WO2013065694A1 - 樹脂組成物、プリプレグ及び積層板 - Google Patents

樹脂組成物、プリプレグ及び積層板 Download PDF

Info

Publication number
WO2013065694A1
WO2013065694A1 PCT/JP2012/078062 JP2012078062W WO2013065694A1 WO 2013065694 A1 WO2013065694 A1 WO 2013065694A1 JP 2012078062 W JP2012078062 W JP 2012078062W WO 2013065694 A1 WO2013065694 A1 WO 2013065694A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
cyanate ester
ester compound
epoxy resin
mixture
Prior art date
Application number
PCT/JP2012/078062
Other languages
English (en)
French (fr)
Inventor
裕明 小林
政伸 十亀
禎啓 加藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US14/355,674 priority Critical patent/US9527979B2/en
Priority to JP2013541789A priority patent/JP5988176B2/ja
Priority to KR1020147011791A priority patent/KR101958046B1/ko
Priority to CN201280053929.XA priority patent/CN103917571B/zh
Priority to EP12846152.2A priority patent/EP2774938B1/en
Priority to SG11201401958TA priority patent/SG11201401958TA/en
Publication of WO2013065694A1 publication Critical patent/WO2013065694A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/02Polyphenylenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal

Definitions

  • the present invention relates to a resin composition, a prepreg, and a laminate.
  • Printed wiring boards widely used in electronic devices, communication devices, personal computers, and the like have been developed with higher density wiring and higher integration. Along with this, metal foil-clad laminates used for printed wiring boards are required to have excellent properties such as heat resistance, low water absorption, moisture absorption heat resistance, and peel strength.
  • FR-4 type laminates in which epoxy resin is cured with dicyandiamide have been widely used as laminates for printed wiring boards.
  • the FR-4 type laminate has a limit in meeting the demand for high heat resistance.
  • cyanate ester compounds for example, bisphenol A type cyanate ester compounds and novolac type cyanate ester compounds are known (see, for example, Patent Documents 1 to 3).
  • Patent Document 4 As a method for imparting water absorption and moisture absorption heat resistance to a laminate, a method of blending a cyanate ester compound having a biphenyl skeleton into the laminate is known (see, for example, Patent Document 4).
  • the laminates containing the cyanate ester compounds described in Patent Documents 1 to 3 are excellent in properties such as electrical properties, mechanical properties, chemical resistance, and adhesiveness. However, in terms of water absorption and moisture absorption heat resistance, It may be insufficient.
  • the cyanate ester compound having a biphenyl skeleton described in Patent Document 4 has poor solubility in a solvent. Therefore, the cyanate ester compound described in Patent Document 4 gradually precipitates and precipitates even when the melt viscosity increases or dissolves in a solvent depending on the state of take-out during production and storage conditions.
  • a laminated board containing such a cyanate ester compound has a problem that the moldability is deteriorated and the appearance after etching is extremely deteriorated.
  • a resin composition in which a mixture of positional isomers of a cyanate ester compound having a specific structure is blended with an epoxy resin and an inorganic filler is solvent-soluble.
  • the metal foil-clad laminate using the resin composition has been found to be excellent in properties such as adhesion, low water absorption, moisture absorption heat resistance, insulation reliability and appearance, and the present invention. It came to be completed.
  • n is each independently an integer of 1 or more, and R 1 and R 2 are each independently a hydrogen atom, an alkyl group, or an aryl group.
  • the mixing ratio of the cyanate ester compound (A1) is 30 to 70 mol% with respect to a total of 100 mol% of the mixture (A) of the cyanate ester compound, and the mixing ratio of the cyanate ester compound (A2) is 15
  • the resin composition according to [1], in which the content of the cyanate ester compound (A3) is 5 to 35 mol%.
  • the resin composition according to [1] or [2], wherein n in the general formulas (1) to (3) are each independently an integer in the range of 1 to 50.
  • the aralkyl type epoxy resin is represented by the following general formula (4): a phenol phenyl aralkyl type epoxy resin, a general formula (5): a phenol biphenyl aralkyl type epoxy resin, and the following general formula (6):
  • the resin composition according to [4] which is at least one selected from the group consisting of naphthol aralkyl type epoxy resins.
  • the content of the inorganic filler (C) is 10 to 1000 parts by mass with respect to 100 parts by mass of the total amount of the mixture (A) of the cyanate ester compound and the epoxy resin (B) [1] to [ [7]
  • a printed wiring board including an insulating layer and a conductor layer formed on a surface of the insulating layer, wherein the insulating layer includes the resin composition according to any one of [1] to [8] Board.
  • the resin composition of the present invention is excellent in handleability because of its high solvent solubility, and a laminate or a metal foil-clad laminate obtained by curing a prepreg obtained from the resin composition has excellent adhesion and low water absorption. Excellent heat resistance during moisture absorption, insulation reliability and appearance.
  • the resin composition of the present embodiment is A cyanate ester compound (A1) having a structural unit represented by the following general formula (1), a cyanate ester compound (A2) having a structural unit represented by the following general formula (2), and the following general formula (3)
  • n is each independently an integer of 1 or more, and R 1 and R 2 are each independently a hydrogen atom, an alkyl group, or an aryl group.
  • the mixture of cyanate ester compounds (A) used in this embodiment is a mixture of at least two cyanate ester compounds selected from the group consisting of the cyanate ester compounds (A1) to (A3).
  • the mixture of the cyanate ester compounds (A1) and (A2), the cyanate ester compounds (A1) and (A3) A mixture, a mixture of the cyanate ester compounds (A2) and (A3), and a mixture of the cyanate ester compounds (A1), (A2) and (A3). It is a mixture of compounds (A1), (A2) and (A3).
  • the mixture (A) may contain a prepolymer of the cyanate ester compounds (A1) to (A3).
  • each n is independently preferably an integer in the range of 1 to 50, more preferably an integer in the range of 1 to 20, more preferably 1 to 10. More preferably, it is an integer in the range.
  • the cyanate ester compound (A1) may be a mixture containing a plurality of compounds having different n in the general formula (1). The same applies to the cyanate ester compounds (A2) and (A3).
  • R 1 and R 2 in the general formulas (1) to (3) are preferably each independently a hydrogen atom, an alkyl group or an aryl group, and a hydrogen atom, a methyl group, an ethyl group, a propyl group, a phenyl group It is more preferably a group, a naphthyl group or a biphenyl group, and further preferably a hydrogen atom, a methyl group, an ethyl group or a phenyl group.
  • a method for producing the mixture of cyanate ester compounds (A) is not particularly limited.
  • a method (cyanate synthesis method) in which each phenol compound in the mixture is cyanated using a mixture of the represented phenol compounds as a raw material is preferable.
  • n is independently an integer of 1 or more, and R 1 and R 2 are each independently a hydrogen atom, an alkyl group, or an aryl group.
  • a method for cyanating a phenol compound is not particularly limited, and a known method can be applied. For example, a method described in IAN HAMERTON, “Chemistry and Technology of Cyanate Ester Resins”, or BLACKIE ACADEMIC & PROFESSIONAL can be used. . By this method, the phenol compounds represented by the general formulas (1) 'to (3)' can be cyanated to obtain a mixture of the cyanate ester compounds (A1) to (A3).
  • the method for cyanating other phenol compounds is not particularly limited. For example, in the presence of a base in a solvent, the cyanide halide is always present in excess in excess of the base.
  • the mixing ratio of the cyanate ester compounds (A1) to (A3) in the mixture (A) of the cyanate ester compound used in the present embodiment is not particularly limited as long as each component is included.
  • the cyanate ester The mixing ratio of the compound (A1) is preferably 30 to 70 mol%, more preferably 40 to 60 mol%, based on the total 100 mol% of the mixture (A).
  • the mixing ratio of the cyanate ester compound (A2) is preferably 15 to 45 mol%, more preferably 20 to 40 mol% with respect to the total 100 mol% of the mixture (A).
  • the mixing ratio of the cyanate ester compound (A3) is preferably 5 to 35 mol% with respect to the total 100 mol% of the mixture (A), and particularly the viewpoint of solubility of the resin composition in a solvent. More preferably, it is 10 to 30 mol%.
  • the content of the mixture (A) of the cyanate ester compound is not particularly limited, but a total of 100 of the mixture (A) of the cyanate ester compound and the epoxy resin (B).
  • the amount is preferably 10 to 90 parts by weight, and more preferably 30 to 70 parts by weight with respect to the parts by weight.
  • the resin composition containing the mixture (A) of the cyanate ester compound within the above range has improved solvent solubility and curability, and the laminate obtained from the resin composition has improved heat resistance.
  • the resin composition containing 30 to 70 parts by mass of the mixture (A) of the cyanate ester compound further improves the solvent solubility, and the laminate obtained from the resin composition has more characteristics such as heat resistance. Further improvement.
  • a cyanate ester compound other than the mixture (A) of the cyanate ester compound can be used in combination.
  • the cyanate ester compound other than the mixture (A) of the cyanate ester compound is not particularly limited, and known ones can be used.
  • bisphenol A type cyanate ester compound bisphenol F type cyanate ester compound, bisphenol M Type cyanate ester compound, bisphenol P type cyanate ester compound, bisphenol E type cyanate ester compound, phenol novolac type cyanate ester compound, cresol novolac type cyanate ester compound, dicyclopentadiene novolac type cyanate ester compound, tetramethyl Bisphenol F type cyanate ester compound, biphenol type cyanate ester compound, phenol aralkyl type cyanate ester compound, xylenol aralkyl type cyanate ester compound, Off tall aralkyl type cyanate ester compound and the like, and include those prepolymers.
  • These cyanate ester compounds may be used alone or in combination of two or more.
  • Epoxy resin (B) used for this embodiment is not specifically limited, It is preferable that it is an epoxy resin normally used for printed wiring board materials.
  • a representative example of the epoxy resin (B) is a non-halogen epoxy resin due to the recent growing interest in environmental problems.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene Type epoxy resin, biphenyl type epoxy resin, aralkyl type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, glycidylamine, glycidyl ester, butadiene epoxidized compound, hydroxyl group-containing silicone resin and epichlorohydrin
  • an aralkyl type epoxy resin is preferable in order to improve flame retardancy.
  • aralkyl epoxy resin examples include a phenol phenyl aralkyl epoxy resin represented by the following general formula (4), a phenol biphenyl aralkyl epoxy resin represented by the following general formula (5), and the following general formula (6).
  • the naphthol aralkyl type epoxy resin etc. which are represented are mentioned.
  • the phenol biphenyl aralkyl type epoxy resin represented by the general formula (5) is preferable from the viewpoint of heat resistance and flame retardancy of the resin composition obtained.
  • the said aralkyl type epoxy resin may be used individually by 1 type according to the objective, and can also be used in combination of 2 or more type as appropriate.
  • M in the general formulas (4) to (6) are each independently an integer of 1 to 50, and R 3 to R 14 are each independently a hydrogen atom, a methyl group, an ethyl group, or an aryl group. is there.)
  • the content of the epoxy resin (B) is 10 to 90 masses with respect to a total of 100 mass parts of the mixture (A) of the cyanate ester compound and the epoxy resin (B). Part is preferable, and the range of 30 to 70 parts by weight is particularly preferable.
  • the content of the epoxy resin (B) is in the above range, the resulting resin composition is excellent in curability and heat resistance.
  • the inorganic filler (C) used in the present embodiment is not particularly limited as long as it is generally used.
  • silicas such as natural silica, fused silica, amorphous silica, and hollow silica; aluminum hydroxide, water Aluminum oxide heat-treated products (heat treated with aluminum hydroxide and reduced in part of crystal water), metal hydrates such as boehmite and magnesium hydroxide; molybdenum compounds such as molybdenum oxide and zinc molybdate; boric acid Examples thereof include zinc, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, short glass fibers (glass fine powders such as E glass and D glass), and hollow glass.
  • silica is particularly preferable from the viewpoint of low water absorption of the resin composition.
  • the average particle diameter (D50) of the inorganic filler (C) is preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 5 ⁇ m.
  • the said inorganic filler (C) can also be used combining suitably what changed the particle size distribution and the average particle diameter.
  • D50 is a median diameter (median diameter), and is a diameter in which the volume on the large side is equal to the volume on the small side when the particle size distribution of the measured powder is divided into two. Generally, it is measured by a wet laser diffraction / scattering method.
  • the content of the inorganic filler (C) is not particularly limited, but a total of 100 parts by mass of the mixture of cyanate ester compound (A) and the epoxy resin (B). Is preferably 10 to 1000 parts by mass, more preferably 10 to 300 parts by mass, still more preferably 30 to 300 parts by mass, and particularly preferably 30 to 200 parts by mass.
  • the inorganic filler (C) used in the present embodiment can be treated with a silane coupling agent or a wetting and dispersing agent.
  • the inorganic filler (C) treated with the silane coupling agent has improved wettability to the resin and glass cloth, and the inorganic filler (C) treated with the wet dispersant has improved dispersibility in the resin solution. To do.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for inorganic surface treatment.
  • ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -Aminosilane-based silane coupling agents such as aminopropyltrimethoxysilane
  • Epoxysilane-based silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane
  • Vinylsilane-based silane couplings such as ⁇ -methacryloxypropyltrimethoxysilane Agents
  • cationic silane-based silane coupling agents such as N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride
  • phenylsilane-based silane coupling agents may be used individually by 1 type, and can also be used in combination
  • the wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer that is usually used for paints.
  • a dispersion stabilizer that is usually used for paints.
  • acid groups such as Disperbyk-110, 111, 996, and W903 manufactured by Big Chemie Japan are used.
  • a copolymer-based wetting and dispersing agent a copolymer-based wetting and dispersing agent.
  • the resin composition of the present embodiment may contain a curing accelerator in order to adjust the curing rate as needed.
  • the curing accelerator is not particularly limited as long as it is generally used as a curing accelerator for the mixture (A) of the cyanate ester compound and the epoxy resin (B).
  • copper, zinc, cobalt And organic metal salts such as nickel; imidazoles and derivatives thereof; tertiary amines and the like.
  • the resin composition of this embodiment may contain an organic solvent.
  • the organic solvent is not particularly limited as long as it is an organic solvent in which the mixture (A) of the cyanate ester compound and the epoxy resin (B) are dissolved, and examples thereof include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Ketones; aromatic hydrocarbons such as benzene, toluene, xylene; amides such as dimethylformamide and dimethylacetamide.
  • thermosetting resins thermoplastic resins and oligomers thereof, various high molecular compounds such as elastomers, and other flame retardants, as long as desired properties are not impaired.
  • These compounds, additives and the like may be included. These are not particularly limited as long as they are generally used.
  • a flame retardant compound For example, phosphorus compounds, such as phosphate ester and a melamine phosphate; Nitrogen-containing compounds, such as a melamine and a benzoguanamine; Oxazine ring containing compound; A silicone type compound etc. are mentioned.
  • distribution An agent, a leveling agent, a brightening agent, a polymerization inhibitor, etc. can be used in appropriate combination as desired.
  • the manufacturing method of the resin composition of this embodiment is a manufacturing method with which the resin composition containing the mixture (A) of the cyanate ester compound mentioned above, an epoxy resin (B), and an inorganic filler (C) is obtained.
  • a method of blending the inorganic filler (C) in the epoxy resin (B), dispersing the mixture with a homomixer or the like, and blending the mixture (A) of the cyanate ester compound may be mentioned.
  • an organic solvent is added beforehand, viscosity is lowered, handling property is improved, and impregnation property with a substrate such as glass cloth is improved.
  • the organic solvent is not particularly limited as long as it is an organic solvent in which the mixture (A) of the cyanate ester compound and the epoxy resin (B) are dissolved, and examples thereof include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Ketones; aromatic hydrocarbons such as benzene, toluene, xylene; amides such as dimethylformamide and dimethylacetamide.
  • the resin composition of the present embodiment forms a high-quality prepreg because the solvent solubility is improved and the handleability is greatly improved by using the mixture (A) of the specific cyanate compound described above. be able to. Furthermore, by using the high-quality prepreg, a metal foil-clad laminate having excellent heat resistance, flame retardancy, adhesion, low water absorption, heat resistance during moisture absorption, insulation reliability and appearance can be obtained.
  • the prepreg of this embodiment is a prepreg formed by impregnating or applying the above-described resin composition to a substrate.
  • the manufacturing method of the prepreg of this embodiment combines the base material and the resin composition which contains the said mixture of a cyanate ester compound (A), the said epoxy resin (B), and the said inorganic filler (C) as an essential component. If it is a method of manufacturing a prepreg, it will not specifically limit.
  • the resin composition is impregnated or coated on a substrate and then semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes, preferably 1 to 30 minutes. And the like.
  • the amount of the resin composition attached to the substrate is preferably in the range of 20 to 95% by mass, more preferably in the range of 30 to 90% by mass in terms of the amount of resin in the prepreg (including the inorganic filler (C)). .
  • a base material used for this embodiment it does not specifically limit but the well-known base material used for various printed wiring board materials can be suitably selected and used by the target use and performance.
  • glass fibers such as E glass, D glass, S glass, Q glass, spherical glass, NE glass, T glass
  • Inorganic fibers other than glass such as quartz
  • Polyparaphenylene Wholly aromatic polyamides such as terephthalamide (Kevlar (registered trademark), manufactured by DuPont), copolyparaphenylene 3,4'oxydiphenylene terephthalamide (Technola (registered trademark), manufactured by Teijin Techno Products)
  • Polyesters such as 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid (Vectran (registered trademark), manufactured by Kuraray Co., Ltd.), polyparaphenylene benzoxazole (Zylon (registered trademark), manufactured by Toyobo Co., Ltd.), poly
  • the said base material is suitably selected according to the intended use and performance, and it may be used individually by 1 type and can also be used in combination of 2 or more type. Although it does not specifically limit as a shape of the said base material, For example, a woven fabric, a nonwoven fabric, roving, a chopped strand mat, a surfacing mat etc. are mentioned.
  • the weaving method of the woven fabric is not particularly limited, and examples thereof include plain weave, nanako weave, twill weave and the like.
  • the thickness of the substrate is not particularly limited, but is preferably 0.01 to 0.3 mm, for example.
  • the base material a base material surface-treated with a silane coupling agent or the like, or a base material that has been physically opened in a woven fabric can be preferably used from the viewpoint of moisture absorption heat resistance.
  • the base material is preferably a glass woven fabric having a thickness of 200 ⁇ m or less and a mass of 250 g / m 2 or less, and more preferably a glass woven fabric made of E-glass glass fibers.
  • a film of polyimide, polyamide, polyester or the like can be used as the base material.
  • the thickness of the film is not particularly limited, but is preferably 0.002 to 0.05 mm.
  • the film is more preferably a film that has been surface-treated by plasma treatment or the like.
  • the laminate of this embodiment is a metal foil-clad laminate using the above prepreg.
  • the laminated board of this embodiment is excellent in adhesiveness, low water absorption, heat resistance at the time of moisture absorption, insulation reliability, and an external appearance by using the above-mentioned prepreg.
  • the laminated board of this embodiment can be manufactured by carrying out lamination molding using the above-mentioned prepreg. Specifically, it can be produced by laminating one or more of the above-described prepregs and laminating and forming a metal foil such as copper or aluminum on one or both sides as desired.
  • the metal foil to be used will not be specifically limited if it is used for printed wiring board material, Known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable.
  • the thickness of the metal foil is not particularly limited, but is preferably 2 to 70 ⁇ m, more preferably 2 to 35 ⁇ m.
  • As the lamination molding method a usual method for molding a laminated board for a printed wiring board and a multilayer board can be applied.
  • the method of using a multistage press, a multistage vacuum press, a continuous molding machine, an autoclave molding machine, etc. is mentioned.
  • the temperature is preferably 100 to 300 ° C.
  • the pressure is preferably 2 to 100 kgf / cm 2
  • the heating time is preferably in the range of 0.05 to 5 hours.
  • post-curing can be performed at a temperature of 150 to 300 ° C., if necessary.
  • the laminated board of this embodiment can also be made into a multilayer board by combining the above-mentioned prepreg and a separately prepared wiring board for an inner layer, and carrying out lamination molding.
  • the laminated board of the present embodiment can be suitably used as a printed wiring board by forming a predetermined wiring pattern.
  • the laminated board of this embodiment has a low thermal expansion coefficient, high flame retardance, good moldability and drilling workability, and particularly as a printed wiring board for semiconductor packages where such performance is required. It can be used effectively.
  • the printed wiring board of this embodiment is a printed wiring board including an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition described above.
  • the printed wiring board of this embodiment can be manufactured by the following method, for example. First, an etching process is performed on the surface of the above-mentioned metal foil-clad laminate to form an inner layer circuit, thereby producing an inner layer substrate. If necessary, surface treatment is performed on the inner layer circuit surface of the inner layer substrate to increase the adhesive strength, then the required number of the prepregs are stacked on the inner layer circuit surface, and a metal foil for the outer layer circuit is laminated on the outer side. Then, it is integrally molded by heating and pressing. In this way, a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit.
  • a plated metal film is formed on the wall surface of the hole to connect the inner layer circuit and the metal foil for the outer layer circuit.
  • a printed wiring board is manufactured by performing an etching process on the metal foil for forming an outer layer circuit.
  • a resin composition layer (a layer made of the above-mentioned resin composition) in a metal foil-clad laminate using the above-described prepreg (the base material and the above-mentioned resin composition attached thereto). ) Constitutes an insulating layer containing the above-mentioned resin composition.
  • Solution 2 was added dropwise to 600 g of 2.43 mol of cyanogen chloride in methylene chloride at ⁇ 10 ° C. over 1.5 hours to obtain Solution 2.
  • Solution 2 was stirred for 30 minutes, and then a mixed solution of 0.49 mol of triethylamine and 50 g of methylene chloride was added dropwise to Solution 2 to obtain Solution 3. Further, the solution 3 was stirred for 30 minutes to complete the reaction.
  • the triethylamine hydrochloride was filtered from the solution 3 to obtain a filtrate. The obtained filtrate was washed with 1000 mL of 0.1N hydrochloric acid, and then washed with 1000 mL of water four times.
  • n is an integer of 1 to 50
  • n is an integer of 1 to 50
  • the obtained crystals were washed with diethyl ether and hexane and then dried under reduced pressure to obtain a brown solid.
  • the obtained brown solid was analyzed by infrared absorption spectrum, and as a result, 4,4′-biphenylaralkyl type cyanate compound represented by the following formula (16) (in the infrared absorption spectrum, around 2264 cm ⁇ 1) (The absorption of cyanate groups was confirmed).
  • n is an integer of 1 to 50.
  • Example 1 50 parts by mass of a mixture of biphenyl aralkyl type cyanate compound synthesized in Synthesis Example 1, 50 parts by mass of biphenyl aralkyl type epoxy resin (NC3000-H, manufactured by Nippon Kayaku Co., Ltd.), zinc octylate (manufactured by Nippon Chemical Industry Co., Ltd.) 0.04 parts by mass and 100 parts by mass of synthetic silica (SC-2050MR, manufactured by Admatex, average particle size: 0.8 ⁇ m) were mixed to obtain a resin composition. Methyl ethyl ketone was added to this resin composition to obtain a varnish.
  • NC3000-H manufactured by Nippon Kayaku Co., Ltd.
  • zinc octylate manufactured by Nippon Chemical Industry Co., Ltd.
  • SC-2050MR synthetic silica
  • This varnish was further diluted with methyl ethyl ketone, impregnated with E glass cloth (thickness 0.1 mm), and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 48% by mass.
  • 4 sheets of this prepreg were stacked and 18 ⁇ m electrolytic copper foils were placed one above the other and pressed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a copper-clad laminate having a thickness of 0.4 mm. .
  • the 4,4′-biphenylaralkyl cyanate compound obtained in Synthesis Example 2 was insoluble in methyl ethyl ketone. Therefore, the obtained varnish was impregnated and coated on E glass cloth (thickness 0.1 mm) in a state where the mixture of the cyanate ester compound was dispersed in a solvent (methyl ethyl ketone) and dried at 160 ° C. for 4 minutes. Thus, a prepreg having a resin content of 48% by weight was obtained. Next, 4 sheets of this prepreg were stacked and 18 ⁇ m electrolytic copper foils were placed one above the other and pressed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a copper-clad laminate having a thickness of 0.4 mm. .
  • the resin composition of the present invention has high solvent solubility and excellent handling properties, and can realize a metal foil-clad laminate having excellent adhesion, low water absorption, moisture absorption heat resistance, insulation reliability and appearance, It is suitable as a printed wiring board material for high density and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

 本発明の樹脂組成物は、特定の構造単位を有するシアン酸エステル化合物(A1)~(A3)からなる群より選択される少なくとも2種のシアン酸エステル化合物の混合物(A)と、エポキシ樹脂(B)と、無機充填材(C)と、を含む。また、本発明のプリプレグは、前記樹脂組成物を基材に含浸又は塗布してなる。さらに、本発明の金属箔張り積層板は、前記プリプレグを用いた積層板である。またさらに、本発明のプリント配線板は、絶縁層と、前記絶縁層の表面に形成された導体層とを含むプリント配線板であって、前記前縁層が前記樹脂組成物を含む。

Description

樹脂組成物、プリプレグ及び積層板
 本発明は、樹脂組成物、プリプレグ及び積層板に関する。
 電子機器や通信機、パーソナルコンピューター等に広く用いられているプリント配線板は、高密度配線化や高集積化が進展している。これに伴い、プリント配線板に用いられる金属箔張り積層板には耐熱性、低吸水性、吸湿耐熱性、ピール強度などの特性に優れることが要求されている。
 従来、プリント配線板用の積層板としては、エポキシ樹脂をジシアンジアミドで硬化させるFR-4タイプの積層板が広く使用されている。しかしながら、FR-4タイプの積層板は、高耐熱性化の要求に対応するには限界がある。
 積層板に耐熱性を付与する方法としては、積層板にシアン酸エステル化合物を配合する方法が知られている。当該シアン酸エステル化合物としては、例えば、ビスフェノールA型シアン酸エステル化合物やノボラック型シアン酸エステル化合物が知られている(例えば特許文献1~3参照)。
 また、積層板に吸水性や吸湿耐熱性を付与する方法のーつとして、積層板にビフェニル骨格を有するシアン酸エステル化合物を配合する方法が知られている(例えば特許文献4参照)。
特開平07-106767号公報 特開平11-124433号公報 特開2000-191776号公報 特開2010-174242号公報
 しかしながら、特許文献1~3に記載のシアン酸エステル化合物を配合した積層板は、電気特性、機械特性、耐薬品性及び接着性などの特性に優れるが、吸水性や吸湿耐熱性の面では、不十分な場合がある。
 特許文献4に記載のビフェニル骨格を有するシアン酸エステル化合物は、溶剤への溶解性が悪い。そのため、特許文献4に記載のシアン酸エステル化合物は、製造時の取り出し状況や保管状態によっては、溶融粘度が増加してしまったり、溶剤に溶解した場合にも次第に析出、沈殿してしまう。このようなシアン酸エステル化合物を配合した積層板は、成形性が悪くなり、エッチングした後の外観が非常に悪化するという問題点がある。
 そこで、本発明は、溶剤への溶解性(溶剤溶解性)に優れ取り扱い性が良好な樹脂組成物を提供すること、さらに、密着性、低吸水性、吸湿時の耐熱性(吸湿耐熱性)、絶縁信頼性及び外観が良好な金属箔張り積層板を実現可能な樹脂組成物を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定構造のシアン酸エステル化合物の位置異性体の混合物にエポキシ樹脂と無機充填材とを配合した樹脂組成物は、溶剤溶解性が著しく改善され、さらには、該樹脂組成物を用いた金属箔張り積層板は、密着性、低吸水性、吸湿耐熱性、絶縁信頼性及び外観等の特性に優れることを見出し、本発明を完成するに至った。
[規則91に基づく訂正 21.01.2013] 
 すなわち、本発明は、以下に関する。
 [1]
 下記一般式(1)で表される構造単位を有するシアン酸エステル化合物(A1)、下記一般式(2)で表される構造単位を有するシアン酸エステル化合物(A2)、及び下記一般式(3)で表される構造単位を有するシアン酸エステル化合物(A3)からなる群より選択される少なくとも2種のシアン酸エステル化合物の混合物(A)と、
 エポキシ樹脂(B)と、
 無機充填材(C)と、を含む樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(一般式(1)~(3)中のnはそれぞれ独立して1以上の整数であり、R及びRはそれぞれ独立して、水素原子、アルキル基又はアリール基である。)
 [2]
 前記シアン酸エステル化合物の混合物(A)の合計100mol%に対して、前記シアン酸エステル化合物(A1)の混合比率が30~70mol%であり、前記シアン酸エステル化合物(A2)の混合比率が15~45mol%であり、前記シアン酸エステル化合物(A3)の混合比率が5~35mol%である[1]に記載の樹脂組成物。
 [3]
 前記一般式(1)~(3)中のnがそれぞれ独立して1~50の範囲の整数である[1]又は[2]に記載の樹脂組成物。
 [4]
 前記エポキシ樹脂(B)が、アラルキル型エポキシ樹脂である[1]~[3]のいずれかに記載の樹脂組成物。
 [5]
 前記アラルキル型エポキシ樹脂が、下記一般式(4)で表されるフェノールフェニルアラルキル型エポキシ樹脂、下記一般式(5)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、及び下記一般式(6)で表されるナフトールアラルキル型エポキシ樹脂からなる群より選択される少なくとも1種である[4]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(一般式(4)~(6)中のmはそれぞれ独立して1~50の整数であり、R~R14はそれぞれ独立して、水素原子、メチル基、エチル基、又はアリール基である。)
 [6]
 前記無機充填材(C)がシリカである[1]~[5]のいずれかに記載の樹脂組成物。
 [7]
 前記シアン酸エステル化合物の混合物(A)の含有量が、前記シアン酸エステル化合物の混合物(A)と前記エポキシ樹脂(B)との合計100質量部に対して10~90質量部である[1]~[6]のいずれかに記載の樹脂組成物。
 [8]
 前記無機充填材(C)の含有量が、前記シアン酸エステル化合物の混合物(A)と前記エポキシ樹脂(B)の合計量100質量部に対して10~1000質量部である[1]~[7]のいずれかに記載の樹脂組成物。
 [9]
 [1]~[8]のいずれかに記載の樹脂組成物を基材に含浸又は塗布してなるプリプレグ。
 [10]
 [9]に記載のプリプレグを用いた金属箔張リ積層板。
 [11]
 絶縁層と、前記絶縁層の表面に形成された導体層とを含むプリン卜配線板であって、前記絶縁層が[1]~[8]のいずれかに記載の樹脂組成物を含むプリント配線板。
 本発明の樹脂組成物は、溶剤溶解性が高いため取り扱い性に優れ、また、該樹脂組成物により得られるプリプレグを硬化してなる積層板や金属箔張り積層板は、密着性、低吸水性、吸湿時の耐熱性、絶縁信頼性及び外観などが優れる。
 以下、本発明の実施の形態(以下「本実施形態」とも記す。)について詳細に説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 ≪樹脂組成物≫
 本実施形態の樹脂組成物は、
 下記一般式(1)で表される構造単位を有するシアン酸エステル化合物(A1)、下記一般式(2)で表される構造単位を有するシアン酸エステル化合物(A2)、及び下記一般式(3)で表される構造単位を有するシアン酸エステル化合物(A3)からなる群より選択される少なくとも2種のシアン酸エステル化合物の混合物(A)と、
 エポキシ樹脂(B)と、
 無機充填材(C)と、を含む。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(一般式(1)~(3)中のnはそれぞれ独立して1以上の整数であり、R及びRはそれぞれ独立して、水素原子、アルキル基又はアリール基である。)
 <シアン酸エステル化合物の混合物(A)>
 本実施形態に用いるシアン酸エステル化合物の混合物(A)は、前記シアン酸エステル化合物(A1)~(A3)からなる群より選択される少なくとも2種のシアン酸エステル化合物の混合物である。
 本実施形態に用いるシアン酸エステル化合物の混合物(A)の好ましい態様としては、前記シアン酸エステル化合物(A1)と(A2)との混合物、前記シアン酸エステル化合物(A1)と(A3)との混合物、前記シアン酸エステル化合物(A2)と(A3)との混合物、前記シアン酸エステル化合物(A1)と(A2)と(A3)との混合物であり、より好ましい態様としては、前記シアン酸エステル化合物(A1)と(A2)と(A3)との混合物である。当該混合物(A)は、前記シアン酸エステル化合物(A1)~(A3)のプレポリマーを含んでいてもよい。
 上記一般式(1)~(3)中のnは、それぞれ独立して1~50の範囲の整数であることが好ましく、1~20の範囲の整数であることがより好ましく、1~10の範囲の整数であることが更に好ましい。
 前記シアン酸エステル化合物(A1)は、上記一般式(1)中のnが異なる化合物を複数含む混合物であってもよい。前記シアン酸エステル化合物(A2)及び(A3)も同様である。
 一般式(1)~(3)中のR及びRは、それぞれ独立して、水素原子、アルキル基又はアリール基であることが好ましく、水素原子、メチル基、エチル基、プロピル基、フェニル基、ナフチル基又はビフェニル基であることがより好ましく、水素原子、メチル基、エチル基又はフェニル基であることが更に好ましい。
 前記シアン酸エステル化合物の混合物(A)の製造方法は、特に限定されないが、例えば、前記シアン酸エステル化合物(A1)~(A3)に対応する下記一般式(1)’~(3)’で表されるフェノール化合物の混合物を原料として用い、該混合物中の各フェノール化合物をシアネート化する方法(シアネート合成法)が製造しやすさの観点から好ましい。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(一般式(1)’~(3)’中のnはそれぞれ独立して1以上の整数であり、R及びRはそれぞれ独立して、水素原子、アルキル基又はアリール基である。)
 フェノール化合物をシアネート化する方法としては、特に限定されず公知の方法が適用でき、例えば、IAN HAMERTON,“Chemistry and Technology of Cyanate Ester Resins”,BLACKIE ACADEMIC & PROFESSIONALに記載された方法を用いることができる。当該方法により、上記一般式(1)’~(3)’で表されるフェノール化合物をシアネート化して前記シアン酸エステル化合物(A1)~(A3)の混合物を得ることができる。また、その他のフェノール化合物をシアネート化する方法としては、特に限定されないが、例えば、溶媒中、塩基の存在下で、ハロゲン化シアンが常に塩基より過剰に存在するようにしてフェノールとハロゲン化シアンとを反応させる方法(米国特許3553244号明細書)や、塩基として3級アミンをハロゲン化シアンよりも過剰に用いながら、フェノールとハロゲン化シアンとを反応させる方法(特開平7-53497号公報)、連続プラグフロー方式で、トリアルキルアミン存在下、フェノールとハロゲン化シアンとを反応させる方法(特表2000-501138号公報)、フェノールとハロゲン化シアンとを、3級アミンの存在下、非水溶液中で反応させる際に副生するtert-アンモニウムハライドを、カチオンおよびアニオン交換対で処理する方法(特表2001-504835号公報)、フェノール化合物を、水と分液可能な溶媒の存在下で、3級アミンとハロゲン化シアンとを同時に添加して反応させた後、水洗分液し、得られた溶液から2級または3級アルコール類もしくは炭化水素の貧溶媒を用いて沈殿精製する方法(特許第2991054号公報)、さらには、ナフトール類、ハロゲン化シアン、および3級アミンを、水と有機溶媒との二相系溶媒中で、酸性条件下で反応させる方法(特開2007-277102号公報)等が挙げられる。本実施形態においては、これらの方法を好適に使用して、シアン酸エステル化合物を得ることができる。上記のような方法により得られたシアン酸エステル化合物は、NMR等の公知の方法により同定することができる。
 本実施形態に用いるシアン酸エステル化合物の混合物(A)中における前記シアン酸エステル化合物(A1)~(A3)の混合比率はそれぞれの成分が含まれれば特に限定されないが、例えば、前記シアン酸エステル化合物(A1)の混合比率は、前記混合物(A)の合計100mol%に対して、30~70mol%が好ましく、40~60mol%が更に好ましい。また、前記シアン酸エステル化合物(A2)の混合比率は、前記混合物(A)の合計100mol%に対して、15~45mol%が好ましく、20~40mol%が更に好ましい。さらに、前記シアン酸エステル化合物(A3)の混合比率は、前記混合物(A)の合計100mol%に対して、5~35mol%であることが好ましく、特に樹脂組成物の溶剤への溶解性の観点から10~30mol%であることが更に好ましい。
 本実施形態の樹脂組成物において、前記シアン酸エステル化合物の混合物(A)の含有量は、特に限定されないが、前記シアン酸エステル化合物の混合物(A)と前記エポキシ樹脂(B)との合計100質量部に対して10~90質量部であることが好ましく、特に30~70質量部であることが好ましい。前記シアン酸エステル化合物の混合物(A)を前記範囲内で含む樹脂組成物は溶剤溶解性や硬化性が向上し、また、該樹脂組成物から得られる積層板は耐熱性が向上する。特に前記シアン酸エステル化合物の混合物(A)を30~70質量部含む樹脂組成物は溶剤溶解性がより一層向上し、また、該樹脂組成物から得られる積層板は耐熱性等の特性がより一層向上する。
 本実施形態の樹脂組成物には、前記シアン酸エステル化合物の混合物(A)以外のシアン酸エステル化合物を併用することも可能である。前記シアン酸エステル化合物の混合物(A)以外のシアン酸エステル化合物としては、特に限定されず公知のものが使用でき、例えば、ビスフェノールA型シアン酸エステル化合物、ビスフェノールF型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールP型シアン酸エステル化合物、ビスフェノールE型シアン酸エステル化合物、フェノールノボラック型シアン酸エステル化合物、クレゾールノボラック型シアン酸エステル化合物、ジシクロペンタジエンノボラック型シアン酸エステル化合物、テトラメチルビスフェノールF型シアン酸エステル化合物、ビフェノール型シアン酸エステル化合物、フェノールアラルキル型シアン酸エステル化合物、キシレノールアラルキル型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物等、及びこれらのプレポリマーが挙げられる。これらシアン酸エステル化合物は、1種単独で使用してもよく、2種以上適宜混合して使用することも可能である。
 <エポキシ樹脂(B)>
 本実施形態に用いるエポキシ樹脂(B)は、特に限定されないが、プリント配線板材料用に通常使用されるエポキシ樹脂であることが好ましい。エポキシ樹脂(B)の代表的な例としては近年の環境問題への関心の高まりから、非ハロゲン系エポキシ樹脂が挙げられる。その中でも、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられ、特に難燃性を向上させるためにはアラルキル型エポキシ樹脂が好ましい。
 前記アラルキル型エポキシ樹脂としては、下記一般式(4)で表されるフェノールフェニルアラルキル型エポキシ樹脂、下記一般式(5)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、及び下記一般式(6)で表されるナフトールアラルキル型エポキシ樹脂等が挙げられる。
 その中でも特に得られる樹脂組成物の耐熱性及び難燃性の観点から、一般式(5)で表されるフェノールビフェニルアラルキル型エポキシ樹脂が好ましい。また、前記アラルキル型エポキシ樹脂は、目的に応じて1種単独で使用してもよく、2種以上を適宜組み合わせて使用することも可能である。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(一般式(4)~(6)中のmはそれぞれ独立して1~50の整数であり、R~R14はそれぞれ独立して、水素原子、メチル基、エチル基、又はアリール基である。)
 本実施形態の樹脂組成物において、前記エポキシ樹脂(B)の含有量としては、前記シアン酸エステル化合物の混合物(A)及び前記エポキシ樹脂(B)の合計100質量部に対し、10~90質量部であることが好ましく、特に30~70質量部の範囲であることが好ましい。前記エポキシ樹脂(B)の含有量が前記範囲であると、得られる樹脂組成物は、硬化性や耐熱性に優れる。
 <無機充填材(C)>
 本実施形態に用いる無機充填材(C)は、一般に使用されるものであれば、特に限定されないが、例えば、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物;酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラスなどが挙げられる。その中でも特にシリカが樹脂組成物の低吸水性などの観点から好ましい。
 前記無機充填材(C)の平均粒子径(D50)としては、好ましくは0.1~10μm、より好ましくは0.2~5μmである。前記無機充填材(C)は、粒度分布や平均粒子径を変化させたものを適宜組み合わせて使用することもできる。ここでD50とはメジアン径(メディアン径)であり、測定した粉体の粒度分布を2つに分けたときの大きい側の体積と小さい側の体積とが等量となる径である。一般的には湿式レーザー回折・散乱法により測定される。
 また、本実施形態の樹脂組成物において、前記無機充填材(C)の含有量は、特に限定されないが、前記シアン酸エステル化合物の混合物(A)及び前記エポキシ樹脂(B)の合計100質量部に対して、10~1000質量部が好ましく、10~300質量部がより好ましく、30~300質量部が更に好ましく、30~200質量部が特に好ましい。
 本実施形態に用いる無機充填材(C)は、シランカップリング剤や湿潤分散剤で処理することも可能である。シランカップリング剤で処理した無機充填材(C)は、樹脂やガラスクロスへの濡れ性が向上し、湿潤分散剤で処理した無機充填材(C)は、樹脂溶液中への分散性が向上する。
 前記シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば特に限定されず、例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系シランカップリング剤、γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系シランカップリング剤、γ-メタアクリロキシプロピルトリメトキシシランなどのビニルシラン系シランカップリング剤、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系シランカップリング剤、フェニルシラン系シランカップリング剤などが挙げられる。前記シランカップリング剤は、1種単独で使用してもよく、2種以上を適宜組み合わせて使用することも可能である。
 また、前記湿潤分散剤としては、塗料用に通常使用されている分散安定剤であれば、特に限定されず、例えば、ビッグケミー・ジャパン製のDisperbyk-110、111、996、W903等の酸基を有する共重合体ベースの湿潤分散剤などが挙げられる。
 <その他の成分>
 本実施形態の樹脂組成物には、必要に応じ、硬化速度を適宜調節するために硬化促進剤を含有させてもよい。前記硬化促進剤としては、前記シアン酸エステル化合物の混合物(A)や前記エポキシ樹脂(B)の硬化促進剤として一般に使用されるものであれば、特に限定されず、例えば、銅、亜鉛、コバルト、ニッケル等の有機金属塩類;イミダゾール類及びその誘導体;第3級アミン等が挙げられる。
 また、本実施形態の樹脂組成物には、有機溶剤を含有させてもよい。前記有機溶剤としては、前記シアン酸エステル化合物の混合物(A)及び前記エポキシ樹脂(B)が溶解する有機溶剤であれば、特に限定されず、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ジメチルホルムアミドやジメチルアセトアミドなどのアミド類等が挙げられる。
 本実施形態の樹脂組成物には、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、他の難燃性の化合物、添加剤などを含有させてもよい。これらは一般に使用されているものであれば、特に限定されるものではない。難燃性の化合物としては、特に限定されないが、例えば、リン酸エステル、リン酸メラミンなどのリン化合物;メラミンやベンゾグアナミンなどの窒素含有化合物;オキサジン環含有化合物;シリコーン系化合物などが挙げられる。添加剤としては、特に限定されないが、例えば、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等、所望に応じて適宜組み合わせて使用することも可能である。
 <樹脂組成物の製造方法>
 本実施形態の樹脂組成物の製造方法は、上述したシアン酸エステル化合物の混合物(A)、エポキシ樹脂(B)及び無機充填材(C)を含む樹脂組成物が得られる製造方法であれば、特に限定されない。例えば前記エポキシ樹脂(B)に前記無機充填材(C)を配合し、ホモミキサー等で分散させ、さらに前記シアン酸エステル化合物の混合物(A)を配合する方法などが挙げられる。また、本実施形態の樹脂組成物は、後述するプリプレグに使用する場合、予め有機溶剤を添加して、粘度を下げ、ハンドリング性を向上させると共にガラスクロス等の基材との含浸性を高めることが好ましい。前記有機溶剤としては、前記シアン酸エステル化合物の混合物(A)及び前記エポキシ樹脂(B)が溶解する有機溶剤であれば、特に限定されず、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ジメチルホルムアミドやジメチルアセトアミドなどのアミド類等が挙げられる。
 本実施形態の樹脂組成物は、上述した特定のシアン酸エステル化合物の混合物(A)を用いることにより溶剤溶解性を高め取り扱い性を飛躍的に向上させているため、高品質のプリプレグを形成することができる。さらに該高品質のプリプレグを用いることにより、耐熱性、難燃性、密着性、低吸水性、吸湿時の耐熱性、絶縁信頼性及び外観に優れる金属箔張り積層板を得ることができる。
 ≪プリプレグ≫
 本実施形態のプリプレグは、上述の樹脂組成物を基材に含浸又は塗布してなるプリプレグである。
 本実施形態のプリプレグの製造方法は、前記シアン酸エステル化合物の混合物(A)、前記エポキシ樹脂(B)及び前記無機充填材(C)を必須成分として含有する樹脂組成物と基材とを組み合わせてプリプレグを製造する方法であれば、特に限定されない。例えば、上記樹脂組成物を、基材に含浸又は塗布した後、100~200℃の乾燥機中で、1~60分、好ましくは1~30分加熱させる方法などにより半硬化させることにより、プリプレグを製造する方法などが挙げられる。前記基材に対する前記樹脂組成物の付着量は、プリプレグ中の樹脂量(前記無機充填材(C)を含む)で20~95質量%の範囲が好ましく、30~90質量%の範囲がより好ましい。
 本実施形態に用いる基材としては、特に限定されず各種プリント配線板材料に用いられている公知の基材を、目的とする用途や性能により適宜選択して使用することができる。前記基材としては、特に限定されないが、例えば、Eガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Tガラス等のガラス繊維;クォーツ等のガラス以外の無機繊維;ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)等の全芳香族ポリアミド、2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)等のポリエステル、ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミドなどの有機繊維が挙げられる。これらの中でも低熱膨張性の観点から、Eガラス、Tガラス、Sガラス、Qガラスが好ましい。前記基材は、目的とする用途や性能により適宜選択し、1種単独で使用してもよく、2種類以上を組み合わせて使用することも可能である。前記基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。前記織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織りなどが挙げられる。前記基材の厚みについては、特に限定はされないが、例えば、0.01~0.3mmであることが好ましい。また、前記基材としては、シランカップリング剤などで表面処理した基材や、織布において物理的に開繊処理を行った基材が、吸湿耐熱性の面から好適に使用できる。とりわけ、強度と吸水性との観点から、基材としては、厚み200μm以下、質量250g/m以下のガラス織布が好ましく、Eガラスのガラス繊維からなるガラス織布がより好ましい。また、前記基材として、ポリイミド、ポリアミド、ポリエステルなどのフィルムも使用可能である。当該フィルムの厚みは、特に限定されないが、0.002~0.05mmが好ましい。また、当該フィルムは、プラズマ処理などで表面処理したフィルムがより好ましい。
 ≪金属箔張り積層板≫
 本実施形態の積層板は、上述のプリプレグを用いた金属箔張り積層板である。本実施形態の積層板は、上述のプリプレグを用いることにより、密着性、低吸水性、吸湿時の耐熱性、絶縁信頼性及び外観に優れる。
 本実施形態の積層板は、上述のプリプレグを用いて積層成形することにより製造することができる。具体的には、上述のプリプレグを1枚あるいは複数枚以上を重ね、所望によりその片面もしくは両面に、銅やアルミニウムなどの金属箔を配置した構成で、積層成形することにより製造することができる。使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔などの公知の銅箔が好ましい。また、金属箔の厚みは、特に限定されないが、2~70μmが好ましく、より好ましくは2~35μmである。前記積層成形方法としては、通常のプリント配線板用積層板及び多層板の成形方法が適用できる。例えば、多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを使用する方法が挙げられる。当該成形方法において、温度は100~300℃であることが好ましく、圧力は2~100kgf/cmであることが好ましく、加熱時間は0.05~5時間の範囲であることが好ましい。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。また、本実施形態の積層板は、上述のプリプレグと、別途作成した内層用の配線板とを組み合わせ、積層成形することにより、多層板とすることも可能である。
 本実施形態の積層板は、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。そして、本実施形態の積層板は、低い熱膨張率、高い難燃性、良好な成形性及びドリル加工性を有し、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。
[規則91に基づく訂正 21.01.2013] 
 ≪プリント配線板≫
 本実施形態のプリント配線板は、絶縁層と、前記絶縁層の表面に形成された導体層とを含むプリント配線板であって、前記絶縁層が上述の樹脂組成物を含む。
 本実施形態のプリント配線板は、例えば、以下の方法により製造することができる。まず、上述の金属箔張り積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成することにより、プリント配線板が製造される。
 本実施形態のプリント配線板において、上述のプリプレグ(基材及びこれに添着された上述の樹脂組成物)を用いた金属箔張り積層板中の樹脂組成物層(上述の樹脂組成物からなる層)が、上述の樹脂組成物を含む絶縁層を構成することになる。
 以下、実施例及び比較例を挙げて、本発明を詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
 〔合成例1 ビフェニルアラルキル型シアン酸エステル化合物の混合物の合成〕
 原料として、ビフェニルアラルキル型フェノール化合物(MEH-7852、OH基当量:183g/eq、明和化成(株)製)を用いた。該ビフェニルアラルキル型フェノール化合物は、H-NMR測定により分析した結果、下記式(10)~(12)で表される成分を表1-Aに示した割合で含有していた。
 該ビフェニルアラルキル型フェノール化合物1.22mol(OH基換算)及びトリエチルアミン1.82molをクロロホルム475mLに溶解させて溶液1を得た。2.43molの塩化シアンの塩化メチレン溶液600gに-10℃で溶液1を1.5時間かけて滴下して溶液2を得た。溶液2を30分撹拌した後、0.49molのトリエチルアミンと塩化メチレン50gとの混合溶液を溶液2に滴下して溶液3を得た。さらに溶液3を30分撹拌して反応を完結させた。溶液3からトリエチルアミンの塩酸塩をろ別してろ液を得た。得られたろ液を0.1N塩酸1000mLにより洗浄した後、水1000mLによる洗浄を4回繰り返した。洗浄後のろ液を、硫酸ナトリウムにより乾燥した後、75℃でエバポレートし、黄色固体の結晶を得た。得られた結晶をジエチルエーテル及びヘキサンにて洗浄した後、減圧乾燥することにより、褐色固形物を得た。得られた褐色固形物は、赤外吸収スペクトルで分析した結果、下記式(13)~(15)で表されるビフェニルアラルキル型のシアン酸エステル化合物の混合物(赤外吸収スペクトルにおいて、2264cm-1付近にシアネート基の吸収を確認)であった。該混合物中の下記式(13)~(15)で表されるシアン酸エステル化合物の組成割合は、H-NMRで測定した結果、表1-Bに示すとおりであった。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(式(10)~(12)中のnは1~50の整数である。)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(式(13)~(15)中のnは1~50の整数である。)
Figure JPOXMLDOC01-appb-T000028
 〔合成例2 4,4’-ビフェニルアラルキル型シアン酸エステル化合物の合成〕
 4,4’-ビフェニルアラルキル型フェノール樹脂(KAYAHARD GPH-65、OH基当量:204g/eq、日本化薬株式会社製)1.1mol(OH基換算)及びトリエチルアミン1.6molを3-メチルテトラヒドロフラン900mLに溶解させて溶液1-2を得た。2.2molの塩化シアンの塩化メチレン溶液2500gに-10℃で溶液1-2を1.5時間かけて滴下して溶液2-2を得た。溶液2-2を30分撹拌した後、0.4molのトリエチルアミンと塩化メチレン100gとの混合溶液を溶液2-2に滴下して溶液3-2を得た。さらに溶液3-2を30分撹拌して反応を完結させた。溶液3-2からトリエチルアミンの塩酸塩をろ別してろ液を得た。得られたろ液を0.1N塩酸 1000mLにより洗浄した後、水1000mLによる洗浄を4回繰り返した。洗浄後のろ液を、硫酸ナトリウムにより乾燥した後、75℃でエバポレートし、黄色固体の結晶を得た。得られた結晶をジエチルエーテル及びヘキサンにて洗浄した後、減圧乾燥することにより、褐色固形物を得た。得られた褐色固形物は、赤外吸収スペクトルにより分析した結果、下記式(16)で表される4,4’-ビフェニルアラルキル型のシアン酸エステル化合物(赤外吸収スペクトルにおいて、2264cm-1付近にシアネート基の吸収を確認)であった。
Figure JPOXMLDOC01-appb-C000029
(式(16)中のnは1~50の整数である。)
 [実施例1]
 合成例1で合成したビフェニルアラルキル型シアン酸エステル化合物の混合物50質量部、ビフェニルアラルキル型エポキシ樹脂(NC3000-H、日本化薬製)50質量部、オクチル酸亜鉛(日本化学産業(株)製)0.04質量部、及び合成シリカ100質量部(SC-2050MR、アドマテックス製、平均粒子径:0.8μm)を混合して樹脂組成物を得た。この樹脂組成物にメチルエチルケトンを加えてワニスを得た。このワニスをさらにメチルエチルケトンで希釈し、Eガラスクロス(厚さ0.1mm)に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量48質量%のプリプレグを得た。次に、このプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力30kgf/cm、温度220℃で120分間プレスを行い、厚さ0.4mmの銅張り積層板を得た。
 [比較例1]
 合成例2で得た4,4’-ビフェニルアラルキル型シアン酸エステル化合物50質量部、ビフェニルアラルキル型エポキシ樹脂(NC3000-H、日本化薬製)50質量部、オクチル酸亜鉛(日本化学産業(株)製)0.04質量部をメチルエチルケトンで溶解混合し、さらに合成シリカ(SC-2050MR、アドマテックス製、平均粒子径:0.8μm)100質量部を混合してワニスを得た。しかし、得られたワニスにおいて、合成例2で得た4,4’-ビフェニルアラルキル型シアン酸エステル化合物はメチルエチルケトンには不溶であった。そのため、得られたワニスを、該シアン酸エステル化合物の混合物を溶剤(メチルエチルケトン)に分散させた状態で、Eガラスクロス(厚さ0.1mm)に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力30kgf/cm、温度220℃で120分間プレスを行い、厚さ0.4mmの銅張り積層板を得た。
 [比較例2]
 合成例1で合成したビフェニルアラルキル型シアン酸エステル化合物の混合物の代わりにビスフェノールA型シアン酸エステル化合物(CA210、三菱ガス化学製)を50質量部用いた以外は実施例1と同様にして銅張り積層板を得た。
 [比較例3]
 合成例1で合成したビフェニルアラルキル型シアン酸エステル化合物の混合物の代わりにフェノールノボラック型シアン酸エステル化合物(PT-30、ロンザジャパン製)を50質量部用いた以外は実施例1と同様にして銅張り積層板を得た。
 [銅張り積層板の物性評価]
 実施例1及び比較例1~3により得られた銅張り積層板の物性を以下の方法により測定した。当該測定結果を表2に示す。
 〔銅箔ピール強度〕
 実施例1及び比較例1~3により得られた銅張り積層板について、JIS C6481に準拠して、銅箔ピール強度(単位:kgf/cm)を測定した。銅箔ピール強度が高いほど、得られた銅張り積層板は密着性に優れると評価した。
 〔吸湿耐熱性〕
 実施例1及び比較例1~3により得られた銅張り積層板を用いて、50mm×50mmのサンプルを作成した。該サンプルの片面の半分以外の全銅箔をエッチング除去して試験片を得た。該試験片を、プレッシャークッカー試験機(PC-3型)により、121℃、2気圧の条件で3時間処理後、260℃のハンダ中に30秒浸漬した。浸漬後の試験片の外観変化を目視で観察し、下記基準により吸湿耐熱性を評価した。また、プレッシャークッカー試験機による処理時間を4時間及び5時間に変更した以外は上記と同様にして吸湿耐熱性を評価した。
 (評価基準)
 ○(良):浸漬後の試験片においてフクレ発生が無かった。
 ×(不良):浸漬後の試験片においてフクレ発生が有った。
 〔ボイドの有無〕
 実施例1及び比較例1~3により得られた銅張り積層板をエッチングし、銅箔を除去した後、ボイドの有無を確認した。
 〔板外観〕
 実施例1及び比較例1~3により得られた銅張り積層板をエッチングし、銅箔を除去した後、板の外観(ムラの有無)を目視で確認した。
 〔吸水率〕
 実施例1及び比較例1~3により得られた銅張り積層板をエッチングし、銅箔を除去した。該銅箔を除去した後の積層板について、JIS C6481に準拠して、プレッシャークッカー試験機(PC-3型)により、121℃、2気圧で5時間処理後の吸水率を測定した。
Figure JPOXMLDOC01-appb-T000030
 なお、本出願は、2011年11月2日に日本国特許庁に出願された日本特許出願(特願2011-241172号)に基づく優先権を主張しており、その内容はここに参照として取り込まれる。
 本発明の樹脂組成物は、溶剤溶解性が高く取り扱い性に優れ、また、密着性、低吸水性、吸湿耐熱性、絶縁信頼性及び外観に優れる金属箔張り積層板を実現可能であるため、高密度化対応のプリント配線板材料として好適であり、産業上の利用可能性を有する。

Claims (11)

  1.  下記一般式(1)で表される構造単位を有するシアン酸エステル化合物(A1)、下記一般式(2)で表される構造単位を有するシアン酸エステル化合物(A2)、及び下記一般式(3)で表される構造単位を有するシアン酸エステル化合物(A3)からなる群より選択される少なくとも2種のシアン酸エステル化合物の混合物(A)と、
     エポキシ樹脂(B)と、
     無機充填材(C)と、を含む樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (一般式(1)~(3)中のnはそれぞれ独立して1以上の整数であり、R及びRはそれぞれ独立して、水素原子、アルキル基又はアリール基である。)
  2.  前記シアン酸エステル化合物の混合物(A)の合計100mol%に対して、前記シアン酸エステル化合物(A1)の混合比率が30~70mol%であり、前記シアン酸エステル化合物(A2)の混合比率が15~45mol%であり、前記シアン酸エステル化合物(A3)の混合比率が5~35mol%である請求項1に記載の樹脂組成物。
  3.  前記一般式(1)~(3)中のnがそれぞれ独立して1~50の範囲の整数である請求項1又は2に記載の樹脂組成物。
  4.  前記エポキシ樹脂(B)が、アラルキル型エポキシ樹脂である請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記アラルキル型エポキシ樹脂が、下記一般式(4)で表されるフェノールフェニルアラルキル型エポキシ樹脂、下記一般式(5)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、及び下記一般式(6)で表されるナフトールアラルキル型エポキシ樹脂からなる群より選択される少なくとも1種である請求項4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (一般式(4)~(6)中のmはそれぞれ独立して1~50の整数であり、R~R14はそれぞれ独立して、水素原子、メチル基、エチル基、又はアリール基である。)
  6.  前記無機充填材(C)がシリカである請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記シアン酸エステル化合物の混合物(A)の含有量が、前記シアン酸エステル化合物の混合物(A)と前記エポキシ樹脂(B)との合計100質量部に対して10~90質量部である請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記無機充填材(C)の含有量が、前記シアン酸エステル化合物の混合物(A)と前記エポキシ樹脂(B)の合計量100質量部に対して10~1000質量部である請求項1~7のいずれか一項に記載の樹脂組成物。
  9.  請求項1~8のいずれか一項に記載の樹脂組成物を基材に含浸又は塗布してなるプリプレグ。
  10.  請求項9に記載のプリプレグを用いた金属箔張り積層板。
  11. [規則91に基づく訂正 21.01.2013] 
     絶縁層と、前記絶縁層の表面に形成された導体層とを含むプリント配線板であって、前記絶縁層が請求項1~8のいずれか一項に記載の樹脂組成物を含むプリント配線板。
PCT/JP2012/078062 2011-11-02 2012-10-30 樹脂組成物、プリプレグ及び積層板 WO2013065694A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/355,674 US9527979B2 (en) 2011-11-02 2012-10-30 Resin composition, prepreg, and laminate
JP2013541789A JP5988176B2 (ja) 2011-11-02 2012-10-30 樹脂組成物、プリプレグ及び積層板
KR1020147011791A KR101958046B1 (ko) 2011-11-02 2012-10-30 수지 조성물, 프리프레그 및 적층판
CN201280053929.XA CN103917571B (zh) 2011-11-02 2012-10-30 树脂组合物、预浸料和层压板
EP12846152.2A EP2774938B1 (en) 2011-11-02 2012-10-30 Resin composition, prepreg, and laminated sheet
SG11201401958TA SG11201401958TA (en) 2011-11-02 2012-10-30 Resin composition, prepreg, and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011241172 2011-11-02
JP2011-241172 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013065694A1 true WO2013065694A1 (ja) 2013-05-10

Family

ID=48192040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078062 WO2013065694A1 (ja) 2011-11-02 2012-10-30 樹脂組成物、プリプレグ及び積層板

Country Status (8)

Country Link
US (1) US9527979B2 (ja)
EP (1) EP2774938B1 (ja)
JP (1) JP5988176B2 (ja)
KR (1) KR101958046B1 (ja)
CN (1) CN103917571B (ja)
SG (1) SG11201401958TA (ja)
TW (1) TWI565752B (ja)
WO (1) WO2013065694A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072224A1 (ja) * 2014-11-04 2016-05-12 太陽ホールディングス株式会社 配線板材料およびそれを用いた配線板
WO2016171085A1 (ja) * 2015-04-21 2016-10-27 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2016175106A1 (ja) * 2015-04-28 2016-11-03 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
WO2017170375A1 (ja) 2016-03-31 2017-10-05 三菱瓦斯化学株式会社 シアン酸エステル化合物、その製造方法、樹脂組成物、硬化物、プリプレグ、封止用材料、繊維強化複合材料、接着剤、金属箔張積層板、樹脂シート及びプリント配線板
KR20170129119A (ko) 2015-03-18 2017-11-24 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판
WO2018047724A1 (ja) 2016-09-12 2018-03-15 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2018139368A1 (ja) 2017-01-26 2018-08-02 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR20190077580A (ko) 2017-08-31 2019-07-03 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
KR20210016389A (ko) 2018-06-01 2021-02-15 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609382B (zh) * 2016-07-26 2017-12-21 台灣太陽油墨股份有限公司 介電材料組成物及含其之絕緣膜及電路板

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553244A (en) 1963-02-16 1971-01-05 Bayer Ag Esters of cyanic acid
JPH0753497A (ja) 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd シアネート化合物の製造方法
JPH07106767A (ja) 1993-10-01 1995-04-21 Hitachi Ltd 多層配線基板およびその製造方法
JPH11124433A (ja) 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc フェノールノボラック型シアン酸エステルプレポリマー
JP2991054B2 (ja) 1994-09-20 1999-12-20 住友化学工業株式会社 シアネート化合物の製造方法
JP2000501138A (ja) 1995-11-27 2000-02-02 アライドシグナル・インコーポレーテッド 独特の組成を有するシアネートエステル樹脂の改良された製造方法
JP2000191776A (ja) 1998-12-24 2000-07-11 Mitsubishi Gas Chem Co Inc シアン酸エステル・コ−プレポリマー
JP2001504835A (ja) 1996-11-29 2001-04-10 ロンザ アーゲー アリールシアネートの製造方法
JP2005264154A (ja) * 2004-02-18 2005-09-29 Mitsubishi Gas Chem Co Inc 新規なシアネートエステル化合物、難燃性樹脂組成物、およびその硬化物
WO2007049422A1 (ja) * 2005-10-25 2007-05-03 Mitsubishi Gas Chemical Company, Inc. シアン酸エステル重合体
JP2007277102A (ja) 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc 高純度シアン酸エステルの製造方法
JP2010174242A (ja) 2009-12-28 2010-08-12 Sumitomo Bakelite Co Ltd ビフェニルアラルキル型シアン酸エステル樹脂、並びにビフェニルアラルキル型シアン酸エステル樹脂を含む樹脂組成物、及び、当該樹脂組成物を用いてなるプリプレグ、積層板、樹脂シート、多層プリント配線板、並びに半導体装置
JP2011178992A (ja) * 2010-02-05 2011-09-15 Sumitomo Bakelite Co Ltd プリプレグ、積層板、プリント配線板、および半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050182203A1 (en) 2004-02-18 2005-08-18 Yuuichi Sugano Novel cyanate ester compound, flame-retardant resin composition, and cured product thereof
JP5024205B2 (ja) * 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 プリプレグ及び積層板

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553244A (en) 1963-02-16 1971-01-05 Bayer Ag Esters of cyanic acid
JPH0753497A (ja) 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd シアネート化合物の製造方法
JPH07106767A (ja) 1993-10-01 1995-04-21 Hitachi Ltd 多層配線基板およびその製造方法
JP2991054B2 (ja) 1994-09-20 1999-12-20 住友化学工業株式会社 シアネート化合物の製造方法
JP2000501138A (ja) 1995-11-27 2000-02-02 アライドシグナル・インコーポレーテッド 独特の組成を有するシアネートエステル樹脂の改良された製造方法
JP2001504835A (ja) 1996-11-29 2001-04-10 ロンザ アーゲー アリールシアネートの製造方法
JPH11124433A (ja) 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc フェノールノボラック型シアン酸エステルプレポリマー
JP2000191776A (ja) 1998-12-24 2000-07-11 Mitsubishi Gas Chem Co Inc シアン酸エステル・コ−プレポリマー
JP2005264154A (ja) * 2004-02-18 2005-09-29 Mitsubishi Gas Chem Co Inc 新規なシアネートエステル化合物、難燃性樹脂組成物、およびその硬化物
WO2007049422A1 (ja) * 2005-10-25 2007-05-03 Mitsubishi Gas Chemical Company, Inc. シアン酸エステル重合体
JP2007277102A (ja) 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc 高純度シアン酸エステルの製造方法
JP2010174242A (ja) 2009-12-28 2010-08-12 Sumitomo Bakelite Co Ltd ビフェニルアラルキル型シアン酸エステル樹脂、並びにビフェニルアラルキル型シアン酸エステル樹脂を含む樹脂組成物、及び、当該樹脂組成物を用いてなるプリプレグ、積層板、樹脂シート、多層プリント配線板、並びに半導体装置
JP2011178992A (ja) * 2010-02-05 2011-09-15 Sumitomo Bakelite Co Ltd プリプレグ、積層板、プリント配線板、および半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2774938A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072224A1 (ja) * 2014-11-04 2016-05-12 太陽ホールディングス株式会社 配線板材料およびそれを用いた配線板
KR20170129119A (ko) 2015-03-18 2017-11-24 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판
WO2016171085A1 (ja) * 2015-04-21 2016-10-27 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR20170139032A (ko) 2015-04-21 2017-12-18 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
JPWO2016171085A1 (ja) * 2015-04-21 2018-02-15 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR102513654B1 (ko) 2015-04-21 2023-03-23 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
WO2016175106A1 (ja) * 2015-04-28 2016-11-03 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
KR20170141701A (ko) 2015-04-28 2017-12-26 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판
JPWO2016175106A1 (ja) * 2015-04-28 2018-02-22 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
KR102481055B1 (ko) 2015-04-28 2022-12-23 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판
KR20180132648A (ko) 2016-03-31 2018-12-12 미츠비시 가스 가가쿠 가부시키가이샤 시안산에스테르 화합물, 그 제조 방법, 수지 조성물, 경화물, 프리프레그, 봉지용 재료, 섬유 강화 복합 재료, 접착제, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
WO2017170375A1 (ja) 2016-03-31 2017-10-05 三菱瓦斯化学株式会社 シアン酸エステル化合物、その製造方法、樹脂組成物、硬化物、プリプレグ、封止用材料、繊維強化複合材料、接着剤、金属箔張積層板、樹脂シート及びプリント配線板
JP6350891B1 (ja) * 2016-09-12 2018-07-04 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR20180102692A (ko) 2016-09-12 2018-09-17 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
US10703855B2 (en) 2016-09-12 2020-07-07 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed circuit board
WO2018047724A1 (ja) 2016-09-12 2018-03-15 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR20190039334A (ko) 2017-01-26 2019-04-10 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
US11166370B2 (en) 2017-01-26 2021-11-02 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
WO2018139368A1 (ja) 2017-01-26 2018-08-02 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR20190077580A (ko) 2017-08-31 2019-07-03 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
KR20210016389A (ko) 2018-06-01 2021-02-15 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판

Also Published As

Publication number Publication date
TWI565752B (zh) 2017-01-11
CN103917571B (zh) 2016-01-20
SG11201401958TA (en) 2014-09-26
EP2774938A1 (en) 2014-09-10
JP5988176B2 (ja) 2016-09-07
US20140377565A1 (en) 2014-12-25
KR101958046B1 (ko) 2019-03-13
JPWO2013065694A1 (ja) 2015-04-02
EP2774938A4 (en) 2015-07-15
US9527979B2 (en) 2016-12-27
CN103917571A (zh) 2014-07-09
KR20140097146A (ko) 2014-08-06
TW201326297A (zh) 2013-07-01
EP2774938B1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5988176B2 (ja) 樹脂組成物、プリプレグ及び積層板
KR101867118B1 (ko) 수지 조성물 그리고 이것을 사용한 프리프레그 및 적층판
CN107254144B (zh) 树脂组合物和使用其的预浸料以及层压板
JP6314830B2 (ja) 樹脂組成物、プリプレグ、積層板、及びプリント配線板
JP6414799B2 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板
JP6066118B2 (ja) 樹脂組成物、プリプレグ及び積層板
KR101945076B1 (ko) 수지 조성물, 이것을 사용한 프리프레그 및 적층판
US11161979B2 (en) Resin composition, prepreg, metallic foil-clad laminate, and printed wiring board
EP2412759B1 (en) Method of storing resin solution and processes for producing prepreg and laminate
WO2013187303A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板及びプリント配線板
WO2012165240A1 (ja) 樹脂組成物、プリプレグ、および積層板
JP2007045984A (ja) 難燃性樹脂組成物、並びにこれを用いたプリプレグ及び積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147011791

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012846152

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013541789

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14355674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE