WO2018181352A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2018181352A1
WO2018181352A1 PCT/JP2018/012490 JP2018012490W WO2018181352A1 WO 2018181352 A1 WO2018181352 A1 WO 2018181352A1 JP 2018012490 W JP2018012490 W JP 2018012490W WO 2018181352 A1 WO2018181352 A1 WO 2018181352A1
Authority
WO
WIPO (PCT)
Prior art keywords
engagement device
friction
friction engagement
oil
axial direction
Prior art date
Application number
PCT/JP2018/012490
Other languages
English (en)
French (fr)
Inventor
多田洋平
関祐一
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201880009724.9A priority Critical patent/CN110290959B/zh
Priority to US16/473,657 priority patent/US11104216B2/en
Priority to JP2019509907A priority patent/JP6844690B2/ja
Priority to DE112018000454.6T priority patent/DE112018000454T5/de
Publication of WO2018181352A1 publication Critical patent/WO2018181352A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/72Features relating to cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/424Friction clutches
    • B60Y2400/4244Friction clutches of wet type, e.g. using multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0661Hydraulically actuated multiple lamellae clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0692Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric with two clutches arranged axially without radial overlap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention provides a power transmission path that connects an input member that is drivingly connected to an internal combustion engine and an output member that is drivingly connected to a wheel, in order from the input member side, an engagement device, a rotating electrical machine, and friction engagement. And a vehicle drive device provided with the device.
  • Patent Document 1 As such a vehicle drive device, for example, one described in US Patent Application Publication No. 2006/0144665 (Patent Document 1) is known. Hereinafter, in the description of the background art section, reference numerals and member names in Patent Document 1 are quoted in [].
  • the first friction engagement device [clutch 34] and the second friction engagement device [clutch 36] are arranged in the axial direction L. These two friction engagement devices [clutch 36, clutch 34] are inside the rotating electrical machine [motor 14], and at least a part of the two friction engaging devices [clutch 36, clutch 34] is viewed in the radial direction R with respect to the rotating electrical machine [motor 14]. It is arranged so that it overlaps.
  • the rotating electrical machine [motor 14] includes a rotor [12] and a rotor support member that supports the rotor [12].
  • the cylindrical portion [outer circular drum 27] disposed radially outward with respect to the two friction engagement devices [clutch 36, clutch 34] has a first hole penetrating in the radial direction. [70] is formed.
  • the two friction engagement devices [clutch 36, clutch 34] include clutch shells [60, 78], respectively.
  • a second hole [72] penetrating in the radial direction R is formed in the clutch shell [60] disposed radially outward with respect to the second friction engagement device [clutch 36].
  • the oil that has passed through the two friction engagement devices passes through the first hole [70] and flows radially outward from the cylindrical portion [outer circular drum 27], or After passing through the second hole [72], it passes through the first hole [70] or the axial end of the cylindrical part [outer circular drum 27] and flows radially outward.
  • the oil that has flowed radially outward from the cylindrical portion [outer circular drum 27] is supplied to the rotating electrical machine [motor 14].
  • the vehicle drive device of Patent Document 1 is configured such that oil that has passed through the two friction engagement devices [clutch 36, clutch 34] is supplied to the rotating electrical machine [motor 14].
  • the rotating electrical machine [14] can be appropriately cooled.
  • the two friction engagement devices (clutch 36, clutch 34) are slip-engaged, the two friction engagement devices (clutch 36, clutch 34) are heated by friction heat when passing through the two friction engagement devices (clutch 36, clutch 34).
  • the generated high-temperature oil is supplied to the rotating electrical machine [motor 14]
  • the vehicle drive device has a characteristic configuration in which a power transmission path that connects an input member that is drivingly connected to an internal combustion engine and an output member that is drivingly connected to a wheel is sequentially engaged from the input member side.
  • An apparatus, a rotating electrical machine, and a friction engagement device, The engagement device and the friction engagement device are arranged side by side in the axial direction, and each of the engagement device and the friction engagement device is inside in the radial direction of the rotating electrical machine and at least a part thereof.
  • the rotating electrical machine includes a rotor and a rotor support member that supports the rotor, and the rotor support member is positioned radially inward of the rotor.
  • a cooling oil passage having a cylindrical portion formed in a cylindrical shape extending in the axial direction and provided in a region where the engagement device is disposed, through which oil for cooling the rotating electrical machine passes.
  • An inflow suppressing portion provided between the engaging device and the friction engaging device for suppressing the oil that has passed through the friction engaging device from flowing into the cooling oil passage; It is in the point to have inside.
  • the oil that has flowed through the cooling oil passage is supplied to the rotating electrical machine, whereby the rotating electrical machine can be cooled by the oil.
  • the oil that has passed through the friction engagement device is suppressed from flowing into the cooling oil passage by the inflow suppressing portion. Therefore, it can suppress that the comparatively high temperature oil heated by passing a friction engagement apparatus flows in into a cooling oil path, and can suppress the temperature rise of the oil which flows through a cooling oil path. Thereby, since relatively low temperature oil can be supplied to the rotating electrical machine, the rotating electrical machine can be appropriately cooled.
  • the schematic diagram which shows schematic structure of the vehicle drive device in embodiment. Partial cross-sectional view of a vehicle drive device Cross-sectional view of the main part of the vehicle drive device Cross-sectional view of the main part of the vehicle drive device
  • the vehicle drive device 1 is a vehicle drive device (hybrid vehicle) for driving a vehicle (hybrid vehicle) including both the internal combustion engine E and the rotating electrical machine MG that function as a driving force source for the wheels W.
  • the vehicle drive device 1 is configured as a drive device for a 1-motor parallel type hybrid vehicle.
  • axial direction L “axial direction L”, “radial direction R”, and “circumferential direction” are based on the rotational axis of rotating electrical machine MG (axial center X shown in FIG. 2). It is defined as Also, the internal combustion engine E side (the right side in FIG. 2) that is one side in the axial direction L is defined as the axial first side L1, and the opposite side (the other side in the axial direction L) is relatively.
  • the transmission TM side (left side in FIG. 2) is defined as the axial second side L2.
  • the axial center X side which is one side of radial direction R is defined as radial inner side R1, and the other side is defined as radial outer side R2.
  • each member represents the direction in the state in which they were assembled
  • FIG. Moreover, the term regarding the direction, position, etc. about each member is a concept including the state which has the difference by the error which can be accept
  • drive coupling means a state in which two rotating elements are coupled so as to be able to transmit a driving force (synonymous with torque).
  • This concept includes a state in which the two rotating elements are connected so as to rotate integrally, and a state in which the driving force is transmitted through one or more transmission members.
  • Such transmission members include various members (shafts, gear mechanisms, belts, etc.) that transmit rotation at the same speed or at different speeds, and engaging devices (frictions) that selectively transmit rotation and driving force. Engagement devices, meshing engagement devices, etc.).
  • overlapping in a certain direction means that each virtual line that is parallel to the line-of-sight direction is orthogonal to the virtual line. When moved in the direction, it means that the region where the virtual straight line intersects both of the two members exists at least in part.
  • the vehicle drive device 1 includes an input shaft I as an input member that is drivingly connected to the internal combustion engine E, an intermediate shaft M as an output member that is drivingly connected to the wheels W, and a rotating electrical machine MG. And a first friction engagement device CL1 (corresponding to the engagement device) and a second friction engagement device CL2 (corresponding to the friction engagement device).
  • the first friction engagement device CL1, the rotating electrical machine MG, and the second friction engagement device CL2 are provided in the power transmission path T connecting the input shaft I and the intermediate shaft M in the order described from the input shaft I side. Yes.
  • FIG. 1 A schematic configuration of the vehicle drive device 1 according to the present embodiment will be described.
  • the vehicle drive device 1 includes an input shaft I as an input member that is drivingly connected to the internal combustion engine E, an intermediate shaft M as an output member that is drivingly connected to the wheels W, and a rotating electrical machine MG.
  • a first friction engagement device CL1 corresponding to the engagement device
  • a second friction engagement device CL2 corresponding to the friction engagement device
  • the first friction engagement device CL ⁇ b> 1 and the second friction engagement device CL ⁇ b> 2 are arranged side by side in the axial direction L.
  • the first friction engagement device CL1 is positioned on the first axial side L1 with respect to the second friction engagement device CL2. That is, the side where the first friction engagement device CL1 is located with respect to the second friction engagement device CL2 in the axial direction L is the axial first side L1, and the opposite side is the axial second side L2.
  • Each of the first friction engagement device CL1 and the second friction engagement device CL2 is a radially inner side R1 of the rotating electrical machine MG, and at least a part thereof is viewed in the radial direction R with respect to the rotating electrical machine MG. They are arranged so as to overlap.
  • the vehicle drive device 1 includes a transmission TM, a counter gear mechanism C, and a differential gear device DF. These are accommodated in a case (drive device case) 2.
  • the internal combustion engine E is a prime mover (such as a gasoline engine or a diesel engine) that is driven by combustion of fuel inside the engine to extract power.
  • the input shaft I is drivingly connected to an output shaft (crankshaft or the like) of the internal combustion engine E via a damper (not shown).
  • the input shaft I may be drivingly connected to the output shaft of the internal combustion engine E without using a damper.
  • the first friction engagement device CL1 is provided between the input shaft I and the rotating electrical machine MG in the power transmission path T.
  • the first friction engagement device CL1 connects or disconnects the input shaft I that is drivingly connected to the internal combustion engine E and the rotating electrical machine MG.
  • the first friction engagement device CL1 functions as an internal combustion engine separation engagement device that separates the internal combustion engine E from the wheel W.
  • the first friction engagement device CL1 is configured as a hydraulically driven friction engagement device. In the first friction engagement device CL1, the engagement state (direct engagement state / slip engagement state / release state) is controlled based on the hydraulic pressure supplied to the first friction engagement device CL1.
  • the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. ing. Therefore, the rotating electrical machine MG is electrically connected to a power storage device (battery, capacitor, etc.). The rotating electrical machine MG is powered by receiving power from the power storage device, or supplies the power storage device with power generated by the torque of the internal combustion engine E or the inertial force of the vehicle.
  • a power storage device battery, capacitor, etc.
  • the second friction engagement device CL2 is provided between the rotating electrical machine MG and the transmission TM in the power transmission path T.
  • the second friction engagement device CL2 connects or disconnects the rotating electrical machine MG and the intermediate shaft M that is drivingly connected to the transmission TM.
  • the second friction engagement device CL2 is configured as a hydraulically driven friction engagement device.
  • the second friction engagement device CL2 is controlled in an engagement state (direct engagement state / slip engagement state / release state) based on the hydraulic pressure supplied to the second friction engagement device CL2.
  • the transmission TM is a stepped automatic transmission that includes a plurality of shift engagement devices and is capable of switching a plurality of shift stages having different gear ratios.
  • a continuously variable automatic transmission capable of changing the gear ratio steplessly, a manual transmission equipped with a plurality of shift gears having different gear ratios, or the like may be used.
  • the transmission TM shifts the rotation and torque input to the intermediate shaft M according to the gear ratio at each time, converts the torque, and transmits the torque to the transmission output gear G.
  • the transmission output gear G is drivingly connected to the differential gear unit DF via the counter gear mechanism C.
  • the differential gear unit DF is drivably coupled to the wheel W via the axle A.
  • the differential gear device DF distributes and transmits the rotation and torque input to the differential gear device DF to the two left and right wheels W. Accordingly, the vehicle drive device 1 can cause the vehicle to travel by transmitting the torque of one or both of the internal combustion engine E and the rotating electrical machine MG to the wheels W.
  • the input shaft I and the intermediate shaft M are arranged coaxially, and the axle A is parallel to each other on an axis different from the input shaft I and the intermediate shaft M.
  • the arrangement is a multi-axis arrangement.
  • Such a configuration is suitable as a configuration of the vehicle drive device 1 mounted on, for example, an FF (Front-Engine-Front-Drive) vehicle.
  • the case 2 has a first axial axial direction of a peripheral wall that covers the outer periphery of each housing component such as the rotating electrical machine MG, the first friction engagement device CL1, the second friction engagement device CL2, and the rotation sensor 18.
  • a first support wall 22 that closes the opening of the side L1, and a second support wall 25 that is disposed between the rotating electrical machine MG and the transmission TM on the second axial side L2 relative to the first support wall 22. ing.
  • the first support wall 22 is positioned on the first axial side L1 with respect to the rotating electrical machine MG, the first friction engagement device CL1, and the second friction engagement device CL2, and extends in the radial direction R and the circumferential direction. Exist.
  • the first support wall 22 is disposed adjacent to the first axial side L1 with respect to the rotating electrical machine MG and the like.
  • the first support wall 22 has a through hole in the axial direction L, and the input shaft I is inserted through the through hole. As a result, the input shaft I passes through the first support wall 22 and is inserted into the case 2.
  • the 1st support wall 22 has the cylindrical 1st protrusion part 23 which protrudes in the axial direction L toward the axial direction 2nd side L2 in the edge part of the radial direction inner side R1.
  • the first support wall 22 rotatably supports the rotor support member 30 via the input bearing 81 by the first protrusion 23.
  • the second support wall 25 is located on the second axial side L2 with respect to the rotating electrical machine MG, the first friction engagement device CL1, and the second friction engagement device CL2, and extends in the radial direction R and the circumferential direction. Exist.
  • the second support wall 25 is disposed adjacent to the second axial side L2 with respect to the rotating electrical machine MG and the like.
  • the second support wall 25 has a cylindrical sleeve portion 26 that protrudes in the axial direction L toward the first axial side L1 at the end of the radial inner side R1.
  • An intermediate shaft M is inserted through the sleeve portion 26. Thereby, the intermediate shaft M is disposed in the case 2 so as to penetrate the second support wall 25.
  • the second support wall 25 has a cylindrical second protruding portion 28 that protrudes toward the first axial side L1.
  • the second support wall 25 rotatably supports the rotor support member 30 via the bearing 86 by the second protrusion 28.
  • the rotating electrical machine MG includes a stator St fixed to the case 2, a rotor Ro supported to be rotatable with respect to the case 2, and a rotor support member 30 that supports the rotor Ro.
  • the stator St includes coil end portions Ce on both sides in the axial direction L.
  • the rotor Ro is disposed on the radially inner side R1 of the stator St.
  • the rotor Ro is rotatably supported with respect to the case 2 via the rotor support member 30.
  • the rotor support member 30 that supports the rotor Ro is a cylindrical support portion 31 as a cylindrical portion that is located on the radially inner side R ⁇ b> 1 of the rotor Ro and extends in the axial direction L.
  • a plate-like support portion 35 extending from the cylindrical support portion 31 to the radially inner side R1, and a pair of rotor holding portions 37 extending radially outward from the cylindrical support portion 31.
  • the rotor support member 30 supports the rotor Ro in a state where the pair of rotor holding portions 37 are in contact with the second axial side L2 and the first axial side L1, and the cylindrical support 31 is in contact with the radial inner side R1. .
  • the rotor Ro is supported on the outer peripheral surface of the cylindrical support portion 31.
  • the rotor Ro is supported by the rotor support member 30 so as to be restricted from moving in the axial direction L with respect to the cylindrical support portion 31 and to rotate integrally with the cylindrical support portion 31.
  • the cylindrical support part 31 is formed so that it may open toward the axial direction 2nd side L2 (2nd support wall 25 side). That is, the space on the radially inner side R1 of the cylindrical support portion 31 is closed by the plate-like support portion 35 on the first axial side L1 and is open on the second axial side L2.
  • the end portion on the second axial side L ⁇ b> 2 of the opening portion of the cylindrical support portion 31 is referred to as a support opening end portion 33.
  • the support opening end portion 33 is disposed at a position overlapping the coil end portion Ce when viewed in the radial direction R. In this example, it arrange
  • the plate-like support portion 35 is formed in an annular plate shape extending from the end portion on the first axial side L1 of the cylindrical support portion 31 to the radially inner side R1. Further, the plate-like support portion 35 includes a cylindrical third protruding portion 36 that protrudes toward the second axial side L2 at the end of the radially inner side R1.
  • the rotor support member 30 includes an input bearing 81 disposed between the third projecting portion 36 and the first projecting portion 23, and a bearing 86 disposed between the support opening end portion 33 and the second projecting portion 28.
  • the case 2 is supported in the radial direction R.
  • the first friction engagement device CL1 includes a first friction member 41, a first inner support member 45, a first outer support member 51, and a first pressing member 57. It is a wet friction engagement device. Each member constituting the first friction engagement device CL1 is disposed coaxially with the input shaft I and the intermediate shaft M. The first friction engagement device CL1 is disposed at a position that is on the inner side R1 of the rotor Ro of the rotating electrical machine MG and overlaps the rotor Ro when viewed in the radial direction R.
  • the first friction member 41 includes a pair of a first inner friction member 42 and a first outer friction member 43 (see FIG. 4).
  • the first inner friction member 42 and the first outer friction member 43 are both formed in an annular plate shape and are arranged with their rotation axes coinciding with each other.
  • a plurality of first inner friction members 42 and first outer friction members 43 are provided, and these members are alternately arranged along the axial direction L.
  • One of the first inner friction member 42 and the first outer friction member 43 can be a friction plate and the other can be a separate plate.
  • the first inner support member 45 includes a first inner cylindrical portion 46 that supports the first inner friction member 42 from the radial inner side R1, and a first inner plate that extends from the first inner cylindrical portion 46 to the radial inner side R1. And a shaped portion 47.
  • the first inner cylindrical portion 46 is formed in a cylindrical shape extending along the axial direction L.
  • the first inner cylindrical portion 46 is formed so as to open toward the internal combustion engine E side (first axial side L1).
  • a plurality of spline teeth extending in the axial direction L are formed on the outer peripheral portion of the first inner cylindrical portion 46 so as to be dispersed in the circumferential direction.
  • Similar spline teeth are formed on the inner peripheral portion of the first inner friction member 42, and the first inner friction member 42 is radially inward by the first inner support member 45 with both spline teeth engaged. Supported from R1. Accordingly, the first inner friction member 42 is supported so as to be slidable in the axial direction L in a state where relative rotation is restricted with respect to the first inner support member 45.
  • the first inner cylindrical portion 46 is formed with a fourth through hole 14 that penetrates the first inner cylindrical portion 46 in the radial direction R (communication between the inner peripheral surface and the outer peripheral surface). .
  • the first inner plate-like portion 47 is an annular plate-like member extending from the end portion on the second axial side L2 of the first inner tubular portion 46 to the radially inner side R1.
  • the first inner plate-like portion 47 is connected to the first inner tubular portion 46 so as to rotate integrally with the first inner tubular portion 46.
  • the first inner plate-like portion 47 is connected to the input shaft I at the end of the radially inner side R1.
  • the first inner cylindrical portion 46 and the input shaft I are integrally connected via the first inner plate-like portion 47.
  • the first outer support member 51 is formed in a cylindrical shape extending along the axial direction L.
  • a plurality of spline teeth 51 ⁇ / b> A (corresponding to engagement grooves) extending in the axial direction L are formed on the inner peripheral portion of the first outer support member 51 so as to be dispersed in the circumferential direction.
  • Similar spline teeth are formed on the outer peripheral portion of the first outer friction member 43, and the first outer friction member 43 is radially outwardly supported by the first outer support member 51 in a state in which both spline teeth are engaged. It is supported from. Accordingly, the first outer friction member 43 is supported so as to be slidable in the axial direction L in a state where relative rotation is restricted with respect to the first outer support member 51.
  • the first outer support member 51 is constituted by a part of the cylindrical support portion 31.
  • a ring-shaped partition member 85 is attached to the inner peripheral surface of the cylindrical support portion 31, and the partition member 85 allows the inner peripheral surface of the cylindrical support portion 31 to be connected to the first area 98. It is divided into a second area 99. The first area 98 and the second area 99 are formed side by side in the axial direction L.
  • the cylindrical support part 31 is the part in which the 2nd area 99 in the inner peripheral part of the cylindrical support part 31 is formed, ie, between the partition member 85 and the plate-shaped support part 35 in the cylindrical support part 31.
  • a plurality of spline teeth 51 ⁇ / b> A are dispersed in the circumferential direction in the portion located at the position.
  • the first outer support member 51 is constituted by a portion located between the partition member 85 and the plate-like support portion 35 in the cylindrical support portion 31, and is constituted by a part of the cylindrical support portion 31.
  • the first outer friction member 43 is supported by the cylindrical support portion 31 from the radially inner side R1.
  • the diameter of the outer peripheral surface of the partition member 85 is equal to or greater than the outer diameter of the recess recessed in the radial outer side R2 of the spline teeth 51A of the cylindrical support portion 31, and in this embodiment, the outer periphery of the partition member 85
  • the diameter of the surface is the same as the outer diameter of the recess of the spline teeth 51A.
  • the first outer support member 51 is formed with a third through hole 13 that penetrates the first outer support member 51 in the radial direction R (communication between the inner peripheral surface and the outer peripheral surface).
  • the first pressing member 57 slides in the axial direction L according to the hydraulic pressure when oil of a predetermined hydraulic pressure is supplied from the hydraulic control device (not shown) to the first hydraulic oil chamber H1.
  • 41 is a member that presses 41 (first piston).
  • the first pressing member 57 presses the first friction member 41 toward the second axial side L2.
  • the second friction engagement device CL2 includes a second friction member 61, a second inner support member 65, a second outer support member 71, and a second pressing member 77. It is a wet friction engagement device. Each member constituting the second friction engagement device CL2 is arranged coaxially with the input shaft I and the intermediate shaft M. The second frictional engagement device CL2 is disposed at a position that is radially inside R1 of the rotor Ro of the rotating electrical machine MG and overlaps the rotor Ro when viewed in the radial direction R.
  • the second frictional engagement device CL2 is disposed at a position that is on the radially inner side R1 of the inner peripheral surface of the cylindrical support portion 31 and overlaps with the cylindrical support portion 31 when viewed in the radial direction R. And is disposed on the second axial side L2 with respect to the plate-like support portion 35.
  • the second friction member 61 includes a pair of second inner friction member 62 and second outer friction member 63 (see FIG. 4).
  • the configurations of the second inner friction member 62 and the second outer friction member 63 can be the same as the configurations of the first inner friction member 42 and the first outer friction member 43 described above.
  • the second inner support member 65 includes a second inner cylindrical portion 66 that supports the second inner friction member 62 from the radial inner side R1, and a second inner plate that extends from the second inner cylindrical portion 66 to the radial inner side R1. And a shape portion 67.
  • the second inner cylindrical portion 66 is formed in a cylindrical shape extending along the axial direction L.
  • the second inner cylindrical portion 66 is formed so as to open toward the side opposite to the internal combustion engine E side (second axial side L2).
  • a plurality of spline teeth extending in the axial direction L are formed on the outer peripheral portion of the second inner cylindrical portion 66 so as to be dispersed in the circumferential direction.
  • Similar spline teeth are formed on the inner peripheral portion of the second inner friction member 62, and the second inner friction member 62 is radially inward by the second inner support member 65 with both the spline teeth engaged. Supported from R1. Accordingly, the second inner friction member 62 is supported so as to be slidable in the axial direction L in a state where relative rotation is restricted with respect to the second inner support member 65.
  • the second inner cylindrical portion 66 is formed with a first through hole 11 that penetrates the second inner cylindrical portion 66 in the radial direction R (communication between the inner peripheral surface and the outer peripheral surface). .
  • the second inner plate portion 67 is connected to the second inner tube portion 66 so as to rotate integrally with the second inner tube portion 66.
  • the second inner plate-shaped portion 67 includes a flange member 84 that is drivingly connected to the intermediate shaft M at the end of the radially inner side R1.
  • the second inner cylindrical portion 66 and the intermediate shaft M are integrally connected via the second inner plate-shaped portion 67.
  • the second outer support member 71 includes a second outer cylindrical portion 72 that supports the second outer friction member 63 from the radial outer side R2, and a second outer plate extending from the second outer cylindrical portion 72 to the radial inner side R1.
  • the second outer cylindrical portion 72 is formed in a cylindrical shape extending along the axial direction L.
  • the second outer cylindrical portion 72 is formed so as to open toward the internal combustion engine E side (first axial side L1).
  • a plurality of spline teeth extending in the axial direction L are formed on the inner peripheral portion of the second outer cylindrical portion 72 so as to be dispersed in the circumferential direction.
  • Similar spline teeth are formed on the outer peripheral portion of the second outer friction member 63, and the second outer friction member 63 is radially outer side R ⁇ b> 2 by the second outer support member 71 in a state where both spline teeth are engaged. It is supported from.
  • the second outer friction member 63 is supported so as to be slidable in the axial direction L in a state where relative rotation is restricted with respect to the second outer support member 71.
  • the second outer cylindrical portion 72 is formed with a second through-hole 12 that penetrates the second outer cylindrical portion 72 in the radial direction R (communication between the inner peripheral surface and the outer peripheral surface). .
  • the second outer plate-like portion 73 is an annular plate-like member extending from the end portion on the second axial side L2 of the second outer tubular portion 72 to the radially inner side R1.
  • the cylindrical connecting portion 74 extends from the end portion on the first axial side L1 of the second outer cylindrical portion 72 to the first axial side L1, and is formed in a cylindrical shape extending along the axial direction L. ing.
  • the cylindrical connecting portion 74 is drivingly connected at its outer peripheral portion so as to rotate integrally with the cylindrical supporting portion 31 by engaging with the inner peripheral portion of the cylindrical supporting portion 31.
  • the second outer cylindrical portion 72, the second outer plate-shaped portion 73, and the cylindrical connecting portion 74 are integrally formed.
  • the second outer cylindrical portion 72 is disposed on the radially inner side R ⁇ b> 1 of the cylindrical support portion 31, and is configured by a member different from the cylindrical support portion 31.
  • On the first axial side L1 of the second outer cylindrical portion 72 there is a partition member 85 attached to the inner peripheral surface of the cylindrical support portion 31, and the second outer cylindrical portion 72 is a partition member. 85 is supported from the axial first side L1.
  • a support member 87 attached to the second axial side L2 of the second support wall 25 exists on the second axial side L2 of the second outer plate-shaped portion 73, and the second outer plate-shaped portion 73 is The support member 87 supports the second axial side L2. That is, the second outer support member 71 is located between the partition member 85 and the support member 87 in the axial direction L, and movement in the axial direction L is restricted.
  • the second pressing member 77 slides in the axial direction L according to the hydraulic pressure when oil of a predetermined hydraulic pressure is supplied from the hydraulic control device (not shown) to the second hydraulic oil chamber H2, and the second friction member.
  • the second pressing member 77 presses the second friction member 61 toward the first axial side L1.
  • the first friction member 41 is disposed closer to the first axial side L1 than the second friction member 61.
  • the first friction member 41 and the second friction member 61 are arranged so as to overlap each other when viewed in the axial direction L.
  • the vehicle drive device 1 includes a rotation sensor 18 for detecting the rotation of the rotating electrical machine MG.
  • the rotation sensor 18 is provided between the rotor support member 30 (cylindrical support portion 31) and the second support wall 25 in the axial direction L.
  • the rotation sensor 18 is a sensor for detecting the position of the rotor Ro in the rotation direction with respect to the stator St of the rotating electrical machine MG.
  • a rotation sensor 18 for example, a resolver or the like can be used.
  • the rotation sensor 18 includes a sensor stator 96 supported by the case 2 and a sensor rotor 97 that rotates integrally with the rotor Ro.
  • the sensor stator 96 is fixed to the side surface of the second support wall 25 on the first axial side L1.
  • the sensor rotor 97 is fixed to the inner peripheral surface of the support opening end portion 33 in the cylindrical support portion 31.
  • the sensor stator 96 and the sensor rotor 97 overlap with the first friction engagement device CL1 and the second friction engagement device CL2 when viewed in the axial direction L, and overlap with the coil end portion Ce when viewed in the radial direction R. In the position.
  • each engaging device CL1, CL2 and rotating electrical machine MG in the vehicle drive device 1 will be described.
  • a description will be given on the assumption that a stopped vehicle starts with the torque of the rotating electrical machine MG in the electric travel mode.
  • oil of a predetermined hydraulic pressure is supplied to the second friction engagement device CL2 provided at least on the downstream side thereof, and the second friction engagement device It is necessary to engage CL2.
  • the transmission TM is an automatic stepped transmission as in the present embodiment
  • oil of a predetermined hydraulic pressure is supplied to one or more of the plurality of shifting engagement devices provided in the transmission TM. There is a need to feed and engage them.
  • the rotating electrical machine MG is interlocked with an oil pump (not shown) via the chain transmission mechanism 83 and the second outer support member 71 of the second friction engagement device CL2.
  • Drive coupled.
  • the oil pump is driven using the torque of the rotating electrical machine MG output for driving the wheels W.
  • the oil discharged from the oil pump is supplied to the second friction engagement device CL2 and the gear shift engagement device in the transmission TM to engage them.
  • the vehicle drive device 1 according to the present embodiment is not provided with a pump (electric pump) having a dedicated drive motor, which is different from the oil pump. By omitting the installation of such an electric pump, cost reduction of the vehicle drive device 1 is achieved.
  • an electric pump may be provided.
  • the rotating electrical machine MG rotates at a rotational speed equal to or higher than a predetermined reference rotational speed.
  • the rotational speed of the intermediate shaft M which is determined according to the vehicle speed when the specific gear stage is formed in the transmission TM, is less than the reference rotational speed when the vehicle speed is low to some extent. Therefore, in order to absorb these rotational speed differences (differential rotations), it is necessary to engage the second friction engagement device CL2 while slipping it (to set the slip engagement state).
  • the second friction member 61 of the second friction engagement device CL2 In the slip engagement state of the second friction engagement device CL2, the second friction member 61 of the second friction engagement device CL2 generates heat due to friction or the like, and thus it is necessary to cool it effectively.
  • the coil In the rotating electrical machine MG, when a current is passed through the coil of the stator St, the coil generates heat due to the generation of Joule heat. Therefore, there is a need to effectively cool the coil (for example, the coil end portion Ce that is a portion protruding in the axial direction L from the stator core).
  • the vehicle drive device 1 mainly includes a first cooling oil passage P1 for cooling the second friction member 61 of the second friction engagement device CL2. And a second cooling oil passage P2 for mainly cooling the coil end portion Ce of the rotating electrical machine MG. These are two independent oil passages.
  • the first cooling oil passage P ⁇ b> 1 and the second cooling oil passage P ⁇ b> 2 are provided inside the cylindrical support portion 31.
  • the second cooling oil passage P2 corresponds to a cooling oil passage provided in a region where the first friction engagement device CL1 is disposed and through which oil for cooling the rotary electric machine MG passes.
  • the oil discharged from the oil pump includes an oil flow passage formed in the case 2 and a shaft formed between the inner peripheral surface of the sleeve portion 26 and the outer peripheral surface of the intermediate shaft M. Via the circumferential oil passage 91, it is supplied to the space between the second inner plate-like portion 67 and the second pressing member 77 (the space inside the second friction engagement device CL ⁇ b> 2) in the axial direction L.
  • the oil discharged from the oil pump passes through an oil flow passage formed in the case 2, an in-shaft oil passage 92 formed in the intermediate shaft M, and a communication hole formed in the intermediate shaft M.
  • the space between the first inner plate-like portion 47 and the first pressing member 57 (the space inside the first friction engagement device CL1), and the first inner plate-like portion 47 and the second inner side. It is supplied to a space between the plate-like portion 67 (a space between the first friction engagement device CL1 and the second friction engagement device CL2).
  • the oil discharged from the oil pump includes an oil flow passage formed in the case 2, an in-shaft oil passage 92 formed in the intermediate shaft M, and the inner peripheral surface of the first projecting portion 23 and the input shaft.
  • the main oil flow is indicated by broken-line arrows.
  • the first cooling oil passage P1 supplies oil supplied to the space between the second inner plate-shaped portion 67 and the second pressing member 77 to the second friction member 61 to provide the second cooling member P1.
  • This is an oil passage for guiding the friction member 61 to the second axial side L2 from the rotor Ro after cooling.
  • the second inner cylindrical portion 66 and the second outer cylindrical portion 72 have a first through hole 11 and a second through hole 12, respectively. It is a perforated cylindrical part which has.
  • the second inner cylindrical portion 66 has a first through hole 11 that penetrates in the radial direction R at a position overlapping with the second friction member 61 in the axial direction L when viewed in the radial direction R.
  • the second outer cylindrical portion 72 has a second through hole 12 that penetrates in the radial direction R at a position overlapping the second friction member 61 and the axial direction L when viewed in the radial direction R.
  • the oil supplied between the second inner plate-like portion 67 and the second outer plate-like portion 73 in the axial direction L through the shaft circumferential oil passage 91 is the first cooling oil passage P1.
  • the oil reaches the second friction member 61 through the first through hole 11 formed in the second inner cylindrical portion 66, cools the second friction member 61, and then The oil whose temperature has risen through the member 61 flows from the second through hole 12 formed in the second outer cylindrical portion 72 to the radially outer side R ⁇ b> 2 of the second outer cylindrical portion 72.
  • a second oil passage 94 for flowing the oil flowing in the first area 98 toward the first axial side L1.
  • the oil that has flowed to the radially outer side R2 of the second outer cylindrical portion 72 flows along the second oil passage 94 after flowing to the first area 98 on the inner peripheral surface of the cylindrical support portion 31. Flowing.
  • the second support wall 25 is provided so as to cover the end of the coil end portion Ce on the second axial side L2.
  • the oil flowing along the second oil passage 94 flows further along the cylindrical support portion 31 to the second axial direction L2 and exits from the support opening end portion 33 in the axial direction from the second support wall 25. It flows to the second side L2. That is, most of the oil discharged from the second oil passage 94 to the second axial side L2 flows on the second axial side L2 from the second support wall 25. Therefore, in this example, the relatively high temperature oil after cooling the second friction engagement device CL2 hardly reaches the coil end portion Ce.
  • the second oil passage 94 has a function of a discharge oil passage for discharging oil from the first area 98 on the second axial side L2 relative to the rotor Ro in the cylindrical support portion 31.
  • the second cooling oil passage P ⁇ b> 2 includes oil supplied to the space between the first inner plate-like portion 47 and the first pressing member 57, the first inner plate-like portion 47, and Supply the oil supplied to the space between the second inner plate-shaped portion 67 and the oil supplied to the space between the plate-shaped support portion 35 and the first pressing member 57 to the first friction member 41. Then, after the first friction member 41 is cooled, it is an oil passage for supplying to the rotor Ro and the stator St of the rotating electrical machine MG.
  • the first inner cylindrical portion 46 and the cylindrical support portion 31 have the fourth through hole 14 and the third through hole 13, respectively, as shown in FIG.
  • the rotor holding portion 37 is a perforated plate-like portion having the sixth through hole 16.
  • the first inner cylindrical portion 46 has a fourth through hole 14 that penetrates in the radial direction R at a position overlapping the first friction member 41 when viewed in the radial direction R.
  • the cylindrical support portion 31 has a third through hole 13 that penetrates in the radial direction R at a position overlapping the first friction member 41 when viewed in the radial direction R.
  • the rotor holding part 37 has a sixth through hole 16 penetrating in the axial direction L.
  • the oil supplied to the space between the first inner plate-like portion 47 and the first pressing member 57 is a third through hole formed in the first inner cylindrical portion 46. 13, reaches the first friction member 41, and cools the first friction member 41.
  • the first friction member 41 is located between the internal combustion engine E and the rotary electric machine MG in the power transmission path T, and is slip-engaged to generate heat when the internal combustion engine E is started by the torque of the rotary electric machine MG. Although there is basically no calorific value. Therefore, the oil after passing through the first friction member 41 is unlikely to become high temperature.
  • the oil supplied to the space between the first inner plate-like portion 47 and the second inner plate-like portion 67 and the oil supplied to the space between the plate-like support portion 35 and the first pressing member 57 are
  • the first friction member 41 is cooled by passing through the second axial side L2 and the first axial side L1 of the first inner cylindrical portion 46 to reach the first friction member 41.
  • the cylindrical support portion 31 is formed with a third through hole 13 as a first oil passage through which the oil that has flowed to the second area 99 flows toward the rotating electrical machine MG, and flows to the first friction member 41.
  • the oil flows to the second area 99 on the inner peripheral surface of the cylindrical support portion 31, and then flows to the radially outer side R2 of the cylindrical support portion 31 through the third through hole 13, and the rotor Ro and the cylindrical support portion. After flowing in the axial direction L through the oil passage formed between the rotor 31 and the rotor holding portion 37, the oil is discharged from the sixth through hole 16.
  • the discharged oil scatters to the radially outer side R2 due to the centrifugal force generated by the rotation of the rotor Ro, is supplied to the coil end portion Ce of the stator St, and cools the coil end portion Ce.
  • relatively high-temperature oil that has passed through the second friction engagement device CL ⁇ b> 2 flows in the first area 98 on the inner peripheral surface of the cylindrical support portion 31, In the second area 99 on the inner peripheral surface of the cylindrical support portion 31, relatively low-temperature oil that has passed through other than the second friction engagement device CL2 flows.
  • the first cooling oil passage P1 is formed by the constituent member of the second friction engagement device CL2 and the partition member 85. That is, the oil flowing through the inside of the second frictional engagement device CL2 is guided by the constituent members of the second frictional engagement device CL2 and the partition member 85 to reach the first area 98.
  • relatively low temperature oil that has passed through the second cooling oil passage P2 formed in the region where the first friction engagement device CL1 is disposed flows.
  • the first friction engagement device CL1 is installed between the second friction engagement device CL2 and the plate-like support portion 35 of the rotor support member 30 in the axial direction L, and the input shaft I and the rotor in the radial direction R. It is installed between the cylindrical support part 31 of the support member 30.
  • the region where the first friction engagement device CL1 is disposed is a region surrounded by the second friction engagement device CL2, the rotor support member 30, and the input shaft I.
  • the second cooling oil passage P2 includes a component (second inner plate-like portion 67) that is located on the second axial side L2 of the second friction engagement device CL2, the component member of the second friction engagement device CL2, the partition member 85, and the second friction engagement device CL2. ) And the plate-like support portion 35 of the rotor support member 30. That is, the oil flowing through the region where the first frictional engagement device CL1 is disposed is positioned on the constituent member of the first frictional engagement device CL1 and the second axial side L2 of the second frictional engagement device CL2. The second area 99 is guided by the portion (second inner plate-like portion 67), the plate-like support portion 35 of the rotor support member 30, and the partition member 85.
  • the first area 98 and the second area 99 are formed side by side in the axial direction L, but the first area 98 and the second area 99 are separated by the partition member 85. Therefore, the oil flow from the first area 98 to the second area 99 and the oil flow from the second area 99 to the first area 98 are restricted by the partition member 85. Therefore, mixing of the relatively high temperature oil supplied to the first area 98 and the relatively low temperature oil supplied to the second area 99 is suppressed, and the relatively high temperature oil is supplied to the rotating electrical machine MG. While avoiding this, relatively low temperature oil can be appropriately supplied to the rotating electrical machine MG.
  • the partition member 85 arranged so as to separate the first area 98 and the second area 99 inside the cylindrical support portion 31 functions as the inflow suppressing portion 88.
  • the inflow suppressing portion 88 is provided between the first friction engagement device CL1 and the second friction engagement device CL2, and the oil that has passed through the second friction engagement device CL2 flows into the second cooling oil passage P2. It functions to suppress this.
  • the diameter of the outer peripheral surface of the partition member 85 is the same as the outer diameter of the concave portion of the engagement groove 51A, but the diameter of the outer peripheral surface of the partition member 85 is the same as that of the concave portion of the engagement groove 51A. It may be larger than the outer diameter. Further, the diameter of the outer peripheral surface of the partition member 85 may be made smaller than the outer diameter of the concave portion of the engagement groove 51A. In this case, the difference between the diameter of the outer peripheral surface of the partition member 85 and the outer diameter of the recess of the engagement groove 51A is the amount of oil flowing from the first area 98 to the second area 99 as compared to the case where the partition member 85 is not provided. It is good also as a slight difference which can be made small to the extent that it can be suppressed, or that the gap with the outer peripheral surface of the partition member 85 can regulate the flow of oil.
  • the first friction member 41 of the first friction engagement device CL1 is engaged with the engagement groove 51A formed on the inner peripheral surface of the cylindrical support portion 31 from the radially inner side R1.
  • a support member for supporting the first friction member 41 of the first friction engagement device CL1 from the radial inner side R1 is disposed on the radially inner side R1 of the cylindrical support portion 31, and the first friction engagement device CL1 of the first friction engagement device CL1.
  • One friction member 41 may not be directly engaged with the cylindrical support portion 31.
  • the second outer cylindrical portion 72 that supports the second friction member 61 of the second friction engagement device CL2 from the radial inner side R1 is disposed on the radial inner side R1 of the cylindrical support portion 31.
  • the second friction member 61 of the second friction engagement device CL2 is engaged with the engagement groove 51A formed on the inner peripheral surface of the cylindrical support portion 31 from the radially inner side R1, and the second friction engagement is performed.
  • the second friction member 61 of the device CL2 may be configured to directly engage with the cylindrical support portion 31.
  • the oil that has flowed to the second area 99 is supplied to both the rotor Ro and the stator St of the rotating electrical machine MG, but the oil that has flowed to the second area 99 is supplied to the rotor of the rotating electrical machine MG. You may supply only to either one of Ro and stator St.
  • the second outer cylindrical portion 72 is supported by the partition member 85 from the first axial side L1, but the second outer cylindrical portion 72 is axially supported by a member other than the partition member 85. You may support from the 1st side L1.
  • the oil is prevented from flowing from the first area 98 to the second area 99 by the one partition member 85 and from the second area 99 to the first area 98.
  • the first partition member that prevents the oil from flowing from the first area 98 to the second area 99 side, and the oil from the second area 99 toward the first area 98 side. You may make it provide the 2nd division member which prevents flowing.
  • the configuration in which the partition member 85 functions as the inflow suppression unit 88 has been described as an example.
  • the specific configuration of the inflow suppression unit 88 is not limited to this.
  • the inflow suppressing portion 88 does not use the partition member 85 but uses another wall-like member or plate-like member provided between the first friction engagement device CL1 and the second friction engagement device CL2. It may be configured.
  • Such a wall-like member or plate-like member may be a constituent member of the first friction engagement device CL1 or the second friction engagement device CL2, or may be a member provided separately from these members.
  • the inflow suppression part 88 may be comprised using both the division member 85 and the wall-shaped member, plate-shaped member, etc. which were provided separately.
  • One engagement device may be an engagement device other than the friction engagement device, such as a meshing engagement device. More specifically, an engagement device other than the friction engagement device such as a meshing engagement device may be arranged at a position where the first friction engagement device CL1 is arranged.
  • the vehicle drive device includes a power transmission path (T) that connects an input member (I) that is drivingly connected to the internal combustion engine (E) and an output member (M) that is drivingly connected to wheels, to the input member (I).
  • the engagement device (CL1), the rotating electrical machine (MG), and the friction engagement device (CL2) are provided in this order from the side.
  • the engagement device (CL1) and the friction engagement device (CL2) are arranged side by side in the axial direction (L), and each of the engagement device (CL1) and the friction engagement device (CL2)
  • the rotating electrical machine (MG) is arranged on the radially inner side (R1) and at least partially overlapping the rotating electrical machine (MG) in the radial direction.
  • the rotating electrical machine (MG) is a rotor (Ro) and a rotor support member (30) that supports the rotor (Ro), and the rotor support member (30) is located on the radially inner side (R1) of the rotor (Ro) in the axial direction.
  • Oil for cooling the rotating electrical machine (MG) provided in a region where the engaging device (CL1) is disposed, having a cylindrical portion (31) formed in a cylindrical shape extending in (L).
  • the cooling oil passage (P2) passes, the engagement device (CL1) and the An inflow suppressing part (88) provided between the frictional engagement device (CL2) and suppressing the oil that has passed through the frictional engagement device (CL2) from flowing into the cooling oil passage (P2); In the cylindrical part (31).
  • the oil flowing through the cooling oil passage (P2) is supplied to the rotating electrical machine (MG), so that the rotating electrical machine (MG) can be cooled by the oil.
  • the oil that has passed through the friction engagement device (CL2) is suppressed from flowing into the cooling oil passage (P2) by the inflow suppressing portion (88). Therefore, it is possible to suppress the relatively high temperature oil heated by passing through the friction engagement device (CL2) from flowing into the cooling oil passage (P2), and to increase the temperature of the oil flowing through the cooling oil passage (P2). Can be suppressed.
  • comparatively low temperature oil can be supplied to a rotary electric machine (MG), it is possible to cool a rotary electric machine (MG) appropriately.
  • the first area (98) through which the oil that has passed through the friction engagement device (CL2) flows and the cooling oil passage (P2) have passed through the inner peripheral surface of the cylindrical portion (31).
  • the second area (99) through which oil flows is formed side by side in the axial direction (L), and the inflow suppressing part (88) is formed by the first area (98) and the second area (99). It is preferable to have a partition member (85) that separates.
  • the oil that has passed through the friction engagement device (CL2) and has flowed radially outward (R2) is a cylindrical portion (R2) positioned radially outward (R2) from the friction engagement device (CL2). 31) is dammed to the first area (98) on the inner peripheral surface. Therefore, it can restrict
  • the partition member (85) can restrict oil from flowing from the first area (98) to the second area (99). Therefore, it can restrict
  • cooling oil passage (P2) is formed by the partition member (85) and the constituent members of the engagement device (CL1).
  • the cooling oil passage (P2) is formed using the partition member (85) and the engaging device (CL1), a dedicated member for forming the cooling oil passage (P2) is provided. Compared with the case where it equips, simplification of the structure of the vehicle drive device (1) can be achieved.
  • the side where the engagement device (CL1) is located with respect to the friction engagement device (CL2) in the axial direction (L) is defined as the first axial side (L1) of the cylindrical portion (31).
  • a cylindrical outer support member (72) for supporting the friction member (61) of the friction engagement device (CL2) from the radially outer side (R2) is disposed on the radially inner side (R1), and the outer support member ( 72) is preferably supported from the first axial side (L1) by the partition member (85).
  • the outer support member (72) can be controlled to move to the first axial side (L1) with respect to the cylindrical portion (31). Moreover, by restricting the movement of the outer support member (72) to the first axial direction (L1) to the partition member (85), the outer support member (72) is moved to the first axial direction (L1). It is not necessary to provide a dedicated member for restricting the movement of the apparatus, and the apparatus can be simplified and downsized.
  • the side where the friction engagement device (CL2) is located with respect to the engagement device (CL1) in the axial direction (L) is defined as the second axial side (L2) of the cylindrical portion (31).
  • a cylindrical outer support member (72) for supporting the friction member (61) of the friction engagement device (CL2) from the radially outer side (R2) is disposed on the radially inner side (R1), and the outer support member ( 72) is formed in a cylindrical shape and is formed of a member different from the cylindrical portion (31), and the outer peripheral surface of the inner peripheral surface of the cylindrical portion (31) and the outer support member (72).
  • a second oil passage (94) for flowing oil flowing into the first area (98) toward the second axial side (L2) is formed between the surface and the surface.
  • the second oil passage (94) is formed between the tubular portion (31) and the outer support member (72), the oil flowing into the first area (98) It is possible to actively flow toward the second axial side (L2) through the two oil passages (94). Therefore, it can suppress that the oil which flowed to the 1st area (98) flows into the 2nd area (99) which exists on the opposite side to an axial direction 2nd side (L2).
  • An engagement groove (51A) extending in the axial direction (L) is formed on the inner peripheral surface of the cylindrical portion (31), and the friction member (41) of the engagement device (CL1)
  • the engaging groove (51A) is engaged from the radially inner side (R1), and the diameter of the outer peripheral surface of the partition member (85) is equal to or larger than the outer diameter of the concave portion of the engaging groove (51A). Is preferred.
  • a first oil passage (13) for flowing oil from the second area (99) toward the rotating electrical machine (MG) is formed in the cylindrical portion, and an inlet of the first oil passage (13) is formed. It is preferable that the second area (99) is open.
  • the oil flowing into the second area (99) can be appropriately introduced into the first oil passage (13). Therefore, the oil that has flowed to the second area (99) can flow smoothly toward the rotating electrical machine (MG).
  • a discharge oil passage (94) for discharging oil from the first area (98) is formed on the second axial side (L2) from the rotor (Ro).
  • the oil that has passed through the friction engagement device (CL2) and has flowed to the first area (98) is more shafted than the rotor (Ro) in the cylindrical portion (31) by the discharge oil passage (94). It can flow to the direction first side (L1). Thereby, it can restrict
  • a transmission (TM) is further provided in the power transmission path (T), and the friction engagement device (CL2) is connected to the rotating electrical machine (MG) and the transmission (in the power transmission path (T)).
  • TM is further provided in the power transmission path (T)
  • the friction engagement device (CL2) is connected to the rotating electrical machine (MG) and the transmission (in the power transmission path (T)).
  • the friction engagement device (CL2) when the vehicle is started, the friction engagement device (CL2) is slipped to absorb the difference between the rotational speed on the rotating electrical machine (MG) side and the rotational speed on the transmission (TM) side.
  • the relatively high-temperature oil heated by passing through the friction engagement device (CL2) generated by frictional heat or the like when engaged is suppressed from flowing into the cooling oil passage (P2). Can do.
  • the technology according to the present disclosure can be used for a vehicle drive device provided with an engagement device, a rotating electrical machine, and a friction engagement device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

係合装置(CL1)と摩擦係合装置(CL2)とを軸方向Lに並んだ状態で配置し、係合装置(CL1)及び摩擦係合装置(CL2)の夫々を、回転電機(MG)の径方向内側(R1)に配置し、回転電機(MG)のロータ支持部材(30)は、ロータ(Ro)の径方向内側(R1)に位置して軸方向(L)に延びる筒状部(31)を有し、係合装置(CL1)が配置された領域に設けられた、回転電機(MG)を冷却するための油が通過する冷却油路(P2)と、係合装置(CL1)と摩擦係合装置(CL2)との間に設けられた、摩擦係合装置(CL2)を通過した油が冷却油路(P2)へ流入することを抑制する流入抑制部(88)と、を筒状部(31)の内部に有する。

Description

車両用駆動装置
 本発明は、内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に、前記入力部材の側から順に、係合装置と、回転電機と、摩擦係合装置と、が設けられた車両用駆動装置に関する。
 このような車両用駆動装置として、例えば、米国特許出願公開第2006/0144665号明細書(特許文献1)に記載されたものが知られている。以下、この背景技術の欄の説明では、〔〕内に特許文献1における符号や部材名称を引用して説明する。特許文献1の車両用駆動装置では、第1摩擦係合装置〔クラッチ34〕と第2摩擦係合装置〔クラッチ36〕とが軸方向Lに並んで配置されている。また、これら2つの摩擦係合装置〔クラッチ36、クラッチ34〕は、回転電機〔モータ14〕の内側であって、且つ、少なくとも一部が前記回転電機〔モータ14〕に対して径方向R視で重なるように配置されている。回転電機〔モータ14〕は、ロータ〔12〕とロータ〔12〕を支持するロータ支持部材とを備えている。そして、ロータ支持部材における、2つの摩擦係合装置〔クラッチ36、クラッチ34〕に対して径方向外側に配置された筒状部〔外側円形ドラム27〕には、径方向に貫通する第1孔〔70〕が形成されている。また、2つの摩擦係合装置〔クラッチ36、クラッチ34〕は、それぞれクラッチシェル〔60、78〕を備えている。そして、第2摩擦係合装置〔クラッチ36〕に対して径方向外側に配置されたクラッチシェル〔60〕には、径方向Rに貫通する第2孔〔72〕が形成されている。従って、2つの摩擦係合装置〔クラッチ36、クラッチ34〕を通過した油は、第1孔〔70〕を通過して筒状部〔外側円形ドラム27〕よりも径方向外側に流れ、或いは、第2孔〔72〕を通過した後、第1孔〔70〕又は筒状部〔外側円形ドラム27〕の軸方向端部を通過して径方向外側に流れる。このようにして筒状部〔外側円形ドラム27〕よりも径方向外側に流れた油は、回転電機〔モータ14〕に供給される。
米国特許出願公開第2006/0144665号明細書
 上記のとおり、特許文献1の車両用駆動装置では、2つの摩擦係合装置〔クラッチ36、クラッチ34〕を通過した油が回転電機〔モータ14〕に供給される構成となっている。このような構成では、2つの摩擦係合装置〔クラッチ36、クラッチ34〕を通過した油が比較的低い温度である場合には、回転電機〔14〕を適切に冷却することができる。しかしながら、2つの摩擦係合装置〔クラッチ36、クラッチ34〕のいずれがスリップ係合中である場合など、2つの摩擦係合装置〔クラッチ36、クラッチ34〕を通過する際に摩擦熱などによって熱せられた高温の油が回転電機〔モータ14〕に供給された場合には、回転電機〔14〕を適切に冷却できない可能性があった。
 そこで、回転電機に対して径方向内側に複数の係合装置が配置されている場合において回転電機を適切に冷却することが可能な車両用駆動装置の実現が望まれる。
 上記に鑑みた、車両用駆動装置の特徴構成は、内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に、前記入力部材の側から順に、係合装置と、回転電機と、摩擦係合装置と、が設けられ、
 前記係合装置と前記摩擦係合装置とは軸方向に並んで配置され、前記係合装置及び前記摩擦係合装置の夫々は、前記回転電機の径方向内側であって、且つ、少なくとも一部が前記回転電機に対して径方向視で重なるように配置され、前記回転電機は、ロータと前記ロータを支持するロータ支持部材とを備え、前記ロータ支持部材は、前記ロータの径方向内側に位置して前記軸方向に延びる筒状に形成された筒状部を有し、前記係合装置が配置された領域に設けられた、前記回転電機を冷却するための油が通過する冷却油路と、前記係合装置と前記摩擦係合装置との間に設けられた、前記摩擦係合装置を通過した油が前記冷却油路へ流入することを抑制する流入抑制部と、を前記筒状部の内部に有する点にある。
 本構成によれば、冷却油路を流動した油が回転電機に供給されることで、当該油によって回転電機を冷却することができる。一方、摩擦係合装置を通過した油は、流入抑制部によって冷却油路に流入することが抑制されている。そのため、摩擦係合装置を通過することで熱せられた比較的高温の油が冷却油路に流入することを抑制でき、冷却油路を流れる油の温度上昇を抑えることができる。これにより、比較的低温の油を回転電機に供給できることになるため、回転電機を適切に冷却することが可能となっている。
実施形態における車両用駆動装置の概略構成を示す模式図 車両用駆動装置の部分断面図 車両用駆動装置の要部断面図 車両用駆動装置の要部断面図
 車両用駆動装置1の実施形態について、図面を参照して説明する。本実施形態に係る車両用駆動装置1は、車輪Wの駆動力源として機能する内燃機関E及び回転電機MGの双方を備えた車両(ハイブリッド車両)を駆動するための車両用駆動装置(ハイブリッド車両用駆動装置)である。具体的には、車両用駆動装置1は、1モータパラレル方式のハイブリッド車両用の駆動装置として構成されている。
 以下の説明では、特に明記している場合を除き、「軸方向L」、「径方向R」、「周方向」は、回転電機MGの回転軸心(図2に示す軸心X)を基準として定義している。また、軸方向Lの一方側である相対的に内燃機関E側(図2の右側)を軸方向第一側L1と定義し、その反対側(軸方向Lの他方側)である相対的に変速機TM側(図2の左側)を軸方向第二側L2と定義している。また、径方向Rの一方側である軸心X側を径方向内側R1と定義し、その反対側を径方向外側R2と定義している。なお、各部材についての方向は、それらが車両用駆動装置1に組み付けられた状態での方向を表す。また、各部材についての方向や位置等に関する用語は、製造上許容され得る誤差による差異を有する状態をも含む概念である。
 本実施形態において、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を意味する。この概念には、2つの回転要素が一体回転するように連結された状態や、1つ以上の伝動部材を介して駆動力を伝達可能に連結された状態が含まれる。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(軸、歯車機構、ベルト等)が含まれ、回転及び駆動力を選択的に伝達する係合装置(摩擦係合装置や噛み合い式係合装置等)が含まれても良い。
 また、2つの部材(ここでは、孔等の無体物をも含む概念)の配置に関して、「ある方向にみて重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの部材の双方に交わる領域が少なくとも一部に存在することを指す。
1.車両用駆動装置の概略構成
 本実施形態に係る車両用駆動装置1の概略構成について説明する。図1に示すように、車両用駆動装置1は、内燃機関Eに駆動連結される入力部材としての入力軸Iと、車輪Wに駆動連結される出力部材としての中間軸Mと、回転電機MGと、第一摩擦係合装置CL1(係合装置に相当)と、第二摩擦係合装置CL2(摩擦係合装置に相当)と、を備えている。第一摩擦係合装置CL1、回転電機MG、及び第二摩擦係合装置CL2は、入力軸Iと中間軸Mとを結ぶ動力伝達経路Tに、入力軸Iの側から記載の順に設けられている。図2に示すように、第一摩擦係合装置CL1と第二摩擦係合装置CL2とは軸方向Lに並んで配置されている。尚、第一摩擦係合装置CL1は、第二摩擦係合装置CL2に対して軸方向第一側L1に位置している。すなわち、軸方向Lにおける第二摩擦係合装置CL2に対して第一摩擦係合装置CL1が位置する側が軸方向第一側L1となり、その反対側が軸方向第二側L2となる。そして、第一摩擦係合装置CL1及び第二摩擦係合装置CL2の夫々は、回転電機MGの径方向内側R1であって、且つ、少なくとも一部が回転電機MGに対して径方向R視で重なるように配置されている。
 また、図1に示すように、車両用駆動装置1は、変速機TMと、カウンタギヤ機構Cと、差動歯車装置DFとを備えている。これらは、ケース(駆動装置ケース)2内に収容されている。
 内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジンやディーゼルエンジン等)である。本実施形態では、入力軸Iはダンパ(図示せず)を介して内燃機関Eの出力軸(クランクシャフト等)に駆動連結されている。なお、入力軸Iが、ダンパを介さずに内燃機関Eの出力軸に駆動連結されても良い。
 第一摩擦係合装置CL1は、動力伝達経路Tにおける入力軸Iと回転電機MGとの間に設けられている。第一摩擦係合装置CL1は、内燃機関Eに駆動連結される入力軸Iと回転電機MGとを連結又は連結解除する。この第一摩擦係合装置CL1は、車輪Wから内燃機関Eを切り離す内燃機関切離用係合装置として機能する。第一摩擦係合装置CL1は、油圧駆動式の摩擦係合装置として構成されている。第一摩擦係合装置CL1は、当該第一摩擦係合装置CL1に供給される油圧に基づいて、係合の状態(直結係合状態/スリップ係合状態/解放状態)が制御される。
 回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを果たすことが可能とされている。そのため、回転電機MGは、蓄電装置(バッテリやキャパシタ等)と電気的に接続されている。回転電機MGは、蓄電装置から電力の供給を受けて力行し、或いは、内燃機関Eのトルクや車両の慣性力により発電した電力を蓄電装置に供給して蓄電させる。
 第二摩擦係合装置CL2は、動力伝達経路Tにおける回転電機MGと変速機TMとの間に設けられている。第二摩擦係合装置CL2は、回転電機MGと変速機TMに駆動連結される中間軸Mとを連結又は連結解除する。第二摩擦係合装置CL2は、油圧駆動式の摩擦係合装置として構成されている。第二摩擦係合装置CL2は、当該第二摩擦係合装置CL2に供給される油圧に基づいて、係合の状態(直結係合状態/スリップ係合状態/解放状態)が制御される。
 変速機TMは、本実施形態では、複数の変速用係合装置を備え、変速比の異なる複数の変速段を切替可能に備えた有段自動変速機である。なお、変速機TMとして、変速比を無段階に変更可能な無段自動変速機や、変速比の異なる複数の変速段を切替可能に備えた手動変速機等を用いても良い。変速機TMは、中間軸Mに入力される回転及びトルクを、各時点における変速比に応じて変速するとともにトルク変換して、変速出力ギヤGに伝達する。
 変速出力ギヤGは、カウンタギヤ機構Cを介して差動歯車装置DFに駆動連結されている。差動歯車装置DFは、車軸Aを介して車輪Wに駆動連結されている。差動歯車装置DFは、当該差動歯車装置DFに入力される回転及びトルクを左右2つの車輪Wに分配して伝達する。これにより、車両用駆動装置1は、内燃機関E及び回転電機MGの一方又は双方のトルクを車輪Wに伝達させて車両を走行させることができる。
 なお、本実施形態に係る車両用駆動装置1では、入力軸Iと中間軸Mとが同軸上に配置されるとともに、車軸Aが入力軸I及び中間軸Mとは異なる軸上に互いに平行に配置された複軸構成とされている。このような構成は、例えばFF(Front Engine Front Drive)車両に搭載される車両用駆動装置1の構成として適している。
2.車両用駆動装置の各部の構成
 本実施形態に係る車両用駆動装置1の各部の構成について説明する。図2に示すように、ケース2は、回転電機MG、第一摩擦係合装置CL1、及び第二摩擦係合装置CL2、回転センサ18等の各収容部品の外周を覆う周壁の軸方向第一側L1の開口を塞ぐ第一支持壁22と、当該第一支持壁22よりも軸方向第二側L2において回転電機MGと変速機TMとの間に配置される第二支持壁25とを備えている。
 第一支持壁22は、回転電機MG、第一摩擦係合装置CL1、及び第二摩擦係合装置CL2に対して軸方向第一側L1に位置しており、径方向R及び周方向に延在している。第一支持壁22は、回転電機MG等に対して軸方向第一側L1に隣接して配置されている。第一支持壁22は軸方向Lの貫通孔を有しており、この貫通孔に入力軸Iが挿通されている。これにより、入力軸Iは、第一支持壁22を貫通してケース2内に挿入されている。第一支持壁22は、その径方向内側R1の端部に、軸方向第二側L2に向かって軸方向Lに突出する円筒状の第一突出部23を有している。第一支持壁22は、この第一突出部23により、入力軸受81を介してロータ支持部材30を回転可能に支持している。
 第二支持壁25は、回転電機MG、第一摩擦係合装置CL1、及び第二摩擦係合装置CL2に対して軸方向第二側L2に位置しており、径方向R及び周方向に延在している。第二支持壁25は、回転電機MG等に対して軸方向第二側L2に隣接して配置されている。第二支持壁25は、その径方向内側R1の端部に、軸方向第一側L1に向かって軸方向Lに突出する円筒状のスリーブ部26を有している。このスリーブ部26には中間軸Mが挿通されている。これにより、中間軸Mは、第二支持壁25を貫通する状態でケース2内に配置されている。また、第二支持壁25は、軸方向第一側L1に向かって突出する円筒状の第二突出部28を有している。第二支持壁25は、この第二突出部28により、軸受86を介してロータ支持部材30を回転可能に支持している。
 回転電機MGは、ケース2に固定されたステータStと、ケース2に対して回転可能に支持されたロータRoと、ロータRoを支持するロータ支持部材30とを備えている。ステータStは、軸方向Lの両側にコイルエンド部Ceを備えている。ロータRoは、ステータStの径方向内側R1に配置されている。また、ロータRoは、ロータ支持部材30を介してケース2に対して回転可能に支持されている。
 図2に示すように、ロータRoを支持するロータ支持部材30は、ロータRoの径方向内側R1に位置して軸方向Lに延びる筒状に形成された筒状部としての筒状支持部31と、筒状支持部31から径方向内側R1に延びる板状支持部35と、筒状支持部31から径方向外方に伸びる一対のロータ保持部37と、を備えている。ロータ支持部材30は、一対のロータ保持部37が軸方向第二側L2及び軸方向第一側L1から接し且つ筒状支持部31が径方向内側R1から接する状態でロータRoを支持している。すなわち、ロータRoは、筒状支持部31の外周面に支持されている。また、ロータRoは、筒状支持部31に対する軸方向Lへの移動が規制されていると共に、筒状支持部31と一体回転するように、ロータ支持部材30に支持されている。また、筒状支持部31は、軸方向第二側L2(第二支持壁25側)に向かって開口するように形成されている。すなわち、筒状支持部31の径方向内側R1の空間は、軸方向第一側L1では板状支持部35により閉塞されており、軸方向第二側L2では開口している。ここでは、この筒状支持部31の開口部の軸方向第二側L2の端部を、支持開口端部33と称する。この支持開口端部33は、径方向Rに見てコイルエンド部Ceと重複する位置に配置されている。本例では、軸方向第二側L2(第二支持壁25側)のコイルエンド部Ceと重複する位置に配置されている。
 本実施形態では、板状支持部35は、筒状支持部31の軸方向第一側L1の端部から、径方向内側R1に延びる円環板状に形成されている。また、板状支持部35は、径方向内側R1の端部に、軸方向第二側L2に向かって突出する円筒状の第三突出部36を備えている。
 ロータ支持部材30は、第三突出部36と第一突出部23との間に配置された入力軸受81、及び、支持開口端部33と第二突出部28との間に配置された軸受86により、ケース2に径方向Rに支持されている。
 図2~図4に示すように、第一摩擦係合装置CL1は、第一摩擦部材41と、第一内側支持部材45と、第一外側支持部材51と、第一押圧部材57とを有する湿式の摩擦係合装置である。第一摩擦係合装置CL1を構成する各部材は、入力軸I及び中間軸Mと同軸状に配置されている。第一摩擦係合装置CL1は、回転電機MGのロータRoの径方向内側R1であって径方向Rに見てロータRoと重複する位置に配置されている。
 第一摩擦部材41は、対となる第一内側摩擦部材42と第一外側摩擦部材43とを含んでいる(図4を参照)。第一内側摩擦部材42及び第一外側摩擦部材43は、いずれも円環板状に形成されており、互いに回転軸を一致させて配置されている。また、第一内側摩擦部材42及び第一外側摩擦部材43はそれぞれ複数枚ずつ備えられており、これらは軸方向Lに沿って交互に配置されている。第一内側摩擦部材42及び第一外側摩擦部材43は、いずれか一方をフリクションプレートとし、他方をセパレートプレートとすることができる。
 第一内側支持部材45は、第一内側摩擦部材42を径方向内側R1から支持する第一内側筒状部46と、当該第一内側筒状部46から径方向内側R1に延びる第一内側板状部47とを有する。第一内側筒状部46は、軸方向Lに沿って延びる円筒状に形成されている。第一内側筒状部46は、内燃機関E側(軸方向第一側L1)に向かって開口するように形成されている。第一内側筒状部46の外周部には、軸方向Lに延びる複数のスプライン歯が周方向に分散して形成されている。第一内側摩擦部材42の内周部にも同様のスプライン歯が形成されており、両スプライン歯が係合された状態で、第一内側摩擦部材42が第一内側支持部材45により径方向内側R1から支持されている。これにより、第一内側摩擦部材42は、第一内側支持部材45に対して相対回転が規制された状態で軸方向Lに摺動可能に支持されている。また、第一内側筒状部46には、当該第一内側筒状部46を径方向Rに貫通する(その内周面と外周面とを連通する)第四貫通孔14が形成されている。
 第一内側板状部47は、第一内側筒状部46の軸方向第二側L2の端部から径方向内側R1に延びる円環板状の部材である。第一内側板状部47は、第一内側筒状部46と一体回転するように第一内側筒状部46に連結されている。第一内側板状部47は、その径方向内側R1の端部において、入力軸Iに連結されている。これにより、第一内側筒状部46と入力軸Iとが、第一内側板状部47を介して一体的に連結されている。
 第一外側支持部材51は、軸方向Lに沿って延びる円筒状に形成されている。第一外側支持部材51の内周部には、軸方向Lに延びる複数のスプライン歯51A(係合溝に相当)が周方向に分散して形成されている。第一外側摩擦部材43の外周部にも同様のスプライン歯が形成されており、両スプライン歯が係合された状態で、第一外側摩擦部材43が第一外側支持部材51により径方向外側R2から支持されている。これにより、第一外側摩擦部材43は、第一外側支持部材51に対して相対回転が規制された状態で軸方向Lに摺動可能に支持されている。
 第一外側支持部材51は、筒状支持部31の一部により構成されている。説明を加えると、筒状支持部31の内周面に、リング状の区画部材85が取り付けられており、この区画部材85により、筒状支持部31の内周面が、第一エリア98と第二エリア99とに分けられている。これら第一エリア98と第二エリア99とは軸方向Lに並んで形成されている。そして、筒状支持部31は、筒状支持部31の内周部における第二エリア99が形成される部分、つまりは、筒状支持部31における区画部材85と板状支持部35との間に位置する部分に、複数のスプライン歯51Aを周方向に分散して形成している。第一外側支持部材51は、筒状支持部31における区画部材85と板状支持部35との間に位置する部分により構成されており、筒状支持部31の一部により構成されている。第一外側摩擦部材43は、筒状支持部31により径方向内側R1から支持されている。区画部材85の外周面の径は、筒状支持部31のスプライン歯51Aの径方向外側R2に凹入している凹部の外径以上となっており、本実施形態では、区画部材85の外周面の径は、スプライン歯51Aの凹部の外径と同じとなっている。また、第一外側支持部材51には、当該第一外側支持部材51を径方向Rに貫通する(その内周面と外周面とを連通する)第三貫通孔13が形成されている。
 第一押圧部材57は、油圧制御装置(図示せず)から所定油圧の油が第一作動油室H1に供給された際に、油圧に応じて軸方向Lに摺動して第一摩擦部材41を押圧する部材(第一ピストン)である。第一押圧部材57は、第一摩擦部材41を軸方向第二側L2に押圧する。
 図2~図4に示すように、第二摩擦係合装置CL2は、第二摩擦部材61と、第二内側支持部材65と、第二外側支持部材71と、第二押圧部材77とを有する湿式の摩擦係合装置である。第二摩擦係合装置CL2を構成する各部材は、入力軸I及び中間軸Mと同軸状に配置されている。第二摩擦係合装置CL2は、回転電機MGのロータRoの径方向内側R1であって径方向Rに見てロータRoと重複する位置に配置されている。更に本実施形態では、第二摩擦係合装置CL2は、筒状支持部31の内周面の径方向内側R1であって径方向Rに見て筒状支持部31と重複する位置に配置されるとともに、板状支持部35に対して軸方向第二側L2に配置されている。
 第二摩擦部材61は、対となる第二内側摩擦部材62と第二外側摩擦部材63とを含んでいる(図4を参照)。第二内側摩擦部材62及び第二外側摩擦部材63の構成は、上述した第一内側摩擦部材42及び第一外側摩擦部材43の構成と同様とすることができる。
 第二内側支持部材65は、第二内側摩擦部材62を径方向内側R1から支持する第二内側筒状部66と、当該第二内側筒状部66から径方向内側R1に延びる第二内側板状部67とを有する。第二内側筒状部66は、軸方向Lに沿って延びる円筒状に形成されている。第二内側筒状部66は、内燃機関E側とは反対側(軸方向第二側L2)に向かって開口するように形成されている。第二内側筒状部66の外周部には、軸方向Lに延びる複数のスプライン歯が周方向に分散して形成されている。第二内側摩擦部材62の内周部にも同様のスプライン歯が形成されており、両スプライン歯が係合された状態で、第二内側摩擦部材62が第二内側支持部材65により径方向内側R1から支持されている。これにより、第二内側摩擦部材62は、第二内側支持部材65に対して相対回転が規制された状態で軸方向Lに摺動可能に支持されている。また、第二内側筒状部66には、当該第二内側筒状部66を径方向Rに貫通する(その内周面と外周面とを連通する)第一貫通孔11が形成されている。
 第二内側板状部67は、第二内側筒状部66と一体回転するように第二内側筒状部66に連結されている。第二内側板状部67は、その径方向内側R1の端部に、中間軸Mに駆動連結されたフランジ部材84を備えている。これにより、第二内側筒状部66と中間軸Mとが、第二内側板状部67を介して一体的に連結されている。
 第二外側支持部材71は、第二外側摩擦部材63を径方向外側R2から支持する第二外側筒状部72と、当該第二外側筒状部72から径方向内側R1に延びる第二外側板状部73と、筒状支持部31に連結される筒状連結部74とを有する。第二外側筒状部72は、軸方向Lに沿って延びる円筒状に形成されている。第二外側筒状部72は、内燃機関E側(軸方向第一側L1)に向かって開口するように形成されている。第二外側筒状部72の内周部には、軸方向Lに延びる複数のスプライン歯が周方向に分散して形成されている。第二外側摩擦部材63の外周部にも同様のスプライン歯が形成されており、両スプライン歯が係合された状態で、第二外側摩擦部材63が第二外側支持部材71により径方向外側R2から支持されている。これにより、第二外側摩擦部材63は、第二外側支持部材71に対して相対回転が規制された状態で軸方向Lに摺動可能に支持されている。また、第二外側筒状部72には、当該第二外側筒状部72を径方向Rに貫通する(その内周面と外周面とを連通する)第二貫通孔12が形成されている。
 第二外側板状部73は、第二外側筒状部72の軸方向第二側L2の端部から径方向内側R1に延びる円環板状の部材である。筒状連結部74は、第二外側筒状部72の軸方向第一側L1の端部から軸方向第一側L1に延設されており、軸方向Lに沿って延びる円筒状に形成されている。筒状連結部74は、その外周部において、筒状支持部31の内周部と係合することにより筒状支持部31と一体回転するように駆動連結されている。第二外側筒状部72と第二外側板状部73と筒状連結部74とは一体的に形成されている。
 第二外側筒状部72は、筒状支持部31の径方向内側R1に配置されており、筒状支持部31とは別部材で構成されている。第二外側筒状部72の軸方向第一側L1には、筒状支持部31の内周面に取り付けられた区画部材85が存在しており、第二外側筒状部72は、区画部材85により軸方向第一側L1から支持されている。第二外側板状部73の軸方向第二側L2には、第二支持壁25の軸方向第二側L2に取り付けられた支持部材87が存在しており、第二外側板状部73は、支持部材87により軸方向第二側L2から支持されている。つまり、第二外側支持部材71は、軸方向Lにおいて区画部材85と支持部材87との間に位置しており、軸方向Lへの移動が規制されている。
 第二押圧部材77は、油圧制御装置(図示せず)から所定油圧の油が第二作動油室H2に供給された際に、油圧に応じて軸方向Lに摺動して第二摩擦部材61を押圧する部材(第二ピストン)である。第二押圧部材77は、第二摩擦部材61を軸方向第一側L1に押圧する。
 本実施形態では、第一摩擦部材41が、第二摩擦部材61よりも軸方向第一側L1に配置されている。第一摩擦部材41と第二摩擦部材61とは、軸方向Lに見て互いに重複するように配置されている。
 図3及び図4に示すように、車両用駆動装置1は、回転電機MGの回転を検出するための回転センサ18を備えている。回転センサ18は、軸方向Lにおけるロータ支持部材30(筒状支持部31)と第二支持壁25との間に設けられている。回転センサ18は、回転電機MGのステータStに対するロータRoの回転方向の位置を検出するためのセンサであり、このような回転センサ18としては、例えばレゾルバ等を用いることができる。回転センサ18は、ケース2に支持されたセンサステータ96と、ロータRoと一体回転するセンサロータ97と、を備えている。
 センサステータ96は、第二支持壁25における軸方向第一側L1の側面に固定されている。センサロータ97は、筒状支持部31における支持開口端部33の内周面に固定されている。ここでは、センサステータ96及びセンサロータ97は、軸方向Lに見て第一摩擦係合装置CL1及び第二摩擦係合装置CL2と重複し、径方向Rに見てコイルエンド部Ceと重複する位置に設けられている。
3.各係合装置及び回転電機の冷却構造
 本実施形態に係る車両用駆動装置1における、各係合装置CL1,CL2及び回転電機MGの冷却構造について説明する。本実施形態では、一例として、停車中の車両が電動走行モードにて回転電機MGのトルクにより発進する状況を想定して説明する。このような発進時には、回転電機MGがトルクを出力している状態で、少なくともその下流側に設けられた第二摩擦係合装置CL2に所定油圧の油を供給して当該第二摩擦係合装置CL2を係合させる必要がある。また、本実施形態のように、変速機TMが自動有段変速機である場合には、当該変速機TMに備えられる複数の変速用係合装置のうちの1つ以上に所定油圧の油を供給してそれ(それら)を係合させる必要がある。
 図2に示すように、本実施形態では、回転電機MGは、チェーン伝達機構83及び第二摩擦係合装置CL2の第二外側支持部材71を介して、図外のオイルポンプと連動するように、駆動連結されている。そして、例えば車両の発進時には、車輪Wの駆動用に出力される回転電機MGのトルクを利用してオイルポンプを駆動する構成となっている。オイルポンプから吐出された油は、第二摩擦係合装置CL2及び変速機TM内の変速用係合装置に供給され、それらを係合させる。これにより、電動走行モードでの発進を適切に行うことが可能とされている。なお、本実施形態に係る車両用駆動装置1には、オイルポンプとは別の、専用の駆動モータを有するポンプ(電動ポンプ)は設けられていない。そのような電動ポンプの設置を省略することで、車両用駆動装置1の低コスト化が図られている。但し、そのような構成に限定されず、電動ポンプが設けられていても良い。
 ところで、オイルポンプが吐出する油の油圧を、各係合装置を係合させるのに必要な油圧にまで高めるためには、回転電機MGは予め定められた基準回転数以上の回転数で回転する必要がある。一方、変速機TMでの特定の変速段の形成時に車速に応じて定まる中間軸Mの回転数は、ある程度車速が低い状態では基準回転数未満となってしまう。そのため、これらの回転数差(差回転)を吸収するために、第二摩擦係合装置CL2をスリップさせながら係合させる(スリップ係合状態とする)必要がある。第二摩擦係合装置CL2のスリップ係合状態では、当該第二摩擦係合装置CL2の第二摩擦部材61がフリクション等によって発熱するため、これを有効に冷却する必要性が生じる。また、回転電機MGでは、ステータStのコイルに電流を流すと、ジュール熱の発生によりコイルが発熱する。そこで、当該コイル(例えば、ステータコアから軸方向Lに突出する部分であるコイルエンド部Ce)を有効に冷却する必要性が生じる。
 そこで、本実施形態に係る車両用駆動装置1は、図3及び図4に示すように、主に第二摩擦係合装置CL2の第二摩擦部材61を冷却するための第一冷却油路P1と、主に回転電機MGのコイルエンド部Ceを冷却するための第二冷却油路P2とを備えている。これらは、独立した2系統の油路となっている。第一冷却油路P1及び第二冷却油路P2は、筒状支持部31の内部に備えられている。尚、第二冷却油路P2は、第一摩擦係合装置CL1が配置された領域に設けられた、回転電機MGを冷却するための油が通過する冷却油路に相当する。
 図4に示すように、オイルポンプから吐出された油は、ケース2内に形成された油流通路、及びスリーブ部26の内周面と中間軸Mの外周面との間に形成された軸周油路91を介して、軸方向Lにおいて第二内側板状部67と第二押圧部材77との間の空間(第二摩擦係合装置CL2の内側の空間)に供給される。また、オイルポンプから吐出された油は、ケース2内に形成された油流通路、中間軸Mの内部に形成された軸内油路92、中間軸Mに形成された連通孔を介して、軸方向Lにおいて、第一内側板状部47と第一押圧部材57との間の空間(第一摩擦係合装置CL1の内側の空間)、及び、第一内側板状部47と第二内側板状部67との間の空間(第一摩擦係合装置CL1と第二摩擦係合装置CL2との間の空間)に供給される。また、オイルポンプから吐出された油は、ケース2内に形成された油流通路、中間軸Mの内部に形成された軸内油路92、及び第一突出部23の内周面と入力軸Iの外周面との間に形成された軸周油路93を介して、軸方向Lにおいて、板状支持部35と第一押圧部材57との間の空間(第一摩擦係合装置CL1の軸方向第二側L2の空間)に供給される。なお、図3及び図4には、主な油の流れを破線矢印で示している。
 第一冷却油路P1は、軸方向Lにおいて、第二内側板状部67と第二押圧部材77との間の空間に供給された油を、第二摩擦部材61に供給して当該第二摩擦部材61を冷却した後、ロータRoよりも軸方向第二側L2へと導くための油路である。このような第一冷却油路P1を形成するため、図4に示すように、第二内側筒状部66及び第二外側筒状部72は、それぞれ第一貫通孔11及び第二貫通孔12を有する有孔筒状部とされている。
 具体的には、第二内側筒状部66は、径方向Rに見て第二摩擦部材61と軸方向Lに重複する位置において径方向Rに貫通する第一貫通孔11を有する。第二外側筒状部72は、径方向Rに見て第二摩擦部材61と軸方向Lに重複する位置において径方向Rに貫通する第二貫通孔12を有する。
 図4に示すように、軸周油路91を通って軸方向Lにおいて第二内側板状部67と第二外側板状部73との間に供給された油は、第一冷却油路P1に沿って流れる。具体的には、油は、第二内側筒状部66に形成された第一貫通孔11を通って第二摩擦部材61に到達し、当該第二摩擦部材61を冷却した後、第二摩擦部材61を通過して温度が上昇した油は第二外側筒状部72に形成された第二貫通孔12から、第二外側筒状部72の径方向外側R2に流れる。筒状支持部31の内周面と第二外側筒状部72の外周面との間に、第一エリア98に流れてきた油を軸方向第一側L1に向けて流す第二油路94が形成されており、第二外側筒状部72の径方向外側R2に流れた油は、筒状支持部31の内周面における第一エリア98に流れた後、第二油路94に沿って流れる。
 本実施形態では、図3及び図4に示されているように、コイルエンド部Ceの軸方向第二側L2の端部を覆う状態で第二支持壁25が設けられている。そして、第二油路94に沿って流れた油は、筒状支持部31に沿って更に軸方向第二側L2へ流れ、支持開口端部33から出て第二支持壁25よりも軸方向第二側L2に流れる。すなわち、第二油路94から軸方向第二側L2に排出された油のほとんどが、第二支持壁25よりも軸方向第二側L2を流れることになる。よって、本例では、第二摩擦係合装置CL2を冷却した後の比較的高温の油がコイルエンド部Ceに到達することはほとんどない。これにより、第二摩擦係合装置CL2の第二摩擦部材61を冷却した後の比較的高温の油がコイルエンド部Ceに到達する量を低減でき、コイルエンド部Ceの冷却効率が低下することを抑制できる。このように、第二油路94は、筒状支持部31におけるロータRoよりも軸方向第二側L2に、第一エリア98から油を排出する排出油路の機能を備えている。
 図3及び図4に示すように、第二冷却油路P2は、第一内側板状部47と第一押圧部材57との間の空間に供給された油、第一内側板状部47と第二内側板状部67との間の空間に供給された油、及び、板状支持部35と第一押圧部材57との間の空間に供給された油を、第一摩擦部材41に供給して当該第一摩擦部材41を冷却した後、回転電機MGのロータRo及びステータStに供給するための油路である。このような第二冷却油路P2を形成するため、図4に示すように、第一内側筒状部46及び筒状支持部31は、それぞれ第四貫通孔14及び第三貫通孔13有する有孔筒状部とされ、ロータ保持部37は、第六貫通孔16を有する有孔板状部とされている。
 具体的には、第一内側筒状部46は、径方向Rに見て第一摩擦部材41と重複する位置において径方向Rに貫通する第四貫通孔14を有する。筒状支持部31は、径方向Rに見て第一摩擦部材41と重複する位置において径方向Rに貫通する第三貫通孔13を有する。ロータ保持部37は、軸方向Lに貫通する第六貫通孔16を有する。
 図3及び図4に示すように、第一内側板状部47と第一押圧部材57との間の空間に供給された油は、第一内側筒状部46に形成された第三貫通孔13を通って第一摩擦部材41に到達し、当該第一摩擦部材41を冷却する。なお、第一摩擦部材41は、動力伝達経路Tにおける内燃機関Eと回転電機MGとの間にあり、回転電機MGのトルクにより内燃機関Eを始動する場合にスリップ係合されて発熱することがあるが、基本的に発熱量は少ない。従って、第一摩擦部材41を通過した後の油が高温になることも少ない。第一内側板状部47と第二内側板状部67との間の空間に供給された油、及び、板状支持部35と第一押圧部材57との間の空間に供給された油は、第一内側筒状部46の軸方向第二側L2や軸方向第一側L1を通って第一摩擦部材41に到達し、当該第一摩擦部材41を冷却する。筒状支持部31には、第二エリア99に流れてきた油を回転電機MGに向けて流す第一油路としての第三貫通孔13が形成されており、第一摩擦部材41に流れた油は、筒状支持部31の内周面における第二エリア99に流れた後、第三貫通孔13を通って筒状支持部31の径方向外側R2に流れ、ロータRoと筒状支持部31との間に形成された油路を軸方向Lに流れた後、ロータ保持部37の第六貫通孔16から排出される。この排出された油は、ロータRoの回転により生じる遠心力により径方向外側R2へ飛散し、ステータStのコイルエンド部Ceに供給され、コイルエンド部Ceを冷却する。
 本実施形態では、図3及び図4に示すように、筒状支持部31の内周面における第一エリア98には、第二摩擦係合装置CL2を通過した比較的高温の油が流れ、筒状支持部31の内周面における第二エリア99には、第二摩擦係合装置CL2以外を通過した比較的低温の油が流れる。
 説明を加えると、第一エリア98には、第二摩擦係合装置CL2の内部に形成された第一冷却油路P1を通過した比較的高温の油が流れる。第一冷却油路P1は、第二摩擦係合装置CL2の構成部材と区画部材85とにより形成されている。つまり、第二摩擦係合装置CL2の内部を通流する油は、第二摩擦係合装置CL2の構成部材と、区画部材85と、に案内されて第一エリア98に至る。
 また、第二エリア99には、第一摩擦係合装置CL1が配置された領域に形成された第二冷却油路P2を通過した比較的低温の油が流れる。第一摩擦係合装置CL1は、軸方向Lにおいては第二摩擦係合装置CL2とロータ支持部材30の板状支持部35との間に設置されており、径方向Rにおいて入力軸Iとロータ支持部材30の筒状支持部31との間に設置されている。第一摩擦係合装置CL1が配置された領域は、第二摩擦係合装置CL2とロータ支持部材30と入力軸Iとにより囲まれる領域である。第二冷却油路P2は、第二摩擦係合装置CL2の構成部材と区画部材85と第二摩擦係合装置CL2の最も軸方向第二側L2に位置する部分(第二内側板状部67)とロータ支持部材30の板状支持部35とにより形成されている。つまり、第一摩擦係合装置CL1が配置された領域を通流する油は、第一摩擦係合装置CL1の構成部材と、第二摩擦係合装置CL2の最も軸方向第二側L2に位置する部分(第二内側板状部67)と、ロータ支持部材30の板状支持部35と、区画部材85と、に案内されて第二エリア99に至る。
 以上のように、第一エリア98と第二エリア99とは、軸方向Lに並んで形成されているが、第一エリア98と第二エリア99とが区画部材85により分けられている。そのため、第一エリア98から第二エリア99への油の流れや第二エリア99から第一エリア98への油の流れが区画部材85により規制される。そのため、第一エリア98に供給された比較的高温の油と第二エリア99に供給された比較的低温の油とが混ざることが抑制され、比較的高温の油が回転電機MGに供給されることを回避しながら、比較的低温の油を適切に回転電機MGに供給することができる。すなわち、本実施形態では、筒状支持部31の内部において、第一エリア98と第二エリア99とを分けるように配置された区画部材85が、流入抑制部88として機能する。この流入抑制部88は、第一摩擦係合装置CL1と第二摩擦係合装置CL2との間に設けられ、第二摩擦係合装置CL2を通過した油が第二冷却油路P2に流入することを抑制する機能を果たす。
2.その他の実施形態
 次に、車両用駆動装置のその他の実施形態について説明する。
(1)上記実施形態では、区画部材85の外周面の径を、係合溝51Aの凹部の外径と同じとしたが、区画部材85の外周面の径を、係合溝51Aの凹部の外径より大きくしてもよい。また、区画部材85の外周面の径を、係合溝51Aの凹部の外径より小さくしてもよい。この場合、区画部材85の外周面の径と係合溝51Aの凹部の外径との差を、区画部材85を設けない場合に比べて第一エリア98から第二エリア99に流れる油の量を抑えることができる程度小さくすることや、区画部材85の外周面との隙間が油の流れを規制できる程度の僅かな差としてもよい。
(2)上記実施形態では、第一摩擦係合装置CL1の第一摩擦部材41を、筒状支持部31の内周面に形成した係合溝51Aに径方向内側R1から係合させたが、筒状支持部31の径方向内側R1に、第一摩擦係合装置CL1の第一摩擦部材41を径方向内側R1から支持する支持用部材を配置し、第一摩擦係合装置CL1の第一摩擦部材41が筒状支持部31に直接係合しない構成としてもよい。
(3)上記実施形態では、筒状支持部31の径方向内側R1に、第二摩擦係合装置CL2の第二摩擦部材61を径方向内側R1から支持する第二外側筒状部72を配置したが、第二摩擦係合装置CL2の第二摩擦部材61を、筒状支持部31の内周面に形成した係合溝51Aに径方向内側R1から係合させて、第二摩擦係合装置CL2の第二摩擦部材61が筒状支持部31に直接係合する構成としてもよい。
(4)上記実施形態では、第二エリア99に流れた油を、回転電機MGのロータRoとステータStとの双方に供給したが、第二エリア99に流れた油を、回転電機MGのロータRoとステータStとのうちのいずれか一方にのみ供給してもよい。
(5)上記実施形態では、第二外側筒状部72を、区画部材85により軸方向第一側L1から支持したが、第二外側筒状部72を、区画部材85以外の部材により軸方向第一側L1から支持してもよい。
(6)上記実施形態では、一つの区画部材85により、第一エリア98から第二エリア99側に油が流動することを防止すると共に、第二エリア99から第一エリア98側に向けて油が流動することを防止したが、第一エリア98から第二エリア99側に油が流動することを防止する第一の区画部材と、第二エリア99から第一エリア98側に向けて油が流動することを防止する第二の区画部材と、を備えるようにしてもよい。
(7)上記実施形態では、区画部材85が流入抑制部88として機能する構成を例として説明した。しかし、流入抑制部88の具体的構成は、これには限定されない。例えば、流入抑制部88が、区画部材85を用いず、第一摩擦係合装置CL1と第二摩擦係合装置CL2との間に設けられた別の壁状部材や板状部材等を用いて構成されていてもよい。このような壁状部材や板状部材としては、第一摩擦係合装置CL1又は第二摩擦係合装置CL2の構成部材であってもよいし、これらとは別に設けられた部材であってもよい。或いは、流入抑制部88が、区画部材85と、更に別に設けられた壁状部材や板状部材等と、の双方を用いて構成されていてもよい。
(8)上記実施形態では、2つの係合装置の双方が、摩擦係合装置である構成を例として説明したが、これには限定されない。一方の係合装置を、噛合い式係合装置等、摩擦係合装置以外の係合装置としてもよい。より具体的には、第一摩擦係合装置CL1が配置される位置に、噛合い式係合装置等の摩擦係合装置以外の係合装置を配置してもよい。
(9)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
3.上記実施形態の概要
 以下、上記において説明した車両用駆動装置の概要について説明する。
 車両用駆動装置は、内燃機関(E)に駆動連結される入力部材(I)と車輪に駆動連結される出力部材(M)とを結ぶ動力伝達経路(T)に、前記入力部材(I)の側から順に、係合装置(CL1)と、回転電機(MG)と、摩擦係合装置(CL2)と、が設けられ、
 前記係合装置(CL1)と前記摩擦係合装置(CL2)とは軸方向(L)に並んで配置され、前記係合装置(CL1)及び前記摩擦係合装置(CL2)の夫々は、前記回転電機(MG)の径方向内側(R1)であって、且つ、少なくとも一部が前記回転電機(MG)に対して径方向視で重なるように配置され、前記回転電機(MG)は、ロータ(Ro)と前記ロータ(Ro)を支持するロータ支持部材(30)とを備え、前記ロータ支持部材(30)は、前記ロータ(Ro)の径方向内側(R1)に位置して前記軸方向(L)に延びる筒状に形成された筒状部(31)を有し、前記係合装置(CL1)が配置された領域に設けられた、前記回転電機(MG)を冷却するための油が通過する冷却油路(P2)と、前記係合装置(CL1)と前記摩擦係合装置(CL2)との間に設けられた、前記摩擦係合装置(CL2)を通過した油が前記冷却油路(P2)へ流入することを抑制する流入抑制部(88)と、を前記筒状部(31)の内部に有する。
 本構成によれば、冷却油路(P2)を流動した油が回転電機(MG)に供給されることで、当該油によって回転電機(MG)を冷却することができる。一方、摩擦係合装置(CL2)を通過した油は、流入抑制部(88)によって冷却油路(P2)に流入することが抑制されている。そのため、摩擦係合装置(CL2)を通過することで熱せられた比較的高温の油が冷却油路(P2)に流入することを抑制でき、冷却油路(P2)を流れる油の温度上昇を抑えることができる。これにより、比較的低温の油を回転電機(MG)に供給できることになるため、回転電機(MG)を適切に冷却することが可能となっている。
 ここで、前記筒状部(31)の内周面に、前記摩擦係合装置(CL2)を通過した油が流れてくる第一エリア(98)と、前記冷却油路(P2)を通過した油が流れてくる第二エリア(99)と、が前記軸方向(L)に並んで形成され、前記流入抑制部(88)は、前記第一エリア(98)と前記第二エリア(99)とを分ける区画部材(85)を有していると好適である。
 この構成によれば、摩擦係合装置(CL2)を通過して径方向外側(R2)に流れた油は、摩擦係合装置(CL2)より径方向外側(R2)に位置する筒状部(31)の内周面の第一エリア(98)に堰き止められる。そのため、摩擦係合装置(CL2)を通過した比較的高温の油が、筒状部(31)より径方向外側(R2)に位置するロータ(Ro)等に向けて流れることを制限できる。また、区画部材(85)により、第一エリア(98)から第二エリア(99)に油が流れることを制限することができる。よって、摩擦係合装置(CL2)を通過した比較的高温の油が第二エリア(99)に流動することを制限でき、当該比較的高温の油が冷却油路(P2)に流入することを抑制できる。
 また、前記冷却油路(P2)は、前記区画部材(85)と前記係合装置(CL1)の構成部材とにより形成されていると好適である。
 この構成によれば、区画部材(85)や係合装置(CL1)を利用して冷却油路(P2)が形成されているので、冷却油路(P2)を形成するための専用の部材を備える場合に比べて、車両用駆動装置(1)の構成の簡素化を図ることができる。
 また、前記軸方向(L)における前記摩擦係合装置(CL2)に対して前記係合装置(CL1)が位置する側を軸方向第一側(L1)として、前記筒状部(31)の径方向内側(R1)に、前記摩擦係合装置(CL2)の摩擦部材(61)を径方向外側(R2)から支持する筒状の外側支持部材(72)が配置され、前記外側支持部材(72)は、前記区画部材(85)により前記軸方向第一側(L1)から支持されていると好適である。
 この構成によれば、ロータ支持部材(30)の筒状部(31)と摩擦係合装置(CL2)の外側支持部材(72)とが別体である場合においても、外側支持部材(72)が筒状部(31)に対して軸方向第一側(L1)に移動することを規制できる。また、外側支持部材(72)の軸方向第一側(L1)への移動の規制を区画部材(85)に兼ねさせることで、外側支持部材(72)の軸方向第一側(L1)への移動を規制する為の専用の部材を設ける必要がなく、装置の簡素化や小型化を図ることができる。
 また、前記軸方向(L)における前記係合装置(CL1)に対して前記摩擦係合装置(CL2)が位置する側を軸方向第二側(L2)として、前記筒状部(31)の径方向内側(R1)に、前記摩擦係合装置(CL2)の摩擦部材(61)を径方向外側(R2)から支持する筒状の外側支持部材(72)が配置され、前記外側支持部材(72)は、筒状に形成されていると共に、前記筒状部(31)とは別部材で構成され、前記筒状部(31)の前記内周面と前記外側支持部材(72)の外周面との間に、前記第一エリア(98)に流れてきた油を前記軸方向第二側(L2)へ向けて流す第二油路(94)が形成されていると好適である。
 この構成によれば、筒状部(31)と外側支持部材(72)との間に第二油路(94)が形成されているため、第一エリア(98)に流れてきた油を第二油路(94)を通して軸方向第二側(L2)に向けて積極的に流すことができる。従って、第一エリア(98)に流れてきた油が、軸方向第二側(L2)とは反対側に存在する第二エリア(99)に流れることを抑制できる。
 また、前記筒状部(31)の前記内周面に、前記軸方向(L)に延びた係合溝(51A)が形成され、前記係合装置(CL1)の摩擦部材(41)が、前記係合溝(51A)に対して径方向内側(R1)から係合し、前記区画部材(85)の外周面の径は、前記係合溝(51A)の凹部の外径以上であると好適である。
 この構成によれば、筒状部(31)の内周面の係合溝(51A)に摩擦係合装置(CL1)の摩擦部材(41)が係合される構成においても、区画部材(85)と係合溝(51A)との間に隙間が形成され難いため、第一エリア(98)から第二エリア(99)に油が流れることを適切に制限することができる。
 また、前記筒状部に、前記第二エリア(99)から前記回転電機(MG)に向けて油を流す第一油路(13)が形成され、前記第一油路(13)の入口が、前記第二エリア(99)に開口していると好適である。
 この構成によれば、第二エリア(99)に流れてきた油を、適切に第一油路(13)に導入することができる。そのため、第二エリア(99)に流れた油を回転電機(MG)に向けて円滑に流すことができる。
 また、前記軸方向(L)における前記係合装置(CL1)に対して前記摩擦係合装置(CL2)が位置する側を軸方向第二側(L2)として、前記筒状部(31)における前記ロータ(Ro)よりも前記軸方向第二側(L2)に、前記第一エリア(98)から油を排出する排出油路(94)が形成されていると好適である。
 この構成によれば、摩擦係合装置(CL2)を通過して第一エリア(98)に流れた油を、排出油路(94)によって筒状部(31)におけるロータ(Ro)よりも軸方向第一側(L1)に流すことができる。これにより、摩擦係合装置(CL2)を通過した比較的高温の油が回転電機(MG)に流れることを制限できる。
 また、前記動力伝達経路(T)に、変速機(TM)が更に設けられ、前記摩擦係合装置(CL2)は、前記動力伝達経路(T)における前記回転電機(MG)と前記変速機(TM)との間に配置されていると好適である。
 この構成によれば、車両の発進時等に、回転電機(MG)側の回転数と変速機(TM)側の回転数との差を吸収するために摩擦係合装置(CL2)をスリップさせながら係合させた場合に、摩擦熱等によって発熱した摩擦係合装置(CL2)を通過することで熱せられた比較的高温の油が、冷却油路(P2)に流入することを抑制することができる。
 本開示に係る技術は、係合装置と回転電機と摩擦係合装置とが設けられた車両用駆動装置に利用することができる。
13:第三貫通孔(第一油路)
30:ロータ支持部材
31:筒状支持部(筒状部)
51A:スプライン歯(係合溝)
72:第二外側筒状部(外側支持部材)
85:区画部材
94:第二油路
98:第一エリア
99:第二エリア
CL1:第一摩擦係合装置(係合装置)
CL2:第二摩擦係合装置(摩擦係合装置)
E:内燃機関
I:入力軸(入力部材)
L:軸方向
L1:軸方向第一側
L2:軸方向第二側
M:中間軸(出力部材)
MG:回転電機
P2:第二冷却油路(冷却油路)
Ro:ロータ
R1:径方向内側
T:動力伝達経路
 

Claims (9)

  1.  内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に、前記入力部材の側から順に、係合装置と、回転電機と、摩擦係合装置と、が設けられ、
     前記係合装置と前記摩擦係合装置とは軸方向に並んで配置され、
     前記係合装置及び前記摩擦係合装置の夫々は、前記回転電機の径方向内側であって、且つ、少なくとも一部が前記回転電機に対して径方向視で重なるように配置され、
     前記回転電機は、ロータと前記ロータを支持するロータ支持部材とを備え、
     前記ロータ支持部材は、前記ロータの径方向内側に位置して前記軸方向に延びる筒状に形成された筒状部を有し、
     前記係合装置が配置された領域に設けられた、前記回転電機を冷却するための油が通過する冷却油路と、前記係合装置と前記摩擦係合装置との間に設けられた、前記摩擦係合装置を通過した油が前記冷却油路へ流入することを抑制する流入抑制部と、を前記筒状部の内部に有する車両用駆動装置。
  2.  前記筒状部の内周面に、前記摩擦係合装置を通過した油が流れてくる第一エリアと、前記冷却油路を通過した油が流れてくる第二エリアと、が前記軸方向に並んで形成され、
     前記流入抑制部は、前記第一エリアと前記第二エリアとを分ける区画部材を有している請求項1に記載の車両用駆動装置。
  3.  前記冷却油路は、前記区画部材と前記係合装置の構成部材とにより形成されている請求項2に記載の車両用駆動装置。
  4.  前記軸方向における前記摩擦係合装置に対して前記係合装置が位置する側を軸方向第一側として、
     前記筒状部の径方向内側に、前記摩擦係合装置の摩擦部材を径方向外側から支持する筒状の外側支持部材が配置され、
     前記外側支持部材は、前記区画部材により前記軸方向第一側から支持されている請求項2又は3に記載の車両用駆動装置。
  5.  前記軸方向における前記係合装置に対して前記摩擦係合装置が位置する側を軸方向第二側として、
     前記筒状部の径方向内側に、前記摩擦係合装置の摩擦部材を径方向外側から支持する筒状の外側支持部材が配置され、
     前記外側支持部材は、筒状に形成されていると共に、前記筒状部とは別部材で構成され、
     前記筒状部の前記内周面と前記外側支持部材の外周面との間に、前記第一エリアに流れてきた油を前記軸方向第二側へ向けて流す第二油路が形成されている請求項2から4のいずれか一項に記載の車両用駆動装置。
  6.  前記筒状部の前記内周面に、前記軸方向に延びた係合溝が形成され、
     前記係合装置の摩擦部材が、前記係合溝に対して径方向内側から係合し、
     前記区画部材の外周面の径は、前記係合溝の凹部の外径以上である請求項2から5のいずれか一項に記載の車両用駆動装置。
  7.  前記筒状部に、前記第二エリアから前記回転電機に向けて油を流す第一油路が形成され、
     前記第一油路の入口が、前記第二エリアに開口している請求項2から6のいずれか一項に記載の車両用駆動装置。
  8.  前記軸方向における前記係合装置に対して前記摩擦係合装置が位置する側を軸方向第二側として、
     前記筒状部における前記ロータよりも前記軸方向第二側に、前記第一エリアから油を排出する排出油路が形成されている請求項2から7のいずれか一項に記載の車両用駆動装置。
  9.  前記動力伝達経路に、変速機が更に設けられ、
     前記摩擦係合装置は、前記動力伝達経路における前記回転電機と前記変速機との間に配置されている請求項1から8のいずれか一項に記載の車両用駆動装置。
     
PCT/JP2018/012490 2017-03-28 2018-03-27 車両用駆動装置 WO2018181352A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880009724.9A CN110290959B (zh) 2017-03-28 2018-03-27 车辆用驱动装置
US16/473,657 US11104216B2 (en) 2017-03-28 2018-03-27 Vehicle drive apparatus
JP2019509907A JP6844690B2 (ja) 2017-03-28 2018-03-27 車両用駆動装置
DE112018000454.6T DE112018000454T5 (de) 2017-03-28 2018-03-27 Fahrzeugantriebsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-062879 2017-03-28
JP2017062879 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018181352A1 true WO2018181352A1 (ja) 2018-10-04

Family

ID=63675946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012490 WO2018181352A1 (ja) 2017-03-28 2018-03-27 車両用駆動装置

Country Status (5)

Country Link
US (1) US11104216B2 (ja)
JP (1) JP6844690B2 (ja)
CN (1) CN110290959B (ja)
DE (1) DE112018000454T5 (ja)
WO (1) WO2018181352A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059510A1 (ja) * 2019-09-27 2021-04-01 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
WO2021059511A1 (ja) * 2019-09-27 2021-04-01 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
WO2021073682A1 (de) * 2019-10-16 2021-04-22 Schaeffler Technologies AG & Co. KG Hybridmodul und antriebsanordnung für ein kraftfahrzeug
US11254200B2 (en) 2018-03-28 2022-02-22 Aisin Corporation Vehicle drive device
US11305631B2 (en) * 2018-06-04 2022-04-19 Schaeffler Technologies AG & Co. KG Drive train unit for a hybrid vehicle, transmission unit and drive train
US20220379710A1 (en) * 2019-10-30 2022-12-01 Aisin Fukui Corporation Vehicle drive transmission device and vehicle drive device including same
JP7472566B2 (ja) 2020-03-17 2024-04-23 株式会社アイシン 車両用駆動装置
US11999235B2 (en) 2019-09-27 2024-06-04 Aisin Corporation Vehicle drive device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205460A1 (de) * 2018-04-11 2019-10-17 Zf Friedrichshafen Ag Hybridantriebsmodul für ein Kraftfahrzeug
FR3105114B1 (fr) * 2019-12-19 2022-12-16 Valeo Embrayages Module hybride destiné à être disposé dans une chaîne de traction d’un véhicule automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015188A (ja) * 2012-07-11 2014-01-30 Aisin Aw Co Ltd 車両用駆動装置
JP2014033602A (ja) * 2012-02-10 2014-02-20 Aisin Aw Co Ltd ハイブリッド駆動装置
WO2016017369A1 (ja) * 2014-07-29 2016-02-04 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7293637B2 (en) 2005-01-06 2007-11-13 Ford Global Technologies, Inc. Modular twin clutch transmission input for hybrid vehicle
DE102005040771A1 (de) * 2005-08-29 2007-03-08 Zf Friedrichshafen Ag Antriebsstrang eines Hybridfahrzeuges
US8425376B2 (en) * 2009-04-10 2013-04-23 GM Global Technology Operations LLC Multi-speed dual-clutch transmission for a hybrid vehicle
DE102009030135A1 (de) * 2009-06-24 2010-12-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybridantriebsstrang
US8622182B2 (en) * 2009-11-19 2014-01-07 Aisin Aw Co., Ltd. Vehicle drive device
DE112014002014B4 (de) * 2013-04-19 2018-10-04 Schaeffler Technologies AG & Co. KG Hybridmodul für Kraftfahrzeug
JP2015042532A (ja) 2013-08-26 2015-03-05 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
DE102015215876A1 (de) * 2015-08-20 2017-02-23 Schaeffler Technologies AG & Co. KG Kupplungseinrichtung für Hybridantrieb
CN108781022A (zh) * 2016-03-11 2018-11-09 博格华纳公司 离合器和电动马达

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033602A (ja) * 2012-02-10 2014-02-20 Aisin Aw Co Ltd ハイブリッド駆動装置
JP2014015188A (ja) * 2012-07-11 2014-01-30 Aisin Aw Co Ltd 車両用駆動装置
WO2016017369A1 (ja) * 2014-07-29 2016-02-04 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254200B2 (en) 2018-03-28 2022-02-22 Aisin Corporation Vehicle drive device
US11305631B2 (en) * 2018-06-04 2022-04-19 Schaeffler Technologies AG & Co. KG Drive train unit for a hybrid vehicle, transmission unit and drive train
CN114144324A (zh) * 2019-09-27 2022-03-04 株式会社爱信 车辆用驱动装置
JPWO2021059510A1 (ja) * 2019-09-27 2021-04-01
JPWO2021059511A1 (ja) * 2019-09-27 2021-04-01
WO2021059510A1 (ja) * 2019-09-27 2021-04-01 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
CN114269581A (zh) * 2019-09-27 2022-04-01 株式会社爱信 车辆用驱动装置
WO2021059511A1 (ja) * 2019-09-27 2021-04-01 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP7140290B2 (ja) 2019-09-27 2022-09-21 株式会社アイシン 車両用駆動装置
US11833904B2 (en) 2019-09-27 2023-12-05 Aisin Corporation Vehicle drive device
US11999235B2 (en) 2019-09-27 2024-06-04 Aisin Corporation Vehicle drive device
WO2021073682A1 (de) * 2019-10-16 2021-04-22 Schaeffler Technologies AG & Co. KG Hybridmodul und antriebsanordnung für ein kraftfahrzeug
US20220379710A1 (en) * 2019-10-30 2022-12-01 Aisin Fukui Corporation Vehicle drive transmission device and vehicle drive device including same
US11890937B2 (en) * 2019-10-30 2024-02-06 Aisin Fukui Corporation Vehicle drive transmission device and vehicle drive device including same
JP7472566B2 (ja) 2020-03-17 2024-04-23 株式会社アイシン 車両用駆動装置

Also Published As

Publication number Publication date
US20190351752A1 (en) 2019-11-21
CN110290959B (zh) 2022-05-10
US11104216B2 (en) 2021-08-31
DE112018000454T5 (de) 2019-10-10
CN110290959A (zh) 2019-09-27
JPWO2018181352A1 (ja) 2019-11-07
JP6844690B2 (ja) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2018181352A1 (ja) 車両用駆動装置
US10167907B2 (en) Hybrid vehicle drive apparatus
US8997956B2 (en) Vehicle drive device
WO2011062266A1 (ja) 車両用駆動装置
US7975571B2 (en) Hybrid drive device
WO2011062265A1 (ja) 車両用駆動装置
JP5610226B2 (ja) 車両用駆動装置
CN108790778B (zh) 混合动力车辆的驱动装置
US20130193816A1 (en) Vehicle drive device
WO2013008625A1 (ja) 車両用駆動装置
WO2017057190A1 (ja) 車両用駆動装置
WO2017010018A1 (ja) 車両用駆動装置
JP2014015188A (ja) 車両用駆動装置
WO2013018201A1 (ja) ハイブリッド駆動装置
JP5250013B2 (ja) 車両用駆動装置
CN113261182A (zh) 车用驱动装置
JP6169514B2 (ja) 変速装置
JP2015178862A (ja) 摩擦係合装置
JP5261461B2 (ja) 車両用駆動装置
JP5406815B2 (ja) 車両用駆動装置
JP2022156872A (ja) 車両用駆動装置
JP2015140044A (ja) 車両用駆動装置
JP2012067804A (ja) 発進装置
JP2012067803A (ja) 発進装置
JP2015200340A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509907

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777602

Country of ref document: EP

Kind code of ref document: A1