WO2013065676A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2013065676A1
WO2013065676A1 PCT/JP2012/078019 JP2012078019W WO2013065676A1 WO 2013065676 A1 WO2013065676 A1 WO 2013065676A1 JP 2012078019 W JP2012078019 W JP 2012078019W WO 2013065676 A1 WO2013065676 A1 WO 2013065676A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
bearing
support wall
radial
axial
Prior art date
Application number
PCT/JP2012/078019
Other languages
English (en)
French (fr)
Inventor
岩瀬幹雄
須山大樹
神内直也
沖島達矢
出塩幸彦
井上雄二
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112012003398.1T priority Critical patent/DE112012003398T5/de
Priority to CN201280044140.8A priority patent/CN103797277B/zh
Priority to US14/241,243 priority patent/US9175759B2/en
Publication of WO2013065676A1 publication Critical patent/WO2013065676A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02034Gearboxes combined or connected with electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • F16H2057/0216Intermediate shaft supports, e.g. by using a partition wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev

Definitions

  • the present invention includes a rotating electrical machine, a fluid coupling disposed coaxially with the rotating electrical machine, and a case that houses the rotating electrical machine and the fluid coupling, and the fluid coupling is drivingly connected to a rotor member of the rotating electrical machine.
  • the present invention relates to a vehicle drive device that includes an input member and a joint output member that is drivingly connected to a wheel.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-137406
  • the member names in Patent Document 1 are quoted in [].
  • the rotor member [rotor 12 and drum member 13] and the joint input member are intermediate members [plate member 10 and second spline shaft 11]. ] Is connected to be driven so as to rotate integrally therewith to constitute a power transmission member.
  • the rotating electrical machine according to the present invention, a fluid coupling disposed coaxially with the rotating electrical machine on a first axial direction side that is one side of the rotating electrical machine with respect to the rotating electrical machine, and the rotating electrical machine And a case for housing the fluid coupling, wherein the fluid coupling includes a joint input member that is drivingly connected to a rotor member of the rotating electrical machine, and a joint output member that is drivingly connected to a wheel.
  • a characteristic configuration of the drive device is that the case includes a support wall portion extending in a radial direction of the rotating electrical machine between the rotating electrical machine and the fluid coupling in the axial direction, the rotor member, the joint input member, Are coupled so as to rotate in conjunction with each other to form a power transmission member, and the power transmission member is rotatable with respect to the support wall portion, and is in a direction opposite to the first axis direction with respect to the second axis direction.
  • the first bearing to support from the front Certain power transmission member in that and a second bearing for supporting the said shaft first direction in a rotatable state relative to the support wall portion.
  • driving connection refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the two
  • the rotating element is used as a concept including a state in which the driving force is connected to be transmitted through one or more transmission members.
  • a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
  • an engagement device that selectively transmits rotation and driving force for example, a friction engagement device or a meshing engagement device may be included.
  • the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.
  • “fluid coupling” is used as a concept including both a torque converter having a torque amplification function and a normal fluid coupling having no torque amplification function.
  • “extending” in a certain direction is not limited to a shape in which the extending direction of the member is parallel to the reference direction, with the direction as the reference direction. Even if the extending direction of the member is a direction intersecting the reference direction, it is used as a concept including a shape whose intersection angle is within a predetermined range.
  • the said load when the load to the shaft 2nd direction side acts with respect to a power transmission member, the said load can be received with a 1st bearing, and a shaft 1st is with respect to a power transmission member.
  • the load when a load on the direction side acts, the load can be received by the second bearing. That is, even when an axial load is applied to the power transmission member, the power transmission member can be appropriately supported regardless of the direction of the load.
  • a radial support bearing that supports the power transmission member in the radial direction is provided separately from the first bearing and the second bearing, it is possible to suppress an axial load from acting on the radial support bearing.
  • both a 1st bearing and a 2nd bearing support a power transmission member with respect to the support wall part which is the same wall part.
  • the power transmission member includes an axially extending portion extending in the axial direction through the radially inner side of the support wall portion, and the diameter on the first axial direction side with respect to the support wall portion.
  • a first radially extending portion extending outward in the direction, and a second radially extending portion extending outward in the radial direction on the second axial direction side with respect to the support wall portion, and the first The one radial extension portion and the second radial extension portion are connected in a state where relative movement in the axial direction is restricted via the axial extension portion, and the first bearing is It is preferable that the first radially extending portion is supported from the second axial direction side and the second bearing is configured to support the second radially extending portion from the first axial direction side.
  • the portion of the power transmission member that moves integrally in the axial direction is disposed so as to surround the radially inner portion of the support wall portion from both sides in the axial direction and from the radially inner side.
  • the axially extending portion includes: A first part formed integrally with the first radial extension part and a second part formed integrally with the second radial extension part are spline fitted by spline teeth extending in the axial direction. It is preferable that they are connected to each other.
  • the portion disposed on the first axial direction side from the support wall portion in the power transmission member and the portion disposed on the second axial direction side from the support wall portion in the power transmission member are independent from each other. Since it is a separate member, the process for assembling the power transmission member in the case can be simplified.
  • the axially extending portion includes a movement restricting mechanism that restricts the relative movement in the axial direction between the first portion and the second portion.
  • the rotor member is used as the support wall portion.
  • a third bearing that is supported in the radial direction so as to be rotatable with respect to the rotor; and the rotor member and the second radial extension portion are coupled so as to be relatively movable in the axial direction. This is preferable.
  • the axial load acting from the joint member side can be suppressed from acting on the rotor member, the axial position of the rotor member can be easily maintained constant. Therefore, the axial length of the rotor body included in the rotor member can be reduced compared to the case where the rotor member and the second radially extending portion are drivingly connected in a state in which the rotor member is not relatively movable in the axial direction. As a result, the rotating electrical machine can be reduced in size. In addition, since it is not necessary to receive a large axial load at the third bearing, it is possible to reduce the size of the third bearing as compared with a case where the third bearing needs to receive a large axial load. .
  • first bearing is a thrust bearing in which the support wall portion and the first radial extension portion are disposed in a portion facing the axial direction
  • second bearing is the support wall portion. It is preferable that the second radial extending portion is a thrust bearing disposed at a portion facing the axial direction.
  • the space in which the bearings of the first bearing and the second bearing are arranged can be a space surrounded from both sides in the axial direction by the side wall portions extending in the radial direction. That is, a thrust bearing having a general configuration can be used as the first bearing and the second bearing, and each bearing can be arranged so as to support the support target portion directly with respect to the support wall portion. it can. Therefore, the power transmission member can be appropriately supported in the axial direction with a simple configuration.
  • the support wall portion is a first support wall portion, and the case includes a second support wall portion extending in the radial direction on the second axial direction side from the rotating electrical machine, and the power transmission member is disposed on the first side.
  • a second bearing supported in the radial direction so as to be rotatable with respect to the two support wall portions; and the axial bearing provided between the first radial extension portion and the first support wall portion. It is preferable that the sum of the gaps is set to be smaller than the sum of the gaps in the axial direction provided between the second radially extending portion and the second support wall portion.
  • the axially extending portion is configured by connecting the first portion and the second portion to each other by spline fitting, and the axial direction of the first portion and the second portion.
  • the first portion is a cylindrical portion that protrudes from the first radially extending portion toward the second axial direction side, and the first portion is disposed on the outer peripheral surface.
  • a first cylindrical projecting portion having spline teeth is formed, and the second portion is a cylindrical portion projecting from the second radially extending portion toward the first axial direction side, and is formed on an inner peripheral surface.
  • a second cylindrical projection formed with second spline teeth that engage with the first spline teeth, and an end surface of the second cylindrical projection on the first axial direction side extends in the first radial direction;
  • the first shaft of the fastening member that is in contact with the portion and fastened and fixed to the first portion.
  • By surface facing the other side comes into contact with the surface facing the axial second direction side of the second cylindrical protrusion, it is preferable that a structure in which the movement restricting mechanism is configured.
  • the first portion and the first portion in a state where the axial accuracy between the first cylindrical protruding portion and the second cylindrical protruding portion is appropriately secured. It becomes possible to firmly connect the second part without looseness.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • the “axial direction L”, “radial direction R”, and “circumferential direction” are the rotational axis of the rotating electrical machine MG (the axial center shown in FIG. 2).
  • X is defined as a standard.
  • “Axis first direction L1” represents a direction (right side in FIG. 2) from the rotary electric machine MG toward the torque converter TC along the axis direction L
  • “Axis second direction L2” represents the axis first direction. This represents the direction opposite to L1 (left side in FIG. 2).
  • the “inner diameter direction R1” represents a direction toward the inner side of the radial direction R
  • the “outer diameter direction R2” represents a direction toward the outer side of the radial direction R.
  • the direction about each member represents the direction in the state in which the said member was assembled
  • FIG. Further, terms relating to the direction, position, etc. of each member are used as a concept including a state having a difference due to an allowable error in manufacturing.
  • the vehicle drive device 1 includes a rotating electrical machine MG, a torque converter TC, and a case 3 (see FIG. 2) that houses the rotating electrical machine MG and the torque converter TC.
  • the torque converter TC is drivingly connected to the rotating electrical machine MG, and specifically, provided in a power transmission path between the rotating electrical machine MG and the output shaft O.
  • the output shaft O is drivingly connected to the wheels W via the output differential gear device DF, and the rotation and torque transmitted to the output shaft O are transmitted to the left and right wheels via the output differential gear device DF. It is distributed to W and transmitted.
  • the vehicle drive device 1 can drive the vehicle by transmitting the torque of the rotating electrical machine MG to the wheels W.
  • the torque converter TC corresponds to a “fluid coupling” according to the present invention.
  • the vehicle drive device 1 is configured such that the vehicle can travel by transmitting the torque of the internal combustion engine E to the wheels W. That is, the vehicle drive device 1 includes an input shaft I that is drivingly connected to the internal combustion engine E. As shown in FIG. 1, in the power transmission path that connects the internal combustion engine E and the wheels W, as shown in FIG. In order from the side, an input shaft I, a rotating electrical machine MG, a torque converter TC, and an output shaft O are provided.
  • the vehicle drive device 1 is a hybrid vehicle drive device (hybrid drive device) that uses one or both of the internal combustion engine E and the rotating electrical machine MG as a drive power source of the vehicle, specifically, In other words, it is configured as a so-called one-motor parallel type hybrid drive device.
  • the internal combustion engine E is a prime mover that is driven by the combustion of fuel inside the engine to extract power, and for example, a gasoline engine or a diesel engine can be used.
  • the input shaft I is drivingly connected to the output shaft (crankshaft or the like) of the internal combustion engine E via a damper 16 (see FIG. 2, omitted in FIG. 1).
  • the input shaft I may be driven and connected to the output shaft of the internal combustion engine E without using the damper 16.
  • a first clutch C ⁇ b> 1 that functions as an internal combustion engine disconnecting clutch that disconnects the internal combustion engine E from the wheel W between the input shaft I and the rotating electrical machine MG in the power transmission path.
  • a transmission mechanism TM is disposed between the torque converter TC and the output shaft O in the power transmission path.
  • the speed change mechanism TM is composed of a mechanism (for example, an automatic stepped speed change mechanism) whose speed ratio can be changed stepwise or steplessly, and changes the rotational speed of the intermediate shaft M (speed change input shaft) at a predetermined speed ratio. Then, it is transmitted to the output shaft O (transmission output shaft).
  • the input shaft I, the first clutch C1, the rotating electrical machine MG, the torque converter TC, the speed change mechanism TM, and the output shaft O are all disposed on the axis X (see FIG. 2).
  • the vehicle drive device 1 according to the embodiment has a uniaxial configuration suitable for mounting on an FR (Front-Engine-Rear-Drive) type vehicle.
  • FIGS. 2 and 3 are cross-sectional views of a part of the vehicle drive device 1 according to the present embodiment cut along a plane including the axis X
  • FIG. 3 is a partially enlarged view of FIG.
  • the case 3 includes a first support wall portion 31, a second support wall portion 32, a third support wall portion 33, and a peripheral wall portion 34.
  • the peripheral wall 34 is formed in a substantially cylindrical shape that covers the outer periphery of the rotating electrical machine MG, the first clutch C1, the torque converter TC, and the like.
  • the second support wall portion 32, the first support wall portion 31, and the third support wall portion 33 are formed so as to divide the inner space of the case formed on the radially inner side R1 side of the peripheral wall portion 34 in the axial direction L. These are arranged in the order described from the second axial direction L2 side.
  • the first support wall portion 31 corresponds to the “support wall portion” in the present invention.
  • the rotating electrical machine MG and the first clutch C ⁇ b> 1 are accommodated in the space between the first support wall portion 31 and the second support wall portion 32 in the case 3.
  • the space between the first support wall portion 31 and the second support wall portion 32 has a length in the axial direction L that is greater in the radially inner direction R1 side than in the radially outer direction R2 side. It is formed in a short shape.
  • the torque converter TC is accommodated in the space between the first support wall portion 31 and the third support wall portion 33 in the case 3.
  • the damper 16 is accommodated in the space in the axial second direction L2 side from the second support wall portion 32 in the case 3.
  • the first support wall 31 is formed to extend in the radial direction R between the rotating electrical machine MG and the torque converter TC in the axial direction L.
  • the first support wall portion 31 is a disk-shaped wall portion that extends in the circumferential direction in addition to the radial direction R, and penetrates in the axial direction L in the central portion of the radial direction R.
  • a hole (hereinafter referred to as “first through hole”) is formed.
  • the first support wall portion 31 has a shape that is offset in the axial direction L so that the portion on the radial inner side R1 side as a whole is positioned closer to the second axial direction L2 side than the portion on the radial outer side R2 side. ing.
  • the first support wall 31 includes a first cylindrical protrusion 40 that protrudes toward the second axial direction L2.
  • the first cylindrical protruding portion 40 is disposed coaxially with the axis X at the central portion of the first support wall portion 31 in the radial direction R.
  • the peripheral surface 40b (see FIG. 3) forms the outer edge portion of the first through hole. That is, the 1st cylindrical protrusion part 40 is made into the thick part (boss
  • the first cylindrical projecting portion 40 is disposed on the radial inner side R1 side from the rotor member 21 described later and at a position having a portion overlapping the rotor member 21 when viewed in the radial direction R.
  • “having overlapping portions when viewed in a predetermined direction” means that the viewpoint is moved in each direction perpendicular to the line-of-sight direction with the predetermined direction as the line-of-sight direction. In this case, it means that a viewpoint where two members appear to overlap each other exists in at least a part of the region.
  • the tip end portion 40a on the second axial direction L2 side of the first cylindrical protrusion 40 overlaps with the central region in the axial direction L of the rotating electrical machine MG in the radial direction R.
  • the proximal end portion of the first cylindrical protrusion 40 on the axial first direction L1 side is disposed at a position in the axial direction L, and the end portion on the axial first direction L1 side of the rotor member 21 is closer to the axial first direction L1 side.
  • a part of the power transmission member T which will be described later, is disposed on the inner radial direction R1 side of the first cylindrical protrusion 40, that is, inside the first through hole.
  • a stepped portion 40d having a surface (in this example, a cylindrical surface) facing the radially inward direction R1 is formed on the side surface portion of the first cylindrical protrusion 40 on the first axial direction L1 side.
  • the first support wall 31 includes a second cylindrical protrusion 41 having a larger diameter than the first cylindrical protrusion 40.
  • the second cylindrical projecting portion 41 is formed so as to project toward the second axial direction L2 side as well as the first cylindrical projecting portion 40 and is disposed coaxially with the axis X. As shown in FIG. 3, the protruding amount of the second cylindrical protruding portion 41 is smaller than the protruding amount of the first cylindrical protruding portion 40, and the distal end portion 41a on the second axial direction L2 side of the second cylindrical protruding portion 41 is The first cylindrical protrusion 40 is positioned on the first axial direction L1 side from the tip 40a.
  • the second cylindrical protruding portion 41 is formed to have a smaller thickness in the radial direction R than the first cylindrical protruding portion 40.
  • an inner peripheral step portion 41d having a surface (annular surface in this example) facing the second axial direction L2 side is formed.
  • the second support wall portion 32 extends in the radial direction R on the second axial direction L2 side (in this example, between the rotary electric machine MG and the damper 16 in the axial direction L) from the rotary electric machine MG. It is formed as follows.
  • the second support wall portion 32 is a disc-shaped wall portion extending in the circumferential direction in addition to the radial direction R, and a through-hole (hereinafter referred to as an axial direction L) is formed in the central portion in the radial direction R. , Referred to as “second through hole”).
  • the input shaft I is inserted through the second through hole.
  • the second support wall portion 32 has a shape that is offset in the axial direction L so that the portion on the inner radial direction R1 side is positioned on the first axial direction L1 side relative to the portion on the outer radial direction R2 side as a whole. ing. As shown in FIG. 3, the inner peripheral surface 32b of the portion on the radial inner direction R1 side of the second support wall portion 32 that forms the outer edge portion of the second through hole is a surface facing the first axial direction L1 side ( In this example, an inner circumferential step portion 32d having an annular surface is formed.
  • the portion on the axial first direction L1 side from the inner circumferential step 32d is a large diameter portion, and the portion on the second axial direction L2 side from the inner circumferential step 32d is a small diameter portion. It is said that.
  • the third support wall 33 is in the first axial direction L1 side from the torque converter TC (in this example, between the torque converter TC and the speed change mechanism TM (see FIG. 1) in the axial direction L). Are formed so as to extend in the radial direction R.
  • the third support wall portion 33 is a flat disk-shaped wall portion that extends in the circumferential direction in addition to the radial direction R, and has a through-hole in the axial direction L at the center in the radial direction R. (Hereinafter referred to as “third through-hole”).
  • the intermediate shaft M is inserted through the third through hole.
  • the oil pump 9 is provided on the third support wall 33, and a pump drive shaft 67 for driving the oil pump 9 is drivingly connected so as to rotate integrally with a pump impeller 61 (to be described later) of the torque converter TC. .
  • a pump impeller 61 to be described later
  • the pump drive shaft 67 is supported in the radial direction R so as to be rotatable with respect to the third support wall 33 via a ninth bearing 79 (in this example, a needle bearing) and a pump case.
  • the rotating electrical machine MG is disposed between the first support wall portion 31 and the second support wall portion 32 in the axial direction L, as shown in FIG.
  • both sides in the axial direction L are defined by the first support wall portion 31 and the second support wall portion 32, and the oil pump 9 is provided in a space defined by the peripheral wall portion 34 on the radially outward direction R 2 side.
  • the discharged oil is configured to be supplied, and the rotating electrical machine MG is cooled by the oil.
  • the rotating electrical machine MG includes a stator St fixed to the case 3 and a rotor member 21 as shown in FIG.
  • the stator St includes coil end portions Ce on both sides in the axial direction L.
  • the rotor member 21 includes a rotor Ro and a rotor support member 22 that extends from the rotor Ro toward the radially inward direction R1 and supports the rotor Ro.
  • the rotor Ro is disposed on the inner radial direction R1 side of the stator St, and is supported rotatably with respect to the case 3 via a rotor support member 22 that rotates integrally with the rotor Ro.
  • the rotor support member 22 is a member that supports the rotor Ro from the radial inner direction R1 side, and includes a rotor holding portion 25 that holds the rotor Ro and a radial extension portion 26 in the present embodiment.
  • the rotor holding part 25 is arranged coaxially with the axis X, and is formed in a cylindrical shape having an outer peripheral part in contact with the inner peripheral surface of the rotor Ro and flange parts in contact with both side surfaces in the axial direction L of the rotor Ro.
  • the radially extending portion 26 is formed integrally with the rotor holding portion 25, and extends from the portion on the axial first direction L1 side toward the radially inward direction R1 side with respect to the central portion in the axial direction L of the rotor holding portion 25. Is formed.
  • the radially extending portion 26 is an annular plate-like portion that extends in the circumferential direction in addition to the radial direction R. In the present embodiment, the radially extending portion 26 extends in parallel to the radial direction R, and the end portion on the radial inner direction R1 side is on the radially outer side R2 side with respect to the outer peripheral surface of the first cylindrical protruding portion 40. It is formed so that it may be located in.
  • a first sleeve member 94 is disposed in the gap in the radial direction R between the outer peripheral surface of the first cylindrical protrusion 40.
  • the first sleeve member 94 is provided to restrict oil from flowing in the axial direction L through the gap.
  • the radially extending portion 26 includes a first axial projecting portion 23 that is a cylindrical projecting portion projecting toward the first axial direction L1 side.
  • the first axial protrusion 23 is disposed coaxially with the axis X, and in the present embodiment, the first axial protrusion 23 is integrated with the radial extension 26 at the end of the radial extension 26 on the radial inner side R1 side. Is formed.
  • the first axial protruding portion 23 is a second cylindrical shape when viewed in the radial direction R between the first cylindrical protruding portion 40 and the second cylindrical protruding portion 41 in the radial direction R. It is arranged at a position having a portion overlapping with the protruding portion 41.
  • a space defined on both sides in the radial direction R by the outer peripheral surface 23c of the first axial protruding portion 23 and the inner peripheral surface 41b of the second cylindrical protruding portion 41, the radial extending portion 26 and the second A space partitioned on both sides in the axial direction L by the one support wall portion 31 (the inner circumferential step portion 41d of the second cylindrical projecting portion 41) is a bearing arrangement space for arranging a fifth bearing 75 described later. ing.
  • the radial direction extension part 26 is provided with the 2nd axial direction protrusion part 24 which is a cylindrical protrusion part which protrudes toward the axial 2nd direction L2 side.
  • the second axially projecting portion 24 is disposed coaxially with the axis X, and in the present embodiment, the second axially projecting portion 24 is integrated with the radially extending portion 26 at the end portion on the radially inward direction R1 side of the radially extending portion 26. Is formed.
  • the distal end portion 24 a on the second axial direction side of the second axial projecting portion 24 is positioned on the second axial direction L2 side from the distal end portion 40 a of the first cylindrical projecting portion 40.
  • a plate-like member 27 is attached to the rotor support member 22.
  • the plate member 27 is an annular plate member that extends in the circumferential direction in addition to the radial direction R. And in this embodiment, as shown in FIG. 3, the outer peripheral surface of the plate-shaped member 27 with respect to the inner peripheral surface of the part of the rotor holding
  • an inner peripheral step portion 25d having a surface (annular surface in this example) facing the second axial direction L2 side is formed.
  • the portion in the second axial direction L2 side from the inner circumferential step 25d is a large diameter portion
  • the portion in the first axial direction L1 side from the inner circumferential step 25d is a small diameter portion. It is said that.
  • a snap ring 93 is locked to a portion of the inner peripheral surface of the rotor holding portion 25 opposite to the inner peripheral stepped portion 25 d in the axial direction L with respect to the outer peripheral surface of the plate-like member 27.
  • the plate-like member 27 attached to the rotor holding portion 25 is in a state in which movement in the axial direction L relative to the rotor holding portion 25 is allowed to some extent, and movement toward the first axial direction L1 side is an inner circumferential step portion. The movement toward the second axial direction L2 side is restricted by the snap ring 93.
  • FIG. 3 in the state where the plate-like member 27 is in contact with the surface of the inner circumferential stepped portion 25 d facing the second axial direction L ⁇ b> 2, the axial member L is interposed between the plate-like member 27 and the snap ring 93.
  • the state which has a clearance gap (4th clearance gap D4) is shown.
  • the plate-like member 27 has a shape that is offset in the axial direction L such that the portion on the radial inner side R1 side is positioned on the second axial direction L2 side as compared with the portion on the radial outer side R2 side as a whole. have.
  • a thick portion 28 having a larger thickness in the axial direction L than the portion on the radially outer direction R2 side is formed at the end portion on the radially inner direction R1 side of the plate-like member 27.
  • the outer peripheral surface 28c is formed with an outer peripheral step portion 28d having a surface (annular surface in this example) facing the second axial direction L2.
  • the portion on the axial first direction L1 side from the outer circumferential step portion 28d is a large diameter portion
  • the portion on the axial second direction L2 side from the outer circumferential step portion 28d is a small diameter portion.
  • the outer peripheral step portion 28d of the plate-like member 27 is located on the first axial direction L1 side with respect to the inner peripheral step portion 32d of the second support wall portion 32.
  • the plate member 27 is a space defined on both sides in the radial direction R by the outer peripheral surface 28 c of the thick portion 28 of the plate member 27 and the inner peripheral surface 32 b of the second support wall portion 32.
  • a space defined on both sides in the axial direction L by the portion 28d and the inner peripheral step portion 32d of the second support wall portion 32 is a bearing arrangement space for arranging a seventh bearing 77 described later.
  • First clutch C ⁇ b> 1 is a device that is provided in a power transmission path between the input shaft I and the rotor member 21 and can change the state of engagement. That is, in the first clutch C1, the engagement state of the two engagement members engaged by the first clutch C1 is the state in which the two engagement members are engaged (including the slip engagement state). And a state in which the two engagement members are not engaged (released). In the state where the two engaging members are engaged, the driving force is transmitted between the input shaft I and the rotor member 21, and in the state where the two engaging members are released, the input shaft I and No driving force is transmitted to or from the rotor member 21.
  • the first clutch C ⁇ b> 1 is disposed between the radially extending portion 26 in the axial direction L and the plate-like member 27. Further, the first clutch C1 is disposed on the radial inner side R1 side from the rotor Ro and at a position having a portion overlapping with the rotor Ro when viewed in the radial direction R. In the present embodiment, the first clutch C1 is disposed at a position in the axial direction L that overlaps with the central region of the rotor Ro in the axial direction L when viewed in the radial direction R.
  • the first clutch C1 includes a clutch hub 51, a friction member 53, and a piston 54, and is configured as a wet multi-plate clutch mechanism.
  • the rotor holding portion 25 of the rotor support member 22 functions as a clutch drum.
  • the first clutch C1 has a pair of input side friction member and output side friction member as the friction member 53, and the input side friction member is supported from the radially inner side R1 side by the outer peripheral portion of the clutch hub 51, and outputs.
  • the side friction member is supported from the radially outward direction R2 side by the inner peripheral portion of the rotor holding portion 25.
  • a portion of the clutch hub 51 excluding the holding portion of the friction member 53 is an annular plate-like portion extending in the radial direction R and the circumferential direction, and an end portion on the radial inward direction R1 side is connected to the flange portion Ia of the input shaft I ( In this example, it is joined by welding).
  • the oil discharged from the oil pump 9 is separated into the space defined on both sides in the axial direction L by the radially extending portion 26 and the plate-like member 27 and partitioned on the radially outward direction R2 side by the rotor holding portion 25.
  • the friction member 53 is cooled by the oil.
  • the torque converter TC is disposed coaxially with the rotating electrical machine MG on the first axial direction L1 side with respect to the rotating electrical machine MG.
  • the torque converter TC is disposed between the first support wall portion 31 and the third support wall portion 33 in the axial direction L.
  • the torque converter TC includes a joint input member 2 that is drivingly connected to the rotor member 21 of the rotating electrical machine MG, and a joint output member 4 that is drivingly connected to the wheels W.
  • the torque converter TC includes a pump impeller 61, a turbine runner 62, a second clutch C2 as a lock-up clutch, and a cover portion 63 that accommodates these.
  • the cover part 63 is connected so as to rotate integrally with the pump impeller 61 disposed inside.
  • the pump drive shaft 67 is connected to the cover portion 63 so as to rotate integrally.
  • the joint input member 2 is configured by the pump impeller 61, the cover portion 63, and the pump drive shaft 67.
  • the joint input member 2 is drivingly connected to the rotor member 21 via the connecting member 10.
  • the joint input member 2 and the rotor member 21 are drive-coupled in a state in which they can be relatively moved in the axial direction.
  • the joint output member 4 is constituted by a turbine runner 62, and the turbine runner 62 is drivingly connected to the intermediate shaft M.
  • the joint output member 4 is drivingly connected to the wheel W via the intermediate shaft M, the speed change mechanism TM, the output shaft O, and the output differential gear device DF, as shown in FIG.
  • the turbine runner 62 and the intermediate shaft M are driven and connected by spline fitting so that they can move relative to each other in the axial direction L and rotate together with a certain amount of backlash (play) in the circumferential direction.
  • the cover part 63 includes a cover radial direction extension part 65 extending in the radial direction R on the first axial direction L1 side with respect to the first support wall part 31, and a cover radial direction extension part. 65 (in this example, a cylindrical cover cylindrical protruding portion 64 that protrudes in the axial second direction L2 side from the radial inner side R1 side end of the cover radial direction extending portion 65).
  • the cover radial extending portion 65 is formed so as to extend from the end portion on the first axial direction L1 side of the cover cylindrical projecting portion 64 toward the radially outward direction R2, and in this example, in addition to the radial direction R, the circumferential direction It is also an annular plate-like portion that extends.
  • a thick portion 66 having a larger thickness in the axial direction L than the portion on the outer radial direction R2 side is formed in the portion on the cover cylindrical projecting portion 64 side in the cover radial direction extending portion 65.
  • the cover cylindrical protrusion 64 is arranged coaxially with the axis X, and extends in the axial direction L on the outer peripheral surface of the cover cylindrical protrusion 64 (only the base end side portion in this example).
  • First spline teeth 91 are formed. Further, a fastening hole 64e for fastening and fastening the fastening member 90 is formed in the radially inward direction R1 side portion of the cover cylindrical protrusion 64.
  • the cover radial extending portion 65 and the cover cylindrical projecting portion 64 are integrally formed.
  • the cover radial extending portion 65 corresponds to the “first radial extending portion” in the present invention.
  • the cover cylindrical protrusion 64 corresponds to the “first cylindrical protrusion” in the present invention, and includes the cover cylindrical protrusion 64 (in this example, the same as the cover cylindrical protrusion 64). ) Corresponds to the “first part” in the present invention.
  • the cover radial direction extending portion 65 is disposed away from the first support wall portion 31 so that a gap in the axial direction L is formed between the cover radial direction extension portion 65 and the first support wall portion 31. ing. A gap in the axial direction L between the side surface portion on the axial second direction L2 side of the cover radial direction extending portion 65 and the side surface portion on the axial first direction L1 side of the first support wall portion 31 will be described later.
  • a bearing arrangement space for arranging the first bearing 71 is provided. Specifically, as described above, the stepped portion 40d is formed on the side surface portion of the first cylindrical protruding portion 40 of the first support wall portion 31 on the first axial direction L1 side.
  • a surface in this example, a cylindrical surface facing the radial outer direction R2 ) Having a step portion 66d.
  • the step portion 66d is formed in the thick portion 66 provided in the cover radial direction extending portion 65.
  • first support wall portion 31 specifically, the first cylindrical protruding portion 40
  • cover radial direction extending portion 65 specifically, a thick portion 66.
  • the power transmission member T is configured such that the rotor member 21 and the joint input member 2 are coupled so as to rotate in conjunction with each other.
  • “in conjunction with” means a state in which the ratio of the rotational speeds of the rotor member 21 and the joint input member 2 is uniquely determined.
  • the rotor member 21 and the joint input member 2 are coupled so as to rotate integrally, thereby configuring the power transmission member T.
  • the rotor member 21 and the joint input member 2 are connected via a connecting member 10 described below. That is, in the present embodiment, the power transmission member T includes the rotor member 21, the joint input member 2, and the connecting member 10.
  • the connecting member 10 extends in the axial direction L through the radially inward direction R ⁇ b> 1 side of the first cylindrical projecting portion 40, and has a second axis from the distal end portion 40 a of the first cylindrical projecting portion 40. In the direction L2 side, it is formed so that it may extend from the said 1st cylindrical protrusion part 40 to the radial direction R2 side.
  • the connecting member 10 includes the connecting radial extending portion 12 extending in the radial direction R on the second axial direction L2 side with respect to the first support wall portion 31, and the connecting radial extending portion 12 from the connecting radial extending portion 12. And a cylindrical connecting cylindrical protruding portion 11 protruding toward the one direction L1.
  • connection cylindrical protrusion part 11 is arrange
  • FIG. It is formed so as to extend from the end on the side toward the radially outward direction R2.
  • the connecting radial extending portion 12 is an annular plate-like portion extending in the circumferential direction in addition to the radial direction R.
  • the connecting radial direction extending portion 12 and the connecting cylindrical protruding portion 11 are integrally formed in this embodiment.
  • the connecting radial extending portion 12 corresponds to the “second radial extending portion” in the present invention.
  • connection cylindrical protrusion 11 is equivalent to the "second cylindrical protrusion” in the present invention, and includes a portion including the connection cylindrical protrusion 11 (in this example, the same as the connection cylindrical protrusion 11). ) Corresponds to the “second part” in the present invention.
  • the connecting cylindrical protruding portion 11 is arranged coaxially with the axis X, and extends in the axial direction L on the inner peripheral surface of the connecting cylindrical protruding portion 11 (in this example, only the tip portion side portion).
  • Second spline teeth 92 are formed.
  • the second spline teeth 92 are configured to engage with the first spline teeth 91 formed on the outer peripheral surface of the cover cylindrical protrusion 64.
  • the cover 63 and the connecting member 10 are connected to the spline teeth 91 in a state where the inner peripheral surface of the connecting cylindrical protruding portion 11 is externally fitted to the outer peripheral surface of the cover cylindrical protruding portion 64.
  • 92 are connected to each other by spline fitting.
  • the cover part 63 (joint input member 2) and the connecting member 10 are connected to each other so as to rotate integrally. And by the cover cylindrical projection part 64 and the connection cylindrical projection part 11 which were mutually connected by spline fitting in this way, it extends in the axial direction L through the radially inner direction R1 side of the first support wall part 31. An axially extending portion 5 of the power transmission member T is formed.
  • connection between the cover cylindrical protrusion 64 and the connection cylindrical protrusion 11 is a spline connection by the spline teeth 91 and 92 extending in the axial direction L, it is formed integrally with the cover cylindrical protrusion 64.
  • the relative movement in the axial direction L between the cover radial extending portion 65 and the connecting radial extending portion 12 formed integrally with the connecting cylindrical protruding portion 11 is not restricted by the spline connection.
  • both the movement of the joint input member 2 toward the first axial direction L1 side and the movement of the joint input member 2 toward the second axial direction L2 side are performed by the first support wall portion 31.
  • a configuration is adopted in which the existing portion 12 is connected in a state where relative movement in the axial direction L via the axially extending portion 5 is restricted. Such a configuration is realized by providing a movement restricting mechanism MR described below.
  • the movement restricting mechanism MR is a mechanism that restricts the relative movement in the axial direction L between the cover tubular projecting portion 64 and the connecting tubular projecting portion 11.
  • the end surface (tip portion 11a) on the first axial direction L1 side of the connecting cylindrical protruding portion 11 is a cover radial direction extending portion 65 (thick portion 66 in this example).
  • the surface of the fastening member 90 fastened and fixed to the cover tubular projecting portion 64 facing the first axial direction L1 side contacts the surface of the connecting tubular projecting portion 11 facing the second axial direction L2 side.
  • a movement restriction mechanism MR is configured.
  • an inner circumferential step portion 11d having a surface (annular surface in this example) facing the second axial direction L2 side is formed on the inner circumferential surface of the connecting cylindrical protruding portion 11.
  • the fastening member 90 projects in the radially outward direction R2 side from the outer peripheral surface of the cover tubular projecting portion 64 while being fastened and fixed to the fastening hole 64e of the cover tubular projecting portion 64.
  • the movement restricting mechanism MR has an annular portion (in this example, a bolt head of a flanged bolt), and the annular portion abuts against the surface of the inner circumferential stepped portion 11d facing the second axial direction L2 side. It is configured.
  • the connecting radially extending portion 12 is connected to the rotor support member 22 on the radially outward direction R2 side from the first cylindrical protruding portion 40.
  • the end portion on the radially outward direction R2 side of the connecting radially extending portion 12 and the end portion (tip portion 24a) on the second axial direction L2 side of the second axial protruding portion 24 of the rotor support member 22 are provided. Are coupled (engaged) so as to rotate together in a state of being relatively movable in the axial direction L.
  • the end portion on the radially outward direction R2 side of the connecting radially extending portion 12 includes an engaging portion of external teeth in which a plurality of engaging pieces protruding in the radially outward direction R2 side are dispersedly arranged in the circumferential direction.
  • the distal end portion 24a of the second axial projecting portion 24 includes a plurality of radial through holes in the circumferential direction having a circumferential width in which the engagement piece can be inserted and a length in the axial direction L.
  • the number of the engaging pieces is the same as that of the engaging pieces.
  • the through hole opens at an end edge on the second axial direction L2 side of the second axial protrusion 24, and the length in the axial direction L is larger than the axial length L of the engagement piece. It is a U-shaped through hole when viewed in the radial direction R.
  • the second axial protruding portion 24 and the connecting radial extending portion 12 are connected so as to rotate integrally in a state of being relatively movable in the axial direction L, and as a result.
  • the rotor member 21 and the connecting radial extending portion 12 are drivingly connected in a state in which the rotor member 21 and the joint input member 2 are relatively movable in the axial direction L.
  • connection cylindrical protrusion part 11 is arrange
  • a gap in the radial direction R between the portion 40 and the inner peripheral surface 40b serves as a bearing arrangement space for arranging a sixth bearing 76 described later.
  • a second sleeve member 95 is disposed in the gap on the second axial direction L2 side from the sixth bearing 76. The second sleeve member 95 is provided to restrict the oil from flowing in the axial direction L through the gap.
  • the side surface portion on the axial first direction L1 side of the connecting radial direction extending portion 12 is formed at the distal end so that a gap in the axial direction L is formed between the distal end portion 40a of the first cylindrical protruding portion 40. It arrange
  • a gap in the axial direction L between the side surface portion on the axial first direction L1 side of the connecting radial extending portion 12 and the tip end portion 40a of the first cylindrical projecting portion 40 arranges a second bearing 72 described later. It is a bearing arrangement space for this purpose.
  • a step portion 12d having a surface (cylindrical surface in this example) facing the inner radial direction R1 is formed on the side surface portion on the first axial direction L1 side of the connecting radial extending portion 12.
  • the second sleeve member 95 is disposed so as to have a portion that protrudes toward the second axial direction L2 side from the distal end portion 40a of the first cylindrical protruding portion 40.
  • the bearing arrangement space for arranging the second bearing 72 divides both sides in the radial direction R by the stepped portion 12 d of the connecting radial extending portion 12 and the outer peripheral surface of the second sleeve member 95. It is supposed to be a space.
  • the vehicle drive device 1 includes a fifth bearing 75 and a seventh bearing 77 as bearings for supporting the rotor member 21 in the radial direction R.
  • the rotor member 21 is supported in the radial direction R on both sides in the axial direction L by the fifth bearing 75 and the seventh bearing 77.
  • the fifth bearing 75 is a bearing that supports the rotor member 21 in the radial direction R while being rotatable with respect to the first support wall portion 31, and is a radial bearing that can receive a load in the radial direction R (this example). In this case, ball bearings are used.
  • the seventh bearing 77 is a bearing that supports the rotor member 21 in the radial direction R while being rotatable with respect to the second support wall 32, and is a radial bearing that can receive a load in the radial direction R (this example) In this case, ball bearings are used.
  • the fifth bearing 75 corresponds to the “third bearing” in the present invention
  • the seventh bearing 77 corresponds to the “fourth bearing” in the present invention.
  • the fifth bearing 75 is disposed on the radially outward direction R2 side from the first cylindrical projecting portion 40 of the first support wall portion 31.
  • the fifth bearing 75 is the first support wall portion 31 of the first support wall portion 31. It arrange
  • the outer peripheral surface 23 c of the first axial protrusion 23 is a supported portion that is supported by the fifth bearing 75 with respect to the first support wall portion 31.
  • the fifth bearing 75 is disposed so as to be in contact with the surface facing the second axial direction L ⁇ b> 2 side of the inner circumferential stepped portion 41 d of the second cylindrical protruding portion 41.
  • the first clutch C ⁇ b> 1 is disposed at a position having a portion overlapping the fifth bearing 75 when viewed in the axial direction L.
  • the radially outer side R2 side portion of the clutch hub 51 and the radially inner side R1 side portion of the friction member 53 supported by the clutch hub 51 are arranged at the same radial direction R position as the fifth bearing 75. Has been.
  • the seventh bearing 77 is disposed on the radial inner side R1 side from the fifth bearing 75, and specifically, a position having a portion overlapping the first cylindrical protrusion 40 when viewed in the axial direction L. Is arranged. More specifically, the seventh bearing 77 includes an inner peripheral surface 32 b of a portion of the second support wall portion 32 on the radial inward direction R 1 side and a thick portion 28 of the plate-like member 27 attached to the rotor support member 22. It arrange
  • the rotor member 21 is supported on the inner peripheral surface 32 b of the second support wall portion 32 via the plate-like member 27 and the seventh bearing 77.
  • the seventh bearing 77 supports the power transmission member T formed by the rotor member 21 in the radial direction R in a state where the power transmission member T can rotate with respect to the second support wall portion 32.
  • the support in the radial direction R is an indirect support via the plate-like member 27.
  • the seventh bearing 77 is press-fitted (tightly fitted) to the inner peripheral surface 32b of the second support wall portion 32, and the shaft of the inner peripheral stepped portion 32d formed on the inner peripheral surface 32b.
  • the second support wall 32 is fixed to the second support wall 32 in contact with the surface facing the first direction L1.
  • the seventh bearing 77 is fitted to the outer peripheral surface 28c of the thick portion 28 of the plate-like member 27 in a state where the movement in the axial direction L is allowed to some extent.
  • the plate-like member 27 moves slightly from the position where it abuts against the seventh bearing 77 toward the first axial direction L 1, and the shaft of the outer circumferential step portion 28 d formed on the outer circumferential surface 28 c of the thick portion 28.
  • a state in which there is a gap in the axial direction L (third gap D3) between the surface facing the two directions L2 and the seventh bearing 77 is shown.
  • an eighth bearing 78 (the main bearing) that supports the input shaft I in the radial direction R in a state of being rotatable with respect to the second support wall portion 32 on the radial inner side R1 side from the seventh bearing 77.
  • a needle bearing is arranged.
  • the eighth bearing 78 is disposed so as to be in contact with the outer peripheral surface of the input shaft I and the inner peripheral surface of the thick portion 28 of the plate-like member 27. It is supported on the inner peripheral surface 32 b of the second support wall portion 32 via the thick portion 28 and the seventh bearing 77.
  • the vehicle drive device 1 includes a sixth bearing 76 and a ninth bearing 79 (see FIG. 2) as bearings for supporting the joint input member 2 in the radial direction R.
  • the sixth bearing 76 and the ninth bearing 79 are supported in the radial direction R on both sides in the axial direction L.
  • the sixth bearing 76 is a bearing that supports the joint input member 2 in the radial direction R while being rotatable with respect to the first support wall 31, and receives a load in the radial direction R.
  • a radial bearing that can be used (in this example, a needle bearing) is used.
  • the sixth bearing 76 is disposed on the radial inner side R1 side of the first cylindrical protruding portion 40 of the first support wall portion 31, specifically, the first cylindrical protruding portion 40 of the first cylindrical protruding portion 40. It arrange
  • the joint input member 2 is coupled so as to rotate integrally, and is connected to the inside of the first cylindrical projecting portion 40 via the coupling member 10 that is fixed so as not to be relatively movable in the axial direction L by the movement restricting mechanism MR. It is supported by the peripheral surface 40b.
  • the fifth bearing 75 is disposed on the radially outward direction R2 side from the first cylindrical projecting portion 40 of the first support wall portion 31, and the sixth bearing 76 is disposed on the first support wall portion 31. It arrange
  • the sixth bearing 76 is connected to the fifth bearing 75 such that the first axial direction L1 side portion is positioned in the same axial direction L as the fifth bearing 75 second axial direction L2 side portion. On the other hand, it is slightly shifted on the second axial direction L2 side.
  • the vehicle drive device 1 includes a first bearing 71 as a bearing that supports the power transmission member T in the axial direction L with respect to the first support wall portion 31. And a second bearing 72.
  • the first bearing 71 is a bearing that supports the power transmission member T from the second axial direction L2 side while being rotatable with respect to the first support wall portion 31, and is capable of receiving a load in the axial direction L.
  • the second bearing 72 is a bearing that supports the power transmission member T from the first axial direction L1 side in a state where the power transmission member T is rotatable with respect to the first support wall 31 and is capable of receiving a load in the axial direction L. (Thrust bearing in this example) is used.
  • the first bearing 71 and the second bearing 72 include the joint input member 2 and the connecting member 10 that are fixed so as not to be relatively movable in the axial direction L among the members constituting the power transmission member T. It supports with respect to the 1st support wall part 31.
  • the first bearing 71 and the second bearing 72 are configured not to prohibit relative movement of members disposed on both sides in the axial direction L in the direction away from each other in the axial direction L.
  • the first bearing 71 is disposed at a portion where the first support wall portion 31 and the cover radial extending portion 65 are opposed to each other in the axial direction L.
  • the first bearing 71 includes a side surface portion on the first axial direction L1 side of the first cylindrical projecting portion 40 provided in the first support wall portion 31, and a thick portion provided in the cover radial direction extending portion 65.
  • 66 is disposed at a portion facing the side surface portion on the second axial direction L2 side.
  • the facing portion is located in a space defined on both sides in the radial direction R by the stepped portion 40d of the first cylindrical protruding portion 40 and the stepped portion 66d of the thick portion 66.
  • the first bearing 71 is at least one of a surface facing the radially outward direction R2 side of the stepped portion 66d of the thick portion 66 and a surface facing the radially inward direction R1 side of the stepped portion 40d of the first cylindrical protruding portion 40. Is fitted (clear fit) in a state where the movement in the axial direction L is allowed to some extent. Therefore, the first bearing 71 does not prohibit the movement of the joint input member 2 with respect to the first support wall portion 31 on the first axial direction L1 side. In FIG.
  • the joint input member 2 slightly moves toward the first axial direction L1 side from the state in which the clearance (clearance) in the axial direction L is narrowed at the portion where the first bearing 71 is disposed, and the first cylinder
  • the state which has the clearance gap (1st clearance gap D1) of the axial direction L between the side part by the side of the axial first direction L1 of the protruding part 40 and the 1st bearing 71 is shown.
  • the second bearing 72 is disposed in a portion where the first support wall portion 31 and the connecting radial direction extending portion 12 face each other in the axial direction L.
  • the second bearing 72 includes a distal end portion 40a of the first cylindrical projecting portion 40 included in the first support wall portion 31, and a side surface portion on the first axial direction L1 side of the connecting radial extending portion 12.
  • the facing portion is located in a space defined on both sides in the radial direction R by the stepped portion 12 d of the connecting radial extending portion 12 and the outer peripheral surface of the second sleeve member 95.
  • the second bearing 72 has an axial direction L with respect to at least one surface of the stepped portion 12d of the connecting radial direction extending portion 12 facing the inner radial direction R1 and the outer peripheral surface of the second sleeve member 95.
  • the gap in the axial direction L at the portion where the second bearing 72 is disposed is packed, and the second bearing 72 is connected to the distal end portion 40 a of the first cylindrical projecting portion 40 and the connecting radial extending portion 12.
  • connected both the side parts by the side of the shaft 1st direction L1 is shown.
  • a third bearing 73 (in this example) that can receive a load in the axial direction L between the connecting radial extending portion 12 in the axial direction L and the flange portion Ia of the input shaft I is further provided.
  • a fourth bearing capable of receiving a load in the axial direction L between the flange portion Ia of the input shaft I in the axial direction L and the thick portion 28 of the plate-like member 27. 74 (thrust bearing in this example) is arranged.
  • the third bearing 73 and the fourth bearing 74 are also configured not to prohibit relative movement of members arranged on both sides in the axial direction L in the direction away from each other in the axial direction L.
  • the first bearing 71 is disposed so as to have a portion overlapping the second bearing 72 when viewed in the axial direction L.
  • the first bearing 71 is further disposed so as to have an overlapping portion when viewed in the axial direction L with respect to the third bearing 73, the fourth bearing 74, and the seventh bearing 77.
  • the range in the radial direction R where the first bearing 71 is located, the range in the radial direction R where the second bearing 72 is located, the range in the radial direction R where the third bearing 73 is located, and the fourth bearing 74 are located.
  • the respective bearings are arranged so that there are positions in the radial direction R that are included in the range of the radial direction R and the entire range of the radial direction R in which the seventh bearing 77 is located.
  • such a load that can act on the pump impeller 61 in the second axial direction L2 side is mainly received by the first bearing 71 that is a thrust bearing.
  • the first bearing 71 that is a thrust bearing.
  • it can suppress that a big axial load acts on the 7th bearing 77 which is a radial bearing, and compared with the case where a big axial load acts as the 7th bearing 77, a small bearing is small.
  • a configuration has a sum total of gaps in the axial direction L provided between the cover radial direction extending portion 65 and the first support wall portion 31 (hereinafter referred to as “first sum S1”).
  • the first total sum S1 is determined by the gap when the cover radial direction extending portion 65 is located closest to the first axial direction L1 side in the movable range of the cover radial direction extending portion 65 in the axial direction L.
  • the second total sum S2 is determined by the gap when the connecting radial direction extending portion 12 is located closest to the first axial direction L1 in the movable range of the connecting radial direction extending portion 12 in the axial direction L.
  • the rotor member 21 and the cover radial direction extending portion 65 are drivingly coupled in a state in which they can move relative to each other in the axial direction L. Therefore, the load in the second axial direction L2 acting on the pump impeller 61 is hardly transmitted to the rotor member 21, and the axial load in this case is the first bearing 71 as is apparent from FIG.
  • the second bearing 72, the third bearing 73, the fourth bearing 74, and the seventh bearing 77 need to be received. That is, in the present embodiment, the gap that contributes to the first total sum S1 includes only the gap in the axial direction L at the portion where the first bearing 71 is disposed.
  • the gaps contributing to the second total sum S ⁇ b> 2 include the gap in the axial direction L at the portion where the second bearing 72 is disposed, the gap in the axial direction L at the portion where the third bearing 73 is disposed, and the arrangement of the fourth bearing 74.
  • the gap in the axial direction L in the part and the gap in the axial direction L in the arrangement part of the seventh bearing 77 are included.
  • the gaps at the locations where the respective bearings are arranged include gaps that exist inside the bearings and that allow relative movement in the axial direction L between members constituting the bearings.
  • FIG. 3 shows that the joint input member 2 and the connecting member 10 that are connected so as not to be relatively movable in the axial direction L are the most axial first direction L1 in the movable range of the axial direction L.
  • the situation located on the side is shown. For this reason, the gap in the axial direction L at the portion where the second bearing 72 is disposed is closed, and the gap (first gap D1) in the axial direction L is present at the portion where the first bearing 71 is disposed. In this case, the first total sum S1 is “D1”. Further, FIG.
  • the first sum S1 is set to be smaller than the second sum S2 (D1 ⁇ D2 + D3). Therefore, even when a large load is applied to the pump impeller 61 in the second axial direction L2 side, the axial direction L existing between the connecting radial direction extending portion 12 and the second support wall portion 32 is present. Before the gap is clogged, the gap in the axial direction L existing between the cover radial direction extending portion 65 and the first support wall portion 31 is clogged, so that the load is received by the first bearing 71 and the seventh bearing It is possible to suppress a large axial load from acting on 77.
  • the snap when a large load is applied to the pump impeller 61 in the second axial direction L2, the snap is locked not only on the seventh bearing 77 but also on the rotor holding portion 25.
  • the first total sum S1 is set smaller (D1 ⁇ D4) than the gap (fourth gap D4) in the axial direction L between the plate-like member 27 and the snap ring 93 in the case shown in FIG.
  • the rotor member 21 is disposed so as to be in contact with the fifth bearing 75, and the plate-like member 27 is located on the most axial first direction L1 side in the movable range of the plate-like member 27 in the axial direction L.
  • connection member 10 may be formed integrally with the rotor support member 22 without making the connection member 10 separate from the rotor support member 22 (an independent separate member).
  • the second sum S2 in the example shown in FIG. 3 is “D3”, and it is preferable to design each part so that the relationship (D1 ⁇ D3) is satisfied.
  • the connecting member 10 has the connecting radial extending portion 12 extending from the first cylindrical protruding portion 40 to the radially outward direction R2 side, and the connecting member 10 and the rotor support member 22 are connected to each other.
  • the configuration in which the engaging portion is located on the radially outward direction R2 side from the first cylindrical protruding portion 40 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the rotor support member 22 has a portion extending from the first cylindrical protrusion 40 to the radially inward direction R1, and the connecting member 10 and the rotor support member.
  • the engaging part with 22 can also be set as the structure located in the radial direction R1 side rather than the 1st cylindrical protrusion part 40.
  • the connection member 10 may be configured to include only the connection cylindrical protrusion 11.
  • connection member 10 has been described as an example of a configuration that is separate from the joint input member 2.
  • the embodiment of the present invention is not limited to this, and the connecting member 10 may be formed integrally with the joint input member 2.
  • the inner peripheral step 11 d is formed on the inner peripheral surface of the connecting cylindrical protrusion 11, and the fastening member 90 is fastened and fixed to the cover cylindrical protrusion 64 in the first axial direction L 1 side.
  • the case where the movement restricting mechanism MR is configured by abutting the surface facing toward the surface facing the second axial direction L2 side of the inner circumferential step portion 11d has been described as an example.
  • the embodiment of the present invention is not limited to this, and the connecting cylindrical protruding portion 11 does not include the inner circumferential step portion 11d, and the surface of the fastening member 90 facing the first axial direction L1 side is the connecting cylinder.
  • the movement restricting mechanism MR may be a mechanism that restricts the relative movement in the axial direction L between the cover tubular projecting portion 64 and the connecting tubular projecting portion 11 using a snap ring or the like.
  • the cover 63 and the connecting member 10 are spline-fitted in a state where the inner peripheral surface of the connecting cylindrical protruding portion 11 is externally fitted to the outer peripheral surface of the cover cylindrical protruding portion 64.
  • the configuration connected to each other has been described as an example.
  • the embodiment of the present invention is not limited to this, and the cover cylindrical protrusion 64 has spline teeth on the inner peripheral surface, and the connecting cylindrical protrusion 11 has spline teeth on the outer peripheral surface,
  • the cover 63 and the connecting member 10 may be connected to each other by spline fitting in a state in which the inner peripheral surface of the cover cylindrical protruding portion 64 is externally fitted to the outer peripheral surface of the connecting cylindrical protruding portion 11. it can.
  • the fifth bearing 75 is disposed on the radially outward direction R2 side of the first cylindrical protruding portion 40
  • the sixth bearing 76 is the radially inward direction of the first cylindrical protruding portion 40.
  • the configuration disposed on the R1 side has been described as an example.
  • the embodiment of the present invention is not limited to this, and the fifth bearing 75 and the sixth bearing 76 are arranged on the same side in the radial direction R with respect to the first cylindrical protrusion 40. It can also be.
  • the configuration in which the first clutch C1 is disposed at a position having a portion overlapping the fifth bearing 75 when viewed in the axial direction L is described as an example.
  • the embodiment of the present invention is not limited to this, and, for example, the fifth bearing 75 so that the first clutch C1 does not have a portion overlapping the fifth bearing 75 when viewed in the axial direction L. It can also be set as the structure arrange
  • the first clutch C1 is disposed at a position that is closer to the inner diameter direction R1 than the rotor Ro and has a portion that overlaps the rotor Ro when viewed in the radial direction R.
  • the embodiment of the present invention is not limited to this, and the first axial direction L1 from the rotor Ro is such that the first clutch C1 does not have a portion overlapping the rotor Ro when viewed in the radial direction R. It can also be set as the structure arrange
  • the sixth bearing 76 has been described as an example of a configuration in which the sixth bearing 76 is disposed at a position having a portion overlapping the fifth bearing 75 when viewed in the radial direction R.
  • the fifth bearing 75 may be arranged at a different position in the axial direction L so as not to have a portion overlapping with the fifth bearing 75 when viewed in the radial direction R.
  • the end of the connecting radial extending portion 12 on the outer radial direction R2 side is an external tooth engagement in which a plurality of engaging pieces protruding in the outer radial direction R2 side are arranged in the circumferential direction.
  • the distal end portion 24a of the second axial projecting portion 24 has a through-hole in the radial direction R having a width in the circumferential direction and a length in the axial direction L in the circumferential direction.
  • a configuration in which a plurality of (the same number as that of the engagement pieces) cylindrically arranged engaging portions are described as an example. However, the embodiment of the present invention is not limited to this.
  • the distal end portion 24a of the second axial projecting portion 24 is configured as an internal tooth engaging portion in which a plurality of engaging pieces projecting in the radially inward direction R1 side are dispersed in the circumferential direction instead of the through hole. It can be.
  • the second axial projecting portion 24 has an annular main body portion continuous over the entire circumference also at the distal end portion 24a.
  • the outer peripheral surface 23c of the first axial protrusion 23 of the rotor support member 22 is a supported portion supported by the fifth bearing 75 with respect to the first support wall 31.
  • the fifth bearing 75 is configured such that the inner peripheral surface 23b of the first axial projecting portion 23 and the outer peripheral surface of the first support wall portion 31 (for example, the first The structure arrange
  • the structure which is a supported part It can also be set as the structure which is a supported part. Further, a portion of the rotor support member 22 other than the first axial projection 23 (for example, the inner peripheral surface of the second axial projection 24) is supported by the bearing with respect to the first support wall 31. It can also be set as the structure which is a support part. In this case, the rotor support member 22 may be configured not to include the first axial protrusion 23.
  • the configuration in which the first axial protruding portion 23 of the rotor support member 22 is formed at the end portion on the radially inward direction R1 side of the radially extending portion 26 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the first axial protruding portion 23 is an intermediate portion in the radial direction R of the radially extending portion 26 (for example, from the second cylindrical protruding portion 41). It can also be set as the structure currently formed in the radial direction R2 side.
  • the first bearing 71 and the second bearing 72 have been described as an example in which the power transmission member T is supported with respect to the first cylindrical protrusion 40 of the first support wall 31.
  • the embodiment of the present invention is not limited to this, and at least one of the first bearing 71 and the second bearing 72 is a portion where the thickness in the axial direction L of the first support wall portion 31 is uniform.
  • the power transmission member T may be supported.
  • the first support wall portion 31 may be configured not to include the first cylindrical protruding portion 40.
  • the vehicle drive device 1 has a uniaxial configuration
  • the embodiment of the present invention is not limited to this, and the vehicle drive device 1 may be a multi-shaft drive device including a counter gear mechanism, for example.
  • Such a configuration is suitable when mounted on a FF (Front-Engine-Front-Drive) type vehicle.
  • the vehicle drive device 1 includes the input shaft I that is drivingly connected to the internal combustion engine E and the first clutch C1 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the vehicle drive device 1 may be configured not to include the input shaft I or the first clutch C1.
  • the present invention includes a rotating electrical machine, a fluid coupling disposed coaxially with the rotating electrical machine, and a case that houses the rotating electrical machine and the fluid coupling, and the fluid coupling is drivingly connected to a rotor member of the rotating electrical machine. It can utilize suitably for a vehicle drive device provided with an input member and a joint output member drivingly connected with a wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Hybrid Electric Vehicles (AREA)
  • General Details Of Gearings (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 装置全体の小型化を図りつつ、動力伝達部材に対して軸方向の荷重が作用した場合に当該動力伝達部材を適切に支持することが可能な車両用駆動装置を実現する。ケース3は、軸方向Lにおける回転電機MGと流体継手との間で径方向Rに延びる支持壁部31を備え、ロータ部材21と継手入力部材2とが連動して回転するように連結されて動力伝達部材Tを構成し、動力伝達部材Tを支持壁部31に対して回転可能な状態で軸第二方向L2側から支持する第一軸受71と、動力伝達部材Tを支持壁部31に対して回転可能な状態で軸第一方向L1側から支持する第二軸受72と、が備えられる。

Description

車両用駆動装置
 本発明は、回転電機と、回転電機と同軸上に配置される流体継手と、回転電機及び流体継手を収容するケースと、を備え、流体継手が、回転電機のロータ部材に駆動連結される継手入力部材と、車輪に駆動連結される継手出力部材と、を備える車両用駆動装置に関する。
 上記のような車両用駆動装置の従来技術として、例えば、特開2006-137406号公報(特許文献1)に記載された技術がある。なお、この背景技術の欄の説明では、〔〕内に特許文献1における部材名を引用して説明する。特許文献1に記載の構成では、当該文献の図1に示されているように、ロータ部材〔ロータ12及びドラム部材13〕と継手入力部材とが中間部材〔プレート部材10及び第2スプライン軸11〕を介して一体回転するように駆動連結されて、動力伝達部材が構成されている。
 ところで、特に明記はされていないが、特許文献1の図1に示される構成では、流体継手〔トルクコンバータ1〕の回転状態等に起因して動力伝達部材に対して軸方向の荷重が作用した場合には、軸方向一方側(当該図1における右側)への荷重は軸受〔ベアリング15〕が受け、軸方向他方側(当該図1における左側)への荷重は別の軸受〔ベアリング9〕が受ける構成であると理解される。すなわち、径方向の荷重を受けるためのラジアル軸受が、軸方向の荷重をも受ける構成となっている。そのため、特許文献1の構成では、各軸受が大型化しやすく、その結果、装置全体の大型化を招来するおそれがある。
特開2006-137406号公報(図1)
 そこで、装置全体の小型化を図りつつ、動力伝達部材に対して軸方向の荷重が作用した場合に当該動力伝達部材を適切に支持することが可能な車両用駆動装置の実現が望まれる。
 本発明に係る、回転電機と、当該回転電機に対して当該回転電機の軸方向の一方側である軸第一方向側にて、当該回転電機と同軸上に配置される流体継手と、前記回転電機及び前記流体継手を収容するケースと、を備え、前記流体継手が、前記回転電機のロータ部材に駆動連結される継手入力部材と、車輪に駆動連結される継手出力部材と、を備える車両用駆動装置の特徴構成は、前記ケースは、前記軸方向における前記回転電機と前記流体継手との間で、前記回転電機の径方向に延びる支持壁部を備え、前記ロータ部材と前記継手入力部材とが連動して回転するように連結されて動力伝達部材を構成し、前記動力伝達部材を前記支持壁部に対して回転可能な状態で前記軸第一方向とは反対方向の軸第二方向側から支持する第一軸受と、前記動力伝達部材を前記支持壁部に対して回転可能な状態で前記軸第一方向側から支持する第二軸受と、を備える点にある。
 本願において、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。
 また、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 また、本願において「流体継手」は、トルク増幅機能を有するトルクコンバータ、及びトルク増幅機能を有さない通常の流体継手のいずれをも含む概念として用いている。
 また、本願において、部材の形状に関し、ある方向に(或いは、ある方向へ)「延びる」とは、当該方向を基準方向として、部材の延在方向が前記基準方向に平行な形状に限らず、部材の延在方向が前記基準方向に交差する方向であっても、その交差角度が所定範囲内である形状も含む概念として用いている。
 上記の特徴構成によれば、動力伝達部材に対して軸第二方向側への荷重が作用した場合には、当該荷重を第一軸受により受けることができ、動力伝達部材に対して軸第一方向側への荷重が作用した場合には、当該荷重を第二軸受により受けることができる。すなわち、動力伝達部材に対して軸方向の荷重が作用した場合であっても、当該荷重の向きにかかわらず、動力伝達部材を適切に支持することができる。
 そして、第一軸受及び第二軸受とは別に動力伝達部材を径方向に支持する径方向支持軸受が備えられる場合には、当該径方向支持軸受に軸方向の荷重が作用することを抑制することができるため、第一軸受及び第二軸受を備えない場合に比べて、当該径方向支持軸受として寸法の小さな軸受を用いることが可能となる。また、このような径方向支持軸受が備えられる場合には、第一軸受及び第二軸受にて径方向の大きな荷重を受ける必要がないため、第一軸受及び第二軸受についても、寸法の小さな軸受を用いることが可能となる。従って、第一軸受及び第二軸受を含む各軸受を小型化することができ、各軸受を適切に配置して装置全体の小型化を図ることが容易となる。
 また、上記の特徴構成によれば、第一軸受及び第二軸受の双方とも同一の壁部である支持壁部に対して動力伝達部材を支持する。そのため、第一軸受及び第二軸受が互いに別の壁部に対して動力伝達部材を支持する場合に比べて、ケース内における各部材(例えば、他の壁部等)についての設計の自由度を高めることが容易となり、この点からも、装置全体の小型化を図ることが容易となる。
 ここで、前記動力伝達部材は、前記支持壁部の前記径方向の内側を通って前記軸方向に延びる軸方向延在部と、前記支持壁部に対して前記軸第一方向側において前記径方向の外側へ延びる第一径方向延在部と、前記支持壁部に対して前記軸第二方向側において前記径方向の外側へ延びる第二径方向延在部と、を備えると共に、前記第一径方向延在部と第二径方向延在部とが、前記軸方向延在部を介しての前記軸方向の相対移動が規制された状態で連結されており、前記第一軸受は前記第一径方向延在部を前記軸第二方向側から支持し、前記第二軸受は前記第二径方向延在部を前記軸第一方向側から支持している構成とすると好適である。
 この構成によれば、動力伝達部材における軸方向に一体的に移動する部分が、支持壁部の径方向の内側部分を軸方向の両側及び径方向の内側から囲むように配置されるため、第一軸受及び第二軸受の双方についての支持構造を簡素なものとして、軸受及び周辺の支持構造が占有する空間を小さく抑えることが可能となる。
 上記のように、前記動力伝達部材が、前記軸方向延在部と前記第一径方向延在部と前記第二径方向延在部とを備える構成において、前記軸方向延在部は、前記第一径方向延在部と一体的に形成された第一部分と、前記第二径方向延在部と一体的に形成された第二部分とが、前記軸方向に延びるスプライン歯によるスプライン嵌合により互いに連結されて構成されていると好適である。
 この構成によれば、動力伝達部材における支持壁部より軸第一方向側に配置される部分と、動力伝達部材における支持壁部より軸第二方向側に配置される部分とが、互いに独立した別部材とされるため、動力伝達部材をケース内に組み付けるための工程を簡素なものとすることができる。
 また、軸方向延在部は、前記第一部分と前記第二部分との前記軸方向の相対移動を規制する移動規制機構を備えている構成とすると好適である。
 この構成によれば、軸方向延在部が、軸第一方向側の部分と軸第二方向側の部分との別部材とされても、これらの軸方向の相対移動を規制することができる。具体的には、支持壁部より軸第一方向側に配置された第一径方向延在部と、支持壁部より軸第二方向側に配置された第二径方向延在部とを、互いに軸方向に近づけた後に、移動規制機構を組み付けることで、動力伝達部材における少なくとも軸方向延在部、第一径方向延在部、及び第二径方向延在部を含む部分を形成することができる。
 上記のように、前記動力伝達部材が、前記軸方向延在部と前記第一径方向延在部と前記第二径方向延在部とを備える構成において、前記ロータ部材を前記支持壁部に対して回転可能な状態で前記径方向に支持する第三軸受を更に備え、前記ロータ部材と前記第二径方向延在部とが、前記軸方向に相対移動可能な状態で連結されている構成とすると好適である。
 この構成によれば、継手部材側から作用する軸方向の荷重が、ロータ部材に作用することを抑制することができるため、ロータ部材の軸方向位置を一定に維持するのが容易となる。よって、ロータ部材と第二径方向延在部とが軸方向に相対移動不能な状態で駆動連結されている場合に比べて、ロータ部材が有するロータ本体の軸方向長さを短く抑えることができ、結果、回転電機の小型化を図ることができる。また、第三軸受にて軸方向の大きな荷重を受ける必要がないため、第三軸受にて軸方向の大きな荷重を受ける必要がある場合に比べて、第三軸受の小型化を図ることができる。
 また、前記第一軸受が、前記支持壁部と前記第一径方向延在部とが前記軸方向に対向する部分に配置されたスラスト軸受であり、前記第二軸受が、前記支持壁部と前記第二径方向延在部とが前記軸方向に対向する部分に配置されたスラスト軸受である構成とすると好適である。
 この構成によれば、第一軸受及び第二軸受の各軸受が配置される空間を、共に径方向に延びる側壁部により軸方向の両側から囲まれた空間とすることができる。すなわち、第一軸受及び第二軸受として、一般的な構成のスラスト軸受を用いることができるとともに、各軸受を、支持壁部に対して直接的に支持対象部を支持するように配置することができる。よって、簡素な構成で、動力伝達部材を適切に軸方向に支持することができる。
 また、前記支持壁部が第一支持壁部であり、前記ケースは、前記回転電機より前記軸第二方向側において前記径方向に延びる第二支持壁部を備え、前記動力伝達部材を前記第二支持壁部に対して回転可能な状態で前記径方向に支持する第四軸受を更に備え、前記第一径方向延在部と前記第一支持壁部との間に設けられる前記軸方向の隙間の総和が、前記第二径方向延在部と前記第二支持壁部との間に設けられる前記軸方向の隙間の総和より小さく設定されている構成とすると好適である。
 この構成によれば、動力伝達部材に対して軸第二方向側への荷重が作用した場合に、第二径方向延在部と第二支持壁部との間の軸方向の隙間が詰まる前に、第一径方向延在部と第一支持壁部との間の軸方向の隙間が詰まる構成とすることができる。よって、動力伝達部材に対して作用する軸第二方向側への荷重を、主に第一軸受により受け止めることができ、第四軸受に対して大きな軸方向荷重が作用することを抑制することができる。これにより、第四軸受に対して大きな軸方向荷重が作用する場合に比べて、第四軸受の小型化を図ることができる。
 上記のように、前記軸方向延在部が、前記第一部分と前記第二部分とがスプライン嵌合により互いに連結されて構成されていると共に、前記第一部分と前記第二部分との前記軸方向の相対移動を規制する前記移動規制機構を備える構成において、前記第一部分は、前記第一径方向延在部から前記軸第二方向側に突出する筒状部分であって、外周面に第一スプライン歯が形成された第一筒状突出部を備え、前記第二部分は、前記第二径方向延在部から前記軸第一方向側に突出する筒状部分であって、内周面に前記第一スプライン歯と係合する第二スプライン歯が形成された第二筒状突出部を備え、前記第二筒状突出部の前記軸第一方向側の端面が前記第一径方向延在部に当接すると共に、前記第一部分に締結固定された締結部材の前記軸第一方向側を向く面が前記第二筒状突出部の前記軸第二方向側を向く面に当接することにより、前記移動規制機構が構成されている構成とすると好適である。
 この構成によれば、移動規制機構の構成を簡素なものとしつつ、第一筒状突出部と第二筒状突出部との間の軸心精度が適切に確保された状態で、第一部分と第二部分とをガタなく強固に連結することが可能となる。
本発明の実施形態に係る車両用駆動装置の概略構成を示す模式図である。 本発明の実施形態に係る車両用駆動装置の部分断面図である。 図2の一部拡大図である。
 本発明に係る車両用駆動装置の実施形態について、図面を参照して説明する。なお、以下の説明では、特に区別して明記している場合を除き、「軸方向L」、「径方向R」、「周方向」は、回転電機MGの回転軸心(図2に示す軸心X)を基準として定義している。そして、「軸第一方向L1」は、軸方向Lに沿って回転電機MGからトルクコンバータTC側へ向かう方向(図2における右側)を表し、「軸第二方向L2」は、軸第一方向L1とは反対方向(図2における左側)を表す。また、「径内方向R1」は、径方向Rの内側へ向かう方向を表し、「径外方向R2」は、径方向Rの外側へ向かう方向を表す。なお、各部材についての方向は、当該部材が車両用駆動装置1に組み付けられた状態での方向を表す。また、各部材についての方向や位置等に関する用語は、製造上許容され得る誤差による差異を有する状態も含む概念として用いている。
1.車両用駆動装置の全体構成
 図1は、本実施形態に係る車両用駆動装置1の概略構成を示す模式図である。図1に示すように、この車両用駆動装置1は、回転電機MGと、トルクコンバータTCと、回転電機MG及びトルクコンバータTCを収容するケース3(図2参照)と、を備えている。トルクコンバータTCは、回転電機MGに駆動連結されており、具体的には、回転電機MGと出力軸Oとの間の動力伝達経路に設けられている。出力軸Oは、出力用差動歯車装置DFを介して車輪Wに駆動連結されており、出力軸Oに伝達された回転及びトルクは、出力用差動歯車装置DFを介して左右2つの車輪Wに分配されて伝達される。これにより、車両用駆動装置1は、回転電機MGのトルクを車輪Wに伝達させて車両を走行させることができる。本実施形態では、トルクコンバータTCが本発明における「流体継手」に相当する。
 本実施形態に係る車両用駆動装置1は、内燃機関Eのトルクを車輪Wに伝達させて車両を走行させることも可能に構成されている。すなわち、車両用駆動装置1は、内燃機関Eに駆動連結される入力軸Iを備えており、図1に示すように、内燃機関Eと車輪Wとを結ぶ動力伝達経路において、内燃機関Eの側から順に、入力軸I、回転電機MG、トルクコンバータTC、及び出力軸Oが設けられている。これにより、本実施形態に係る車両用駆動装置1は、車両の駆動力源として内燃機関E及び回転電機MGの一方又は双方を用いるハイブリッド車両用の駆動装置(ハイブリッド駆動装置)、具体的には、いわゆる1モータパラレル方式のハイブリッド駆動装置として構成されている。
 なお、内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機であり、例えばガソリンエンジンやディーゼルエンジン等を用いることができる。また、本実施形態では、入力軸Iはダンパ16(図2参照、図1では省略)を介して内燃機関Eの出力軸(クランクシャフト等)に駆動連結されている。入力軸Iが、ダンパ16を介さずに内燃機関Eの出力軸に駆動連結された構成とすることもできる。
 本実施形態では、図1に示すように、動力伝達経路における入力軸Iと回転電機MGとの間には、車輪Wから内燃機関Eを切り離す内燃機関切離用クラッチとして機能する第一クラッチC1が配置されている。また、動力伝達経路におけるトルクコンバータTCと出力軸Oとの間には、変速機構TMが配置されている。変速機構TMは、変速比を段階的に或いは無段階に変更可能な機構(例えば自動有段変速機構等)で構成され、中間軸M(変速入力軸)の回転速度を所定の変速比で変速して出力軸O(変速出力軸)へ伝達する。
 本実施形態では、入力軸I、第一クラッチC1、回転電機MG、トルクコンバータTC、変速機構TM、及び出力軸Oは、いずれも軸心X(図2参照)上に配置されており、本実施形態に係る車両用駆動装置1は、FR(Front Engine Rear Drive)方式の車両に搭載される場合に適した一軸構成とされている。
2.駆動装置の各部の構成
 次に、本実施形態に係る車両用駆動装置1の各部の構成について、図2及び図3を参照して説明する。なお、図2は、本実施形態に係る車両用駆動装置1の一部を、軸心Xを含む平面に沿って切断した断面図であり、図3は図2の一部拡大図である。
2-1.ケース
 ケース3は、本実施形態では図2に示すように、第一支持壁部31と、第二支持壁部32と、第三支持壁部33と、周壁部34と、を備えている。周壁部34は、回転電機MG、第一クラッチC1、トルクコンバータTC等の外周を覆う概略円筒状に形成されている。また、周壁部34の径内方向R1側に形成されるケース内空間を軸方向Lに区画するように、第二支持壁部32、第一支持壁部31、及び第三支持壁部33が、軸第二方向L2側から記載の順に配置されている。本実施形態では、第一支持壁部31が本発明における「支持壁部」に相当する。
 図2に示すように、ケース3内における第一支持壁部31と第二支持壁部32との間の空間に、回転電機MG及び第一クラッチC1が収容されている。なお、第一支持壁部31と第二支持壁部32との間の空間は、本実施形態では、径内方向R1側の部分が径外方向R2側の部分より軸方向Lの長さが短い形状に形成されている。また、ケース3内における第一支持壁部31と第三支持壁部33との間の空間に、トルクコンバータTCが収容されている。さらに、ケース3内における第二支持壁部32より軸第二方向L2側の空間に、ダンパ16が収容されている。
 第一支持壁部31は、軸方向Lにおける回転電機MGとトルクコンバータTCとの間で、径方向Rに延びるように形成されている。本実施形態では、第一支持壁部31は、径方向Rに加えて周方向にも延びる円板状の壁部とされており、径方向Rの中心部に、軸方向Lに貫通する貫通孔(以下、「第一貫通孔」という。)が形成されている。第一支持壁部31は、径内方向R1側の部分が全体として径外方向R2側の部分よりも軸第二方向L2側に位置するように、軸方向Lにオフセットされた形状を有している。
 第一支持壁部31は、軸第二方向L2側に向かって突出する第一筒状突出部40を備えている。本実施形態では、第一筒状突出部40は、第一支持壁部31の径方向Rの中心部において、軸心Xと同軸上に配置されており、第一筒状突出部40の内周面40b(図3参照)が、上記第一貫通孔の外縁部を形成している。すなわち、第一筒状突出部40は、第一支持壁部31の径内方向R1側の端部に形成された、軸方向Lに所定厚さを有する肉厚部(ボス部)とされている。
 第一筒状突出部40は、後述するロータ部材21より径内方向R1側であって、径方向Rに見てロータ部材21と重複する部分を有する位置に配置されている。なお、本明細書では、2つの部材の配置に関して、「所定方向に見て重複する部分を有する」とは、当該所定方向を視線方向として当該視線方向に直交する各方向に視点を移動させた場合に、2つの部材が重なって見える視点が少なくとも一部の領域に存在することを指す。
 本実施形態では図3に示すように、第一筒状突出部40の軸第二方向L2側の先端部40aが、回転電機MGの軸方向Lの中央部領域と径方向Rに見て重なる軸方向Lの位置に配置され、第一筒状突出部40の軸第一方向L1側の基端部は、ロータ部材21の軸第一方向L1側の端部より軸第一方向L1側に位置する。そして、第一筒状突出部40の径内方向R1側に、すなわち、第一貫通孔の内部に、後述する動力伝達部材Tの一部が配置されている。また、第一筒状突出部40の軸第一方向L1側の側面部には、径内方向R1側を向く面(本例では円筒状面)を有する段差部40dが形成されている。
 また、第一支持壁部31は、第一筒状突出部40よりも大径の第二筒状突出部41を備えている。第二筒状突出部41は、第一筒状突出部40と同じく、軸第二方向L2側に向かって突出するように形成されているとともに、軸心Xと同軸上に配置されている。図3に示すように、第二筒状突出部41の突出量は第一筒状突出部40の突出量より少なく、第二筒状突出部41の軸第二方向L2側の先端部41aは、第一筒状突出部40の先端部40aより軸第一方向L1側に位置する。また、第二筒状突出部41は、第一筒状突出部40より径方向Rの厚さが小さく形成されている。第二筒状突出部41の内周面41bには、軸第二方向L2側を向く面(本例では円環状面)を有する内周段差部41dが形成されている。この内周段差部41dを境界として、当該内周段差部41dより軸第二方向L2側の部分が大径部とされ、当該内周段差部41dより軸第一方向L1側の部分が小径部とされている。
 第二支持壁部32は、図2に示すように、回転電機MGより軸第二方向L2側(本例では、軸方向Lにおける回転電機MGとダンパ16との間)において径方向Rに延びるように形成されている。本実施形態では、第二支持壁部32は、径方向Rに加えて周方向にも延びる円板状の壁部とされており、径方向Rの中心部に軸方向Lの貫通孔(以下、「第二貫通孔」という。)が形成されている。この第二貫通孔に、入力軸Iが挿通されている。第二支持壁部32は、径内方向R1側の部分が全体として径外方向R2側の部分よりも軸第一方向L1側に位置するように、軸方向Lにオフセットされた形状を有している。図3に示すように、上記第二貫通孔の外縁部を形成する第二支持壁部32の径内方向R1側の部分の内周面32bには、軸第一方向L1側を向く面(本例では円環状面)を有する内周段差部32dが形成されている。この内周段差部32dを境界として、当該内周段差部32dより軸第一方向L1側の部分が大径部とされ、当該内周段差部32dより軸第二方向L2側の部分が小径部とされている。
 第三支持壁部33は、図2に示すように、トルクコンバータTCより軸第一方向L1側(本例では、軸方向LにおけるトルクコンバータTCと変速機構TM(図1参照)との間)において径方向Rに延びるように形成されている。本実施形態では、第三支持壁部33は、径方向Rに加えて周方向にも延びる平坦な円板状の壁部とされており、径方向Rの中心部に軸方向Lの貫通孔(以下、「第三貫通孔」という。)が形成されている。この第三貫通孔に、中間軸Mが挿通されている。第三支持壁部33には、オイルポンプ9が設けられており、オイルポンプ9を駆動するポンプ駆動軸67は、トルクコンバータTCの後述するポンプインペラ61と一体回転するように駆動連結されている。これにより、ポンプインペラ61の回転に伴い、オイルポンプ9は油を吐出し、車両用駆動装置1の各部に油を供給するための油圧を発生させる。なお、ポンプ駆動軸67は、第九軸受79(本例ではニードルベアリング)及びポンプケースを介して、第三支持壁部33に対して回転可能な状態で径方向Rに支持されている。
2-2.回転電機
 回転電機MGは、図2に示すように、軸方向Lにおける第一支持壁部31と第二支持壁部32との間に配置されている。本実施形態では、第一支持壁部31と第二支持壁部32とにより軸方向Lの両側を区画され、周壁部34により径外方向R2側を区画される空間には、オイルポンプ9により吐出された油が供給されるように構成されており、当該油により回転電機MGが冷却される構成となっている。
 回転電機MGは、図2に示すように、ケース3に固定されたステータStと、ロータ部材21と、を備えている。ステータStは、軸方向Lの両側にコイルエンド部Ceを備えている。ロータ部材21は、ロータRoと、当該ロータRoから径内方向R1側に延びて当該ロータRoを支持するロータ支持部材22と、を備えている。ロータRoは、ステータStの径内方向R1側に配置されるとともに、当該ロータRoと一体回転するロータ支持部材22を介して、ケース3に対して回転可能に支持されている。
 ロータ支持部材22は、ロータRoを径内方向R1側から支持する部材であり、本実施形態では、ロータRoを保持するロータ保持部25と、径方向延在部26と、を備えている。ロータ保持部25は、軸心Xと同軸上に配置され、ロータRoの内周面に接する外周部及びロータRoの軸方向Lの両側面に接するフランジ部を有する円筒状に形成されている。径方向延在部26は、ロータ保持部25と一体的に形成され、ロータ保持部25の軸方向Lの中央部に対して軸第一方向L1側の部分から径内方向R1側に延びるように形成されている。径方向延在部26は、径方向Rに加えて周方向にも延びる円環板状部とされている。本実施形態では、径方向延在部26は、径方向Rに平行に延びるとともに、径内方向R1側の端部が、第一筒状突出部40の外周面に対して径外方向R2側に位置するように形成されている。なお、本実施形態では、図3に示すように、径方向延在部26の径内方向R1側の端部(本例では、後述する第二軸方向突出部24の内周面)と、第一筒状突出部40の外周面との間の径方向Rの隙間には、第一スリーブ部材94が配置されている。この第一スリーブ部材94は、当該隙間を油が軸方向Lに流通することを規制するために設けられている。
 径方向延在部26は、軸第一方向L1側に向かって突出する筒状の突出部である第一軸方向突出部23を備えている。第一軸方向突出部23は、軸心Xと同軸上に配置され、本実施形態では、径方向延在部26の径内方向R1側の端部において、径方向延在部26と一体的に形成されている。図3に示すように、第一軸方向突出部23は、径方向Rにおける第一筒状突出部40と第二筒状突出部41との間において、径方向Rに見て第二筒状突出部41と重複する部分を有する位置に配置されている。そして、第一軸方向突出部23の外周面23cと第二筒状突出部41の内周面41bとにより径方向Rの両側を区画される空間であって、径方向延在部26と第一支持壁部31(第二筒状突出部41の内周段差部41d)とにより軸方向Lの両側を区画される空間が、後述する第五軸受75を配置するための軸受配置空間となっている。
 また、径方向延在部26は、軸第二方向L2側に向かって突出する筒状の突出部である第二軸方向突出部24を備えている。第二軸方向突出部24は、軸心Xと同軸上に配置され、本実施形態では、径方向延在部26の径内方向R1側の端部において、径方向延在部26と一体的に形成されている。図3に示すように、第二軸方向突出部24の軸第二方向側の先端部24aは、第一筒状突出部40の先端部40aより軸第二方向L2側に位置する。
 ロータ支持部材22には、板状部材27が取り付けられている。板状部材27は、径方向Rに加えて周方向にも延びる円環板状部材とされている。そして、本実施形態では、図3に示すように、ロータ保持部25における軸方向Lの中央部よりも軸第二方向L2側の部分の内周面に対して、板状部材27の外周面が嵌合(本例ではスプライン嵌合)するように設けられている。これにより、板状部材27はロータ支持部材22と一体回転する。ロータ保持部25の内周面には、軸第二方向L2側を向く面(本例では円環状面)を有する内周段差部25dが形成されている。この内周段差部25dを境界として、当該内周段差部25dより軸第二方向L2側の部分が大径部とされ、当該内周段差部25dより軸第一方向L1側の部分が小径部とされている。また、ロータ保持部25の内周面における、板状部材27の外周面に対して軸方向Lにおける内周段差部25dとは反対側の部分には、スナップリング93が係止されている。そして、ロータ保持部25に取り付けられた状態の板状部材27は、ロータ保持部25に対する軸方向Lの移動がある程度許容される状態で、軸第一方向L1側への移動は内周段差部25dにより規制され、軸第二方向L2側への移動はスナップリング93により規制される。なお、図3には、板状部材27が内周段差部25dの軸第二方向L2側を向く面に当接した状態で、板状部材27とスナップリング93との間に軸方向Lの隙間(第四隙間D4)がある状態を示している。
 本実施形態では、板状部材27は、径内方向R1側の部分が全体として径外方向R2側の部分よりも軸第二方向L2側に位置するように、軸方向Lにオフセットされた形状を有している。板状部材27における径内方向R1側の端部には、径外方向R2側の部分に比べて軸方向Lの厚さが大きい肉厚部28が形成されており、この肉厚部28の外周面28cには、軸第二方向L2側を向く面(本例では円環状面)を有する外周段差部28dが形成されている。この外周段差部28dを境界として、当該外周段差部28dより軸第一方向L1側の部分が大径部とされ、当該外周段差部28dより軸第二方向L2側の部分が小径部とされている。この板状部材27の外周段差部28dは、第二支持壁部32の内周段差部32dより軸第一方向L1側に位置する。そして、板状部材27の肉厚部28の外周面28cと第二支持壁部32の内周面32bとにより径方向Rの両側を区画される空間であって、板状部材27の外周段差部28dと第二支持壁部32の内周段差部32dとにより軸方向Lの両側を区画される空間が、後述する第七軸受77を配置するための軸受配置空間となっている。
2-3.第一クラッチ
 第一クラッチC1は、入力軸Iとロータ部材21との間の動力伝達経路に設けられて係合の状態を変化させることが可能な装置である。すなわち、第一クラッチC1は、当該第一クラッチC1によって係合される2つの係合部材の係合の状態を、当該2つの係合部材が係合した状態(スリップ係合した状態を含む)と、当該2つの係合部材が係合しない状態(解放した状態)とに切り替え可能に構成されている。そして、当該2つの係合部材が係合した状態では、入力軸Iとロータ部材21との間で駆動力の伝達が行われ、当該2つの係合部材が解放した状態では、入力軸Iとロータ部材21との間で駆動力の伝達が行われない。
 図3に示すように、第一クラッチC1は、軸方向Lにおける径方向延在部26と板状部材27との間に配置されている。また、第一クラッチC1は、ロータRoより径内方向R1側であって、径方向Rに見てロータRoと重複する部分を有する位置に配置されている。本実施形態では、第一クラッチC1は、ロータRoの軸方向Lの中央部領域と径方向Rに見て重なる軸方向Lの位置に配置されている。
 本実施形態では、第一クラッチC1は、クラッチハブ51、摩擦部材53、及びピストン54を備え、湿式多板クラッチ機構として構成されている。本実施形態では、ロータ支持部材22のロータ保持部25が、クラッチドラムとして機能する。第一クラッチC1は、摩擦部材53として、対となる入力側摩擦部材と出力側摩擦部材とを有し、入力側摩擦部材はクラッチハブ51の外周部により径内方向R1側から支持され、出力側摩擦部材はロータ保持部25の内周部により径外方向R2側から支持されている。
 クラッチハブ51における摩擦部材53の保持部を除く部分は、径方向R及び周方向に延びる円環板状部とされ、径内方向R1側の端部が入力軸Iのフランジ部Iaに連結(本例では溶接による接合)されている。なお、径方向延在部26と板状部材27とにより軸方向Lの両側を区画され、ロータ保持部25により径外方向R2側を区画される空間には、オイルポンプ9より吐出された油が供給されるように構成されており、当該油により摩擦部材53が冷却される構成となっている。
2-4.トルクコンバータ
 トルクコンバータTCは、図2に示すように、回転電機MGに対して軸第一方向L1側にて当該回転電機MGと同軸上に配置されている。トルクコンバータTCは、軸方向Lにおける第一支持壁部31と第三支持壁部33との間に配置されている。トルクコンバータTCは、回転電機MGのロータ部材21に駆動連結される継手入力部材2と、車輪Wに駆動連結される継手出力部材4と、を備えている。
 図2に示すように、トルクコンバータTCは、ポンプインペラ61、タービンランナ62、ロックアップクラッチとしての第二クラッチC2、及びこれらを収容するカバー部63を備えている。カバー部63は、内側に配置されたポンプインペラ61と一体回転するように連結されている。また、カバー部63には、上述したようにポンプ駆動軸67が一体回転するように連結されている。本実施形態では、これらのポンプインペラ61、カバー部63、及びポンプ駆動軸67により継手入力部材2が構成されている。詳細は後述するが、本実施形態では、継手入力部材2は、連結部材10を介してロータ部材21に駆動連結されている。また、後述するように、本実施形態では、継手入力部材2とロータ部材21とは、軸方向に相対移動可能な状態で駆動連結されている。
 継手出力部材4はタービンランナ62により構成され、このタービンランナ62は中間軸Mに駆動連結されている。これにより、継手出力部材4は、図1に示すように、中間軸M、変速機構TM、出力軸O、及び出力用差動歯車装置DFを介して、車輪Wに駆動連結されている。本実施形態では、タービンランナ62と中間軸Mとは、軸方向Lに相対移動可能であるとともに周方向にある程度のバックラッシ(遊び)を有する状態で一体回転するように、スプライン嵌合により駆動連結されている。
 カバー部63は、図3に示すように、第一支持壁部31に対して軸第一方向L1側において径方向Rに延在するカバー径方向延在部65と、カバー径方向延在部65(本例では、カバー径方向延在部65の径内方向R1側端部)から軸第二方向L2側に突出する筒状のカバー筒状突出部64と、を備えている。カバー径方向延在部65は、カバー筒状突出部64の軸第一方向L1側の端部から径外方向R2側へ延びるように形成され、本例では、径方向Rに加えて周方向にも延びる円環板状部とされている。そして、カバー径方向延在部65におけるカバー筒状突出部64側の部分には、径外方向R2側の部分に比べて軸方向Lの厚さが大きい肉厚部66が形成されている。カバー筒状突出部64は、軸心Xと同軸上に配置されており、カバー筒状突出部64の外周面(本例では、基端部側の部分のみ)には、軸方向Lに延びる第一スプライン歯91が形成されている。また、カバー筒状突出部64の径内方向R1側部分に、締結部材90を締結固定するための締結孔64eが形成されている。これらカバー径方向延在部65とカバー筒状突出部64とは、本実施形態では一体的に形成されている。本実施形態では、カバー径方向延在部65が本発明における「第一径方向延在部」に相当する。また、本実施形態では、カバー筒状突出部64が本発明における「第一筒状突出部」に相当し、カバー筒状突出部64を含む部分(本例ではカバー筒状突出部64と同一)が本発明における「第一部分」に相当する。
 図3に示すように、カバー径方向延在部65は、第一支持壁部31との間に軸方向Lの隙間が形成されるように第一支持壁部31とは離間して配置されている。そして、カバー径方向延在部65の軸第二方向L2側の側面部と、第一支持壁部31の軸第一方向L1側の側面部との間の軸方向Lの隙間が、後述する第一軸受71を配置するための軸受配置空間とされている。具体的には、上記のように、第一支持壁部31の第一筒状突出部40の軸第一方向L1側の側面部には、段差部40dが形成されている。そして、カバー径方向延在部65における当該段差部40dより径内方向R1側に位置する軸第二方向L2側の側面部には、径外方向R2側を向く面(本例では円筒状面)を有する段差部66dが形成されている。本例では、この段差部66dは、カバー径方向延在部65が備える肉厚部66に形成されている。そして、第一支持壁部31(具体的には第一筒状突出部40)の段差部40dと、カバー径方向延在部65(具体的には肉厚部66)の段差部66dとにより径方向Rの両側を区画される空間であって、第一支持壁部31(具体的には第一筒状突出部40)とカバー径方向延在部65(具体的には肉厚部66)とにより軸方向Lの両側を区画される空間が、後述する第一軸受71を配置するための軸受配置空間となっている。
2-5.動力伝達部材
 動力伝達部材Tは、ロータ部材21と継手入力部材2とが連動して回転するように連結されて構成されている。ここで、「連動して」とは、ロータ部材21と継手入力部材2との回転速度の比が一意に定まる状態を意味する。本実施形態では、ロータ部材21と継手入力部材2とが一体回転するように連結されて、動力伝達部材Tが構成されている。なお、本実施形態では、ロータ部材21と継手入力部材2とは、以下に述べる連結部材10を介して連結されている。すなわち、本実施形態では、動力伝達部材Tは、ロータ部材21、継手入力部材2、及び連結部材10を含んで構成されている。
 連結部材10は、図3に示すように、第一筒状突出部40の径内方向R1側を通って軸方向Lに延びるとともに、第一筒状突出部40の先端部40aより軸第二方向L2側において当該第一筒状突出部40より径外方向R2側まで延びるように形成されている。言い換えれば、連結部材10は、第一支持壁部31に対して軸第二方向L2側において径方向Rに延在する連結径方向延在部12と、連結径方向延在部12から軸第一方向L1側に突出する筒状の連結筒状突出部11と、を備えている。そして、連結筒状突出部11は、第一筒状突出部40の径内方向R1側に配置されており、連結径方向延在部12が、連結筒状突出部11の軸第二方向L2側の端部から径外方向R2側へ延びるように形成されている。本例では、連結径方向延在部12は、径方向Rに加えて周方向にも延びる円環板状部とされている。これら連結径方向延在部12と連結筒状突出部11とは、本実施形態では一体的に形成されている。本実施形態では、連結径方向延在部12が本発明における「第二径方向延在部」に相当する。また、本実施形態では、連結筒状突出部11が本発明における「第二筒状突出部」に相当し、連結筒状突出部11を含む部分(本例では連結筒状突出部11と同一)が本発明における「第二部分」に相当する。
 連結筒状突出部11は、軸心Xと同軸上に配置されており、連結筒状突出部11の内周面(本例では、先端部側の部分のみ)には、軸方向Lに延びる第二スプライン歯92が形成されている。この第二スプライン歯92は、カバー筒状突出部64の外周面に形成された第一スプライン歯91と係合するように構成されている。そして、図3に示すように、連結筒状突出部11の内周面をカバー筒状突出部64の外周面に外嵌させた状態で、カバー部63と連結部材10とが、スプライン歯91,92によるスプライン嵌合により互いに連結されている。すなわち、カバー部63(継手入力部材2)と連結部材10とが、一体回転するように互いに連結されている。そして、このようにスプライン嵌合により互いに連結されたカバー筒状突出部64と連結筒状突出部11とにより、第一支持壁部31の径内方向R1側を通って軸方向Lに延びる、動力伝達部材Tの軸方向延在部5が形成されている。
 ここで、カバー筒状突出部64と連結筒状突出部11との連結は、軸方向Lに延びるスプライン歯91,92によるスプライン連結であるため、カバー筒状突出部64と一体的に形成されたカバー径方向延在部65と、連結筒状突出部11と一体的に形成された連結径方向延在部12との間の軸方向Lの相対移動は、当該スプライン連結によっては規制されない。この点に関し、本実施形態では、継手入力部材2の軸第一方向L1側への移動と、継手入力部材2の軸第二方向L2側への移動との双方を、第一支持壁部31(具体的には、第一筒状突出部40)により規制すべく、第一筒状突出部40を挟んだ軸方向Lの両側に配置されるカバー径方向延在部65と連結径方向延在部12とが、軸方向延在部5を介しての軸方向Lの相対移動が規制される状態で連結される構成を採用している。このような構成は、以下に説明する移動規制機構MRを設けることで実現されている。
 移動規制機構MRは、カバー筒状突出部64と連結筒状突出部11との軸方向Lの相対移動を規制する機構である。本実施形態では、図3に示すように、連結筒状突出部11の軸第一方向L1側の端面(先端部11a)がカバー径方向延在部65(本例では肉厚部66)に当接すると共に、カバー筒状突出部64に締結固定された締結部材90の軸第一方向L1側を向く面が連結筒状突出部11の軸第二方向L2側を向く面に当接することにより、移動規制機構MRが構成されている。具体的には、本実施形態では、連結筒状突出部11の内周面には、軸第二方向L2側を向く面(本例では円環状面)を有する内周段差部11dが形成されている。また、締結部材90(本例では締結ボルト)は、カバー筒状突出部64の締結孔64eに締結固定された状態で、カバー筒状突出部64の外周面より径外方向R2側に突出する円環状部(本例ではフランジ付ボルトのボルト頭部)を有し、当該円環状部が内周段差部11dの軸第二方向L2側を向く面に当接することにより、移動規制機構MRが構成されている。
 連結径方向延在部12は、第一筒状突出部40より径外方向R2側において、ロータ支持部材22に連結されている。本実施形態では、連結径方向延在部12の径外方向R2側の端部と、ロータ支持部材22の第二軸方向突出部24の軸第二方向L2側の端部(先端部24a)とが、軸方向Lに相対移動可能な状態で一体回転するように連結(係合)されている。具体的には、連結径方向延在部12の径外方向R2側の端部は、径外方向R2側に突出する係合片が周方向に複数分散配置された外歯の係合部とされている。また、第二軸方向突出部24の先端部24aは、当該係合片を挿入可能な周方向の幅及び軸方向Lの長さを有する径方向Rの貫通孔が、周方向に複数(当該係合片と同数)分散配置された円筒状係合部とされている。本例では、この貫通孔は、第二軸方向突出部24の軸第二方向L2側の端縁に開口するとともに、軸方向Lの長さが上記係合片の軸方向L長さより大きい、径方向Rに見てU字状の貫通孔とされている。このようなスプライン状の係合機構により、第二軸方向突出部24と連結径方向延在部12とが、軸方向Lに相対移動可能な状態で一体回転するよう連結されており、その結果、ロータ部材21と連結径方向延在部12とが、言い換えれば、ロータ部材21と継手入力部材2とが、軸方向Lに相対移動可能な状態で駆動連結されている。
 なお、連結筒状突出部11の外周面は、第一筒状突出部40の内周面40bより径内方向R1側に配置され、連結筒状突出部11の外周面と第一筒状突出部40の内周面40bとの間の径方向Rの隙間が、後述する第六軸受76を配置するための軸受配置空間となっている。また、この隙間における第六軸受76より軸第二方向L2側には、第二スリーブ部材95が配置されている。この第二スリーブ部材95は、当該隙間を油が軸方向Lに流通することを規制するために設けられている。
 また、連結径方向延在部12は、第一筒状突出部40の先端部40aとの間に軸方向Lの隙間が形成されるように、軸第一方向L1側の側面部が当該先端部40aより軸第二方向L2側に位置するように配置されている。そして、連結径方向延在部12の軸第一方向L1側の側面部と第一筒状突出部40の先端部40aとの間の軸方向Lの隙間が、後述する第二軸受72を配置するための軸受配置空間となっている。なお、本実施形態では、連結径方向延在部12の軸第一方向L1側の側面部には、径内方向R1側を向く面(本例では円筒状面)を有する段差部12dが形成されている。また、第二スリーブ部材95は、第一筒状突出部40の先端部40aより軸第二方向L2側に突出する部分を有するように配置されている。本実施形態では、第二軸受72を配置するための上記軸受配置空間は、連結径方向延在部12の段差部12dと、第二スリーブ部材95の外周面とにより径方向Rの両側を区画される空間とされている。
3.各構成部材の支持構造
 次に、本実施形態に係る車両用駆動装置1における各構成部材の支持構造について、動力伝達部材Tの支持構造を中心に説明する。
3-1.径方向の支持構造
 図2及び図3に示すように、車両用駆動装置1は、ロータ部材21を径方向Rに支持する軸受として、第五軸受75と第七軸受77とを備えており、ロータ部材21はこれらの第五軸受75及び第七軸受77により、軸方向Lの両側で径方向Rに支持されている。第五軸受75は、ロータ部材21を第一支持壁部31に対して回転可能な状態で径方向Rに支持する軸受であり、径方向Rの荷重を受けることが可能なラジアル軸受(本例ではボールベアリング)が用いられる。第七軸受77は、ロータ部材21を第二支持壁部32に対して回転可能な状態で径方向Rに支持する軸受であり、径方向Rの荷重を受けることが可能なラジアル軸受(本例ではボールベアリング)が用いられる。本実施形態では、第五軸受75が本発明における「第三軸受」に相当し、第七軸受77が本発明における「第四軸受」に相当する。
 本実施形態では、第五軸受75は、第一支持壁部31の第一筒状突出部40より径外方向R2側に配置されており、具体的には、第一支持壁部31の第二筒状突出部41の内周面41bと、ロータ支持部材22の第一軸方向突出部23の外周面23cとに接するように配置されている。これにより、ロータ部材21は、第五軸受75を介して、第二筒状突出部41の内周面41bに支持されている。このように、本実施形態では、第一軸方向突出部23の外周面23cが、第五軸受75により第一支持壁部31に対して支持される被支持部とされている。図3に示す例では、第五軸受75は、第二筒状突出部41の内周段差部41dの軸第二方向L2側を向く面に接するように配置されている。なお、図3に示すように、第一クラッチC1は、軸方向Lに見てこの第五軸受75と重複する部分を有する位置に配置されている。具体的には、クラッチハブ51の径外方向R2側部分と当該クラッチハブ51に支持される摩擦部材53の径内方向R1側部分とが、第五軸受75と同じ径方向Rの位置に配置されている。
 本実施形態では、第七軸受77は、第五軸受75より径内方向R1側に配置され、具体的には、軸方向Lに見て第一筒状突出部40と重複する部分を有する位置に配置されている。より具体的には、第七軸受77は、第二支持壁部32の径内方向R1側の部分の内周面32bと、ロータ支持部材22に取り付けられた板状部材27の肉厚部28の外周面28cとに接するように配置されている。これにより、ロータ部材21は、板状部材27及び第七軸受77を介して、第二支持壁部32の内周面32bに支持されている。このように、第七軸受77は、ロータ部材21が構成する動力伝達部材Tを第二支持壁部32に対して回転可能な状態で径方向Rに支持している。なお、本例では、この径方向Rの支持は、板状部材27を介した間接的な支持である。
 第七軸受77は、本実施形態では、第二支持壁部32の内周面32bに対して圧入(しまり嵌め)されており、当該内周面32bに形成された内周段差部32dの軸第一方向L1側を向く面に当接した状態で、第二支持壁部32に固定されている。一方、第七軸受77は、板状部材27の肉厚部28の外周面28cに対しては、軸方向Lの移動がある程度許容される状態で嵌合(すきま嵌め)されている。図3には、板状部材27が第七軸受77に当接する位置から軸第一方向L1側に僅かに移動し、肉厚部28の外周面28cに形成された外周段差部28dの軸第二方向L2側を向く面と第七軸受77との間に軸方向Lの隙間(第三隙間D3)がある状態を示している。
 なお、本実施形態では、第七軸受77より径内方向R1側には、入力軸Iを第二支持壁部32に対して回転可能な状態で径方向Rに支持する第八軸受78(本例ではニードルベアリング)が配置されている。第八軸受78は、入力軸Iの外周面と、板状部材27の肉厚部28の内周面とに接するように配置されており、入力軸Iは、第八軸受78に加えて当該肉厚部28及び第七軸受77を介して、第二支持壁部32の内周面32bに支持されている。
 また、車両用駆動装置1は、継手入力部材2を径方向Rに支持する軸受として、第六軸受76と第九軸受79(図2参照)とを備えており、継手入力部材2はこれらの第六軸受76及び第九軸受79により、軸方向Lの両側で径方向Rに支持されている。第六軸受76は、図3に示すように、継手入力部材2を第一支持壁部31に対して回転可能な状態で径方向Rに支持する軸受であり、径方向Rの荷重を受けることが可能なラジアル軸受(本例ではニードルベアリング)が用いられる。
 本実施形態では、第六軸受76は、第一支持壁部31の第一筒状突出部40より径内方向R1側に配置されており、具体的には、第一筒状突出部40の内周面40bと、連結筒状突出部11の外周面とに接するように配置されている。これにより、継手入力部材2は、一体回転するように連結されるとともに移動規制機構MRにより軸方向Lに相対移動不能に固定された連結部材10を介して、第一筒状突出部40の内周面40bに支持されている。
 上記のように、第五軸受75は、第一支持壁部31の第一筒状突出部40より径外方向R2側に配置されており、第六軸受76は、第一支持壁部31の第一筒状突出部40より径内方向R1側に配置されている。すなわち、第五軸受75と第六軸受76とは、径方向Rの異なる位置に配置されている。そして、本実施形態では、第六軸受76は、径方向Rに見て第五軸受75と重複する部分を有する位置に配置されている。具体的には、第六軸受76は、軸第一方向L1側の部分が第五軸受75の軸第二方向L2側の部分と同じ軸方向Lの位置となるように、第五軸受75に対して軸第二方向L2側に僅かにずらして配置されている。
3-2.軸方向の支持構造
 図2及び図3に示すように、車両用駆動装置1は、動力伝達部材Tを第一支持壁部31に対して軸方向Lに支持する軸受として、第一軸受71と第二軸受72とを備えている。第一軸受71は、動力伝達部材Tを第一支持壁部31に対して回転可能な状態で軸第二方向L2側から支持する軸受であり、軸方向Lの荷重を受けることが可能な軸受(本例ではスラスト軸受)が用いられる。第二軸受72は、動力伝達部材Tを第一支持壁部31に対して回転可能な状態で軸第一方向L1側から支持する軸受であり、軸方向Lの荷重を受けることが可能な軸受(本例ではスラスト軸受)が用いられる。
 本実施形態では、第一軸受71と第二軸受72とは、動力伝達部材Tを構成する部材の内、軸方向Lに相対移動不能に固定された継手入力部材2と連結部材10とを、第一支持壁部31に対して支持する。具体的には、図3に示すように、第一軸受71はカバー径方向延在部65を軸第二方向L2側から支持し、第二軸受72は連結径方向延在部12を軸第一方向L1側から支持している。後述するように、第一軸受71及び第二軸受72は、軸方向Lの両側に配置される部材の、軸方向Lに互いに離れる方向の相対移動を禁止しない構成とされている。
 第一軸受71は、図3に示すように、第一支持壁部31とカバー径方向延在部65とが軸方向Lに対向する部分に配置されている。具体的には、第一軸受71は、第一支持壁部31が備える第一筒状突出部40の軸第一方向L1側の側面部と、カバー径方向延在部65が備える肉厚部66の軸第二方向L2側の側面部とが対向する部分に配置されている。本実施形態では、この対向部分は、第一筒状突出部40の段差部40dと肉厚部66の段差部66dとにより径方向Rの両側を区画される空間に位置する。そして、第一軸受71は、肉厚部66の段差部66dの径外方向R2側を向く面、及び第一筒状突出部40の段差部40dの径内方向R1側を向く面の少なくとも一方の面に対して、軸方向Lの移動がある程度許容される状態で嵌合(すきま嵌め)されている。よって、第一軸受71は、第一支持壁部31に対する継手入力部材2の軸第一方向L1側の移動を禁止しない。図3においては、第一軸受71の配設部位における軸方向Lの隙間(クリアランス)が詰められた状態から、継手入力部材2が軸第一方向L1側に僅かに移動して、第一筒状突出部40の軸第一方向L1側の側面部と第一軸受71との間に軸方向Lの隙間(第一隙間D1)がある状態を示している。
 第二軸受72は、図3に示すように、第一支持壁部31と連結径方向延在部12とが軸方向Lに対向する部分に配置されている。具体的には、第二軸受72は、第一支持壁部31が備える第一筒状突出部40の先端部40aと、連結径方向延在部12の軸第一方向L1側の側面部とが対向する部分に配置されている。本実施形態では、この対向部分は、連結径方向延在部12の段差部12dと第二スリーブ部材95の外周面とにより径方向Rの両側を区画される空間に位置する。そして、第二軸受72は、連結径方向延在部12の段差部12dの径内方向R1側を向く面、及び第二スリーブ部材95の外周面の少なくとも一方の面に対して、軸方向Lの移動がある程度許容される状態で嵌合(すきま嵌め)されている。よって、第二軸受72は、第一支持壁部31に対する連結部材10の軸第二方向L2側の移動を禁止しない。図3においては、第二軸受72の配設部位における軸方向Lの隙間が詰められており、第二軸受72が第一筒状突出部40の先端部40aと連結径方向延在部12の軸第一方向L1側の側面部との双方に接している状態を示している。
 本実施形態では、更に、軸方向Lにおける連結径方向延在部12と入力軸Iのフランジ部Iaとの間に、軸方向Lの荷重を受けることが可能な第三軸受73(本例ではスラスト軸受)が配置されているとともに、軸方向Lにおける入力軸Iのフランジ部Iaと板状部材27の肉厚部28との間に、軸方向Lの荷重を受けることが可能な第四軸受74(本例ではスラスト軸受)が配置されている。これらの第三軸受73及び第四軸受74も、軸方向Lの両側に配置される部材の、軸方向Lに互いに離れる方向の相対移動を禁止しない構成とされている。図3においては、第三軸受73の配設部位における軸方向Lの隙間が詰められており、第四軸受74の配設部位においては、第四軸受74と肉厚部28との間に軸方向Lの隙間(第二隙間D2)がある状態を示している。
 図3に示すように、本実施形態では、第一軸受71は、軸方向Lに見て第二軸受72と重複する部分を有するように配置されている。本実施形態では、第一軸受71は、更に、第三軸受73、第四軸受74、及び第七軸受77に対しても、軸方向Lに見て重複する部分を有するように配置されている。本例では、第一軸受71が位置する径方向Rの範囲、第二軸受72が位置する径方向Rの範囲、第三軸受73が位置する径方向Rの範囲、第四軸受74が位置する径方向Rの範囲、及び第七軸受77が位置する径方向Rの範囲の全ての範囲に含まれる径方向Rの位置が存在するように、各軸受が配置されている。
 ところで、トルクコンバータTCにおけるポンプインペラ61とタービンランナ62との間に回転速度差が生じている場合には、当該回転速度差によりポンプインペラ61とタービンランナ62とを相互に近接させる引力が生じる。この際、タービンランナ62は、軸方向Lに相対移動可能に中間軸Mに駆動連結されているため、基本的には、ポンプインペラ61には大きな軸方向荷重は作用しない。しかし、場合によっては、タービンランナ62の軸第一方向L1側への移動が阻害され、ポンプインペラ61に対して軸第二方向L2側への大きな荷重が作用する場合がある。
 本実施形態では、ポンプインペラ61に対して作用し得るこのような軸第二方向L2側への荷重を、主に、スラスト軸受である第一軸受71により受け止める構成としている。これにより、ラジアル軸受である第七軸受77に対して大きな軸方向荷重が作用することを抑制することができ、第七軸受77として、大きな軸方向荷重が作用する場合に比べて小型の軸受を採用することが可能となっている。なお、このような構成は、以下に説明するように、カバー径方向延在部65と第一支持壁部31との間に設けられる軸方向Lの隙間の総和(以下、「第一総和S1」とする。)を、連結径方向延在部12と第二支持壁部32との間に設けられる軸方向Lの隙間の総和(以下、「第二総和S2」とする。)より小さく設定することで実現されている。なお、第一総和S1は、カバー径方向延在部65が、当該カバー径方向延在部65の軸方向Lの移動可能範囲における最も軸第一方向L1側に位置する場合の隙間により決定される。第二総和S2は、連結径方向延在部12が、当該連結径方向延在部12の軸方向Lの移動可能範囲における最も軸第一方向L1側に位置する場合の隙間により決定される。
 具体的には、本実施形態では、ロータ部材21とカバー径方向延在部65(継手入力部材2)とが、軸方向Lに相対移動可能な状態で駆動連結されている。よって、ポンプインペラ61に対して作用する軸第二方向L2側への荷重はロータ部材21にはほとんど伝達されず、この場合の軸方向荷重は、図3から明らかなように、第一軸受71、第二軸受72、第三軸受73、第四軸受74、及び第七軸受77の少なくとも何れかによって受け止められる必要がある。すなわち、本実施形態では、第一総和S1に寄与する隙間には、第一軸受71の配設部位における軸方向Lの隙間のみが含まれる。また、第二総和S2に寄与する隙間には、第二軸受72の配設部位における軸方向Lの隙間、第三軸受73の配設部位における軸方向Lの隙間、第四軸受74の配設部位における軸方向Lの隙間、及び第七軸受77の配設部位における軸方向Lの隙間が含まれる。なお、このような各軸受の配設部位における隙間には、当該軸受の内部に存在する隙間であって、当該軸受を構成する部材間の軸方向Lの相対移動を許容する隙間も含まれる。
 図3に基づきより具体的に説明すると、図3は、軸方向Lに相対移動不能に連結された継手入力部材2及び連結部材10が、軸方向Lの移動可能範囲における最も軸第一方向L1側に位置している状況を示している。そのため、第二軸受72の配設部位における軸方向Lの隙間は詰められ、第一軸受71の配設部位に軸方向Lの隙間(第一隙間D1)が存在している。この場合、第一総和S1は「D1」となる。また、図3は、第三軸受73の配設部位における軸方向Lの隙間が詰められ、第四軸受74の配設部位に軸方向Lの隙間(第二隙間D2)が存在するとともに、第七軸受77の配設部位に軸方向Lの隙間(第三隙間D3)が存在する状態を示している。この場合、第二総和S2は「D2+D3」となる。
 そして、本実施形態では、第一総和S1が第二総和S2より小さく(D1<D2+D3)設定されている。よって、ポンプインペラ61に対して軸第二方向L2側への大きな荷重が作用した場合であっても、連結径方向延在部12と第二支持壁部32との間に存在する軸方向Lの隙間が詰まる前に、カバー径方向延在部65と第一支持壁部31との間に存在する軸方向Lの隙間が詰まるため、当該荷重を第一軸受71により受け止めて、第七軸受77に対して大きな軸方向荷重が作用することを抑制することが可能となっている。
 更に、本実施形態では、ポンプインペラ61に対して軸第二方向L2側への大きな荷重が作用した場合に、当該荷重が、第七軸受77だけでなくロータ保持部25に係止されたスナップリング93に作用するのも抑制すべく、以下のような構成を採用している。すなわち、第一総和S1が、図3に示す場合における板状部材27とスナップリング93との間の軸方向Lの隙間(第四隙間D4)より小さく(D1<D4)設定されている。なお図3では、ロータ部材21が第五軸受75に接するように配置されているとともに、板状部材27が、当該板状部材27の軸方向Lの移動可能範囲における最も軸第一方向L1側(内周段差部25dに当接する位置)に位置している。このような場合において、「D4>D2+D3」の関係が満たされるように各部を設計することで、スナップリング93に軸方向Lの荷重が作用することをより一層抑制することが可能となる。
4.その他の実施形態
 最後に、本発明に係る車両用駆動装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。
(1)上記の実施形態では、ロータ部材21と連結径方向延在部12(継手入力部材2)とが、軸方向Lに相対移動可能な状態で駆動連結されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、連結部材10とロータ支持部材22とが軸方向Lに相対移動不能な状態で連結されることで、ロータ部材21と継手入力部材2とが、軸方向Lに相対移動不能な状態で駆動連結されている構成とすることもできる。この場合、連結部材10をロータ支持部材22とは別体(独立した別部材)とせずに、連結部材10がロータ支持部材22と一体的に形成された構成とすることもできる。また、この場合、図3に示す例における第二総和S2は「D3」となり、(D1<D3)の関係が満たされるように各部を設計すると好適である。
(2)上記の実施形態では、連結部材10が、第一筒状突出部40より径外方向R2側まで延びる連結径方向延在部12を有し、連結部材10とロータ支持部材22との係合部が、第一筒状突出部40より径外方向R2側に位置する構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、ロータ支持部材22が、第一筒状突出部40より径内方向R1側まで延びる部分を有し、連結部材10とロータ支持部材22との係合部が、第一筒状突出部40より径内方向R1側に位置する構成とすることもできる。この場合、連結部材10が、連結筒状突出部11のみを備える構成としても良い。
(3)上記の実施形態では、連結部材10が、継手入力部材2とは別体である構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、連結部材10が継手入力部材2に一体的に形成された構成とすることもできる。
(4)上記の実施形態では、連結筒状突出部11の内周面に内周段差部11dが形成され、カバー筒状突出部64に締結固定された締結部材90の軸第一方向L1側を向く面が、当該内周段差部11dの軸第二方向L2側を向く面に当接することにより、移動規制機構MRが構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、連結筒状突出部11が内周段差部11dを備えず、締結部材90の軸第一方向L1側を向く面が、連結筒状突出部11の軸第二方向L2側の基端部の軸第二方向L2側を向く面に当接する構成とすることもできる。また、移動規制機構MRが、スナップリング等を用いてカバー筒状突出部64と連結筒状突出部11との軸方向Lの相対移動を規制する機構であっても良い。
(5)上記の実施形態では、連結筒状突出部11の内周面をカバー筒状突出部64の外周面に外嵌させた状態で、カバー部63と連結部材10とがスプライン嵌合により互いに連結されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、カバー筒状突出部64が内周面にスプライン歯を有するともに、連結筒状突出部11が外周面にスプライン歯を有し、カバー筒状突出部64の内周面を連結筒状突出部11の外周面に外嵌させた状態で、カバー部63と連結部材10とがスプライン嵌合により互いに連結される構成とすることもできる。
(6)上記の実施形態では、第五軸受75が第一筒状突出部40の径外方向R2側に配置されているとともに、第六軸受76が第一筒状突出部40の径内方向R1側に配置されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第五軸受75と第六軸受76とが、第一筒状突出部40に対して径方向Rの同じ側に配置された構成とすることもできる。
(7)上記の実施形態では、第一クラッチC1が軸方向Lに見て第五軸受75と重複する部分を有する位置に配置された構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、例えば、第一クラッチC1が、軸方向Lに見て第五軸受75と重複する部分を有さないように、第五軸受75とは径方向Rの異なる位置(例えば第五軸受75より径内方向R1側)に配置された構成とすることもできる。
(8)上記の実施形態では、第一クラッチC1が、ロータRoより径内方向R1側であって、径方向Rに見てロータRoと重複する部分を有する位置に配置された構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一クラッチC1が、径方向Rに見てロータRoと重複する部分を有さないように、ロータRoより軸第一方向L1側や軸第二方向L2側に配置された構成や、第一クラッチC1がロータRoより径外方向R2側に配置された構成とすることもできる。
(9)上記の実施形態では、第六軸受76が、径方向Rに見て第五軸受75と重複する部分を有する位置に配置されている構成を例として説明したが、第六軸受76が、径方向Rに見て第五軸受75と重複する部分を有さないように、第五軸受75とは軸方向Lの異なる位置に配置された構成とすることもできる。
(10)上記の実施形態では、連結径方向延在部12の径外方向R2側の端部が、径外方向R2側に突出する係合片を周方向に複数分散配置した外歯の係合部とされ、第二軸方向突出部24の先端部24aが、当該係合片を挿入可能な周方向の幅及び軸方向Lの長さを有する径方向Rの貫通孔を、周方向に複数(当該係合片と同数)分散配置した円筒状係合部とされている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。例えば、第二軸方向突出部24の先端部24aが、上記貫通孔に代えて径内方向R1側に突出する係合片を周方向に複数分散配置した内歯の係合部とされる構成とすることができる。このような構成では上記実施形態とは異なり、第二軸方向突出部24は、先端部24aにおいても全周に亘って連続する円環状の本体部を有する。
(11)上記の実施形態では、ロータ支持部材22の第一軸方向突出部23の外周面23cが、第五軸受75により第一支持壁部31に対して支持される被支持部である構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第五軸受75が、第一軸方向突出部23の内周面23bと第一支持壁部31の外周面(例えば、第一筒状突出部40の外周面)とに接するように配置される構成、すなわち、第一軸方向突出部23の内周面23bが、第五軸受75により第一支持壁部31に対して支持される被支持部である構成とすることもできる。また、ロータ支持部材22における第一軸方向突出部23以外の部分(例えば、第二軸方向突出部24の内周面等)が、軸受により第一支持壁部31に対して支持される被支持部である構成とすることもできる。この場合、ロータ支持部材22が第一軸方向突出部23を備えない構成とすることもできる。
(12)上記の実施形態では、ロータ支持部材22の第一軸方向突出部23が、径方向延在部26の径内方向R1側の端部に形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一軸方向突出部23が、径方向延在部26の径方向Rにおける中間部(例えば、第二筒状突出部41より径外方向R2側)に形成されている構成とすることもできる。
(13)上記の実施形態では、第一軸受71や第二軸受72が、第一支持壁部31の第一筒状突出部40に対して動力伝達部材Tを支持する構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一軸受71及び第二軸受72の少なくとも一方が、第一支持壁部31における軸方向Lの厚さが一様な部分に対して動力伝達部材Tを支持する構成とすることもできる。このような構成では、第一支持壁部31が第一筒状突出部40を備えない構成とすることもできる。
(14)上記の実施形態では、車両用駆動装置1が一軸構成とされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、車両用駆動装置1を、例えばカウンタギヤ機構等を備えた複軸構成の駆動装置とすることもできる。このような構成は、FF(Front Engine Front Drive)方式の車両に搭載される場合に適している。
(15)上記の実施形態では、車両用駆動装置1が、内燃機関Eに駆動連結される入力軸I、及び第一クラッチC1を備えた構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、車両用駆動装置1が、入力軸Iや第一クラッチC1を備えない構成とすることも可能である。
(16)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
 本発明は、回転電機と、回転電機と同軸上に配置される流体継手と、回転電機及び流体継手を収容するケースと、を備え、流体継手が、回転電機のロータ部材に駆動連結される継手入力部材と、車輪に駆動連結される継手出力部材と、を備える車両用駆動装置に好適に利用することができる。
1:車両用駆動装置
2:継手入力部材
3:ケース
4:継手出力部材
5:軸方向延在部
11:連結筒状突出部(第二部分、第二筒状突出部)
12:連結径方向延在部(第二径方向延在部)
21:ロータ部材
31:第一支持壁部(支持壁部)
32:第二支持壁部
64:カバー筒状突出部(第一部分、第一筒状突出部)
65:カバー径方向延在部(第一径方向延在部)
71:第一軸受
72:第二軸受
75:第五軸受(第三軸受)
77:第七軸受(第四軸受)
90:締結部材
91:第一スプライン歯(スプライン歯)
92:第二スプライン歯(スプライン歯)
L:軸方向
L1:軸第一方向
L2:軸第二方向
MG:回転電機
MR:移動規制機構
R:径方向
T:動力伝達部材
TC:トルクコンバータ(流体継手)
W:車輪

Claims (8)

  1.  回転電機と、当該回転電機に対して当該回転電機の軸方向の一方側である軸第一方向側にて、当該回転電機と同軸上に配置される流体継手と、前記回転電機及び前記流体継手を収容するケースと、を備え、前記流体継手が、前記回転電機のロータ部材に駆動連結される継手入力部材と、車輪に駆動連結される継手出力部材と、を備える車両用駆動装置であって、
     前記ケースは、前記軸方向における前記回転電機と前記流体継手との間で、前記回転電機の径方向に延びる支持壁部を備え、
     前記ロータ部材と前記継手入力部材とが連動して回転するように連結されて動力伝達部材を構成し、
     前記動力伝達部材を前記支持壁部に対して回転可能な状態で前記軸第一方向とは反対方向の軸第二方向側から支持する第一軸受と、前記動力伝達部材を前記支持壁部に対して回転可能な状態で前記軸第一方向側から支持する第二軸受と、を備える車両用駆動装置。
  2.  前記動力伝達部材は、前記支持壁部の前記径方向の内側を通って前記軸方向に延びる軸方向延在部と、前記支持壁部に対して前記軸第一方向側において前記径方向の外側へ延びる第一径方向延在部と、前記支持壁部に対して前記軸第二方向側において前記径方向の外側へ延びる第二径方向延在部と、を備えると共に、前記第一径方向延在部と第二径方向延在部とが、前記軸方向延在部を介しての前記軸方向の相対移動が規制された状態で連結されており、
     前記第一軸受は前記第一径方向延在部を前記軸第二方向側から支持し、前記第二軸受は前記第二径方向延在部を前記軸第一方向側から支持している請求項1に記載の車両用駆動装置。
  3.  前記軸方向延在部は、前記第一径方向延在部と一体的に形成された第一部分と、前記第二径方向延在部と一体的に形成された第二部分とが、前記軸方向に延びるスプライン歯によるスプライン嵌合により互いに連結されて構成されている請求項2に記載の車両用駆動装置。
  4.  前記軸方向延在部は、前記第一部分と前記第二部分との前記軸方向の相対移動を規制する移動規制機構を備えている請求項3に記載の車両用駆動装置。
  5.  前記ロータ部材を前記支持壁部に対して回転可能な状態で前記径方向に支持する第三軸受を更に備え、
     前記ロータ部材と前記第二径方向延在部とが、前記軸方向に相対移動可能な状態で連結されている請求項2から4のいずれか一項に記載の車両用駆動装置。
  6.  前記第一軸受が、前記支持壁部と前記第一径方向延在部とが前記軸方向に対向する部分に配置されたスラスト軸受であり、前記第二軸受が、前記支持壁部と前記第二径方向延在部とが前記軸方向に対向する部分に配置されたスラスト軸受である請求項2から5のいずれか一項に記載の車両用駆動装置。
  7.  前記支持壁部が第一支持壁部であり、前記ケースは、前記回転電機より前記軸第二方向側において前記径方向に延びる第二支持壁部を備え、
     前記動力伝達部材を前記第二支持壁部に対して回転可能な状態で前記径方向に支持する第四軸受を更に備え、
     前記第一径方向延在部と前記第一支持壁部との間に設けられる前記軸方向の隙間の総和が、前記第二径方向延在部と前記第二支持壁部との間に設けられる前記軸方向の隙間の総和より小さく設定されている請求項2から6のいずれか一項に記載の車両用駆動装置。
  8.  前記第一部分は、前記第一径方向延在部から前記軸第二方向側に突出する筒状部分であって、外周面に第一スプライン歯が形成された第一筒状突出部を備え、
     前記第二部分は、前記第二径方向延在部から前記軸第一方向側に突出する筒状部分であって、内周面に前記第一スプライン歯と係合する第二スプライン歯が形成された第二筒状突出部を備え、
     前記第二筒状突出部の前記軸第一方向側の端面が前記第一径方向延在部に当接すると共に、前記第一部分に締結固定された締結部材の前記軸第一方向側を向く面が前記第二筒状突出部の前記軸第二方向側を向く面に当接することにより、前記移動規制機構が構成されている請求項4に記載の車両用駆動装置。
PCT/JP2012/078019 2011-11-04 2012-10-30 車両用駆動装置 WO2013065676A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012003398.1T DE112012003398T5 (de) 2011-11-04 2012-10-30 Fahrzeugantriebsvorrichtung
CN201280044140.8A CN103797277B (zh) 2011-11-04 2012-10-30 车辆用驱动装置
US14/241,243 US9175759B2 (en) 2011-11-04 2012-10-30 Vehicle drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011242702A JP5589247B2 (ja) 2011-11-04 2011-11-04 車両用駆動装置
JP2011-242702 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065676A1 true WO2013065676A1 (ja) 2013-05-10

Family

ID=48192023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078019 WO2013065676A1 (ja) 2011-11-04 2012-10-30 車両用駆動装置

Country Status (5)

Country Link
US (1) US9175759B2 (ja)
JP (1) JP5589247B2 (ja)
CN (1) CN103797277B (ja)
DE (1) DE112012003398T5 (ja)
WO (1) WO2013065676A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6215741B2 (ja) * 2014-03-14 2017-10-18 トヨタ自動車株式会社 ハイブリッド車両
CN106457999B (zh) * 2014-06-11 2019-02-19 舍弗勒技术股份两合公司 用于混合动力模块的模块化壳体
JP2016033003A (ja) 2014-07-29 2016-03-10 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
WO2016066215A1 (de) * 2014-10-31 2016-05-06 Gkn Driveline International Gmbh Elektroantrieb
JP2017177884A (ja) * 2016-03-28 2017-10-05 アイシン・エィ・ダブリュ株式会社 車両用駆動伝達装置
US10767742B2 (en) 2016-12-08 2020-09-08 Ford Global Technologies, Llc Transaxle having chain final drive
JP6531133B2 (ja) * 2017-04-27 2019-06-12 本田技研工業株式会社 ハイブリッド車両の駆動装置
DE112019003904T5 (de) * 2018-08-02 2021-04-29 Schaeffler Technologies AG & Co. KG Hybridmodul-Konfiguration
US11199250B2 (en) * 2018-09-25 2021-12-14 Schaeffler Technologies AG & Co. KG Hybrid module
DE102018219676A1 (de) * 2018-11-16 2020-05-20 Zf Friedrichshafen Ag Konuselement als Kupplung im K0-Bauraum
JP7209742B2 (ja) * 2019-01-09 2023-01-20 株式会社アイシン 車両用駆動装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138248A (ja) * 1984-07-30 1986-02-24 Aisin Warner Ltd 自動変速機の回転支持部の潤滑装置
WO2011062191A1 (ja) * 2009-11-19 2011-05-26 アイシン精機株式会社 車両用駆動装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418359B1 (en) * 2001-08-14 2011-12-14 Aisin Aw Co., Ltd. Start clutch device
JP2006137406A (ja) 2004-10-15 2006-06-01 Aisin Seiki Co Ltd 複数の駆動源を備えた車両用駆動装置
US8863926B2 (en) * 2007-06-29 2014-10-21 Ford Global Technologies, Llc Integrated starter generator and input clutch assembly for hybrid electric vehicle
JP5246466B2 (ja) * 2007-10-19 2013-07-24 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5413633B2 (ja) * 2007-10-19 2014-02-12 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5157823B2 (ja) * 2008-10-28 2013-03-06 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP4941778B2 (ja) * 2008-10-31 2012-05-30 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
US8622182B2 (en) * 2009-11-19 2014-01-07 Aisin Aw Co., Ltd. Vehicle drive device
JP5168598B2 (ja) * 2010-03-31 2013-03-21 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138248A (ja) * 1984-07-30 1986-02-24 Aisin Warner Ltd 自動変速機の回転支持部の潤滑装置
WO2011062191A1 (ja) * 2009-11-19 2011-05-26 アイシン精機株式会社 車両用駆動装置

Also Published As

Publication number Publication date
US20150000262A1 (en) 2015-01-01
JP2013096552A (ja) 2013-05-20
CN103797277A (zh) 2014-05-14
JP5589247B2 (ja) 2014-09-17
DE112012003398T5 (de) 2014-04-30
US9175759B2 (en) 2015-11-03
CN103797277B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5425163B2 (ja) 車両用駆動装置
JP5589247B2 (ja) 車両用駆動装置
WO2011062265A1 (ja) 車両用駆動装置
US7975571B2 (en) Hybrid drive device
JP5255555B2 (ja) 車両用駆動装置
US8636091B2 (en) Hybrid drive device
WO2020149411A1 (ja) 車両用駆動装置
WO2011062266A1 (ja) 車両用駆動装置
WO2017057190A1 (ja) 車両用駆動装置
JP5267871B2 (ja) ハイブリッド車両用駆動装置
JP7209742B2 (ja) 車両用駆動装置
WO2015108147A1 (ja) 車両用駆動装置
WO2017170396A1 (ja) 車両用駆動伝達装置
US10696150B2 (en) Vehicle drive apparatus
JP5250013B2 (ja) 車両用駆動装置
JP2015155292A (ja) 車両用駆動装置
JP5261461B2 (ja) 車両用駆動装置
JP2012076576A (ja) ハイブリッド駆動装置
JP5875075B2 (ja) 車両用駆動装置
JP2017065287A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14241243

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012003398

Country of ref document: DE

Ref document number: 1120120033981

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846637

Country of ref document: EP

Kind code of ref document: A1