WO2020145283A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2020145283A1
WO2020145283A1 PCT/JP2020/000242 JP2020000242W WO2020145283A1 WO 2020145283 A1 WO2020145283 A1 WO 2020145283A1 JP 2020000242 W JP2020000242 W JP 2020000242W WO 2020145283 A1 WO2020145283 A1 WO 2020145283A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
axial direction
connecting shaft
bearing
respect
Prior art date
Application number
PCT/JP2020/000242
Other languages
English (en)
French (fr)
Inventor
井手上薫樹
森田武
院田恵太
堂薗健次
沖島達矢
神谷敏彦
池邨将史
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to EP20739154.1A priority Critical patent/EP3886298B1/en
Priority to CN202080008091.7A priority patent/CN113261182A/zh
Priority to JP2020565164A priority patent/JP7209742B2/ja
Priority to US17/417,509 priority patent/US11548366B2/en
Publication of WO2020145283A1 publication Critical patent/WO2020145283A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/68Attachments of plates or lamellae to their supports
    • F16D13/683Attachments of plates or lamellae to their supports for clutches with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0421Guidance of lubricant on or within the casing, e.g. shields or baffles for collecting lubricant, tubes, pipes, grooves, channels or the like
    • F16H57/0424Lubricant guiding means in the wall of or integrated with the casing, e.g. grooves, channels, holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/043Guidance of lubricant within rotary parts, e.g. axial channels or radial openings in shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0471Bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0472Seals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/424Friction clutches
    • B60Y2400/4244Friction clutches of wet type, e.g. using multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02034Gearboxes combined or connected with electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02043Gearboxes for particular applications for vehicle transmissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a rotating electric machine that serves as a driving force source for a wheel, a rotor supporting member that supports a rotor of the rotating electric machine, a connecting shaft that is connected to the rotor supporting member, and a rotor supporting member that is connected via the connecting shaft.
  • the present invention relates to a vehicle drive device including a fluid transmission device and a case.
  • Patent Document 1 An example of the vehicle drive device as described above is disclosed in Japanese Unexamined Patent Application Publication No. 2017-177884 (Patent Document 1).
  • the vehicle drive device described in Patent Document 1 includes a connecting member (9) for connecting a rotating electric machine (MG) and a torque converter (TC), and supports a rotor body (Ro) of the rotating electric machine (MG).
  • the rotor supporting member (22) is connected to the connecting member (9).
  • the connecting member (9) is arranged so that the movement to both sides in the axial direction (L) is restricted with respect to the tubular support portion (61) fixed to the case (3).
  • the connecting member (9) is composed of two members, a first connecting member (91) and a second connecting member (92). There is. Between the axial direction (L) between the cylindrical support portion (61) and the first connecting member (91), the first connecting member (91) is restricted to move toward the axial second side (L2).
  • One bearing (71) is arranged, and between the cylindrical support portion (61) and the second connecting member (92) in the axial direction (L), the first side of the second connecting member (92) in the axial direction (A second bearing (72) that restricts the movement to L1) is arranged.
  • the 1st connection member (91) and the 2nd connection member (92) are connected by the bolt so that relative movement of the axial direction (L) may be regulated.
  • the bearing that restricts the movement of the connecting shaft (the connecting member in Patent Document 1) to the one side in the axial direction and the bearing to the other side in the axial direction of the connecting shaft.
  • the vehicle drive device of Patent Document 1 requires two dedicated bearings in order to restrict the movement of the connecting shaft to both sides in the axial direction.
  • a vehicle drive device includes a rotary electric machine that serves as a drive force source for wheels, a rotor support member that supports a rotor of the rotary electric machine, a connecting shaft that is connected to the rotor support member, and the connecting shaft.
  • a vehicle drive device including: a fluid transmission device connected to the rotor support member via the rotating electric machine; the rotor support member; the connection shaft; and a case that houses the fluid transmission device.
  • One side in the axial direction is defined as the first side in the axial direction, and the side opposite to the first side in the axial direction is defined as the second side in the axial direction, and the one side is arranged between the rotor support member and the case in the radial direction.
  • a first bearing that restricts the movement of the rotor support member toward the first side in the axial direction with respect to the case, and is arranged between the connecting shaft and the case in the axial direction.
  • a second bearing that restricts movement toward the second side in the axial direction relative to the connection shaft, the fluid transmission is disposed on the first side in the axial direction with respect to the connecting shaft, and the rotor support member is A tubular portion that is formed in a tubular shape that extends in the axial direction and that fits on the outer peripheral surface of the connecting shaft is provided, and the movement of the connecting shaft with respect to the tubular portion in the first axial direction side is restricted. ..
  • the load on the first side in the axial direction can also act on the connecting shaft.
  • the connecting shaft is restricted from moving on the axial first side with respect to the tubular portion of the rotor support member. Therefore, the load acting on the connecting shaft on the axial first side is transmitted to the rotor support member.
  • the first bearing arranged radially between the rotor support member and the case restricts the movement of the rotor support member toward the first axial direction with respect to the case. Therefore, the load on the axial first side transmitted from the connecting shaft to the rotor support member can be received by the case via the first bearing.
  • the movement of the connecting shaft toward the first side in the axial direction can be restricted by using the first bearing. Since the axial load on the first side in the axial direction that can act on the connecting shaft is relatively small, the rotor supporting member and the rotor supporting member can be provided without providing a dedicated bearing for restricting the movement of the connecting shaft to the first axial direction. By using the first bearing arranged in the radial direction with respect to the case, it is possible to appropriately restrict the movement of the connecting shaft toward the first axial direction side.
  • the relatively large load on the second axial side that may act on the connecting shaft is used only for the purpose of restricting the movement of the connecting shaft to the second axial side.
  • a comparatively small load on the axial first side that can be received by the case via the bearing and acts on the connecting shaft must be provided with a dedicated bearing for restricting the movement of the connecting shaft to the axial first side. Instead, it can be received by the case via the first bearing arranged between the rotor support member and the case in the radial direction. Therefore, compared with the case where a dedicated bearing for restricting the movement of the connecting shaft in the first axial direction is required, the movement of the connecting shaft in both axial directions is restricted while reducing the number of parts. It is possible.
  • FIG. 1 Schematic diagram showing a schematic configuration of a vehicle drive device Sectional drawing of a part of vehicle drive device A partially enlarged view of FIG.
  • the “axial direction L”, the “radial direction R”, and the “circumferential direction” are based on the axial center X (see FIG. 2) of the rotary electric machine MG, unless otherwise specified. It is defined.
  • This axis X is the axis of rotation of the rotor Ro of the rotary electric machine MG, and the rotor Ro, the rotor support member 60 that supports the rotor Ro, and the connecting shaft 30 that is connected to the rotor support member 60 are around the axis X. Rotate to.
  • one side of the axial direction L is referred to as the “axial first side L1”, and the other side of the axial direction L (the side opposite to the axial first side L1 in the axial direction L) is referred to as the “axial second side L2”.
  • the outside in the radial direction R is referred to as “radial outside R1” and the inside in the radial direction R is referred to as “radial inside R2”.
  • the directions of the respective members in the following description represent the directions when they are assembled to the vehicle drive device 100. It should be noted that the terms relating to the dimensions, arrangement directions, arrangement positions, etc. of the respective members are concepts including a state having a difference due to an error (an error that can be tolerated in manufacturing).
  • drive connection refers to a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque), and the two rotating elements are connected so as to rotate integrally. Or a state in which the two rotating elements are coupled so as to be able to transmit the driving force via one or more transmission members.
  • a transmission member include various members (for example, a shaft, a gear mechanism, a belt, a chain, etc.) that transmit rotation at the same speed or at a changed speed.
  • the transmission member may include an engagement device (for example, a friction engagement device, a meshing engagement device, or the like) that selectively transmits rotation and driving force.
  • the “rotary electric machine” is used as a concept including both a motor (electric motor), a generator (generator), and a motor/generator that performs both functions of the motor and the generator as necessary. ..
  • overlap in a specific direction view means that when a virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line, This means that the region where the virtual straight line intersects both of the two members is present in at least a part.
  • the vehicle drive device 100 includes a rotor electric machine MG that serves as a drive force source for the wheels W, a rotor support member 60 that supports a rotor Ro of the rotary electric machine MG, and a rotor support member 60.
  • a connecting shaft 30 to be connected, a torque converter TC connected to the rotor support member 60 via the connecting shaft 30, a rotating electric machine MG, a rotor support member 60, a connecting shaft 30, and a case 4 for housing the torque converter TC. , are provided.
  • the connecting shaft 30 functions as a rotor output shaft (rotary electric machine output shaft) that outputs the rotation of the rotor Ro.
  • the vehicle drive device 100 transmits the output torque of the rotary electric machine MG to the wheels W via the connecting shaft 30 to drive the vehicle (vehicle on which the vehicle drive device 100 is mounted).
  • the vehicle drive device 100 distributes the rotation and torque input from the rotary electric machine MG side to the two left and right wheels W and transmits the differential gear device DF (output differential gear device).
  • the vehicle drive device 100 transmits the output torque of the rotary electric machine MG to the two left and right wheels W to drive the vehicle.
  • the torque converter TC corresponds to the “fluid transmission device”.
  • a fluid transmission device is a device that transmits power via a fluid (here, oil).
  • the torque converter TC is an example of a fluid transmission device, and for example, a fluid coupling (fluid coupling) having no torque amplification function can be used as the fluid transmission device.
  • the vehicle drive device 100 includes a torque converter TC and a transmission TM in a power transmission path connecting the rotary electric machine MG and the wheels W in order from the rotary electric machine MG side. Equipped with.
  • the torque converter TC is arranged coaxially with the rotary electric machine MG on the axial first side L1 with respect to the rotary electric machine MG
  • the transmission TM is coaxial with the torque converter TC on the axial first side L1 with respect to the torque converter TC. (In other words, coaxially with the rotary electric machine MG).
  • the torque converter TC is arranged on the first side L1 in the axial direction with respect to the connecting shaft 30.
  • the torque converter TC has a pump impeller T1 and a turbine runner T2. Further, the torque converter TC includes a second engagement device 2 that directly connects the pump impeller T1 and the turbine runner T2.
  • the connecting shaft 30 connected to the rotor support member 60 is connected so as to rotate integrally with the pump impeller T1.
  • the connecting shaft 30 is connected via a flex plate P (see FIG. 2) so as to rotate integrally with the pump impeller T1.
  • the turbine runner T2 is connected so as to rotate integrally with the intermediate member 7.
  • the transmission TM is configured so that the transmission ratio can be changed stepwise or steplessly, and the rotation speed of the input member (transmission input member) of the transmission TM is changed at the present transmission ratio to change the transmission TM. It is transmitted to the output member (shift output member).
  • the intermediate member 7 connected to rotate integrally with the turbine runner T2 functions as a shift input member
  • the output member 8 drivingly connected to the wheels W functions as a shift output member.
  • the output member 8 is connected to the two left and right wheels W via the differential gear device DF.
  • the transmission TM is, for example, a stepped automatic transmission (automatic stepped transmission) capable of switching a plurality of shift stages having different gear ratios.
  • the vehicle drive device 100 further includes an input member 20 drivingly connected to the internal combustion engine E.
  • the internal combustion engine E is a prime mover (for example, a gasoline engine, a diesel engine, or the like) that is driven by combustion of fuel inside the engine to take out power.
  • the input member 20 is connected so as to rotate integrally with an output member (a crankshaft or the like) of the internal combustion engine E, or is connected to an output member of the internal combustion engine E via another member such as a damper.
  • the input member 20 is arranged coaxially with the connecting shaft 30 (in other words, coaxial with the rotary electric machine MG) on the axial second side L2 with respect to the connecting shaft 30.
  • the vehicle drive device 100 is configured to connect the rotary electric machine MG and the wheels W through the first power transmission path, and also connect the input member 20 and the wheels W through the second power transmission path. Therefore, the output torque of one or both of the rotary electric machine MG and the internal combustion engine E is transmitted to the wheels W to drive the vehicle. That is, the vehicle drive device 100 of the present embodiment is a drive device for a vehicle (hybrid vehicle) that includes both the internal combustion engine E and the rotary electric machine MG as the drive force source for the wheels W. In the present embodiment, at least a part of the first power transmission path and at least a part of the second power transmission path are configured by a common path.
  • the input member 20 is connected to the rotary electric machine MG via the first engagement device 1, and the input member 20 is integrated with the rotary electric machine MG in a state where the first engagement device 1 is directly coupled and engaged. Rotate to.
  • the first engagement device 1 is arranged in the power transmission path between the input member 20 and the rotary electric machine MG, and selectively connects the input member 20 and the rotary electric machine MG (that is, connects or disconnects them). ).
  • the first engagement device 1 has a function of disconnecting the internal combustion engine E from the wheels W.
  • the vehicle drive device 100 includes the first engagement device 1 that connects and disconnects the input member 20 and the rotary electric machine MG.
  • the first engagement device 1 corresponds to the “friction engagement device”.
  • the rotary electric machine MG includes a stator St fixed to the case 4 and a rotor Ro rotatably supported with respect to the stator St.
  • the rotary electric machine MG is an inner rotor type rotary electric machine
  • the rotor Ro is the inner side R2 in the radial direction with respect to the stator St and overlaps with the stator St in the radial direction along the radial direction R. It is located in a position.
  • the first engagement device 1 is arranged coaxially with the rotary electric machine MG on the radially inner side R2 of the rotary electric machine MG.
  • the first engagement device 1 is arranged on the inner side R2 in the radial direction with respect to the rotor Ro and at a position overlapping with the rotor Ro as viewed in the radial direction.
  • the vehicle drive device 100 includes the first engagement device 1 at a position that is the inner side R2 of the rotor Ro in the radial direction and that overlaps with the rotor Ro when viewed in the radial direction. ..
  • the first engagement device 1 is a friction engagement device. As shown in FIG. 2, the first engagement device 1 includes a first support member 11 that supports the first friction plate 13 from the radially outer side R1 and a second support member 11 that supports the second friction plate 14 from the radially inner side R2.
  • the support member 12 and the piston 10 that presses the first friction plate 13 and the second friction plate 14 in the axial direction L are provided.
  • the first support member 11 is a member that supports the first friction plate 13, and is arranged on the outer side R1 in the radial direction with respect to the first friction plate 13.
  • the second support member 12 is a member that supports the second friction plate 14, and is arranged on the inner side R2 in the radial direction with respect to the second friction plate 14.
  • the first friction plate 13 is movably supported in the axial direction L in a state in which relative rotation in the circumferential direction is restricted with respect to the first support member 11, and the second friction plate 14 is supported with respect to the second support member 12. And is supported so as to be movable in the axial direction L while the relative rotation in the circumferential direction is restricted.
  • the piston 10 is movably supported in the axial direction L in a state in which relative rotation in the circumferential direction with respect to the first support member 11 is restricted.
  • each of the first friction plate 13 and the second friction plate 14 is formed in an annular plate shape, and the first friction plate 13 and the second friction plate 14 have respective friction contact surfaces (end surfaces in the axial direction L). ) Are arranged coaxially (that is, on the axis X) so that they can contact each other in the axial direction L.
  • the first support member 11 is connected so as to rotate integrally with the rotor Ro of the rotary electric machine MG.
  • the first support member 11 is configured to rotate integrally with a rotor support portion 63 described later.
  • the first support member 11 is formed integrally with the rotor support portion 63.
  • the first support member 11 is configured as a member different from the rotor support portion 63, and the first support member 11 is connected (for example, spline connection) so as to rotate integrally with the rotor support portion 63.
  • the second support member 12 is connected so as to rotate integrally with the input member 20.
  • the second support member 12 has a flange portion (first flange portion) of the input member 20 via a radial extension portion formed so as to extend radially inward R2 from the second support member 12. 22).
  • the input member 20 is arranged so as to extend in a radial direction R between a first support portion 61 and a second support portion 62, which will be described later, and is connected to the second support member 12 of the first engagement device 1.
  • a flange portion 22 is provided.
  • the second support member 12 corresponds to the “support portion of the friction plate”
  • the first flange portion 22 corresponds to the “radially extending portion”.
  • the first engagement device 1 is a hydraulically driven engagement device including a hydraulic drive unit (here, a hydraulic servo mechanism) that operates according to the supplied hydraulic pressure.
  • the first engagement device 1 includes a piston 10 described above, an oil chamber H for moving the piston 10 in the axial direction L, and a moving direction of the piston 10 by hydraulic pressure.
  • a biasing member 15 a coil spring in this example
  • a first oil passage 91 for supplying oil to the oil chamber H is formed inside the connecting shaft 30, and the flow of oil is indicated by a broken line in FIG.
  • the hydraulic pressure after being controlled by the hydraulic control device is configured to be supplied to the oil chamber H through the first oil passage 91.
  • the first engagement device 1 is a normally open type engagement device, and the oil chamber H presses the piston 10 against the first friction plate 13 and the second friction plate 14 by the piston 10. It is provided on the opposite side of the direction.
  • the piston 10 is configured to press the first friction plate 13 and the second friction plate 14 from the axial first side L ⁇ b>1, and the oil chamber H is set to the axial first side with respect to the piston 10. It is formed in L1.
  • the biasing member 15 is provided so as to bias the piston 10 toward the first axial side L1.
  • the first engagement device 1 is a wet friction engagement device.
  • a second oil passage 92 for supplying oil to the first friction plate 13 and the second friction plate 14 is formed inside the connecting shaft 30.
  • the hydraulic pressure after being controlled by the hydraulic control device passes through the second oil passage 92 and is radially inward R2 with respect to the first friction plate 13 and the second friction plate 14. It is configured to be supplied from.
  • the oil supplied from the inner side R2 in the radial direction with respect to the first friction plate 13 and the second friction plate 14 cools the friction plates between the first friction plate 13 and the second friction plate 14 in the radial direction. It flows toward the outside R1.
  • the present embodiment is configured to supply the oil after cooling the first friction plate 13 and the second friction plate 14 to the rotary electric machine MG to cool the rotary electric machine MG.
  • the case 4 is arranged on the first side L1 in the axial direction with respect to the rotary electric machine MG and on the second side L2 in the axial direction with respect to the rotary electric machine MG. And a second wall portion 42.
  • the case 4 includes a peripheral wall portion that surrounds the rotary electric machine MG from the radial outside R1, and the first wall portion 41 and the second wall portion in the case internal space formed by being surrounded by the peripheral wall portion.
  • the rotary electric machine MG is housed in a space between the shaft 42 and the shaft 42 in the axial direction L.
  • the first engagement device 1 is also accommodated in this space.
  • the torque converter TC is housed in a space on the first side L1 in the axial direction with respect to the first wall portion 41 in the case internal space formed by being surrounded by the peripheral wall portion. Even if the first wall portion 41 and the second wall portion 42 are integrally formed with the peripheral wall portion so as to extend radially inward R2 from the peripheral wall portion, they are separate members fixed to the peripheral wall portion (the peripheral wall portion provided in the case 4). Member different from the above).
  • the first wall portion 41 is formed so as to extend in the radial direction R, and in the present embodiment, is formed in an annular shape coaxial with the axis X when viewed in the axial direction along the axial direction L. That is, the first wall portion 41 includes a disk-shaped wall portion that extends not only in the radial direction R but also in the circumferential direction. As shown in FIG. 3, a central portion of the first wall portion 41 in the radial direction R (in other words, an end portion of the first wall portion 41 on the radial inner side R2) has a tubular shape (here, a tubular shape) extending in the axial direction L. , Cylindrical) third tubular portion 43 is formed.
  • the third tubular portion 43 is formed so as to project to the axial second side L2 with respect to a portion of the first wall portion 41 that is adjacent to the third tubular portion 43 on the radially outer side R1.
  • the connecting shaft 30 is inserted into a through hole that is formed by being surrounded by the inner peripheral surface of the third tubular portion 43 and that penetrates the first wall portion 41 in the axial direction L.
  • the connecting shaft 30 is arranged so as to penetrate the first wall portion 41 in the axial direction L, and the rotary electric machine MG arranged on the axial second side L2 with respect to the first wall portion 41, and
  • the torque converter TC arranged on the axial first side L1 is connected to the wall portion 41.
  • the second wall portion 42 is formed so as to extend in the radial direction R, and in the present embodiment, is formed in an annular shape coaxial with the axis X when viewed in the axial direction. That is, the second wall portion 42 includes a disk-shaped wall portion that extends not only in the radial direction R but also in the circumferential direction.
  • the input member 20 is inserted into a through hole formed in the center portion of the second wall portion 42 in the radial direction R (in other words, the end portion of the second wall portion 42 on the radially inner side R2).
  • the input member 20 is arranged so as to penetrate the second wall portion 42 in the axial direction L, and the internal combustion engine E (or the internal combustion engine E is arranged on the axial second side L2 with respect to the second wall portion 42).
  • a device such as a damper that is drive-connected to E) and the first engagement device 1 that is arranged on the first side L1 in the axial direction with respect to the second wall portion 42.
  • the rotor Ro of the rotary electric machine MG is supported by the rotor support member 60.
  • the rotor Ro is supported by the rotor support member 60 in a state in which movement in each direction is restricted.
  • the rotor support member 60 supports the rotor Ro from the radially inner side R2.
  • the rotor support member 60 is formed in a cylindrical shape extending in the axial direction L, and is formed so as to extend in the radial direction R, and a rotor support portion 63 that supports the rotor Ro from the radial inner side R2.
  • a first support portion 61 and a second support portion 62 that support the rotor support portion 63 from the radially inner side R2 are provided.
  • the first support portion 61 is arranged so as to extend radially inward R2 from the rotor support portion 63 between the axial direction L of the first engagement device 1 and the first wall portion 41.
  • the oil chamber H described above is formed between the first support portion 61 and the piston 10.
  • the second support portion 62 is arranged so as to extend radially inward R2 from the rotor support portion 63 between the axial direction L of the first engagement device 1 and the second wall portion 42.
  • the second support portion 62 is arranged on the second side L2 in the axial direction with respect to the first support portion 61.
  • the first engagement device 1 is arranged between the first support portion 61 and the second support portion 62 in the axial direction L.
  • the rotor support member 60 includes a first tubular portion 71 formed in a tubular shape (here, cylindrical) extending in the axial direction L and fitted to the outer peripheral surface of the connecting shaft 30.
  • the first tubular portion 71 is arranged on the axial second side L2 with respect to the third tubular portion 43 included in the first wall portion 41 (here, it is arranged adjacent to the axial second side L2).
  • the connection shaft 30 is fitted to the outer peripheral surface of a portion of the connecting shaft 30 which is arranged on the second side L2 in the axial direction with respect to the third tubular portion 43.
  • the first tubular portion 71 is formed at the center portion of the first support portion 61 in the radial direction R (in other words, the end portion of the first support portion 61 on the radially inner side R2).
  • the first tubular portion 71 is formed so as to project to the axial second side L2 with respect to the portion of the first support portion 61 that is adjacent to the first tubular portion 71 on the radially outer side R1.
  • the first tubular portion 71 corresponds to the “cylindrical portion”.
  • the first tubular portion 71 and the connecting shaft 30 are connected to each other at the connecting portion 6 so as to rotate integrally with each other.
  • the rotor support member 60 including the first tubular portion 71 is connected to the connecting shaft 30 so as to rotate integrally therewith. That is, the rotor Ro is connected via the rotor support member 60 so as to rotate integrally with the connecting shaft 30.
  • the inner peripheral engagement portion formed on the inner peripheral surface of the first tubular portion 71 here, the end portion of the inner peripheral surface on the second axial side L2
  • the outer periphery of the connecting shaft 30 By engaging the outer peripheral engagement portion formed on the surface at the coupling portion 6, the first tubular portion 71 and the coupling shaft 30 are coupled so as to rotate integrally.
  • the inner peripheral engagement portion formed on the inner peripheral surface of the first tubular portion 71 is formed so as to extend in the axial direction L and has a plurality of inner teeth (inner peripheral spline teeth) arranged in the circumferential direction.
  • the outer tooth engaging portion formed on the outer peripheral surface of the connecting shaft 30 includes a plurality of outer teeth (outer peripheral spline teeth) that are formed to extend in the axial direction L and are arranged in the circumferential direction.
  • the inner peripheral engaging portion formed on the inner peripheral surface of the first tubular portion 71 and the outer peripheral engaging portion formed on the outer peripheral surface of the connecting shaft 30 are spline-engaged with each other at the connecting portion 6. .
  • the connection form of the first tubular portion 71 and the connection shaft 30 in the connection part 6 is a connection form that allows relative movement in the axial direction L and prohibits relative rotation in the circumferential direction.
  • the vehicle drive device 100 includes a first bearing B1 that rotatably supports the rotor support member 60 with respect to the case 4.
  • the vehicle drive device 100 further includes a third bearing B3 that rotatably supports the rotor support member 60 with respect to the case 4.
  • the first bearing B1 is arranged axially on the first side L1 with respect to the first engaging device 1
  • the third bearing B3 is axially first with respect to the first engaging device 1. It is arranged on the second side L2.
  • the first bearing B1 and the third bearing B3 have the same diameter.
  • ball bearings are used as the first bearing B1 and the third bearing B3.
  • ball bearings of the same type are used as the first bearing B1 and the third bearing B3.
  • the rotor Ro is rotatably supported by the first bearing B1 and the third bearing B3 on both sides in the axial direction L with respect to the case 4 while being supported by the rotor support member 60.
  • the first bearing B1 is disposed between the first support portion 61 and the first wall portion 41
  • the third bearing B3 is disposed between the second support portion 62 and the second wall portion 42. It is arranged.
  • the rotor Ro is rotatably supported on the first wall portion 41 by the first bearing B1 while being supported by the rotor support member 60, and is supported on the second wall portion 42 by the third bearing B3. And is rotatably supported.
  • the first bearing B1 includes a first side L1 in the axial direction and one side in the radial direction R (in the present embodiment, with respect to the rotor support member 60 (specifically, the first support portion 61)).
  • the rotor support member 60 is supported in the axial direction L and the radial direction R in a state in which the rotor support member 60 is arranged so as to abut from the radial outside R1).
  • the first bearing B1 is from the second side L2 in the axial direction and the other side in the radial direction R (in the present embodiment, the radially inner side R2) with respect to the case 4 (specifically, the first wall portion 41). It is arranged to abut.
  • the first bearing B1 is a bearing that is disposed between the rotor support member 60 and the case 4 in the radial direction R and that restricts the movement of the rotor support member 60 with respect to the case 4 toward the axial first side L1. is there.
  • the rotor support member 60 includes a first support portion 61 whose movement toward the axial first side L1 with respect to the case 4 is restricted by the first bearing B1. It should be noted that in the present specification, “abutting” with respect to the arrangement of the bearing means at least abutting in a state where the clearance (clearance) in the disposing portion of the bearing is closed.
  • the first support portion 61 includes a second tubular portion 72 formed in a tubular shape (here, cylindrical) extending in the axial direction L.
  • the second tubular portion 72 is formed so as to protrude toward the axial first side L1 with respect to a portion of the first support portion 61 that is adjacent to the second tubular portion 72 in the radial direction R.
  • the second tubular portion 72 is arranged so as to be radially outside R1 with respect to the third tubular portion 43 included in the first wall portion 41 and to overlap the third tubular portion 43 in the radial direction.
  • the first wall portion 41 includes a fourth tubular portion 44 formed in a tubular shape (here, cylindrical) extending in the axial direction L.
  • the fourth tubular portion 44 is formed so as to project to the axial second side L2 with respect to a portion of the first wall portion 41 adjacent to the fourth tubular portion 44 in the radial direction R.
  • the fourth tubular portion 44 is arranged so as to overlap the second tubular portion 72 when viewed in the radial direction.
  • the fourth tubular portion 44 is arranged on the radially outer side R1 with respect to the second tubular portion 72 and overlaps the second tubular portion 72 in the radial direction.
  • the fourth tubular portion 44 may be formed integrally with the third tubular portion 43.
  • the first bearing B1 is connected to the second tubular portion 72 and the fourth tubular portion 44, respectively. It is arranged to abut.
  • the stepped portion 73 including the first support surface 72a facing the first axial direction side L1 is the first of the pair of peripheral surfaces (that is, the inner peripheral surface and the outer peripheral surface) of the second tubular portion 72. It is formed on the target peripheral surface (in the present embodiment, the outer peripheral surface) that faces the four tubular portions 44 in the radial direction R.
  • the first bearing B1 (in this embodiment, the inner ring) abuts the first support surface 72a from the first axial side L1, and more than the first support surface 72a of the second tubular portion 72.
  • the fourth tubular portion 44 in the radial direction R is arranged (in the present embodiment, the radial outside R1) with respect to the target peripheral surface (second support surface 72b) of the portion on the axial first side L1. It is arranged to abut.
  • the stepped portion including the fourth support surface 41a facing the second axial direction side L2 faces the second tubular portion 72 of the pair of circumferential surfaces of the fourth tubular portion 44 in the radial direction R.
  • the first bearing B1 (in the present embodiment, the outer ring) abuts the fourth support surface 41a from the axial second side L2, and more than the fourth support surface 41a of the fourth tubular portion 44. From the side where the second tubular portion 72 in the radial direction R is arranged (in the present embodiment, the radial inner side R2) with respect to the target peripheral surface (fifth support surface 41b) of the axial second side L2. It is arranged to abut.
  • the first bearing B1 is arranged so as to overlap the third tubular portion 43 when viewed in the radial direction.
  • the first support surface 72a corresponds to the “step surface”.
  • the first bearing B1 includes the second support surface 72b, which is the peripheral surface (here, the outer peripheral surface) of the rotor support member 60, and the fifth surface, which is the peripheral surface (the inner peripheral surface, here) of the case 4. It is arranged between the support surface 41b and the radial direction R.
  • the first bearing B1 is fitted into one of the second support surface 72b and the fifth support surface 41b by a clearance fit, and is fitted into the other by an interference fit (specifically, press fit).
  • the first bearing B1 is fitted to the second support surface 72b by a clearance fit and is fitted to the fifth support surface 41b by an interference fit.
  • a stepped portion 73 having a first support surface 72a facing the axial first side L1 is formed at a position on the second support surface 72b adjacent to the axial second side L2 with respect to the first bearing B1. ..
  • a portion of the second supporting surface 72b on the first side L1 in the axial direction with respect to the first supporting surface 72a is a second axial direction with respect to the first supporting surface 72a of the second supporting surface 72b. It is formed to have a smaller diameter than the portion on the side L2.
  • the second support surface 72b corresponds to the "first peripheral surface” and the fifth support surface 41b corresponds to the "second peripheral surface".
  • the third bearing B3 is arranged on one side of the rotor support member 60 (specifically, the second support portion 62) in the axial second side L2 and in the radial direction R (in the present embodiment, in the present embodiment).
  • the rotor support member 60 is supported in the axial direction L and the radial direction R in a state in which the rotor support member 60 is disposed so as to abut from the radial outside R1).
  • the third bearing B3 is arranged from the first side L1 in the axial direction and the other side in the radial direction R (in the present embodiment, the inner side R2 in the radial direction) with respect to the case 4 (specifically, the second wall portion 42).
  • the third bearing B3 is a bearing that is arranged between the rotor support member 60 and the case 4 in the radial direction R and that restricts the movement of the rotor support member 60 toward the axial second side L2 with respect to the case 4. is there.
  • the rotor support member 60 includes a second support portion 62 whose movement toward the axial second side L2 with respect to the case 4 is restricted by the third bearing B3.
  • the second support portion 62 includes a fifth tubular portion 74 formed in a tubular shape (here, cylindrical) extending in the axial direction L.
  • the fifth tubular portion 74 is formed at the center portion of the second support portion 62 in the radial direction R (in other words, the end portion of the second support portion 62 on the radially inner side R2).
  • the fifth tubular portion 74 is formed so as to project to the axial second side L2 with respect to the portion of the second support portion 62 that is adjacent to the fifth tubular portion 74 on the radially outer side R1. ing.
  • the second wall portion 42 is provided with a bearing fitting portion 45 (boss portion) at a position overlapping with the fifth tubular portion 74 when viewed in the radial direction.
  • the bearing fitting portion 45 is arranged on the radially outer side R1 with respect to the fifth tubular portion 74.
  • the third bearing B3 is arranged between the peripheral surface (here, the outer peripheral surface) of the fifth tubular portion 74 and the peripheral surface (here, the inner peripheral surface) of the bearing fitting portion 45 in the radial direction R. Has been done.
  • the vehicle drive device 100 includes a second bearing B2 that rotatably supports the connecting shaft 30 with respect to the case 4.
  • a thrust bearing is used as the second bearing B2.
  • the second bearing B2 supports the connecting shaft 30 in the axial direction L in a state in which the second bearing B2 is arranged so as to come into contact with the connecting shaft 30 from the axial second side L2.
  • the second bearing B2 is arranged so as to contact the case 4 (specifically, the first wall portion 41) from the axial first side L1.
  • the second bearing B2 is a bearing that is disposed between the connecting shaft 30 and the case 4 in the axial direction L, and restricts the movement of the connecting shaft 30 toward the axial second side L2 with respect to the case 4.
  • the second bearing B2 includes a surface facing the axial second side L2 of the connecting shaft 30 (specifically, a second flange portion 32 described later) and a case 4 (specifically, the first wall portion 41). It is arranged in the axial direction L with respect to the surface facing the axial first side L1.
  • the connecting shaft 30 has a flange portion (first portion) at a portion arranged on the axial first side L1 with respect to the third tubular portion 43 included in the first wall portion 41. 2 flange portion 32).
  • the second flange portion 32 is located radially outside R1 with respect to a portion of the connecting shaft 30 arranged inside the third tubular portion 43 (a space surrounded by the inner peripheral surface of the third tubular portion 43). It is formed so as to project.
  • the second flange portion 32 is arranged so as to overlap the first wall portion 41 (here, the end portion of the first wall portion 41 on the radially inner side R2) when viewed in the axial direction.
  • the second flange portion 32 is arranged so as to overlap the third tubular portion 43 when viewed in the axial direction. Then, the second bearing B2 is brought into contact with each of the second flange portion 32 and the first wall portion 41 in the space sandwiched by the second flange portion 32 and the first wall portion 41 from both sides in the axial direction L. It is arranged. Specifically, the second bearing B2 is arranged so as to come into contact with the surface (third support surface 32a) of the second flange portion 32 facing the second axial direction side L2 from the second axial direction side L2. ing.
  • the second bearing B2 is different from the surface (sixth support surface 41c) facing the axial first side L1 in the first wall portion 41 (here, the end portion on the radially inner side R2 of the first wall portion 41). Are arranged so as to come into contact with each other from the axial first side L1.
  • the vehicle drive device 100 is configured so that the movement of the connecting shaft 30 toward the axial second side L2 can be restricted by the second bearing B2. Accordingly, a relatively large load acting on the connecting shaft 30 on the axial second side L2 due to the ballooning of the torque converter TC, and a dedicated first for restricting the movement of the connecting shaft 30 on the axial second side L2. It can be received by the case 4 via the two bearings B2.
  • the vehicle drive device 100 is exclusively for restricting the movement of the connecting shaft 30 toward the first axial direction L1 and the movement of the connecting shaft 30 toward the first axial direction L1 as described below.
  • the first bearing B1 described above can be used for the regulation without providing the bearing. This makes it possible to restrict the movement of the connecting shaft 30 connected to the rotor support member 60 to both sides in the axial direction L while reducing the number of parts.
  • the connecting shaft 30 includes a protrusion 33 that protrudes toward the second axial side L2 with respect to the first tubular portion 71. Then, the locking member 3 is locked at a position adjacent to the axial second side L2 with respect to the first cylindrical portion 71 on the outer peripheral surface of the protruding portion 33. Here, the locking member 3 is locked at a position adjacent to the second side L2 in the axial direction with respect to the connecting portion 6 between the first tubular portion 71 and the connecting shaft 30. The locking member 3 is locked to the outer peripheral surface of the protrusion 33 in a state in which the movement of the locking member 3 in the axial direction L with respect to the protrusion 33 is restricted.
  • the locking member 3 (a portion on the radially outer side R1 in the present embodiment) is arranged so as to face the first tubular portion 71 in the axial direction L. That is, the locking member 3 is arranged so as to overlap the first tubular portion 71 when viewed in the axial direction.
  • a snap ring is used as the locking member 3, and the snap ring as the locking member 3 is fitted in the annular groove formed on the outer peripheral surface of the protrusion 33.
  • the vehicle drive device 100 is configured to be able to receive the load acting on the rotor support member 60 on the axial first side L1 by the first bearing B1.
  • the load on the axial first side L1 transmitted from the connecting shaft 30 to the rotor support member 60 via the locking member 3 can be received by the first bearing B1. That is, the movement of the connecting shaft 30 toward the axial first side L1 can be restricted by the first bearing B1.
  • the locking member 3 is provided at a position adjacent to the axial second side L2 with respect to the first tubular portion 71 on the outer peripheral surface of the protrusion 33, whereby the first tubular portion of the connecting shaft 30 is provided.
  • the configuration for restricting the movement of the connecting shaft 30 toward the first axial side L1 of the first tubular portion 71 is not limited to this.
  • the fastening member for example, a bolt
  • screwed to the end portion of the coupling shaft 30 on the axial second side L2 can move the coupling shaft 30 to the axial first side L1 with respect to the first tubular portion 71. It can be configured to regulate.
  • the protruding portion 33, the second flange portion 32, and the portion between the protruding portion 33 and the second flange portion 32 in the axial direction L of the connecting shaft 30 (that is, the protruding portion 33 and the second flange portion). 32) which is connected to 32 is integrally formed.
  • the connecting shaft 30 is composed of one member.
  • the outer peripheral surface of the portion on the axial second side L2 with respect to the relevant portion is formed to have a smaller diameter than the through hole of the first wall portion 41.
  • the connecting shaft 30 is axially inserted into the through hole of the first wall portion 41 so that the tip portion of the axial second side L2 projects toward the axial second side L2 with respect to the first tubular portion 71. It is inserted from the direction first side L1.
  • an axial direction is provided between the connecting shaft 30 and the input member 20 in the axial direction L and an axial direction L between the input member 20 and the rotor support member 60.
  • Bearings capable of receiving a load of L are arranged respectively.
  • the seventh bearing B7 (thrust bearing in this example) is arranged between the input member 20 and the connecting shaft 30 in the axial direction L, and the input member 20 (specifically, the first flange portion) is disposed. 22) and the rotor support member 60 (specifically, the second support portion 62) in the axial direction L
  • the eighth bearing B8 (in this example, the thrust bearing) is arranged.
  • the seventh bearing B7 is arranged so as to come into contact with the input member 20 from the first axial direction L1 and also come into contact with the connecting shaft 30 from the second axial direction L2.
  • the eighth bearing B8 contacts the input member 20 (specifically, the first flange portion 22) from the axial second side L2, and the rotor support member 60 (specifically, the second bearing B8). It is arranged so as to contact the support portion 62) from the axial first side L1. That is, the eighth bearing B8 arranged between the input member 20 and the rotor support member 60 in the axial direction L is arranged between the first flange portion 22 and the second support portion 62 in the axial direction L. ..
  • each of the seventh bearing B7 and the eighth bearing B8 corresponds to “a bearing capable of receiving a load in the axial direction”.
  • the support structure of the connecting shaft 30 for the case 4 in the radial direction R will be described.
  • a portion where the connecting shaft 30 is directly supported in the radial direction R with respect to the case 4 by utilizing the support structure of the input member 20 in the radial direction R with respect to the case 4. Is set as one location.
  • the connecting shaft 30 is arranged so as to face the outer peripheral surface of the connecting shaft 30 in the case 4, as compared to the case where the connecting shaft 30 is directly supported in the radial direction R with respect to the case 4.
  • the length of the portion (specifically, the third tubular portion 43) in the axial direction L can be reduced, and as a result, the rotor support member 60 can be prevented from increasing in size in the axial direction L of the entire apparatus. It is possible to realize a configuration including a first tubular portion 71 that fits on the outer peripheral surface of the connecting shaft 30.
  • the first end 21 that is the end of the input member 20 on the first axial side L1 is the end of the connecting shaft 30 that is the second axial side L2. It is arranged inside the second end 31 in the radial direction R and overlaps with the second end 31 in the radial direction.
  • the second end 31 of the connecting shaft 30 is formed in a tubular shape (here, cylindrical) extending in the axial direction L
  • the first end 21 of the input member 20 is formed in the axial direction L.
  • bearings capable of receiving a load in the radial direction R are respectively arranged between and in the radial direction R.
  • the fourth bearing B4 is arranged between the inner peripheral surface of the third tubular portion 43 of the first wall portion 41 and the outer peripheral surface of the connecting shaft 30 in the radial direction R, and the second wall portion 42.
  • the fifth bearing B5 is arranged between the inner peripheral surface of the end portion on the radially inner side R2 and the outer peripheral surface of the input member 20 in the radial direction R, and the outer peripheral surface of the first end portion 21 and the second end portion 31 are
  • the sixth bearing B6 is arranged between the inner circumferential surface and the radial direction R.
  • the connecting shaft 30 is supported in the radial direction R by the fourth bearing B4 directly on the case 4 on the axial first side L1, and on the axial second side L2. Is indirectly applied to the case 4 (specifically, via the input member 20 supported directly in the radial direction R by the fifth bearing B5 in the radial direction R) by the sixth bearing B6. It is supported in the direction R.
  • needle bearings are used as the fourth bearing B4, the fifth bearing B5, and the sixth bearing B6.
  • each of the fourth bearing B4, the fifth bearing B5, and the sixth bearing B6 corresponds to “a bearing capable of receiving a radial load”.
  • the connecting shaft 30, the rotor support member 60, and the input member 20 are allowed to move relative to the case 4 in the axial direction L within a range corresponding to a clearance (clearance, play) existing in a bearing installation site or the like.
  • a clearance (clearance, play) existing in a bearing installation site or the like.
  • a gap in the axial direction L is formed between the first tubular portion 71 and the locking member 3.
  • a gap in the axial direction L is formed between the first tubular portion 71 and the locking member 3 in a state where the rotor support member 60 and the connecting shaft 30 are abutted against the axial second side L2. ..
  • the load on the axial second side L2 acts on the rotor Ro due to inertial force or the like, and the rotor support member 60 supporting the rotor Ro moves to the axial second side L2, the rotor support member 60.
  • the load acting on the axial second side L2 is suppressed from being transmitted to the second bearing B2 via the locking member 3, the load is received by the case 4 via the third bearing B3. Is possible.
  • the inertial force causes a load on the second axial side L2 to be applied to the rotor during deceleration of the vehicle. It can act on Ro and the rotor support member 60.
  • a gap in the axial direction L is formed between the connecting shaft 30 and the input member 20.
  • a gap in the axial direction L is formed between the connecting shaft 30 and the input member 20 with the connecting shaft 30 and the input member 20 abutting against the axial second side L2.
  • a gap in the axial direction L between the connecting shaft 30 and the input member 20 is formed at the location where the seventh bearing B7 is arranged. Accordingly, it is possible to suppress a relatively large load acting on the connecting shaft 30 on the axial second side L2 due to the ballooning of the torque converter TC from being transmitted to the third bearing B3 via the input member 20. Has become.
  • an oil passage for supplying oil to the first engagement device 1 is formed in a portion of the connecting shaft 30 that is arranged inside the first tubular portion 71.
  • a second oil passage 92 for supplying oil is formed at least in a portion of the connecting shaft 30 disposed inside the first tubular portion 71.
  • the first oil passage 91 and the second oil passage 92 are formed so as to extend at different positions inside the connecting shaft 30 along the axial direction L (here, in parallel to the axial direction L).
  • each of the first oil passage 91 and the second oil passage 92 corresponds to “an oil passage for supplying oil to the friction engagement device”.
  • the hydraulic pressure after being controlled by the hydraulic control device passes through the third oil passage 93 formed in the first wall portion 41 and the first oil passage 91 in order, and the oil chamber H Is supplied to.
  • the sleeve member 5 is arranged between the outer peripheral surface of the connecting shaft 30 and the inner peripheral surface of the third tubular portion 43 included in the first wall portion 41, and the oil in the third oil passage 93 is An oil hole formed in the sleeve member 5 so as to connect the inner peripheral surface and the outer peripheral surface of the sleeve member 5 to the connecting shaft 30 so that the first oil passage 91 and the outer peripheral surface of the connecting shaft 30 communicate with each other.
  • the oil is supplied to the first oil passage 91 through the formed first oil holes 81 in order.
  • the oil in the first oil passage 91 is formed on the connecting shaft 30 so that the first oil passage 91 and the outer peripheral surface of the connecting shaft 30 communicate with each other, as shown by the broken line in FIG.
  • the second oil hole 82 and the third oil hole 83 formed in the first tubular portion 71 so as to communicate the inner peripheral surface and the outer peripheral surface of the first tubular portion 71 are sequentially passed to the oil chamber H. Supplied.
  • the hydraulic pressure after being controlled by the hydraulic control device passes through the fourth oil passage 94 formed in the first wall portion 41 and the second oil passage 92 in order, and It is supplied to the first friction plate 13 and the second friction plate 14 from the radially inner side R2.
  • the oil in the fourth oil passage 94 is an oil hole formed in the sleeve member 5 so as to connect the inner peripheral surface and the outer peripheral surface of the sleeve member 5, the second oil passage 92, and the connecting shaft 30.
  • the oil is supplied to the second oil passage 92 through the fourth oil hole 84 formed in the connecting shaft 30 so as to communicate with the outer peripheral surface of the second oil passage.
  • the end of the second oil passage 92 on the axial second side L2 is open to the space surrounded by the inner peripheral surface of the second end 31, and the oil in the second oil passage 92 is the same as the oil in FIG. As shown by the broken line, the space surrounded by the inner peripheral surface of the second end portion 31, the space surrounded by the inner peripheral surface of the first end portion 21, the inner peripheral surface and the outer peripheral surface of the first end portion 21.
  • the fifth oil hole 85 formed in the first end portion 21 so as to communicate with the second end portion 31 and the inner peripheral surface and the outer peripheral surface of the second end portion 31 communicate with each other in the second axial direction.
  • the oil is supplied from the radially inner side R2 to the first friction plate 13 and the second friction plate 14 through the oil groove 80 formed on the end surface of the side L2 in order. At this time, the oil can be caused to flow toward the radially outer side R1 by utilizing the centrifugal force that accompanies the rotation of the input member 20 and the connecting shaft 30.
  • the axial oil passage (here, toward the second oil hole 82) for circulating the oil in the axial direction L toward the oil supply portion to the first engagement device 1 is provided.
  • a first oil passage 91 for circulating oil in the axial direction L and a second oil passage 92 for circulating oil in the axial direction L toward the second end 31) are provided inside the connecting shaft 30. Is forming.
  • such an axial oil passage is arranged between the third tubular portion 43 of the first wall portion 41 and the outer peripheral surface of the connecting shaft 30 and the inner peripheral surface of the third tubular portion 43. It is easier to keep the diameter of the outer peripheral surface of the third tubular portion 43 small compared to the case where it is formed in a member.
  • the diameter of the second tubular portion 72 which is radially outside R1 with respect to the third tubular portion 43 and is arranged so as to overlap with the third tubular portion 43 in the radial direction, is reduced, It is possible to reduce the diameter of the first bearing B1 (here, the diameter of the first bearing B1 can be reduced to the same degree as that of the third bearing B3).
  • the oil supply structure for the first engagement device 1 shown in the above embodiment is an example, and the oil supply structure for the first engagement device 1 can be appropriately changed.
  • an oil passage having the same function as at least the upstream side portion of the first oil passage 91 (portion on the connection side with the third oil passage 93) is the third tubular portion 43 provided in the first wall portion 41, It can be configured to be formed in a member arranged between the outer peripheral surface of the connecting shaft 30 and the inner peripheral surface of the third tubular portion 43.
  • an oil passage having the same function as at least an upstream side portion (a portion on the side of the connection portion with the fourth oil passage 94) of the second oil passage 92 is a third tubular portion provided in the first wall portion 41.
  • the first end 21 that is the end of the input member 20 on the first axial side L1 is the second end that is the end of the connecting shaft 30 on the second axial side L2.
  • the configuration has been described as an example, which is located inside the radial direction R with respect to 31, and is arranged so as to overlap the second end portion 31 when viewed in the radial direction.
  • the first end portion 21 is outside the second end portion 31 in the radial direction R and overlaps with the second end portion 31 when viewed in the radial direction.
  • the sixth bearing B6 is arranged between the inner peripheral surface of the first end portion 21 and the outer peripheral surface of the second end portion 31 in the radial direction R.
  • the configuration in which the connecting shaft 30 is directly supported in the radial direction R with respect to the case 4 in one position has been described as an example.
  • the configuration is not limited to such a configuration, and the connecting shaft 30 may be directly supported in the radial direction R with respect to the case 4 not at one position in the axial direction L but at two positions. it can.
  • the radial direction R is provided at two locations in the axial direction L between the radial direction R between the case 4 (for example, the third tubular portion 43 included in the first wall portion 41) and the outer peripheral surface of the connecting shaft 30. It is possible to adopt a configuration in which a bearing capable of receiving the load is arranged.
  • the first end 21 that is the end of the input member 20 on the first axial side L1 is the end on the second axial side L2 of the connecting shaft 30.
  • the second end portion 31 which is the second end portion 31 are arranged so as not to overlap in the radial direction, that is, the first end portion 21 is arranged on the axial second side L2 with respect to the second end portion 31. It is also possible to have a configuration.
  • first bearing B1 and the third bearing B3 are bearings having the same diameter
  • first bearing B1 and the third bearing B3 may be bearings having different diameters.
  • the vehicle drive device 100 is provided with the first engagement device 1 at the position that is the inner side R2 of the rotor Ro in the radial direction and that overlaps with the rotor Ro when viewed in the radial direction. Described as an example. However, without being limited to such a configuration, the vehicle drive device 100 includes the first engagement device 1 at a position aligned in the axial direction L with respect to the rotor Ro, and the vehicle drive device 100 includes The first engagement device 1 may be provided on a shaft different from the rotor Ro.
  • the configuration of the vehicle drive device 100 shown in the above embodiment is an example, and the configuration of the vehicle drive device 100 can be appropriately changed.
  • the vehicle drive device 100 has been described as an example including the input member 20 drivingly connected to the internal combustion engine E and the transmission TM. It is also possible to adopt a configuration that does not include at least one of the above.
  • the vehicle drive device 100 is, for example, a drive device for a vehicle (electric vehicle) that includes only the rotating electric machine MG as a drive force source of the wheels W. can do.
  • a rotating electric machine (MG) that serves as a driving force source for the wheels (W), a rotor support member (60) that supports a rotor (Ro) of the rotating electric machine (MG), and a rotor support member (60) are connected.
  • a vehicle drive device (100) comprising: the connecting shaft (30); and a case (4) accommodating the fluid transmission device (TC), wherein one side of the axial direction (L) is the axial direction first side.
  • a second bearing (B2) for restricting movement of the rotor, and the fluid transmission (TC) is arranged on the first side (L1) in the axial direction with respect to the coupling shaft (30), and the rotor support is supported.
  • the member (60) includes a tubular portion (71) which is formed in a tubular shape extending in the axial direction (L) and fits on the outer peripheral surface of the connecting shaft (30), and the connecting shaft (30) includes: The movement of the tubular portion (71) toward the first axial direction side (L1) is restricted.
  • the fluid transmission (TC) connected to the rotor support member (60) via the connection shaft (30) is arranged on the first side (L1) in the axial direction with respect to the connection shaft (30). Therefore, due to the ballooning of the fluid transmission (TC), a relatively large load on the axial second side (L2) may act on the connecting shaft (30).
  • the connecting shaft (30) moves to the axial second side (L2) with respect to the case (4).
  • the second bearing (B2) that restricts the movement of the. Therefore, the load acting on the connecting shaft (30) on the axial second side (L2) can be received by the case (4) via the second bearing (B2).
  • the load on the first axial direction (L1) can also act on the connecting shaft (30).
  • the movement of the connecting shaft (30) on the axial first side (L1) with respect to the tubular portion (71) of the rotor support member (60) is restricted. Therefore, the load acting on the connecting shaft (30) on the axial first side (L1) is transmitted to the rotor support member (60).
  • the case (4) of the rotor support member (60) is formed by the first bearing (B1) arranged between the rotor support member (60) and the case (4) in the radial direction (R).
  • the movement toward the first side (L1) in the axial direction is restricted. Therefore, the load on the axial first side (L1) transmitted from the connecting shaft (30) to the rotor support member (60) can be received by the case (4) via the first bearing (B1). That is, the movement of the connecting shaft (30) to the axial first side (L1) can be restricted by using the first bearing (B1). Since the load on the first axial side (L1) that can act on the connecting shaft (30) is relatively small, the movement of the connecting shaft (30) to the first axial side (L1) is restricted.
  • the first bearing (B1) arranged between the rotor support member (60) and the case (4) in the radial direction (R) is used to utilize the shaft of the connecting shaft (30). It is possible to appropriately regulate the movement to the first direction side (L1).
  • the relatively large load on the axial second side (L2) that can act on the connecting shaft (30) causes the axial second side (L2) of the connecting shaft (30).
  • the connecting shaft (30) includes a protruding portion (33) protruding toward the second axial direction side (L2) with respect to the tubular portion (71), and an outer peripheral surface of the protruding portion (33). It is preferable that the locking member (3) is locked at a position adjacent to the second side (L2) in the axial direction with respect to the tubular portion (71).
  • the movable range of the connecting shaft (30) in the axial direction (L) with respect to the tubular portion (71) is set to be greater than the position where the locking member (3) and the tubular portion (71) are in contact with each other.
  • the movement of the connecting shaft (30) with respect to the tubular portion (71) to the axial first side (L1) can be restricted.
  • the load acting on the connecting shaft (30) on the axial first side (L1) is transmitted to the rotor support member (60) via the locking member (3), and the first It can be received by the case (4) via the bearing (B1).
  • the locking member (3) is locked at a position adjacent to the axial second side (L2) with respect to the tubular portion (71) on the outer peripheral surface of the protrusion (33).
  • a third bearing (B3) for restricting movement to the second side (L2) is further provided, and the rotor support member (60) moves to the axial second side (L2) with respect to the case (4).
  • the connecting shaft (30) is moved to the second side (L2) in the axial direction with respect to the case (4), the tubular portion (71) and the locking member (3). It is preferable that a gap in the axial direction (L) be formed between and.
  • the load on the axial second side (L2) acts on the rotor (Ro) due to inertial force and the like, so that the rotor support member (60) supporting the rotor (Ro) has the axial second side.
  • the load acting on the rotor support member (60) on the axial second side (L2) is transmitted to the second bearing (B2) via the locking member (3).
  • the load can be received by the case (4) via the third bearing (B3). Therefore, it is not necessary to receive the load acting on the rotor support member (60) on the axial second side (L2) in the case (4) via the second bearing (B2), and the load of the second bearing (B2) Upsizing can be suppressed.
  • the first bearing (B1) includes the first peripheral surface (72b) that is the peripheral surface of the rotor support member (60) and the peripheral surface of the case (4).
  • the first bearing (B1) is arranged between the second peripheral surface (41b), which is a surface, and the radial direction (R), and the first bearing (B1) is fitted to the first peripheral surface (72b) by a clearance fit.
  • the second peripheral surface (41b) is fitted by interference fit, and the first peripheral surface (72b) is adjacent to the axial direction second side (L2) with respect to the first bearing (B1), It is preferable that a step portion (73) having a step surface (72a) facing the first axial direction side (L1) is formed.
  • the movable range of the rotor support member (60) in the axial direction (L) with respect to the case (4) is axially more than the position where the step surface (72a) contacts the first bearing (B1). It can be limited to the range on the second side (L2). Therefore, by the first bearing (B1) arranged between the rotor support member (60) and the case (4) in the radial direction (R), the first axial direction of the rotor support member (60) with respect to the case (4).
  • the movement to the side (L1) can be appropriately regulated.
  • the friction engagement device (1) further includes a rotor (Ro) inside the radial direction (R) with respect to the rotor (Ro) when viewed in the radial direction along the radial direction (R). ), and an oil passage (for supplying oil to the friction engagement device (1) to a portion of the connecting shaft (30) disposed inside the tubular portion (71) (). 91, 92) are preferably formed.
  • the oil passages (91, 92) for circulating the oil in the axial direction (L) toward the oil supply portion to the friction engagement device (1) are provided inside the coupling shaft (30). Can be formed. Therefore, it is not necessary to dispose a member for forming such an oil passage between the connecting shaft (30) and the rotor support member (60) in the radial direction (R), and to reduce the number of parts. You can In addition, since the connecting shaft (30) is generally provided so as to extend over a relatively wide range in the axial direction (L), the connecting shaft (30) faces the oil supply portion to the friction engagement device (1).
  • the number of oil relay points can be reduced, and The supply structure can be simplified.
  • the internal combustion engine (E) is driven by the internal combustion engine (E) when the vehicle is driven. Generation of energy loss due to dragging of the engine (E) can be suppressed.
  • the shaft of the rotor support member (60) with respect to the case (4) is formed.
  • L3), the third bearing (B3) is arranged on the second side (L2) in the axial direction with respect to the friction engagement device (1), and the third bearing (B3) and the third bearing (B1)
  • the bearing (B3) is preferably a bearing having the same diameter.
  • the rotor support member (60) can be appropriately supported by the first bearing (B1) and the third bearing (B3) on both sides in the axial direction (L). Since the first bearing (B1) and the third bearing (B3) have the same diameter, the first bearing (B1) and the third bearing (B3) are the same type of bearing. As a result, the number of types of parts can be reduced and the cost can be reduced.
  • the oil passages (91, 92) for supplying oil to the friction engagement device (1) are formed in the portion of the connecting shaft (30) that is arranged inside the tubular portion (71). As described above, it is not necessary to arrange a member for forming such an oil passage between the connecting shaft (30) and the rotor support member (60) in the radial direction (R).
  • the movement of the rotor support member (60) toward the first axial direction (L1) with respect to the case (4) is restricted as compared with the case where a member for forming such an oil passage is arranged.
  • the constraint (for example, the constraint of reducing the diameter) of the first bearing (B1) to be arranged in the radial direction (R) can be relaxed, and as a result, the first bearing (B1) can be changed to the third bearing (B1). It is easy to use a bearing having the same diameter as B3).
  • the vehicle drive device (100) having each of the above configurations further includes an input member (20) drivingly connected to the internal combustion engine (E), and the input member (20) with respect to the connecting shaft (30).
  • the second end portion (31) which is the end portion on the second axial side (L2) of the connecting shaft (30), and It is arranged so as to overlap with the second end portion (31) when viewed in the radial direction along (R), and in the radial direction (R) between the case (4) and the outer peripheral surface of the connecting shaft (30).
  • the bearings (B4, B5, B6) capable of receiving the load in the radial direction (R) are respectively arranged in and between the radial directions (R).
  • the connecting shaft (30) is directly connected to the case (4) in the radial direction (R) can be one location.
  • the connecting shaft (30) of the case (4) is The length in the axial direction (L) of the portion arranged so as to face the outer peripheral surface can be shortened, and as a result, the rotor support member (while suppressing increase in the axial direction (L) of the entire apparatus ( It is possible to realize a configuration in which 60) includes a tubular portion (71) fitted to the outer peripheral surface of the connecting shaft (30).
  • An input member (20) disposed coaxially with the connecting shaft (30) on the axial second side (L2) with respect to the connecting shaft (30) and drivingly connected to the internal combustion engine (E); It is arranged between the rotor support member (60) and the case (4) in the radial direction (R), and the rotor support member (60) has the axial second side (L2) with respect to the case (4).
  • Bearings (B7, B8) capable of receiving a load in the axial direction (L) are respectively arranged between the rotor support member (60) and the axial direction (L), and the connecting shaft (30) moves to the axially second side (L2) with respect to the case (4), and the input member (20) has the axially second side with respect to the case (4). It is preferable that a gap in the axial direction (L) is formed between the connecting shaft (30) and the input member (20) in the state of moving to (L2).
  • the load acting on the input member (20) on the axial first side (L1) is arranged between the connecting shaft (30) and the input member (20) in the axial direction (L).
  • the bearing (B7), the connecting shaft (30), the rotor support member (60), and the first bearing (B1) can be received by the case (4).
  • a load acting on the input member (20) on the axial second side (L2) is disposed between the input member (20) and the rotor support member (60) in the axial direction (L) ( B8), the rotor support member (60), and the third bearing (B3) can be received by the case (4). Therefore, the movement of the input member (20) to both sides in the axial direction (L) can be appropriately regulated.
  • connection shaft (30) is moved to the most axial second side (L2), and the input member (20) is moved to the most axial second side (L2).
  • a gap in the axial direction (L) is formed between the shaft (30) and the input member (20). Therefore, a relatively large load acting on the connecting shaft (30) on the axial second side (L2) by the ballooning of the fluid transmission (TC) applies to the third bearing (B3) via the input member (20). It is possible to suppress the transmission, and it is possible to suppress the size increase of the third bearing (B3).
  • a friction engagement device (1) for connecting and disconnecting the input member (20) and the rotary electric machine (MG) is further provided, and the rotor support member (60) is the first member.
  • the friction engagement device (1) is arranged between the first support portion (61) and the second support portion (62) in the axial direction (L), and the input member (20) is ,
  • a friction plate support portion (1) disposed in the friction engagement device (1) so as to extend between the first support portion (61) and the second support portion (62) in the radial direction (R). 12) is provided with a radially extending portion (22), and the bearing (B8) is arranged between the input member (20) and the rotor support member (60) in the axial direction (L). Is preferably arranged between the radial extension portion (22) and the second support portion (62) in the axial direction (L).
  • the vehicle drive device (100) includes the frictional engagement device (1) that connects and disconnects the input member (20) and the rotary electric machine (MG) with the first support portion (61). ) And the second support portion (62) in the axial direction (L), the structure in which the movement of the input member (20) to both sides in the axial direction (L) is restricted is appropriately realized.
  • the vehicle drive device only needs to be able to exhibit at least one of the above effects.

Abstract

車両用駆動装置は、ロータ支持部材(60)とケース(4)との径方向(R)の間に配置され、ロータ支持部材(60)のケース(4)に対する軸方向第1側(L1)への移動を規制する第1軸受(B1)と、連結軸(30)とケース(4)との軸方向(L)の間に配置され、連結軸(30)のケース(4)に対する軸方向第2側(L2)への移動を規制する第2軸受(B2)と、を備える。流体伝動装置は、連結軸(30)に対して軸方向第1側(L1)に配置される。ロータ支持部材(60)は、軸方向(L)に延びる筒状に形成されて連結軸(30)の外周面に嵌合する筒状部(71)を備える。連結軸(30)は、筒状部(71)に対する軸方向第1側(L1)への移動が規制されている。

Description

車両用駆動装置
 本発明は、車輪の駆動力源となる回転電機と、回転電機のロータを支持するロータ支持部材と、ロータ支持部材に連結される連結軸と、連結軸を介してロータ支持部材に連結される流体伝動装置と、ケースと、を備えた車両用駆動装置に関する。
 上記のような車両用駆動装置の一例が、特開2017-177884号公報(特許文献1)に開示されている。以下、背景技術の説明において括弧内に示す符号は特許文献1のものである。特許文献1に記載の車両用駆動装置は、回転電機(MG)とトルクコンバータ(TC)とを連結するための連結部材(9)を備え、回転電機(MG)のロータ本体(Ro)を支持するロータ支持部材(22)は、連結部材(9)に連結されている。そして、この連結部材(9)は、ケース(3)に固定された筒状支持部(61)に対して軸方向(L)の両側への移動が規制されるように配置されている。
 具体的には、特許文献1の図3に示されているように、連結部材(9)は、第一連結部材(91)と第二連結部材(92)との2つの部材により構成されている。筒状支持部(61)と第一連結部材(91)との軸方向(L)の間には、第一連結部材(91)の軸方向第二側(L2)への移動を規制する第一軸受(71)が配置され、筒状支持部(61)と第二連結部材(92)との軸方向(L)の間には、第二連結部材(92)の軸方向第一側(L1)への移動を規制する第二軸受(72)が配置されている。そして、第一連結部材(91)と第二連結部材(92)とは、軸方向(L)の相対移動が規制されるようにボルトで連結されている。これにより、筒状支持部(61)に対する軸方向(L)の両側への連結部材(9)の移動が、第一軸受(71)と第二軸受(72)との2つの軸受によって規制されている。なお、連結部材(9)には、特許文献1の段落0061に記載されているトルクコンバータ(TC)のバルーニング等によって、軸方向(L)の荷重が作用し得る。
特開2017-177884号公報
 上記のように、特許文献1の車両用駆動装置では、連結軸(特許文献1では連結部材)の軸方向の一方側への移動を規制する軸受と、連結軸の軸方向の他方側への移動を規制する軸受とを設けることで、軸方向の両側への連結軸の移動を規制している。そのため、特許文献1の車両用駆動装置では、軸方向の両側への連結軸の移動を規制するために2つの専用の軸受が必要となる。車両用駆動装置のコストを低減するためには、連結軸の軸方向の両側への移動を規制する構成に関しても、部品点数を削減できることが望ましい。
 そこで、ロータ支持部材に連結される連結軸を介して、流体伝動装置がロータ支持部材に連結される車両用駆動装置において、部品点数の削減を図りつつ、連結軸の軸方向の両側への移動を規制することが可能な技術の実現が望まれる。
 本開示に係る車両用駆動装置は、車輪の駆動力源となる回転電機と、前記回転電機のロータを支持するロータ支持部材と、前記ロータ支持部材に連結される連結軸と、前記連結軸を介して前記ロータ支持部材に連結される流体伝動装置と、前記回転電機、前記ロータ支持部材、前記連結軸、及び前記流体伝動装置を収容するケースと、を備えた車両用駆動装置であって、軸方向の一方側を軸方向第1側とし、前記軸方向における前記軸方向第1側とは反対側を軸方向第2側として、前記ロータ支持部材と前記ケースとの径方向の間に配置され、前記ロータ支持部材の前記ケースに対する前記軸方向第1側への移動を規制する第1軸受と、前記連結軸と前記ケースとの前記軸方向の間に配置され、前記連結軸の前記ケースに対する前記軸方向第2側への移動を規制する第2軸受と、を備え、前記流体伝動装置は、前記連結軸に対して前記軸方向第1側に配置され、前記ロータ支持部材は、前記軸方向に延びる筒状に形成されて前記連結軸の外周面に嵌合する筒状部を備え、前記連結軸は、前記筒状部に対する前記軸方向第1側への移動が規制されている。
 この構成では、連結軸を介してロータ支持部材に連結される流体伝動装置が、連結軸に対して軸方向第1側に配置されるため、流体伝動装置のバルーニングによって、軸方向第2側への比較的大きな荷重が連結軸に作用し得る。この点に関して、上記の構成では、連結軸とケースとの軸方向の間に、連結軸のケースに対する軸方向第2側への移動を規制する第2軸受が配置されている。そのため、連結軸に作用する軸方向第2側への荷重は、第2軸受を介してケースで受けることができる。
 なお、流体伝動装置のバルーニングによる荷重に比べて非常に小さな荷重ではあるものの、連結軸には軸方向第1側への荷重も作用し得る。この点に関して、上記の構成では、連結軸は、ロータ支持部材が備える筒状部に対する軸方向第1側の移動が規制されている。よって、連結軸に作用する軸方向第1側への荷重は、ロータ支持部材に伝達される。そして、上記の構成では、ロータ支持部材とケースとの径方向の間に配置される第1軸受によって、ロータ支持部材のケースに対する軸方向第1側への移動が規制されている。よって、連結軸からロータ支持部材に伝達される軸方向第1側への荷重は、第1軸受を介してケースで受けることができる。すなわち、連結軸の軸方向第1側への移動を、第1軸受を利用して規制することができる。なお、連結軸に作用し得る軸方向第1側への荷重は比較的小さいため、連結軸の軸方向第1側への移動を規制するための専用の軸受を設けなくとも、ロータ支持部材とケースとの径方向の間に配置される第1軸受を利用して、連結軸の軸方向第1側への移動を適切に規制することが可能となっている。
 以上のように、上記の構成によれば、連結軸に作用し得る軸方向第2側への比較的大きな荷重は、連結軸の軸方向第2側への移動を規制するための専用の第2軸受を介してケースで受け、連結軸に作用し得る軸方向第1側への比較的小さな荷重は、連結軸の軸方向第1側への移動を規制するための専用の軸受を設けることなく、ロータ支持部材とケースとの径方向の間に配置される第1軸受を介してケースで受けることができる。よって、連結軸の軸方向第1側への移動を規制するための専用の軸受が必要な場合に比べて、部品点数の削減を図りつつ、連結軸の軸方向の両側への移動を規制することが可能となっている。
 車両用駆動装置の更なる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
車両用駆動装置の概略構成を示す模式図 車両用駆動装置の一部の断面図 図2の部分拡大図
 車両用駆動装置の実施形態について、図面を参照して説明する。以下の説明では、特に区別して明記している場合を除き、「軸方向L」、「径方向R」、及び「周方向」は、回転電機MGの軸心X(図2参照)を基準として定義している。この軸心Xは、回転電機MGのロータRoの回転軸心であり、ロータRo、ロータRoを支持するロータ支持部材60、及びロータ支持部材60に連結される連結軸30が、軸心X周りに回転する。そして、軸方向Lの一方側を「軸方向第1側L1」とし、軸方向Lの他方側(軸方向Lにおける軸方向第1側L1とは反対側)を「軸方向第2側L2」とする。また、径方向Rの外側を「径方向外側R1」とし、径方向Rの内側を「径方向内側R2」とする。以下の説明における各部材についての方向は、それらが車両用駆動装置100に組み付けられた状態での方向を表す。なお、各部材についての寸法、配置方向、配置位置等に関する用語は、誤差(製造上許容され得る程度の誤差)による差異を有する状態を含む概念である。
 本明細書では、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材(例えば、軸、歯車機構、ベルト、チェーン等)が含まれる。なお、伝動部材として、回転及び駆動力を選択的に伝達する係合装置(例えば、摩擦係合装置、噛み合い式係合装置等)が含まれていてもよい。
 また、本明細書では、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータジェネレータのいずれをも含む概念として用いている。また、本明細書では、2つの部材の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線に直交する各方向に移動させた場合に、当該仮想直線が2つの部材の双方に交わる領域が少なくとも一部に存在することを意味する。
 図1及び図2に示すように、車両用駆動装置100は、車輪Wの駆動力源となる回転電機MGと、回転電機MGのロータRoを支持するロータ支持部材60と、ロータ支持部材60に連結される連結軸30と、連結軸30を介してロータ支持部材60に連結されるトルクコンバータTCと、回転電機MG、ロータ支持部材60、連結軸30、及びトルクコンバータTCを収容するケース4と、を備えている。連結軸30は、ロータRoの回転を出力するロータ出力軸(回転電機出力軸)として機能する。車両用駆動装置100は、回転電機MGの出力トルクを、連結軸30を介して車輪Wに伝達させて車両(車両用駆動装置100が搭載された車両)を走行させる。本実施形態では、車両用駆動装置100は、回転電機MGの側から入力される回転及びトルクを、左右2つの車輪Wに分配して伝達する差動歯車装置DF(出力用差動歯車装置)を備えており、車両用駆動装置100は、回転電機MGの出力トルクを左右2つの車輪Wに伝達させて車両を走行させる。本実施形態では、トルクコンバータTCが「流体伝動装置」に相当する。流体伝動装置は、流体(ここでは、油)を介して動力を伝達する装置である。トルクコンバータTCは流体伝動装置の一例であり、例えば、トルク増幅機能を備えないフルードカップリング(流体継手)を流体伝動装置として用いることができる。
 図1に示すように、本実施形態では、車両用駆動装置100は、回転電機MGと車輪Wとを結ぶ動力伝達経路に、回転電機MGの側から順に、トルクコンバータTCと、変速機TMとを備えている。トルクコンバータTCは、回転電機MGに対して軸方向第1側L1に回転電機MGと同軸に配置され、変速機TMは、トルクコンバータTCに対して軸方向第1側L1にトルクコンバータTCと同軸に(言い換えれば、回転電機MGと同軸に)配置されている。トルクコンバータTCは、連結軸30に対して軸方向第1側L1に配置されている。
 トルクコンバータTCは、ポンプインペラT1とタービンランナT2とを備えている。また、トルクコンバータTCは、ポンプインペラT1とタービンランナT2とを直結する第2係合装置2を備えている。ロータ支持部材60に連結される連結軸30は、ポンプインペラT1と一体的に回転するように連結されている。ここでは、連結軸30は、フレックスプレートP(図2参照)を介してポンプインペラT1と一体的に回転するように連結されている。また、タービンランナT2は、中間部材7と一体的に回転するように連結されている。
 変速機TMは、変速比を段階的に或いは無段階に変更可能に構成され、変速機TMの入力部材(変速入力部材)の回転速度を現時点での変速比で変速して、変速機TMの出力部材(変速出力部材)へ伝達する。本実施形態では、タービンランナT2と一体的に回転するように連結される中間部材7が、変速入力部材として機能し、車輪Wに駆動連結される出力部材8が、変速出力部材として機能する。本実施形態では、出力部材8は、差動歯車装置DFを介して左右2つの車輪Wに連結されている。変速機TMは、例えば、変速比の異なる複数の変速段を切替可能な有段の自動変速機(自動有段変速機)とされる。
 図1に示すように、本実施形態では、車両用駆動装置100は、内燃機関Eに駆動連結される入力部材20を更に備えている。内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機(例えば、ガソリンエンジン、ディーゼルエンジン等)である。入力部材20は、内燃機関Eの出力部材(クランクシャフト等)と一体的に回転するように連結され、或いは、ダンパ等の他部材を介して内燃機関Eの出力部材に連結される。図2に示すように、入力部材20は、連結軸30に対して軸方向第2側L2に連結軸30と同軸に(言い換えれば、回転電機MGと同軸に)配置されている。
 車両用駆動装置100は、回転電機MGと車輪Wとを第1動力伝達経路で接続することに加えて、入力部材20と車輪Wとを第2動力伝達経路で接続することが可能に構成されており、回転電機MG及び内燃機関Eの一方又は双方の出力トルクを車輪Wに伝達させて車両を走行させる。すなわち、本実施形態の車両用駆動装置100は、車輪Wの駆動力源として内燃機関E及び回転電機MGの双方を備えた車両(ハイブリッド車両)用の駆動装置である。本実施形態では、上記の第1動力伝達経路の少なくとも一部と上記の第2動力伝達経路の少なくとも一部とが、共通の経路により構成される。ここでは、入力部材20は、第1係合装置1を介して回転電機MGに連結されており、第1係合装置1が直結係合した状態で、入力部材20が回転電機MGと一体的に回転する。第1係合装置1は、入力部材20と回転電機MGとの間の動力伝達経路に配置されており、入力部材20と回転電機MGとを選択的に連結する(すなわち、連結又は連結解除する)。第1係合装置1は、車輪Wから内燃機関Eを切り離す機能を備える。このように、本実施形態では、車両用駆動装置100は、入力部材20と回転電機MGとの接続及び接続の解除を行う第1係合装置1を備えている。本実施形態では、第1係合装置1が「摩擦係合装置」に相当する。
 図1及び図2に示すように、回転電機MGは、ケース4に固定されるステータStと、ステータStに対して回転自在に支持されるロータRoとを備えている。本実施形態では、回転電機MGは、インナロータ型の回転電機であり、ロータRoは、ステータStに対して径方向内側R2であって、径方向Rに沿った径方向視でステータStと重複する位置に配置されている。図2に示すように、本実施形態では、第1係合装置1は、回転電機MGに対して径方向内側R2に回転電機MGと同軸に配置されている。ここでは、第1係合装置1は、ロータRoに対して径方向内側R2であって、径方向視でロータRoと重複する位置に配置されている。このように、本実施形態では、車両用駆動装置100は、ロータRoに対して径方向内側R2であって径方向視でロータRoと重複する位置に、第1係合装置1を備えている。
 第1係合装置1は、摩擦係合装置である。図2に示すように、第1係合装置1は、第1摩擦板13を径方向外側R1から支持する第1支持部材11と、第2摩擦板14を径方向内側R2から支持する第2支持部材12と、第1摩擦板13及び第2摩擦板14を軸方向Lに押圧するピストン10と、を備えている。第1支持部材11は、第1摩擦板13を支持する部材であり、第1摩擦板13に対して径方向外側R1に配置されている。第2支持部材12は、第2摩擦板14を支持する部材であり、第2摩擦板14に対して径方向内側R2に配置されている。第1摩擦板13は、第1支持部材11に対して周方向の相対回転が規制された状態で軸方向Lに移動自在に支持され、第2摩擦板14は、第2支持部材12に対して周方向の相対回転が規制された状態で軸方向Lに移動自在に支持されている。本実施形態では、ピストン10は、第1支持部材11に対して周方向の相対回転が規制された状態で軸方向Lに移動自在に支持されている。また、第1摩擦板13及び第2摩擦板14のそれぞれは、円環板状に形成され、第1摩擦板13及び第2摩擦板14は、それぞれの摩擦当接面(軸方向Lの端面)同士が軸方向Lに当接可能なように、同軸に(すなわち、軸心X上に)配置されている。
 本実施形態では、第1支持部材11は、回転電機MGのロータRoと一体的に回転するように連結されている。具体的には、図2に示すように、第1支持部材11は、後述するロータ支持部63と一体的に回転するように構成されている。ここでは、第1支持部材11は、ロータ支持部63と一体的に形成されている。なお、第1支持部材11が、ロータ支持部63とは別部材により構成され、第1支持部材11がロータ支持部63と一体的に回転するように連結(例えば、スプライン連結)される構成としてもよい。また、本実施形態では、第2支持部材12は、入力部材20と一体的に回転するように連結されている。具体的には、第2支持部材12は、当該第2支持部材12から径方向内側R2に延びるように形成された径方向延在部を介して、入力部材20のフランジ部(第1フランジ部22)に連結されている。入力部材20は、後述する第1支持部61と第2支持部62との間を径方向Rに延びるように配置されて第1係合装置1における第2支持部材12に連結される第1フランジ部22を備えている。本実施形態では、第2支持部材12が「摩擦板の支持部」に相当し、第1フランジ部22が「径方向延在部」に相当する。
 本実施形態では、第1係合装置1は、供給される油圧に応じて動作する油圧駆動部(ここでは、油圧サーボ機構)を備えた、油圧駆動式の係合装置である。具体的には、図2に示すように、第1係合装置1は、上述したピストン10と、ピストン10を軸方向Lに移動させるための油室Hと、ピストン10を油圧による移動方向とは反対方向に付勢する付勢部材15(本例では、コイルばね)とを備えている。油室Hの油圧に応じてピストン10を軸方向Lに移動させることで、第1係合装置1の係合の状態が制御される。詳細は後述するが、本実施形態では、油室Hに油を供給するための第1油路91が連結軸30の内部に形成されており、図2に油の流れを破線で示すように、油圧制御装置(図示せず)による制御後の油圧が、第1油路91を通って油室Hに供給されるように構成されている。
 本実施形態では、第1係合装置1は、ノーマルオープン型の係合装置であり、油室Hは、ピストン10に対して、ピストン10による第1摩擦板13及び第2摩擦板14の押圧方向とは反対側に設けられている。ここでは、ピストン10は、第1摩擦板13及び第2摩擦板14を軸方向第1側L1から押圧するように構成されており、油室Hは、ピストン10に対して軸方向第1側L1に形成されている。そして、付勢部材15は、ピストン10を軸方向第1側L1に付勢するように設けられている。
 本実施形態では、第1係合装置1は、湿式の摩擦係合装置である。詳細は後述するが、本実施形態では、第1摩擦板13及び第2摩擦板14に油を供給するための第2油路92が連結軸30の内部に形成されており、図2に油の流れを破線で示すように、油圧制御装置(図示せず)による制御後の油圧が、第2油路92を通って第1摩擦板13及び第2摩擦板14に対して径方向内側R2から供給されるように構成されている。第1摩擦板13及び第2摩擦板14に対して径方向内側R2から供給された油は、第1摩擦板13と第2摩擦板14との間をこれらの摩擦板を冷却しながら径方向外側R1へ向かって流通する。詳細は省略するが、本実施形態では、第1摩擦板13や第2摩擦板14を冷却した後の油を回転電機MGに供給して、回転電機MGを冷却するように構成されている。
 次に、本実施形態の車両用駆動装置100における各部材のケース4に対する支持構造について説明する。図2に示すように、ケース4は、回転電機MGに対して軸方向第1側L1に配置される第1壁部41と、回転電機MGに対して軸方向第2側L2に配置される第2壁部42とを備えている。図示は省略するが、ケース4は、回転電機MGを径方向外側R1から囲む周壁部を備えており、周壁部に囲まれて形成されるケース内空間における第1壁部41と第2壁部42との軸方向Lの間の空間に、回転電機MGが収容されている。本実施形態では、この空間に、第1係合装置1も収容されている。また、周壁部に囲まれて形成されるケース内空間における第1壁部41に対して軸方向第1側L1の空間に、トルクコンバータTCが収容されている。第1壁部41や第2壁部42は、周壁部から径方向内側R2に延びるように周壁部と一体的に形成されても、周壁部に固定される別部材(ケース4が備える周壁部とは別の部材)であってもよい。
 第1壁部41は、径方向Rに延びるように形成され、本実施形態では、軸方向Lに沿った軸方向視で軸心Xと同軸の円環状に形成されている。すなわち、第1壁部41は、径方向Rに加えて周方向にも延びる円板状の壁部を備えている。図3に示すように、第1壁部41における径方向Rの中心部(言い換えれば、第1壁部41における径方向内側R2の端部)には、軸方向Lに延びる筒状(ここでは、円筒状)の第3筒状部43が形成されている。ここでは、第3筒状部43は、第1壁部41における第3筒状部43に対して径方向外側R1に隣接する部分に対して、軸方向第2側L2に突出するように形成されている。そして、第3筒状部43の内周面に囲まれて形成される、第1壁部41を軸方向Lに貫通する貫通孔に、連結軸30が挿通されている。連結軸30は、第1壁部41を軸方向Lに貫通するように配置された状態で、第1壁部41に対して軸方向第2側L2に配置された回転電機MGと、第1壁部41に対して軸方向第1側L1に配置されたトルクコンバータTCとを連結している。
 第2壁部42は、径方向Rに延びるように形成され、本実施形態では、軸方向視で軸心Xと同軸の円環状に形成されている。すなわち、第2壁部42は、径方向Rに加えて周方向にも延びる円板状の壁部を備えている。入力部材20は、第2壁部42における径方向Rの中心部(言い換えれば、第2壁部42における径方向内側R2の端部)に形成された貫通孔に挿通されている。入力部材20は、第2壁部42を軸方向Lに貫通するように配置された状態で、第2壁部42に対して軸方向第2側L2に配置された内燃機関E(又は内燃機関Eに駆動連結されるダンパ等の装置)と、第2壁部42に対して軸方向第1側L1に配置された第1係合装置1とを連結している。
 回転電機MGのロータRoは、ロータ支持部材60に支持されている。ロータRoは、ロータ支持部材60に対して各方向の移動が規制された状態で支持されている。ロータ支持部材60は、ロータRoを径方向内側R2から支持している。図2に示すように、ロータ支持部材60は、軸方向Lに延びる円筒状に形成されてロータRoを径方向内側R2から支持するロータ支持部63と、径方向Rに延びるように形成されてロータ支持部63を径方向内側R2から支持する第1支持部61及び第2支持部62を備えている。第1支持部61は、第1係合装置1と第1壁部41との軸方向Lの間を、ロータ支持部63から径方向内側R2に延びるように配置されている。第1支持部61とピストン10との間に、上述した油室Hが形成されている。第2支持部62は、第1係合装置1と第2壁部42との軸方向Lの間を、ロータ支持部63から径方向内側R2に延びるように配置されている。第2支持部62は、第1支持部61に対して軸方向第2側L2に配置されている。第1係合装置1は、第1支持部61と第2支持部62との軸方向Lの間に配置されている。
 図3に示すように、ロータ支持部材60は、軸方向Lに延びる筒状(ここでは、円筒状)に形成されて連結軸30の外周面に嵌合する第1筒状部71を備えている。第1筒状部71は、第1壁部41が備える第3筒状部43に対して軸方向第2側L2に配置され(ここでは、軸方向第2側L2に隣接して配置され)、連結軸30における第3筒状部43に対して軸方向第2側L2に配置される部分の外周面に嵌合する。本実施形態では、第1筒状部71は、第1支持部61における径方向Rの中心部(言い換えれば、第1支持部61における径方向内側R2の端部)に形成されている。ここでは、第1筒状部71は、第1支持部61における第1筒状部71に対して径方向外側R1に隣接する部分に対して、軸方向第2側L2に突出するように形成されている。本実施形態では、第1筒状部71が「筒状部」に相当する。
 第1筒状部71と連結軸30とは、連結部6において互いに一体的に回転するように連結されている。これにより、第1筒状部71を備えるロータ支持部材60が、連結軸30と一体的に回転するように連結されている。すなわち、ロータRoは、ロータ支持部材60を介して、連結軸30と一体的に回転するように連結されている。具体的には、第1筒状部71の内周面(ここでは、当該内周面における軸方向第2側L2の端部)に形成された内周係合部と、連結軸30の外周面に形成された外周係合部とが、連結部6において係合することで、第1筒状部71と連結軸30とが一体的に回転するように連結されている。ここでは、第1筒状部71の内周面に形成された内周係合部は、軸方向Lに延びるように形成されると共に周方向に並ぶ複数の内歯(内周スプライン歯)を備え、連結軸30の外周面に形成された外歯係合部は、軸方向Lに延びるように形成されると共に周方向に並ぶ複数の外歯(外周スプライン歯)を備えている。そして、第1筒状部71の内周面に形成された内周係合部と、連結軸30の外周面に形成された外周係合部とが、連結部6においてスプライン係合している。このように、連結部6における第1筒状部71と連結軸30との連結形態は、軸方向Lの相対移動を許容し且つ周方向の相対回転を禁止する連結形態とされている。
 車両用駆動装置100は、ロータ支持部材60をケース4に対して回転可能に支持する第1軸受B1を備えている。本実施形態では、車両用駆動装置100は、ロータ支持部材60をケース4に対して回転可能に支持する第3軸受B3を更に備えている。図2に示すように、第1軸受B1は、第1係合装置1に対して軸方向第1側L1に配置され、第3軸受B3は、第1係合装置1に対して軸方向第2側L2に配置されている。本実施形態では、第1軸受B1と第3軸受B3とは、互いに同径の軸受である。本実施形態では、第1軸受B1及び第3軸受B3としてボールベアリングを用いている。ここでは、第1軸受B1及び第3軸受B3として、同じ種類のボールベアリングを用いている。
 本実施形態では、ロータRoは、ロータ支持部材60に支持された状態で、第1軸受B1及び第3軸受B3によって、軸方向Lの両側でケース4に対して回転可能に支持されている。具体的には、第1軸受B1は、第1支持部61と第1壁部41との間に配置され、第3軸受B3は、第2支持部62と第2壁部42との間に配置されている。そして、ロータRoは、ロータ支持部材60に支持された状態で、第1軸受B1によって第1壁部41に対して回転可能に支持されると共に、第3軸受B3によって第2壁部42に対して回転可能に支持されている。
 図3に示すように、第1軸受B1は、ロータ支持部材60(具体的には、第1支持部61)に対して軸方向第1側L1及び径方向Rの一方側(本実施形態では、径方向外側R1)から当接するように配置された状態で、ロータ支持部材60を軸方向L及び径方向Rに支持している。また、第1軸受B1は、ケース4(具体的には、第1壁部41)に対して軸方向第2側L2及び径方向Rの他方側(本実施形態では、径方向内側R2)から当接するように配置されている。これにより、ロータ支持部材60に作用する軸方向第1側L1への荷重を、第1壁部41に配置された第1軸受B1によって受けることが可能となっている。すなわち、ロータ支持部材60の軸方向第1側L1への移動は、第1軸受B1によって規制される。このように、第1軸受B1は、ロータ支持部材60とケース4との径方向Rの間に配置され、ロータ支持部材60のケース4に対する軸方向第1側L1への移動を規制する軸受である。ロータ支持部材60は、第1軸受B1によってケース4に対する軸方向第1側L1への移動が規制される第1支持部61を備えている。なお、本明細書において、軸受の配置に関して「当接する」とは、当該軸受の配設部位における隙間(クリアランス)が詰められた状態で少なくとも当接することを意味する。
 具体的には、第1支持部61は、軸方向Lに延びる筒状(ここでは、円筒状)に形成された第2筒状部72を備えている。第2筒状部72は、第1支持部61における第2筒状部72に対して径方向Rに隣接する部分に対して、軸方向第1側L1に突出するように形成されている。ここでは、第2筒状部72は、第1壁部41が備える第3筒状部43に対して径方向外側R1であって径方向視で第3筒状部43と重複するように配置されている。また、第1壁部41は、軸方向Lに延びる筒状(ここでは、円筒状)に形成された第4筒状部44を備えている。第4筒状部44は、第1壁部41における第4筒状部44に対して径方向Rに隣接する部分に対して、軸方向第2側L2に突出するように形成されている。第4筒状部44は、径方向視で第2筒状部72と重複するように配置される。本実施形態では、第4筒状部44は、第2筒状部72に対して径方向外側R1であって径方向視で第2筒状部72と重複するように配置されている。なお、第4筒状部44が、第2筒状部72に対して径方向内側R2であって径方向視で第2筒状部72と重複するように配置される構成とする場合には、第4筒状部44が第3筒状部43と一体的に形成されてもよい。
 そして、第2筒状部72と第4筒状部44とにより径方向Rの両側から挟まれる空間に、第1軸受B1が、第2筒状部72及び第4筒状部44のそれぞれと当接するように配置されている。具体的には、軸方向第1側L1を向く第1支持面72aを備える段差部73が、第2筒状部72の一対の周面(すなわち、内周面及び外周面)のうちの第4筒状部44と径方向Rに対向する方である対象周面(本実施形態では、外周面)に形成されている。そして、第1軸受B1(本実施形態では、内輪)が、第1支持面72aに対して軸方向第1側L1から当接し、且つ、第2筒状部72における第1支持面72aよりも軸方向第1側L1の部分の対象周面(第2支持面72b)に対して、径方向Rにおける第4筒状部44が配置される側(本実施形態では、径方向外側R1)から当接するように配置されている。また、軸方向第2側L2を向く第4支持面41aを備える段差部が、第4筒状部44の一対の周面のうちの第2筒状部72と径方向Rに対向する方である対象周面(本実施形態では、内周面)に形成されている。そして、第1軸受B1(本実施形態では、外輪)が、第4支持面41aに対して軸方向第2側L2から当接し、且つ、第4筒状部44における第4支持面41aよりも軸方向第2側L2の部分の対象周面(第5支持面41b)に対して、径方向Rにおける第2筒状部72が配置される側(本実施形態では、径方向内側R2)から当接するように配置されている。本実施形態では、第1軸受B1は、径方向視で第3筒状部43と重複するように配置されている。本実施形態では、第1支持面72aが「段差面」に相当する。
 このように、第1軸受B1は、ロータ支持部材60の周面(ここでは、外周面)である第2支持面72bと、ケース4の周面(ここでは、内周面)である第5支持面41bとの、径方向Rの間に配置されている。第1軸受B1は、第2支持面72b及び第5支持面41bの一方に隙間嵌めにより嵌合すると共に、他方に締まり嵌め(具体的には、圧入)により嵌合している。本実施形態では、第1軸受B1は、第2支持面72bに隙間嵌めにより嵌合すると共に、第5支持面41bに締まり嵌めにより嵌合している。そして、第2支持面72bにおける第1軸受B1に対して軸方向第2側L2に隣接する位置に、軸方向第1側L1を向く第1支持面72aを備える段差部73が形成されている。ここでは、段差部73は、第2支持面72bにおける第1支持面72aに対して軸方向第1側L1の部分が、第2支持面72bにおける第1支持面72aに対して軸方向第2側L2の部分よりも小径となるように形成されている。本実施形態では、第2支持面72bが「第1周面」に相当し、第5支持面41bが「第2周面」に相当する。
 図3に示すように、第3軸受B3は、ロータ支持部材60(具体的には、第2支持部62)に対して軸方向第2側L2及び径方向Rの一方側(本実施形態では、径方向外側R1)から当接するように配置された状態で、ロータ支持部材60を軸方向L及び径方向Rに支持している。また、第3軸受B3は、ケース4(具体的には、第2壁部42)に対して軸方向第1側L1及び径方向Rの他方側(本実施形態では、径方向内側R2)から当接するように配置されている。これにより、ロータ支持部材60に作用する軸方向第2側L2への荷重を、第2壁部42に配置された第3軸受B3によって受けることが可能となっている。すなわち、ロータ支持部材60の軸方向第2側L2への移動は、第3軸受B3によって規制される。このように、第3軸受B3は、ロータ支持部材60とケース4との径方向Rの間に配置され、ロータ支持部材60のケース4に対する軸方向第2側L2への移動を規制する軸受である。ロータ支持部材60は、第3軸受B3によってケース4に対する軸方向第2側L2への移動が規制される第2支持部62を備えている。
 具体的には、第2支持部62は、軸方向Lに延びる筒状(ここでは、円筒状)に形成された第5筒状部74を備えている。ここでは、第5筒状部74は、第2支持部62における径方向Rの中心部(言い換えれば、第2支持部62における径方向内側R2の端部)に形成されている。そして、第5筒状部74は、第2支持部62における第5筒状部74に対して径方向外側R1に隣接する部分に対して、軸方向第2側L2に突出するように形成されている。また、第2壁部42は、径方向視で第5筒状部74と重複する位置に軸受嵌合部45(ボス部)を備えている。ここでは、軸受嵌合部45は、第5筒状部74に対して径方向外側R1に配置されている。そして、第3軸受B3は、第5筒状部74の周面(ここでは、外周面)と軸受嵌合部45の周面(ここでは、内周面)との径方向Rの間に配置されている。
 次に、連結軸30のケース4に対する軸方向Lの支持構造について説明する。車両用駆動装置100は、連結軸30をケース4に対して回転可能に支持する第2軸受B2を備えている。本実施形態では、第2軸受B2としてスラストベアリングを用いている。図3に示すように、第2軸受B2は、連結軸30に対して軸方向第2側L2から当接するように配置された状態で、連結軸30を軸方向Lに支持している。また、第2軸受B2は、ケース4(具体的には、第1壁部41)に対して軸方向第1側L1から当接するように配置されている。これにより、連結軸30に作用する軸方向第2側L2への荷重を、第1壁部41に配置された第2軸受B2によって受けることが可能となっている。すなわち、連結軸30の軸方向第2側L2への移動を、第2軸受B2によって規制することが可能となっている。このように、第2軸受B2は、連結軸30とケース4との軸方向Lの間に配置され、連結軸30のケース4に対する軸方向第2側L2への移動を規制する軸受である。第2軸受B2は、連結軸30(具体的には、後述する第2フランジ部32)の軸方向第2側L2を向く面と、ケース4(具体的には、第1壁部41)の軸方向第1側L1を向く面との、軸方向Lの間に配置されている。
 具体的には、図3に示すように、連結軸30は、第1壁部41が備える第3筒状部43に対して軸方向第1側L1に配置される部分に、フランジ部(第2フランジ部32)を備えている。この第2フランジ部32は、連結軸30における第3筒状部43の内部(第3筒状部43の内周面によって囲まれる空間)に配置される部分に対して、径方向外側R1に突出するように形成されている。また、この第2フランジ部32は、軸方向視で第1壁部41(ここでは、第1壁部41における径方向内側R2の端部)と重複するように配置されている。ここでは、第2フランジ部32は、軸方向視で第3筒状部43と重複するように配置されている。そして、第2フランジ部32と第1壁部41とにより軸方向Lの両側から挟まれる空間に、第2軸受B2が、第2フランジ部32及び第1壁部41のそれぞれと当接するように配置されている。具体的には、第2軸受B2は、第2フランジ部32における軸方向第2側L2を向く面(第3支持面32a)に対して、軸方向第2側L2から当接するように配置されている。また、第2軸受B2は、第1壁部41(ここでは、第1壁部41における径方向内側R2の端部)における軸方向第1側L1を向く面(第6支持面41c)に対して軸方向第1側L1から当接するように配置されている。
 このように、この車両用駆動装置100は、連結軸30の軸方向第2側L2への移動を、第2軸受B2によって規制することが可能に構成されている。これにより、トルクコンバータTCのバルーニングによって連結軸30に作用する軸方向第2側L2への比較的大きな荷重を、連結軸30の軸方向第2側L2への移動を規制するための専用の第2軸受B2を介して、ケース4で受けることが可能となっている。一方、この車両用駆動装置100は、連結軸30の軸方向第1側L1への移動を、以下に述べるように、連結軸30の軸方向第1側L1への移動を規制するための専用の軸受を設けることなく、上述した第1軸受B1を利用して規制することが可能に構成されている。これにより、部品点数の削減を図りつつ、ロータ支持部材60に連結される連結軸30の軸方向Lの両側への移動を規制することが可能となっている。
 図3に示すように、本実施形態では、連結軸30は、第1筒状部71に対して軸方向第2側L2に突出する突出部33を備えている。そして、突出部33の外周面における第1筒状部71に対して軸方向第2側L2に隣接する位置に、係止部材3が係止されている。ここでは、係止部材3は、第1筒状部71と連結軸30との連結部6に対して軸方向第2側L2に隣接する位置に係止されている。係止部材3は、突出部33に対する軸方向Lの移動が規制される状態で、突出部33の外周面に係止されている。そして、係止部材3の少なくとも一部(本実施形態では、径方向外側R1の部分)は、第1筒状部71に対して軸方向Lに対向するように配置されている。すなわち、係止部材3は、軸方向視で第1筒状部71と重複するように配置されている。本実施形態では、係止部材3としてスナップリングを用いており、係止部材3としてのスナップリングは、突出部33の外周面に形成された円環状の溝部に嵌め込まれている。
 このように突出部33の外周面における第1筒状部71に対して軸方向第2側L2に隣接する位置に係止部材3が係止されるため、連結軸30に作用する軸方向第1側L1への荷重は、係止部材3を介して、第1筒状部71を備えるロータ支持部材60に伝達される。すなわち、連結軸30は、第1筒状部71に対する軸方向第1側L1への移動が規制されている。ここで、この車両用駆動装置100は、上述したように、ロータ支持部材60に作用する軸方向第1側L1への荷重を第1軸受B1によって受けることが可能に構成されている。よって、連結軸30から係止部材3を介してロータ支持部材60に伝達される軸方向第1側L1への荷重は、第1軸受B1によって受けることができる。すなわち、連結軸30の軸方向第1側L1への移動を、第1軸受B1によって規制することが可能となっている。
 本実施形態では、突出部33の外周面における第1筒状部71に対して軸方向第2側L2に隣接する位置に係止部材3を設けることで、連結軸30の第1筒状部71に対する軸方向第1側L1への移動を規制しているが、連結軸30の第1筒状部71に対する軸方向第1側L1への移動を規制するための構成はこれに限定されない。例えば、連結軸30の軸方向第2側L2の端部に螺合された締結部材(例えば、ボルト)によって、連結軸30の第1筒状部71に対する軸方向第1側L1への移動を規制する構成とすることができる。
 本実施形態では、連結軸30における突出部33、第2フランジ部32、及び、突出部33と第2フランジ部32との軸方向Lの間の部分(すなわち、突出部33と第2フランジ部32とを連結する部分)は、一体的に形成されている。ここでは、連結軸30は、1つの部材により構成されている。また、連結軸30における第1壁部41の貫通孔(第3筒状部43の内周面に囲まれて形成される貫通孔)の内部に挿入される部分の外周面と、連結軸30における当該部分よりも軸方向第2側L2の部分の外周面は、第1壁部41の貫通孔よりも小径に形成されている。そして、連結軸30は、軸方向第2側L2の先端部が第1筒状部71に対して軸方向第2側L2に突出するように、第1壁部41の貫通孔に対して軸方向第1側L1から挿入されている。
 図3に示すように、本実施形態では、連結軸30と入力部材20との軸方向Lの間と、入力部材20とロータ支持部材60との軸方向Lの間とのそれぞれに、軸方向Lの荷重を受けることが可能な軸受がそれぞれ配置されている。具体的には、入力部材20と連結軸30との軸方向Lの間に、第7軸受B7(本例では、スラストベアリング)が配置され、入力部材20(具体的には、第1フランジ部22)とロータ支持部材60(具体的には、第2支持部62)との軸方向Lの間に、第8軸受B8(本例では、スラストベアリング)が配置されている。第7軸受B7は、入力部材20に対して軸方向第1側L1から当接し、且つ、連結軸30に対して軸方向第2側L2から当接するように配置されている。また、第8軸受B8は、入力部材20(具体的には、第1フランジ部22)に対して軸方向第2側L2から当接し、且つ、ロータ支持部材60(具体的には、第2支持部62)に対して軸方向第1側L1から当接するように配置されている。すなわち、入力部材20とロータ支持部材60との軸方向Lの間に配置される第8軸受B8は、第1フランジ部22と第2支持部62との軸方向Lの間に配置されている。これにより、入力部材20に作用する軸方向第1側L1への荷重は、軸方向第1側L1への移動が規制された状態の連結軸30によって受け、入力部材20に作用する軸方向第2側L2への荷重は、軸方向第2側L2への移動が規制された状態のロータ支持部材60によって受けることで、入力部材20の軸方向Lの両側への移動を規制することが可能となっている。本実施形態では、第7軸受B7及び第8軸受B8のそれぞれが、「軸方向の荷重を受けることが可能な軸受」に相当する。
 次に、連結軸30のケース4に対する径方向Rの支持構造について説明する。以下に述べるように、本実施形態では、入力部材20のケース4に対する径方向Rの支持構造を利用することで、連結軸30がケース4に対して直接的に径方向Rに支持される箇所を、1箇所としている。これにより、連結軸30がケース4に対して直接的に径方向Rに支持される箇所が2箇所とされる場合に比べて、ケース4における連結軸30の外周面と対向するように配置される部分(具体的には、第3筒状部43)の軸方向Lの長さを短く抑えることができ、この結果、装置全体の軸方向Lの大型化を抑制しつつ、ロータ支持部材60が連結軸30の外周面に嵌合する第1筒状部71を備える構成を実現することが可能となっている。
 図3に示すように、本実施形態では、入力部材20の軸方向第1側L1の端部である第1端部21が、連結軸30の軸方向第2側L2の端部である第2端部31に対して径方向Rの内側であって、径方向視で第2端部31と重複するように配置されている。具体的には、連結軸30の第2端部31は、軸方向Lに延びる筒状(ここでは、円筒状)に形成されており、入力部材20の第1端部21は、軸方向Lに延びる筒状であって、第2端部31の内周面より小径の外周面を備える筒状(ここでは、円筒状)に形成されている。そして、第1端部21は、第2端部31の内周面によって囲まれる空間に対して、軸方向第2側L2から挿入されている。
 そして、ケース4と連結軸30の外周面との径方向Rの間と、ケース4と入力部材20の外周面との径方向Rの間と、第1端部21と第2端部31との径方向Rの間とのそれぞれに、径方向Rの荷重を受けることが可能な軸受がそれぞれ配置されている。具体的には、第1壁部41が備える第3筒状部43の内周面と連結軸30の外周面との径方向Rの間に第4軸受B4が配置され、第2壁部42における径方向内側R2の端部の内周面と入力部材20の外周面との径方向Rの間に第5軸受B5が配置され、第1端部21の外周面と第2端部31の内周面との径方向Rの間に第6軸受B6が配置されている。このように、本実施形態では、連結軸30は、軸方向第1側L1においては、ケース4に対して直接的に第4軸受B4によって径方向Rに支持され、軸方向第2側L2においては、ケース4に対して間接的に(具体的には、第5軸受B5によってケース4に対して直接的に径方向Rに支持された入力部材20を介して)、第6軸受B6によって径方向Rに支持されている。本実施形態では、第4軸受B4、第5軸受B5、及び第6軸受B6として、ニードルベアリングを用いている。本実施形態では、第4軸受B4、第5軸受B5、及び第6軸受B6のそれぞれが、「径方向の荷重を受けることが可能な軸受」に相当する。
 ところで、連結軸30、ロータ支持部材60、及び入力部材20は、軸受の配設部位等に存在する隙間(クリアランス、ガタ)に応じた範囲内で、ケース4に対する軸方向Lの相対移動が許容される。本実施形態では、ロータ支持部材60がケース4に対して最も軸方向第2側L2に移動し、且つ、連結軸30がケース4に対して最も軸方向第2側L2に移動した状態で、第1筒状部71と係止部材3との間に軸方向Lの隙間が形成される。言い換えれば、ロータ支持部材60及び連結軸30をそれぞれ軸方向第2側L2に突き当てた状態で、第1筒状部71と係止部材3との間に軸方向Lの隙間が形成される。これにより、慣性力等によって軸方向第2側L2への荷重がロータRoに作用して、ロータRoを支持するロータ支持部材60が軸方向第2側L2に移動した場合に、ロータ支持部材60に作用する軸方向第2側L2への荷重が係止部材3を介して第2軸受B2に伝達されることを抑制しつつ、当該荷重を、第3軸受B3を介してケース4で受けることが可能となっている。例えば、軸方向第2側L2が車体の前側となる向きで車両用駆動装置100が車両に搭載される場合には、車両の減速時に、慣性力によって軸方向第2側L2への荷重がロータRoやロータ支持部材60に作用し得る。
 また、本実施形態では、連結軸30がケース4に対して最も軸方向第2側L2に移動し、且つ、入力部材20がケース4に対して最も軸方向第2側L2に移動した状態で、連結軸30と入力部材20との間に軸方向Lの隙間が形成される。言い換えれば、連結軸30及び入力部材20をそれぞれ軸方向第2側L2に突き当てた状態で、連結軸30と入力部材20との間に軸方向Lの隙間が形成される。なお、連結軸30と入力部材20との間に軸方向Lの隙間は、本実施形態では、第7軸受B7の配設部位に形成される。これにより、トルクコンバータTCのバルーニングによって連結軸30に作用する軸方向第2側L2への比較的大きな荷重が、入力部材20を介して第3軸受B3に伝達されることを抑制することが可能となっている。
 次に、本実施形態の車両用駆動装置100における第1係合装置1に対する油の供給構造について説明する。図3に示すように、本実施形態では、連結軸30における第1筒状部71の内部に配置された部分に、第1係合装置1に油を供給するための油路が形成されている。具体的には、第1係合装置1の油室Hに油を供給するための第1油路91と、第1係合装置1が備える第1摩擦板13及び第2摩擦板14に対して油を供給するための第2油路92とが、連結軸30における第1筒状部71の内部に配置された部分に少なくとも形成されている。第1油路91と第2油路92とは、連結軸30の内部における互いに異なる位置を軸方向Lに沿って(ここでは、軸方向Lに平行に)延びるように形成されている。本実施形態では、第1油路91及び第2油路92のそれぞれが、「摩擦係合装置に油を供給するための油路」に相当する。
 本実施形態では、油圧制御装置(図示せず)による制御後の油圧が、第1壁部41に形成された第3油路93と、第1油路91とを順に通って、油室Hに供給される。本実施形態では、連結軸30の外周面と第1壁部41が備える第3筒状部43の内周面との間にスリーブ部材5が配置されており、第3油路93の油は、スリーブ部材5の内周面と外周面とを連通するようにスリーブ部材5に形成された油孔と、第1油路91と連結軸30の外周面とを連通するように連結軸30に形成された第1油孔81とを順に通って、第1油路91に供給される。そして、第1油路91の油は、図2に油の流れを破線で示すように、第1油路91と連結軸30の外周面とを連通するように連結軸30に形成された第2油孔82と、第1筒状部71の内周面と外周面とを連通するように第1筒状部71に形成された第3油孔83とを順に通って、油室Hに供給される。
 また、本実施形態では、油圧制御装置(図示せず)による制御後の油圧が、第1壁部41に形成された第4油路94と、第2油路92とを順に通って、第1摩擦板13及び第2摩擦板14に対して径方向内側R2から供給される。具体的には、第4油路94の油は、スリーブ部材5の内周面と外周面とを連通するようにスリーブ部材5に形成された油孔と、第2油路92と連結軸30の外周面とを連通するように連結軸30に形成された第4油孔84とを順に通って、第2油路92に供給される。第2油路92の軸方向第2側L2の端部は、第2端部31の内周面によって囲まれる空間に開口しており、第2油路92の油は、図2に油の流れを破線で示すように、第2端部31の内周面によって囲まれる空間と、第1端部21の内周面によって囲まれる空間と、第1端部21の内周面と外周面とを連通するように第1端部21に形成された第5油孔85と、第2端部31の内周面と外周面とを連通するように第2端部31における軸方向第2側L2の端面に形成された油溝80とを順に通って、第1摩擦板13及び第2摩擦板14に対して径方向内側R2から供給される。この際、入力部材20や連結軸30の回転に伴う遠心力を利用して、油を径方向外側R1に向けて流動させることができる。
 このように、本実施形態では、第1係合装置1への油の供給部に向けて油を軸方向Lに流通させるための軸方向油路(ここでは、第2油孔82に向けて油を軸方向Lに流通させるための第1油路91、及び、第2端部31に向けて油を軸方向Lに流通させるための第2油路92)を、連結軸30の内部に形成している。これにより、このような軸方向油路が、第1壁部41が備える第3筒状部43や、連結軸30の外周面と第3筒状部43の内周面との間に配置される部材に形成される場合に比べて、第3筒状部43の外周面の径を小さく抑えることが容易となっている。これにより、第3筒状部43に対して径方向外側R1であって径方向視で第3筒状部43と重複するように配置される第2筒状部72の径を小さく抑えて、第1軸受B1の小径化を図ること(ここでは、第3軸受B3と同径とできる程度に第1軸受B1を小径化すること)が可能となっている。
〔その他の実施形態〕
 次に、車両用駆動装置のその他の実施形態について説明する。
(1)上記の実施形態で示した第1係合装置1に対する油の供給構造は一例であり、第1係合装置1に対する油の供給構造は適宜変更することが可能である。例えば、第1油路91における少なくとも上流側部分(第3油路93との接続部側の部分)と同様の機能を備える油路が、第1壁部41が備える第3筒状部43や、連結軸30の外周面と第3筒状部43の内周面との間に配置される部材に形成される構成とすることができる。また、例えば、第2油路92における少なくとも上流側部分(第4油路94との接続部側の部分)と同様の機能を備える油路が、第1壁部41が備える第3筒状部43や、連結軸30の外周面と第3筒状部43の内周面との間に配置される部材に形成される構成とすることもできる。このような構成とする場合等において、上記の実施形態とは異なり、連結軸30における第1筒状部71の内部に配置された部分に、第1係合装置1に油を供給するための油路が形成されない構成とすることもできる。
(2)上記の実施形態では、入力部材20の軸方向第1側L1の端部である第1端部21が、連結軸30の軸方向第2側L2の端部である第2端部31に対して径方向Rの内側であって、径方向視で第2端部31と重複するように配置される構成を例として説明した。しかし、そのような構成に限定されることなく、第1端部21が、第2端部31に対して径方向Rの外側であって、径方向視で第2端部31と重複するように配置される構成とすることもできる。この場合、上記の実施形態とは異なり、第6軸受B6は、第1端部21の内周面と第2端部31の外周面との径方向Rの間に配置される。
(3)上記の実施形態では、連結軸30がケース4に対して直接的に径方向Rに支持される箇所が1箇所である構成を例として説明した。しかし、そのような構成に限定されることなく、連結軸30が、軸方向Lの1箇所ではなく2箇所において、ケース4に対して直接的に径方向Rに支持される構成とすることもできる。具体的には、ケース4(例えば、第1壁部41が備える第3筒状部43)と連結軸30の外周面との径方向Rの間における軸方向Lの2箇所に、径方向Rの荷重を受けることが可能な軸受が配置される構成とすることができる。このような場合等において、上記の実施形態とは異なり、入力部材20の軸方向第1側L1の端部である第1端部21が、連結軸30の軸方向第2側L2の端部である第2端部31と、径方向視で重複しないように配置される構成とすること、すなわち、第1端部21が第2端部31に対して軸方向第2側L2に配置される構成とすることもできる。
(4)上記の実施形態では、第1軸受B1と第3軸受B3とが、互いに同径の軸受である構成を例として説明した。しかし、そのような構成に限定されることなく、第1軸受B1と第3軸受B3とを互いに異なる径の軸受としてもよい。
(5)上記の実施形態では、車両用駆動装置100が、ロータRoに対して径方向内側R2であって径方向視でロータRoと重複する位置に、第1係合装置1を備える構成を例として説明した。しかし、そのような構成に限定されることなく、車両用駆動装置100が、ロータRoに対して軸方向Lに並ぶ位置に第1係合装置1を備える構成や、車両用駆動装置100が、ロータRoとは別軸に第1係合装置1を備える構成とすることもできる。
(6)上記の実施形態で示した車両用駆動装置100の構成は一例であり、車両用駆動装置100の構成は適宜変更することが可能である。例えば、上記の実施形態では、車両用駆動装置100が、内燃機関Eに駆動連結される入力部材20と、変速機TMと、を備える構成を例として説明したが、車両用駆動装置100がこれらの少なくともいずれかを備えない構成とすることもできる。車両用駆動装置100が入力部材20を備えない構成とする場合、車両用駆動装置100を、例えば、車輪Wの駆動力源として回転電機MGのみを備えた車両(電動車両)用の駆動装置とすることができる。
(7)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用すること(その他の実施形態として説明した実施形態同士の組み合わせを含む)も可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
 以下、上記において説明した車両用駆動装置の概要について説明する。
 車輪(W)の駆動力源となる回転電機(MG)と、前記回転電機(MG)のロータ(Ro)を支持するロータ支持部材(60)と、前記ロータ支持部材(60)に連結される連結軸(30)と、前記連結軸(30)を介して前記ロータ支持部材(60)に連結される流体伝動装置(TC)と、前記回転電機(MG)、前記ロータ支持部材(60)、前記連結軸(30)、及び前記流体伝動装置(TC)を収容するケース(4)と、を備えた車両用駆動装置(100)であって、軸方向(L)の一方側を軸方向第1側(L1)とし、前記軸方向(L)における前記軸方向第1側(L1)とは反対側を軸方向第2側(L2)として、前記ロータ支持部材(60)と前記ケース(4)との径方向(R)の間に配置され、前記ロータ支持部材(60)の前記ケース(4)に対する前記軸方向第1側(L1)への移動を規制する第1軸受(B1)と、前記連結軸(30)と前記ケース(4)との前記軸方向(L)の間に配置され、前記連結軸(30)の前記ケース(4)に対する前記軸方向第2側(L2)への移動を規制する第2軸受(B2)と、を備え、前記流体伝動装置(TC)は、前記連結軸(30)に対して前記軸方向第1側(L1)に配置され、前記ロータ支持部材(60)は、前記軸方向(L)に延びる筒状に形成されて前記連結軸(30)の外周面に嵌合する筒状部(71)を備え、前記連結軸(30)は、前記筒状部(71)に対する前記軸方向第1側(L1)への移動が規制されている。
 この構成では、連結軸(30)を介してロータ支持部材(60)に連結される流体伝動装置(TC)が、連結軸(30)に対して軸方向第1側(L1)に配置されるため、流体伝動装置(TC)のバルーニングによって、軸方向第2側(L2)への比較的大きな荷重が連結軸(30)に作用し得る。この点に関して、上記の構成では、連結軸(30)とケース(4)との軸方向(L)の間に、連結軸(30)のケース(4)に対する軸方向第2側(L2)への移動を規制する第2軸受(B2)が配置されている。そのため、連結軸(30)に作用する軸方向第2側(L2)への荷重は、第2軸受(B2)を介してケース(4)で受けることができる。
 なお、流体伝動装置(TC)のバルーニングによる荷重に比べて非常に小さな荷重ではあるものの、連結軸(30)には軸方向第1側(L1)への荷重も作用し得る。この点に関して、上記の構成では、連結軸(30)は、ロータ支持部材(60)が備える筒状部(71)に対する軸方向第1側(L1)の移動が規制されている。よって、連結軸(30)に作用する軸方向第1側(L1)への荷重は、ロータ支持部材(60)に伝達される。そして、上記の構成では、ロータ支持部材(60)とケース(4)との径方向(R)の間に配置される第1軸受(B1)によって、ロータ支持部材(60)のケース(4)に対する軸方向第1側(L1)への移動が規制されている。よって、連結軸(30)からロータ支持部材(60)に伝達される軸方向第1側(L1)への荷重は、第1軸受(B1)を介してケース(4)で受けることができる。すなわち、連結軸(30)の軸方向第1側(L1)への移動を、第1軸受(B1)を利用して規制することができる。なお、連結軸(30)に作用し得る軸方向第1側(L1)への荷重は比較的小さいため、連結軸(30)の軸方向第1側(L1)への移動を規制するための専用の軸受を設けなくとも、ロータ支持部材(60)とケース(4)との径方向(R)の間に配置される第1軸受(B1)を利用して、連結軸(30)の軸方向第1側(L1)への移動を適切に規制することが可能となっている。
 以上のように、上記の構成によれば、連結軸(30)に作用し得る軸方向第2側(L2)への比較的大きな荷重は、連結軸(30)の軸方向第2側(L2)への移動を規制するための専用の第2軸受(B2)を介してケース(4)で受け、連結軸(30)に作用し得る軸方向第1側(L1)への比較的小さな荷重は、連結軸(30)の軸方向第1側(L1)への移動を規制するための専用の軸受を設けることなく、ロータ支持部材(60)とケース(4)との径方向(R)の間に配置される第1軸受(B1)を介してケース(4)で受けることができる。よって、連結軸(30)の軸方向第1側(L1)への移動を規制するための専用の軸受が必要な場合に比べて、部品点数の削減を図りつつ、連結軸(30)の軸方向(L)の両側への移動を規制することが可能となっている。
 ここで、前記連結軸(30)は、前記筒状部(71)に対して前記軸方向第2側(L2)に突出する突出部(33)を備え、前記突出部(33)の外周面における前記筒状部(71)に対して前記軸方向第2側(L2)に隣接する位置に、係止部材(3)が係止されていると好適である。
 この構成によれば、連結軸(30)の筒状部(71)に対する軸方向(L)の移動可能範囲を、係止部材(3)と筒状部(71)とが当接する位置よりも軸方向第2側(L2)の範囲に制限することで、連結軸(30)の筒状部(71)に対する軸方向第1側(L1)への移動を規制することができる。そして、この構成によれば、連結軸(30)に作用する軸方向第1側(L1)への荷重を、係止部材(3)を介してロータ支持部材(60)に伝達させ、第1軸受(B1)を介してケース(4)で受けることができる。
 上記のように、前記突出部(33)の外周面における前記筒状部(71)に対して前記軸方向第2側(L2)に隣接する位置に、前記係止部材(3)が係止されている構成において、前記ロータ支持部材(60)と前記ケース(4)との前記径方向(R)の間に配置され、前記ロータ支持部材(60)の前記ケース(4)に対する前記軸方向第2側(L2)への移動を規制する第3軸受(B3)を更に備え、前記ロータ支持部材(60)が前記ケース(4)に対して最も前記軸方向第2側(L2)に移動し、且つ、前記連結軸(30)が前記ケース(4)に対して最も前記軸方向第2側(L2)に移動した状態で、前記筒状部(71)と前記係止部材(3)との間に前記軸方向(L)の隙間が形成されると好適である。
 この構成によれば、慣性力等によって軸方向第2側(L2)への荷重がロータ(Ro)に作用して、ロータ(Ro)を支持するロータ支持部材(60)が軸方向第2側(L2)に移動した場合に、ロータ支持部材(60)に作用する軸方向第2側(L2)への荷重が係止部材(3)を介して第2軸受(B2)に伝達されることを抑制しつつ、当該荷重を、第3軸受(B3)を介してケース(4)で受けることができる。よって、ロータ支持部材(60)に作用する軸方向第2側(L2)への荷重を、第2軸受(B2)を介してケース(4)で受ける必要はなく、第2軸受(B2)の大型化を抑制することができる。
 上記の各構成の車両用駆動装置(100)において、前記第1軸受(B1)は、前記ロータ支持部材(60)の周面である第1周面(72b)と前記ケース(4)の周面である第2周面(41b)との前記径方向(R)の間に配置され、前記第1軸受(B1)は、前記第1周面(72b)に隙間嵌めにより嵌合すると共に、前記第2周面(41b)に締まり嵌めにより嵌合し、前記第1周面(72b)における前記第1軸受(B1)に対して前記軸方向第2側(L2)に隣接する位置に、前記軸方向第1側(L1)を向く段差面(72a)を備える段差部(73)が形成されていると好適である。
 この構成によれば、ロータ支持部材(60)のケース(4)に対する軸方向(L)の移動可能範囲を、段差面(72a)が第1軸受(B1)に当接する位置よりも軸方向第2側(L2)の範囲に制限することができる。よって、ロータ支持部材(60)とケース(4)との径方向(R)の間に配置される第1軸受(B1)によって、ロータ支持部材(60)のケース(4)に対する軸方向第1側(L1)への移動を適切に規制することができる。
 また、内燃機関に(E)駆動連結される入力部材(20)と、前記入力部材(20)と前記回転電機(MG)との接続及び接続の解除を行う摩擦係合装置(1)と、を更に備え、前記摩擦係合装置(1)は、前記ロータ(Ro)に対して前記径方向(R)の内側であって前記径方向(R)に沿った径方向視で前記ロータ(Ro)と重複する位置に配置され、前記連結軸(30)における前記筒状部(71)の内部に配置された部分に、前記摩擦係合装置(1)に油を供給するための油路(91,92)が形成されていると好適である。
 この構成によれば、摩擦係合装置(1)への油の供給部に向けて油を軸方向(L)に流通させるための油路(91,92)を、連結軸(30)の内部に形成することができる。よって、このような油路を形成するための部材を、連結軸(30)とロータ支持部材(60)との径方向(R)の間に配置する必要はなく、部品点数の削減を図ることができる。また、連結軸(30)は、一般に、軸方向(L)の比較的広い範囲に亘って延在するように設けられるため、摩擦係合装置(1)への油の供給部に向けて油を軸方向(L)に流通させるための油路(91,92)を連結軸(30)の内部に形成することで、油の中継箇所を減らす等、摩擦係合装置(1)に対する油の供給構造の簡素化を図ることもできる。なお、摩擦係合装置(1)により入力部材(20)と回転電機(MG)との接続を解除することで、内燃機関(E)の駆動力を用いずに車両を走行させる場合に、内燃機関(E)の引き摺りによるエネルギ損失の発生を抑制することができる。
 上記のように、前記連結軸(30)における前記筒状部(71)の内部に配置された部分に、前記摩擦係合装置(1)に油を供給するための油路(91,92)が形成される構成において、前記ロータ支持部材(60)と前記ケース(4)との前記径方向(R)の間に配置され、前記ロータ支持部材(60)の前記ケース(4)に対する前記軸方向第2側(L2)への移動を規制する第3軸受(B3)を更に備え、前記第1軸受(B1)は、前記摩擦係合装置(1)に対して前記軸方向第1側(L1)に配置され、前記第3軸受(B3)は、前記摩擦係合装置(1)に対して前記軸方向第2側(L2)に配置され、前記第1軸受(B1)と前記第3軸受(B3)とは、互いに同径の軸受であると好適である。
 この構成によれば、ロータ支持部材(60)を、第1軸受(B1)と第3軸受(B3)とによって軸方向(L)の両側で適切に支持することができる。そして、これらの第1軸受(B1)と第3軸受(B3)とが、互いに同径の軸受とされるため、第1軸受(B1)と第3軸受(B3)とを同じ種類の軸受とすることができ、これにより、部品の種類数を削減してコストの低減を図ることができる。なお、連結軸(30)における筒状部(71)の内部に配置された部分に、摩擦係合装置(1)に油を供給するための油路(91,92)が形成される場合には、上述したように、このような油路を形成するための部材を、連結軸(30)とロータ支持部材(60)との径方向(R)の間に配置する必要はない。そのため、このような油路を形成するための部材が配置される場合に比べて、ロータ支持部材(60)のケース(4)に対する軸方向第1側(L1)への移動を規制するように配置される第1軸受(B1)の、径方向(R)の配置位置の制約(例えば、小径化の制約)を緩和することができ、この結果、第1軸受(B1)を第3軸受(B3)と同径の軸受とすることが容易となっている。
 上記の各構成の車両用駆動装置(100)において、内燃機関(E)に駆動連結される入力部材(20)を更に備え、前記入力部材(20)は、前記連結軸(30)に対して前記軸方向第2側(L2)に前記連結軸(30)と同軸に配置され、前記入力部材(20)の前記軸方向第1側(L1)の端部である第1端部(21)は、前記連結軸(30)の前記軸方向第2側(L2)の端部である第2端部(31)に対して前記径方向(R)の内側又は外側であって、前記径方向(R)に沿った径方向視で前記第2端部(31)と重複するように配置され、前記ケース(4)と前記連結軸(30)の外周面との前記径方向(R)の間と、前記ケース(4)と前記入力部材(20)の外周面との前記径方向(R)の間と、前記第1端部(21)と前記第2端部(31)との前記径方向(R)の間とのそれぞれに、前記径方向(R)の荷重を受けることが可能な軸受(B4,B5,B6)がそれぞれ配置されていると好適である。
 この構成によれば、入力部材(20)のケース(4)に対する径方向(R)の支持構造を利用することで、連結軸(30)がケース(4)に対して直接的に径方向(R)に支持される箇所を、1箇所とすることができる。よって、連結軸(30)がケース(4)に対して直接的に径方向(R)に支持される箇所が2箇所とされる場合に比べて、ケース(4)における連結軸(30)の外周面と対向するように配置される部分の軸方向(L)の長さを短く抑えることができ、この結果、装置全体の軸方向(L)の大型化を抑制しつつ、ロータ支持部材(60)が連結軸(30)の外周面に嵌合する筒状部(71)を備える構成を実現することができる。
 また、前記連結軸(30)に対して前記軸方向第2側(L2)に前記連結軸(30)と同軸に配置され、内燃機関(E)に駆動連結される入力部材(20)と、前記ロータ支持部材(60)と前記ケース(4)との前記径方向(R)の間に配置され、前記ロータ支持部材(60)の前記ケース(4)に対する前記軸方向第2側(L2)への移動を規制する第3軸受(B3)と、を更に備え、前記連結軸(30)と前記入力部材(20)との前記軸方向(L)の間と、前記入力部材(20)と前記ロータ支持部材(60)との前記軸方向(L)の間とのそれぞれに、前記軸方向(L)の荷重を受けることが可能な軸受(B7,B8)がそれぞれ配置され、前記連結軸(30)が前記ケース(4)に対して最も前記軸方向第2側(L2)に移動し、且つ、前記入力部材(20)が前記ケース(4)に対して最も前記軸方向第2側(L2)に移動した状態で、前記連結軸(30)と前記入力部材(20)との間に前記軸方向(L)の隙間が形成されると好適である。
 この構成によれば、入力部材(20)に作用する軸方向第1側(L1)への荷重を、連結軸(30)と入力部材(20)との軸方向(L)の間に配置された軸受(B7)、連結軸(30)、ロータ支持部材(60)、及び第1軸受(B1)を介してケース(4)で受けることができる。また、入力部材(20)に作用する軸方向第2側(L2)への荷重を、入力部材(20)とロータ支持部材(60)との軸方向(L)の間に配置された軸受(B8)、ロータ支持部材(60)、及び第3軸受(B3)を介してケース(4)で受けることができる。よって、入力部材(20)の軸方向(L)の両側への移動を適切に規制することができる。
 そして、上記の構成では、連結軸(30)が最も軸方向第2側(L2)に移動し、且つ、入力部材(20)が最も軸方向第2側(L2)に移動した状態で、連結軸(30)と入力部材(20)との間に軸方向(L)の隙間が形成される。よって、流体伝動装置(TC)のバルーニングによって連結軸(30)に作用する軸方向第2側(L2)への比較的大きな荷重が、入力部材(20)を介して第3軸受(B3)に伝達されることを抑制することができ、第3軸受(B3)の大型化を抑制することができる。
 上記の構成において、前記入力部材(20)と前記回転電機(MG)との接続及び接続の解除を行う摩擦係合装置(1)を更に備え、前記ロータ支持部材(60)は、前記第1軸受(B1)によって前記ケース(4)に対する前記軸方向第1側(L1)への移動が規制される第1支持部(61)と、前記第1支持部(61)に対して前記軸方向第2側(L2)に配置され、前記第3軸受(B3)によって前記ケース(4)に対する前記軸方向第2側(L2)への移動が規制される第2支持部(62)と、を備え、前記摩擦係合装置(1)は、前記第1支持部(61)と前記第2支持部(62)との前記軸方向(L)の間に配置され、前記入力部材(20)は、前記第1支持部(61)と前記第2支持部(62)との間を前記径方向(R)に延びるように配置されて前記摩擦係合装置(1)における摩擦板の支持部(12)に連結される径方向延在部(22)を備え、前記入力部材(20)と前記ロータ支持部材(60)との前記軸方向(L)の間に配置される前記軸受(B8)が、前記径方向延在部(22)と前記第2支持部(62)との前記軸方向(L)の間に配置されていると好適である。
 この構成によれば、車両用駆動装置(100)が、入力部材(20)と回転電機(MG)との接続及び接続の解除を行う摩擦係合装置(1)を、第1支持部(61)と第2支持部(62)との軸方向(L)の間に備える場合に、入力部材(20)の軸方向(L)の両側への移動が規制される構成を適切に実現することができる。
 本開示に係る車両用駆動装置は、上述した各効果のうち、少なくとも1つを奏することができればよい。
1:第1係合装置(摩擦係合装置)
3:係止部材
4:ケース
12:第2支持部材(摩擦板の支持部)
20:入力部材
21:第1端部
22:第1フランジ部(径方向延在部)
30:連結軸
31:第2端部
33:突出部
41b:第5支持面(第2周面)
60:ロータ支持部材
61:第1支持部
62:第2支持部
71:第1筒状部(筒状部)
72a:第1支持面(段差面)
72b:第2支持面(第1周面)
73:段差部
91:第1油路(摩擦係合装置に油を供給するための油路)
92:第2油路(摩擦係合装置に油を供給するための油路)
100:車両用駆動装置
B1:第1軸受
B2:第2軸受
B3:第3軸受
B4:第4軸受(径方向の荷重を受けることが可能な軸受)
B5:第5軸受(径方向の荷重を受けることが可能な軸受)
B6:第6軸受(径方向の荷重を受けることが可能な軸受)
B7:第7軸受(軸方向の荷重を受けることが可能な軸受)
B8:第8軸受(軸方向の荷重を受けることが可能な軸受)
E:内燃機関
L:軸方向
L1:軸方向第1側
L2:軸方向第2側
MG:回転電機
R:径方向
Ro:ロータ
TC:トルクコンバータ(流体伝動装置)
W:車輪

Claims (9)

  1.  車輪の駆動力源となる回転電機と、前記回転電機のロータを支持するロータ支持部材と、前記ロータ支持部材に連結される連結軸と、前記連結軸を介して前記ロータ支持部材に連結される流体伝動装置と、前記回転電機、前記ロータ支持部材、前記連結軸、及び前記流体伝動装置を収容するケースと、を備えた車両用駆動装置であって、
     軸方向の一方側を軸方向第1側とし、前記軸方向における前記軸方向第1側とは反対側を軸方向第2側として、
     前記ロータ支持部材と前記ケースとの径方向の間に配置され、前記ロータ支持部材の前記ケースに対する前記軸方向第1側への移動を規制する第1軸受と、
     前記連結軸と前記ケースとの前記軸方向の間に配置され、前記連結軸の前記ケースに対する前記軸方向第2側への移動を規制する第2軸受と、を備え、
     前記流体伝動装置は、前記連結軸に対して前記軸方向第1側に配置され、
     前記ロータ支持部材は、前記軸方向に延びる筒状に形成されて前記連結軸の外周面に嵌合する筒状部を備え、
     前記連結軸は、前記筒状部に対する前記軸方向第1側への移動が規制されている、車両用駆動装置。
  2.  前記連結軸は、前記筒状部に対して前記軸方向第2側に突出する突出部を備え、
     前記突出部の外周面における前記筒状部に対して前記軸方向第2側に隣接する位置に、係止部材が係止されている、請求項1に記載の車両用駆動装置。
  3.  前記ロータ支持部材と前記ケースとの前記径方向の間に配置され、前記ロータ支持部材の前記ケースに対する前記軸方向第2側への移動を規制する第3軸受を更に備え、
     前記ロータ支持部材が前記ケースに対して最も前記軸方向第2側に移動し、且つ、前記連結軸が前記ケースに対して最も前記軸方向第2側に移動した状態で、前記筒状部と前記係止部材との間に前記軸方向の隙間が形成される、請求項2に記載の車両用駆動装置。
  4.  前記第1軸受は、前記ロータ支持部材の周面である第1周面と前記ケースの周面である第2周面との前記径方向の間に配置され、
     前記第1軸受は、前記第1周面に隙間嵌めにより嵌合すると共に、前記第2周面に締まり嵌めにより嵌合し、
     前記第1周面における前記第1軸受に対して前記軸方向第2側に隣接する位置に、前記軸方向第1側を向く段差面を備える段差部が形成されている、請求項1から3のいずれか一項に記載の車両用駆動装置。
  5.  内燃機関に駆動連結される入力部材と、
     前記入力部材と前記回転電機との接続及び接続の解除を行う摩擦係合装置と、を更に備え、
     前記摩擦係合装置は、前記ロータに対して前記径方向の内側であって前記径方向に沿った径方向視で前記ロータと重複する位置に配置され、
     前記連結軸における前記筒状部の内部に配置された部分に、前記摩擦係合装置に油を供給するための油路が形成されている、請求項1から4のいずれか一項に記載の車両用駆動装置。
  6.  前記ロータ支持部材と前記ケースとの前記径方向の間に配置され、前記ロータ支持部材の前記ケースに対する前記軸方向第2側への移動を規制する第3軸受を更に備え、
     前記第1軸受は、前記摩擦係合装置に対して前記軸方向第1側に配置され、
     前記第3軸受は、前記摩擦係合装置に対して前記軸方向第2側に配置され、
     前記第1軸受と前記第3軸受とは、互いに同径の軸受である、請求項5に記載の車両用駆動装置。
  7.  内燃機関に駆動連結される入力部材を更に備え、
     前記入力部材は、前記連結軸に対して前記軸方向第2側に前記連結軸と同軸に配置され、
     前記入力部材の前記軸方向第1側の端部である第1端部は、前記連結軸の前記軸方向第2側の端部である第2端部に対して前記径方向の内側又は外側であって、前記径方向に沿った径方向視で前記第2端部と重複するように配置され、
     前記ケースと前記連結軸の外周面との前記径方向の間と、前記ケースと前記入力部材の外周面との前記径方向の間と、前記第1端部と前記第2端部との前記径方向の間とのそれぞれに、前記径方向の荷重を受けることが可能な軸受がそれぞれ配置されている、請求項1から6のいずれか一項に記載の車両用駆動装置。
  8.  前記連結軸に対して前記軸方向第2側に前記連結軸と同軸に配置され、内燃機関に駆動連結される入力部材と、
     前記ロータ支持部材と前記ケースとの前記径方向の間に配置され、前記ロータ支持部材の前記ケースに対する前記軸方向第2側への移動を規制する第3軸受と、を更に備え、
     前記連結軸と前記入力部材との前記軸方向の間と、前記入力部材と前記ロータ支持部材との前記軸方向の間とのそれぞれに、前記軸方向の荷重を受けることが可能な軸受がそれぞれ配置され、
     前記連結軸が前記ケースに対して最も前記軸方向第2側に移動し、且つ、前記入力部材が前記ケースに対して最も前記軸方向第2側に移動した状態で、前記連結軸と前記入力部材との間に前記軸方向の隙間が形成される、請求項1から7のいずれか一項に記載の車両用駆動装置。
  9.  前記入力部材と前記回転電機との接続及び接続の解除を行う摩擦係合装置を更に備え、
     前記ロータ支持部材は、前記第1軸受によって前記ケースに対する前記軸方向第1側への移動が規制される第1支持部と、前記第1支持部に対して前記軸方向第2側に配置され、前記第3軸受によって前記ケースに対する前記軸方向第2側への移動が規制される第2支持部と、を備え、
     前記摩擦係合装置は、前記第1支持部と前記第2支持部との前記軸方向の間に配置され、
     前記入力部材は、前記第1支持部と前記第2支持部との間を前記径方向に延びるように配置されて前記摩擦係合装置における摩擦板の支持部に連結される径方向延在部を備え、
     前記入力部材と前記ロータ支持部材との前記軸方向の間に配置される前記軸受が、前記径方向延在部と前記第2支持部との前記軸方向の間に配置されている、請求項8に記載の車両用駆動装置。
PCT/JP2020/000242 2019-01-09 2020-01-08 車両用駆動装置 WO2020145283A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20739154.1A EP3886298B1 (en) 2019-01-09 2020-01-08 Vehicle drive device
CN202080008091.7A CN113261182A (zh) 2019-01-09 2020-01-08 车用驱动装置
JP2020565164A JP7209742B2 (ja) 2019-01-09 2020-01-08 車両用駆動装置
US17/417,509 US11548366B2 (en) 2019-01-09 2020-01-08 Vehicle drive apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019001798 2019-01-09
JP2019-001798 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020145283A1 true WO2020145283A1 (ja) 2020-07-16

Family

ID=71520465

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2020/000264 WO2020145290A1 (ja) 2019-01-09 2020-01-08 ハイブリッド駆動装置
PCT/JP2020/000242 WO2020145283A1 (ja) 2019-01-09 2020-01-08 車両用駆動装置
PCT/JP2020/000265 WO2020145291A1 (ja) 2019-01-09 2020-01-08 ハイブリッド駆動装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000264 WO2020145290A1 (ja) 2019-01-09 2020-01-08 ハイブリッド駆動装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000265 WO2020145291A1 (ja) 2019-01-09 2020-01-08 ハイブリッド駆動装置

Country Status (5)

Country Link
US (3) US11548366B2 (ja)
EP (3) EP3885175A4 (ja)
JP (3) JP7101262B2 (ja)
CN (3) CN113261182A (ja)
WO (3) WO2020145290A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108719B2 (ja) * 2019-01-09 2022-07-28 株式会社アイシン ハイブリッド駆動装置
US11725701B1 (en) * 2022-11-23 2023-08-15 Schaeffler Technologies AG & Co. KG Disconnect clutch assembly shaft with cap

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183879A (ja) * 2011-03-04 2012-09-27 Nissan Motor Co Ltd ハイブリッド車両の駆動装置
JP2012200074A (ja) * 2011-03-22 2012-10-18 Aisin Aw Co Ltd 車両用駆動装置
JP2013096552A (ja) * 2011-11-04 2013-05-20 Aisin Aw Co Ltd 車両用駆動装置
JP2017040320A (ja) * 2015-08-20 2017-02-23 アイシン精機株式会社 車両用クラッチ装置
JP2017177884A (ja) 2016-03-28 2017-10-05 アイシン・エィ・ダブリュ株式会社 車両用駆動伝達装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224885A (ja) * 1999-01-29 2000-08-11 Equos Research Co Ltd モータの位置検出装置
JP5246466B2 (ja) * 2007-10-19 2013-07-24 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5413633B2 (ja) * 2007-10-19 2014-02-12 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP4941778B2 (ja) * 2008-10-31 2012-05-30 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
CN102574454B (zh) * 2009-11-19 2014-11-12 爱信艾达株式会社 车辆用驱动装置
JP5168598B2 (ja) * 2010-03-31 2013-03-21 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5278774B2 (ja) * 2010-08-06 2013-09-04 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP5425163B2 (ja) * 2011-11-04 2014-02-26 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP5425164B2 (ja) * 2011-11-04 2014-02-26 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP2013155810A (ja) * 2012-01-30 2013-08-15 Aisin Aw Co Ltd 車両用駆動装置
JP5772844B2 (ja) * 2012-02-10 2015-09-02 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP2014117990A (ja) * 2012-12-14 2014-06-30 Aisin Aw Co Ltd ハイブリッド駆動装置
US9243669B2 (en) 2013-10-24 2016-01-26 Ford Global Technologies, Llc Torque converter flex plate for hybrid electric vehicle
US9180766B2 (en) 2013-12-16 2015-11-10 Ford Global Technologies, Llc Front module for a modular hybrid transmission and a method for connecting/disconnecting the front module from a torque converter
JP6257419B2 (ja) * 2014-04-01 2018-01-10 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP2016033003A (ja) * 2014-07-29 2016-03-10 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
DE102014221259A1 (de) * 2014-10-20 2016-04-21 Aesculap Ag Medizinisches Produkt und medizinisches Kit zur Anwendung beim Verschluss von biologischem Gewebe
JP6344358B2 (ja) * 2015-10-05 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP6604247B2 (ja) * 2016-03-22 2019-11-13 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6699313B2 (ja) * 2016-04-14 2020-05-27 株式会社ジェイテクト 駆動力伝達装置及び四輪駆動車

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183879A (ja) * 2011-03-04 2012-09-27 Nissan Motor Co Ltd ハイブリッド車両の駆動装置
JP2012200074A (ja) * 2011-03-22 2012-10-18 Aisin Aw Co Ltd 車両用駆動装置
JP2013096552A (ja) * 2011-11-04 2013-05-20 Aisin Aw Co Ltd 車両用駆動装置
JP2017040320A (ja) * 2015-08-20 2017-02-23 アイシン精機株式会社 車両用クラッチ装置
JP2017177884A (ja) 2016-03-28 2017-10-05 アイシン・エィ・ダブリュ株式会社 車両用駆動伝達装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3886298A4

Also Published As

Publication number Publication date
CN113348102A (zh) 2021-09-03
WO2020145290A1 (ja) 2020-07-16
US11827100B2 (en) 2023-11-28
EP3885175A1 (en) 2021-09-29
EP3886298A4 (en) 2022-01-12
US20220111720A1 (en) 2022-04-14
JP7209742B2 (ja) 2023-01-20
US11498408B2 (en) 2022-11-15
WO2020145291A1 (ja) 2020-07-16
JP7122397B2 (ja) 2022-08-19
JPWO2020145283A1 (ja) 2021-10-21
JPWO2020145290A1 (ja) 2021-11-04
JPWO2020145291A1 (ja) 2021-10-21
JP7101262B2 (ja) 2022-07-14
US20220097512A1 (en) 2022-03-31
EP3886298A1 (en) 2021-09-29
EP3885176A4 (en) 2022-01-12
EP3885176A1 (en) 2021-09-29
CN113423594A (zh) 2021-09-21
EP3886298B1 (en) 2024-03-06
US11548366B2 (en) 2023-01-10
US20220055471A1 (en) 2022-02-24
EP3885175A4 (en) 2022-01-12
CN113261182A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP5425163B2 (ja) 車両用駆動装置
US8836181B2 (en) Vehicle drive device
WO2011062265A1 (ja) 車両用駆動装置
JP5149974B2 (ja) 車両用駆動装置
WO2011062266A1 (ja) 車両用駆動装置
US8997956B2 (en) Vehicle drive device
US20130193816A1 (en) Vehicle drive device
US11407301B2 (en) Vehicle drive device
JP5589247B2 (ja) 車両用駆動装置
WO2020145283A1 (ja) 車両用駆動装置
WO2017057190A1 (ja) 車両用駆動装置
WO2015108147A1 (ja) 車両用駆動装置
JP5250013B2 (ja) 車両用駆動装置
US11846328B2 (en) Friction engagement device
WO2017170396A1 (ja) 車両用駆動伝達装置
JP7140290B2 (ja) 車両用駆動装置
JP5261461B2 (ja) 車両用駆動装置
JP7207092B2 (ja) 車両用駆動装置
JP5406815B2 (ja) 車両用駆動装置
JP2020121634A (ja) 車両用駆動装置
JP2020165474A (ja) 摩擦係合装置及び駆動伝達装置
JP2019043521A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565164

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020739154

Country of ref document: EP

Effective date: 20210622

NENP Non-entry into the national phase

Ref country code: DE