WO2013069390A1 - (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法 - Google Patents

(e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法 Download PDF

Info

Publication number
WO2013069390A1
WO2013069390A1 PCT/JP2012/075605 JP2012075605W WO2013069390A1 WO 2013069390 A1 WO2013069390 A1 WO 2013069390A1 JP 2012075605 W JP2012075605 W JP 2012075605W WO 2013069390 A1 WO2013069390 A1 WO 2013069390A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloro
composition
trifluoropropene
weak base
sodium
Prior art date
Application number
PCT/JP2012/075605
Other languages
English (en)
French (fr)
Inventor
正宗 岡本
井村 英明
高田 直門
達哉 早坂
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US14/353,608 priority Critical patent/US9181153B2/en
Priority to EP12848425.0A priority patent/EP2778151B1/en
Priority to CN201280055313.6A priority patent/CN103930390B/zh
Publication of WO2013069390A1 publication Critical patent/WO2013069390A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/395Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers

Definitions

  • the present invention relates to (E) -1-chloro-3,3,3-trifluoropropene (trans-1-chloro-3,3,3-trifluoropropene, hereinafter sometimes referred to as “OF-1233E”.
  • the present invention relates to a method for removing hydrogen fluoride contained in a composition, and also relates to a method for producing (E) -1-chloro-3,3,3-trifluoropropene using the method.
  • OF-1233E is useful as a cleaning agent, a refrigerant, a heat medium for a heat pump, a high-temperature working fluid, and the like.
  • OF-1233E is obtained by fluorinating 1,1,1,3,3-pentachloropropane (HCC-240) with hydrogen fluoride to produce isomer OF-1233Z (cis-1-chloro-3,3,3-trichloromethane).
  • Fluoropropene (hereinafter sometimes referred to as “OF-1233Z”), as well as by-product or intermediate 3-chloro-1,1,1,3-tetrafluoropropane (hereinafter referred to as “HCFC-244fa”)
  • Organic substances such as 2-chloro-1,1,1,3,3-pentafluoropropane (hereinafter sometimes referred to as “HCFC-235da”), hydrogen chloride and unreacted fluoride. It is obtained as one component of a reaction product containing hydrogen (Patent Document 1).
  • Patent Document 1 washing with water (Patent Document 1) or an aqueous potassium hydroxide solution (Patent Document 2) is described.
  • Adsorption to sodium fluoride makes it difficult to regenerate or dispose of sodium fluoride after use when the amount of treatment increases, and water washing is easy as an operation, but there is a risk of corrosion of the equipment, and cleaning efficiency Is inefficient because the operation must be repeated low. Washing with an aqueous base is described in Patent Document 2 and the like, and potassium hydroxide is used as the base, but a component that is difficult to distill may be newly generated depending on the base used.
  • OF-1233E containing hydrogen fluoride a method for removing hydrogen fluoride that does not produce a new component difficult to be distilled is provided, and an efficient method for producing OF-1233E is also provided.
  • OF-1233E, HCFC-244fa, HCFC-235da, etc. contained in the OF-1233E composition may be decomposed to produce new components.
  • the compound represented by the composition formula of C 3 HClF 4 (hereinafter sometimes referred to as “OF-1224”) produced by dehydrofluorination of HCFC-235da has a distillation behavior similar to that of OF-1233E. Therefore, distillation separation is very difficult.
  • the present invention has the following characteristics.
  • the weak base is an alkali metal carbonate, bicarbonate, phosphate, primary phosphate, secondary phosphate or a carboxylate having 1 to 6 carbon atoms, or a tertiary salt having 3 to 15 carbon atoms.
  • a method for purifying the (E) -1-chloro-3,3,3-trifluoropropene composition of Invention 1 which is a weak base selected from amines.
  • Invention 4 Invention (E) -1-chloro-3,3 of invention 1 wherein the weak base is a weak base selected from sodium or potassium bicarbonate, sodium or potassium carbonate, sodium or potassium acetate or triethylamine A method for purifying a 3-trifluoropropene composition.
  • invention 5 A step of subjecting the (E) -1-chloro-3,3,3-trifluoropropene composition obtained by the purification method of any one of the inventions 1 to 4 to distillation (E) -1-chloro-3, A method for producing 3,3-trifluoropropene.
  • the purification method of the present invention is a contact method with a basic substance that can efficiently remove hydrogen fluoride from the OF-1233E composition, it does not generate OF-1224, which is similar in distillation behavior to OF-1233E, The effect is that it can be purified by simple distillation. Also, by using this purification method, there is an effect that high-purity OF-1233E can be easily produced.
  • the purification method of the present invention includes a step of contacting an OF-1233E composition containing HCFC-235da with a weak base.
  • the OF-1233E composition containing HCFC-235da to be contacted with a weak base may be a composition obtained by any process. It may be a reaction product obtained by reacting 1,1,1,3,3-pentachloropropane (FCC-240fa) with hydrogen fluoride, and obtained by subjecting it to a known purification treatment. It may be a composition. Examples of the purification treatment include washing with water or liquid, drying, selective adsorption on a solid adsorbent, ordinary distillation, and extractive distillation. Further, it may be a mixture prepared by mixing for applications such as a solvent, a cleaning agent, a refrigerant, and a heat medium.
  • FCC-240fa 1,1,1,3,3-pentachloropropane
  • the purification treatment include washing with water or liquid, drying, selective adsorption on a solid adsorbent, ordinary distillation, and extractive distillation. Further, it may be a mixture prepared by mixing for applications such as a solvent, a
  • OF-1233E is obtained together with OF-1233Z by reacting 1,1,1,3,3-pentachloropropane (HCC-240fa) with hydrogen fluoride in the gas phase in the presence of a catalyst such as alumina or a fluoride of alumina. It is done.
  • OF-1233E obtained by this reaction may contain various fluorinated hydrocarbons as organic components (“fluorinated hydrocarbons” may contain hydrogen atoms or halogen atoms other than fluorine.
  • HCFC-235da is generally contained in an amount of 5% by mass or less.
  • hydrogen chloride and hydrogen fluoride are included as acid components.
  • the removal of hydrogen fluoride of the present invention may be a crude product generated by such a fluorination reaction, but may also be an OF-1233E composition obtained by performing various preliminary purifications. Further, it may be an OF-1233E composition once treated by the method of the present invention.
  • Examples of the pre-purified OF-1233E composition include a composition obtained by distilling an organic component and hydrogen chloride having a large boiling point difference from the crude product by distillation, and the crude product is at least water.
  • a composition obtained by contacting to remove hydrogen chloride in this case, a part of hydrogen fluoride is removed by washing, but a certain amount of hydrogen fluoride remains), and contains at least hydrogen fluoride
  • Examples thereof include a composition obtained by distilling the OF-1233E composition to change the composition of the organic component.
  • the amount of hydrogen fluoride is preferably 0.001 to 5 parts by mass, and more preferably 0.01 to 2 parts by mass. If it is less than 0.0001 parts by mass, it is not necessary to make contact with the weak base of the present invention, and treatment is possible even if it exceeds 10 parts by mass, but it is efficient to reduce in advance by the preliminary purification or the like. It is preferable to avoid.
  • the weak base used includes any weak base known to those skilled in the art.
  • the weak base can be an inorganic or organic weak base. These generally have a pKa of 7 to 11.
  • inorganic weak bases include alkali metal carbonates, bicarbonates, phosphates, primary phosphates, and secondary phosphates.
  • the weak organic base include a carboxylate having 1 to 6 carbon atoms or a tertiary amine having 3 to 15 carbon atoms.
  • the alkali metal is lithium, sodium, potassium, rubidium or cesium, preferably lithium, sodium or potassium, more preferably sodium or potassium.
  • Examples of the carboxylic acid having 1 to 6 carbon atoms include formic acid, acetic acid, propionic acid, butyric acid, and valeric acid, and formic acid or acetic acid is preferable.
  • Examples of the carboxylate include lithium acetate, sodium formate, sodium acetate, potassium formate, and potassium acetate.
  • tertiary amine having 3 to 15 carbon atoms specifically, as the chain amine, trimethylamine, triethylamine, tri-n-propylamine, tri-isopropylamine, tri-n-butylamine, tri-isobutyl Amine, tri-sec-butylamine, tri-tert-butylamine, tri-n-amylamine, tri-isoamylamine, tri-sec-amylamine, tri-tert-amylamine, N, N, N ', N'-tetramethylethylenediamine N, N, N ′, N′-tetramethylpropane-1,3-diamine, chain symmetrical tertiary amines such as tetramethylguanidine, N-methyldiethylamine, N-methyldi-n-propylamine, N -Methyldiisopropylamine, N-methyldi-n-butylamine, N-methyl Rudiis
  • Cyclic amines include tetramethylguanidine, N, N′-dimethylpiperazine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), 1,4-diazabicyclo [2.2.2. And octane (DABCO) and bis (2-dimethylaminoethyl) ether.
  • the weak base include sodium or potassium hydrogen carbonate, sodium or potassium carbonate, sodium or potassium acetate, or triethylamine.
  • the amount of weak base used is 1 to 10 moles, preferably 1 to 5 moles per mole of hydrogen fluoride contained in the OF-1233E composition in terms of monobasic acid. Is more preferable. If it is less than 1 mol, it is not preferable because it is insufficient in terms of quantity, and if it exceeds 10 mol, it is useless and disposal of the treatment liquid becomes difficult.
  • the weak bases in the case of an inorganic substance or a carboxylate, it is preferably used with a solvent such as water or an organic solvent.
  • a solvent such as water or an organic solvent.
  • water-soluble solvents such as alcohols such as methanol and ethanol and ketones such as acetone can be used.
  • water is most preferable.
  • the solvent only needs to dissolve the weak base, and the concentration can be used up to the saturation solubility.
  • the solution is 0.01 to 50% by mass, preferably 0.1 to 30% by mass, and more preferably 0.5 to 10% by mass. If the amount is less than 0.01% by mass, the processing apparatus is increased in size. If the amount exceeds 50% by mass, a salt produced by reacting with hydrogen fluoride (for example, sodium fluoride) may precipitate, making operation difficult. There is not preferable.
  • hydrogen fluoride for example, sodium fluoride
  • the weak base is a tertiary amine
  • a solvent such as water or an organic solvent
  • organic solvent water-soluble solvents such as alcohols such as methanol and ethanol, and ketones such as acetone can be used.
  • the method for contacting the OF-1233E composition with a weak base is not particularly limited. It is convenient and preferred that the OF-1233E composition and the weak base are brought into contact with each other in a liquid-liquid manner. However, when the tertiary amine is a tertiary amine having a low boiling point such as trimethylamine, it is contacted under pressure or at a low temperature. Can do. Examples of the contact method include a method in which the OF-1233E composition and a weak base are charged in a reaction (treatment) vessel and stirred.
  • a stirring method in addition to a screw type, a method using a known stirring blade with enhanced stirring efficiency, liquid flow stirring by an internal or external pump, a line mixer is provided in the liquid flow, or a discharge part is a sparger.
  • a stirring method such as carrying out can be taken.
  • the processing container is preferably made of a material such as glass, stainless steel, fluororesin, or a material lined with these materials.
  • the treatment temperature is -5 to + 50 ° C, preferably 0 to + 30 ° C. Below -5 ° C, the aqueous solution may freeze, which is not preferable.
  • the temperature exceeds + 50 ° C.
  • the pressure in the reaction vessel rises and a pressure vessel is required, or components contained in the OF-1233E composition may be involved in the reaction, which is not preferable.
  • the treatment pressure may be atmospheric pressure, but when the reaction temperature exceeds 19 ° C. or when the apparatus is sealed, it can be carried out under an autogenous pressure. Therefore, it is usually performed at 0.1 to 5 MPa.
  • the time required for the treatment depends on the treatment conditions such as the ratio of the OF-1233E composition and the weak base, the stirring efficiency, the treatment temperature, etc., but is 1 minute to 100 hours, preferably 30 minutes to 50 hours.
  • the organic composition of the treatment composition (container contents) after treatment is not substantially different from that before treatment.
  • an inorganic base or a carboxylate is used as the weak base and used in an aqueous solution, the container contents after the treatment are separated into two layers.
  • the contents of the container after the treatment include the components in the OF-1233E composition before the treatment, a free tertiary amine, and a tertiary amine and a fluoride.
  • salts with hydrogen fluoride sometimes referred to as “tertiary amine / hydrogen fluoride salt”.
  • the method for obtaining OF-1233E from the contents of this container is not limited, and distillation can also be used. However, depending on the type of tertiary amine, the tertiary amine / hydrogen fluoride salt decomposes and hydrogen fluoride is decomposed. May play. Therefore, for example, the following method can be taken.
  • Water is added to the OF-1233E composition containing a tertiary amine / hydrogen fluoride salt and stirred to separate into an organic layer and an aqueous layer.
  • Tertiary amines such as free triethylamine, tertiary amine / hydrogen fluoride, etc. migrate to the water layer, and the organic layer contains a small amount of organic matter and triethylamine in the same composition as the OF-1233E composition before treatment. It is.
  • the tertiary amine can be liberated and separated from the aqueous layer by adding a strong base such as an inorganic base to the aqueous layer containing the tertiary amine / hydrogen fluoride salt.
  • the inorganic base is not particularly limited, but an alkali metal hydroxide is preferable. Examples of the alkali metal include sodium, potassium, lithium and the like. Specific examples of the inorganic base include sodium hydroxide, potassium hydroxide, and lithium hydroxide. Sodium hydroxide and potassium hydroxide are preferable, and potassium hydroxide is particularly preferable.
  • the tertiary amine recovered in this way can be used as it is, after being dried, or after being purified by distillation, for treatment with a weak base.
  • the organic layer does not contain hydrogen fluoride, and therefore a normal purification method for organic reaction products such as water washing, drying, and distillation can be applied.
  • the treatment with a strong base such as sodium hydroxide
  • the treatment with a weak base does not produce components that are difficult to separate from OF-1233E such as OF-1224. OF-1233E can be obtained.
  • the organic layer can be dried before or after distillation. It is convenient and preferable to use a solid desiccant such as synthetic zeolite, silica gel, anhydrous calcium chloride, phosphorus pentoxide for drying. As synthetic zeolite, 3A, 4A, 5A, 13X and the like can be used.
  • composition of the organic substance was measured by gas chromatography using an FID detector, and the recorded “area%” was displayed as “%”.
  • the mixture was stirred for 1 hour and then separated with a PFA separatory funnel to recover 180 g of the lower layer organic substance and 105 g of the upper aqueous phase.
  • Analysis of the aqueous phase by ion chromatography revealed that the aqueous phase contained 5.7 g of HF (95% of HF associated with crude OF-1233E). Further, when this aqueous phase was measured with a pH test paper, the pH was 2. When pure water was added to the organic layer and HF was extracted and analyzed by ion chromatography, the organic substance contained 0.17% by mass of HF.
  • Comparative Example 2 The same experiment as Comparative Example 1 was performed using 10 g of 5% by mass NaOH aqueous solution instead of water.
  • Comparative Example 3 The same experiment as Comparative Example 1 was performed using 10 g of 0.5 mass% NaOH aqueous solution instead of water.
  • Example 1 The same experiment as Comparative Example 1 was performed using 10 g of a 5% by mass sodium bicarbonate (NaHCO 3 ) aqueous solution instead of water. The organic layer was washed twice with 10 mL of water and then analyzed.
  • NaHCO 3 sodium bicarbonate
  • Example 2 The same experiment as Comparative Example 1 was performed using 10 g of 0.5 mass% aqueous sodium hydrogen carbonate (NaHCO 3 ) instead of water.
  • NaHCO 3 aqueous sodium hydrogen carbonate
  • Example 3 The same experiment as Comparative Example 1 was performed using 10 g of 5% by mass sodium acetate (CH 3 COONa) aqueous solution instead of water. The organic layer was washed twice with 10 mL of water and then analyzed.
  • CH 3 COONa sodium acetate
  • Example 4 15 g of the pre-washed organic substance was taken in a 50 ml bottle made of PFA, 10 g of triethylamine (Et 3 N) was added, and the mixture was stirred for 2 hours in an ice water bath. Then, it stood still for 18 hours with the refrigerator set to 8 degreeC, 10g of water was added, and it stirred for 0.5 hour with the ice water bath, and separated into two layers. The pH of the aqueous phase was 10 measured with a pH test paper. Pure water was added to the organic layer to extract HF, the fluorine ion concentration was measured by ion chromatography and converted to HF concentration, and the organic composition was analyzed by gas chromatography.
  • Et 3 N triethylamine
  • OF-1224 Organic substances other than triethylamine are OF-1224: 0.0001% or less, OF-1233E: 98.2639%, HCFC-235da: 0.0751%, OF-1233Z: 0.6470%, which is difficult to be separated by distillation. 1224 was not substantially by-produced.
  • the high-purity OF-1233E obtained by the production method of the present invention is useful as a cleaning agent, a refrigerant, a heat medium for a heat pump, a high-temperature working fluid, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明によれば、少なくともフッ化水素と2-クロロ-1,1,1,3,3-ペンタフルオロプロパンを含む(E)-1-クロロ-3,3,3-トリフルオロプロペン(OF-1233E)組成物を弱塩基と接触させる工程を含む(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法、および、その精製方法で得られた(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物を蒸留に付す工程を含む(E)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法が提供される。該方法により、蒸留困難な新たな成分を生じることなく、OF-1233E組成物からフッ化水素を除去して、得られた組成物を蒸留することで、効率的にOF-1233Eを製造することができる。

Description

(E)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
 本発明は、(E)-1-クロロ-3,3,3-トリフルオロプロペン(トランス-1-クロロ-3,3,3-トリフルオロプロペン。以下、「OF-1233E」ということがある。)組成物に含まれるフッ化水素を除去する方法に関し、また、その方法を用いた(E)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法に関する。
 OF-1233Eは、洗浄剤、冷媒、ヒートポンプ用の熱媒体、高温作動流体などとして有用である。OF-1233Eは、1,1,1,3,3-ペンタクロロプロパン(HCC-240)をフッ化水素でフッ素化して、異性体OF-1233Z(シス-1-クロロ-3,3,3-トリフルオロプロペン。以下、「OF-1233Z」ということがある。)の他、副生成物または中間体である3-クロロ-1,1,1,3-テトラフルオロプロパン(以下、「HCFC-244fa」ということがある。)、2-クロロ-1,1,1,3,3-ペンタフルオロプロパン(以下、「HCFC-235da」ということがある。)などの有機物、塩化水素および未反応のフッ化水素を含む反応生成物の一成分として得られる(特許文献1)。
 この反応生成物から塩化水素、フッ化水素を除去する方法として、水(特許文献1)または水酸化カリウム水溶液(特許文献2)による洗浄が記載されている。
特開平11-269105号公報 特表2007-501843号公報
 前記反応生成物(OF-1233E組成物)から精製OF-1233Eを得るには、一般的に蒸留によるのが簡便であるが、組成物に含まれる未反応のフッ化水素は蒸留装置を損傷させる虞があるため、予めフッ化ナトリウムなどの固体への吸着、水洗浄または塩基性溶液での洗浄などにより除去される。
 フッ化ナトリウムへの吸着は、処理量が大きくなると使用後のフッ化ナトリウムの再生または廃棄が困難であり、水洗浄は、操作として容易であるが、装置腐食の恐れがある上に、洗浄効率が低く操作を繰り返さなければならず非効率である。塩基水溶液での洗浄は、特許文献2等に記載され、塩基としては水酸化カリウムが使われているが、使用する塩基によって蒸留困難な成分を新たに生じる可能性がある。
 本発明では、フッ化水素を含むOF-1233Eについて、蒸留困難な新たな成分を生じることのないフッ化水素の除去方法を提供し、効率的なOF-1233Eの製造方法を併せて提供する。
 水酸化ナトリウムを用いて洗浄すると、OF-1233E組成物に含まれるOF-1233E、HCFC-244fa、HCFC-235daなどが分解して新たな成分を生じることがある。そのうち、HCFC-235daが脱フッ化水素して生じるC3HClF4の組成式で表される化合物(以下、「OF-1224」ということがある。)は、蒸留の挙動がOF-1233Eと近似するので、蒸留分離が非常に困難である。
 そこで、洗浄に使用する塩基について検討したところ、特定の有機塩基または無機塩基を用いてOF-1233E組成物を洗浄した場合、OF-1224が生成しないことから通常の蒸留で精製できる有機物組成で且つフッ化水素を含まないOF-1233E組成物とすることができ、本発明に至った。
 すなわち、本発明は下記の特徴を有する。
 [発明1]
 少なくともフッ化水素と2-クロロ-1,1,1,3,3-ペンタフルオロプロパンを含む(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物を弱塩基と接触させる工程を含む(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法。
 [発明2]
 弱塩基が、7~11のpKaを有する塩基である発明1の(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法。
 [発明3]
 弱塩基が、アルカリ金属の炭酸塩、炭酸水素塩、リン酸塩、第一リン酸塩、第二リン酸塩もしくは炭素数1~6のカルボン酸塩、または炭素数3~15の第三級アミンから選ばれた弱塩基である発明1の(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法。
 [発明4]
 弱塩基が、ナトリウムまたはカリウムの炭酸水素塩、ナトリウムまたはカリウムの炭酸塩、ナトリウムまたはカリウムの酢酸塩またはトリエチルアミンから選ばれた弱塩基である発明1の(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法。
 [発明5]
 発明1~4の何れかの精製方法で得られた(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物を蒸留に付す工程を含む(E)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。
 本発明の精製方法は、OF-1233E組成物からフッ化水素を効率的に除去できる塩基性物質との接触方法でありながら、OF-1233Eと蒸留挙動の近似するOF-1224を発生しないため、単純な蒸留で精製できるという効果を奏する。また、この精製方法を用いることで、高純度のOF-1233Eを容易に製造することができるという効果を奏する。
 上述の通り、本発明の精製方法は、HCFC-235daを含むOF-1233E組成物を弱塩基と接触させる工程を含む。
 本発明で弱塩基と接触させるHCFC-235daを含むOF-1233E組成物は、どの様な経緯で得られた組成物であってもよい。1,1,1,3,3-ペンタクロロプロパン(FCC-240fa)とフッ化水素を反応させる工程で得られる反応生成物であってもよく、それを公知の精製処理に付して得られた組成物であってもよい。精製処理としては、水または液体による洗浄、乾燥、固体吸着剤への選択吸着、通常の蒸留、抽出蒸留などが挙げられる。さらに、溶媒、洗浄剤、冷媒、熱媒などの用途のため混合調製した混合物であってもよい。
 OF-1233Eは、1,1,1,3,3-ペンタクロロプロパン(HCC-240fa)をアルミナまたはアルミナのフッ素化物などの触媒存在下気相でフッ化水素と反応させることでOF-1233Zと共に得られる。そのほかにも、この反応で得られたOF-1233Eには、有機成分として多種のフッ素化炭化水素(「フッ素化炭化水素」は水素原子を含んでもよく、フッ素以外のハロゲン原子を含んでもよい。)が含まれ、通常、概ね5質量%以下のHCFC-235daが含まれる。また、有機成分のほかに、酸成分として塩化水素およびフッ化水素を含む。本発明のフッ化水素除去は、この様なフッ素化反応により発生した粗生成物であってもよいが、各種の予備精製を施して得られたOF-1233E組成物であってよい。また、一旦本発明の方法で処理したOF-1233E組成物であってもよい。
 予備精製を施したOF-1233E組成物の例としては、粗生成物から有機成分およびフッ化水素と沸点差の大きい塩化水素を蒸留により分離して得られる組成物、粗生成物を少なくとも水と接触させて塩化水素を除去して得られる組成物(この場合において、フッ化水素の一部は水洗除去されるが、一定の量のフッ化水素は残留する。)、少なくともフッ化水素を含むOF-1233E組成物を蒸留して有機成分の組成を変化させた組成物などが挙げられる。
 これらの予備精製を施して弱塩基と接触する際に、OF-1233E組成物100質量部に対してフッ化水素を0.0001~10質量部を含むようにする。また、フッ化水素は0.001~5質量部が好ましく、0.01~2質量部であるのがさらに好ましい。0.0001質量部未満では、本発明の弱塩基との接触をする必要性に乏しく、10質量部を超えても処理可能であるが、前記予備精製などにより予め低減しておくのが効率的であり、避けるのが好ましい。
 使用する弱塩基としては、当業者に公知の任意の弱塩基が挙げられる。弱塩基は、無機または有機の弱塩基であることができる。これらは、概ねpKaが7~11のものが好ましい。無機弱塩基としては、アルカリ金属の炭酸塩、炭酸水素塩、リン酸塩、第一リン酸塩または第二リン酸塩などが挙げられる。また、有機弱塩基としては、炭素数1~6のカルボン酸塩、または炭素数3~15の第三級アミンが挙げられる。
 アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムであり、リチウム、ナトリウム、カリウムが好ましく、ナトリウム、カリウムがより好ましい。
 弱塩基として、アルカリ金属の塩として具体的には、炭酸リチウム、炭酸水素リチウム、リン酸リチウム、第一リン酸リチウム、第二リン酸リチウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、第一リン酸ナトリウム、第二リン酸ナトリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、第一リン酸カリウム、第二リン酸カリウムなどが挙げられる。
 炭素数1~6のカルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸が挙げられ、ギ酸または酢酸が好ましい。カルボン酸塩としては、酢酸リチウム、ギ酸ナトリウム、酢酸ナトリウム、ギ酸カリウム、酢酸カリウムなどが挙げられる。
 炭素数3~15の第三級アミンとしては、具体的には、鎖状のアミンとしては、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-イソプロピルアミン、トリ-n-ブチルアミン、トリ-イソブチルアミン、トリ-sec-ブチルアミン、トリ-tert-ブチルアミン、トリ-n-アミルアミン、トリ-イソアミルアミン、トリ-sec-アミルアミン、トリ-tert-アミルアミン、N,N,N′,N′-テトラメチルエチレンジアミン、N,N,N′,N′-テトラメチルプロパン-1,3-ジアミン、テトラメチルグアニジンなどの鎖状の対称第三級アミン、N-メチルジエチルアミン、N-メチルジ-n-プロピルアミン、N-メチルジイソプロピルアミン、N-メチルジ-n-ブチルアミン、N-メチルジイソブチルアミン、N-メチルジ-tert-ブチルアミン、N,N-ジイソプロピルブチルアミン、N,N-ジメチル-n-オクチルアミン、N,N-ジメチルノニルアミン、N,N-ジメチルデシルアミン、N,N-ジメチルウンデシルアミン、N,N-ジメチルドデシルアミン、N-メチルジヘキシルアミンなどの非対称第三級アミンなどが挙げられる。環式のアミンとしては、テトラメチルグアニジン、N,N′-ジメチルピペラジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、ビス(2-ジメチルアミノエチル)エーテルなどが挙げられる。
 弱塩基として特に好ましいものとして、ナトリウムまたはカリウムの炭酸水素塩、ナトリウムまたはカリウムの炭酸塩、ナトリウムまたはカリウムの酢酸塩またはトリエチルアミンを挙げることができる。
 弱塩基の使用量は、1塩基酸に換算して、OF-1233E組成物に含まれるフッ化水素1モルに対し、1~10モルを使用し、1~5モルが好ましく、1~2モルがより好ましい。1モル未満では量論的に不足するので好ましくなく、10モルを超えるのは無駄であり処理液の廃棄が困難になる。
 弱塩基のうち、無機物またはカルボン酸塩の場合、水または有機溶媒などの溶媒と共に使用するのが好ましい。有機溶媒としては、メタノール、エタノールなどのアルコール類、アセトンなどのケトン類などの水溶性の溶媒を使用することができる。溶媒としては水が最も好ましい。溶媒は、弱塩基を溶解できればよく、その濃度は飽和溶解度までで使用できる。具体的には、0.01~50質量%の溶液とし、0.1~30質量%が好ましく、0.5~10質量%がより好ましい。0.01質量%未満では、処理装置の大型化を招き、50質量%を超えるとフッ化水素と反応して生成した塩(例えば、フッ化ナトリウム)が析出して操作が困難になることがあり好ましくない。
 弱塩基が第三級アミンの場合、水または有機溶媒などの溶媒と共に使用してもよいが、水以外は使用しないことが好ましい。有機溶媒としては、メタノール、エタノールなどのアルコール類、アセトンなどのケトン類などの水溶性の溶媒が使用できる。
 OF-1233E組成物を弱塩基と接触させる方法は、特に限定されない。OF-1233E組成物と弱塩基は液-液で接触させるのが簡便であり好ましいが、第三級アミンがトリメチルアミンなどの沸点の低い第三級アミンの場合は加圧下または低温状態で接触させることができる。接触方法としては、反応(処理)容器中にOF-1233E組成物と弱塩基を仕込み、攪拌する方法が挙げられる。攪拌方法としては、スクリュー型のほか公知の攪拌効率を高めた攪拌羽根を用いる方法、内部または外部のポンプによる液流攪拌、また、液流中にラインミキサーを設け、あるいは吐出部をスパージャーとするなどの攪拌方法を取ることができる。処理容器は、ガラス、ステンレス鋼、フッ素樹脂などの材料またはこれらの材質でライニングされた材料で作成するのが好ましい。
 処理温度は、-5~+50℃であり、0~+30℃が好ましい。-5℃未満では水溶液が凍結することがあり好ましくない。また、+50℃を超えると反応容器内の圧力が上昇し耐圧容器が必要となり、または、OF-1233E組成物に含まれる成分が反応に関与することがあり好ましくない。処理圧力は、大気圧でよいが、反応温度が19℃を超える場合、または装置を密閉する場合は自圧下で行うことができる。したがって、通常0.1~5MPaで行う。
 処理に要する時間は、OF-1233E組成物と弱塩基の比率、攪拌効率、処理温度等の処理条件に依存するが、1分~100時間であり、30分~50時間が好ましい。
 処理をした後の処理組成物(容器内容物)の有機物の組成は、処理前と実質的な変化はない。弱塩基として無機塩基またはカルボン酸塩を使用し水溶液で使用した場合、処理後の容器内容物は二層に分離しているので、分液して有機層を取り出す。
 一方、弱塩基として第三級アミンを使用した場合、処理後の容器内容物には、処理前のOF-1233E組成物中の各成分とフリーの第三級アミン、さらに第三級アミンとフッ化水素との塩(「第三級アミン/フッ化水素塩」ということがある。)が含まれる。この容器内容物から、OF-1233Eを取得する方法は限定されず、蒸留によることもできるが、第三級アミンの種類によっては第三級アミン/フッ化水素塩が分解してフッ化水素が再生することがある。そこで、例えば次の様な方法を取ることができる。
 第三級アミン/フッ化水素塩を含むOF-1233E組成物に水を添加して攪拌し、有機層と水層とに分離取得する。フリーのトリエチルアミンなどの第三級アミン、第三級アミン/フッ化水素塩などは水層に移行し、有機層は、処理前のOF-1233E組成物と同じ組成物の有機物とトリエチルアミンが少量含まれる。
 第三級アミン/フッ化水素塩を含む水層に無機塩基などの強塩基を添加することで第三級アミンを遊離させ水層から分離することができる。無機塩基としては、特に限定されないが、アルカリ金属の水酸化物が好ましい。アルカリ金属としては、ナトリウム、カリウム、リチウムなどなどが挙げられる。無機塩基としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化リチウムが挙げられ、水酸化ナトリウム、水酸化カリウムが好ましく、水酸化カリウムが特に好ましい。
 この様にして回収した第三級アミンは、そのままで、または、乾燥した後、あるいはまた、蒸留精製した後に弱塩基での処理に使用することができる。
 何れの方法で処理した有機層であっても、この有機層にはフッ化水素を含まないため、水洗浄、乾燥、蒸留などの通常の有機反応生成物の精製方法を適用できる。また、弱塩基での処理では、水酸化ナトリウムなどの強塩基での処理と異なり、OF-1224などのようなOF-1233Eとの分離困難な成分が生成しないので、簡単な蒸留により高純度のOF-1233Eを得ることができる。
 有機層は蒸留の前または後に乾燥させることができる。乾燥は、合成ゼオライト、シリカゲル、無水塩化カルシウム、五酸化リンなどの固体乾燥剤を用いるのが簡便で好ましい。合成ゼオライトとしては、3A、4A、5A、13Xなどが使用できる。
 以下、具体的に実施例を示してより詳細に説明するが、実施態様はこれに限定されない。有機物の組成は、別途注釈のない限り、FID検出器によるガスクロマトグラフィにより測定し、記録された「面積%」を「%」と表示した。
 [予備洗浄]
 予備洗浄として、フッ化水素(HF)を伴う粗(E)-1-クロロ-3,3,3-トリフルオロプロペン(OF-1233E)を水で洗浄した。この粗OF-1233EのHF量を滴定法で求めたところ、3.0質量%であった。外気との間にソーダライム管を備え、吹き込み管と、攪拌羽、温度計を備えたPFA樹脂コート500mLオートクレーブに水100gを仕込み、氷浴で冷却しながら、粗OF-1233E:200gを内温が15℃を超えないように窒素圧で吹き込み管から送入した。送入後一時間攪拌してから、PFA製分液ロートで分液して、下層の有機物180g、上層の水相105gを回収した。水相をイオンクロマトグラフィで分析したところ水相に5.7gのHF(粗OF-1233Eに伴われたHFの95%)が含まれていた。またこの水相をpH試験紙で測定したところpHは2であった。有機層に純水を加えてHFを抽出し、イオンクロマトグラフィで分析したところ、有機物は0.17質量%のHFを含んでいた。
 有機層をガスクロマトグラフィで分析したところ、OF-1233E:98.273%、HCFC-235da:0.0775%、OF-1233Z:0.6728%であり、蒸留分離困難なOF-1224は0.0001%以下であった。
 [比較例1]
 予備洗浄した有機物15gをPFA製50mLボトルに取り、水を10g加え氷水バスで2時間攪拌した。その後、8℃に設定した冷蔵庫で18時間静定し二層分離した。水相のpHをpH試験紙で測定した。有機層は、純水を加えてHFを抽出し、イオンクロマトグラフィでフッ素イオン濃度(以後の比較例および実施例において同じ。)を測定してHF濃度に換算し(以後の比較例および実施例において同じ。)、有機組成は、ガスクロマトグラフィで分析した。HF除去率は次の式で求めた。
Figure JPOXMLDOC01-appb-M000001
 [比較例2]
 水に替えて、5質量%NaOH水溶液を10g用いて比較例1と同じ実験を行った。
 [比較例3]
 水に替えて、0.5質量%NaOH水溶液を10g用いて比較例1と同じ実験を行った。
 [実施例1]
 水に替えて、5質量%炭酸水素ナトリウム(NaHCO3)水溶液を10g用いて比較例1と同じ実験を行った。有機層は水10mLで2回洗浄してから分析した。
 [実施例2]
 水に替えて、0.5質量%炭酸水素ナトリウム(NaHCO3)水溶液を10g用いて比較例1と同じ実験を行った。
 [実施例3]
 水に替えて、5質量%酢酸ナトリウム(CH3COONa)水溶液を10g用いて比較例1と同じ実験を行った。有機層は水10mLで2回洗浄してから分析した。
 [実施例4]
 予備洗浄した有機物15gをPFA製50mLボトルに取り、トリエチルアミン(Et3N)を10g加え氷水バスで2時間攪拌した。その後、8℃に設定した冷蔵庫で18時間静定し、水10g加え氷水バスで0.5時間攪拌し、二層分離した。水相のpHをpH試験紙で測定したところ10であった。有機層に純水を加えてHFを抽出し、イオンクロマトグラフィでフッ素イオン濃度を測定してHF濃度に換算し、有機組成は、ガスクロマトグラフィで分析した。トリエチルアミン以外の有機物はOF-1224:0.0001%以下、OF-1233E:98.2639%、HCFC-235da:0.0751%、OF-1233Z:0.6470%であり、蒸留分離困難なOF-1224は実質的に副生しなかった。
 実施例1~4及び比較例1~3の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 上述の通り、本発明の実施例1~4では、蒸留困難なOF-1224を生じることなく、OF-1233E組成物からフッ化水素を効率良く容易に除去することができた。
 本発明の製造方法により得られる高純度のOF-1233Eは洗浄剤、冷媒、ヒートポンプ用の熱媒体、高温作動流体などとして有用である。
 以上、本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変形・変更を含むものである。

Claims (5)

  1. 少なくともフッ化水素と2-クロロ-1,1,1,3,3-ペンタフルオロプロパンを含む(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物を弱塩基と接触させる工程を含む(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法。
  2. 弱塩基が、7~11のpKaを有する塩基である請求項1に記載の(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法。
  3. 弱塩基が、アルカリ金属の炭酸塩、炭酸水素塩、リン酸塩、第一リン酸塩、第二リン酸塩もしくは炭素数1~6のカルボン酸塩、または炭素数3~15の第三級アミンから選ばれた弱塩基である請求項1に記載の(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法。
  4. 弱塩基が、ナトリウムまたはカリウムの炭酸水素塩、ナトリウムまたはカリウムの炭酸塩、ナトリウムまたはカリウムの酢酸塩またはトリエチルアミンから選ばれた弱塩基である請求項1に記載の(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物の精製方法。
  5. 請求項1~4の何れか1項に記載の精製方法で得られた(E)-1-クロロ-3,3,3-トリフルオロプロペン組成物を蒸留に付す工程を含む(E)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。
PCT/JP2012/075605 2011-11-11 2012-10-03 (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法 WO2013069390A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/353,608 US9181153B2 (en) 2011-11-11 2012-10-03 Method for producing (E)-1-chloro-3,3,3-trifluoropropene
EP12848425.0A EP2778151B1 (en) 2011-11-11 2012-10-03 Method for producing (e)-1-chloro-3,3,3-trifluoropropene
CN201280055313.6A CN103930390B (zh) 2011-11-11 2012-10-03 (e)-1-氯-3,3,3-三氟丙烯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011247125A JP5834791B2 (ja) 2011-11-11 2011-11-11 (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
JP2011-247125 2011-11-11

Publications (1)

Publication Number Publication Date
WO2013069390A1 true WO2013069390A1 (ja) 2013-05-16

Family

ID=48289775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075605 WO2013069390A1 (ja) 2011-11-11 2012-10-03 (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法

Country Status (5)

Country Link
US (1) US9181153B2 (ja)
EP (1) EP2778151B1 (ja)
JP (1) JP5834791B2 (ja)
CN (1) CN103930390B (ja)
WO (1) WO2013069390A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9926244B2 (en) 2008-10-28 2018-03-27 Honeywell International Inc. Process for drying HCFO-1233zd
US9540296B2 (en) * 2015-03-19 2017-01-10 Honeywell International Inc. Process for drying HCFO-1233zd
JP6213361B2 (ja) 2013-05-09 2017-10-18 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
EP3094612B1 (fr) * 2014-01-13 2021-08-04 Arkema France Procede de production du e-1-chloro-3,3,3-trifluoropropene a partir du 1,1,3,3-tetrachloropropene
JP2016023146A (ja) * 2014-07-17 2016-02-08 旭硝子株式会社 トリフルオロエチレンの精製方法
JP6582569B2 (ja) 2014-07-28 2019-10-02 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
JP6575526B2 (ja) 2014-10-02 2019-09-18 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペン及び1−クロロ−3,3,3−トリフルオロプロペンを含有する共沸様組成物
CN109415138B (zh) * 2016-08-05 2021-05-18 中央硝子株式会社 Z-1-氯-3,3,3-三氟丙烯的保存容器及保存方法
JP7024727B2 (ja) * 2016-11-30 2022-02-24 Agc株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
US20180194703A1 (en) * 2017-01-06 2018-07-12 Honeywell International Inc. Systems and methods for separating (e)-1-chloro-3,3,3-trifluoropropene, hf, and a heavy organic and reactor purge
CN114901617A (zh) 2020-03-19 2022-08-12 中央硝子株式会社 (氢)卤烃的制备方法
US11739733B2 (en) 2021-06-23 2023-08-29 Wch Engineering Down-wind horizontal axis turbine apparatus and methods for making and using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024307A1 (fr) * 1995-12-29 1997-07-10 Daikin Industries, Ltd. Processus de production de 1,1,1,3,3-pentafluoropropane
JPH09194404A (ja) * 1996-01-17 1997-07-29 Central Glass Co Ltd 1−クロロ−3,3,3−トリフルオロプロペンの製造法
JPH1067693A (ja) * 1996-08-23 1998-03-10 Central Glass Co Ltd 1−クロロ−3,3,3−トリフルオロプロペンの製造法
JPH11269105A (ja) 1998-03-23 1999-10-05 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP2001181220A (ja) * 1999-12-28 2001-07-03 Kureha Chem Ind Co Ltd 精製フルオロカーボン又はクロロフルオロカーボンの製造方法
JP2002516888A (ja) * 1998-06-02 2002-06-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヘキサフルオロプロペン、および随意に他のフッ素含有ハロゲン化炭化水素の製造方法
JP2007501843A (ja) 2003-08-08 2007-02-01 ハネウェル・インターナショナル・インコーポレーテッド 1−クロロ−3,3,3−トリフルオロプロペン(HCFC−1233zd)の低温での製造
WO2010111067A1 (en) * 2009-03-24 2010-09-30 Arkema Inc. Separation of r-1233 from hydrogen fluoride

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235951B1 (en) * 1996-01-17 2001-05-22 Central Glass Company, Limited Method for producing 1,1,1,3,3-pentafluoropropane
CN1224707A (zh) * 1998-01-27 1999-08-04 北美埃尔夫爱托化学股份有限公司 1230za的非催化的液相氟化
US6013846A (en) * 1998-03-05 2000-01-11 Elf Atochem North America, Inc. Azeotrope of HF and 1233zd
WO2010035748A1 (ja) * 2008-09-25 2010-04-01 セントラル硝子株式会社 1,3,3,3-テトラフルオロプロペンの製造方法
US8217208B2 (en) * 2008-12-12 2012-07-10 Honeywell International, Inc. Isomerization of 1-chloro-3,3,3-trifluoropropene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024307A1 (fr) * 1995-12-29 1997-07-10 Daikin Industries, Ltd. Processus de production de 1,1,1,3,3-pentafluoropropane
JPH09194404A (ja) * 1996-01-17 1997-07-29 Central Glass Co Ltd 1−クロロ−3,3,3−トリフルオロプロペンの製造法
JPH1067693A (ja) * 1996-08-23 1998-03-10 Central Glass Co Ltd 1−クロロ−3,3,3−トリフルオロプロペンの製造法
JPH11269105A (ja) 1998-03-23 1999-10-05 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP2002516888A (ja) * 1998-06-02 2002-06-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヘキサフルオロプロペン、および随意に他のフッ素含有ハロゲン化炭化水素の製造方法
JP2001181220A (ja) * 1999-12-28 2001-07-03 Kureha Chem Ind Co Ltd 精製フルオロカーボン又はクロロフルオロカーボンの製造方法
JP2007501843A (ja) 2003-08-08 2007-02-01 ハネウェル・インターナショナル・インコーポレーテッド 1−クロロ−3,3,3−トリフルオロプロペン(HCFC−1233zd)の低温での製造
WO2010111067A1 (en) * 2009-03-24 2010-09-30 Arkema Inc. Separation of r-1233 from hydrogen fluoride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2778151A4

Also Published As

Publication number Publication date
EP2778151A4 (en) 2015-06-24
US20150011805A1 (en) 2015-01-08
CN103930390A (zh) 2014-07-16
US9181153B2 (en) 2015-11-10
EP2778151B1 (en) 2017-07-19
JP2013103890A (ja) 2013-05-30
JP5834791B2 (ja) 2015-12-24
EP2778151A1 (en) 2014-09-17
CN103930390B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5834791B2 (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
US9458071B2 (en) Method for separating and recovering 2,3,3,3-tetrafluoropropene and hydrofluoric acid
JP6997700B2 (ja) ハイドロ(クロロ)フルオロオレフィンを乾燥するためのプロセス
JP2020063304A (ja) フッ化水素からのr−1233の分離
JP2022510946A (ja) 高純度トリフルオロヨードメタンを生成するためのプロセス
TWI409243B (zh) 1,2,3,4-tetrachlorohexafluorobutane and its purification method
JP5712894B2 (ja) (z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
JP2009196900A (ja) フルオロオレフィンとフッ化水素の分離方法
JP2007056025A (ja) 高純度のフッ素化過酸化物の調製
JP6582569B2 (ja) 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
JPWO2011052559A1 (ja) フッ素含有化合物の精製方法
JP2016023145A (ja) トリフルオロエチレンの精製方法
US10233137B1 (en) Method for removing unsaturated halogenated impurities from 2,3,3,3-tetrafluoropropene (HFO-1234yf)
JP5652179B2 (ja) 半導体ガスの製造方法
JP2013112610A (ja) モノフルオロメタンの製造方法
WO2011102439A1 (ja) ジフルオロ酢酸エステルの製造方法
JP2016069369A (ja) 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
JP2001342006A (ja) 塩化水素の回収方法
JP4458784B2 (ja) ペンタフルオロエタンの製造方法およびその用途
JP2001233808A (ja) ジフルオロメタンの精製方法
JP2003055277A (ja) ヘキサフルオロエタンの製造方法およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848425

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012848425

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012848425

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14353608

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE