WO2013065286A1 - 空気調和装置用制御装置 - Google Patents

空気調和装置用制御装置 Download PDF

Info

Publication number
WO2013065286A1
WO2013065286A1 PCT/JP2012/006934 JP2012006934W WO2013065286A1 WO 2013065286 A1 WO2013065286 A1 WO 2013065286A1 JP 2012006934 W JP2012006934 W JP 2012006934W WO 2013065286 A1 WO2013065286 A1 WO 2013065286A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
actuator
mode
damper
control device
Prior art date
Application number
PCT/JP2012/006934
Other languages
English (en)
French (fr)
Inventor
康裕 関戸
啓三 二村
達広 松木
宮澤 和宏
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011241134A external-priority patent/JP5569506B2/ja
Priority claimed from JP2011241252A external-priority patent/JP5594274B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112012004590.4T priority Critical patent/DE112012004590B4/de
Priority to CN201280051105.9A priority patent/CN103889748B/zh
Priority to US14/355,151 priority patent/US9581352B2/en
Publication of WO2013065286A1 publication Critical patent/WO2013065286A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00857Damper doors, e.g. position control characterised by the means connecting the initiating means, e.g. control lever, to the damper door
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/68Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more dc dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • F24F2013/1433Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means with electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/03Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
    • H02P7/04Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors by means of a H-bridge circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present disclosure relates to a control device for an air conditioner.
  • indoor units equipped with a blower unit, a cooler unit, and a heater unit in an air conditioner for an automobile.
  • the indoor unit of an air conditioner is provided with many air outlets which blow off the cool air and warm air which were produced
  • a ventilation control valve (hereinafter referred to as a damper) for switching whether the air to be taken in is outdoor air (hereinafter referred to as outdoor air) or indoor air (hereinafter referred to as internal air), cold air and warm air
  • An air mix damper that mixes the air and harmonizes the air, and a mode damper that blows out the air-conditioned air by adjusting the discharge amount from each outlet.
  • a damper is sometimes called a door.
  • Patent Literature 1 discloses an indoor unit including an inside / outside air switching door, a driver seat side air mix door, a passenger seat side air mix door, and a blowing mode switching door. Also, in Cited Document 1, a direct current motor provided for each door corresponding to each of an inside / outside air switching door, a driver seat side air mix door, a passenger seat side air mix door, and a blow mode switching door, and each direct current A drive circuit for driving each motor is disclosed.
  • An H bridge circuit is known as a DC motor drive circuit in such an air conditioner.
  • An H-bridge circuit for driving a direct current motor incorporates two circuits in which two switching elements are connected in series, in parallel between the positive and negative terminals of the battery, and between the connection points of the two switching elements in each circuit. Incorporates a DC motor.
  • Patent Document 2 discloses an H-bridge circuit using field effect transistors for four switching elements. In Patent Document 2, a drive signal from a control circuit is inputted to the gates of four field effect transistors, and the direction of the current flowing through the DC motor is changed by switching two transistors that are turned on among the four transistors. The direction of rotation of the DC motor is changed.
  • the present disclosure simplifies the H-bridge circuit of a DC motor for driving a damper (door) for switching the ventilation path in the indoor unit of the air conditioner, and each DC motor is provided with an H-bridge circuit even with a small circuit configuration. It is an object of the present invention to provide an air conditioner control device capable of executing control that is the same as that in the case of the above.
  • a plurality of air flow path switching devices installed in an air conditioner unit of an air conditioner that takes in internal air or external air and performs air conditioning in an air conditioner unit using an evaporator and a heater core.
  • the control device for an air conditioner that controls the actuator that drives the damper of the present invention by using three half bridge circuits in common with one half bridge circuit, an internal / external air switching damper is connected to one actuator, and the other actuator An air mix damper for the driver's seat or passenger's seat was connected to.
  • control of the actuator for driving the plurality of dampers can be performed by three half bridge circuits sharing one half bridge circuit, and the circuit configuration can be simplified by reducing the number of half bridge circuits. .
  • the inside / outside air switching damper and the air mix damper can be driven simultaneously using three half-bridge circuits.
  • the operation in which the inside / outside air switching damper fully closes the outside air intake by the one actuator and the operation in which the air mix damper fully closes the air intake of the heater core by the other actuator are performed simultaneously.
  • the three half-bridge circuits were constructed so that they could be performed.
  • the operation of the inside / outside air switching damper to fully close the outside air intake and the operation of the air mix damper to fully close the air intake of the heater core can be performed simultaneously.
  • the operation of the inside / outside air switching damper fully closing the inside air intake by the one actuator and the operation of causing the air mix damper to flow the entire amount of air to the heater core by the other actuator can be performed simultaneously.
  • the three half-bridge circuits were configured.
  • the operation of the inside / outside air switching damper to fully close the inside air intake and the operation of the air mix damper to flow the entire amount of air to the heater core can be performed simultaneously.
  • the one and other actuators are DC motors.
  • an in-vehicle battery can be used as a power source.
  • an air mix damper for the driver's seat was connected to the other actuator.
  • air to be cooled during cooling can be taken in from the inside air intake, and the air cooled by the evaporator can be bypassed by the heater core in the driver's seat side passage. Can be in a state.
  • a plurality of air flow path switching devices installed in an air conditioner unit of an air conditioner that takes in internal air or external air and performs air conditioning in an air conditioner unit using an evaporator and a heater core.
  • a mode switching damper is connected to one actuator and the other actuator is connected to the other actuator. Connected an air mix damper for driver's seat or passenger's seat.
  • control of the actuator for driving the plurality of dampers can be performed by three half bridge circuits sharing one half bridge circuit, and the circuit configuration can be simplified by reducing the number of half bridge circuits. .
  • the face mode in which only the air outlet switching damper that blows conditioned air from the face air outlet operates among the mode switching dampers according to the amount of rotation.
  • Bi-level mode in which only the blowout outlet switching damper that blows conditioned air from the foot outlet operates
  • Foot mode in which only the outlet switching damper that blows out conditioned air from the foot outlet, and conditioned air from the foot outlet and defroster outlet
  • the foot / diff mode in which only the blowout outlet switching damper operates
  • the differential mode in which only the outlet switching damper that blows conditioned air from the defroster outlet
  • face mode, bi-level mode, foot mode, foot / diff mode, and differential mode can be switched in this order by rotating only one actuator in one direction, and in reverse order by rotating in the reverse direction. Can be switched.
  • the outlet switching damper that blows conditioned air from the defroster outlet also operates.
  • the conditioned air can be blown out from the defroster outlet.
  • the direction in which the one actuator rotates so that the mode switching damper faces in the face mode direction and the direction in which the other actuator rotates so that the air mix damper closes the air intake of the heater core are reversed.
  • the one and other actuators were connected to the three half-bridge circuits.
  • the mode switching damper and the air mix damper can be driven simultaneously using three half-bridge circuits.
  • the three half-bridge circuits may be configured so that the operation of switching to the face mode by the one actuator and the operation of causing the air mix damper to fully close the air intake of the heater core by the other actuator can be performed simultaneously. Configured.
  • the three half-bridge circuits are configured so that the operation to enter the differential mode by the one actuator and the operation to cause the air mix damper to flow the entire amount of air to the heater core by the other actuator can be performed simultaneously. .
  • the operation of switching to the differential mode by the mode switching damper and the operation of causing the air mix damper to flow the entire amount of air through the heater core can be performed simultaneously.
  • the one and other actuators are DC motors.
  • an in-vehicle battery can be used as a power source.
  • an air mix damper for the passenger seat was connected to the other actuator.
  • the entire amount of air cooled by the evaporator can be bypassed in the passenger side passage so that the air blown from the passenger side air outlet can be Can be in school.
  • FIG. 1 shows schematic structure of the control apparatus for air conditioners and an indoor air conditioner unit in one Embodiment. It is a figure which shows the circuit structure of the conventional motor drive device. It is a figure which shows the circuit structure of one Embodiment of the motor drive unit in the control apparatus for air conditioning apparatuses shown by FIG. (A) is a figure which shows the connection of the integrated circuit incorporating the circuit of one Embodiment of the motor drive device shown by FIG. 3, and a motor, (b) has the circuit of the conventional motor drive device shown by FIG. It is a figure which shows the connection of the integrated circuit and motor which do.
  • FIG. 2 shows opening / closing control of an inside / outside air switching damper by a control device
  • (a) is an explanatory diagram showing the operation of a half bridge circuit by the control device when taking in outside air
  • (b) is a half bridge by the control device when taking in inside air
  • FIG. 2 shows opening / closing control of the driver side air mix damper by the control device
  • (a) is an explanatory diagram showing the operation of the half bridge circuit by the control device at the time of max cool
  • (b) is by the control device at the time of max hot. It is explanatory drawing which shows operation
  • FIG. 7 shows opening / closing control of the outlet switching damper by the control device, where (a) is an explanatory diagram showing the operation of the half-bridge circuit by the control device when all the outlet switching dampers are closed, and (b) is the outlet switching.
  • FIG. 2 shows opening / closing control of a passenger seat side air mix damper by a control device
  • (a) is an explanatory diagram showing the operation of a half bridge circuit by the control device at the time of max hot
  • (b) is by the control device at the time of max cool
  • the operation of each half-bridge circuit when the switching operation to open one of the outlet switching dampers by the control device and the passenger seat side air mix damper to the max cool state is performed using three half-bridge circuits. It is explanatory drawing shown.
  • movement (A) is explanatory drawing which shows the relationship between the internal air mode and external air mode with respect to the rotation direction of the direct current motor which drives the internal / external air switching damper in internal / external air mode, (b) is direct current which drives the air mix damper by the side of a driver's seat Explanatory diagram showing the relationship between MaxCool and MaxHot with respect to the rotational direction of the motor, (c) is an explanatory diagram showing the relationship between the outlet mode and the DC motor in the rotational direction, and (d) is the passenger side air mix It is explanatory drawing which shows the relationship between the max cool and the max hot with respect to the rotation direction of the direct current motor which drives a damper.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of an embodiment of an automotive air conditioner 1 to which an air conditioner control device 50 according to the present disclosure is applied.
  • the automotive air conditioner 1 of this embodiment includes an indoor air conditioner unit 1A as shown in FIG.
  • the indoor air conditioner unit 1A includes a main body 2 having an air passage 2A.
  • the main body 2 includes an inside air inlet 3a and an outside air inlet 3b that take air into the air passage 2A, and air outlets FrDr, FtDr, DfDr, FrPa, FtPa, DfPa that blow out air conditioned in the air passage 2A into the room. Is provided.
  • Each air outlet FrDr, FtDr, DfDr, FrPa, FtPa, DfPa will be described in detail later.
  • the inside air introduction port 3a takes air in the vehicle compartment (inside air) into the air passage 2A
  • the outside air introduction port 3b takes air outside the vehicle compartment (outside air) into the air passage 2A.
  • the inside air introduction port 3 a and the outside air introduction port 3 b are opened and closed by the inside and outside air switching damper 4.
  • the inside / outside air switching damper 4 is connected to a DC motor M1 via a link mechanism (not shown), and opens and closes when the DC motor M1 rotates.
  • a centrifugal blower 5 is provided in the air passage 2A on the downstream side of the inside air inlet 3a and the outside air inlet 3b.
  • the centrifugal blower 5 forcibly blows air that has flowed into the air passage 2A from either the inlet 3a or the inlet 3b downstream.
  • the amount of air blown from the centrifugal blower 5 is determined by the rotational speed of the centrifugal blower 5, and the rotational speed of the centrifugal blower 5 can be controlled by the air conditioner controller 50.
  • an evaporator 6 that cools the air blown from the centrifugal blower 5 is provided in the air passage 2 ⁇ / b> A on the downstream side of the centrifugal blower 5, an evaporator 6 that cools the air blown from the centrifugal blower 5 is provided.
  • the evaporator 6 constitutes a well-known refrigeration cycle together with a compressor or the like in the air conditioner, and is a heat exchanger that cools the air flowing in the air passage 2A.
  • Engine cooling water which has become hot water by cooling the automobile engine, circulates in the heater core 7 and heats the cold air from the evaporator 6 passing through the heater core 7 to heat it.
  • the upstream side air passage 2A and the downstream side air passage 2A immediately before the evaporator 6 are provided with partition walls 8 that divide the air passage 2A into a driver seat side passage 9a and a passenger seat side passage 9b.
  • a bypass passage 10a passing through the side of the heater core 7 is provided on the upstream side of the driver seat side passage 9a.
  • the bypass passage 10a bypasses the cool air from the evaporator 6 without passing through the heater core 7 and flows downstream.
  • a bypass passage 10b passing through the side of the heater core 7 is provided on the upstream side of the passenger seat side passage 9b.
  • the bypass passage 10 b allows the cool air from the evaporator 6 to bypass the heater core 7 and flow downstream.
  • Air mix dampers 11a and 11b are provided on the upstream side of the heater core 7 of the driver seat side passage 9a and the passenger seat side passage 9b, respectively.
  • the air mix damper 11a adjusts the ratio of the amount of air flowing through the heater core 7 and the amount of air flowing through the bypass passage 10a out of the cold air flowing through the driver seat side passage 9a according to the opening degree.
  • the warm air that flows through the heater core 7 and flows into the driver's seat side passage 9a and the cold air that passes through the bypass passage 10a are mixed in the mixing section 9am on the downstream side of the heater core 7.
  • the mixing ratio of the hot air from the heater core 7 and the cold air from the bypass passage 10a is changed, so that the temperature of the air mixed in the mixing unit 9am is the temperature setting of the air conditioner.
  • the temperature is adjusted by a switch (not shown).
  • the air mix damper 11b adjusts the ratio of the amount of air flowing through the heater core 7 and the amount of air flowing through the bypass passage 10b out of the cold air flowing through the passenger seat side passage 9b depending on the opening degree.
  • the warm air passing through the heater core 7 and flowing into the passenger seat side passage 9b and the cold air passing through the bypass passage 10b are mixed in the mixing portion 9bm on the downstream side of the heater core 7.
  • the mixing ratio of the hot air from the heater core 7 and the cold air from the bypass passage 10b is changed, so that the temperature of the air mixed in the mixing unit 9bm is set to the temperature of the air conditioner.
  • the temperature is adjusted by a switch (not shown).
  • the DC motor M2 is connected to the air mix damper 11a via a link mechanism (not shown). The opening degree of the air mix damper 11a is adjusted by the rotation of the DC motor M2.
  • a DC motor M4 is connected to the air mix damper 11b via a link mechanism (not shown). The opening degree of the air mix damper 11b is adjusted by the rotation of the DC motor M4.
  • the main body 2 of the indoor air conditioner unit 1A on the downstream side of the mixing portion 9am of the driver seat side passage 9a is provided with a driver seat side face outlet FrDr, a driver seat side foot outlet FtDr, and a driver seat side defroster outlet DfDr. Yes.
  • the driver-seat-side face outlet FrDr blows air from the mixing unit 9am toward the upper body of the driver.
  • the driver's seat side foot outlet FtDr blows air from the mixing unit 9am toward the lower body of the driver.
  • the driver's seat side defroster outlet DfDr blows out air from the mixing unit 9am to the driver's seat side region of the inner surface of the windshield.
  • the main body 2 of the indoor air conditioner unit 1A on the downstream side of the mixing portion 9bm of the passenger seat side passage 9b has a passenger seat face outlet FrPa, a passenger seat foot outlet FtPa, and a passenger seat defroster outlet DfPa.
  • the passenger seat side face outlet FrPa blows air from the mixing unit 9bm toward the upper body of the person sitting in the passenger seat.
  • the passenger seat side foot outlet FtPa blows air from the mixing unit 9bm toward the lower body of the person sitting in the passenger seat.
  • the passenger seat side defroster outlet DfPa blows air from the mixing portion 9bm to the passenger seat side region of the inner surface of the windshield.
  • the main body 2 of the indoor air conditioner unit 1A includes an outlet switching damper 12a that opens and closes the driver's seat-side face outlet FrDr, an outlet switching damper 13a that opens and closes the driver's seat-side foot outlet FtDr, and a driver's seat-side defroster outlet DfDr.
  • An outlet switching damper 14a that opens and closes is provided.
  • the main body 2 of the indoor air conditioner unit 1A includes an outlet switching damper 12b that opens and closes the passenger-side face outlet FrPa, an outlet switching damper 13b that opens and closes the passenger-side foot outlet FtPa, and a passenger-side defroster outlet.
  • An outlet switching damper 14b that opens and closes the outlet DfPa is provided.
  • the outlet switching dampers 12a, 12b, 13a, 13b, 14a, 14b are all connected to the DC motor M3 via a link mechanism (not shown).
  • the opening degree of the outlet switching dampers 12a, 12b, 13a, 13b, 14a, 14b is adjusted independently by the rotation of the DC motor M3.
  • the air outlet switching dampers 12a, 12b, 13a, 13b, 14a, 14b blow out air-conditioned air from the corresponding air outlets according to the mode set by the mode switch on the automobile instrument panel (not shown). This is called a mode switching damper.
  • DC motors M1, M2, M3, and M4 are connected to an air conditioner control device 50, and their rotation is controlled by the air conditioner control device 50. Further, as described above, the centrifugal blower 5 is also connected to the air conditioner control device 50, and its rotation is controlled by the air conditioner control device 50.
  • the air conditioner control device 50 will not be described in detail, but the cabin temperature from the inside air temperature sensor, the outside air temperature from the outside air temperature sensor, the cooling water temperature from the water temperature sensor, the refrigerant temperature from the evaporator sensor, Information on the desired temperature from the air conditioner temperature control switch installed in the room and information on which air outlet blows air into the vehicle compartment are input.
  • the air conditioner control device 50 performs calculation based on these pieces of information, and determines the required blowing temperature, the air volume, and the opening degree of each damper.
  • the air conditioner control device 50 includes a motor drive device 30 and an air conditioner ECU 40 which will be described later.
  • the electrical configuration of a conventional motor drive device 30A incorporated in the air conditioner control device 50 will be described with reference to FIG.
  • the DC motor M1 is connected to the inside / outside air switching damper 4
  • the DC motor M2 is connected to the driver side air mix damper 11a
  • a DC motor M3 is connected to 14a and 14b
  • a DC motor M4 is connected to the passenger seat side air mix damper 11b.
  • the rotation of the DC motor M1 is controlled by the H bridge circuit 61
  • the rotation of the DC motor M2 is controlled by the H bridge circuit 62
  • the rotation of the DC motor M3 is controlled by the H bridge circuit 63
  • the DC motor M4. Is controlled to be rotated by the H bridge circuit 64.
  • each of the H bridge circuits 61 to 64 is controlled by the control unit 60. Since each H bridge circuit 61, 62, 63, 64 (hereinafter referred to as 61 to 64) is composed of two half bridge circuits, the conventional motor drive circuit 30A includes eight half bridge circuits H1, H2, H3, H4. , H5, H6, H7 and H8 (hereinafter referred to as H1 to H8) were necessary. For this reason, as shown in FIG. 4B, the integrated circuit 66 incorporating the four half-bridge circuits H1 to H8 is increased in size and the space efficiency is poor.
  • the automobile air conditioner 1 includes an electronic control device (indicated as A / C ECU in FIG. 3) 40 in addition to the motor drive device 30.
  • the electronic control device 40 will be described later.
  • the motor drive device 30 constitutes a control device for an air conditioner, and the DC motors M1, M2, M3, and M4 are used to change the inside / outside air switching damper 4, the driver seat side air mix damper 11a, and the mode switching dampers 12a, 12b, and 13a. , 13b, 14a, 14b and the passenger side air mix damper 11b.
  • the inside / outside air switching damper 4 is opened / closed by the DC motor M1
  • the driver seat side air mix damper 11a is opened / closed by the DC motor M2
  • the mode switching dampers 12a, 12b, 13a, 13b, 14a, 14b are the DC motors.
  • the passenger seat side air mix damper 11b is opened and closed by the DC motor M4.
  • the motor drive device 30 of the present embodiment includes three half-bridge circuits 31, 32, and 33 that drive the DC motors M1, M2, M3, and M4, the DC motors M1 and M2, and three that drive the DC motors M3 and M4.
  • the half bridge circuit 31 includes a pair of transistors 31H and 31L.
  • Transistors 31H and 31L are connected in series between the positive electrode of battery Ba (shown as Vcc in FIG. 3 and hereinafter referred to as power supply Vcc) and the negative electrode of battery Ba (shown as a ground symbol in FIG. 3).
  • Vcc positive electrode of battery Ba
  • Vcc negative electrode of battery Ba
  • field effect transistors are used as the transistors 31H and 31L.
  • the half bridge circuits 32, 33, 34, 35, and 36 are a pair of transistors (32H and 32L) connected in series between the positive electrode of the battery Ba and the negative electrode of the battery Ba. , (33H, 33L), (34H, 34L), (35H, 35L), (36H, 35L).
  • the DC motor M1 that drives the inside / outside air switching damper 4 is connected between the common connection point 31a of the transistors 31H and 31L of the half-bridge circuit 31 and the common connection point 32a of the transistors 32H and 32L of the half-bridge circuit 32.
  • the common connection point 31a is a part where the source terminal of the transistor 31H and the drain terminal of the transistor 31L are connected in the half-bridge circuit 31.
  • the common connection point 32a is a part where the source terminal of the transistor 32H and the drain terminal of the transistor 32L are connected in the half bridge circuit 32.
  • the DC motor M2 that drives the driver side air mix damper 11a is connected between the common connection point 32a of the transistors 32H and 32L of the half bridge circuit 32 and the common connection point 33a of the transistors 33H and 33L of the half bridge circuit 33. ing.
  • the common connection point 33a is a part where the source terminal of the transistor 33H and the drain terminal of the transistor 33L are connected in the half bridge circuit 33.
  • the DC motor M3 that drives the mode switching dampers 12a, 12b, 13a, 13b, 14a, and 14b includes a common connection point 34a of the transistors 34H and 34L of the half bridge circuit 34 and a common connection point of the transistors 35H and 35L of the half bridge circuit 35. 35a.
  • the common connection point 34a is a part where the source terminal of the transistor 34H and the drain terminal of the transistor 34L are connected in the half bridge circuit 34.
  • the common connection point 35a is a part where the source terminal of the transistor 35H and the drain terminal of the transistor 35L are connected in the half-bridge circuit 35.
  • the DC motor M4 that drives the passenger side air mix damper 11b is connected between the common connection point 35a of the transistors 35H and 35L of the half-bridge circuit 35 and the common connection point 36a of the transistors 36H and 36L of the half-bridge circuit 36. ing.
  • the common connection point 36a is a portion where the source terminal of the transistor 36H and the drain terminal of the transistor 36L are connected in the half bridge circuit 36.
  • the rotation direction of the DC motor M1 is switched by the half bridge circuits 31 and 32, and the rotation direction of the DC motor M2 is switched by the half bridge circuits 32 and 33.
  • the rotation direction of the DC motor M3 is switched by the half bridge circuits 34 and 35, and the rotation direction of the DC motor M4 is switched by the half bridge circuits 35 and 36.
  • the rotation of the four DC motors can be performed only by using the six half-bridge circuits 31, 32, 33, 34, 35, and 36 (hereinafter 31 to 36).
  • the direction can be controlled. That is, when there are four DC motors, as shown in FIG. 4B, the conventional motor drive circuit 30A requires eight half-bridge circuits H1 to H8. As shown in FIG. 4 (a), only six half-bridge circuits 31 to 36 need be used. Therefore, the integrated circuit 60 incorporating the six half bridge circuits 31 to 36 can be reduced in size, and space efficiency can be improved.
  • a control signal to the control unit 37 connected to the half bridge circuits 31 to 36 is output from the electronic control unit 40 and input to the control unit 37 via the LIN driver 38.
  • the control unit 37 controls the operations of the half bridge circuits 31 to 36 based on the input control signal. Further, the control unit 37 outputs signals output from the potentiometers 21a, 21b, 21c, and 21d to the electronic control unit 40 via the LIN driver 38.
  • the potentiometers 21a, 21b, 21c, and 21d are sensors that detect the rotation angles of the rotation shafts of the DC motors M1, M2, M3, and M4, respectively.
  • the LIN driver 38 communicates with the electronic control device 40 via the in-vehicle LAN, and constitutes an interface circuit between the electronic control device 40 and the control unit 37.
  • a communication protocol of the in-vehicle LAN according to the present embodiment, local / interconnect / network (LIN) is used.
  • the regulator 39 outputs a constant power supply voltage (for example, 5 V) to the control unit 37 and the like based on the voltage between the positive electrode and the negative electrode of the battery Ba.
  • the electronic control device 40 is a known electronic control device including a memory and a microcomputer.
  • the electronic control device 40 controls the DC motors M1, M2, M3, and M4 based on the output signals of the switches 41, 42, and 43, the output signals of the plurality of sensors 44, and the output signals of the potentiometers 21a, 21b, 21c, and 21d.
  • a control process for controlling is executed.
  • the switch 41 is a switch for setting an automatic air conditioning mode for automatically controlling the temperature of the air blown into the passenger compartment, and is described as AUTO in FIG.
  • the switch 42 is a switch for setting the defroster mode, and is described as DEF in FIG.
  • the switch 43 is a switch for setting an independent temperature control mode, and is indicated as independent temperature control in FIG. In the independent temperature control mode, the temperature of the air blown from the driver's seat side outlets FrDr, FtDr, and DfDr and the temperature of the air blown from the passenger side outlets FrPa, FtPa, and DfPa shown in FIG. 1 are independently controlled. It is a mode to do.
  • the plurality of sensors 44 are, for example, an outside air temperature sensor that detects an air temperature outside the passenger compartment, a solar radiation sensor that detects the solar radiation intensity inside the passenger compartment, a driver seat side temperature setting device that sets a driver's seat side set temperature by an occupant, A driver side temperature setter for setting a passenger side set temperature by a passenger, a temperature sensor for detecting the temperature of engine coolant, and the like.
  • a DC motor M1 that opens and closes the inside / outside air switching damper 4
  • a DC motor M2 that opens and closes the driver side air mix damper 11a
  • a DC motor M3 that opens and closes the mode switching dampers 12a, 12b, 13a, 13b, 14a, and 14b
  • the operation of the half bridge circuits 31 to 36 for rotating the DC motor M4 that opens and closes the passenger-side air mix damper 11b in the forward rotation direction or the reverse rotation direction will be described for each damper.
  • each transistor is illustrated with its on / off state replaced with on / off of a switch.
  • FIG. 5A shows a circuit state and a state of the inside / outside air switching damper 4 when the DC motor M1 is rotated forward.
  • the control unit 37 turns on the transistor 31H of the half-bridge circuit 31, turns off the transistor 31L, turns off the transistor 32H of the half-bridge circuit 32, turns on the transistor 32L, and turns on the transistors 33H, Turn off both 33L.
  • the current from the power source Vcc flows in the direction A from the transistor 31H of the half bridge circuit 31, and flows to the ground through the DC motor M1 and the transistor 32L of the half bridge circuit 32.
  • the DC motor M2 is in a stopped state, and the DC motor M1 rotates.
  • the rotation direction of the DC motor M1 when the current flows in the A direction is defined as the normal rotation direction.
  • the inside / outside air switching damper 4 rotates via the link mechanism to close the inside air introduction port 3a and switch from the inside air mode to the outside air mode.
  • the inside air mode is a mode in which the inside / outside air switching damper 4 closes the outside air introduction port 3b and opens the inside air introduction port 3a to introduce the air in the vehicle interior.
  • the outside air mode is a mode in which the inside / outside air switching damper 4 closes the inside air introduction port 3a and opens the outside air introduction port 3b to introduce air outside the vehicle compartment.
  • FIG. 5B shows a circuit state and a state of the inside / outside air switching damper 4 when the DC motor M1 is reversely rotated.
  • the control unit 37 turns off the transistor 31H of the half-bridge circuit 31, turns on the transistor 31L, turns on the transistor 32H of the half-bridge circuit 32, turns off the transistor 32L, and turns on the transistors 33H, Turn off both 33L.
  • a current from the power source Vcc flows in the B direction from the transistor 32H of the half bridge circuit 32, and flows to the ground through the DC motor M1 and the transistor 31L of the half bridge circuit 31.
  • the DC motor M2 is in a stopped state, and the DC motor M1 rotates.
  • the rotation direction of the DC motor M1 when the current flows in the B direction is the reverse rotation direction.
  • the inside / outside air switching damper 4 is rotated via the link mechanism to close the outside air introduction port 3b, and the outside air mode is switched to the inside air mode.
  • a current from the power source Vcc flows in the C direction from the transistor 32H of the half bridge circuit 32, and flows to the ground through the DC motor M2 and the transistor 33L of the half bridge circuit 33.
  • the DC motor M1 is in a stopped state, and the DC motor M2 rotates.
  • the rotation direction of the DC motor M2 when the current flows in the C direction is defined as the forward rotation direction.
  • the driver seat side air mix damper 11a rotates through the link mechanism to cover the upstream side of the heater core 7 on the driver seat side passage 9a side.
  • the entire amount of air cooled by the evaporator 6 and flowing through the driver's seat side passage 9a flows through the bypass passage 10a to the driver's seat side passage 9a. Since the air flowing through the driver's seat side passage 9a is not heated by the heater core 7, it is the coldest air, and the state of the air at this time is called a max cool state.
  • the passenger seat side air mix damper 11b in the passenger seat side passage 9b also rotates to cover the heater core 7 on the passenger seat side passage 9b side, and the passenger seat side passage 9b is also in the max cool state. It has become. Although the operation of the passenger seat side air mix damper 11b will be described later, the operation can be performed independently of the operation of the driver seat side air mix damper 11a.
  • FIG. 6B shows the circuit state and the air mix damper 11a when the DC motor M2 is reversely rotated.
  • the control unit 37 turns off both the transistors 31H and 31L of the half bridge circuit 31, turns off the transistor 32H of the half bridge circuit 32, turns on the transistor 32L, and turns on the transistor 33H of the half bridge circuit 33.
  • the transistor 33L is turned off.
  • a current from the power source Vcc flows in the direction D from the transistor 33H of the half bridge circuit 33, and flows to the ground through the DC motor M2 and the transistor 32L of the half bridge circuit 32.
  • the DC motor M1 is in a stopped state, and the DC motor M2 rotates.
  • the direction of rotation of the DC motor M2 when the current flows in the direction D is the reverse direction.
  • the driver seat side air mix damper 11a rotates via the link mechanism to open the heater core 7 on the driver seat side passage 9a side and close the bypass passage 10a.
  • the entire amount of air cooled by the evaporator 6 and flowing through the driver seat side passage 9a flows through the heater core 7 to the driver seat side passage 9a.
  • the air flowing through the driver's seat side passage 9a is heated by the heater core 7 and is the warmest air, and the state of the air at this time is called the max hot state.
  • FIG. 7 shows the circuit state when the DC motor M1 is rotated forward and the DC motor M2 is rotated reversely, and the states of the inside / outside air switching damper 4 and the air mix damper 11a.
  • the control unit 37 turns on the transistor 31H of the half bridge circuit 31, turns off the transistor 31L, turns off the transistor 32H of the half bridge circuit 32, turns on the transistor 32L, and turns on the transistor 33H of the half bridge circuit 33. Turns on and turns off the transistor 33L. This state is shown in FIG.
  • a current from the power source Vcc flows in the A direction from the transistor 31H of the half bridge circuit 31, and flows to the ground through the DC motor M1 and the transistor 32L of the half bridge circuit 32. Since the current flows in the A direction, the rotation direction of the DC motor M1 becomes the normal rotation direction, and the inside / outside air switching damper 4 rotates through the link mechanism to switch from the inside air mode to the outside air mode.
  • the current from the power source Vcc also flows in the D direction from the transistor 33H of the half bridge circuit 33, and flows to the ground through the DC motor M2 and the transistor 32L of the half bridge circuit 32. Since the current flows in the direction D, the rotation direction of the DC motor M2 is reversed, and the driver seat side air mix damper 11a rotates via the link mechanism to open the heater core 7 on the driver seat side passage 9a side, thereby bypass passage Close 10a. As a result, the entire amount of air cooled by the evaporator 6 and flowing through the driver seat side passage 9a flows through the heater core 7 to the driver seat side passage 9a. Since all the air flowing through the driver's seat side passage 9a is heated by the heater core 7, it is in a max hot state.
  • the state shown in FIG. 7 is, for example, a mode performed by an automobile occupant when preventing window fogging during heating.
  • this mode as shown in FIG. 13B, when the DC motor M1 is rotated forward to close the inside air inlet 3a with the inside / outside air damper 4 to enter the outside air mode, as shown in FIG.
  • the DC motor M2 can be reversely rotated to close the bypass passage 10a with the air mix damper 11a on the driver's seat side to enter the max hot state (denoted as MAX HOT in the figure).
  • MAX HOT max hot state
  • FIG. 8 shows the circuit state when the DC motor M1 is reversely rotated and the DC motor M2 is normally rotated, and the states of the inside / outside air switching damper 4 and the air mix damper 11a.
  • the control unit 37 turns off the transistor 31H of the half bridge circuit 31, turns on the transistor 31L, turns on the transistor 32H of the half bridge circuit 32, turns off the transistor 32L, and turns off the transistor 33H of the half bridge circuit 33.
  • the transistor 33L is turned on.
  • a current from the power source Vcc flows in the B direction from the transistor 32H of the half bridge circuit 32, and flows to the ground through the DC motor M1 and the transistor 31L of the half bridge circuit 31. Due to the current flowing in the B direction, the rotation direction of the DC motor M1 is reversed, the inside / outside air switching damper 4 is rotated via the link mechanism to close the outside air introduction port 3b, and the outside air mode is switched to the inside air mode.
  • the current from the power supply Vcc also flows in the C direction from the transistor 32H of the half bridge circuit 32, and flows to the ground through the DC motor M2 and the transistor 33L of the half bridge circuit 33. Due to the current flowing in the C direction, the rotation direction of the DC motor M2 becomes the normal rotation direction, and the driver seat side air mix damper 11a rotates through the link mechanism to cover the upstream side of the heater core 7 on the driver seat side passage 9a side. . As a result, the entire amount of air cooled by the evaporator 6 and flowing through the driver's seat side passage 9a flows through the bypass passage 10a to the driver's seat side passage 9a. Since the air flowing through the driver's seat side passage 9a is not heated by the heater core 7, it is in a max cool state.
  • the state shown in FIG. 8 is, for example, a mode that is carried out by an occupant during cooling.
  • the DC motor M1 in order to reduce the heat load during cooling, when the DC motor M1 is reversely rotated to close the outside air inlet 3b with the inside / outside air damper 4 to enter the inside air mode, the DC motor M2 is simultaneously rotated in the forward direction.
  • the air inflow side of the heater core 7 is closed with the air mix damper 11a on the seat side.
  • the air cooled by the evaporator 6 and flowing through the driver's seat side passage 9a flows through the entire bypass passage 10a. That is, when the DC motor M1 is rotated in reverse to enter the inside air mode as shown in FIG. 13A, the DC motor M2 is rotated forward as shown in FIG. Can be described).
  • the cooling performance can be improved and the immediate effect of the cooling can be achieved.
  • the mode switching dampers 12a, 12b, 13a, 13b, 14a, and 14b are opened and closed according to each mode of the face mode, the bi-level mode, the foot mode, the foot / diff mode, and the differential mode for switching the air outlet.
  • the operation of the mode switching dampers 12a, 12b, 13a, 13b, 14a, 14b in each mode is as follows.
  • the face mode is abbreviated as FACE, the bi-level mode as B / L, the foot mode as FOOT, the foot / diff mode as F / D, and the def mode as DEF.
  • the face air outlets FrDr and FrPa are opened by the mode switching dampers 12a and 12b, the foot air outlets FtDr and FtPa are closed by the mode switching dampers 13a and 13b, and the defroster air outlet DfDr by the mode switching dampers 14a and 14b. , DfPa is closed.
  • the face switching outlets FrDr and FrPa are opened by the mode switching dampers 12a and 12b
  • the foot blowing outlets FtDr and FtPa are opened by the mode switching dampers 13a and 13b
  • the defroster outlet is opened by the mode switching dampers 14a and 14b.
  • DfDr and DfPa are closed.
  • the face outlets FrDr and FrPa are closed by the mode switching dampers 12a and 12b, the foot outlets FtDr and FtPa are opened by the mode switching dampers 13a and 13b, and the defroster outlet DfDr is opened by the mode switching dampers 14a and 14b. , DfPa is slightly opened.
  • the face outlets FrDr and FrPa are closed by the mode switching dampers 12a and 12b, the foot outlets FtDr and FtP are opened by the mode switching dampers 13a and 13b, and the defroster outlet is opened by the mode switching dampers 14a and 14b.
  • DfDr and DfPa are opened.
  • the face air outlets FrDr and FrPa are closed by the mode switching dampers 12a and 12b
  • the foot air outlets FtDr and FtPa are closed by the mode switching dampers 13a and 13b
  • the defroster air outlets DfDr, DfPa is opened.
  • FIG. 13 (c) shows the correspondence between the rotation direction of the DC motor M3 and the switching of each outlet.
  • FIG. 9A shows the circuit state when the DC motor M3 is rotated forward and the state of the mode switching dampers 12a, 12b, 13a, 13b, 14a, 14b.
  • the control unit 37 turns on the transistor 34H of the half bridge circuit 34, turns off the transistor 34L, turns off the transistor 35H of the half bridge circuit 35, turns on the transistor 35L, and turns on the transistors 36H, Both 36L are turned off. This state is shown in FIG.
  • the current from the power source Vcc flows from the transistor 34H of the half bridge circuit 34 in the E direction, and flows to the ground through the DC motor M3 and the transistor 35L of the half bridge circuit 35.
  • the DC motor M4 is in a stopped state, and the DC motor M3 rotates.
  • the rotation direction of the DC motor M3 when the current flows in the E direction is defined as the forward rotation direction.
  • any of the mode switching dampers 12a, 12b, 13a, 13b, 14a, 14b rotates via the link mechanism.
  • FIG. 9A shows the face mode, for example.
  • the face air outlets FrDr and FrPa are opened by the mode switching dampers 12a and 12b, the foot air outlets FtDr and FtPa are closed by the mode switching dampers 13a and 13b, and the defroster air outlet DfDr by the mode switching dampers 14a and 14b. , DfPa is closed.
  • FIG. 9B shows the circuit state when the DC motor M3 is rotated in reverse and the state of the mode switching dampers 12a, 12b, 13a, 13b, 14a, 14b.
  • the control unit 37 turns off the transistor 34H of the half-bridge circuit 34, turns on the transistor 34L, turns on the transistor 35H of the half-bridge circuit 35, turns off the transistor 35L, and turns off the transistors 36H, Both 36L are turned off.
  • the current from the power source Vcc flows in the F direction from the transistor 34H of the half bridge circuit 32, and flows to the ground through the DC motor M3 and the transistor 34L of the half bridge circuit 34.
  • the DC motor M4 is in a stopped state, and the DC motor M3 rotates.
  • the mode switching dampers 12a and 12b rotate in the direction to close the face outlets FrDr and FrPa via the link mechanism and remain. Any one of the mode switching dampers 13a, 13b, 14a, 14b rotates in a direction to open the foot outlets FtDr, FtPa or the defroster outlets DfDr, DfPa.
  • the state shown in FIG. 9B shows a state where the face mode is switched to the differential mode due to the reverse rotation of the DC motor M3.
  • the face outlets FrDr and FrPa are closed by the mode switching dampers 12a and 12b
  • the foot outlets FtDr and FtPa are closed by the mode outlet switching dampers 13a and 13b
  • the defroster outlet is opened by the mode switching dampers 14a and 14b.
  • DfDr and DfPa are opened.
  • FIG. 10A shows the state of the circuit and the state of the air mix damper 11b when the DC motor M4 is rotated forward.
  • the control unit 37 turns off both the transistors 34H and 34L of the half bridge circuit 34, turns on the transistor 35H of the half bridge circuit 35, turns off the transistor 35L, and turns off the transistor 36H of the half bridge circuit 36.
  • the transistor 36L is turned on.
  • the current from the power source Vcc flows in the G direction from the transistor 32H of the half bridge circuit 32, and flows to the ground through the DC motor M4 and the transistor 36L of the half bridge circuit 36.
  • the DC motor M3 is in a stopped state, and the DC motor M4 rotates.
  • the rotation direction of the DC motor M4 when the current flows in the G direction is defined as the normal rotation direction.
  • the driver seat side air mix damper 11a in the driver seat side passage 9a also rotates to open the heater core 7 on the driver seat side passage 9a side and close the bypass passage 10a.
  • FIG. 10B shows the circuit state and the air mix damper 11b when the DC motor M4 is rotated in the reverse direction.
  • the control unit 37 turns off both the transistors 34H and 34L of the half bridge circuit 34, turns off the transistor 35H of the half bridge circuit 35, turns on the transistor 35L, and turns on the transistor 36H of the half bridge circuit 36.
  • the transistor 36L is turned off.
  • the current from the power source Vcc flows in the direction D from the transistor 36H of the half bridge circuit 36, and flows to the ground through the DC motor M4 and the transistor 35L of the half bridge circuit 35.
  • the DC motor M3 is in a stopped state, and the DC motor M4 rotates.
  • the rotation direction of the DC motor M4 when the current flows in the H direction is the reverse rotation direction.
  • the passenger seat side air mix damper 11b rotates via the link mechanism to cover the heater core 7 on the passenger seat side passage 9b side.
  • the entire amount of air cooled by the evaporator 6 and flowing through the passenger seat side passage 9b flows through the bypass passage 10b to the passenger seat side passage 9b.
  • the driver seat side air mix damper 11a in the driver seat side passage 9a also rotates to cover the heater core 7 on the driver seat side passage 9a side and open the bypass passage 10a.
  • FIG. 11 shows the circuit state when the DC motor M3 is rotated forward and the DC motor M4 is rotated reversely, and the state of the mode switching dampers 12a, 12b, 13a, 13b, 14a, 14b and the air mix damper 11b.
  • the control unit 37 turns on the transistor 34H of the half bridge circuit 34, turns off the transistor 34L, turns off the transistor 35H of the half bridge circuit 35, turns on the transistor 35L, and turns on the transistor 36H of the half bridge circuit 36. Turns on and turns off the transistor 36L.
  • FIG. 11 shows a face mode in which, for example, the face outlets FrDr and FrPa are opened, the foot outlets FtDr and FtPa are closed, and the defroster outlets DfDr and DfPa are closed.
  • the current from the power source Vcc also flows in the H direction from the transistor 36H of the half bridge circuit 36, and flows to the ground through the DC motor M4 and the transistor 35L of the half bridge circuit 35. Since the current flows in the H direction, the rotation direction of the DC motor M4 is reversed, and the passenger seat side air mix damper 11b rotates via the link mechanism to close the heater core 7 on the passenger seat side passage 9b side, thereby bypass passage 10a. Is released. As a result, the entire amount of air cooled by the evaporator 6 and flowing through the passenger seat side passage 9b flows through the bypass passage 10b to the passenger seat side passage 9b. Since the air flowing through the passenger seat side passage 9b is not heated by the heater core 7, it is in a max cool state. In this embodiment, the driver's seat side air mix damper 11a in the driver's seat side passage 9a is also in the max cool state.
  • the state shown in FIG. 11 shows, for example, a face mode during cooling.
  • the direct current motor M3 is rotated forward and the passenger seat side face is moved by the outlet switching damper 12b. Simultaneously with opening the outlet FrPa, it is possible to move the air mix damper 11b to the max cool side (shown as MAX COOL in the figure) by reversing the DC motor M4, so that the comfort during cooling is not impaired. .
  • FIG. 12 shows the circuit state when the DC motor M3 is rotated in the reverse direction and the DC motor M4 is rotated in the forward direction, and the state of the mode switching dampers 12a, 12b, 13a, 13b, 14a, 14b and the air mix damper 11b.
  • the control unit 37 turns off the transistor 34H of the half bridge circuit 34, turns on the transistor 34L, turns on the transistor 35H of the half bridge circuit 35, turns off the transistor 35L, and turns off the transistor 36H of the half bridge circuit 36.
  • the transistor 36L is turned on.
  • a current from the power source Vcc flows in the F direction from the transistor 35H of the half bridge circuit 35, and flows to the ground through the DC motor M3 and the transistor 34L of the half bridge circuit 34.
  • the rotation direction of the DC motor M3 is reversed by the current flowing in the direction F, and the mode switching dampers 12a and 12b rotate in the direction to close the face outlets FrDr and FrPa via the link mechanism, and the remaining mode switching dampers.
  • Any one of 13a, 13b, 14a, 14b rotates in a direction to open the foot outlets FtDr, FtPa or the defroster outlets DfDr, DfPa.
  • the state shown in FIG. 12 shows a state where the face mode is switched to the differential mode due to the reverse rotation of the DC motor M3.
  • the face air outlets FrDr and FrPa are closed by the mode switching dampers 12a and 12b
  • the foot air outlets FtDr and FtPa are closed by the mode switching dampers 13a and 13b
  • the defroster air outlets DfDr, DfPa is opened.
  • the current from the power source Vcc also flows in the G direction from the transistor 35H of the half bridge circuit 35, and flows to the ground through the DC motor M4 and the transistor 36L of the half bridge circuit 36. Due to the current flowing in the G direction, the rotation direction of the DC motor M4 becomes the normal rotation direction, and the passenger seat side air mix damper 11b rotates via the link mechanism to open the heater core 7 on the passenger seat side passage 9b side. As a result, the entire amount of air cooled by the evaporator 6 and flowing through the passenger seat side passage 9b flows through the heater core 7 to the passenger seat side passage 9b. Since all the air flowing through the passenger seat side passage 9b is heated by the heater core 7, a maximum hot state is obtained. In this embodiment, the driver seat side air mix damper 11a in the driver seat side passage 9a also rotates to open the heater core 7 on the driver seat side passage 9a side and close the bypass passage 10a.
  • the state shown in FIG. 12 is a mode performed by an automobile occupant, for example, to remove fog from a windshield and other windows.
  • the DC motor M3 in order to remove the windshield, the DC motor M3 is reversed and the passenger seat side defroster air outlet DfPa is opened by the air outlet switching damper 14b to the windshield.
  • the DC motor M4 is rotated forward to open the heater core 7 on the passenger seat side passage 9b side by the passenger seat side air mix damper 11b via the link mechanism, and close the bypass passage 10b to close the passenger seat side.
  • the air flowing through the passage 9b can be in a hot state (indicated as MAX HOT in the figure), the window glass can be fogged, and the safety during operation is increased.
  • control circuit 37 is configured to drive the half-bridge circuits 31 and 32 simultaneously, the configuration is configured to drive the half-bridge circuits 32 and 33 simultaneously, and the half-bridge circuits 31, 32, and 33 (hereinafter 31 to 33).
  • driving the half bridge circuits 34 and 35 simultaneously driving the half bridge circuits 35 and 36 simultaneously, and driving the half bridge circuits 34, 35, and 36 (hereinafter 34 to 36) simultaneously.
  • the control circuit 37 can drive all the half bridge circuits 31 to 36 simultaneously.
  • the electronic control unit 40 causes the direct current motor to bring the air temperature blown into the vehicle compartment from the outlets FrDr, FtDr, FrPa, FtPa close to the target temperature.
  • An automatic air conditioning control process for controlling M1 to M4 is executed.
  • the electronic control unit 40 outputs a control signal for controlling the DC motors M1, M2, M3, and M4 (hereinafter referred to as M1 to M4) to the control unit 37 via the LIN driver 38.
  • control unit 37 controls the half-bridge circuits 31 to 36 to control the DC motors M1 to M4, the inside / outside air switching mode, the air mix control on the driver seat side and the passenger seat side,
  • mode switching dampers 12a, 12b, 13a, 13b, 14a, and 14b opening and closing the mode switching dampers 12a, 12b, 13a, 13b, 14a, and 14b, one of the face mode, the bi-level mode, the foot mode, and the foot / def mode is performed.
  • the control unit 37 controls the half bridge circuits 31 to 36 to simultaneously drive the DC motors M1 to M4 so that the warm air is supplied to the defroster outlet DfDr. It is possible to blow out from DfPa.
  • the control unit 37 releases the defroster mode and executes the automatic air conditioning control process as described above.
  • the control circuit 37 rotates the DC motors M2 and M4 to adjust the temperature by operating the air mix dampers 11a and 11b on the driver side and the passenger side. I do.
  • the half bridge circuit 32 is shared when the control unit 37 of the motor driving device 30 controls the half bridge circuits 31 to 33 to simultaneously rotate the electric motors M1 and M2. Further, when the control unit 37 controls the half bridge circuits 34 to 36 to rotate the electric motors M3 and M4 simultaneously, the half bridge circuit 35 is shared. From this, two DC motors can perform forward rotation and reverse rotation using three half-bridge circuits. Therefore, according to the present disclosure, if there are a plurality of DC motors having 1.5 times the number of half-bridge circuits, each DC motor can be rotated forward and reverse, and 2 DC motors can be used. Compared to the case where two half-bridge circuits are used, the number of half-bridge circuits can be reduced, and the circuit configuration of the motor drive device 30 can be simplified. For this reason, the cost of the motor drive device 30 can be reduced.
  • the DC motors M1 and M2 and the DC motors M3 and M4 can be rotated simultaneously to drive the air mix dampers 11a and 11b in a short period of time, so that the air mix dampers 11a and 11b can be moved. It does not impair the comfort and responsiveness of the air conditioning in the passenger compartment.
  • an air mix servo motor that shares a half-bridge circuit is not only an air mix servo motor that performs temperature adjustment on the driver side and passenger side, but also on the rear seat. It is possible to use an air mix servo motor that adjusts the temperature.
  • the upper air mix damper is disposed above the heater core in the duct 2 and the lower air mix damper is disposed below the heater core so that the upper air mix damper and the lower air mix damper are independent.
  • the upper air mix damper can be used for air conditioning the front seat side of the vehicle interior
  • the lower air mix damper can be used for air conditioning the rear seat side of the vehicle interior, for example.
  • an automotive air conditioner is used as an air conditioner according to the present disclosure
  • An air conditioner may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 本発明は、空調装置の室内ユニット内の通風路を切り換えるダンパー(ドア)を駆動するための直流モータのHブリッジ回路を簡素化する。 内気又は外気を取り入れ、エバポレータ(6)とヒータコア(7)を利用してエアコンユニット(1A)内で空気調和を行う空気調和装置(1)用制御装置は、前記エアコンユニット(1A)内に装備された空気流路切替用の複数のダンパーを駆動する第一アクチュエータ(M1)及び第二アクチュエータ(M2)と、1つのハーフブリッジ回路(32)を共用して前記第一アクチュエータ(M1)と前記第二アクチュエータ(M2)を制御する3つのハーフブリッジ回路(31,32,33)を備える。第一アクチュエータ(M1)は前記複数のダンパーのうち内外気切替ダンパー(4)に接続され、第二アクチュエータ(M2)は前記複数のダンパーのうち少なくとも1つのエアミックスダンパー(11a,11b)に接続される。

Description

空気調和装置用制御装置 関連出願の相互参照
 本開示は、2011年11月2日に出願された日本出願番号2011-241252号と2011年11月2日に出願された日本出願番号2011-241134号に基づくもので、ここにそれらの記載内容を援用する。
 本開示は、空気調和装置用制御装置に関する。
 従来、自動車用の空調装置には、ブロワーユニットとクーラーユニットとヒーターユニットを備えた室内ユニットがある。そして、空調装置の室内ユニットには、内部で生成された冷気や暖気を室内に吹き出す吹出口が多数設けられている。また、室内ユニットの内部には、取り込む空気を室外の空気(以後外気という)にするか、室内の空気(以後内気という)にするかを切り換える通風制御弁(以後ダンパーという)や、冷気と暖気を混合して空気調和するエアミックスダンパー、空気調和された空気をそれぞれの吹出口からの吐出量を調整して吹出すモードダンパーが設けられている。ダンパーはドアと呼ばれることもある。
 特許文献1に記載の電動アクチュエータシステムには、室内ユニット内に内外気切替ドア、運転席側エアミックスドア、助手席側エアミックスドア、及び吹出モード切替ドアを備えたものが開示されている。また、引用文献1には、内外気切替ドア、運転席側エアミックスドア、助手席側エアミックスドア、及び吹出モード切替ドアのそれぞれに対応してドア毎に設けられた直流モータと、各直流モータをそれぞれ駆動する駆動回路が開示されている。
 このような空調装置における直流モータの駆動回路としてはHブリッジ回路が知られている。直流モータ駆動用のHブリッジ回路は、2つのスイッチング素子を直列接続した回路を2つ、バッテリのプラス端子とマイナス端子との間に並列に組み込み、各回路における2つのスイッチング素子の接続点の間に直流モータを組み入れたものである。4つのスイッチング素子に電界効果型のトランジスタを使用したHブリッジ回路が、例えば、特許文献2に開示されている。特許文献2では、4つの電界効果型のトランジスタのゲートに制御回路からの駆動信号が入力され、4つのトランジスタのうちオンする2つのトランジスタを切り替えることにより、直流モータに流れる電流の向きを変えて直流モータの回転方向を変えている。
 しかしながら、特許文献1に示される空調装置において、内外気切替ドアを駆動する直流モータ、運転席側エアミックスドアを駆動する直流モータ、助手席側エアミックスドアを駆動する直流モータ及び吹出モード切替ドアを駆動する直流モータの、4つの直流モータの駆動に、特許文献2に示されるHブリッジ回路を用いた場合には、4つのHブリッジ回路が必要であり、回路構成が複雑になる。
特開2006-103413号公報 特開2000-116184号公報
 本開示は、空調装置の室内ユニット内の通風路を切り換えるダンパー(ドア)を駆動するための直流モータのHブリッジ回路を簡素化すると共に、少ない回路構成でも各直流モータにそれぞれHブリッジ回路を設けた場合と変わらない制御を実行することが可能な空調装置用制御装置を提供することを目的とする。
 本開示の一形態によれば、内気又は外気を取り入れ、エバポレータとヒータコアを利用してエアコンユニット内で空気調和を行う空気調和装置の、前記エアコンユニット内に装備された空気流路切替用の複数のダンパーを駆動するアクチュエータの制御を、1つのハーフブリッジ回路を共用して3つのハーフブリッジ回路で行う空気調和装置用制御装置において、一方のアクチュエータには内外気切替ダンパーを接続し、他方のアクチュエータには運転席用又は助手席用のエアミックスダンパーを接続した。
 ゆえに、複数のダンパーを駆動するアクチュエータの制御を、1つのハーフブリッジ回路を共用して3つのハーフブリッジ回路で行うことができ、ハーフブリッジ回路の数を減らして回路構成を簡素化することができる。
 例えば、前記内外気切替ダンパーが外気取入口を閉じる内気モード時に前記一方のアクチュエータが回転する方向と、前記エアミックスダンパーが前記ヒータコアの空気取入口を閉じるように前記他方のアクチュエータが回転する方向が逆になるように、前記一方及び他方のアクチュエータを前記3つのハーフブリッジ回路に接続した。
 ゆえに、一方及び他方のアクチュエータの回転方向を逆にすることにより、3つのハーフブリッジ回路を用いて内外気切替ダンパーとエアミックスダンパーを同時に駆動することができる。
 例えば、前記一方のアクチュエータにより前記内外気切替ダンパーが前記外気取入口を全閉にする動作と、前記他方のアクチュエータにより前記エアミックスダンパーが前記ヒータコアの空気取入口を全閉にする動作とが同時に行えるように前記3つのハーフブリッジ回路を構成した。
 ゆえに、3つのハーフブリッジ回路を用いて、内外気切替ダンパーが外気取入口を全閉にする動作と、エアミックスダンパーがヒータコアの空気取入口を全閉にする動作とを同時に行うことができる。
 例えば、前記一方のアクチュエータにより前記内外気切替ダンパーが前記内気取入口を全閉にする動作と、前記他方のアクチュエータにより前記エアミックスダンパーが空気を全量前記ヒータコアに流すようにする動作とが同時に行えるように前記3つのハーフブリッジ回路を構成した。
 ゆえに、3つのハーフブリッジ回路を用いて、内外気切替ダンパーが内気取入口を全閉にする動作と、エアミックスダンパーが空気を全量ヒータコアに流すようにする動作とを同時に行うことができる。
 例えば、前記一方及び他方のアクチュエータが直流モータである。
 ゆえに、一方及び他方のアクチュエータを直流モータとしたので、車載のバッテリを電源とすることができる。
 例えば、前記他方のアクチュエータには運転席用のエアミックスダンパーを接続した。
 ゆえに、冷房時に冷却する空気を内気取入口から取り込み、エバポレータで冷却された空気を運転席側通路において全量ヒータコアをバイパスさせることができるので、運転席側の空気吹出口から吹出す空気をマックスクール状態にすることができる。
 本開示の一形態によれば、内気又は外気を取り入れ、エバポレータとヒータコアを利用してエアコンユニット内で空気調和を行う空気調和装置の、前記エアコンユニット内に装備された空気流路切替用の複数のダンパーを駆動するアクチュエータの制御を、1つのハーフブリッジ回路を共用して3つのハーフブリッジ回路で行う空気調和装置用制御装置において、一方のアクチュエータにはモード切替ダンパーを接続し、他方のアクチュエータには運転席用又は助手席用のエアミックスダンパーを接続した。
 ゆえに、複数のダンパーを駆動するアクチュエータの制御を、1つのハーフブリッジ回路を共用して3つのハーフブリッジ回路で行うことができ、ハーフブリッジ回路の数を減らして回路構成を簡素化することができる。
 例えば、前記一方のアクチュエータがある方向に回転すると、その回転量に応じて、前記モード切替ダンパーのうち、フェイス吹出口から空調風を吹き出す吹出口切替ダンパーのみが動作するフェイスモード、フェイス吹出口とフット吹出口から空調風を吹き出す吹出口切替ダンパーのみが動作するバイレベルモード、フット吹出口から空調風を吹き出す吹出口切替ダンパーのみが動作するフットモード、フット吹出口とデフロスタ吹出口から空調風を吹き出す吹出口切替ダンパーのみが動作するフット/デフモード、及びデフロスタ吹出口から空調風を吹き出す吹出口切替ダンパーのみが動作するデフモードが、この順に切り替えられ、前記一方のアクチュエータが逆方向に回転すると、その回転量に応じて、前記フェイスモード、前記バイレベルモード、前記フットモード、前記フット/デフモード、及びデフモードが、逆の順に切り替えられる。
 ゆえに、1つのアクチュエータのみを一方向に回転させることによって、フェイスモード、バイレベルモード、フットモード、フット/デフモード、及びデフモードをこの順に切り替えることができ、逆方向に回転させることによって、逆の順に切り替えることができる。
 例えば、前記フットモードでは、デフロスタ吹出口から空調風を吹き出す吹出口切替ダンパーも動作する。
 ゆえに、フットモードにおいても、デフロスタ吹出口から空調風を吹き出すことができる。
 例えば、前記モード切替ダンパーが前記フェイスモード方向に向かうように前記一方のアクチュエータが回転する方向と、前記エアミックスダンパーが前記ヒータコアの空気取入口を閉じるように前記他方のアクチュエータが回転する方向が逆になるように、前記一方及び他方のアクチュエータを前記3つのハーフブリッジ回路に接続した。
 ゆえに、一方及び他方のアクチュエータの回転方向を逆にすることにより、3つのハーフブリッジ回路を用いてモード切替ダンパーとエアミックスダンパーを同時に駆動することができる。
 例えば、前記一方のアクチュエータにより前記フェイスモードになる動作と、前記他方のアクチュエータにより前記エアミックスダンパーが前記ヒータコアの空気取入口を全閉にする動作とが同時に行えるように前記3つのハーフブリッジ回路を構成した。
 ゆえに、3つのハーフブリッジ回路を用いて、モード切替ダンパーによってフェイスモードにする動作と、エアミックスダンパーがヒータコアの空気取入口を全閉にする動作とを同時に行うことができる。
 例えば、前記一方のアクチュエータにより前記デフモードになる動作と、前記他方のアクチュエータにより前記エアミックスダンパーが空気を全量前記ヒータコアに流すようにする動作とが同時に行えるように前記3つのハーフブリッジ回路を構成した。
 ゆえに、3つのハーフブリッジ回路を用いて、モード切替ダンパーによってデフモードにする動作と、エアミックスダンパーが空気を全量ヒータコアに流すようにする動作とを同時に行うことができる。
 例えば、前記一方及び他方のアクチュエータは直流モータである。
 ゆえに、一方及び他方のアクチュエータを直流モータとしたので、車載のバッテリを電源とすることができる。
 例えば、他方のアクチュエータには助手席用のエアミックスダンパーを接続した。
 ゆえに、冷房初期に冷却風をフェイス吹出口から吹き出す時に、エバポレータで冷却された空気を助手席側通路において全量ヒータコアをバイパスさせることができるので、助手席側の空気吹出口から吹出す空気をマックスクール状態にすることができる。
一実施形態における空調装置用制御装置及び室内エアコンユニットの概略構成を示す図である。 従来のモータ駆動装置の回路構成を示す図である。 図1に示される空調装置用制御装置におけるモータ駆動装置の一実施形態の回路構成を示す図である。 (a)は図3に示されるモータ駆動装置の一実施形態の回路を内蔵する集積回路とモータとの接続を示す図、(b)は図2に示される従来のモータ駆動装置の回路を内蔵する集積回路とモータとの接続を示す図である。 制御装置による内外気切替ダンパーの開閉制御を示すものであり、(a)は外気取り入れ時の制御装置によるハーフブリッジ回路の動作を示す説明図、(b)は内気取り入れ時の制御装置によるハーフブリッジ回路の動作を示す説明図である。 制御装置による運転席側エアミックスダンパーの開閉制御を示すものであり、(a)はマックスクール時の制御装置によるハーフブリッジ回路の動作を示す説明図、(b)はマックスホット時の制御装置によるハーフブリッジ回路の動作を示す説明図である。 制御装置により内外気切替ダンパーを外気取入状態にし、運転席側エアミックスダンパーをマックスホット状態にする切替動作を、3つのハーフブリッジ回路を用いて行う時の各ハーフブリッジ回路の動作を示す説明図である。 制御装置により内外気切替ダンパーを内気取入状態にし、運転席側エアミックスダンパーをマックスクール状態にする切替動作を、3つのハーフブリッジ回路を用いて行う時の各ハーフブリッジ回路の動作を示す説明図である。 制御装置による吹出口切替ダンパーの開閉制御を示すものであり、(a)は吹出口切替ダンパーを全て閉じた時の制御装置によるハーフブリッジ回路の動作を示す説明図、(b)は吹出口切替ダンパーの1つを開けた時の制御装置によるハーフブリッジ回路の動作を示す説明図である。 制御装置による助手席側エアミックスダンパーの開閉制御を示すものであり、(a)はマックスホット時の制御装置によるハーフブリッジ回路の動作を示す説明図、(b)はマックスクール時の制御装置によるハーフブリッジ回路の動作を示す説明図である。 制御装置により吹出口切替ダンパーの1つを開けた状態にし、助手席側エアミックスダンパーをマックスクール状態にする切替動作を、3つのハーフブリッジ回路を用いて行う時の各ハーフブリッジ回路の動作を示す説明図である。 制御装置により吹出口切替ダンパーの別の1つを開けた状態にし、助手席側エアミックスダンパーをマックスホット状態にする切替動作を、3つのハーフブリッジ回路を用いて行う時の各ハーフブリッジ回路の動作を示す説明図である。 (a)は内外気モードにおける内外気切替ダンパーを駆動する直流モータの、回転方向に対する内気モードと外気モードとの関係を示す説明図、(b)は運転席側のエアミックスダンパーを駆動する直流モータの、回転方向に対するマックスクールとマックスホットとの関係を示す説明図、(c)は吹出し口モードと直流モータの、回転方向の関係を示す説明図、(d)は助手席側のエアミックスダンパーを駆動する直流モータの、回転方向に対するマックスクールとマックスホットとの関係を示す説明図である。
 図1は、本開示に係る空調装置用制御装置50を適用する自動車用空調装置1の一実施形態の概略構成を示す模式図である。
 本実施形態の自動車用空調装置1は、図1に示すように、室内エアコンユニット1Aを備えている。室内エアコンユニット1Aは空気通路2Aを有する本体2を備えている。本体2には、空気通路2Aに空気を取り込む内気導入口3aと外気導入口3b、及び空気通路2A内で空気調和された空気を室内に吹き出す吹出口FrDr、FtDr、DfDr、FrPa、FtPa、DfPaが設けられている。各吹出口FrDr、FtDr、DfDr、FrPa、FtPa、DfPaについては後に詳しく述べる。内気導入口3aは車室内の空気(内気)を空気通路2Aに取り込むものであり、外気導入口3bは車室外の空気(外気)を空気通路2Aに取り込むものである。内気導入口3aと外気導入口3bは、内外気切替ダンパー4によって開閉される。内外気切替ダンパー4は、リンク機構(図示略)を介して直流モータM1が接続されており、直流モータM1が回転すると開閉動作を行う。
 内気導入口3aと外気導入口3bの下流側の空気通路2Aには遠心式ブロワ5が設けられている。遠心式ブロワ5は、導入口3aと導入口3bの何れかから空気通路2A内に流入した空気を強制的に下流側に送風するものである。遠心式ブロワ5の送風量は遠心式ブロワ5の回転数によって決まり、遠心式ブロワ5の回転数は空調装置制御装置50によって制御することができる。遠心式ブロワ5の下流側の空気通路2Aには、遠心式ブロワ5から吹き出された空気を冷却するエバポレータ6が設けられている。
 エバポレータ6は、空調装置においてコンプレッサ等と共に周知の冷凍サイクルを構成するものであり、空気通路2A内を流れる空気を冷却する熱交換器である。エバポレータ6の下流側の空気通路2Aには、エバポレータ6によって冷却された空気を加熱する熱交換器であるヒータコア7が設けられている。ヒータコア7には自動車のエンジンを冷却して熱水となったエンジン冷却水が循環しており、ヒータコア7を通るエバポレータ6からの冷風を加熱して暖める。
 エバポレータ6の直前の上流側の空気通路2Aと下流側の空気通路2Aには、空気通路2Aを運転席側通路9aと助手席側通路9bに二分する仕切り壁8が設けられている。運転席側通路9aの上流側には、ヒータコア7の側方を通るバイパス通路10aが設けられている。バイパス通路10aは、エバポレータ6からの冷風をヒータコア7を通さずにバイパスさせて下流に流す。同様に、助手席側通路9bの上流側には、ヒータコア7の側方を通るバイパス通路10bが設けられている。バイパス通路10bは、エバポレータ6からの冷風をヒータコア7を通さずにバイパスさせて下流に流す。
 運転席側通路9aと助手席側通路9bのヒータコア7よりも上流側には、エアミックスダンパー11a、11bがそれぞれ設けられている。エアミックスダンパー11aは、その開度によって、運転席側通路9aを流れる冷風のうち、ヒータコア7を流れる風量とバイパス通路10aを流れる風量との比を調整する。ヒータコア7を通過して運転席側通路9aに流入する温風と、バイパス通路10aを通過した冷風とは、ヒータコア7の下流側の混合部9amで混合される。エアミックスダンパー11aの開度に応じて、ヒータコア7からの温風とバイパス通路10aからの冷風との混合比が変更されることにより、混合部9amにおいて混合された空気の温度がエアコンの温度設定スイッチ(図示略)によって設定された温度に調整される。
 同様に、エアミックスダンパー11bは、その開度によって、助手席側通路9bを流れる冷風のうち、ヒータコア7を流れる風量とバイパス通路10bを流れる風量との比を調整する。ヒータコア7を通過して助手席側通路9bに流入する温風とバイパス通路10bを通過した冷風とは、ヒータコア7の下流側の混合部9bmで混合される。エアミックスダンパー11bの開度に応じて、ヒータコア7からの温風とバイパス通路10bからの冷風との混合比が変更されることにより、混合部9bmにおいて混合された空気の温度がエアコンの温度設定スイッチ(図示略)によって設定された温度に調整される。
 エアミックスダンパー11aには、リンク機構(図示略)を介して直流モータM2が接続されている。エアミックスダンパー11aの開度は、直流モータM2の回転によって調整される。同様に、エアミックスダンパー11bには、リンク機構(図示略)を介して直流モータM4が接続されている。エアミックスダンパー11bの開度は、直流モータM4の回転によって調整される。
 運転席側通路9aの混合部9amの下流側の室内エアコンユニット1Aの本体2には、運転席側フェイス吹出口FrDr、運転席側フット吹出口FtDr及び運転席側デフロスタ吹出口DfDrが設けられている。運転席側フェイス吹出口FrDrは、混合部9amからの空気を運転者の上半身に向けて吹き出す。運転席側フット吹出口FtDrは、混合部9amからの空気を運転者の下半身に向けて吹き出す。運転席側デフロスタ吹出口DfDrは、混合部9amからの空気をフロントガラスの内表面のうち、運転席側領域に吹き出す。
 同様に、助手席側通路9bの混合部9bmの下流側の室内エアコンユニット1Aの本体2には、助手席側フェイス吹出口FrPa、助手席側フット吹出口FtPa及び助手席側デフロスタ吹出口DfPaが設けられている。助手席側フェイス吹出口FrPaは、混合部9bmからの空気を助手席に座った人の上半身に向けて吹き出す。助手席側フット吹出口FtPaは、混合部9bmからの空気を助手席に座った人の下半身に向けて吹き出す。助手席側デフロスタ吹出口DfPaは、混合部9bmからフロントガラスの内表面のうち、助手席側領域に空気を吹き出す。
 室内エアコンユニット1Aの本体2には、運転席側フェイス吹出口FrDrを開閉する吹出口切換ダンパー12a、運転席側フット吹出口FtDrを開閉する吹出口切換ダンパー13a及び運転席側デフロスタ吹出口DfDrを開閉する吹出口切換ダンパー14aが設けられている。同様に、室内エアコンユニット1Aの本体2には、助手席側フェイス吹出口FrPaを開閉する吹出口切換ダンパー12b、助手席側フット吹出口FtPaを開閉する吹出口切換ダンパー13b及び助手席側デフロスタ吹出口DfPaを開閉する吹出口切換ダンパー14bが設けられている。
 吹出口切換ダンパー12a、12b、13a、13b、14a、14bは全て、リンク機構(図示略)を介して直流モータM3に接続されている。吹出口切換ダンパー12a、12b、13a、13b、14a、14bの開度は、直流モータM3の回転によってそれぞれ独立してその開度が調整される。吹出口切換ダンパー12a、12b、13a、13b、14a、14bは、自動車のインストルメントパネル(図示略)にあるモードスイッチによって設定されたモードに従って、空気調和された空気を該当する吹出口から吹き出すので、モード切替ダンパーと呼ばれる。
 直流モータM1,M2,M3、M4は空調装置用制御装置50に接続されており、空調装置用制御装置50によってその回転が制御される。また、前述のように遠心式ブロワ5も空調装置用制御装置50に接続されており、空調装置用制御装置50によってその回転が制御される。空調装置用制御装置50には、詳しい説明は省略するが、内気温度センサからの車室内温度、外気温度センサからの外気温度、水温センサからの冷却水温度、エバポレータセンサからの冷媒温度や、車室内に設置されたエアコン温度調節スイッチからの希望温度の情報及びどの吹出口から車室内に空気を吹き出すかの情報が入力されている。空調装置用制御装置50はこれらの情報に基いて計算を行い、必要吹き出し温度、風量、各ダンパーの開度を決定する。空調装置用制御装置50には後述するモータ駆動装置30とエアコンECU40が含まれる。
 ここで空調装置用制御装置50に内蔵される従来のモータ駆動装置30Aの電気的構成を図2を用いて説明する。前述のように、内外気切替ダンパー4には直流モータM1が接続されており、運転席側エアミックスダンパー11aには直流モータM2が接続されており、モード切替ダンパー12a、12b、13a、13b、14a、14bには直流モータM3が接続されており、助手席側エアミックスダンパー11bには直流モータM4が接続されている。従来のモータ駆動装置30Aでは、直流モータM1がHブリッジ回路61によって回転制御され、直流モータM2がHブリッジ回路62によって回転制御され、直流モータM3がHブリッジ回路63によって回転制御され、直流モータM4がHブリッジ回路64によって回転制御されるようになっていた。
 即ち、直流モータが4つある場合は4つのHブリッジ回路が使用されており、各Hブリッジ回路61~64は制御部60によって制御されていた。各Hブリッジ回路61、62、63、64(以下61~64)は2つのハーフブリッジ回路から構成されているので、従来のモータ駆動回路30Aには8つのハーフブリッジ回路H1、H2、H3、H4、H5、H6、H7、H8(以下H1~H8)が必要であった。このため、図4(b)に示すように、4つのハーフブリッジ回路H1~H8を組み込んだ集積回路66が大型化し、スペース効率が悪かった。
 本開示はこのような従来のモータ駆動装置30Aを改良したものであり、本実施形態の自動車用空調装置1のモータ駆動装置30の電気的構成について図3を用いて説明する。自動車用空調装置1はモータ駆動装置30の他に電子制御装置(図3にはA/C ECUと記載)40を備えるが、電子制御装置40については後述する。
 モータ駆動装置30は、空調装置用制御装置を構成するものであり、直流モータM1、M2,M3,M4によって内外気切替ダンパー4、運転席側エアミックスダンパー11a、モード切替ダンパー12a、12b、13a、13b、14a、14b及び助手席側エアミックスダンパー11bを切り換えるものである。前述のように、内外気切替ダンパー4は直流モータM1によって開閉され、運転席側エアミックスダンパー11aは直流モータM2によって開閉され、モード切替ダンパー12a、12b、13a、13b、14a、14bは直流モータM3によって開閉され、助手席側エアミックスダンパー11bは直流モータM4によって開閉される。
 本実施形態のモータ駆動装置30には、直流モータM1、M2、M3、M4、直流モータM1、M2を駆動する3つのハーフブリッジ回路31、32、33、直流モータM3、M4を駆動する3つのハーフブリッジ回路34、35、36、制御部37、ローカル相互接続型ネットワークドライバ(図3にはLINドライバと記載)38、及びレギュレータ39がある。
 ハーフブリッジ回路31は、一対のトランジスタ31H、31Lを備える。トランジスタ31H、31Lは、バッテリBaのプラス電極(図3にはVccと記載され、以後電源Vccと言う)とバッテリBaのマイナス電極(図3にはグランドの記号で記載)との間で直列接続されている。本実施形態では、トランジスタ31H、31Lとして電界効果型トランジスタが用いられている。
 ハーフブリッジ回路32、33、34、35、36は、ハーフブリッジ回路31と同様に、バッテリBaのプラス電極とバッテリBaのマイナス電極との間で直列接続されている一対のトランジスタ(32H、32L)、(33H、33L)、(34H、34L)、(35H、35L)、(36H、35L)を備える。
 内外気切替ダンパー4を駆動する直流モータM1は、ハーフブリッジ回路31のトランジスタ31H、31Lの共通接続点31aとハーフブリッジ回路32のトランジスタ32H、32Lの共通接続点32aとの間に接続されている。共通接続点31aは、ハーフブリッジ回路31においてトランジスタ31Hのソース端子とトランジスタ31Lのドレイン端子とが接続されている部位である。また、共通接続点32aは、ハーフブリッジ回路32においてトランジスタ32Hのソース端子とトランジスタ32Lのドレイン端子とが接続される部位である。
 運転席側エアミックスダンパー11aを駆動する直流モータM2は、ハーフブリッジ回路32のトランジスタ32H、32Lの共通接続点32aとハーフブリッジ回路33のトランジスタ33H、33Lの共通接続点33aとの間に接続されている。共通接続点33aは、ハーフブリッジ回路33においてトランジスタ33Hのソース端子とトランジスタ33Lのドレイン端子とが接続される部位である。
 モード切替ダンパー12a、12b、13a、13b、14a、14bを駆動する直流モータM3は、ハーフブリッジ回路34のトランジスタ34H、34Lの共通接続点34aとハーフブリッジ回路35のトランジスタ35H、35Lの共通接続点35aとの間に接続されている。共通接続点34aは、ハーフブリッジ回路34においてトランジスタ34Hのソース端子とトランジスタ34Lのドレイン端子とが接続されている部位である。また、共通接続点35aは、ハーフブリッジ回路35においてトランジスタ35Hのソース端子とトランジスタ35Lのドレイン端子とが接続される部位である。
 助手席側エアミックスダンパー11bを駆動する直流モータM4は、ハーフブリッジ回路35のトランジスタ35H、35Lの共通接続点35aとハーフブリッジ回路36のトランジスタ36H、36Lの共通接続点36aとの間に接続されている。共通接続点36aは、ハーフブリッジ回路36においてトランジスタ36Hのソース端子とトランジスタ36Lのドレイン端子とが接続される部位である。
 このように、直流モータM1の回転方向の切り替えはハーフブリッジ回路31と32によって行われ、直流モータM2の回転方向の切り替えはハーフブリッジ回路32と33によって行われる。同様に、直流モータM3の回転方向の切り替えはハーフブリッジ回路34と35によって行われ、直流モータM4の回転方向の切り替えはハーフブリッジ回路35と36によって行われる。
 したがって、本実施形態では、直流モータが4つある場合は、6つのハーフブリッジ回路31、32、33、34、35、36(以下31~36)を使用するだけで、4つの直流モータの回転方向を制御することができる。即ち、直流モータが4つある場合は、図4(b)に示したように、従来のモータ駆動回路30Aでは8つのハーフブリッジ回路H1~H8が必要であったが、本実施形態では、図4(a)に示すように6つのハーフブリッジ回路31~36を使用するだけで済む。このため、6つのハーフブリッジ回路31~36を組み込んだ集積回路60を小型化することができ、スペース効率を向上させることができる。
 ハーフブリッジ回路31~36に接続する制御部37への制御信号は電子制御装置40から出力され、LINドライバ38を介して制御部37に入力される。制御部37は入力された制御信号に基づいてハーフブリッジ回路31~36の動作を制御する。更に制御部37は、ポテンショメータ21a、21b、21c、21dから出力される信号をLINドライバ38を介して電子制御装置40に出力する。ポテンショメータ21a、21b、21c、21dは、それぞれ直流モータM1、M2、M3、M4の回転軸の回転角度を検出するセンサである。
 LINドライバ38は、車載LANを介して電子制御装置40との間で通信を行うものであり、電子制御装置40と制御部37との間のインターフェイス回路を構成する。本実施形態の車載LANの通信プロトコルとしてはlocal interconnect network(LIN)が用いられている。レギュレータ39は、制御部37等に電力供給するために、バッテリBaのプラス電極とマイナス電極との間の電圧に基づいて一定の電源電圧(例えば5V)を制御部37等に出力する。
 電子制御装置40は、メモリ及びマイクロコンピュータ等を含む周知の電子制御装置である。電子制御装置40は、スイッチ41、42、43の出力信号、複数のセンサ44の出力信号、及びポテンショメータ21a、21b、21c、21dの出力信号に基づいて、直流モータM1、M2、M3、M4を制御するための制御処理を実行する。
 スイッチ41は、車室内に吹き出される空気温度を自動的に制御する自動空調モードを設定するためのスイッチであり、図3にはAUTOと記載されている。スイッチ42は、デフロスタモードを設定するためのスイッチであり、図3にはDEFと記載されている。スイッチ43は独立温度コントロールモードを設定するためのスイッチであり、図3には独立温度コントロールと記されている。独立温度コントロールモードは、図1に示した運転席側吹出口FrDr、FtDr、DfDrからの吹き出し空気温度と、助手席側吹出口FrPa、FtPa、DfPaからの吹き出し空気温度とを、それぞれ独立に制御するモードである。
 複数のセンサ44は、例えば、車室外の空気温度を検出する外気温度センサ、車室内の日射強度を検出する日射センサ、乗員により運転席側の設定温度を設定される運転席側温度設定器、乗員により助手席側の設定温度を設定される設定される運転席側温度設定器、及びエンジン冷却水の温度を検出する温度センサ等である。
 次に、内外気切替ダンパー4を開閉する直流モータM1、運転席側エアミックスダンパー11aを開閉する直流モータM2、モード切替ダンパー12a、12b、13a、13b、14a、14bを開閉する直流モータM3及び助手席側エアミックスダンパー11bを開閉する直流モータM4を正転方向、或いは逆転方向に回転させるハーフブリッジ回路31~36の動作を、各ダンパー毎に説明する。なお、各直流モータ及び各ダンパーの動作を説明する図5から図12においては、各トランジスタはそのオンオフ状態を、スイッチのオンオフに置き換えて図示してある。
 (i)内外気切替ダンパーの開閉
 (i‐a)直流モータM1の正転(A方向:外気モード)
 直流モータM1を正転させる時の回路の状態と内外気切替ダンパー4の状態が図5(a)に示される。この時は、制御部37がハーフブリッジ回路31のトランジスタ31Hをオンし、トランジスタ31Lをオフし、ハーフブリッジ回路32のトランジスタ32Hをオフし、トランジスタ32Lをオンし、ハーフブリッジ回路33のトランジスタ33H,33Lを共にオフする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路31のトランジスタ31Hからの電流がA方向に流れ、直流モータM1とハーフブリッジ回路32のトランジスタ32Lを通ってグランドに流れる。このとき、直流モータM2は停止した状態であり、直流モータM1が回転する。ここでは電流がA方向に流れた時の直流モータM1の回転方向を正転方向とする。直流モータM1が正転すると、リンク機構を介して内外気切替ダンパー4が回転して内気導入口3aを閉じ、内気モードから外気モードに切り替わる。
 なお、内気モードは、内外気切替ダンパー4により外気導入口3bを閉じ、内気導入口3aを開口して車室内の空気を導入するモードである。また、外気モードは、内外気切替ダンパー4により内気導入口3aを閉じ、外気導入口3bを開口して車室外の空気を導入するモードである。
 (i‐b)直流モータM1の逆転(B方向:内気モード)
 直流モータM1を逆転させる時の回路の状態と内外気切替ダンパー4の状態が図5(b)に示される。この時は、制御部37がハーフブリッジ回路31のトランジスタ31Hをオフし、トランジスタ31Lをオンし、ハーフブリッジ回路32のトランジスタ32Hをオンし、トランジスタ32Lをオフし、ハーフブリッジ回路33のトランジスタ33H,33Lを共にオフする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路32のトランジスタ32HからB方向に流れ、直流モータM1とハーフブリッジ回路31のトランジスタ31Lを通ってグランドに流れる。このとき、直流モータM2は停止した状態であり、直流モータM1が回転する。ここでは電流がB方向に流れた時の直流モータM1の回転方向を逆転方向とする。直流モータM1が逆転すると、リンク機構を介して内外気切替ダンパー4が回転して外気導入口3bを閉じ、外気モードから内気モードに切り替わる。
 (ii)運転席側エアミックスダンパーの開閉
 (ii‐a)直流モータM2の正転(C方向:マックスクールモード)
 直流モータM2を正転させる時の回路の状態とエアミックスダンパー11aの状態が図6(a)に示される。この時は、制御部37がハーフブリッジ回路31のトランジスタ31H,31Lを共にオフし、ハーフブリッジ回路32のトランジスタ32Hをオンし、トランジスタ32Lをオフし、ハーフブリッジ回路33のトランジスタ33Hをオフし、トランジスタ33Lをオンする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路32のトランジスタ32HからC方向に流れ、直流モータM2とハーフブリッジ回路33のトランジスタ33Lを通ってグランドに流れる。このとき、直流モータM1は停止した状態であり、直流モータM2が回転する。ここでは電流がC方向に流れた時の直流モータM2の回転方向を正転方向とする。直流モータM2が正転すると、リンク機構を介して運転席側エアミックスダンパー11aが回転して運転席側通路9a側のヒータコア7の上流側を覆う。この結果、エバポレータ6で冷やされて運転席側通路9aを流れる空気の全量がバイパス通路10aを経て運転席側通路9aに流れる。運転席側通路9aを流れる空気はヒータコア7で加熱されないので、最も冷たい状態の空気であり、この時の空気の状態がマックスクール状態と呼ばれる。
 なお、図6(a)では、助手席側通路9bにある助手席側エアミックスダンパー11bも回転して助手席側通路9b側のヒータコア7を覆っており、助手席側通路9bもマックスクール状態となっている。助手席側エアミックスダンパー11bの動作は後述するが、運転席側エアミックスダンパー11aの動作と独立して動作を行うことができる。
 (ii‐b)直流モータM2の逆転(D方向:マックスホットモード)
 直流モータM2を逆転させる時の回路の状態とエアミックスダンパー11aの状態が図6(b)に示される。この時は、制御部37がハーフブリッジ回路31のトランジスタ31H,31Lを共にオフし、ハーフブリッジ回路32のトランジスタ32Hをオフし、トランジスタ32Lをオンし、ハーフブリッジ回路33のトランジスタ33Hをオンし、トランジスタ33Lをオフする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路33のトランジスタ33HからD方向に流れ、直流モータM2とハーフブリッジ回路32のトランジスタ32Lを通ってグランドに流れる。このとき、直流モータM1は停止した状態であり、直流モータM2が回転する。ここでは電流がD方向に流れた時の直流モータM2の回転方向を逆転方向とする。直流モータM2が逆転すると、リンク機構を介して運転席側エアミックスダンパー11aが回転して運転席側通路9a側のヒータコア7を開放し、バイパス通路10aを閉じる。この結果、エバポレータ6で冷やされて運転席側通路9aを流れる空気の全量がヒータコア7を経て運転席側通路9aに流れる。運転席側通路9aを流れる空気は全量ヒータコア7で加熱されるので最も暖かい状態の空気であり、この時の空気の状態がマックスホット状態と呼ばれる。
 (iii)内外気切替ダンパーと運転席側エアミックスダンパーの同時開閉
 (iii‐a)直流モータM1の正転(A方向)、直流モータM2の逆転(D方向)
 直流モータM1を正転させ、直流モータM2を逆転させる時の回路の状態と、内外気切替ダンパー4及びエアミックスダンパー11aの状態が図7に示される。この時は、制御部37がハーフブリッジ回路31のトランジスタ31Hをオンし、トランジスタ31Lをオフし、ハーフブリッジ回路32のトランジスタ32Hをオフし、トランジスタ32Lをオンし、ハーフブリッジ回路33のトランジスタ33Hをオンし、トランジスタ33Lをオフする。この状態が図7に示される。
 これに伴い、電源Vccからの電流がハーフブリッジ回路31のトランジスタ31HからA方向に電流が流れ、直流モータM1とハーフブリッジ回路32のトランジスタ32Lを通ってグランドに流れる。電流はA方向に流れるので、直流モータM1の回転方向が正転方向となり、リンク機構を介して内外気切替ダンパー4が回転して内気モードから外気モードに切り替わる。
 また、電源Vccからの電流がハーフブリッジ回路33のトランジスタ33HからD方向にも流れ、直流モータM2とハーフブリッジ回路32のトランジスタ32Lを通ってグランドに流れる。電流はD方向に流れるので、直流モータM2の回転方向が逆転方向となり、リンク機構を介して運転席側エアミックスダンパー11aが回転して運転席側通路9a側のヒータコア7を開放し、バイパス通路10aを閉じる。この結果、エバポレータ6で冷やされて運転席側通路9aを流れる空気の全量がヒータコア7を経て運転席側通路9aに流れる。運転席側通路9aを流れる空気は全量ヒータコア7で加熱されるので、マックスホット状態となる。
 図7に示す状態は、例えば、暖房時の窓曇りを防止する時に自動車の乗員が行うモードである。このモードでは、図13(a)に示すように、直流モータM1を正転させて内外気ダンパー4で内気導入口3aを閉じて外気モードとした時に、図13(b)に示すように、同時に直流モータM2を逆転させて運転席側のエアミックスダンパー11aでバイパス通路10aを閉じてマックスホット状態(図にはMAX HOTと記載)にすることができる。この結果、安全性と暖房性能を両立させることが可能となる。
 (iii‐b)直流モータM1の逆転(B方向)、直流モータM2の正転(C方向)
 直流モータM1を逆転させ、直流モータM2を正転させる時の回路の状態と、内外気切替ダンパー4及びエアミックスダンパー11aの状態が図8に示される。この時は、制御部37がハーフブリッジ回路31のトランジスタ31Hをオフし、トランジスタ31Lをオンし、ハーフブリッジ回路32のトランジスタ32Hをオンし、トランジスタ32Lをオフし、ハーフブリッジ回路33のトランジスタ33Hをオフし、トランジスタ33Lをオンする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路32のトランジスタ32HからB方向に流れ、直流モータM1とハーフブリッジ回路31のトランジスタ31Lを通ってグランドに流れる。B方向に流れる電流により、直流モータM1の回転方向が逆転方向になり、リンク機構を介して内外気切替ダンパー4が回転して外気導入口3bを閉じ、外気モードから内気モードに切り替わる。
 また、電源Vccからの電流はハーフブリッジ回路32のトランジスタ32HからC方向にも流れ、直流モータM2とハーフブリッジ回路33のトランジスタ33Lを通ってグランドに流れる。C方向に流れる電流により、直流モータM2の回転方向が正転方向になり、リンク機構を介して運転席側エアミックスダンパー11aが回転して運転席側通路9a側のヒータコア7の上流側を覆う。この結果、エバポレータ6で冷やされて運転席側通路9aを流れる空気の全量がバイパス通路10aを経て運転席側通路9aに流れる。運転席側通路9aを流れる空気はヒータコア7で加熱されないので、マックスクール状態となる。
 図8に示す状態は、例えば、自動車の乗員が冷房時に行うモードである。このモードでは、冷房時の熱負荷を低減するために、直流モータM1を逆転させて内外気ダンパー4で外気導入口3bを閉じて内気モードとした時に、同時に直流モータM2を正転させて運転席側のエアミックスダンパー11aでヒータコア7の空気流入側を閉じる。この状態ではエバポレータ6で冷やされて運転席側通路9aを流れる空気は全量バイパス通路10aを流れる。即ち、図13(a)に示すように直流モータM1を逆転させて内気モードとした時に、図13(b)に示すように直流モータM2を正転させてマックスクール状態(図にはMAX COOLと記載)にすることができる。この結果、冷房性能を向上させることができると共に、冷房の即効性を図ることが可能となる。
 (iv)吹出口切換ダンパーの開閉
 吹出口FrDr、FtDr、DfDr、FrPa、FtPa、DfPaを開閉するモード切替ダンパー(吹出口切換ダンパー)12a、12b、13a、13b、14a、14bは、1つの直流モータM3によって開閉されるものである。ここでは、直流モータM3によるこれらのダンパーの切替を説明する前に、モード切換ダンパー12a、12b、13a、13b、14a、14b自体について説明する。
 モード切替ダンパー12a、12b、13a、13b、14a、14bは、吹出口を切り替えるフェイスモード、バイレベルモード、フットモード、フット/デフモード及びデフモードの各モードに応じて開閉される。各モードにおけるモード切換ダンパー12a、12b、13a、13b、14a、14bの動作は以下の通りである。フェイスモードはFACE、バイレベルモードはB/L、フットモードはFOOT、フット/デフモードはF/D、デフモードはDEFと略記される。
 フェイスモードでは、モード切換ダンパー12a、12bによりフェイス吹出口FrDr、FrPaが開口され、モード切換ダンパー13a、13bによりフット吹出口FtDr、FtPaが閉鎖され、かつモード切換ダンパー14a、14bによりデフロスタ吹出口DfDr、DfPaが閉鎖される。
 バイレベルモードでは、モード切換ダンパー12a、12bによりフェイス吹出口FrDr、FrPaが開口され、モード切換ダンパー13a、13bによりフット吹出口FtDr、FtPaが開口され、かつモード切換ダンパー14a、14bによりデフロスタ吹出口DfDr、DfPaが閉鎖される。
 フットモードでは、モード切換ダンパー12a、12bによりフェイス吹出口FrDr、FrPaが閉鎖され、モード切換ダンパー13a、13bによりフット吹出口FtDr、FtPaが開口され、かつモード切換ダンパー14a、14bによりデフロスタ吹出口DfDr、DfPaが若干開口される。
 フット/デフモードでは、モード切換ダンパー12a、12bによりフェイス吹出口FrDr、FrPaが閉鎖され、モード切換ダンパー13a、13bによりフット吹出口FtDr、FtPが開口され、かつモード切換ダンパー14a、14bによりデフロスタ吹出口DfDr、DfPaが開口される。
 デフモードでは、モード切換ダンパー12a、12bによりフェイス吹出口FrDr、FrPaが閉鎖され、モード切換ダンパー13a、13bによりフット吹出口FtDr、FtPaが閉鎖され、かつモード切換ダンパー14a、14bによりデフロスタ吹出口DfDr、DfPaが開口される。
 そして、直流モータM3が正転方向に回転すると、フェイスモード、バイレベルモード、フットモード、フット/デフモード→デフモードの順に吹出口モードが切り替わるようにリンク機構が構成されている。一方、直流モータM3が逆転方向に回転すると、デフモード、フット/デフモード、フットモード、バイレベルモード、フェイスモードの順に吹出口モードが切り替わるようにリンク機構が構成されている。図13(c)は、直流モータM3の回転方向と各吹出口の切り替えの対応を示すものである。直流モータM3の回転がリンク機構を介してモード切換ダンパー12a、12b、13a、13b、14a、14bに伝わると、フェイスモード(FACE)、バイレベルモード(B/L)、フットモード(FOOT)、フット/デフモード(F/D)、及びデフモード(DEF)のうち、何れかの吹出口モードが実施される。
 (iv‐a)直流モータM3の正転(E方向)
 直流モータM3を正転させる時の回路の状態と、モード切換ダンパー12a、12b、13a、13b、14a、14bの状態が図9(a)に示される。この時は、制御部37がハーフブリッジ回路34のトランジスタ34Hをオンし、トランジスタ34Lをオフし、ハーフブリッジ回路35のトランジスタ35Hをオフし、トランジスタ35Lをオンし、ハーフブリッジ回路36のトランジスタ36H,36Lを共にオフする。この状態が図9(a)に示される。
 これに伴い、電源Vccからの電流がハーフブリッジ回路34のトランジスタ34HからE方向に流れ、直流モータM3とハーフブリッジ回路35のトランジスタ35Lを通ってグランドに流れる。このとき、直流モータM4は停止した状態であり、直流モータM3が回転する。ここでは電流がE方向に流れた時の直流モータM3の回転方向を正転方向とする。直流モータM3が正転すると、リンク機構を介してモード切換ダンパー12a、12b、13a、13b、14a、14bの何れかが回転する。図9(a)は、例えば、フェイスモードを示している。フェイスモードでは、モード切換ダンパー12a、12bによりフェイス吹出口FrDr、FrPaが開口され、モード切換ダンパー13a、13bによりフット吹出口FtDr、FtPaが閉鎖され、かつモード切換ダンパー14a、14bによりデフロスタ吹出口DfDr、DfPaが閉鎖されている。
 (iv‐b)直流モータM3の逆転(F方向)
 直流モータM3を逆転させる時の回路の状態と、モード切換ダンパー12a、12b、13a、13b、14a、14bの状態が図9(b)に示される。この時は、制御部37がハーフブリッジ回路34のトランジスタ34Hをオフし、トランジスタ34Lをオンし、ハーフブリッジ回路35のトランジスタ35Hをオンし、トランジスタ35Lをオフし、ハーフブリッジ回路36のトランジスタ36H,36Lを共にオフする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路32のトランジスタ34HからF方向に流れ、直流モータM3とハーフブリッジ回路34のトランジスタ34Lを通ってグランドに流れる。このとき、直流モータM4は停止した状態であり、直流モータM3が回転する。ここでは電流がF方向に流れた時の直流モータM3の回転方向を逆転方向とすると、リンク機構を介してモード切換ダンパー12a、12bがフェイス吹出口FrDr、FrPaを閉じる方向に回転して、残りのモード切換ダンパー13a、13b、14a、14bの何れかが、フット吹出口FtDr、FtPa又はデフロスタ吹出口DfDr、DfPaを開く方向に回転する。
 図9(b)に示す状態は、直流モータM3の逆転により、フェイスモードからデフモードに切り替わった状態を示している。デフモードでは、モード切換ダンパー12a、12bによりフェイス吹出口FrDr、FrPaが閉鎖され、モード吹出口切換ダンパー13a、13bによりフット吹出口FtDr、FtPaが閉鎖され、かつモード切換ダンパー14a、14bによりデフロスタ吹出口DfDr、DfPaが開口される。
 (v)助手席側エアミックスダンパーの開閉
 (v‐a)直流モータM4の正転(G方向:マックスホットモード)
 直流モータM4を正転させる時の回路の状態とエアミックスダンパー11bの状態が図10(a)に示される。この時は、制御部37がハーフブリッジ回路34のトランジスタ34H,34Lを共にオフし、ハーフブリッジ回路35のトランジスタ35Hをオンし、トランジスタ35Lをオフし、ハーフブリッジ回路36のトランジスタ36Hをオフし、トランジスタ36Lをオンする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路32のトランジスタ32HからG方向に流れ、直流モータM4とハーフブリッジ回路36のトランジスタ36Lを通ってグランドに流れる。このとき、直流モータM3は停止した状態であり、直流モータM4が回転する。ここでは電流がG方向に流れた時の直流モータM4の回転方向を正転方向とする。直流モータM4が正転すると、リンク機構を介して助手席側エアミックスダンパー11bが回転して助手席側通路9b側のヒータコア7を開放し、バイパス通路10bを閉じる。この結果、エバポレータ6で冷やされて助手席側通路9bを流れる空気の全量がヒータコア7を経て助手席側通路9bに流れる。助手席側通路9bを流れる空気は全量ヒータコア7で加熱されるので、最も暖かいマックスホット状態の空気である。この実施形態では、運転席側通路9aにある運転席側エアミックスダンパー11aも回転して運転席側通路9a側のヒータコア7を開放し、バイパス通路10aを閉じている。
 (v‐b)直流モータM4の逆転(H方向:マックスクールモード)
 直流モータM4を逆転させる時の回路の状態とエアミックスダンパー11bの状態が図10(b)に示される。この時は、制御部37がハーフブリッジ回路34のトランジスタ34H,34Lを共にオフし、ハーフブリッジ回路35のトランジスタ35Hをオフし、トランジスタ35Lをオンし、ハーフブリッジ回路36のトランジスタ36Hをオンし、トランジスタ36Lをオフする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路36のトランジスタ36HからD方向に流れ、直流モータM4とハーフブリッジ回路35のトランジスタ35Lを通ってグランドに流れる。このとき、直流モータM3は停止した状態であり、直流モータM4が回転する。ここでは電流がH方向に流れた時の直流モータM4の回転方向を逆転方向とする。直流モータM4が逆転すると、リンク機構を介して助手席側エアミックスダンパー11bが回転して助手席側通路9b側のヒータコア7を覆う。この結果、エバポレータ6で冷やされて助手席側通路9bを流れる空気の全量がバイパス通路10bを経て助手席側通路9bに流れる。助手席側通路9bを流れる空気はヒータコア7で加熱されないので、最も冷たいマックスクール状態の空気である。この実施形態では、運転席側通路9aにある運転席側エアミックスダンパー11aも回転して運転席側通路9a側のヒータコア7を覆い、バイパス通路10aを開放している。
 (vi)吹出口切換ダンパーの開閉と運転席側エアミックスダンパーの同時開閉
 (vi‐a)直流モータM3の正転(E方向)、直流モータM4の逆転(H方向)
 直流モータM3を正転させ、直流モータM4を逆転させる時の回路の状態と、モード切換ダンパー12a、12b、13a、13b、14a、14b及びエアミックスダンパー11bの状態が図11に示される。この時は、制御部37がハーフブリッジ回路34のトランジスタ34Hをオンし、トランジスタ34Lをオフし、ハーフブリッジ回路35のトランジスタ35Hをオフし、トランジスタ35Lをオンし、ハーフブリッジ回路36のトランジスタ36Hをオンし、トランジスタ36Lをオフする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路34のトランジスタ34HからE方向に電流が流れ、直流モータM3とハーフブリッジ回路35のトランジスタ35Lを通ってグランドに流れる。電流はA方向に流れるので、直流モータM3の回転方向が正転方向となり、リンク機構を介して吹出口切換ダンパー12a、12b、13a、13b、14a、14bの何れかが回転する。図11は、例えば、フェイス吹出口FrDr、FrPaが開口され、フット吹出口FtDr、FtPaが閉鎖され、かつデフロスタ吹出口DfDr、DfPaが閉鎖されるフェイスモードを示している。
 また、電源Vccからの電流がハーフブリッジ回路36のトランジスタ36HからH方向にも流れ、直流モータM4とハーフブリッジ回路35のトランジスタ35Lを通ってグランドに流れる。電流はH方向に流れるので、直流モータM4の回転方向が逆転方向となり、リンク機構を介して助手席側エアミックスダンパー11bが回転して助手席側通路9b側のヒータコア7を閉じ、バイパス通路10aを開放する。この結果、エバポレータ6で冷やされて助手席側通路9bを流れる空気の全量がバイパス通路10bを経て助手席側通路9bに流れる。助手席側通路9bを流れる空気はヒータコア7で加熱されないので、マックスクール状態となる。この実施形態では、運転席側通路9aにある運転席側エアミックスダンパー11aもマックスクール状態となっている。
 図11に示す状態は、例えば、冷房時のフェイスモードを示している。このモードでは、冷房初期に冷風を助手席の乗員の顔に向けて吹き出す際に、図13(d)に示すように、直流モータM3を正転させて吹出口切替ダンパー12bによって助手席側フェイス吹出口FrPaを開口すると同時に、直流モータM4を逆転させてエアミックスダンパー11bをマックスクール側(図にはMAX COOLと記載)に動かすことが可能であるため、冷房時の快適性が損なわれない。
 (vi‐b)直流モータM3の逆転(F方向)、直流モータM4の正転(G方向)
 直流モータM3を逆転させ、直流モータM4を正転させる時の回路の状態と、モード切換ダンパー12a、12b、13a、13b、14a、14b及びエアミックスダンパー11bの状態が図12に示される。この時は、制御部37がハーフブリッジ回路34のトランジスタ34Hをオフし、トランジスタ34Lをオンし、ハーフブリッジ回路35のトランジスタ35Hをオンし、トランジスタ35Lをオフし、ハーフブリッジ回路36のトランジスタ36Hをオフし、トランジスタ36Lをオンする。
 これに伴い、電源Vccからの電流がハーフブリッジ回路35のトランジスタ35HからF方向に流れ、直流モータM3とハーフブリッジ回路34のトランジスタ34Lを通ってグランドに流れる。F方向に流れる電流により、直流モータM3の回転方向が逆転方向になり、リンク機構を介してモード切換ダンパー12a、12bがフェイス吹出口FrDr、FrPaを閉じる方向に回転して、残りのモード切換ダンパー13a、13b、14a、14bの何れかが、フット吹出口FtDr、FtPa又はデフロスタ吹出口DfDr、DfPaを開く方向に回転する。
 図12に示す状態は、直流モータM3の逆転により、フェイスモードからデフモードに切り替わった状態を示している。デフモードでは、モード切換ダンパー12a、12bによりフェイス吹出口FrDr、FrPaが閉じられ、モード切換ダンパー13a、13bによりフット吹出口FtDr、FtPaが閉じられ、かつモード切換ダンパー14a、14bによりデフロスタ吹出口DfDr、DfPaが開口される。
 また、電源Vccからの電流はハーフブリッジ回路35のトランジスタ35HからG方向にも流れ、直流モータM4とハーフブリッジ回路36のトランジスタ36Lを通ってグランドに流れる。G方向に流れる電流により、直流モータM4の回転方向が正転方向になり、リンク機構を介して助手席側エアミックスダンパー11bが回転して助手席側通路9b側のヒータコア7を開放する。この結果、エバポレータ6で冷やされて助手席側通路9bを流れる空気の全量がヒータコア7を経て助手席側通路9bに流れる。助手席側通路9bを流れる空気は全量ヒータコア7で加熱されるので、マックスホット状態となる。この実施形態では、運転席側通路9aにある運転席側エアミックスダンパー11aも回転して運転席側通路9a側のヒータコア7を開放し、バイパス通路10aを閉じている。
 図12に示す状態は、例えば、フロントガラスや他の窓の曇りを取るために自動車の乗員が行うモードである。このモードでは、フロントガラスの曇りを取るために、図13(d)に示すように、直流モータM3を逆転させて吹出口切替ダンパー14bによって助手席側デフロスタ吹出口DfPaを開口してフロントガラスに温風を吹き出すと同時に、直流モータM4を正転させてリンク機構を介して助手席側エアミックスダンパー11bによって助手席側通路9b側のヒータコア7を開放し、バイパス通路10bを閉じて助手席側通路9bを流れる空気がマックスホット状態(図にはMAX HOTと記載)にすることができ、窓ガラスの曇りをとることができ、運転時の安全性が高まる。
 以上説明した実施形態では、制御回路37が、ハーフブリッジ回路31と32を同時に駆動する形態、ハーフブリッジ回路32と33を同時に駆動する形態及びハーフブリッジ回路31,32,33(以下31~33)を同時に駆動する形態と、ハーフブリッジ回路34と35を同時に駆動する形態、ハーフブリッジ回路35と36を同時に駆動する形態及びハーフブリッジ回路34,35,36(以下34~36)を同時に駆動する形態を分けて説明した。しかし、制御回路37はハーフブリッジ回路31~36を全て同時に駆動することも可能である。
 次に、本実施形態の電子制御装置40の制御処理について説明する。
 まず、スイッチ41により自動空調モードが設定されている場合には、電子制御装置40は、吹出口FrDr、FtDr、FrPa、FtPaから車室内に吹き出される空気温度を目標温度に近づけるように直流モータM1~M4を制御するための自動空調制御処理を実行する。自動空調制御処理の実行に際して、電子制御装置40は、直流モータM1,M2,M3,M4(以下M1~M4)を制御するための制御信号をLINドライバ38を介して制御部37に出力する。
 これに伴い、制御部37は、前述のように、ハーフブリッジ回路31~36を制御して直流モータM1~M4を制御し、内外気切替モード、運転席側と助手席側のエアミックス制御、及びモード切換ダンパー12a、12b、13a、13b、14a、14bを開閉することによりフェイスモード、バイレベルモード、フットモード、及びフット/デフモードのうちいずれかの1つの吹出口モードを実施する。
 また、スイッチ42によりデフロスタモードを設定された場合には、制御部37は、ハーフブリッジ回路31~36を制御することにより、直流モータM1~M4を同時に駆動して、暖気をデフロスタ吹出口DfDrとDfPaから吹出すことが可能である。また、スイッチ41により自動空調モードが設定された場合には、制御部37はデフロスタモードを解除し、上述のように自動空調制御処理を実行する。
 ここで、スイッチ43により独立温度コントロールモードが設定された場合は、制御回路37は直流モータM2,M4を回転させて運転席側と助手席側のエアミックスダンパー11a、11bを連動させて温度調節を行う。
 以上説明した本実施形態では、モータ駆動装置30の制御部37がハーフブリッジ回路31~33を制御して電動モータM1、M2を同時に回転させる際に、ハーフブリッジ回路32を共用している。また、制御部37がハーフブリッジ回路34~36を制御して電動モータM3,M4を同時に回転させる際にはハーフブリッジ回路35を共用している。このことから、2つの直流モータは、3つのハーフブリッジ回路を用いて正転と逆転を行わせることができる。よって、本開示によれば、複数の直流モータは、その1.5倍の数のハーフブリッジ回路があれば、各直流モータを正転と逆転させることができ、1つの直流モータに対して2つのハーフブリッジ回路を用いる場合に比べて、ハーフブリッジ回路の数を低減でき、モータ駆動装置30の回路構成を簡素化することができる。このため、モータ駆動装置30のコストの低減を図ることができる。
 そして、本実施形態では、直流モータM1とM2及び直流モータM3とM4を同時に回転させて、エアミックスダンパー11a、11bを短期間で駆動させることができるので、エアミックスダンパー11a、11bの移動に伴う車室内の空気調和状態の快適性、応答性を損なうことはない。
 本開示に係る他の実施形態として、ハーフブリッジ回路を共用するエアミックス用サーボモータは、運転席側の温度調整と助手席側の温度調整を行うエアミックス用サーボモータだけでなく、後席の温度調整を行うエアミックス用サーボモータを用いることが可能である。
 具体的には、ダクト2内にてヒータコアの上側に上側エアミックスダンパーを配置し、ヒータコアの下側に下側エアミックスダンパーを配置して、上側エアミックスダンパーと下側エアミックスダンパーとを独立に駆動可能にし、上側エアミックスダンパーは、例えば車室内前席側を空調するために使用し、下側エアミックスダンパーは、例えば、車室内後席側を空調するために使用することができる。
 上記実施形態では、本開示に係る空調装置として自動車用空調装置を用いた例を示したが、これに代えて、本開示に係る空調装置として住宅用空調装置、事務所用空調装置等の設置用空調装置を用いてもよい。
 本開示は、上記実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、好適な様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (16)

  1.  内気又は外気を取り入れ、エバポレータ(6)とヒータコア(7)を利用してエアコンユニット(1A)内で空気調和を行う空気調和装置(1)用制御装置において、
     前記エアコンユニット(1A)内に装備された空気流路切替用の複数のダンパーを駆動する第一アクチュエータ(M1)と第二アクチュエータ(M2)と、
     1つのハーフブリッジ回路(32)を共用して前記第一アクチュエータ(M1)と前記第二アクチュエータ(M2)を制御する3つのハーフブリッジ回路(31,32,33)を備え、
     第一アクチュエータ(M1)は前記複数のダンパーのうち内気と外気を切り替える内外気切替ダンパー(4)に接続され、
     第二アクチュエータ(M2)は前記複数のダンパーの少なくとも1つのエアミックスダンパー(11a,11b)に接続される空気調和装置(1)用制御装置。
  2.  前記第二アクチュエータ(M2)に接続される前記複数のダンパーの少なくとも1つのエアミックスダンパーは、車両の運転席用又は助手席用のエアミックスダンパー(11a,11b)であることを特徴とする請求項1に記載の空気調和装置用制御装置。
  3.  前記内外気切替ダンパー(4)が外気取入口を閉じる内気モード時に前記第一アクチュエータ(M1)が回転する方向と、前記エアミックスダンパー(11a,11b)が前記ヒータコア(7)の空気取入口を閉じるように前記第二アクチュエータ(M2)が回転する方向が逆になるように、前記第一アクチュエータ(M1)及び前記第二アクチュエータ(M2)が前記3つのハーフブリッジ回路(31,32,33)に接続される請求項1または2に記載の空気調和装置用制御装置。
  4.  前記第一アクチュエータ(M1)により前記内外気切替ダンパー(4)が前記外気取入口を全閉にする動作と、前記第二アクチュエータ(M2)により前記エアミックスダンパー(11a,11b)が前記ヒータコア(7)の空気取入口を全閉にする動作とが同時に行えるように前記3つのハーフブリッジ回路(31,32,33)が構成される請求項3に記載の空気調和装置用制御装置。
  5.  前記第一アクチュエータ(M1)により前記内外気切替ダンパー(4)が前記内気取入口を全閉にする動作と、前記第二アクチュエータ(M2)により前記エアミックスダンパー(11a,11b)が空気を全量前記ヒータコア(7)に流すようにする動作とが同時に行えるように前記3つのハーフブリッジ回路(31,32,33)が構成される請求項3に記載の空気調和装置用制御装置。
  6.  前記第一アクチュエータ(M1)及び前記第二アクチュエータ(M2)が直流モータである請求項1から5の何れか1項に記載の空気調和装置用制御装置。
  7.  前記第二アクチュエータ(M2)は、車両の運転席用のエアミックスダンパー(11a)に接続される請求項1から6の何れか1項に記載の空気調和装置用制御装置。
  8.  内気又は外気を取り入れ、エバポレータ(6)とヒータコア(7)を利用してエアコンユニット(1A)内で空気調和を行う空気調和装置(1)用制御装置において、
     前記エアコンユニット(1A)内に装備された空気流路切替用の複数のダンパーを駆動する第三アクチュエータ(M3)と第四アクチュエータ(M4)と、
     1つのハーフブリッジ回路(35)を共用して前記第三アクチュエータ(M3)と前記第四アクチュエータ(M4)を制御する3つのハーフブリッジ回路(34,35,36)を備え、
     第三アクチュエータ(M3)は前記複数のダンパーのうちモードを切り替えるモード切替ダンパー(12a、12b、13a、13b、14a、14b)に接続され、
     第四アクチュエータ(M4)は前記複数のダンパーの少なくとも1つのエアミックスダンパー(11a,11b)に接続される空気調和装置(1)用制御装置。
  9.  前記第四アクチュエータ(M4)に接続される前記複数のダンパーの少なくとも1つのエアミックスダンパーは、車両の運転席用又は助手席用のエアミックスダンパー(11a,11b)であることを特徴とする請求項8に記載の空気調和装置用制御装置。
  10.  前記第三アクチュエータ(M3)が一方向に回転すると、その回転量に応じて、前記モード切替ダンパー(12a、12b、13a、13b、14a、14b)のうち、フェイス吹出口(FrDr、FrPa)から空調風を吹き出す吹出口切替ダンパーのみが動作するフェイスモード、フェイス吹出口(FrDr、FrPa)とフット吹出口(FtDr、FtPa)から空調風を吹き出す吹出口切替ダンパーのみが動作するバイレベルモード、フット吹出口(FtDr、FtPa)から空調風を吹き出す吹出口切替ダンパーのみが動作するフットモード、フット吹出口(FtDr、FtPa)とデフロスタ吹出口(DfDr、DfPa)から空調風を吹き出す吹出口切替ダンパーのみが動作するフット/デフモード、及びデフロスタ吹出口(DfDr、DfPa)から空調風を吹き出す吹出口切替ダンパーのみが動作するデフモードが、この順に切り替えられ、
     前記第三アクチュエータ(M3)が逆方向に回転すると、その回転量に応じて、前記フェイスモード、前記バイレベルモード、前記フットモード、前記フット/デフモード、及びデフモードが、逆の順に切り替えられる請求項9に記載の空気調和装置用制御装置。
  11.  前記フットモードでは、デフロスタ吹出口(DfDr、DfPa)から空調風を吹き出す吹出口切替ダンパーも動作する請求項10に記載の空気調和装置用制御装置。
  12.  前記モード切替ダンパー(12a、12b、13a、13b、14a、14b)が前記フェイスモード方向に向かうように前記第三アクチュエータ(M3)が回転する方向と、前記エアミックスダンパー(11a,11b)が前記ヒータコア(7)の空気取入口を閉じるように前記第四アクチュエータ(M4)が回転する方向が逆になるように、前記第三アクチュエータ(M3)と前記第四アクチュエータ(M4)を前記3つのハーフブリッジ回路(34,35,36)に接続して構成される請求項10又は11に記載の空気調和装置用制御装置。
  13.  前記第三アクチュエータ(M3)により前記フェイスモードになる動作と、前記第四アクチュエータ(M4)により前記エアミックスダンパー(11a,11b)が前記ヒータコア(7)の空気取入口を全閉にする動作とが同時に行えるように前記3つのハーフブリッジ回路(34,35,36)が構成される請求項12に記載の空気調和装置用制御装置。
  14.  前記第三アクチュエータ(M3)により前記デフモードになる動作と、前記第四アクチュエータ(M4)により前記エアミックスダンパー(11a,11b)が空気を全量前記ヒータコア(7)に流すようにする動作とが同時に行えるように前記3つのハーフブリッジ回路(34,35,36)が構成される請求項12に記載の空気調和装置用制御装置。
  15.  前記第三アクチュエータ(M3)と前記第四アクチュエータ(M4)が直流モータである請求項8から14の何れか1項に記載の空気調和装置用制御装置。
  16.  前記第四アクチュエータ(M4)は助手席用のエアミックスダンパー(11b)に接続される請求項8から15の何れか1項に記載の空気調和装置用制御装置。
PCT/JP2012/006934 2011-11-02 2012-10-29 空気調和装置用制御装置 WO2013065286A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012004590.4T DE112012004590B4 (de) 2011-11-02 2012-10-29 Steuerungsvorrichtung für eine Klimaanlage
CN201280051105.9A CN103889748B (zh) 2011-11-02 2012-10-29 用于空气调节器的控制装置
US14/355,151 US9581352B2 (en) 2011-11-02 2012-10-29 Control device for air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-241134 2011-11-02
JP2011241134A JP5569506B2 (ja) 2011-11-02 2011-11-02 空気調和装置用制御装置
JP2011241252A JP5594274B2 (ja) 2011-11-02 2011-11-02 空気調和装置用制御装置
JP2011-241252 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013065286A1 true WO2013065286A1 (ja) 2013-05-10

Family

ID=48191662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006934 WO2013065286A1 (ja) 2011-11-02 2012-10-29 空気調和装置用制御装置

Country Status (4)

Country Link
US (1) US9581352B2 (ja)
CN (1) CN103889748B (ja)
DE (1) DE112012004590B4 (ja)
WO (1) WO2013065286A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709289B2 (en) 2012-05-31 2017-07-18 Denso Corporation Control unit for air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150114325A1 (en) * 2013-10-31 2015-04-30 Ford Global Technologies, Llc Hvac flow control for micro-zone system
KR102459696B1 (ko) * 2015-02-10 2022-10-31 한온시스템 주식회사 차량용 공조장치
DE102015220854A1 (de) * 2015-10-26 2017-04-27 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg Elektrische Anordnung und Verfahren zum Ansteuern wenigstens zweier Elektromotoren
US10415848B2 (en) * 2016-10-10 2019-09-17 Johnson Controls Technology Company Systems and methods for pivotable evaporator coils
CN106958926B (zh) * 2017-05-10 2020-05-29 青岛海尔空调器有限总公司 空调器及其除霜控制方法
DE102021114707A1 (de) 2021-06-08 2022-12-08 Minebea Mitsumi Inc. Steuerschaltung und Verfahren zum Betreiben einer Steuerschaltung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015898A (ja) * 2002-06-05 2004-01-15 Canon Inc ステッピングモータ駆動装置
JP2004345558A (ja) * 2003-05-23 2004-12-09 Calsonic Kansei Corp サーボモータ制御装置
JP2006103413A (ja) * 2004-10-01 2006-04-20 Denso Corp 電動アクチュエータシステム
JP2011201473A (ja) * 2010-03-26 2011-10-13 Denso Corp 空調機器駆動装置およびそれを用いた車両用空調装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639252C1 (de) * 1996-09-25 1997-11-20 Hella Kg Hueck & Co Frei konfigurierbares Halbleiter-Treiberschaltungselement zur Ansteuerung elektrischer Lasten
JP3918319B2 (ja) * 1998-09-25 2007-05-23 株式会社デンソー 電気自動車用空調装置
JP2000116184A (ja) * 1998-10-01 2000-04-21 Aichi Mach Ind Co Ltd 直流モータ駆動回路
JP2000201498A (ja) * 1998-12-28 2000-07-18 Canon Inc ステッピングモ―タの駆動回路および駆動方法
US6690560B2 (en) * 2001-04-24 2004-02-10 Denso Corporation Electrical load controller and vehicle air conditioner using the same
JP3933030B2 (ja) * 2002-10-22 2007-06-20 株式会社デンソー ハイブリッド車用空調装置
JP4179046B2 (ja) * 2003-05-16 2008-11-12 株式会社デンソー リンク機構
US20040232864A1 (en) * 2003-05-23 2004-11-25 Hideki Sunaga Apparatus for controlling motor
JP4687443B2 (ja) * 2005-12-21 2011-05-25 株式会社デンソー ダイアル式操作装置
JP2009090873A (ja) 2007-10-10 2009-04-30 Denso Corp 車両用空調装置
US20110162409A1 (en) 2010-01-07 2011-07-07 Denso Corporation Air conditioning system for vehicle
JP5287740B2 (ja) 2010-01-21 2013-09-11 株式会社デンソー 空気通路開閉装置およびそれを備えた車両用空調装置
JP2012121517A (ja) 2010-12-10 2012-06-28 Denso Corp 空調装置用制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015898A (ja) * 2002-06-05 2004-01-15 Canon Inc ステッピングモータ駆動装置
JP2004345558A (ja) * 2003-05-23 2004-12-09 Calsonic Kansei Corp サーボモータ制御装置
JP2006103413A (ja) * 2004-10-01 2006-04-20 Denso Corp 電動アクチュエータシステム
JP2011201473A (ja) * 2010-03-26 2011-10-13 Denso Corp 空調機器駆動装置およびそれを用いた車両用空調装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709289B2 (en) 2012-05-31 2017-07-18 Denso Corporation Control unit for air conditioner

Also Published As

Publication number Publication date
US20140284023A1 (en) 2014-09-25
DE112012004590T5 (de) 2014-08-21
CN103889748B (zh) 2016-05-11
DE112012004590B4 (de) 2020-10-29
US9581352B2 (en) 2017-02-28
CN103889748A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2013065286A1 (ja) 空気調和装置用制御装置
US9548683B2 (en) Motor controller
JP3960020B2 (ja) 車両用空調装置
JP2008296717A (ja) 車両用空調装置
WO2016147590A1 (ja) アクチュエータ制御システム
JP4596106B2 (ja) 車両用空調装置
JP5594274B2 (ja) 空気調和装置用制御装置
US11820201B2 (en) Method for controlling vehicle HVAC system
JP5569506B2 (ja) 空気調和装置用制御装置
JP2012121517A (ja) 空調装置用制御装置
JP5549639B2 (ja) 車両用空調装置
WO2016194674A1 (ja) 車両用空調装置
JPH0752635A (ja) 車両用空気調和装置
KR101342945B1 (ko) 루프 개폐형 자동차의 공조 제어장치
JP6048285B2 (ja) モータ制御装置
JP2003104028A (ja) 車両用空調装置
JP2000238526A (ja) 車両用空調装置
JP2000016053A (ja) 車両用空調装置
JP2605425Y2 (ja) 仮眠設備の空調構造
WO2012169335A1 (ja) 車両用空調装置
JPH0532124A (ja) 車両用空気調和装置
KR20020056524A (ko) 자동차의 환기장치
JPH10230730A (ja) 車両用空調装置
JPS62292520A (ja) 自動車用空気調和装置
JP2003267036A (ja) 車両用空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280051105.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120045904

Country of ref document: DE

Ref document number: 112012004590

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846278

Country of ref document: EP

Kind code of ref document: A1