WO2017170396A1 - 車両用駆動伝達装置 - Google Patents

車両用駆動伝達装置 Download PDF

Info

Publication number
WO2017170396A1
WO2017170396A1 PCT/JP2017/012382 JP2017012382W WO2017170396A1 WO 2017170396 A1 WO2017170396 A1 WO 2017170396A1 JP 2017012382 W JP2017012382 W JP 2017012382W WO 2017170396 A1 WO2017170396 A1 WO 2017170396A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical
axial
axial direction
peripheral surface
support
Prior art date
Application number
PCT/JP2017/012382
Other languages
English (en)
French (fr)
Inventor
須山大樹
堂薗健次
沖島達矢
出原正浩
安倍晶治
出塩幸彦
神谷敏彦
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2017170396A1 publication Critical patent/WO2017170396A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle drive transmission device including a case, a cylindrical support portion, and a target rotating member.
  • Patent Document 1 a device described in JP2013-155810A (Patent Document 1) is known.
  • the case [3] includes a first support wall [31] extending in the radial direction, and the first support wall [31] extends in the axial direction [L].
  • One cylindrical protrusion [40] is provided.
  • the 1st sleeve member [101] is being fixed to the outer peripheral surface of the 1st cylindrical projection part [40], and the rotation object member [on the outer side of this radial direction [R] of this 1st sleeve member [101].
  • a rotor support member 22] is arranged.
  • a first oil passage [A1] extending in the axial direction is formed inside the first cylindrical protrusion [40].
  • the first sleeve member [101] is formed with a seal ring holding portion for holding the seal ring, and the outer peripheral surface of the first cylindrical projecting portion [40] and the target rotating member [rotor support member 22].
  • a second oil passage sealed in the axial direction by a seal ring is formed between the inner peripheral surface of the first oil passage. The first oil passage and the second oil passage communicate with each other through a radially penetrating hole formed in the first cylindrical protrusion and the first sleeve member.
  • Miniaturization of a vehicle drive transmission device is desired. Specifically, the diameter of a member for forming the first oil passage and the second oil passage is reduced, and the vehicle drive has a small inner diameter of a rotation target member.
  • a transmission device is desired.
  • the diameter of the first cylindrical protrusion is reduced in the radial direction. It ’s difficult.
  • a first sleeve member for holding the seal ring is fixed to the outer peripheral surface of the first cylindrical projecting portion, and is further enlarged in the radial direction by the thickness of the first sleeve member. Yes. For these reasons, it has been difficult to reduce the diameter of the member for forming the first oil passage and the second oil passage.
  • the diameter of the cylindrical member which is a member arranged so as to extend in the axial direction from the case wall and includes the first oil passage extending in the axial direction and the second oil passage sealed in the axial direction by the seal ring, is reduced. Realization of a vehicle drive transmission device that can be realized is desired.
  • the characteristic configuration of the vehicle drive transmission device includes a case, a cylindrical support portion, and a target rotation member, and a direction along the rotation axis of the target rotation member is an axial direction.
  • the case includes a case wall extending in the radial direction, with the direction orthogonal to the direction being a radial direction, and the cylindrical support portion is formed of a member different from the case wall, and the case wall Is fixed to the case wall in a state extending in the axial direction, the target rotating member is disposed on the outer side in the radial direction with respect to the cylindrical support portion, and the cylindrical support portion is a first cylindrical member And a second cylindrical member fixed on the inside in the radial direction with respect to the first cylindrical member, and between the first cylindrical member and the second cylindrical member, at least the A first oil passage extending in the axial direction is formed on the outer peripheral surface of the first cylindrical member.
  • a seal ring holding portion for holding the seal ring is formed, and is at least sealed in the axial direction by the seal ring between the outer peripheral surface of the first cylindrical member and the inner peripheral surface of the target rotating member.
  • One second oil passage is formed, the first cylindrical member is made of a material harder than the case wall, and the case wall is made of a material lighter than the first cylindrical member. is there.
  • the cylindrical support portion and the case wall can be formed of materials suitable for the cylindrical support portion and the case wall, respectively. Therefore, for example, compared to a case where the cylindrical support portion is made of the same material as the case wall, it is easy to ensure the strength of the cylindrical support portion and to easily reduce the thickness of the cylindrical support portion in the radial direction. It has become.
  • the cylindrical support portion includes a first cylindrical member and a second cylindrical member, a first oil passage is provided therebetween, and a seal ring holding portion is formed on the outer peripheral surface of the first cylindrical member.
  • the diameter can be reduced in the radial direction even by that amount.
  • the cylindrical support portion including the first oil passage and the second oil passage is provided.
  • the diameter can be reduced.
  • the first cylindrical member is made of a relatively hard material, the seal ring and the first cylindrical member slide due to the relative rotation of the target rotating member with respect to the first cylindrical member. Even if it is a case, wear of the 1st cylindrical member can be controlled.
  • the case wall is made of a relatively light material.
  • the case is formed larger than these members in order to accommodate the target rotating member and the cylindrical support portion, but by configuring the case wall of such a large case with a lightweight material, It becomes easy to reduce the weight of the drive transmission device.
  • the “axial direction L”, “radial direction R”, and “circumferential direction” are the rotational axis X of the rotating electrical machine MG (hereinafter, the axial center X). Abbreviated as). That is, the axial direction L is a direction along the axis X of the rotating electrical machine MG (rotor support member 22), and the radial direction R is a direction orthogonal to the axial direction L.
  • “Axial direction first side L1” is one side in the axial direction L and represents a direction along the axial direction L from the rotating electrical machine MG side toward the torque converter TC side (right side in FIG. 2).
  • “Axial second side L2” is the other side of axial direction L, and represents the direction opposite to axial first side L1 (left side in FIG. 2).
  • the “radial inner side R1” represents a direction toward the inner side of the radial direction R
  • the “radial outer side R2” represents a direction toward the outer side of the radial direction R.
  • the direction about each member represents the direction in the state in which the said member was assembled
  • the vehicle drive transmission device 1 includes a rotating electrical machine MG, a torque converter TC, and a case 3 (see FIG. 2) that houses the rotating electrical machine MG and the torque converter TC.
  • the torque converter TC is drivingly connected to the rotating electrical machine MG, and specifically, provided in a power transmission path between the rotating electrical machine MG and the output member O.
  • the output member O is drivingly connected to the wheel W via the output differential gear device DF, and the rotation and torque transmitted to the output member O are transmitted to the left and right wheels via the output differential gear device DF. It is distributed to W and transmitted.
  • the vehicle drive transmission device 1 can cause the vehicle to travel by transmitting the torque of the rotating electrical machine MG to the wheels W.
  • the vehicle drive transmission device 1 is configured to be able to travel the vehicle by transmitting the torque of the internal combustion engine E to the wheels W. That is, as shown in FIG. 1, the vehicle drive transmission device 1 includes an input member I that is drivingly connected to the internal combustion engine E. In the power transmission path that connects the internal combustion engine E and the wheels W, the internal combustion engine E The input member I, the rotating electrical machine MG, the torque converter TC, and the output member O are provided in this order from the side.
  • the vehicle drive transmission device 1 is a hybrid vehicle drive device (hybrid drive device) that uses one or both of the internal combustion engine E and the rotating electrical machine MG as a drive force source for the wheels W, specifically Is configured as a so-called one-motor parallel type hybrid drive device.
  • the internal combustion engine E is a prime mover that is driven by combustion of fuel inside the engine to extract power, and for example, a gasoline engine or a diesel engine can be used.
  • a clutch C that functions as an internal combustion engine separation clutch that separates the internal combustion engine E from the wheel W is disposed between the input member I and the rotating electrical machine MG in the power transmission path.
  • a transmission mechanism TM is disposed between the torque converter TC and the output member O in the power transmission path.
  • the speed change mechanism TM is composed of a mechanism (for example, an automatic stepped speed change mechanism, a continuously variable speed change mechanism, etc.) that can change the speed ratio stepwise or steplessly, and has a predetermined rotational speed of the intermediate shaft M (speed change input shaft). And is transmitted to the output member O (shift output shaft).
  • FIGS. 2 is a partial cross-sectional view of a part of the vehicle drive transmission device 1 according to the present embodiment cut along a plane including the axis X
  • FIG. 3 is an enlarged view of a part of FIG. FIG.
  • the case 3 includes a first support wall portion 31, a second support wall portion 32, a third support wall portion 33, and a peripheral wall portion 34.
  • the peripheral wall portion 34 is formed in a substantially cylindrical shape covering the outer periphery of the rotating electrical machine MG, the torque converter TC, and the like.
  • the second support wall portion 32, the first support wall portion 31, and the third support wall portion 33 are configured so as to divide the space in the case formed on the radially inner side R1 of the peripheral wall portion 34 in the axial direction L. It arrange
  • the first support wall portion 31 corresponds to a “case wall” extending in the radial direction R.
  • a first storage chamber 35 is formed between the first support wall portion 31 and the second support wall portion 32 in the case 3, and the rotating electrical machine MG is stored in the first storage chamber 35.
  • the clutch C is arranged at a position that is radially inside R1 of the rotating electrical machine MG and overlaps the rotating electrical machine MG when viewed in the radial direction R. Therefore, the clutch C is also housed in the first housing chamber 35 together with the rotating electrical machine MG.
  • a second storage chamber 36 is formed between the first support wall 31 and the third support wall 33 in the case 3, and the torque converter TC is stored in the second storage chamber 36.
  • the first support wall portion 31 is a rotary electric machine in the axial direction L so as to separate the first storage chamber 35 containing the rotary electric machine MG and the second storage chamber 36 containing the torque converter TC in the axial direction L. It is formed so as to extend in the radial direction R between the MG and the torque converter TC.
  • the first support wall 31 is a disk-shaped wall that extends in the circumferential direction in addition to the radial direction R.
  • the 1st support wall part 31 is provided with the 1st cylindrical protrusion part 40 which protrudes toward the axial direction 1st side L1 and the axial direction 2nd side L2.
  • the first cylindrical protrusion 40 is formed at the end of the first support wall 31 on the radially inner side R ⁇ b> 1, and is arranged coaxially with the axis X.
  • the cylindrical support part 61 is arrange
  • the 1st support wall part 31 is provided with the 2nd cylindrical protrusion part 41 which protrudes toward the axial direction 2nd side L2.
  • the second cylindrical protrusion 41 is disposed coaxially with the axis X on the radially outer side R2 of the first cylindrical protrusion 40.
  • the first cylindrical protrusion 40 has a cylindrical inner peripheral surface, and gradually increases from the second axial side L2 toward the first axial side L1.
  • the inner peripheral surface has a stepped shape with an increasing diameter.
  • the smallest diameter portion is the second cylindrical portion 40B
  • the middle diameter portion is the first cylindrical portion 40A
  • the largest diameter portion is the third cylindrical portion 40C.
  • the first cylindrical protrusion 40 has a first cylindrical portion 40A, a second cylindrical portion 40B, and a third cylindrical portion 40C, and these first cylindrical portion 40A and second cylindrical portion.
  • Each of 40B and the 3rd cylindrical part 40C is formed in the cylinder shape.
  • the second cylindrical portion 40B is adjacent to the second axial side L2 with respect to the first cylindrical portion 40A and has a cylindrical inner peripheral surface having a smaller diameter than the first cylindrical portion 40A.
  • the third cylindrical portion 40C is adjacent to the first cylindrical portion 40A with respect to the first cylindrical portion 40A and has a cylindrical inner peripheral surface having a diameter larger than that of the first cylindrical portion 40A.
  • the rotating electric machine MG includes a stator St fixed to the case 3 and a rotor member 21.
  • the stator St includes coil end portions Ce on both sides in the axial direction L.
  • the rotor member 21 includes a rotor body Ro, and a rotor support member 22 that extends from the rotor body Ro to the radially inner side R1 and supports the rotor body Ro.
  • the rotor body Ro is disposed on the radially inner side R1 of the stator St, and is supported rotatably with respect to the case 3 via a rotor support member 22 that rotates integrally with the rotor body Ro.
  • the rotor support member 22 corresponds to a “target rotation member”.
  • the rotor support member 22 is a member that supports the rotor main body Ro from the radially inner side R1, and in this embodiment, includes a rotor holding portion 25 that holds the rotor main body Ro, and a radially extending portion 26. .
  • the rotor holding part 25 is arranged coaxially with the axis X, and is formed in a cylindrical shape in contact with the inner peripheral surface of the rotor body Ro.
  • the radially extending portion 26 is formed integrally with the rotor holding portion 25 and is formed so as to extend from the rotor holding portion 25 to the radially inner side R1.
  • the radially extending portion 26 is an annular plate-like portion that extends in the circumferential direction in addition to the radial direction R.
  • the radially extending portion 26 extends in parallel with the radial direction R, and the end portion of the radially inner side R1 is positioned on the radially outer side R2 with respect to the outer peripheral surface of the cylindrical support portion 61. Is formed.
  • the rotor support member 22 includes a cylindrical first axial protrusion 23 and a second axial protrusion 24 that extend in the axial direction L from the end of the radial inner side R1 of the radial extension 26. Yes.
  • the first axial protrusion 23 is formed in a cylindrical shape that protrudes toward the axial first side L1.
  • the first axial protrusion 23 is arranged coaxially with the axis X.
  • the first axial protruding portion 23 is formed integrally with the radially extending portion 26 at the end of the radially extending portion 26 on the radially inner side R1.
  • the first axial projecting portion 23 is disposed at a position having a portion overlapping the second cylindrical projecting portion 41 when viewed in the radial direction R on the radially inner side R1 with respect to the second cylindrical projecting portion 41. .
  • the 5th bearing 75 for supporting the rotor member 21 rotatably with respect to the case 3 between the outer peripheral surface of the 1st axial direction protrusion part 23 and the inner peripheral surface of the 2nd cylindrical protrusion part 41 is provided.
  • the 2nd axial direction protrusion part 24 is formed in the cylinder shape which protrudes toward the axial direction 2nd side L2.
  • the second axial protrusion 24 is arranged coaxially with the axis X.
  • the second axial protruding portion 24 is formed integrally with the radially extending portion 26 at the end of the radially extending portion 26 on the radially inner side R1.
  • the distal end portion of the second axial direction projecting portion 24 on the second axial side L2 is disposed on the second axial direction side L2 from the distal end portion of the cylindrical support portion 61 on the second axial direction side L2, and It is connected to the second flange portion 9C.
  • a plate-like member 27 is attached to the rotor support member 22.
  • the plate member 27 is an annular plate member that extends in the circumferential direction in addition to the radial direction R.
  • a cylindrical portion 28 extending to the second axial side L2 is formed at the end of the plate-like member 27 on the radially inner side R1.
  • a seventh bearing 77 is arranged.
  • Clutch Clutch C is a device that is provided in the power transmission path between input member I and rotor member 21 and can change the state of engagement. That is, in the clutch C, the engagement state of the two engagement members engaged by the clutch C includes a state where the two engagement members are engaged (including a slip engagement state), The two engaging members can be switched to a state where they are not engaged (released state). In the state where the two engaging members are engaged, the driving force is transmitted between the input member I and the rotor member 21, and in the state where the two engaging members are released, the input member I and Transmission of driving force to and from the rotor member 21 is interrupted.
  • the clutch C includes a clutch hub 51, a clutch drum 52, a friction member 53, and a piston 54, and is configured as a wet multi-plate clutch mechanism.
  • the clutch C has a pair of input side friction member and output side friction member as the friction member 53, and the input side friction member is supported from the radially inner side R ⁇ b> 1 by the outer peripheral portion of the clutch hub 51, and the output side friction member Is supported by the inner periphery of the clutch drum 52 from the radially outer side R2.
  • the clutch hub 51 has an end portion on the radially inner side R1 connected to the input member I (in this example, joined by welding).
  • a working hydraulic chamber H ⁇ b> 1 is formed on the first axial side L ⁇ b> 1 with respect to the piston 54.
  • an urging member 55 is disposed on the second axial side L2 with respect to the piston 54.
  • the urging member 55 urges the piston 54 to the side opposite to the friction member 53 side in the axial direction L (in this example, the first axial direction L1). Therefore, when hydraulic pressure is supplied to the working hydraulic chamber H1, the piston 54 moves to the second axial side L2 by the hydraulic pressure and presses the friction member 53. As a result, the clutch C is engaged. On the other hand, in a state where hydraulic pressure is not supplied to the working hydraulic chamber H1, the piston 54 moves to the first axial side L1 by the biasing force of the biasing member 55. As a result, the clutch C is released.
  • the torque converter TC is disposed coaxially with the rotating electrical machine MG on the first axial side L1 with respect to the rotating electrical machine MG.
  • the torque converter TC is disposed between the first support wall 31 and the third support wall 33 in the axial direction L, and is disposed on the first axial side L1 with respect to the first support wall 31.
  • the torque converter TC includes a rotating housing 60.
  • the rotary housing 60 is a housing that houses a pump impeller, a turbine runner, and the like that are the main body of the torque converter TC.
  • the rotary housing 60 is disposed with an interval in the axial direction L between the rotary housing 60 and the first support wall portion 31.
  • the flex plate 8 is disposed between the rotating housing 60 and the first support wall portion 31 in the axial direction L.
  • the rotating electrical machine MG and the torque converter TC are connected via a connecting member 9 and a flex plate 8. More specifically, the rotor member 21 of the rotating electrical machine MG and the rotating housing 60 of the torque converter TC are connected via the connecting member 9 and the flex plate 8.
  • the connecting member 9 includes a cylindrical portion 9A formed in a cylindrical shape, and a first flange portion that extends from the cylindrical portion 9A toward the radially outer side R2 and to which the end portion of the flex plate 8 on the radially inner side R1 is fixed. 9B and a second flange portion 9C that extends from the cylindrical portion 9A toward the radially outer side R2 and to which the rotor member 21 is coupled.
  • the cylindrical portion 9A is configured by connecting a first cylindrical portion 91A and a second cylindrical portion 92A.
  • the connecting member 9 is composed of two members, a first connecting member 91 and a second connecting member 92.
  • the first connecting member 91 includes a first cylindrical portion 91A and a first flange portion 9B.
  • the second connecting member 92 includes a second cylindrical portion 92A and a second flange portion 9C.
  • the first cylindrical portion 91A is formed in a cylindrical shape, and is disposed coaxially with the axis X on the radially inner side R1 of the second cylindrical portion 92A of the second connecting member 92.
  • the first cylindrical portion 91A and the second cylindrical portion 92A are connected by the spline fitting of the outer peripheral surface of the first cylindrical portion 91A to the inner peripheral surface of the second cylindrical portion 92A.
  • the surface facing the second axial side L2 gradually increases in the axial direction. It is made into the step shape located in the one side L1, and the part in which the surface which faces the axial direction 2nd side L2 is located in the axial direction 2nd side L2 side is the inner flange part 9B1 and the axial direction 2nd side L2 here.
  • the portion where the surface facing the outermost flange 9B3 is located on the most axial first side L1 side, and the portion where the surface facing the second axial side L2 is located between the inner flange 9B1 and the outer flange 9B3 is the middle.
  • the flange portion is 9B2. And the edge part of radial direction inner side R1 of the flex plate 8 is fixed to the edge part of radial direction outer side R2 of outer flange part 9B3.
  • a seal member 94 is disposed between the outer peripheral surface of the middle flange portion 9B2 and the inner peripheral surface of the third cylindrical portion 40C in the first cylindrical protruding portion 40 facing it.
  • a first bearing 71 is disposed between the surface facing the second axial direction L2 of the intermediate flange portion 9B2 and the support surface 61b facing the first axial side L1 of the cylindrical support portion 61 facing the intermediate flange portion 9B2. ing.
  • the 1st bearing 71 is a bearing which supports the 1st connection member 91 (connection member 9) from the axial direction 2nd side L2 in the state which can be rotated with respect to the cylindrical support part 61. As shown in FIG.
  • the cylindrical support part 61 has the support surface 61b which faces the axial direction 1st side L1, and the torque converter TC passes through the 1st bearing 71 arrange
  • the second cylindrical portion 92A is formed in a cylindrical shape, and is disposed coaxially with the axis X on the radially outer side R2 of the first cylindrical portion 91A of the first connecting member 91.
  • a sixth bearing 76 is disposed between the outer peripheral surface of the second cylindrical portion 92 ⁇ / b> A and the inner peripheral surface of the cylindrical support portion 61.
  • two sixth bearings 76 are arranged with an interval in the axial direction L.
  • a bearing capable of receiving a radial load in this example, a needle bearing
  • the second cylindrical portion 92A is disposed on the radially inner side R1 of the cylindrical support portion 61, and is formed so as to extend from the distal end portion of the first cylindrical protruding portion 40 to the second axial side L2. Yes.
  • a second flange portion 9C is formed so as to extend from the end portion on the second axial side L2 of the second cylindrical portion 92A to the radially outer side R2.
  • the second bearing 72 is disposed between the surfaces of the second connecting member 92 (connecting member 9) and the cylindrical support portion 61 that face each other in the axial direction L.
  • the second bearing 72 is a bearing that supports the second connecting member 92 (the connecting member 9) from the first axial side L ⁇ b> 1 while being rotatable with respect to the cylindrical support portion 61 and the first support wall portion 31. Therefore, as the second bearing 72, a bearing capable of receiving a load in the axial direction L (in this example, a thrust bearing) is used.
  • the second flange portion 9 ⁇ / b> C is connected to the rotor support member 22.
  • the outer peripheral surface of the second flange portion 9C and the inner peripheral surface of the tip end portion (the end portion of the second axial side L2) of the second axial protruding portion 24 of the rotor support member 22 are in the axial direction.
  • L is connected (locked) so as to rotate integrally with the L so as to be relatively movable. Such connection is performed by, for example, spline engagement.
  • Cylindrical support part As shown in FIG. 3, while the cylindrical support part 61 is comprised by the member different from the 1st support wall part 31 as a case wall, it is the axial direction L from the 1st support wall part 31. As shown in FIG. The first support wall 31 is fixed in an extended state.
  • another member means a separate member that is physically separable.
  • the cylindrical support part 61 is arrange
  • the cylindrical support portion 61 is configured so that the end portion on the first axial side L1 of the cylindrical support portion 61 is the radial inner side R1 of the first support wall portion 31 and is seen in the radial direction R.
  • the first support wall portion 31 is disposed at a position overlapping with the first support wall portion 31.
  • the cylindrical support portion 61 has an end portion on the second axial side L2 of the cylindrical support portion 61 that is the radially inner side R1 of the rotor support member 22 and overlaps the rotor support member 22 when viewed in the radial direction R. It is arranged at the position to do.
  • the connecting member 9 is disposed at a position that is radially inside R ⁇ b> 1 of the cylindrical support portion 61 and overlaps with the cylindrical support portion 61 when viewed in the radial direction R.
  • the first support wall portion 31 and the rotor support member 22 are arranged on the radially outer side R2 with respect to the cylindrical support portion 61, and connected to the radially inner side R1 with respect to the cylindrical support portion 61.
  • a member 9 is arranged.
  • the tubular support portion 61 includes a first tubular member 62 and a second tubular member 63 fixed to the radially inner side R ⁇ b> 1 with respect to the first tubular member 62.
  • Each of the first cylindrical member 62 and the second cylindrical member 63 is formed in a cylindrical shape and is arranged coaxially with the axis X.
  • the cylindrical support portion 61 is made of a material harder than the first support wall portion 31, and the first support wall portion 31 is made of a material lighter than the cylindrical support portion 61.
  • the first support wall portion 31 is made of an aluminum alloy (alloy containing aluminum as a main component), and the cylindrical support portion 61 is made of steel (an alloy containing iron as a main component). In this way, by forming the cylindrical support portion 61 from a relatively hard material, the cylindrical support portion 61 can be thinned in the radial direction R while securing sufficient strength to the cylindrical support portion 61. Is done.
  • the case 3 which is a member occupying a large volume in the vehicle drive transmission device 1 is made of a relatively lightweight material, whereby the overall weight of the vehicle drive transmission device 1 can be reduced.
  • the cylindrical support portion 61 by configuring the cylindrical support portion 61 with a relatively hard material, it is possible to improve the support rigidity of the cylindrical member 9 ⁇ / b> A via the sixth bearing 76 by the cylindrical support portion 61.
  • the first cylindrical member 62 and the second cylindrical member 63 are made of the same material. That is, in this embodiment, both the first cylindrical member 62 and the second cylindrical member 63 are made of the same steel material. Thereby, since the thermal expansion coefficient of the 1st cylindrical member 62 and the thermal expansion coefficient of the 2nd cylindrical member 63 become the same, a temperature change arises in the 1st cylindrical member 62 and the 2nd cylindrical member 63. Even if it is a case, a clearance gap does not arise easily between the 1st cylindrical member 62 and the 2nd cylindrical member 63. FIG. Therefore, it is easy to ensure the sealing performance of the first oil passage A1 formed between the first cylindrical member 62 and the second cylindrical member 63.
  • the first cylindrical member 62 has a first oil passage forming portion 64, a first contact portion 65, and a first portion on a portion overlapping the first support wall portion 31 (first cylindrical protruding portion 40) when viewed in the radial direction R. And two abutting portions 66.
  • the first contact portion 65 is formed at a position adjacent to the first oil passage forming portion 64 on the second axial side L2, and the second contact portion 66 is formed with respect to the first oil passage forming portion 64. It is formed at a position adjacent to the axial first side L1.
  • the first oil passage forming portion 64 is formed in a shape recessed in the radial inner side R1 with respect to the first contact portion 65 and the second contact portion 66, and the first cylindrical member 62 includes a plurality of The first oil passage forming portions 64 are distributed in the circumferential direction. Further, a first through hole 64 a penetrating in the radial direction R is formed in each of the plurality of first oil passage forming portions 64.
  • the first oil passage A3 formed in the cylindrical support portion 61 and the third oil passage A3 formed in the first support wall portion 31 communicate with each other through the first through hole 64a.
  • a plurality of oil passages extending in the radial direction R are dispersed and formed in the first support wall portion 31 in the circumferential direction.
  • At least one of the plurality of oil passages is defined as a third oil passage A3.
  • at least one of the plurality of first through holes 64a formed in the first cylindrical member 62 is formed at a position overlapping the first oil passage A1 and the third oil passage A3 when viewed in the radial direction R.
  • the third oil passage A3 and the first oil passage A1 communicate with each other through the overlapping first through holes 64a.
  • the first abutting portion 65 includes a connecting portion 65A and an abutting portion 65B adjacent to the connecting portion 65A on the first axial side L1.
  • the outer peripheral surface of the contact portion 65B is located on the radially outer side R2 from the outer peripheral surface of the connecting portion 65A. That is, the contact portion 65B is formed with a larger diameter than the connecting portion 65A.
  • the contact portion 65B is formed to have the same diameter as the second contact portion 66.
  • An outer peripheral locking portion 65A1 is formed on the outer peripheral surface of the connecting portion 65A.
  • the outer peripheral locking portion 65A1 engages in the circumferential direction with an inner peripheral locking portion 40B1 formed on the inner peripheral surface of the second cylindrical portion 40B in the first cylindrical protruding portion 40.
  • the cylindrical support part 61 is latched by the circumferential direction with respect to the 1st support wall part 31 (1st cylindrical protrusion part 40).
  • the outer peripheral locking portion 65A1 and the inner peripheral locking portion 40B1 are configured by spline grooves.
  • the inner peripheral locking portion 40B1 corresponds to a “locking portion” provided on the inner peripheral surface of the second cylindrical portion 40B.
  • the first support wall portion 31 includes a contacted surface 31a facing the first axial side L1, and the cylindrical support portion 61 contacts the contacted surface 31a from the first axial side L1.
  • a surface 61a is provided.
  • a contacted surface 31a facing the first axial side L1 is formed at the step portion between the first cylindrical portion 40A and the second cylindrical portion 40B in the first support wall portion 31.
  • a contact surface 61a facing the second axial side L2 is formed at the step portion between the connecting portion 65A and the contact portion 65B in the first cylindrical member 62.
  • the contact surface 61a of the first cylindrical member 62 contacts the contacted surface 31a of the first support wall portion 31, and the cylindrical support portion 61 (first cylindrical shape) contacts the inner peripheral surface of the first cylindrical portion 40A.
  • the cylindrical support 61 is fixed to the first support wall 31 in a state in which the member 62) is fitted.
  • the outer peripheral surfaces of the contact portion 65B and the second contact portion 66 of the first cylindrical member 62 are fitted to the inner peripheral surface of the first cylindrical portion 40A.
  • the first cylindrical member 62 is locked in the circumferential direction with respect to the first support wall portion 31.
  • the contact surface 61a facing the second axial direction L2 of the cylindrical support portion 61 is in contact with the contacted surface 31a facing the first axial direction L1 of the first support wall portion 31. Therefore, the cylindrical support portion 61 is inserted from the first axial side L1 with respect to the first cylindrical protrusion portion 40 of the first support wall portion 31, and the first cylindrical protrusion of the first support wall portion 31 is inserted. It is fitted to the inner peripheral surface of the portion 40.
  • the second contact portion 66 includes a support portion 66A and a protrusion 66B adjacent to the support portion 66A on the radially outer side R2.
  • 66 A of support parts are provided with the support surface 61b which is a surface which faces the axial direction 1st side L1.
  • the first bearing 71 described above is disposed between the support surface 61b and the axial direction L between the surface facing the axial second side L2 of the intermediate flange portion 9B2 facing the support surface 61b.
  • the protrusion 66B has a shape that protrudes further to the first axial side L1 than the support surface 61b of the support 66A.
  • a seal ring holding portion 67 for holding the seal ring 81 is formed on the outer peripheral surface of the first cylindrical member 62.
  • the first tubular member 62 has a pair of seal ring holding portions 67 formed in a portion overlapping the rotor support member 22 when viewed in the radial direction R on the outer peripheral surface thereof.
  • the pair of seal ring holding portions 67 are arranged with an interval in the axial direction L.
  • a second oil passage forming part 68 is provided between the pair of seal ring holding parts 67 in the first cylindrical member 62.
  • a seal ring 81 is held in each of the pair of seal ring holding portions 67.
  • the seal ring 81 is an annular member made of a material softer than the first cylindrical member 62 such as synthetic resin.
  • the outer peripheral surface of the seal ring 81 is in contact with the inner peripheral surface of the rotor support member 22, here, the inner peripheral surfaces of the first axial projection 23 and the second axial projection 24.
  • the rotation of the rotor support member 22 causes the seal ring 81 to rotate relative to the rotor support member 22 or the seal ring holding portion 67. At this time, the contact portion between the seal ring 81 and the rotor support member 22 or the seal ring holding portion 67 slides on each other.
  • a second oil passage A2 sealed in the axial direction L is formed by a pair of seal rings 81 between the outer peripheral surface of the first cylindrical member 62 and the inner peripheral surface of the rotor support member 22.
  • the second oil passage A2 is between the radial direction R between the outer peripheral surface of the first cylindrical member 62 and the inner peripheral surface of the rotor support member 22 and is adjacent to the axial direction L. Between the rings 81, a space surrounded by these is formed. Accordingly, the second oil passage A ⁇ b> 2 is formed over the entire circumference of the first cylindrical member 62.
  • the second oil passage forming portion 68 of the first cylindrical member 62 is formed with a concave groove that is recessed from the outer peripheral surface to the radially inner side R1 and extends in the circumferential direction over the entire circumference.
  • the concave groove constitutes the second oil passage A2.
  • the second oil passage forming portion 68 has a second oil passage forming portion 68 passing through the second oil passage forming portion 68 in the radial direction R at a position overlapping with the first oil passage A1 and the second oil passage A2 when viewed in the radial direction R.
  • Two through holes 68a are formed.
  • the first oil passage A1 and the second oil passage A2 communicate with each other through the second through hole 68a.
  • a fourth oil passage A4 is formed in the second axial protrusion 24 of the rotor support member 22.
  • a plurality of fourth oil passages A4 are dispersed in the circumferential direction.
  • the opening on the radially inner side R1 of the fourth oil passage A4 faces the second oil passage A2, and the opening on the radially outer side R2 of the fourth oil passage A4 is the working hydraulic chamber of the clutch C. Opening facing H1. That is, the first oil passage A1 and the hydraulic pressure chamber H1 of the clutch C communicate with each other via the second through hole 68a and the second oil passage A2. Accordingly, the oil supplied from the first oil passage A1 to the second oil passage A2 is supplied to the working hydraulic chamber H1 of the clutch C through the fourth oil passage A4. Oil from the third oil passage A3 formed in the first support wall portion 31 is supplied to the first oil passage A1.
  • An oil supply path A is formed by the first oil path A1 to the third oil path A3 and the like.
  • an axial groove portion 82 that is recessed in the radial inner side R1 and extends along the axial direction L is formed.
  • the plurality of axial groove portions 82 are distributed in the circumferential direction.
  • a first oil passage A ⁇ b> 1 is formed by at least one axial groove 82 of the plurality of axial grooves 82. That is, the first oil passage A ⁇ b> 1 has a first cylindrical shape in which an axial groove portion 82 formed on the outer peripheral surface of the second cylindrical member 63 is disposed on the radially outer side R ⁇ b> 2 with respect to the second cylindrical member 63.
  • the first cylindrical member 62 and the second cylindrical member 63 are formed. Moreover, in this embodiment, the axial direction 1st side L1 of 1st oil path A1 is closed by the 1st wall part 83 of the 2nd cylindrical member 63, and the axial direction 2nd side L2 of 1st oil path A1 is The second cylindrical member 63 is closed by the second wall portion 84.
  • the second cylindrical member 63 is fixed to the first cylindrical member 62 so as to be in contact with the inner peripheral surface of the first cylindrical member 62.
  • the outer peripheral surface of the second cylindrical member 63 is press-fitted into the inner peripheral surface of the first cylindrical member 62.
  • the second cylindrical member 63 is inserted into the radial inner side R ⁇ b> 1 of the first cylindrical member 62 from the second axial side L ⁇ b> 2 relative to the first cylindrical member 62.
  • the second cylindrical member 63 has a surface facing the radial outer side R2 of the first wall portion 83, a surface facing the radial outer side R2 of the second wall portion 84, and the axial direction of the second cylindrical member 63.
  • the surface facing the one side L ⁇ b> 1 is fixed to the first cylindrical member 62 in a state where it contacts the first cylindrical member 62.
  • the 2nd bearing 72 is arrange
  • a pair of seal rings 81 are arranged on the outer peripheral surface of the first cylindrical member 62, and one second oil passage A ⁇ b> 2 is formed between the axial directions L of these seal rings 81.
  • the configuration is described as an example. However, the configuration is not limited to this, and a plurality of second oil passages A2 may be formed.
  • three seal rings 81 may be arranged at intervals in the axial direction L, and a total of two second oil passages A ⁇ b> 2 may be formed between the adjacent seal rings 81.
  • four or more seal rings 81 may be arranged in the axial direction L to form three or more second oil passages A2.
  • the torque converter TC is disposed on the first axial side L1 with respect to the first support wall portion 31 as the case wall, but the arrangement position of the torque converter TC may be appropriately changed. Further, the vehicle drive transmission device 1 may be configured not to include the torque converter TC.
  • the abutted surface 31a faces the first axial side L1 formed at a position where the abutting surface 61a of the cylindrical support portion 61 can abut on the first support wall portion 31 as the case wall.
  • Any surface can be used. Therefore, for example, a surface facing the first axial side L1 in the third cylindrical portion 40C of the first cylindrical protruding portion 40 may be the contacted surface 31a.
  • the case 3 is made of an aluminum alloy and the cylindrical support portion 61 is made of a steel material.
  • these materials are merely examples, and other than this. You may comprise the case 3 and the cylindrical support part 61 with the material of these. Therefore, for example, the case 3 and the cylindrical support portion 61 may be made of the same material.
  • the vehicle drive transmission device (1) includes a case (3), a cylindrical support portion (61), and a target rotating member (22), and the rotational axis (X) of the target rotating member (22).
  • the case (3) has a case wall (31) extending in the radial direction (R), with the direction along the axis being the axial direction (L) and the direction orthogonal to the axial direction (L) being the radial direction (R). ),
  • the cylindrical support portion (61) is formed of a member different from the case wall (31) and extends in the axial direction (L) from the case wall (31).
  • the target rotating member (22) is fixed to the wall (31), and is disposed outside the radial direction (R) with respect to the cylindrical support portion (61).
  • the cylindrical support portion (61) The first cylindrical member (62) and the first cylindrical member (62) are fixed to the inner side in the radial direction (R). Second cylindrical member (63), and a first oil extending at least in the axial direction (L) between the first cylindrical member (62) and the second cylindrical member (63).
  • a path (A1) is formed, and a seal ring holding portion (67) for holding the seal ring (81) is formed on the outer peripheral surface of the first cylindrical member (62), and the first cylindrical member ( 62) between the outer peripheral surface of the target rotating member (22) and at least one second oil passage (A2) sealed in the axial direction (L) by the seal ring (81).
  • the formed first tubular member (62) is made of a material harder than the case wall (31), and the case wall (31) is made of a material lighter than the first tubular member (62). ing.
  • the cylindrical support portion (61) is formed of a member different from the case wall (31), the cylindrical support portion (61) and the case wall (31) are made of materials suitable for each. Can be configured. Therefore, for example, compared with the case where the cylindrical support portion (61) is made of the same material as the case wall (61), it is easier to ensure the strength of the cylindrical support portion (61), and the cylindrical support portion (61) It is easy to reduce the thickness in the radial direction (R). Further, the cylindrical support portion (61) includes a first cylindrical member (62) and a second cylindrical member (63), and a first oil passage (A1) is provided between them, and the first cylindrical shape is provided.
  • the sleeve member is formed on the outer side in the radial direction (R) of the cylindrical support portion (61) forming the first oil passage (A1). Etc., and the diameter can be reduced in the radial direction (R). In this way, it is possible to reduce the thickness of the cylindrical support portion (61) in the radial direction (R), and it is not necessary to separately provide a sleeve member or the like. The diameter of the cylindrical support portion (61) including the oil passage (A2) can be reduced.
  • the case wall (31) is made of a relatively light material.
  • the case (3) is formed larger than these members in order to accommodate the target rotating member (22) and the cylindrical support portion (61), but the case wall of such a large case (3)
  • one side of the axial direction (L) is an axial first side (L1)
  • the other side of the axial direction (L) is an axial second side (L2).
  • a torque converter (TC) is arranged on the first axial side (L1)
  • the cylindrical support part (61) projects from the case wall (31) to the second axial side (L2).
  • the case wall (31) includes a contacted surface (31a) facing the first axial side (L1), and the cylindrical support portion (61) It is preferable to have a contact surface (61a) that contacts the first axial side (L1) with respect to 31a).
  • the cylindrical support part (61) Since the contact surface (61a) of the cylindrical support part (61) is in contact with the contacted surface (31a) of the case wall (31), the cylindrical support part (61) The load on the acting second axial side (L2) can be supported by the case wall (31). Therefore, the axial direction which acts on a cylindrical support part (61) from a torque converter (TC) by ballooning of the torque converter (TC) arrange
  • the case wall (31) is adjacent to the first cylindrical portion (40A) formed in a cylindrical shape and the second axial side (L2) with respect to the first cylindrical portion (40A). And a second cylindrical portion (40B) formed in a cylindrical shape having a smaller diameter than the first cylindrical portion (40A), and the abutted surface (31a) is formed of the first cylindrical portion ( 40A) and the second cylindrical portion (40B) formed by a surface facing the first axial side (L1) in the stepped portion, and the cylindrical shape on the inner peripheral surface of the first cylindrical portion (40A).
  • the cylindrical support part (61) is fixed to the case wall (31) in a state in which the support part (61) is fitted, and the cylindrical support part is formed on the inner peripheral surface of the second cylindrical part (40B). It is preferable that a locking portion (40B1) locked in the circumferential direction with respect to the outer peripheral surface of (61) is provided.
  • a cylindrical support part (61) is radial direction with respect to a case wall (31) by fitting a cylindrical support part (61) to the internal peripheral surface of a 1st cylindrical part (40A). While being supported by (R), the outer peripheral surface of the cylindrical support portion (61) is locked in the circumferential direction by the locking portion (40B1) of the inner peripheral surface of the second cylindrical portion (40B). Thereby, a cylindrical support part (61) can be appropriately fixed with respect to a case wall (31).
  • the cylindrical support portion (61) is appropriately placed from the second axial side (L2) to the case wall ( 31) can be supported.
  • the said cylindrical support part (61) has a support surface (61b) which faces the said axial direction 1st side (L1), and the said torque converter (TC) touches the said support surface (61b). It is preferable that it is supported in the axial direction (L) by the cylindrical support part (61) via a thrust bearing (71) arranged in the cylinder.
  • the torque converter (TC) is connected to the cylindrical support portion (61) via the thrust bearing (71) while allowing relative rotation between the torque converter (TC) and the cylindrical support portion (61).
  • the torque converter (TC) can be appropriately supported from the second axial side (L2).
  • first cylindrical member (62) and the second cylindrical member (63) are made of the same material.
  • Case 22 Rotor support member (target rotation member) 31: First support wall (case wall) 31a: Abutted surface 40A: first cylindrical portion 40B: second cylindrical portion 40B1: inner peripheral locking portion (locking portion) 61: cylindrical support part 61a: contact surface 62: first cylindrical member 63: second cylindrical member 67: seal ring holding part 71: first bearing (thrust bearing) 81: Seal ring A1: First oil path A2: Second oil path L: Axial direction L1: Axial direction first side L2: Axial direction second side R: Radial direction TC: Torque converter X: Rotation axis

Abstract

ケースに、径方向に延びるケース壁(31)を備え、筒状支持部(61)を、ケース壁(31)とは別部材で構成し、対象回転部材(22)を、筒状支持部(61)に対して径方向の外側(R2)に配置し、筒状支持部(61)に、第一筒状部材(62)と、第一筒状部材(62)に対して径方向の内側(R1)に固定された第二筒状部材(63)と、を備え、第一筒状部材(62)と第二筒状部材(63)との間に、軸方向に延びる第一油路(A1)を形成し、第一筒状部材(62)の外周面に、シールリング(81)を保持するためのシールリング保持部(67)を形成し、第一筒状部材(61)の外周面と対象回転部材(22)の内周面との間に、シールリング(81)によって軸方向にシールされた第二油路(A2)を形成する。

Description

車両用駆動伝達装置
 本発明は、ケースと、筒状支持部と、対象回転部材と、を備えた車両用駆動伝達装置に関する。
 このような車両用駆動伝達装置として、例えば、特開2013-155810号公報(特許文献1)に記載されたものが知られている。以下、この背景技術の欄の説明では、〔〕内に特許文献1における符号や部材名称を引用して説明する。特許文献1の車両用駆動伝達装置では、ケース〔3〕は、径方向に延びる第一支持壁部〔31〕を備え、第一支持壁部〔31〕に、軸方向〔L〕に延びる第一筒状突出部〔40〕を備えている。そして、第一筒状突出部〔40〕の外周面に第一スリーブ部材〔101〕が固定されており、この第一スリーブ部材〔101〕の径方向〔R〕の外側に、回転対象部材〔ロータ支持部材22〕が配置されている。第一筒状突出部〔40〕の内部に、軸方向に延びる第一油路〔A1〕が形成されている。また、第一スリーブ部材〔101〕には、シールリングを保持するためのシールリング保持部が形成されて、第一筒状突出部〔40〕の外周面と対象回転部材〔ロータ支持部材22〕の内周面との間に、シールリングによって軸方向にシールされた第二油路が形成されている。第一油路と第二油路とは、第一筒状突出部及び第一スリーブ部材に形成された径方向に貫通する孔により連通している。
特開2013-155810号公報
 車両用駆動伝達装置の小型化が望まれており、具体的には、第一油路や第二油路を形成するための部材の小径化を図り、回転対象部材の内径が小さな車両用駆動伝達装置が望まれている。しかし、第一筒状突出部には、第一油路を通流する油の圧力に耐えることができる十分な強度を備える必要があるため、第一筒状突出部を径方向に小径化することは難しい。また、第一筒状突出部の外周面にはシールリングを保持するための第一スリーブ部材が固定されており、当該第一スリーブ部材の厚さ分、更に径方向に拡大することになっている。これらのことから、第一油路や第二油路を形成するための部材の小径化を図ることは難しかった。
 そこで、ケース壁から軸方向に延びるように配置される部材であって軸方向に延びる第一油路とシールリングにより軸方向にシールされた第二油路とを備える筒状部材の小径化を図ることができる車両用駆動伝達装置の実現が望まれる。
 上記に鑑みた、車両用駆動伝達装置の特徴構成は、ケースと、筒状支持部と、対象回転部材と、を備え、前記対象回転部材の回転軸心に沿う方向を軸方向とし、この軸方向に対して直交する方向を径方向として、前記ケースは、前記径方向に延びるケース壁を備え、前記筒状支持部は、前記ケース壁とは別部材で構成されていると共に、前記ケース壁から前記軸方向に延びる状態で前記ケース壁に固定され、前記対象回転部材は、前記筒状支持部に対して前記径方向の外側に配置され、前記筒状支持部は、第一筒状部材と、前記第一筒状部材に対して前記径方向の内側に固定された第二筒状部材と、を備え、前記第一筒状部材と前記第二筒状部材との間に、少なくとも前記軸方向に延びる第一油路が形成され、前記第一筒状部材の外周面に、シールリングを保持するためのシールリング保持部が形成され、前記第一筒状部材の外周面と前記対象回転部材の内周面との間に、前記シールリングによって前記軸方向にシールされた少なくとも1つの第二油路が形成され、前記第一筒状部材は、前記ケース壁よりも硬い材質により構成され、前記ケース壁は、前記第一筒状部材より軽い材質により構成されている点にある。
 この特徴構成によれば、筒状支持部をケース壁とは別部材で構成したことにより、筒状支持部とケース壁とをそれぞれに適した材質で構成することができる。そのため、例えば、筒状支持部をケース壁と同じ材質により構成した場合に比べて、筒状支持部の強度を確保し易く、筒状支持部の径方向での薄肉化を図ることが容易となっている。また、筒状支持部が、第一筒状部材と第二筒状部材とを備え、これらの間に第一油路を設け、第一筒状部材の外周面にシールリング保持部を形成することで、第一油路を形成する筒状支持部の径方向の外側に、スリーブ部材等を別途設ける必要がなく、その分でも径方向に小径化を図ることができる。このように、筒状支持部の径方向での薄肉化を図ることができ、また、スリーブ部材等を別途設ける必要もないため、第一油路及び第二油路を備える筒状支持部の小径化を図ることができる。
 また、第一筒状部材が比較的硬い材質により構成されているため、対象回転部材が第一筒状部材に対して相対回転することで、シールリングと第一筒状部材とが摺動した場合であっても第一筒状部材の摩耗を抑制することができる。
 また、ケース壁が比較的軽い材質により構成されている。一般的にケースは、対象回転部材や筒状支持部を収容するため、これらの部材より大きく形成されているが、このように大きなケースのケース壁を軽量な材質で構成することにより、車両用駆動伝達装置の軽量化を図ることが容易となる。
車両用駆動伝達装置の概略構成を示す模式図 車両用駆動伝達装置の部分断面図 図2の部分拡大図
1.実施形態
 本発明に係る車両用駆動伝達装置の実施形態について、図面を参照して説明する。なお、以下の説明では、特に区別して明記している場合を除き、「軸方向L」、「径方向R」、「周方向」は、回転電機MGの回転軸心X(以下、軸心Xと略称する)を基準として定義している。つまり、軸方向Lは、回転電機MG(ロータ支持部材22)の軸心Xに沿う方向とし、径方向Rは、軸方向Lに対して直交する方向としている。そして、「軸方向第一側L1」は、軸方向Lの一方側であり、軸方向Lに沿って回転電機MG側からトルクコンバータTC側へ向かう方向(図2における右側)を表す。「軸方向第二側L2」は、軸方向Lの他方側であり、軸方向第一側L1とは反対方向(図2における左側)を表す。また、「径方向内側R1」は、径方向Rの内側へ向かう方向を表し、「径方向外側R2」は、径方向Rの外側へ向かう方向を表す。なお、各部材についての方向は、当該部材が車両用駆動伝達装置1に組み付けられた状態での方向を表す。また、各部材についての方向や位置等に関する用語は、製造上許容され得る誤差による差異を有する状態も含む概念として用いている。
1-1.車両用駆動伝達装置の全体構成
 図1は、本実施形態に係る車両用駆動伝達装置1の概略構成を示す模式図である。図1に示すように、この車両用駆動伝達装置1は、回転電機MGと、トルクコンバータTCと、回転電機MG及びトルクコンバータTCを収容するケース3(図2参照)と、を備えている。トルクコンバータTCは、回転電機MGに駆動連結されており、具体的には、回転電機MGと出力部材Oとの間の動力伝達経路に設けられている。出力部材Oは、出力用差動歯車装置DFを介して車輪Wに駆動連結されており、出力部材Oに伝達された回転及びトルクは、出力用差動歯車装置DFを介して左右2つの車輪Wに分配されて伝達される。これにより、車両用駆動伝達装置1は、回転電機MGのトルクを車輪Wに伝達させて車両を走行させることができる。
 本実施形態に係る車両用駆動伝達装置1は、内燃機関Eのトルクを車輪Wに伝達させて車両を走行させることも可能に構成されている。すなわち、図1に示すように、車両用駆動伝達装置1は、内燃機関Eに駆動連結される入力部材Iを備えており、内燃機関Eと車輪Wとを結ぶ動力伝達経路において、内燃機関Eの側から順に、入力部材I、回転電機MG、トルクコンバータTC、及び出力部材Oが設けられている。これにより、本実施形態に係る車両用駆動伝達装置1は、車輪Wの駆動力源として内燃機関E及び回転電機MGの一方又は双方を用いるハイブリッド車両用の駆動装置(ハイブリッド駆動装置)、具体的には、いわゆる1モータパラレル方式のハイブリッド駆動装置として構成されている。なお、内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機であり、例えばガソリンエンジンやディーゼルエンジン等を用いることができる。
 本実施形態では、図1に示すように、動力伝達経路における入力部材Iと回転電機MGとの間には、車輪Wから内燃機関Eを切り離す内燃機関切離用クラッチとして機能するクラッチCが配置されている。また、動力伝達経路におけるトルクコンバータTCと出力部材Oとの間には、変速機構TMが配置されている。変速機構TMは、変速比を段階的に或いは無段階に変更可能な機構(例えば自動有段変速機構や無段変速機構等)で構成され、中間軸M(変速入力軸)の回転速度を所定の変速比で変速して出力部材O(変速出力軸)へ伝達する。
1-2.駆動装置の各部の構成
 次に、本実施形態に係る車両用駆動伝達装置1の各部の構成について、図2及び図3を参照して説明する。なお、図2は、本実施形態に係る車両用駆動伝達装置1の一部を、軸心Xを含む平面に沿って切断した部分断面図であり、図3は、図2の一部を拡大した部分拡大図である。
1-2-1.ケース
 ケース3は、本実施形態では図2に示すように、第一支持壁部31と、第二支持壁部32と、第三支持壁部33と、周壁部34と、を備えている。周壁部34は、回転電機MG及びトルクコンバータTC等の外周を覆う概略円筒状に形成されている。また、周壁部34の径方向内側R1に形成されるケース内空間を軸方向Lに区画するように、第二支持壁部32、第一支持壁部31、及び第三支持壁部33が、軸方向第二側L2から記載の順に配置されている。本実施形態では、第一支持壁部31が、径方向Rに延びる「ケース壁」に相当する。
 図2に示すように、ケース3内における第一支持壁部31と第二支持壁部32との間に第一収容室35が形成され、この第一収容室35に回転電機MGが収容されている。本実施形態では、回転電機MGの径方向内側R1であって、径方向Rに見て回転電機MGと重複する位置にクラッチCが配置されている。従って、クラッチCも、回転電機MGと共に第一収容室35に収容されている。また、ケース3内における第一支持壁部31と第三支持壁部33との間に第二収容室36が形成され、この第二収容室36にトルクコンバータTCが収容されている。
 第一支持壁部31は、回転電機MGが収容された第一収容室35とトルクコンバータTCが収容された第二収容室36とを軸方向Lに分離するように、軸方向Lにおける回転電機MGとトルクコンバータTCとの間で、径方向Rに延びるように形成されている。本実施形態では、第一支持壁部31は、径方向Rに加えて周方向にも延びる円板状の壁部とされている。
 第一支持壁部31は、軸方向第一側L1及び軸方向第二側L2に向かって突出する第一筒状突出部40を備えている。本実施形態では、第一筒状突出部40は、第一支持壁部31の径方向内側R1の端部に形成され、軸心Xと同軸に配置されている。そして、第一筒状突出部40の径方向内側R1に、筒状支持部61が配置されている。また、第一支持壁部31は、軸方向第二側L2に向かって突出する第二筒状突出部41を備えている。本実施形態では、第二筒状突出部41は、第一筒状突出部40の径方向外側R2に、軸心Xと同軸に配置されている。
 図2及び図3に示すように、第一筒状突出部40は、筒状の内周面を有しており、軸方向第二側L2から軸方向第一側L1へ向かうに従って段階的に内周面の直径が拡大する階段状とされている。ここでは、最も小径の部分を第二筒状部40B、中間の径の部分を第一筒状部40A、最も大径の部分を第三筒状部40Cとする。つまり、第一筒状突出部40は、第一筒状部40A、第二筒状部40B及び第三筒状部40Cを有しており、これら第一筒状部40A、第二筒状部40B、及び第三筒状部40Cの夫々が、筒状に形成されている。第二筒状部40Bは、第一筒状部40Aに対して軸方向第二側L2に隣接すると共に第一筒状部40Aより小径の筒状の内周面を有している。第三筒状部40Cは、第一筒状部40Aに対して軸方向第一側L1に隣接すると共に第一筒状部40Aより大径の筒状の内周面を有している。
1-2-2.回転電機
 図2に示すように、回転電機MGは、ケース3に固定されたステータStと、ロータ部材21と、を備えている。ステータStは、軸方向Lの両側にコイルエンド部Ceを備えている。ロータ部材21は、ロータ本体Roと、当該ロータ本体Roから径方向内側R1に延びて当該ロータ本体Roを支持するロータ支持部材22と、を備えている。ロータ本体Roは、ステータStの径方向内側R1に配置されるとともに、当該ロータ本体Roと一体回転するロータ支持部材22を介して、ケース3に対して回転可能に支持されている。本実施形態では、ロータ支持部材22が、「対象回転部材」に相当する。
 ロータ支持部材22は、ロータ本体Roを径方向内側R1から支持する部材であり、本実施形態では、ロータ本体Roを保持するロータ保持部25と、径方向延在部26と、を備えている。ロータ保持部25は、軸心Xと同軸に配置され、ロータ本体Roの内周面に接する筒状に形成されている。径方向延在部26は、ロータ保持部25と一体的に形成され、ロータ保持部25から径方向内側R1に延びるように形成されている。径方向延在部26は、径方向Rに加えて周方向にも延びる円環板状部とされている。本実施形態では、径方向延在部26は、径方向Rに平行に延びるとともに、径方向内側R1の端部が、筒状支持部61の外周面に対して径方向外側R2に位置するように形成されている。
 また、ロータ支持部材22は、径方向延在部26の、径方向内側R1の端部から軸方向Lに伸びる筒状の第一軸方向突出部23及び第二軸方向突出部24を備えている。第一軸方向突出部23は、軸方向第一側L1に向かって突出する筒状に形成されている。第一軸方向突出部23は、軸心Xと同軸に配置されている。本実施形態では、第一軸方向突出部23は、径方向延在部26の径方向内側R1の端部において、径方向延在部26と一体的に形成されている。第一軸方向突出部23は、第二筒状突出部41に対して径方向内側R1において、径方向Rに見て第二筒状突出部41と重複する部分を有する位置に配置されている。そして、第一軸方向突出部23の外周面と第二筒状突出部41の内周面との間に、ロータ部材21をケース3に対して回転可能に支持するための第五軸受75が配置されている。一方、第二軸方向突出部24は、軸方向第二側L2に向かって突出する筒状に形成されている。第二軸方向突出部24は、軸心Xと同軸に配置されている。本実施形態では、第二軸方向突出部24は、径方向延在部26の径方向内側R1の端部において、径方向延在部26と一体的に形成されている。第二軸方向突出部24の軸方向第二側L2の先端部は、筒状支持部61の軸方向第二側L2の先端部より軸方向第二側L2に配置されおり、連結部材9の第二フランジ部9Cに連結されている。
 ロータ支持部材22には、板状部材27が取り付けられている。板状部材27は、径方向Rに加えて周方向にも延びる円環板状部材とされている。板状部材27における径方向内側R1の端部には、軸方向第二側L2に延びる筒状部28が形成されている。この筒状部28の外周面と第二支持壁部32の径方向内側R1の端部に形成されたボス部32Aの内周面との間に、ロータ部材21をケース3に支持するための第七軸受77が配置されている。
1-2-3.クラッチ
 クラッチCは、入力部材Iとロータ部材21との間の動力伝達経路に設けられて係合の状態を変化させることが可能な装置である。すなわち、クラッチCは、当該クラッチCによって係合される2つの係合部材の係合の状態を、当該2つの係合部材が係合した状態(スリップ係合した状態を含む)と、当該2つの係合部材が係合しない状態(解放した状態)とに切り替え可能に構成されている。そして、当該2つの係合部材が係合した状態では、入力部材Iとロータ部材21との間で駆動力の伝達が行われ、当該2つの係合部材が解放した状態では、入力部材Iとロータ部材21との間で駆動力の伝達が遮断される。
 本実施形態では、図2及び図3に示すように、クラッチCは、クラッチハブ51、クラッチドラム52、摩擦部材53、及びピストン54を備え、湿式多板クラッチ機構として構成されている。クラッチCは、摩擦部材53として、対となる入力側摩擦部材と出力側摩擦部材とを有し、入力側摩擦部材はクラッチハブ51の外周部により径方向内側R1から支持され、出力側摩擦部材はクラッチドラム52の内周部により径方向外側R2から支持されている。クラッチハブ51は、径方向内側R1の端部が入力部材Iに連結(本例では溶接による接合)されている。
 図4に示すように、ピストン54に対して軸方向第一側L1に作動油圧室H1が形成されている。一方、ピストン54に対して軸方向第二側L2には付勢部材55が配置されている。付勢部材55は、ピストン54を軸方向Lにおける摩擦部材53側とは反対側(本例では軸方向第一側L1)に付勢している。従って、作動油圧室H1に油圧が供給された場合には、ピストン54は当該油圧により軸方向第二側L2へ移動し、摩擦部材53を押圧する。これによりクラッチCが係合される。一方、作動油圧室H1に油圧が供給されない状態では、付勢部材55の付勢力によりピストン54は軸方向第一側L1へ移動する。これによりクラッチCが解放される。
1-2-4.トルクコンバータ
 トルクコンバータTCは、図2に示すように、回転電機MGに対して軸方向第一側L1に当該回転電機MGと同軸に配置されている。トルクコンバータTCは、軸方向Lにおける第一支持壁部31と第三支持壁部33との間に配置されており、第一支持壁部31に対して軸方向第一側L1に配置されている。トルクコンバータTCは、回転ハウジング60を備えている。
 回転ハウジング60は、図3に示すように、トルクコンバータTCの本体部となるポンプインペラ及びタービンランナ等を収容するハウジングとなっている。なお、回転ハウジング60の内部の構造は一般的であるため、ここでは図示を省略する。回転ハウジング60は、第一支持壁部31との間に軸方向Lの間隔を空けて配置されている。そして、回転ハウジング60と第一支持壁部31との軸方向Lの間に、フレックスプレート8が配置されている。
 回転電機MGとトルクコンバータTCとは、連結部材9及びフレックスプレート8を介して連結されている。より詳しくは、回転電機MGのロータ部材21とトルクコンバータTCの回転ハウジング60とが、連結部材9及びフレックスプレート8を介して連結されている。
 連結部材9は、円筒状に形成された円筒状部9Aと、円筒状部9Aから径方向外側R2へ向かって延びると共にフレックスプレート8の径方向内側R1の端部が固定される第一フランジ部9Bと、円筒状部9Aから径方向外側R2へ向かって延びると共にロータ部材21が連結される第二フランジ部9Cと、を備えている。そして、円筒状部9Aは、第一円筒状部91Aと第二円筒状部92Aとが連結されて構成されている。本実施形態では、連結部材9は、第一連結部材91と第二連結部材92との2つの部材により構成されている。第一連結部材91は、第一円筒状部91Aと第一フランジ部9Bとを備えている。第二連結部材92は、第二円筒状部92Aと第二フランジ部9Cとを備えている。
 第一円筒状部91Aは、円筒状に形成され、第二連結部材92の第二円筒状部92Aの径方向内側R1において軸心Xと同軸に配置されている。第一円筒状部91Aの外周面が第二円筒状部92Aの内周面にスプライン嵌合することにより第一円筒状部91Aと第二円筒状部92Aとが連結される。
 第一フランジ部9Bは、第一円筒状部91Aの軸方向第一側L1の端部から径方向外側R2へ向かって延びるに従って、軸方向第二側L2を向く面が段階的に軸方向第一側L1に位置する階段状とされており、ここでは、軸方向第二側L2を向く面が最も軸方向第二側L2側に位置する部分を内フランジ部9B1、軸方向第二側L2を向く面が最も軸方向第一側L1側に位置する部分を外フランジ部9B3、軸方向第二側L2を向く面が内フランジ部9B1と外フランジ部9B3との間に位置する部分を中フランジ部9B2とする。そして、外フランジ部9B3の径方向外側R2の端部に、フレックスプレート8の径方向内側R1の端部が固定される。
 また、中フランジ部9B2の外周面と、それに対向する第一筒状突出部40における第三筒状部40Cの内周面との間に、シール部材94が配置されている。また、中フランジ部9B2の軸方向第二側L2を向く面と、それに対向する筒状支持部61の軸方向第一側L1を向く支持面61bとの間に、第一軸受71が配置されている。第一軸受71は、第一連結部材91(連結部材9)を筒状支持部61に対して回転可能な状態で軸方向第二側L2から支持する軸受である。従って、第一軸受71としては、軸方向Lの荷重を受けることが可能な軸受(本例ではスラスト軸受)が用いられる。このように、筒状支持部61は、軸方向第一側L1を向く支持面61bを有しており、トルクコンバータTCは、支持面61bに当接するように配置された第一軸受71を介して、筒状支持部61により軸方向Lに支持されている。
 第二円筒状部92Aは、円筒状に形成され、第一連結部材91の第一円筒状部91Aの径方向外側R2において軸心Xと同軸に配置されている。また、第二円筒状部92Aの外周面と筒状支持部61の内周面との間には、第六軸受76が配置されている。本実施形態では、軸方向Lに間隔を空けて2個の第六軸受76が配置されている。第六軸受76としては、径方向の荷重を受けることが可能な軸受(本例ではニードル軸受)が用いられる。
 また、第二円筒状部92Aは、筒状支持部61の径方向内側R1に配置されており、第一筒状突出部40の先端部より軸方向第二側L2まで延びるように形成されている。この第二円筒状部92Aの軸方向第二側L2の端部から径方向外側R2へ延びるように第二フランジ部9Cが形成されている。本実施形態の構成では、第二連結部材92(連結部材9)と筒状支持部61との軸方向Lに対向する面間に、第二軸受72が配置されている。具体的には、第二フランジ部9Cの軸方向第一側L1を向く面と、それに対向する第二筒状部材63の先端部の軸方向第二側L2を向く面との間に、第二軸受72が配置されている。第二軸受72は、第二連結部材92(連結部材9)を筒状支持部61及び第一支持壁部31に対して回転可能な状態で軸方向第一側L1から支持する軸受である。従って、第二軸受72としては、軸方向Lの荷重を受けることが可能な軸受(本例ではスラスト軸受)が用いられる。
 第二フランジ部9Cは、ロータ支持部材22に連結されている。本実施形態では、第二フランジ部9Cの外周面と、ロータ支持部材22の第二軸方向突出部24の先端部(軸方向第二側L2の端部)の内周面とが、軸方向Lに相対移動可能な状態で一体回転するように連結(係止)されている。このような連結は、例えば、スプライン係合により行われる。
1-2-5.筒状支持部
 図3に示すように、筒状支持部61は、ケース壁としての第一支持壁部31とは別部材で構成されていると共に、第一支持壁部31から軸方向Lに延びる状態で第一支持壁部31に固定されている。ここで、「別部材」とは、物理的に分離可能な別個の部材であるということである。本実施形態では、筒状支持部61は、第一支持壁部31から軸方向第二側L2に向かって突出する状態で、軸心Xと同軸に配置されている。筒状支持部61は、筒状支持部61は、筒状支持部61の軸方向第一側L1の端部が、第一支持壁部31の径方向内側R1であって径方向Rに見て第一支持壁部31と重複する位置に配置されている。また、筒状支持部61は、筒状支持部61の軸方向第二側L2の端部が、ロータ支持部材22の径方向内側R1であって径方向Rに見てロータ支持部材22と重複する位置に配置されている。また、筒状支持部61の径方向内側R1であって径方向Rに見て筒状支持部61と重複する位置に、連結部材9が配置されている。このように、筒状支持部61に対して径方向外側R2には、第一支持壁部31及びロータ支持部材22が配置され、筒状支持部61に対して径方向内側R1には、連結部材9が配置されている。
 筒状支持部61は、第一筒状部材62と、第一筒状部材62に対して径方向内側R1に固定された第二筒状部材63と、を備えている。これら第一筒状部材62と第二筒状部材63との夫々は、筒状に形成されており軸心Xと同軸に配置されている。
 本実施形態では、筒状支持部61は、第一支持壁部31よりも硬い材質により構成されており、第一支持壁部31は、筒状支持部61よりも軽い素材により構成されている。一例として、第一支持壁部31がアルミニウム合金(アルミニウムを主成分とした合金)により構成され、筒状支持部61は、鋼(鉄を主成分とした合金)により構成されている。このように、筒状支持部61を比較的硬い素材により構成することで、筒状支持部61に十分な強度を確保しながら、筒状支持部61の径方向Rでの薄肉化を図ることができている。一方、車両用駆動伝達装置1の中で大きい体積を占める部材であるケース3を比較的軽量な材質で構成することにより、車両用駆動伝達装置1の全体の軽量化を図ることができている。また、筒状支持部61を比較的硬い素材により構成することで、当該筒状支持部61による、第六軸受76を介した円筒部材9Aの支持剛性を向上させることもできる。
 また、第一筒状部材62と第二筒状部材63とは同じ材質により構成されている。すなわち、本実施形態では、第一筒状部材62と第二筒状部材63とは何れも同じ鋼材により構成されている。これにより、第一筒状部材62の熱膨張率と第二筒状部材63の熱膨張率とが同じとなるため、第一筒状部材62と第二筒状部材63とに温度変化が生じた場合であっても、第一筒状部材62と第二筒状部材63との間に隙間が生じ難い。よって、第一筒状部材62と第二筒状部材63との間に形成される第一油路A1の密閉性の確保が容易となっている。
 第一筒状部材62は、径方向Rに見て第一支持壁部31(第一筒状突出部40)と重なる部分に、第一油路形成部64と第一当接部65と第二当接部66とを備えている。第一当接部65は、第一油路形成部64に対して軸方向第二側L2に隣接する位置に形成され、第二当接部66は、第一油路形成部64に対して軸方向第一側L1に隣接する位置に形成されている。
 第一油路形成部64は、第一当接部65及び第二当接部66に対して径方向内側R1に窪んだ形状に形成されており、第一筒状部材62には、複数の第一油路形成部64が周方向に分散配置されている。また、複数の第一油路形成部64のそれぞれに、径方向Rに貫通する第一貫通孔64aが形成されている。この第一貫通孔64aにより、第一支持壁部31に形成されている第三油路A3と、筒状支持部61に形成されている第一油路A1とが連通している。本実施形態では、第一支持壁部31の内部には、径方向Rに延びる油路が、周方向に分散して複数形成されている。そして、これら複数の油路のうちの少なくとも1つを第三油路A3としている。そして、第一筒状部材62に形成されている複数の第一貫通孔64aの少なくとも1つが、径方向Rに見て、第一油路A1及び第三油路A3と重複する位置に形成されており、この重複する第一貫通孔64aにより、第三油路A3と第一油路A1とが連通している。
 第一当接部65は、連結部65Aと、この連結部65Aに対して軸方向第一側L1に隣接する当接部65Bとを有する。当接部65Bは、その外周面が連結部65Aの外周面より径方向外側R2に位置している。すなわち、当接部65Bは、連結部65Aと比べて大径に形成されている。また、当接部65Bは、第二当接部66と直径が同じとなるように形成されている。連結部65Aの外周面には、外周係止部65A1が形成されている。この外周係止部65A1は、第一筒状突出部40における第二筒状部40Bの内周面に形成された内周係止部40B1に対して周方向に係合する。これにより、筒状支持部61が第一支持壁部31(第一筒状突出部40)に対して周方向に係止される。本実施形態では、外周係止部65A1及び内周係止部40B1は、スプライン溝により構成されている。本実施形態では、内周係止部40B1が第二筒状部40Bの内周面に設けられた「係止部」に相当する。
 第一支持壁部31は、軸方向第一側L1を向く被当接面31aを備え、筒状支持部61は、被当接面31aに対して軸方向第一側L1から当接する当接面61aを有する。本実施形態では、第一支持壁部31における第一筒状部40Aと第二筒状部40Bとの段差部に、軸方向第一側L1を向く被当接面31aが形成されている。また、第一筒状部材62における連結部65Aと当接部65Bとの段差部に、軸方向第二側L2を向く当接面61aが形成されている。
 第一支持壁部31の被当接面31aに第一筒状部材62の当接面61aが当接すると共に、第一筒状部40Aの内周面に筒状支持部61(第一筒状部材62)が嵌合した状態で、筒状支持部61が第一支持壁部31に固定されている。本実施形態では、第一筒状部材62の当接部65B及び第二当接部66の外周面が、第一筒状部40Aの内周面に嵌合している。また、上記のとおり、連結部65Aの外周面に形成された外周係止部65A1が、第二筒状部40Bの内周面に形成された内周係止部40B1に係合することにより、第一筒状部材62は第一支持壁部31に対して周方向に係止されている。このように、第一支持壁部31の軸方向第一側L1を向く被当接面31aに対して、筒状支持部61の軸方向第二側L2を向く当接面61aが当接する構成であるため、筒状支持部61は、第一支持壁部31の第一筒状突出部40に対して軸方向第一側L1から挿入され、第一支持壁部31の第一筒状突出部40の内周面に嵌合される。
 第二当接部66は、支持部66Aと、この支持部66Aに対して径方向外側R2に隣接する突出部66Bとを有する。支持部66Aは、軸方向第一側L1を向く面である支持面61bを備えている。この支持面61bと、それに対向する中フランジ部9B2の軸方向第二側L2を向く面との軸方向Lの間に、上述した第一軸受71が配置されている。突出部66Bは、支持部66Aの支持面61bよりも軸方向第一側L1に突出する形状とされている。
 第一筒状部材62の外周面に、シールリング81を保持するためのシールリング保持部67が形成されている。本実施形態では、第一筒状部材62は、その外周面における径方向Rに見てロータ支持部材22と重なる部分に形成された一対のシールリング保持部67を有している。この一対のシールリング保持部67は、軸方向Lに間隔を空けて配置されている。第一筒状部材62における一対のシールリング保持部67の間には、第二油路形成部68が設けられている。ここで、一対のシールリング保持部67の夫々には、シールリング81が保持されている。シールリング81は、合成樹脂等の第一筒状部材62よりも軟らかい素材により構成された円環状部材である。シールリング81の外周面は、ロータ支持部材22の内周面、ここでは、第一軸方向突出部23及び第二軸方向突出部24の内周面に接している。ロータ支持部材22の回転により、シールリング81は、ロータ支持部材22又はシールリング保持部67に対して相対回転する。この際、シールリング81と、ロータ支持部材22又はシールリング保持部67との接触部分は互いに摺動する。
 そして、第一筒状部材62の外周面とロータ支持部材22の内周面との間に、一対のシールリング81によって、軸方向Lにシールされた第二油路A2が形成されている。具体的には、第二油路A2は、第一筒状部材62の外周面とロータ支持部材22の内周面との径方向Rの間であって、軸方向Lに隣接する一対のシールリング81の間において、これらに囲まれた空間として形成されている。従って、この第二油路A2は、第一筒状部材62の全周に亘って形成されている。本実施形態では、第一筒状部材62の第二油路形成部68に、外周面から径方向内側R1に窪むと共に全周に亘って周方向に延びる凹溝が形成されており、この凹溝が第二油路A2を構成している。
 また、第二油路形成部68には、径方向Rに見て第一油路A1及び第二油路A2と重複する位置に、第二油路形成部68を径方向Rに貫通する第二貫通孔68aが形成されている。この第二貫通孔68aにより、第一油路A1と第二油路A2とが連通している。また、ロータ支持部材22の第二軸方向突出部24には、第四油路A4が形成されている。第四油路A4は、周方向に複数分散して配置されている。そして、第四油路A4の径方向内側R1の開口部は第二油路A2に面して開口しており、第四油路A4の径方向外側R2の開口部はクラッチCの作動油圧室H1に面して開口している。すなわち、第一油路A1とクラッチCの作動油圧室H1とが、第二貫通孔68a及び第二油路A2を介して連通している。従って、第一油路A1から第二油路A2に供給された油は、第四油路A4を介してクラッチCの作動油圧室H1に供給される。第一油路A1へは、第一支持壁部31に形成された第三油路A3からの油が供給される。第一油路A1から第三油路A3等により、油供給路Aが形成されている。
 第二筒状部材63の外周面には、径方向内側R1に窪むと共に軸方向Lに沿って延びる軸方向溝部82が形成されている。本実施形態では、複数の軸方向溝部82が周方向に分散して配置されている。この複数の軸方向溝部82のうちの少なくとも1つの軸方向溝部82により第一油路A1が形成されている。すなわち、第一油路A1は、第二筒状部材63の外周面に形成された軸方向溝部82が、当該第二筒状部材63に対して径方向外側R2に配置された第一筒状部材62の内周面によって蓋をされることにより、第一筒状部材62と第二筒状部材63との間に形成されている。また、本実施形態では、第一油路A1の軸方向第一側L1は、第二筒状部材63の第一壁部83により閉じられ、第一油路A1の軸方向第二側L2は、第二筒状部材63の第二壁部84により閉じられている。
 ここで、第二筒状部材63は、第一筒状部材62の内周面に接する状態で第一筒状部材62に対して固定されている。本実施形態では、第二筒状部材63の外周面が、第一筒状部材62の内周面に圧入されている。本例では、第二筒状部材63は、第一筒状部材62に対して相対的に軸方向第二側L2から、第一筒状部材62の径方向内側R1に挿入される。そして、第二筒状部材63は、第一壁部83の径方向外側R2を向く面、第二壁部84の径方向外側R2を向く面、及び、第二筒状部材63の軸方向第一側L1を向く面が、第一筒状部材62に接触する状態で、第一筒状部材62に固定される。なお、第二筒状部材63の軸方向第二側L2を向く面と、第二フランジ部9Cの軸方向第一側L1を向く面との間に、第二軸受72が配置されている。
2.その他の実施形態
 次に、車両用駆動伝達装置のその他の実施形態について説明する。
(1)上記の実施形態では、第一筒状部材62の外周面に一対のシールリング81を配置し、これらのシールリング81の軸方向Lの間に1つの第二油路A2が形成されている構成を例として説明した。しかし、このような構成に限らず、複数の第二油路A2が形成されていてもよい。例えば、軸方向Lに間隔を空けて3つのシールリング81を配置し、隣接するシールリング81の間のそれぞれに、合計2つの第二油路A2が形成されていてもよい。当然ながら、シールリング81を軸方向Lに4つ以上配置し、3つ以上の第二油路A2を形成してもよい。
(2)上記実施形態では、トルクコンバータTCをケース壁としての第一支持壁部31に対して軸方向第一側L1に配置したが、トルクコンバータTCの配置位置は適宜変更してもよく、また、車両用駆動伝達装置1がトルクコンバータTCを備えない構成であってもよい。
(3)上記の実施形態では、第一支持壁部31の第一筒状突出部40における、第一筒状部40Aと第二筒状部40Bとの段差部の軸方向第一側を向く面を被当接面31aとし、当該被当接面31aに筒状支持部61の当接面61aが当接する構成を例として説明とした。しかし、被当接面31aの位置はこれに限定されない。すなわち、被当接面31aは、ケース壁としての第一支持壁部31における、筒状支持部61の当接面61aが当接可能な位置に形成された、軸方向第一側L1を向く面であればよい。従って、例えば、第一筒状突出部40の第三筒状部40Cにおける軸方向第一側L1を向く面を被当接面31aとしてもよい。
(4)上記の本実施形態では、ケース3を、アルミニウム合金により構成し、筒状支持部61を、鋼材により構成する場合を例として説明したが、これらの材質は単なる例示であり、これ以外の材質によりケース3や筒状支持部61を構成してもよい。従って、例えば、ケース3と筒状支持部61とを同じ材質により構成してもよい。
(5)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
3.上記実施形態の概要
 以下、上記において説明した車両用駆動伝達装置の概要について説明する。
 車両用駆動伝達装置(1)は、ケース(3)と、筒状支持部(61)と、対象回転部材(22)と、を備え、前記対象回転部材(22)の回転軸心(X)に沿う方向を軸方向(L)とし、この軸方向(L)に対して直交する方向を径方向(R)として、前記ケース(3)は、前記径方向(R)に延びるケース壁(31)を備え、前記筒状支持部(61)は、前記ケース壁(31)とは別部材で構成されていると共に、前記ケース壁(31)から前記軸方向(L)に延びる状態で前記ケース壁(31)に固定され、前記対象回転部材(22)は、前記筒状支持部(61)に対して前記径方向(R)の外側に配置され、前記筒状支持部(61)は、第一筒状部材(62)と、前記第一筒状部材(62)に対して前記径方向(R)の内側に固定された第二筒状部材(63)と、を備え、前記第一筒状部材(62)と前記第二筒状部材(63)との間に、少なくとも前記軸方向(L)に延びる第一油路(A1)が形成され、前記第一筒状部材(62)の外周面に、シールリング(81)を保持するためのシールリング保持部(67)が形成され、前記第一筒状部材(62)の外周面と前記対象回転部材(22)の内周面との間に、前記シールリング(81)によって前記軸方向(L)にシールされた少なくとも1つの第二油路(A2)が形成され前記第一筒状部材(62)は、前記ケース壁(31)よりも硬い材質により構成され、前記ケース壁(31)は、前記第一筒状部材(62)より軽い材質により構成されている。
 この構成によれば、筒状支持部(61)をケース壁(31)とは別部材で構成したことにより、筒状支持部(61)とケース壁(31)とをそれぞれに適した材質で構成することができる。そのため、例えば、筒状支持部(61)をケース壁(61)と同じ材質により構成した場合に比べて、筒状支持部(61)の強度を確保し易く、筒状支持部(61)の径方向(R)での薄肉化を図ることが容易となっている。また、筒状支持部(61)が、第一筒状部材(62)と第二筒状部材(63)とを備え、これらの間に第一油路(A1)を設け、第一筒状部材(62)の外周面にシールリング保持部(67)を形成することで、第一油路(A1)を形成する筒状支持部(61)の径方向(R)の外側に、スリーブ部材等を別途設ける必要がなく、その分でも径方向(R)に小径化を図ることができる。このように、筒状支持部(61)の径方向(R)での薄肉化を図ることができ、また、スリーブ部材等を別途設ける必要もないため、第一油路(A1)及び第二油路(A2)を備える筒状支持部(61)の小径化を図ることができる。
 また、第一筒状部材(62)が比較的硬い材質により構成されているため、対象回転部材(22)が第一筒状部材(62)に対して相対回転することで、シールリング(81)と第一筒状部材(62)とが摺動した場合であっても第一筒状部材(62)の摩耗を抑制することができる。
 また、ケース壁(31)が比較的軽い材質により構成されている。一般的にケース(3)は、対象回転部材(22)や筒状支持部(61)を収容するため、これらの部材より大きく形成されているが、このように大きなケース(3)のケース壁(31)を軽量な材質で構成することにより、車両用駆動伝達装置(1)の軽量化を図ることが容易となる。
 ここで、前記軸方向(L)の一方側を軸方向第一側(L1)とし、前記軸方向(L)の他方側を軸方向第二側(L2)として、前記ケース壁(31)に対して前記軸方向第一側(L1)にトルクコンバータ(TC)が配置され、前記筒状支持部(61)は、前記ケース壁(31)から前記軸方向第二側(L2)に突出するように配置され、前記ケース壁(31)は、前記軸方向第一側(L1)を向く被当接面(31a)を備え、前記筒状支持部(61)は、前記被当接面(31a)に対して前記軸方向第一側(L1)から当接する当接面(61a)を有すると好適である。
 この構成によれば、筒状支持部(61)の当接面(61a)が、ケース壁(31)の被当接面(31a)に当接しているため、筒状支持部(61)に作用する軸方向第二側(L2)への荷重を、ケース壁(31)にて支持することができる。そのため、ケース壁(31)に対して前記軸方向第一側(L1)に配置されたトルクコンバータ(TC)のバルーニングにより、トルクコンバータ(TC)から筒状支持部(61)に作用する軸方向第二側(L2)への荷重を、ケース壁(31)により適切に支持することができる。
 また、前記ケース壁(31)は、筒状に形成された第一筒状部(40A)と、この第一筒状部(40A)に対して前記軸方向第二側(L2)に隣接すると共に前記第一筒状部(40A)より小径の筒状に形成された第二筒状部(40B)と、を有し、前記被当接面(31a)は、前記第一筒状部(40A)と前記第二筒状部(40B)との段差部における前記軸方向第一側(L1)を向く面により形成され、前記第一筒状部(40A)の内周面に前記筒状支持部(61)が嵌合した状態で前記筒状支持部(61)が前記ケース壁(31)に固定され、前記第二筒状部(40B)の内周面に、前記筒状支持部(61)の外周面に対して周方向に係止される係止部(40B1)が設けられていると好適である。
 この構成によれば、第一筒状部(40A)の内周面に筒状支持部(61)が嵌合することで筒状支持部(61)がケース壁(31)に対して径方向(R)に支持されると共に、第二筒状部(40B)の内周面の係止部(40B1)によって筒状支持部(61)の外周面が周方向に係止される。これにより、筒状支持部(61)をケース壁(31)に対して適切に固定することができる。また、第一筒状部(40A)と第二筒状部(40B)との段差部を利用して、筒状支持部(61)を軸方向第二側(L2)から適切にケース壁(31)に対して支持することができる。
 また、前記筒状支持部(61)は、前記軸方向第一側(L1)を向く支持面(61b)を有し、前記トルクコンバータ(TC)は、前記支持面(61b)に当接するように配置されたスラスト軸受(71)を介して、前記筒状支持部(61)により前記軸方向(L)に支持されていると好適である。
 この構成によれば、トルクコンバータ(TC)と筒状支持部(61)との相対回転を許容しつつ、トルクコンバータ(TC)を、スラスト軸受(71)を介して筒状支持部(61)により軸方向第二側(L2)から適切に支持することができる。
 また、前記第一筒状部材(62)と前記第二筒状部材(63)とは同じ材質により構成されていると好適である。
 この構成によれば、第一筒状部材(62)と第二筒状部材(63)とに温度変化が生じた場合であっても、第一筒状部材(62)と第二筒状部材(63)との熱膨張率が同じであるため、第一筒状部材(62)と第二筒状部材(63)との間に隙間が生じ難い。よって、第一油路(A1)の密閉性の確保が容易となる。
1:車両用駆動伝達装置
3:ケース
22:ロータ支持部材(対象回転部材)
31:第一支持壁部(ケース壁)
31a:被当接面
40A:第一筒状部
40B:第二筒状部
40B1:内周係止部(係止部)
61:筒状支持部
61a:当接面
62:第一筒状部材
63:第二筒状部材
67:シールリング保持部
71:第一軸受(スラスト軸受)
81:シールリング
A1:第一油路
A2:第二油路
L:軸方向
L1:軸方向第一側
L2:軸方向第二側
R:径方向
TC:トルクコンバータ
X:回転軸心

Claims (5)

  1.  ケースと、筒状支持部と、対象回転部材と、を備え、
     前記対象回転部材の回転軸心に沿う方向を軸方向とし、この軸方向に対して直交する方向を径方向として、
     前記ケースは、前記径方向に延びるケース壁を備え、
     前記筒状支持部は、前記ケース壁とは別部材で構成されていると共に、前記ケース壁から前記軸方向に延びる状態で前記ケース壁に固定され、
     前記対象回転部材は、前記筒状支持部に対して前記径方向の外側に配置され、
     前記筒状支持部は、第一筒状部材と、前記第一筒状部材に対して前記径方向の内側に固定された第二筒状部材と、を備え、
     前記第一筒状部材と前記第二筒状部材との間に、少なくとも前記軸方向に延びる第一油路が形成され、
     前記第一筒状部材の外周面に、シールリングを保持するためのシールリング保持部が形成され、
     前記第一筒状部材の外周面と前記対象回転部材の内周面との間に、前記シールリングによって前記軸方向にシールされた少なくとも1つの第二油路が形成され、
     前記第一筒状部材は、前記ケース壁よりも硬い材質により構成され、
     前記ケース壁は、前記第一筒状部材より軽い材質により構成されている車両用駆動伝達装置。
  2.  前記軸方向の一方側を軸方向第一側とし、前記軸方向の他方側を軸方向第二側として、
     前記ケース壁に対して前記軸方向第一側にトルクコンバータが配置され、
     前記筒状支持部は、前記ケース壁から前記軸方向第二側に突出するように配置され、
     前記ケース壁は、前記軸方向第一側を向く被当接面を備え、
     前記筒状支持部は、前記被当接面に対して前記軸方向第一側から当接する当接面を有する請求項1記載の車両用駆動伝達装置。
  3.  前記ケース壁は、筒状に形成された第一筒状部と、この第一筒状部に対して前記軸方向第二側に隣接すると共に前記第一筒状部より小径の筒状に形成された第二筒状部と、を有し、
     前記被当接面は、前記第一筒状部と前記第二筒状部との段差部における前記軸方向第一側を向く面により形成され、
     前記第一筒状部の内周面に前記筒状支持部が嵌合した状態で前記筒状支持部が前記ケース壁に固定され、
     前記第二筒状部の内周面に、前記筒状支持部の外周面に対して周方向に係止される係止部が設けられている請求項2記載の車両用駆動伝達装置。
  4.  前記筒状支持部は、前記軸方向第一側を向く支持面を有し、
     前記トルクコンバータは、前記支持面に当接するように配置されたスラスト軸受を介し
    て、前記筒状支持部により前記軸方向に支持されている請求項2又は3に記載の車両用駆
    動伝達装置。
  5.  前記第一筒状部材と前記第二筒状部材とは同じ材質により構成されている請求項1から4のいずれか1項に記載の車両用駆動伝達装置。
PCT/JP2017/012382 2016-03-28 2017-03-27 車両用駆動伝達装置 WO2017170396A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-064419 2016-03-28
JP2016064419A JP2017177884A (ja) 2016-03-28 2016-03-28 車両用駆動伝達装置

Publications (1)

Publication Number Publication Date
WO2017170396A1 true WO2017170396A1 (ja) 2017-10-05

Family

ID=59965609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012382 WO2017170396A1 (ja) 2016-03-28 2017-03-27 車両用駆動伝達装置

Country Status (2)

Country Link
JP (1) JP2017177884A (ja)
WO (1) WO2017170396A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145292A1 (ja) * 2019-01-09 2020-07-16 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
US20210146770A1 (en) * 2018-04-11 2021-05-20 Zf Friedrichshafen Ag Hybrid drive module for a motor vehicle
CN113261182A (zh) * 2019-01-09 2021-08-13 株式会社爱信 车用驱动装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516558A (ja) * 2007-01-29 2010-05-20 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト ハイブリッド使用のための湿式の発進クラッチを備えるパワートレーン
JP2013096552A (ja) * 2011-11-04 2013-05-20 Aisin Aw Co Ltd 車両用駆動装置
WO2016017369A1 (ja) * 2014-07-29 2016-02-04 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516558A (ja) * 2007-01-29 2010-05-20 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト ハイブリッド使用のための湿式の発進クラッチを備えるパワートレーン
JP2013096552A (ja) * 2011-11-04 2013-05-20 Aisin Aw Co Ltd 車両用駆動装置
WO2016017369A1 (ja) * 2014-07-29 2016-02-04 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210146770A1 (en) * 2018-04-11 2021-05-20 Zf Friedrichshafen Ag Hybrid drive module for a motor vehicle
WO2020145292A1 (ja) * 2019-01-09 2020-07-16 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
CN113261182A (zh) * 2019-01-09 2021-08-13 株式会社爱信 车用驱动装置
CN113329899A (zh) * 2019-01-09 2021-08-31 株式会社爱信 混合驱动装置
JPWO2020145292A1 (ja) * 2019-01-09 2021-10-21 株式会社アイシン ハイブリッド駆動装置
EP3885174A4 (en) * 2019-01-09 2022-01-12 Aisin Corporation HYBRID DRIVE DEVICE
EP3886298A4 (en) * 2019-01-09 2022-01-12 Aisin Corporation VEHICLE DRIVE DEVICE
JP7108719B2 (ja) 2019-01-09 2022-07-28 株式会社アイシン ハイブリッド駆動装置
US11548366B2 (en) 2019-01-09 2023-01-10 Aisin Corporation Vehicle drive apparatus

Also Published As

Publication number Publication date
JP2017177884A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5425163B2 (ja) 車両用駆動装置
US8836187B2 (en) Vehicle drive device
US9950605B2 (en) Hybrid driving device
US8836181B2 (en) Vehicle drive device
JP5589247B2 (ja) 車両用駆動装置
US20160375754A1 (en) Selectable one-way clutch and vehicle
WO2011074662A1 (ja) 車両用駆動装置
WO2011062266A1 (ja) 車両用駆動装置
WO2011034191A9 (ja) ハイブリッド駆動装置
EP3543556B1 (en) Triple clutch and actuator thereof
JP2018184136A (ja) ハイブリッド車両の駆動装置
WO2018181352A1 (ja) 車両用駆動装置
WO2017170396A1 (ja) 車両用駆動伝達装置
WO2019187597A1 (ja) 車両用駆動装置
WO2017057190A1 (ja) 車両用駆動装置
US20190047398A1 (en) Drive unit for vehicle
WO2022030396A1 (ja) 車両用駆動装置
WO2015108147A1 (ja) 車両用駆動装置
WO2020145283A1 (ja) 車両用駆動装置
WO2020158654A1 (ja) 摩擦係合装置
JP2021089014A (ja) 摩擦係合装置用支持部材
JP5250013B2 (ja) 車両用駆動装置
JP5261461B2 (ja) 車両用駆動装置
JP7140740B2 (ja) オイル供給ユニット
JP2017065287A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774933

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774933

Country of ref document: EP

Kind code of ref document: A1