、該一端に対向する他の一端に伸びるように存在することとなる。
 次に、第2画像に対し、EDXによる元素マッピング分析を実施し、酸素の分布を分析する。
 元素マッピング分析の結果、界面を含み、該界面に沿うように、酸素の濃度が高い領域が観察された場合には、当該第2画像において、界面に垂直な方向に酸素含有量を測定する。具体的な測定方法は下記の通りである。
 まず、第2画像において、界面の伸長する伸長方向(炭素の濃度が高い領域が伸長する伸長方向)を確認し、該伸長方向に垂直な方向に、元素ライン分析を実施する。ここで、界面の伸長方向に対して垂直な方向とは、伸長方向の接線に対して90°±5°の角度で交差する直線に沿う方向を意味する。そのときのビーム径は0.3nm以下とし、スキャン間隔は0.1~0.7nmとする。
 元素ライン分析の結果から、cBN粒子の酸素含有量の平均値、及び、該平均値よりも酸素含有量の大きい第1領域の界面に垂直な方向に沿う長さを算出する。具体的な算出方法について、図7及び図8を用いて説明する。
 図7は、第2画像の一例を模式的に示す図である。図7では、立方晶窒化硼素粒子1同士が隣接して界面3を形成している。界面3の伸長方向に対して垂直方向(伸長方向の接線に対して90°±5°の角度で交差する直線に沿う方向)(図7の矢印Aで示される方向)に沿って、元素ライン分析を実施する。また、界面の伸長方向に対して垂直な方向は、サンプルの断面においてcBN粒子と結合相との界面(境界線)に垂直、かつ、該断面に平行な方向である。
 図8は、元素ライン分析の結果を示すグラフの一例である。該グラフにおいて、横軸(X軸)は界面からの距離(nm)を示し、縦軸(Y軸)は酸素含有量(原子%)を示す。なお、横軸(X軸)の「X=0」は界面を示し、横軸(X軸)の値が「-」(マイナス)で示される場合は、その絶対値が界面からの距離に相当する。
 例えば、図7における界面3と元素ライン分析の方向(矢印A)との交点Bは、界面3との距離が0である。よって、交点Bは、図8のグラフにおいてX=0となり、X=0における縦軸(Y軸)の値が交点Bにおける酸素含有量となる。
 図7における交点Bから、元素ライン分析の方向(矢印A)に沿う、右側への距離は、図8のグラフにおいて、横軸(X軸)の正の数値として示される。一方、図7における交点Bから、元素ライン分析の方向(矢印A)に沿う、左側への距離は、図8のグラフにおいて、横軸(X軸)の負の数値として示される。
 本明細書において、cBN粒子の酸素含有量の平均値は、cBN焼結体の断面において、cBN粒子同士の界面からcBN粒子の内側に20nm離れた距離の仮想の線を線L1とし、cBN粒子同士の界面からcBN粒子の内側に30nm離れた距離の仮想の線を線L2とした場合に、線L1と線L2との間の領域におけるcBN粒子の酸素含有量の平均値を意味する。本明細書では、結合相の酸素含有量の平均値は、元素ライン分析の結果を示すグラフから算出される値である。
 例えば、図8のグラフでは、横軸(X軸)が-20nmから-30nmの範囲(aで示される範囲、界面からの距離が20nm以上30nm以下の範囲)における酸素含有量の平均値、又は、横軸(X軸)が20nmから30nmの範囲(cで示される範囲、界面からの距離が20nm以上30nm以下の範囲)における酸素含有量の平均値が、cBN粒子の酸素含有量の平均値となる。なお、隣接するcBN粒子において、酸素含有量の平均値が異なる場合(例えば、図8のグラフにおいて、aで示される範囲の酸素含有量の平均値と、cで示される範囲の酸素含有量の平均値が異なる場合)は、酸素含有量の平均値の大きい方を、cBN粒子の酸素含有量の平均値とする。
 図8のグラフにおいて、上記で算出されたcBN粒子の酸素含有量の平均値よりも、酸素含有量が大きい領域(bで示される範囲)が、cBN粒子の酸素含有量の平均値よりも酸素含有量の大きい第1領域に相当する。第1領域が存在する場合は、立方晶窒化硼素焼結体は上記(1)の条件(cBN粒子の酸素含有量の平均値よりも酸素含有量の大きい第1領域が存在する。)を満たすこととなる。
 図8のグラフにおいて、上記の第1領域(bで示される範囲)の横軸(X軸)の範囲が、X=0を含む場合、立方晶窒化硼素焼結体は上記(2)の条件(第1領域内に界面が存在する。)を満たすこととなる。
 図8のグラフにおいて、上記の第1領域(bで示される範囲)の横軸(X軸)の範囲の長さ(Dで示される長さ)が0.1nm以上10nm以下の場合、立方晶窒化硼素焼結体は上記(3)の条件(第1領域の界面に垂直な方向に沿う長さは0.1nm以上10nm以下である。)を満たすこととなる。
 6視野分の第1画像において上述の分析を繰り返し実施し、1視野分以上において、上記(1)~(3)を満たすことが確認された場合、当該cBN焼結体は、本開示のcBN焼結体であるとみなす。
 上述の分析に関し、理解を容易とするために、図9及び図10を用いてさらに詳述する。図9は、第2画像の一例である。図9を参照し、黒色領域がcBN粒子に相当し、白色領域又は灰色領域が結合相に相当し、白色領域又は灰色領域が界面に相当すると考えられる。
 ここで、第2画像において、界面に相当すると考えられる白色領域又は灰色領域の幅(図9においては略上下方向)が10nmを超える場合には、第1画像に戻り、他の一の界面を再選択する。白色領域又は灰色領域の幅が10nmを超える場合には、該白色領域又は灰色領域が「cBN粒子同士の界面」に相当するとは言い難いためである。
 図10は、第2画像の元素ライン分析の結果を示すグラフの一例である。図10において、元素ライン分析を実施した距離(nm)を横軸とし、元素ライン分析結果から算出される、スポットにおける硼素含有量、窒素含有量、炭素含有量、酸素含有量、アルミニウム含有量、珪素含有量及びチタン含有量(原子%)の値を縦軸とした結果を実線で示す。
 図10において、符号Dで示される部分が「第1領域の界面に垂直な方向に沿う長さ」となる。
 本開示のcBN焼結体は、第1領域の界面に垂直な方向に沿う長さが0.1nm以上5nm以下が好ましく、0.1nm以上2.5nm以下が更に好ましい。この場合、cBN焼結体は、工具の材料として用いた場合に、工具の更なる長寿命化を可能とすることができる。
 本開示のcBN焼結体は、第1領域の酸素含有量の最大値と、cBN粒子の酸素含有量の平均値との差は、0.1原子%以上5原子%以下であることが好ましい。これによると、立方晶窒化硼素焼結体は、工具の材料として用いた場合に、工具の更なる長寿命化を可能とすることができる。ここで、第1領域の酸素含有量の最大値、及び、cBN粒子の酸素含有量の平均値は、cBN焼結体の元素ライン分析の結果を示すグラフから算出される値である。
 第1領域の酸素含有量の最大値と、cBN粒子の酸素含有量の平均値との差は、0.1原子%以上3.0原子%以下がより好ましく、0.1原子%以上1.5原子%以下が更に好ましい。
 上記の第1領域の酸素含有量の最大値は、0.1原子%以上5原子%以下が好ましい。酸素含有量の最大値が5原子%を超える場合、cBN粒子同士の結合力が不十分である傾向がある。酸素含有量の最大値は0.1原子%以上3.0原子%以下が好ましく、0.1原子%以上1.5原子%以下がより好ましい。これによると、cBN焼結体のさらなる長寿命化が可能となる。
 上記の結合相の酸素含有量の平均値は、0.1原子%以上10原子%以下が好ましく、0.1原子%以上5原子%以下がより好ましい。これによると、cBN焼結体のさらなる長寿命化が可能となる。
 《作用効果》
 本開示のcBN焼結体は、工具の材料として用いた場合に、工具の長寿命化を可能とすることができる。この理由は、下記の通りと推察される。
 本開示のcBN焼結体では、cBN粒子同士の界面に存在する酸素の量が低減されている。これは、その製造工程において、酸素による結合阻害が生じにくかったためと考えられる。よって、cBN粒子同士、及び、cBN粒子と結合相との結合力が高められていると推察される。
 <第2の実施形態:cBN焼結体の製造方法>
 本開示のcBN焼結体の製造方法について説明する。本開示のcBN焼結体の製造方法は、立方晶窒化硼素粉末(以下、「cBN粉末」ともいう。)に有機物を付着させて、有機物付着立方晶窒化硼素粉末(以下、「有機物付着cBN粉末」ともいう。)を作製する工程(以下、「作製工程」ともいう。)と、有機物付着立方晶窒化硼素粉末と結合材粉末とを混合して、混合粉末を調製する工程(以下、「調製工程」ともいう。)と、混合粉末を焼結して、立方晶窒化硼素焼結体を得る工程(以下、「焼結工程」ともいう。)と、を備える。
 上記の混合粉末は、50体積%以上80体積%未満の有機物付着立方晶窒化硼素粉末と、20体積%超50体積%以下の結合材粉末とを含む。上記の結合材粉末は、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とを含む。以下、各工程について詳述する。
 《作製工程》
 本工程は、cBN粉末に有機物を付着させて、有機物付着cBN粉末を作製する工程である。
 cBN粉末とは、cBN焼結体に含まれるcBN粒子の原料粉末である。cBN粉末は、特に限定されず、公知のcBN粉末を用いることができる。cBN粉末のD50(平均粒径)は特に限定されず、例えば、0.1~12μmとすることができる。
 cBN粉末に有機物を付着させる方法としては、超臨界水を用いる方法、及びプラズマ処理を実施する方法等が挙げられる。
 (超臨界水を用いる方法)
 超臨界水を用いる方法について説明する。当該方法においては、例えば、cBN粉末と有機物とを超臨界水に投入する工程が実施される。これにより、有機物付着cBN粉末を作製することができる。なお本明細書において、超臨界水とは、超臨界状態又は亜臨界状態の水を意味する。
 cBN粉末と有機物とを超臨界水に投入する方法としては、例えば、有機物を溶解させた超臨界水に、cBN粉末を投入する方法が挙げられる。これによれば、cBN粉末と超臨界水との接触により、cBN粉末の表面が清浄化される。また、清浄化された表面(以下、「清浄面」ともいう。)を有するcBN粉末と有機物との接触により、有機物が清浄面に付着する。
 超臨界水を用いて本工程を実施する場合、用いられる有機物は、アミン、炭素数が5以上の炭化水素化合物が好ましい。なかでも、ヘキシルアミン、ヘキシルニトリル、パラフィン、ヘキサンがより好ましく、ヘキシルアミンがさらに好ましい。本発明者らは、これらの有機物を用いた場合に、cBN焼結体におけるcBN粒子の脱落が飛躍的に低減されることを確認している。
 (プラズマ処理を実施する方法)
 プラズマ処理を実施する方法について説明する。当該方法においては、例えばプラズマ発生装置内において、cBN粉末を、炭素を含む第1ガス雰囲気に曝した後、アンモニアを含む第2ガス雰囲気下に曝す方法が挙げられる。第1ガスとしては、CF、CH、C等を用いることができる。第2ガスとしては、NH、N及びHの混合ガス等を用いることができる。
 これによれば、cBN粉末が第1ガス雰囲気下に曝されることにより、cBN粉末の表面がエッチングされて清浄面が形成され、かつ該清浄面に炭素が付着する。引き続き、炭素が付着されたcBN粉末が第2ガス雰囲気下に曝されることにより、該炭素がアンモニアにより終端される。これにより、結果的に、炭素と窒素を含む有機物が清浄面に付着することとなる。
 以上のように、超臨界水を用いる方法及びプラズマ処理を実施する方法のいずれかにより、有機物付着cBN粉末を作製することができる。本工程においては、超臨界水を用いる方法を採用することが好ましい。cBN粉末に付着する有機物の均一化が容易であり、もって有機物付着cBN粉末の均一化が容易なためである。
 本工程において、cBN粉末の平均粒子径は特に制限されない。高強度であり高耐摩耗性及び高耐欠損性を兼ね備えるcBN焼結体を形成する観点からは、cBN粉末の平均粒子径は0.1~10μmが好ましく、0.5~5.0μmがより好ましい。
 プラズマ処理を利用して本工程を実施する場合、付着される有機物としては、アミン等が挙げられる。
 cBN粉末に付着する有機物の好ましい量は、cBN粉末の粒径により変化する。例えば、有機物としてヘキシルアミンを用いる場合、平均粒子径が1~10μmのcBN粉末に対しては、質量基準で0.1~3000ppmのヘキシルアミンを用いることが好ましい。また、平均粒子径が0.1~1μmのcBN粉末に対しては、質量基準で0.1~1000ppmのヘキシルアミンを用いることが好ましい。このような場合に、所望するcBN焼結体が効率的に製造される傾向がある。有機物付着cBN粉末に付着した有機物の量は、例えばガスクロマトグラフ質量分析法により測定することができる。
 《調製工程》
 本工程は、有機物付着cBN粉末と、結合材粉末とを混合して、混合粉末を調製する工程である。有機物付着cBN粉末は、上述の作製工程により得られた有機物付着cBN粉末であり、結合材粉末は、cBN焼結体の結合相の原料である。
 上記結合材粉末は、次のようにして調製することができる。まず、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とを含む化合物(以下、「結合材化合物」ともいう。)を準備する。結合材化合物は、1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。当該結合材化合物を湿式のボールミル、湿式のビーズミル等で粉砕することにより、結合材粉末が調製される。
 有機物付着cBN粉末と、結合材粉末との混合割合は、混合粉末中の有機物付着cBN粉末の割合が50体積%以上80体積%未満、かつ、結合材粉末の割合が20体積%超50体積%以下となるように調製する。
 なお、混合粉末中の有機物付着cBN粉末と、結合材粉末との混合割合は、該混合粉末を焼結して得られるcBN焼結体におけるcBN粒子と、結合相との割合と実質的に同一となる。有機物付着cBN粉末中の有機物の体積は、cBN粉末に対して極めて小さいためである。したがって、混合粉末中の有機物付着cBN粉末と、結合材粉末との混合割合を制御することにより、cBN焼結体中のcBN粒子と結合相との割合を、所望の範囲に調製することができる。
 有機物付着cBN粉末と、結合材粉末との混合方法は特に制限されないが、効率よく均質に混合する観点から、ボールミル混合、ビーズミル混合、遊星ミル混合、及びジェットミル混合等を用いることができる。各混合方法は、湿式でもよく乾式でもよい。
 有機物付着cBN粉末と、結合材粉末とは、エタノール、アセトン等を溶媒に用いた湿式ボールミル混合により混合されることが好ましい。また、混合後は自然乾燥により溶媒が除去される。その後、熱処理により、表面に吸着した水分等の不純物を揮発させ表面を清浄化する。この際、cBN粉末に付着する有機物が熱処理により分解されるが、表面には炭素が均一に残存し表面改質が実現される。これにより、混合粉末が調製される。
 結合材粉末は、上記の結合材化合物の他に、他の成分を含んでいてもよい。他の成分を構成する元素としては、例えば、ニッケル(Ni)、鉄(Fe)、マンガン(Mn)、レニウム(Re)等を挙げることができる。
 《焼結工程》
 本工程は、混合粉末を焼結してcBN焼結体を得る工程である。本工程において、混合粉末が高温高圧条件下に曝されて焼結されることにより、cBN焼結体が製造される。
 具体的には、まず、第1工程として、混合粉末を容器に充填して真空シールする。次に、第2工程として、超高温高圧装置を用いて、真空シールされた混合粉末を焼結処理する。焼結条件は特に制限されないが、5.5~8GPa及び1500℃以上2000℃未満で、5~120分が好ましい。特に、コストと焼結性能とのバランスの観点から、6~7GPa及び1600~1900℃で、5~60分が好ましい。
 本工程においては、混合粉末の作製段階で脱ガス熱処理を実施していない場合には、第1工程により、有機物付着cBN粉末に付着した有機物が分解されて、cBN粉末表面に炭素として残存する。混合粉末の作製段階で脱ガス熱処理が実施される場合には、有機物由来の炭素がcBN粉末表面に残存する。第2工程において、該炭素は有機物付着cBN粉末の表面に留まる。このため、第2工程に供される有機物付着cBN粉末の表面には、炭素が偏在せず、ほぼ均一に存在することとなる。このような有機物付着cBN粉末を含む混合粉末が第2工程を経ることにより、cBN焼結体が製造される。
 <第3の実施形態:工具>
 本開示の立方晶窒化硼素焼結体は、工具の材料として用いることができる。工具は、基材として上記cBN焼結体を含むことができる。また工具は、基材となるcBN焼結体の表面に被膜を有していてもよい。
 工具の形状及び用途は特に制限されない。例えばドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、クランクシャフトのピンミーリング加工用チップなどを挙げることができる。
 また、本実施形態に係る工具は、工具の全体がcBN焼結体からなるもののみに限らず、工具の一部(特に刃先部位(切れ刃部)等)のみがcBN焼結体からなるものも含む。例えば、超硬合金等からなる基体(支持体)の刃先部位のみがcBN焼結体で構成されるようなものも本実施形態に係る工具に含まれる。この場合は、文言上、その刃先部位を工具とみなすものとする。換言すれば、cBN焼結体が工具の一部のみを占める場合であっても、cBN焼結体を工具と呼ぶものとする。
 本実施形態に係る工具によれば、上記cBN焼結体を含むことから、長寿命化が可能となる。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 <試料1>
 《作製工程》
 まず、有機物付着cBN粉末を作製した。具体的には、まず、超臨界水合成装置(株式会社アイテック社製、「MOMI超mini」)を用いて、以下の条件下で超臨界水を作製した。
 圧力:35MPa
 温度:379℃
 流速:2ml/分。
 次に、超臨界水中におけるヘキシルアミンの濃度が5重量%となるように、ヘキシルアミンの原液を上記装置内に連続投入し、さらに、超臨界水中におけるcBN粉末の量が10重量%となるように、平均粒子径が2μmのcBN粉末を上記装置内に連続投入した。このときのヘキシルアミンの投入速度は2ml/minに設定した。これにより、cBN粉末と有機物(ヘキシルアミン)とが、超臨界水に投入された。
 上記の超臨界水処理を100分間継続した後、装置内を常温常圧に戻し、調製工程を終了し、得られたスラリーを全量回収した。同スラリーを遠心分離(10000rpm、5分間)し、cBN粉末に付着していない余剰のヘキシルアミンを分離した。分離後の濃縮スラリーを乾燥(-90℃、12時間)し、超臨界水処理後の粉末(すなわち、有機物付着cBN粉末)約20gを回収した。
 以上により、有機物付着cBN粉末が作製された。作製された有機物付着cBN粉末をガスクロマトグラフ質量分析法に供したところ、cBN粉末に対して質量基準で20.0ppmのヘキシルアミンが存在する(付着している)ことが確認された。
 《調製工程》
 結合材粉末を下記の手順で準備した。チタン(Ti)粉末、アルミニウム(Al)粉末、炭化チタン(TiC)粉末を37:22:41(重量%)で混合し、真空雰囲気下で1500℃、30分熱処理を実施して、概略TiAlC組成の結合材化合物を得た。該結合材化合物をボールミル法により、平均粒径0.5μmまで粉砕し第1結合材粉末を作製した。また、第2結合材粉末として炭窒化チタン(TiCN)粉末を準備した。第2結合材粉末と第1結合材粉末とを、重量比で1:3で混合し、結合材粉末を得た。
 有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末70:30の比率で配合し、エタノールを用いた湿式ボールミル法により均一に混合した。その後、表面の水分等の不純物除去のために真空下、900℃で脱ガス熱処理を実施した。脱ガス熱処理後の有機物付着cBN粉末をオージェ電子分光法で分析したところ、表面に炭素が残存していることが確認された。以上により、混合粉末が調製された。
 《焼結工程》
 次に、得られた混合粉末を焼結することにより、cBN焼結体を作製した。具体的には、混合粉末を、Ta製の容器に充填して真空シールし、ベルト型超高圧高温発生装置を用いて、6.5GPa、1700℃で15分間焼結した。これにより、cBN焼結体が作製された。
 <試料2>
 作製工程において、ヘキシルアミン投入速度を1.5ml/minとし、調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末65:35の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料3>
 作製工程において、ヘキシルアミン投入速度を2ml/minとし、調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末75:25の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料4>
 作製工程において、ヘキシルアミン投入速度を3ml/minとした以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料5>
 作製工程において、ヘキシルアミン投入速度を3ml/minとし、調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末60:40の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料6>
 作製工程において、ヘキシルアミン投入速度を3.5ml/minとし、調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末60:40の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料7>
 作製工程において、ヘキシルアミン投入速度を3ml/minとし、調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末79:21の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料8>
 作製工程において、ヘキシルアミン投入速度を3ml/minとし、調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末50:50の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料9>
 作製工程において、超臨界水を用いる方法に代えて、プラズマ処理を用いた以外は、試料1と同じ製法で作製した。作製工程は、プラズマ改質装置(Dienner社製、低圧プラズマ装置FEMTO)のチャンバー内にcBN粉末をセットし、真空度:30Pa、電力:1500W、周波数:13.56MHzの条件でCFガスを導入して30分処理した。続いて、NHガスを導入して30分処理した。これにより、炭素及び窒素が導入された、有機物付着cBN粉末を作製した。
 <試料10>
 作製工程において、CFガス導入後の処理時間を5分に変更した以外は、試料9と同じ製法でcBN焼結体を作製した。
 <試料11>
 作製工程において、NHガス導入後の処理時間を15分に変更した以外は、試料9と同じ製法でcBN焼結体を作製した。
 <試料12>
 調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末55:45の比率で配合した以外は試料9と同じ製法でcBN焼結体を作製した。
 <試料13>
 調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末76:24の比率で配合した以外は試料9と同じ製法でcBN焼結体を作製した。
 <試料14>
 調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末45:55の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料15>
 調製工程において、有機物付着cBN粉末と結合材粉末とを、体積%で有機物付着cBN粉末:結合材粉末80:20の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 <試料16>
 作製工程を行わず、cBN粉末と結合材粉末とを、体積%でcBN粉末:結合材粉末50:50の比率で配合した以外は試料1と同じ製法でcBN焼結体を作製した。
 [評価]
 《cBN粒子及び結合相の含有割合》
 試料1~試料16のcBN焼結体について、cBN粒子及び結合相のそれぞれの含有割合(体積%)を走査電子顕微鏡(SEM)付帯のエネルギー分散型X線分析装置(EDX)を用いて測定した。具体的な測定方法は第1の実施形態に記載されているため、その説明は繰り返さない。結果を表1の「cBN粒子含有割合(体積%)」、「結合相含有割合(体積%)」の欄に示す。
 測定の結果、試料1~試料16のcBN焼結体において、cBN焼結体中のcBN粒子及び結合相のそれぞれの含有割合は、有機物付着cBN粉末(試料16ではcBN粉末)及び結合相粉末の合計(体積%)(すなわち、混合粉末)における有機物付着cBN粉末(試料16ではcBN粉末)及び結合材粉末のそれぞれの含有割合を維持していることが確認された。
 《結合材の組成》
 試料1~試料16のcBN焼結体について、結合相の組成をXRD(X線回折測定)及びICP用いて測定した。具体的な測定方法は第1の実施形態に記載されているため、その説明は繰り返さない。
 測定の結果、試料1~試料16のcBN焼結体の結合相において、チタン(Ti)、アルミニウム(Al)、炭素(C)、窒素(N)、硼素(B)及び酸素(O)が存在することが確認された。
 《第1領域の界面に垂直な方向に沿う長さ、第1領域の酸素含有量の最大値、及び、結合相の酸素含有量の平均値》
 試料1~試料16のcBN焼結体について、第1領域の界面に垂直な方向に沿う長さ(以下、「第1領域の長さ」ともいう。)、第1領域の酸素含有量の最大値、及び、cBN粒子の酸素含有量の平均値を、TEM-EDXによる元素マッピング分析及び元素ライン分析により測定した。具体的な測定方法は第1の実施形態に記載されているため、その説明は繰り返さない。なお、サンプルの厚みは50nmとし、EDXにおけるビーム径は0.2nmとし、スキャン間隔は0.6nmとした。
 試料1~試料16のサンプルの各々において、任意に抽出された6つの領域について上記の測定を行った。
 試料1~試料16では、各サンプルの6視野分の全てにおいて、第1領域が存在し、該第1領域内に界面が存在することが確認された。6視野分の結果の平均値を表1の「第1領域の長さ(nm)」、「第1領域の酸素含有量の最大値M2(原子%)」、及び、「cBN粒子の酸素含有量の平均値M1(原子%)」欄に示す。
 《切削試験》
 試料1~試料16のcBN焼結体を用いて切削工具(基材形状:CNGA120408、刃先処理T01215)を作製した。これを用いて、下記の切削条件下で切削試験を実施した。
 切削速度:170m/min.
 送り速度:0.2mm/rev.
 切込み:0.16mm
 クーラント:DRY
 切削方法:断続切削
 旋盤:LB400(オークマ株式会社製)
 被削材:SKD11(HRC62)V溝がついているワーク
 切削距離0.2km毎に刃先を観察し、欠けの量を測定した。欠けの量は、切削前の刃先稜線の位置からの摩耗による後退幅として測定した。欠けの量が0.02mm以上となる時点の切削距離を測定した。なお、切削距離が長いほど、切削工具の寿命が長いことを意味する。結果を表1の「切削距離(km)」欄に示す。
Figure JPOXMLDOC01-appb-T000001
 [考察]
 試料1~試料13のcBN焼結体の製造方法は、実施例に該当する。試料1~試料13のcBN焼結体は実施例に該当する。試料1~試料13のcBN焼結体を用いた工具は、切削距離が長く、工具寿命が長かった。
 試料14のcBN焼結体の製造方法は、混合粉末中の有機物付着cBN粉末の含有割合が50体積%未満であり、比較例に該当する。試料14のcBN焼結体は、cBN粒子の含有割合が50体積%未満であり、比較例に該当する。試料14のcBN焼結体を用いた工具は、切削距離が短く、工具寿命が短かった。
 試料15のcBN焼結体の製造方法は、混合粉末中の有機物付着cBN粉末の含有割合が80体積%であり、比較例に該当する。試料15及のcBN焼結体は、cBN粒子の含有割合が80体積%であり、比較例に該当する。試料15のcBN焼結体を用いた工具は、切削距離が短く、工具寿命が短かった。
 試料16のcBN焼結体の製造方法は、有機物付着cBN粉末を用いておらず、比較例に該当する。試料16のcBN焼結体は、第1領域の長さが10nmを超えており、比較例に該当する。試料16のcBN焼結体を用いた工具は、切削距離が短く、工具寿命が短かった。
 以上のように本開示の実施の形態及び実施例について説明を行なったが、上述の各実施の形態及び実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
 1 立方晶窒化硼素粒子、2 結合相、3 界面

Claims (5)

  1.  50体積%以上80体積%未満の立方晶窒化硼素粒子と、20体積%超50体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、
     前記結合相は、周期律表の第4族元素、第5族元素、第6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含み、
     TEM-EDXを用いて、前記立方晶窒化硼素粒子同士の界面に垂直な方向に酸素含有量を測定した場合、前記立方晶窒化硼素粒子の酸素含有量の平均値よりも酸素含有量の大きい第1領域が存在し、前記第1領域内に前記界面が存在し、かつ、前記第1領域の前記界面に垂直な方向に沿う長さは0.1nm以上10nm以下である、立方晶窒化硼素焼結体。
  2.  前記立方晶窒化硼素粒子の含有割合は、55体積%以上75体積%以下である、請求項1に記載の立方晶窒化硼素焼結体。
  3.  前記第1領域の前記界面に垂直な方向に沿う長さは、0.1nm以上5nm以下である、請求項1又は請求項2に記載の立方晶窒化硼素焼結体。
  4.  前記第1領域の酸素含有量の最大値と、前記立方晶窒化硼素粒子の酸素含有量の平均値との差は、0.1原子%以上5原子%以下である、請求項1から請求項3のいずれか1項に記載の立方晶窒化硼素焼結体。
  5.  前記第1領域の酸素含有量の最大値と、前記立方晶窒化硼素粒子の酸素含有量の平均値との差は、0.1原子%以上3原子%以下である、請求項4に記載の立方晶窒化硼素焼結体。
PCT/JP2020/027901 2019-07-18 2020-07-17 立方晶窒化硼素焼結体 WO2021010474A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021503614A JP6908799B2 (ja) 2019-07-18 2020-07-17 立方晶窒化硼素焼結体
US17/625,750 US11591266B2 (en) 2019-07-18 2020-07-17 Cubic boron nitride sintered material
CN202080051273.2A CN114144391B (zh) 2019-07-18 2020-07-17 立方晶氮化硼烧结体
KR1020227001321A KR20220035121A (ko) 2019-07-18 2020-07-17 입방정 질화붕소 소결체
EP20841409.4A EP4000779A4 (en) 2019-07-18 2020-07-17 CUBIC BORON NITRIDE SINTERED COMPACT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133025 2019-07-18
JP2019-133025 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021010474A1 true WO2021010474A1 (ja) 2021-01-21

Family

ID=74210933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027901 WO2021010474A1 (ja) 2019-07-18 2020-07-17 立方晶窒化硼素焼結体

Country Status (6)

Country Link
US (1) US11591266B2 (ja)
EP (1) EP4000779A4 (ja)
JP (1) JP6908799B2 (ja)
KR (1) KR20220035121A (ja)
CN (1) CN114144391B (ja)
WO (1) WO2021010474A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021010475A1 (ja) * 2019-07-18 2021-09-13 住友電気工業株式会社 立方晶窒化硼素焼結体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444519B2 (ja) * 1986-05-08 1992-07-21 Matsushita Electric Ind Co Ltd
JPH11268956A (ja) 1998-03-24 1999-10-05 Mitsubishi Materials Corp 耐チッピング性のすぐれた立方晶窒化ほう素基超高圧焼結材料製切削チップ
JP2006169080A (ja) * 2004-12-20 2006-06-29 Sumitomo Electric Ind Ltd 立方晶窒化硼素多結晶体の製造方法
JP2007070148A (ja) * 2005-09-06 2007-03-22 National Institute For Materials Science 高純度立方晶窒化ホウ素焼結体の製造法
JP2014214065A (ja) * 2013-04-26 2014-11-17 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP2019133025A (ja) 2018-01-31 2019-08-08 トヨタ自動車株式会社 情報処理装置および情報処理方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141672A (ja) 1984-12-14 1986-06-28 三菱マテリアル株式会社 切削工具用立方晶窒化硼素基焼結体の製造法
EP2224027B1 (en) * 2004-01-08 2016-03-23 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body
WO2006046753A1 (en) * 2004-10-28 2006-05-04 Kyocera Corporation Cubic boron nitride sintered material and cutting tool using the same
EP1870185A4 (en) 2005-04-14 2010-04-07 Sumitomo Elec Hardmetal Corp FRITTE cBN COMPACT TOOL AND CUTTING TOOL USING THE SAME
EP1905751B1 (en) * 2005-07-15 2018-04-18 Sumitomo Electric Hardmetal Corp. Composite sintered body
US7771847B2 (en) 2005-11-18 2010-08-10 Sumitomo Electric Hardmetal Corp. cBN sintered body for high surface integrity machining, cBN sintered body cutting tool, and cutting method using the same
EP2039667B1 (en) 2006-06-12 2011-10-12 Sumitomo Electric Hardmetal Corp. Composite sintered body
JP2011189421A (ja) * 2010-03-12 2011-09-29 Sumitomo Electric Hardmetal Corp 立方晶窒化硼素焼結体工具
JP5663807B2 (ja) * 2010-10-29 2015-02-04 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP5664795B2 (ja) 2011-11-07 2015-02-04 株式会社タンガロイ 立方晶窒化硼素焼結体
JP5895690B2 (ja) 2012-05-08 2016-03-30 信越化学工業株式会社 有機修飾無機充填材の製造方法及び有機修飾無機充填材、並びに熱伝導性シリコーン組成物
JP5879664B2 (ja) 2013-12-26 2016-03-08 住友電工ハードメタル株式会社 切削工具
JP6650106B2 (ja) 2014-11-27 2020-02-19 三菱マテリアル株式会社 立方晶窒化ほう素基焼結体および立方晶窒化ほう素基焼結体製切削工具
GB201704133D0 (en) * 2017-03-15 2017-04-26 Element Six (Uk) Ltd Sintered polycrystalline cubic boron nitride material
JP6881200B2 (ja) 2017-09-29 2021-06-02 三菱マテリアル株式会社 掘削チップ、掘削工具、および掘削チップの製造方法
JP7047503B2 (ja) * 2018-03-15 2022-04-05 株式会社タンガロイ 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
CN112714801B (zh) 2018-09-19 2022-08-12 住友电气工业株式会社 立方氮化硼烧结体、包括该立方氮化硼烧结体的切削工具以及立方氮化硼烧结体的制造方法
JP6744520B1 (ja) * 2018-09-19 2020-08-19 住友電気工業株式会社 立方晶窒化硼素焼結体、およびそれを含む切削工具
JP6908798B2 (ja) * 2019-07-18 2021-07-28 住友電気工業株式会社 立方晶窒化硼素焼結体
US11629101B2 (en) * 2019-07-18 2023-04-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material and method of producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444519B2 (ja) * 1986-05-08 1992-07-21 Matsushita Electric Ind Co Ltd
JPH11268956A (ja) 1998-03-24 1999-10-05 Mitsubishi Materials Corp 耐チッピング性のすぐれた立方晶窒化ほう素基超高圧焼結材料製切削チップ
JP2006169080A (ja) * 2004-12-20 2006-06-29 Sumitomo Electric Ind Ltd 立方晶窒化硼素多結晶体の製造方法
JP2007070148A (ja) * 2005-09-06 2007-03-22 National Institute For Materials Science 高純度立方晶窒化ホウ素焼結体の製造法
JP2014214065A (ja) * 2013-04-26 2014-11-17 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP2019133025A (ja) 2018-01-31 2019-08-08 トヨタ自動車株式会社 情報処理装置および情報処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4000779A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021010475A1 (ja) * 2019-07-18 2021-09-13 住友電気工業株式会社 立方晶窒化硼素焼結体

Also Published As

Publication number Publication date
CN114144391A (zh) 2022-03-04
KR20220035121A (ko) 2022-03-21
US20220267217A1 (en) 2022-08-25
US11591266B2 (en) 2023-02-28
EP4000779A1 (en) 2022-05-25
JP6908799B2 (ja) 2021-07-28
JPWO2021010474A1 (ja) 2021-09-13
EP4000779A4 (en) 2022-09-14
CN114144391B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN110573475B (zh) 烧结体以及包含该烧结体的切削工具
WO2021010473A1 (ja) 立方晶窒化硼素焼結体、及び、その製造方法
JP6908798B2 (ja) 立方晶窒化硼素焼結体
JP6908799B2 (ja) 立方晶窒化硼素焼結体
JP6990320B2 (ja) 立方晶窒化硼素焼結体
JP6990319B2 (ja) 立方晶窒化硼素焼結体
JP6928196B2 (ja) 立方晶窒化硼素焼結体
JP6912685B2 (ja) 立方晶窒化硼素焼結体
CN114096501A (zh) 立方晶氮化硼烧结体以及切削工具
EP4001241A1 (en) Cubic boron nitride sintered body
WO2023073766A1 (ja) 立方晶窒化硼素焼結体
JP7064659B1 (ja) 立方晶窒化硼素焼結体、およびそれを含む切削工具
WO2021010472A1 (ja) 立方晶窒化硼素焼結体および切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021503614

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020841409

Country of ref document: EP

Effective date: 20220218