WO2013061926A1 - 弾性表面波装置 - Google Patents

弾性表面波装置 Download PDF

Info

Publication number
WO2013061926A1
WO2013061926A1 PCT/JP2012/077243 JP2012077243W WO2013061926A1 WO 2013061926 A1 WO2013061926 A1 WO 2013061926A1 JP 2012077243 W JP2012077243 W JP 2012077243W WO 2013061926 A1 WO2013061926 A1 WO 2013061926A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface acoustic
acoustic wave
wave
piezoelectric body
velocity
Prior art date
Application number
PCT/JP2012/077243
Other languages
English (en)
French (fr)
Inventor
神藤 始
岡田 圭司
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013540769A priority Critical patent/JP5720797B2/ja
Priority to EP12844374.4A priority patent/EP2773040B1/en
Priority to CN201280051904.6A priority patent/CN103891139B/zh
Publication of WO2013061926A1 publication Critical patent/WO2013061926A1/ja
Priority to US14/254,984 priority patent/US9276558B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • H03H9/02622Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves of the surface, including back surface
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14594Plan-rotated or plan-tilted transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0033Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only
    • H03H9/0042Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only the balanced terminals being on opposite sides of the track
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/0585Holders; Supports for surface acoustic wave devices consisting of an adhesive layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to a surface acoustic wave device having a plurality of surface acoustic wave elements using a piezoelectric body, and in particular, a surface acoustic wave using a surface acoustic wave having a higher speed of sound than a bulk wave propagating through a piezoelectric body. Wave device.
  • resonators and bandpass filters have been widely used for resonators and bandpass filters.
  • resonators and filters in various frequency ranges can be configured depending on the type of surface wave to be used.
  • Patent Document 1 discloses a surface acoustic wave device using a leaky surface acoustic wave among a plurality of surface acoustic waves.
  • Patent Document 2 discloses a ladder type filter using a surface acoustic wave resonator.
  • a capacitance is added in series or in parallel to the surface acoustic wave resonator. It is described that the passband width can be reduced thereby.
  • Patent Document 3 discloses a boundary acoustic wave device using a non-leakage propagation type boundary acoustic wave.
  • a plurality of IDTs are provided on the same piezoelectric single crystal, and the propagation direction of the IDT is different from the propagation direction of at least one other IDT. Thereby, the bandwidth can be adjusted.
  • Patent Document 3 in the structure in which a plurality of IDTs are formed on the same piezoelectric substrate, the propagation direction of at least one boundary acoustic wave element is different from the propagation direction of other boundary acoustic wave elements. According to this structure, the bandwidth can be adjusted without connecting an additional capacitor.
  • the surface acoustic wave device using a leaky surface acoustic wave as described in Patent Document 1 has a problem that propagation loss increases when the propagation direction is changed. This is because the energy of the leaky surface acoustic wave leaks to the piezoelectric substrate because the sound velocity of the leaky surface acoustic wave is faster than the slow transverse wave velocity of the piezoelectric substrate. Therefore, in a surface acoustic wave device using a leaky surface acoustic wave, good filter characteristics and resonance characteristics cannot be obtained by a method in which the propagation directions of a plurality of surface acoustic wave elements are made different.
  • An object of the present invention is a surface acoustic wave device using a surface acoustic wave having a speed of sound higher than that of a bulk wave propagating through a piezoelectric body, and the bandwidth can be adjusted without connecting an additional capacitor, and the propagation can be achieved.
  • An object of the present invention is to provide a surface acoustic wave device having a sufficiently small loss.
  • a plurality of surface acoustic wave elements using a surface acoustic wave having a higher speed of sound than a bulk wave propagating through the piezoelectric body are configured using piezoelectric bodies having the same cut angle.
  • Each surface acoustic wave element includes a piezoelectric body, an IDT electrode provided on the piezoelectric body, and a confinement layer.
  • the confinement layer is provided on the side opposite to the side on which the IDT electrode of the piezoelectric body is provided, and confins the surface acoustic wave on the piezoelectric body side.
  • the propagation direction of surface acoustic waves in at least one surface acoustic wave element is different from the propagation direction of surface acoustic waves in at least one other surface acoustic wave element.
  • a plurality of surface acoustic wave elements are formed on a single piezoelectric body.
  • the surface acoustic wave device can be reduced in size.
  • a bandwidth of the at least one surface acoustic wave element is different from a bandwidth of the at least one other surface acoustic wave element.
  • the confinement layer is made of a dielectric material whose bulk wave velocity that propagates through the confinement layer is faster than the propagation speed of the surface acoustic wave.
  • the wave energy can be confined on the surface side. Therefore, the propagation loss can be made substantially zero.
  • a dielectric preferably, aluminum nitride, silicon nitride and aluminum oxide, silicon carbide, silicon oxynitride, DLC, diamond, sapphire, alumina, magnesia, silicon, or more than the propagation velocity of the surface acoustic wave It is preferable to use a lithium tantalate with a cut angle selected, a kind of dielectric selected from the group consisting of lithium niobate, or a mixture or laminate of a plurality of dielectrics so that the bulk sound velocity is increased. Can do.
  • the surface acoustic wave is a transverse wave
  • the thickness of the IDT electrode is a sound velocity of a slow transverse wave in which the acoustic velocity of the surface acoustic wave propagates through the piezoelectric body. It is said that the thickness becomes faster.
  • the pitch of the IDT can be increased, and as a result, a filter advantageous for high frequency can be provided.
  • the surface acoustic wave is a longitudinal wave, and the thickness of the IDT electrode is such that the acoustic velocity of the surface acoustic wave is faster than the acoustic velocity of the longitudinal bulk wave propagating through the piezoelectric body.
  • the surface acoustic wave is a transverse wave
  • a duty ratio of the IDT electrode is higher than a sound speed of a slow transverse wave propagating through the piezoelectric body. It is said that.
  • the pitch of the IDT can be increased, and as a result, a filter advantageous for high frequency can be provided.
  • the surface acoustic wave is a longitudinal wave
  • the duty ratio of the IDT electrode is a duty ratio that is faster than the sound velocity of the longitudinal wave bulk wave propagating through the piezoelectric body.
  • the acoustic wave of the bulk wave propagating through the piezoelectric body is provided between the piezoelectric body and the confinement layer.
  • a low sound velocity layer that is slower than the sound velocity of the bulk wave propagating through the confinement layer is further provided.
  • the bandwidth can also be adjusted by forming a low sound velocity layer.
  • the low sound velocity layer is made of silicon oxide. In that case, the absolute value of the frequency temperature coefficient TCF can be reduced.
  • the confinement layer includes a first material layer having a relatively high acoustic impedance and a second material layer having a relatively low acoustic impedance. It is a Bragg reflector stacked. In this case, the propagation loss can be reduced.
  • the first material layer is preferably made of at least one selected from the group consisting of Cu, Au, Mo, Ni and W.
  • the acoustic impedance of the first material layer can be effectively increased. Therefore, the difference in acoustic impedance between the first and second material layers can be increased, and the reflection efficiency of the surface acoustic wave can be increased.
  • the second material layer is made of silicon oxide or polymer.
  • the acoustic impedance of the second material layer can be made sufficiently small. Therefore, the difference in acoustic impedance between the first and second material layers can be made sufficiently large. Therefore, the reflection efficiency of the surface acoustic wave can be increased.
  • the surface acoustic wave device can be applied to various surface acoustic wave devices having a plurality of surface acoustic wave elements, but is preferably a filter or a resonator.
  • a filter or a resonator according to the present invention, it is possible to provide a filter or a resonator that can easily adjust the bandwidth and has a small propagation loss.
  • a longitudinally coupled surface acoustic wave filter is configured. Therefore, it is possible to provide a longitudinally coupled surface acoustic wave filter that can easily adjust the bandwidth and has little propagation loss.
  • each surface acoustic wave element has the confinement layer in spite of using a surface acoustic wave having a speed of sound higher than the bulk wave propagating through the piezoelectric body.
  • the propagation loss of the surface wave can be made sufficiently small. Therefore, by making the propagation direction of the surface acoustic wave in at least one surface acoustic wave element different from the propagation direction of the surface acoustic wave in at least one other surface acoustic wave element, the bandwidth is not deteriorated. Can be adjusted.
  • the surface acoustic wave device is not increased in size.
  • FIG. 1A and 1B are a schematic plan view and a partially cutaway front sectional view of a surface acoustic wave device according to an embodiment of the present invention.
  • FIG. 2 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiTaO 3 with Euler angles (0 °, 0 ° to 180 °, 0 ° to 180 °), It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 2 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiTaO 3 with Euler angles (0 °, 0 ° to 180 °, 0 ° to 180 °), It is a figure which shows the relationship with (theta) and (ps
  • FIG. 3 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiTaO 3 with Euler angles (15 °, 0 ° to 180 °, 0 ° to 180 °). It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 4 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiTaO 3 with Euler angles (30 °, 0 ° to 180 °, 0 ° to 180 °).
  • FIG. 5 shows the surface acoustic wave bandwidth in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric material made of LiTaO 3 with Euler angles (0 °, 0 ° to 180 °, 0 ° to 180 °). It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 5 shows the surface acoustic wave bandwidth in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric material made of LiTaO 3 with Euler angles (0 °, 0 ° to 180 °, 0 ° to 180 °). It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 5 shows the surface acoustic wave bandwidth in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric material made of LiTaO 3 with Euler angles (0
  • FIG. 6 shows the bandwidth of surface acoustic waves in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric material made of LiTaO 3 with Euler angles (15 °, 0 ° to 180 °, 0 ° to 180 °). It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 7 shows the surface acoustic wave bandwidth in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric material made of LiTaO 3 with Euler angles (30 °, 0 ° to 180 °, 0 ° to 180 °).
  • FIG. 8 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiNbO 3 with Euler angles (0 °, 0 ° to 180 °, 0 ° to 180 °), It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 8 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiNbO 3 with Euler angles (0 °, 0 ° to 180 °, 0 ° to 180 °), It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 8 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an I
  • FIG. 9 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiNbO 3 with Euler angles (15 °, 0 ° to 180 °, 0 ° to 180 °), It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 9 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiNbO 3 with Euler angles (15 °, 0 ° to 180 °, 0 ° to 180 °), It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 10 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiNbO 3 with Euler angles (30 °, 0 ° to 180 °, 0 ° to 180 °), It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 11 shows the bandwidth of surface acoustic waves in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiNbO3 3 with Euler angles (0 °, 0 ° to 180 °, 0 ° to 180 °).
  • FIG. 12 shows the surface acoustic wave bandwidth in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric material made of LiNbO 3 with Euler angles (15 °, 0 ° to 180 °, 0 ° to 180 °). It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 12 shows the surface acoustic wave bandwidth in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric material made of LiNbO 3 with Euler angles (15 °, 0 ° to 180 °, 0 ° to 180 °). It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 12 shows the surface acoustic wave bandwidth in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric material made of LiNbO 3 with Euler angles (15
  • FIG. 13 shows the bandwidth of surface acoustic waves in a surface acoustic wave device in which an IDT electrode is formed on a piezoelectric body made of LiNbO 3 with Euler angles (30 °, 0 ° to 180 °, 0 ° to 180 °). It is a figure which shows the relationship with (theta) and (psi) of Euler angles.
  • FIG. 14 is a schematic front sectional view for explaining a surface acoustic wave device according to a second embodiment of the present invention.
  • FIG. 15 is a diagram showing the relationship between the film thickness of SiO 2 and TCV in the surface acoustic wave device provided with the low acoustic velocity film shown in FIG. FIG.
  • FIG. 16 is a diagram showing the relationship between the SiO 2 film thickness and the bandwidth in the surface acoustic wave device provided with the low acoustic velocity film shown in FIG.
  • FIG. 17 is a diagram showing the relationship between the film thickness of the IDT electrode and the sound velocity of the surface wave at the resonance point and the antiresonance point.
  • FIG. 18 is a schematic front sectional view for explaining a surface acoustic wave device according to a third embodiment of the present invention.
  • FIG. 19 is a circuit diagram of a ladder type filter as a surface acoustic wave device to which the present invention is applied.
  • FIGS. 20A and 20B are schematic circuit diagrams showing other examples of filters to which the present invention is applied.
  • FIG. 21 is a schematic circuit diagram for explaining still another example of the surface acoustic wave device to which the present invention is applied.
  • FIG. 22 is a schematic plan view showing an electrode structure of a longitudinally coupled filter as an example of a surface acoustic wave device to which the present invention is applied.
  • FIG. 23 is a diagram illustrating the dependence of the energy concentration degree of the leaky propagation type surface acoustic wave in the comparative example 1 on the propagation direction ⁇ .
  • 1 (a) and 1 (b) are a schematic plan view showing a surface acoustic wave device according to an embodiment of the present invention and a front sectional view showing an essential part thereof.
  • an electrode structure for forming the first and second surface acoustic wave elements 2 and 3 as a plurality of surface acoustic wave elements is formed. . That is, in order to form the first surface acoustic wave element 2, an IDT electrode 6 and reflectors 7 and 8 disposed on both sides of the IDT electrode 6 are formed. Similarly, to form the second surface acoustic wave element 3, an IDT electrode 9 and reflectors 10 and 11 disposed on both sides of the IDT electrode 9 are formed.
  • the first and second surface acoustic wave elements 2 and 3 utilize SH type surface acoustic waves having a speed of sound higher than that of a bulk wave propagating through a piezoelectric body.
  • the propagation direction of surface acoustic waves in the first surface acoustic wave element 2 and the propagation direction of surface acoustic waves in the second surface acoustic wave element 3 are different as shown in the figure. That is, when the propagation direction of the surface acoustic wave in the first surface acoustic wave element 2 is X1, the propagation direction X2 of the surface acoustic wave in the second surface acoustic wave element 3 is an angle ⁇ with respect to the propagation direction X1. I am doing.
  • the propagation direction X2 of the surface acoustic wave of the second surface acoustic wave element 3 is different from the propagation direction X1 of the surface acoustic wave of the first surface acoustic wave element 2. Therefore, the bandwidth can be adjusted as will be described later.
  • FIG. 1B is a schematic front sectional view of a portion where the IDT electrode 6 is formed.
  • the IDT electrode 6 is formed on the piezoelectric body 4.
  • the piezoelectric body 4 is made of LiTaO 3 .
  • the IDT electrode 6 is made of Al.
  • the piezoelectric body 4 may be formed of other piezoelectric bodies such as LiNbO 3 .
  • the IDT electrode 6 may also be formed of Cu, Ag, Au, Pt, W, Ti, Ni, Cr other than Al, or an alloy mainly composed of these.
  • the IDT electrode 6 may be formed of a laminated metal film formed by laminating a plurality of metal layers.
  • the feature of this embodiment is that in the surface acoustic wave device 1 using a surface acoustic wave having a speed of sound faster than that of a bulk wave propagating through a piezoelectric body, 1) As described above, the propagation direction X1 of the surface acoustic wave and the surface acoustic wave The propagation direction X2 is different, and 2) the confinement layer 12 is provided.
  • the confinement layer 12 is laminated on the lower surface of the piezoelectric body 4. That is, the confinement layer 12 is laminated on the surface of the piezoelectric body 4 opposite to the side on which the IDT electrode 6 is formed.
  • the confinement layer 12 is made of a material in which the acoustic velocity of the bulk wave propagating through the confinement layer 12 is faster than the acoustic velocity of acoustic waves propagating through the piezoelectric body 4.
  • the confinement layer 12 is made of silicon nitride, and the acoustic velocity of the bulk wave is 5950 m / sec.
  • the SH-type surface acoustic wave sound velocity in LiTaO 3 is about 3200 to 4300 m / sec, although it varies depending on the Euler angle and the electrode thickness.
  • a bulk wave propagating in a solid includes a longitudinal wave, that is, a P wave and a transverse wave.
  • a longitudinal wave that is, a P wave and a transverse wave.
  • two types of waves SH waves and SV waves, propagate as transverse waves.
  • the lowest transverse wave is a slow transverse wave
  • the higher transverse wave is a fast transverse wave.
  • which of the SH wave and the SV wave becomes a slow transverse wave depends on the anisotropy of the solid.
  • the SV wave has a slow transverse wave and the SH wave has a fast transverse wave among bulk waves.
  • the bulk wave described in this specification is defined.
  • the elastic wave propagating on the piezoelectric body is an elastic wave mainly composed of an SH component such as a leaky wave or a love wave
  • the bulk wave of an anisotropic medium such as a piezoelectric body indicates an SH bulk wave.
  • a bulk wave in the case of an isotropic body indicates a transverse bulk wave.
  • the elastic wave propagating on the piezoelectric body is an elastic wave in which an SV wave such as a Rayleigh wave and a P wave are combined
  • the bulk wave of the anisotropic medium indicates an SV bulk wave.
  • the bulk wave indicates a transverse bulk wave.
  • the elastic wave propagating on the piezoelectric body is an elastic wave mainly composed of a longitudinal wave component
  • the bulk wave of the piezoelectric body and the bulk wave of the confinement layer indicate longitudinal bulk waves.
  • the leakage wave and the non-leakage wave in this specification are defined. Whether the surface wave propagating through the piezoelectric body is a leaky propagation type surface acoustic wave or a non-leakage propagation type surface acoustic wave is determined by the relationship between the sound velocity of the surface wave and the bulk wave sound velocity of the piezoelectric member.
  • the wave propagating on the piezoelectric body is a transverse wave, that is, a surface acoustic wave mainly composed of an SH component or a surface acoustic wave mainly composed of an SV component, the sound velocity of the surface acoustic wave is higher than the slow transverse wave velocity of the piezoelectric member.
  • the propagation speed is too fast, it becomes a leaky propagation type surface acoustic wave.
  • the sound velocity of the surface wave is slower than the slow transverse wave velocity of the piezoelectric body, it becomes a non-leak propagation type surface acoustic wave.
  • the wave propagating on the piezoelectric body is a longitudinal wave
  • the acoustic velocity of the surface acoustic wave is faster than the longitudinal velocity of the piezoelectric bulk acoustic wave, it becomes a leaky propagation type surface acoustic wave
  • the acoustic velocity of the surface wave is slower than the longitudinal wave acoustic velocity, it becomes a non-leak propagation type surface acoustic wave.
  • the slow transverse wave of LiTaO 3 in the rotational Y-cut is 3367 m / second
  • the slow transverse wave of LiNbO 3 is 4031 m / second.
  • Patent Document 3 in the boundary acoustic wave device using the non-leakage propagation type boundary acoustic wave, the propagation direction of the non-leak propagation type boundary acoustic wave excited by the IDT is excited by another IDT.
  • the bandwidth can be adjusted by making it different from the propagation direction of the non-leakage propagation type elastic boundary wave.
  • a leaky propagation type surface acoustic wave when used, there is a problem that propagation loss increases when the propagation direction is changed.
  • the surface acoustic wave device 1 of the present embodiment since the confinement layer 12 is provided, the surface acoustic wave having a higher sound velocity than the bulk wave propagating through the piezoelectric body, that is, the leakage propagation type surface acoustic wave. Is confined in the piezoelectric body 4. Therefore, the propagation loss can be made almost zero. This will be clarified by comparing Example 1 and Comparative Example 1 below.
  • Example 1 the following surface acoustic wave device was created.
  • the unit of film thickness of the electrode and the piezoelectric body is the wavelength [ ⁇ ]
  • the wavelength is 2 ⁇ m.
  • the unit of film thickness of the electrode and the piezoelectric body is the wavelength [ ⁇ ].
  • the wavelength is 2 ⁇ m.
  • Example 1 and Comparative Example 1 propagation loss was measured by changing the propagation direction.
  • is 0 °, 15 °, 30 °, 45 °, 60 °, 75 °, 90 °, 105 °, 120 °, Even if 135 °, 150 °, 165 ° and 180 ° and ⁇ are changed to 0 °, 30 °, 60 °, 90 °, 120 °, 150 ° and 180 °, respectively, the energy of the leakage propagation type surface acoustic wave The degree of concentration was 100%, and no leakage was observed. Even in the case where the Euler angle ⁇ of LiTaO 3 was set to 15 ° or 30 ° and ⁇ and ⁇ were changed in the same manner, in Example 1, no leakage was observed from the energy concentration level of 100%.
  • Comparative Example 1 when the propagation direction ⁇ is changed in LiTaO 3 with Euler angles (0 °, 128.5 °, ⁇ ), leakage propagation type surface acoustic wave is obtained. The degree of energy concentration greatly changed with ⁇ .
  • the propagation loss of the surface acoustic wave can be made almost zero regardless of the propagation direction. That is, if the confinement layer has a sufficient thickness, the main propagation mode, which has a higher speed of sound than the bulk wave propagating through the piezoelectric body, has a propagation loss of 0 and becomes a non-leakage surface acoustic wave.
  • the main propagation mode can be a leaky propagation type surface acoustic wave with a small propagation loss.
  • the surface acoustic wave propagation direction X1 in the first surface acoustic wave element 2 and the surface acoustic wave propagation direction X2 in the second surface acoustic wave element 3 are different as described above. Yes. Thereby, the bandwidth can be adjusted by adjusting how the propagation azimuth is changed. This will be described with reference to FIGS.
  • FIGS. 2 to 4 show the case where the Euler angles ⁇ are 0 °, 15 °, and 30 ° in LiTaO 3 with Euler angles ( ⁇ , ⁇ , ⁇ ) as the piezoelectric body, ⁇ is 0 ° to 180 °, and ⁇ is 0. It is a figure which shows the change of the sound velocity of a surface acoustic wave at the time of changing between (degree)-180 degrees.
  • the film thickness of the piezoelectric body 4 made of LiTaO 3 was 0.5 ⁇
  • the film thickness of the confinement layer 12 made of silicon nitride was 2.0 ⁇
  • the film thickness of the electrode made of Al 0.08 ⁇ .
  • the Euler angle ⁇ corresponds to the propagation direction.
  • the symbols A1 to A6 in FIGS. 2 to 4 indicate the sound velocity ranges shown in Table 1 below, respectively.
  • 5 to 7 are diagrams showing the Euler angle dependence of the specific band of the surface acoustic wave device 1.
  • This ratio band shows the result of simulation using the frequency difference between the antiresonance point and the resonance point of the resonator as the ratio band.
  • symbols B1 to B11 in FIGS. 5 to 7 indicate that the bandwidths are within the ranges shown in Table 2 below.
  • symbols C1 to C5 in FIGS. 8 to 10 indicate the sound velocity ranges shown in Table 3 below, respectively.
  • symbols D1 to D6 in FIGS. 11 to 13 indicate that the bandwidths are within the ranges shown in Table 4 below.
  • the bandwidth can be adjusted without connecting an additional capacitor. That is, even if the acoustic wave is faster than the bulk wave, the bandwidth of the filter is adjusted by changing the propagation direction between the plurality of acoustic wave elements as in the case of the boundary acoustic wave device of Patent Document 3 described above. can do. Further, even if the propagation direction is changed, the propagation loss is almost zero, so that the degree of freedom in layout at the time of design is increased.
  • the confinement layer 12 is formed of silicon nitride, but the confinement layer 12 may be formed of other high sound velocity materials.
  • a material for forming such a confinement layer 12 an appropriate material having a bulk wave speed higher than that of an elastic wave propagating through a piezoelectric body can be used.
  • aluminum nitride, aluminum oxide, or the like can be preferably used.
  • the speed of sound of the transverse wave bulk wave of aluminum nitride is 6016 m / sec, and the speed of sound of the bulk wave of aluminum oxide is 6073 m / sec.
  • the confinement layer 12 has a high thermal conductivity. Thereby, heat dissipation can be improved, and reliability when power is supplied to the device can be improved.
  • the thermal conductivity of the piezoelectric single crystal LiTaO 3 is 2.93 W / m ⁇ K, and the thermal conductivity of LiNbO 3 is 4.6 W / m ⁇ K, whereas the thermal conductivity of aluminum nitride is 170 W / m ⁇ K. K, the thermal conductivity of aluminum oxide is 29 W / m ⁇ K, and the thermal conductivity of silicon nitride is 25.4 W / m ⁇ K. Therefore, it is desirable to form the confinement layer 12 with aluminum nitride, aluminum oxide or silicon nitride having excellent thermal conductivity. In order to increase the thermal conductivity, it is more desirable to use aluminum nitride.
  • FIG. 14 is a schematic front sectional view for explaining a surface acoustic wave device according to a second embodiment of the present invention.
  • a low acoustic velocity film 22 is laminated between the piezoelectric body 4 and the confinement layer 12. Since other structures are the same as those of the first embodiment, the description of the first embodiment is used in the description of the surface acoustic wave device 21 of the second embodiment.
  • the low acoustic velocity film refers to a membrane in which the acoustic velocity of the bulk wave in the low acoustic velocity film is lower than the bulk wave propagating through the piezoelectric body 4. Therefore, the low acoustic velocity film 22 is made of a material in which the acoustic velocity of the bulk wave is slower than the acoustic velocity of the bulk wave propagating through the piezoelectric body 4 and the acoustic velocity of the bulk wave propagating through the confinement layer 12. In the present embodiment, the low acoustic velocity film 22 is formed of silicon oxide whose propagating elastic wave is an SH type surface wave and whose transverse wave velocity is 3757 m / sec.
  • the bulk wave is an SH bulk wave that is a fast transverse wave, and the sound velocity is 4212 m / sec.
  • the confinement layer 12 is silicon nitride
  • the bulk wave is a transverse wave, and the sound velocity is 5950 m / sec.
  • the low acoustic velocity film 22 is not limited to silicon oxide, and silicon oxynitride, tantalum oxide, glass, a mixture mainly composed of silicon oxide, or the like may be used.
  • FIG. 16 is a diagram showing a change in bandwidth when the thickness of the silicon oxide film as the low acoustic velocity film 22 is changed in the surface acoustic wave device 21 according to the second embodiment.
  • the film thickness (%) is shown as a ratio to the wavelength determined by the electrode finger pitch of IDT.
  • the silicon oxide film thickness of 0% corresponds to the result in the case of the first embodiment that does not have the low acoustic velocity film 22.
  • the bandwidth can be changed by changing the thickness of the silicon oxide film.
  • the silicon oxide film thickness is greater than 0% and within the range of 82% or less of the wavelength, it can be seen that the bandwidth can be expanded as compared with the case where the low sound velocity film is not provided.
  • the thickness of the silicon oxide film is greater than 82% of the wavelength, the bandwidth can be narrower than when no silicon oxide film is provided.
  • FIG. 16 shows the result when the silicon oxide film is used as the low sound velocity film 22, but the bandwidth can be similarly adjusted even when the low sound velocity film made of the other materials described above is used. it can.
  • FIG. 15 is a diagram showing a change in TCV, which is a frequency temperature characteristic of sound velocity at the resonance frequency and the anti-resonance frequency when the thickness of the silicon oxide film is changed. As can be seen from FIG. 15, the temperature characteristics are changed by changing the film thickness of the silicon oxide film.
  • the resonance frequency TCV can be within ⁇ 10 ppm / ° C. and the anti-resonance frequency TCV can be within ⁇ 30 ppm / ° C. I understand.
  • the frequency temperature coefficient TCF is a positive value, such as silicon nitride having a positive value or a negative value
  • the absolute value is lower than the absolute value of the TCF of the piezoelectric single crystal constituting the piezoelectric body 4. Even when a small material is used, the frequency temperature characteristic can be improved in the same manner.
  • FIG. 17 shows the thickness of the electrode in the surface acoustic wave device configured similarly to the first surface acoustic wave device 2 of the surface acoustic wave device 1 of the first embodiment and the SH type excited on the piezoelectric body. It is a figure which shows the relationship with the sound velocity of a surface wave.
  • the Euler angles of LiTaO 3 were (0 °, 128.5 °, 0 °).
  • the thickness of the IDT electrode made of Al was changed in the range of 0.01 ⁇ to 0.3 ⁇ .
  • the electrode film thickness is set to a thickness at which the speed of the surface wave is higher than the slow transverse wave speed of sound propagating through the piezoelectric body 4. And it is sufficient.
  • the electrode film thickness varies depending on the material used, as shown in FIG. 17, the acoustic velocity of the surface acoustic wave is adjusted so as to be faster than the slow transverse acoustic velocity, depending on the piezoelectric material and the electrode material used. Adjust it.
  • the sound velocity of a surface acoustic wave can be changed by changing the duty ratio of the IDT electrode. That is, by setting the duty ratio so that the speed of sound of the surface wave is higher than the speed of the slow transverse wave that propagates through the piezoelectric body 4, it is possible to use a surface acoustic wave that has a higher speed of sound than the bulk wave that propagates through the piezoelectric body.
  • the transverse wave is used as the surface acoustic wave having a higher speed of sound than the bulk wave propagating through the piezoelectric body.
  • the longitudinal wave is used as the surface acoustic wave having a higher speed of sound than the bulk wave propagating through the piezoelectric body. May be used.
  • the thickness of the IDT electrode is such that the acoustic velocity of the surface acoustic wave is faster than the acoustic velocity of the longitudinal bulk wave propagating through the piezoelectric body.
  • the duty ratio of the IDT electrode is higher than that of a longitudinal wave bulk wave propagating through the piezoelectric body. It is preferable that the duty ratio is increased.
  • FIG. 18 is a schematic front sectional view for explaining a surface acoustic wave device according to a third embodiment of the present invention.
  • a confinement layer 32 is laminated on the lower surface of the piezoelectric body 4.
  • the confinement layer 32 has a structure in which first material layers 32a to 32c having a relatively high acoustic impedance and second material layers 32d to 32f having a relatively low acoustic impedance are stacked. More specifically, the first material layers 32a to 32c and the second material layers 32d to 32f are alternately stacked. A first material layer 32 a is stacked so as to be in contact with the piezoelectric body 4.
  • the first material layers 32a to 32c and the second material layers 32d to 32f have a thickness of 1 ⁇ 4 wavelength. Therefore, the confinement layer 32 constitutes a Bragg reflector.
  • Examples of the material constituting the first material layer include Cu, Au, Mo, Ni, and W.
  • Examples of the material constituting the second material layer include silicon oxide and various polymers.
  • the lamination of the first and second material layers 32a to 32f can be performed by an appropriate method such as sputtering, vapor deposition, or printing.
  • the confinement layer 32 is made of a Bragg reflector, the surface acoustic wave propagated from the piezoelectric body 4 can be reflected. Therefore, even when the propagation direction is changed, the propagation loss can be made substantially zero.
  • the confinement layer in the present invention is not limited to a material made of a material that propagates the acoustic velocity of the bulk wave that is faster than the acoustic velocity of the bulk wave that propagates through the piezoelectric body. Also good.
  • the surface acoustic wave device of the present invention has a plurality of surface acoustic wave elements.
  • a plurality of surface acoustic wave elements 2 and 3 are formed on one piezoelectric body 4 as in the first embodiment.
  • the surface acoustic wave device 1 can be made into one chip.
  • the plurality of surface acoustic wave elements may be formed on separate piezoelectric bodies. Even in that case, a confinement layer may be laminated on the lower surface of the piezoelectric body in each surface acoustic wave element.
  • the surface acoustic wave device of the present invention includes a plurality of surface acoustic wave elements.
  • the circuit configuration using such a plurality of surface acoustic wave elements and the application of the surface acoustic wave device are not particularly limited. An application example of the surface acoustic wave device of the present invention will be described with reference to FIGS.
  • FIG. 19 shows a circuit diagram of the ladder type filter 40.
  • a plurality of series arm resonators S1 and S2 and a plurality of parallel arm resonators P1 to P3 constitute a ladder type circuit.
  • each surface acoustic wave resonator may be configured according to the present invention. Even in this case, as described above, the bandwidth of each resonator can be easily adjusted by changing the propagation direction of the surface acoustic wave. In addition, such bandwidth adjustment improves the degree of freedom in design, and it is possible to increase the steepness in the vicinity of the passband while securing the band as a filter in the ladder filter 40.
  • Means for improving the performance of the surface acoustic wave device by using a structure that adjusts the bandwidth by changing the electromechanical coupling coefficient k 2 according to the propagation direction improves the steepness in the vicinity of the pass band in the ladder filter 40.
  • the present invention can also be applied to a filter chip having two bands of two input and two output types in which the Rx filter 41 and the Tx filter 42 are configured in one chip.
  • the steepness on the low frequency side of the Rx filter 41 can be increased, or the steepness on the high pass band side of the Tx filter 42 can be increased, or the same means as above can be used.
  • the above means can be used similarly for a filter having two bands of one input and two outputs. In the filter shown in FIG. 20B, the inputs of the Rx filter 43 and the Tx filter 44 are commonly connected.
  • a wide band filter can be configured if designed so as to be in contact with the high frequency side. In this case, it is desirable that the end of the passband is in contact with the 3 dB attenuation.
  • one surface acoustic wave filter is a wideband and one surface acoustic wave filter is a narrowband, a high frequency in the passband is obtained.
  • the steepness can be enhanced on either the side or the low frequency side. That is, as shown in FIG. 21, the first surface acoustic wave filter 45 and the second surface acoustic wave filter 46 may be connected in parallel. Even in such a configuration, a broadband filter characteristic can be easily designed by adjusting the propagation direction according to the present invention.
  • a longitudinally coupled filter may be constituted by the surface acoustic wave device according to the present invention.
  • FIG. 22 is a schematic plan view showing an electrode structure when a longitudinally coupled filter is configured.
  • the longitudinally coupled filter 51 As shown in FIG. 22, in the longitudinally coupled filter 51, three IDTs 52 to 54 are arranged along the propagation direction of the surface acoustic wave. Reflectors 55 and 56 are arranged on both sides of the surface wave propagation direction of the region where the IDTs 52 to 54 are arranged.
  • the central IDT 53 is connected to the input terminal, and one ends of the IDTs 52 and 54 are connected in common and connected to the output terminal. That is, the longitudinally coupled filter 51 is a 3IDT longitudinally coupled surface acoustic wave filter.
  • the present invention can also be applied to such a longitudinally coupled resonator type surface acoustic wave filter.
  • first surface acoustic wave filter 46 ... second surface acoustic wave filter 51 ... vertically coupled filters 52 to 54 ... IDT 55, 56 ... reflectors P1 to P3 ... parallel arm resonators S1, S2 ... series arm resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 付加容量を接続せずとも帯域幅を調整することができ、しかも伝搬損失が十分に小さい弾性表面波装置を得る。 カット角が同じ圧電体4を用いて複数の弾性表面波素子2,3が形成されており、各弾性表面波素子2,3において、少なくとも1つの弾性表面波素子2における弾性表面波の伝搬方位X1が、他の少なくとも1つの弾性表面波素子3における弾性表面波の伝搬方位X2と異なっており、かつ弾性表面波素子2,3において、圧電体4の電極形成面とは反対側の面に弾性表面波を圧電体4側に閉じ込める閉じ込め層12が形成されている、弾性表面波装置1。

Description

弾性表面波装置
 本発明は、圧電体を用いた複数の弾性表面波素子を有する弾性表面波装置に関し、特に、弾性表面波として、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を用いた弾性表面波装置に関する。
 従来、共振子や帯域フィルタに弾性表面波装置が広く用いられている。弾性表面波装置では、利用する表面波の種類によって様々な周波数域の共振子やフィルタを構成することができる。
 下記の特許文献1には、複数の弾性表面波の中でも漏洩型弾性表面波を用いた弾性表面波装置が開示されている。
 また、下記の特許文献2には、弾性表面波共振子を用いたラダー型フィルタが開示されている。ここでは、弾性表面波共振子に直列または並列に容量が付加されている。それによって、通過帯域幅を狭くしたりすることができると記載されている。
 他方、下記の特許文献3には、非漏洩伝搬型の弾性境界波を用いた弾性境界波装置が開示されている。特許文献3では、同一の圧電単結晶上に複数のIDTが設けられており、IDTの伝搬方位が他の少なくとも一つのIDTの伝搬方位と異ならされている。それによって、帯域幅を調整することが可能とされている。
WO2003/088483 特開平8-65089 WO2005/060094
 特許文献1に記載の漏洩型弾性表面波を用いた弾性表面波装置においても、帯域幅や共振特性を調整することが求められている。
 他方、特許文献2に記載のラダー型フィルタでは、弾性表面波共振子に直列または並列に容量を付加することにより、帯域幅の調整が可能とされている。しかしながら、このような構成では、容量を付加する必要があるため、弾性表面波装置が大型となり、かつコストが高くつくという問題がある。
 また、特許文献3では、同じ圧電基板上に複数のIDTを形成した構造において、少なくとも一つの弾性境界波素子の伝搬方位が他の弾性境界波素子の伝搬方位と異ならされている。この構造によれば、付加容量を接続することなく、帯域幅を調整することができる。
 しかしながら、特許文献1に記載のような漏洩型弾性表面波を用いた弾性表面波装置では、伝搬方位を異ならせると、伝搬損失が大きくなるという問題があった。これは、漏洩型弾性表面波の音速が圧電基板の遅い横波音速よりも速いため、漏洩型弾性表面波のエネルギーが圧電基板側に漏洩することによる。従って、漏洩型弾性表面波を用いた弾性表面波装置においては、複数の弾性表面波素子の伝搬方位を異ならせる方法では、良好なフィルタ特性や共振特性を得ることができなかった。
 本発明の目的は、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を用いた弾性表面波装置であって、付加容量を接続せずとも帯域幅を調整することができ、しかも伝搬損失が十分に小さい弾性表面波装置を提供することにある。
 本発明では、カット角が同じ圧電体を用いて、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を用いた複数の弾性表面波素子が構成されている。各弾性表面波素子は、圧電体と、圧電体上に設けられたIDT電極と、閉じ込め層とを有する。閉じ込め層は、圧電体のIDT電極が設けられている側とは反対側に設けられており、かつ弾性表面波を圧電体側に閉じ込める。
 本発明においては、複数の弾性表面波素子においては、少なくとも一つの弾性表面波素子における弾性表面波の伝搬方位が、他の少なくとも一つの弾性表面波素子における弾性表面波の伝搬方位と異なっている。
 本発明に係る弾性表面波装置のある特定の局面では、複数の弾性表面波素子が単一の圧電体上に構成されている。この場合には、弾性表面波装置の小型化を進めることができる。
 本発明に係る弾性表面波装置の他の特定の局面では、前記少なくとも一つの弾性表面波素子の帯域幅が、前記少なくとも一つの他の弾性表面波素子の帯域幅と異なっている。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記閉じ込め層は、該閉じ込め層を伝搬するバルク波音速が前記弾性表面波の伝搬速度よりも速い誘電体からなる。この場合には、弾性表面波は閉じ込め層の中をほとんど伝搬しないため、波のエネルギーを表面側に閉じ込めることができる。したがって、伝搬損失を実質的に0とすることができる。
 このような誘電体としては、好ましくは、窒化アルミニウム、窒化ケイ素及び酸化アルミニウム、炭化ケイ素、酸窒化ケイ素、DLC、ダイヤモンド、サファイア、アルミナ、マグネシア、シリコンや、前記弾性表面波の伝搬速度よりも伝搬するバルク波音速が速くなるように、カット角を選択されたリチウムタンタレート、リチウムニオベイトからなる群から選択された一種の誘電体、もしくは複数の誘電体の混合物、積層物を好適に用いることができる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記弾性表面波は横波であり、前記IDT電極の厚みは、前記弾性表面波の音速が前記圧電体を伝搬する遅い横波の音速よりも速くなる厚みとされている。この場合には、非漏洩型の表面波に比べ音速が速いため、IDTのピッチを大きくすることができ、その結果、高周波化に有利なフィルタを提供することができる。
 前記弾性表面波は縦波であり、前記IDT電極の厚みは、前記弾性表面波の音速が前記圧電体を伝搬する縦波バルク波の音速よりも速くなる厚みとされている。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、前記弾性表面波は横波であり、前記IDT電極のデューティー比は、前記圧電体を伝搬する遅い横波の音速よりも速くなるデューティー比とされている。この場合には、非漏洩型の表面波に比べ音速が速いため、IDTのピッチを大きくすることができ、その結果、高周波化に有利なフィルタを提供することができる。
 前記弾性表面波は縦波であり、前記IDT電極のデューティー比は、前記圧電体を伝搬する縦波バルク波の音速よりも速くなるデューティー比とされている。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記圧電体と、前記閉じ込め層との間に設けられており、バルク波の音速が前記圧電体を伝搬するバルク波の音速及び閉じ込め層を伝搬するバルク波の音速よりも遅い低音速層をさらに備える。この場合には、低音速層の形成によっても帯域幅を調整することができる。好ましくは、低音速層は酸化ケイ素からなる。その場合には、周波数温度係数TCFの絶対値を小さくすることができる。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、前記閉じ込め層が、音響インピーダンスが相対的に高い第1の材料層と、音響インピーダンスが相対的に低い第2の材料層とが積層されているブラッグ反射器である。この場合には、伝搬損失を小さくすることができる。
 上記第1の材料層としては、好ましくは、Cu、Au、Mo、Ni及びWからなる群から選択された少なくとも一種からなる。この場合には、第1の材料層の音響インピーダンスを効果的に高めることができる。従って、第1,第2の材料層の音響インピーダンスの差を大きくすることができ、弾性表面波の反射効率を高めることができる。
 好ましくは、第2の材料層は、酸化ケイ素またはポリマーからなる。この場合には、第2の材料層の音響インピーダンスを十分に小さくすることができる。従って、第1,第2の材料層の音響インピーダンスの差を十分に大きくすることができる。よって、弾性表面波の反射効率を高めることができる。
 本発明に係る弾性表面波装置は、複数の弾性表面波素子を有する様々な弾性表面波装置に適用することができるが、好ましくはフィルタまたは共振子である。フィルタまたは共振子である場合、本発明に従って、帯域幅を容易に調整でき、しかも伝搬損失の小さいフィルタまたは共振子の提供することができる。好ましくは、本発明に従って、縦結合型弾性表面波フィルタが構成される。従って、帯域幅の調整が容易であり、伝搬損失の少ない縦結合型弾性表面波フィルタを提供することができる。
 本発明に係る弾性表面波装置によれば、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を用いているにもかかわらず、各弾性表面波素子が上記閉じ込め層を有するため、弾性表面波の伝搬損失を十分に小さくすることができる。従って、少なくとも一つの弾性表面波素子における弾性表面波の伝搬方位を、他の少なくとも一つの弾性表面波素子における弾性表面波の伝搬方位と異ならせることにより、伝搬損失を悪化させることなく、帯域幅を調整することが可能となる。
 加えて、帯域幅の調整に、付加容量を必要としないため、弾性表面波装置の大型化を招くこともない。
図1(a)及び(b)は、本発明の一実施形態に係る弾性表面波装置の模式的平面図及び部分切欠正面断面図である。 図2は、オイラー角(0°,0°~180°,0°~180°)のLiTaOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の音速と、オイラー角のθ及びψとの関係を示す図である。 図3は、オイラー角(15°,0°~180°,0°~180°)のLiTaOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の音速と、オイラー角のθ及びψとの関係を示す図である。 図4は、オイラー角(30°,0°~180°,0°~180°)のLiTaOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の音速と、オイラー角のθ及びψとの関係を示す図である。 図5は、オイラー角(0°,0°~180°,0°~180°)のLiTaOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の帯域幅と、オイラー角のθ及びψとの関係を示す図である。 図6は、オイラー角(15°,0°~180°,0°~180°)のLiTaOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の帯域幅と、オイラー角のθ及びψとの関係を示す図である。 図7は、オイラー角(30°,0°~180°,0°~180°)のLiTaOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の帯域幅と、オイラー角のθ及びψとの関係を示す図である。 図8は、オイラー角(0°,0°~180°,0°~180°)のLiNbOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の音速と、オイラー角のθ及びψとの関係を示す図である。 図9は、オイラー角(15°,0°~180°,0°~180°)のLiNbOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の音速と、オイラー角のθ及びψとの関係を示す図である。 図10は、オイラー角(30°,0°~180°,0°~180°)のLiNbOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の音速と、オイラー角のθ及びψとの関係を示す図である。 図11は、オイラー角(0°,0°~180°,0°~180°)のLiNbO3からなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の帯域幅と、オイラー角のθ及びψとの関係を示す図である。 図12は、オイラー角(15°,0°~180°,0°~180°)のLiNbOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の帯域幅と、オイラー角のθ及びψとの関係を示す図である。 図13は、オイラー角(30°,0°~180°,0°~180°)のLiNbOからなる圧電体上にIDT電極を形成してなる弾性表面波素子における弾性表面波の帯域幅と、オイラー角のθ及びψとの関係を示す図である。 図14は、本発明の第2の実施形態に係る弾性表面波装置を説明するための模式的正面断面図である。 図15は、図14に示した低音速膜を備えた弾性表面波装置におけるSiOの膜厚とTCVとの関係を示す図である。 図16は、図14に示した低音速膜を備えた弾性表面波装置におけるSiOの膜厚と帯域幅との関係を示す図である。 図17は、IDT電極の膜厚と、共振点及び反共振点における表面波の音速との関係を示す図である。 図18は、本発明の第3の実施形態に係る弾性表面波装置を説明するための模式的正面断面図である。 図19は、本発明が適用される弾性表面波装置としてのラダー型フィルタの回路図である。 図20(a)及び(b)は、本発明が適用されるフィルタの他の例を示す略図的回路図である。 図21は、本発明が適用される弾性表面波装置のさらに他の例を説明するための略図的回路図である。 図22は、本発明が適用される弾性表面波装置の一例としての縦結合型フィルタの電極構造を示す模式的平面図である。 図23は、比較例1における漏洩伝搬型弾性表面波のエネルギー集中度の伝搬方位ψに対する依存性を示す図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1(a)及び(b)は、本発明の一実施形態に係る弾性表面波装置を示す模式的平面図及びその要部を示す正面断面図である。
 図1(a)に示すように、弾性表面波装置1では、複数の弾性表面波素子としての第1,第2の弾性表面波素子2,3を構成するための電極構造が形成されている。すなわち、第1の弾性表面波素子2を形成するために、IDT電極6と、IDT電極6の両側に配置された反射器7,8が形成されている。同様に、第2の弾性表面波素子3を形成するために、IDT電極9と、IDT電極9の両側に配置された反射器10,11とが形成されている。第1,第2の弾性表面波素子2,3は、圧電体を伝搬するバルク波よりも音速の速いSH型弾性表面波を利用するものである。
 第1の弾性表面波素子2における弾性表面波の伝搬方位と第2の弾性表面波素子3における弾性表面波の伝搬方位とは図示のように異なっている。すなわち、第1の弾性表面波素子2における弾性表面波の伝搬方位をX1としたとき、第2の弾性表面波素子3における弾性表面波の伝搬方位X2は、伝搬方位X1に対してβの角度をなしている。本実施形態の弾性表面波装置1では、第1の弾性表面波素子2の弾性表面波の伝搬方位X1に対し、第2の弾性表面波素子3の弾性表面波の伝搬方位X2が異なっているため、後述するように帯域幅を調整することが可能とされる。
 図1(b)は、IDT電極6が形成されている部分の模式的正面断面図である。図1(b)で示すように、IDT電極6は、圧電体4上に形成されている。本実施形態では、圧電体4は、LiTaOからなる。また、IDT電極6は、Alからなる。もっとも、圧電体4は、LiNbOなどの他の圧電体により形成されていてもよい。IDT電極6についてもAl以外のCu、Ag、Au、Pt、W、Ti、Ni、Crまたはこれらを主体とする合金により形成されていてもよい。さらに、IDT電極6は、複数の金属層を積層してなる積層金属膜により形成されていてもよい。
 本実施形態の特徴は、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を用いた弾性表面波装置1において、1)上記のように弾性表面波の伝搬方位X1と弾性表面波の伝搬方位X2とが異なっていること、並びに2)閉じ込め層12が設けられていることにある。
 図1(b)に示すように、閉じ込め層12は、圧電体4の下面に積層されている。すなわち、圧電体4のIDT電極6が形成されている側とは反対側の面に閉じ込め層12が積層されている。閉じ込め層12は、閉じ込め層12を伝搬するバルク波の音速が圧電体4を伝搬する弾性波音速よりも速い材料からなる。本実施形態では、閉じ込め層12は窒化ケイ素からなり、バルク波の音速は5950m/秒である。これに対し、LiTaOにおけるSH型の弾性表面波音速は、オイラー角や電極の厚みなどによっても異なるが、3200~4300m/秒程度である。
 周知のように、固体内を伝搬するバルク波には、縦波すなわちP波と、横波とが存在する。固体に異方性がある場合には、横波として、SH波とSV波の2種類が伝搬する。これらのうち、もっとも低音速の横波が、遅い横波となり、高音速の横波が、速い横波である。なお、SH波とSV波のいずれが遅い横波となるかは、固体の異方性によって異なる。回転YカットX伝搬付近のLiTaOやLiNbOでは、バルク波のうちSV波が遅い横波、SH波が速い横波となる。
 ここで、本明細書中記載のバルク波について定義する。圧電体上を伝搬する弾性波が漏洩波やラブ波の様なSH成分を主体とする弾性波である場合は、圧電体など、異方性のある媒質のバルク波とはSHバルク波を示し、等方体の場合のバルク波とは横波バルク波を示す。圧電体上を伝搬する弾性波が、レイリー波の様なSV波とP波が結合した弾性波である場合は、異方性のある媒質のバルク波とはSVバルク波を示し、等方体の場合のバルク波とは横波バルク波を示す。一方、圧電体上を伝搬する弾性波が縦波成分主体の弾性波である場合は、圧電体のバルク波及び閉じ込め層のバルク波とは縦波バルク波を示す。
 また、本明細書中の漏洩波、非漏洩波について定義する。圧電体を伝搬する表面波において、漏洩伝搬型弾性表面波となるか、あるいは非漏洩伝搬型弾性表面波となるかは表面波の音速と圧電体のバルク波音速の関係で決定される。圧電体上を伝搬する波が横波、すなわちSH成分を主体とする弾性表面波やSV成分を主成分とする弾性表面波などである場合、弾性表面波の音速が、圧電体の遅い横波音速よりも速い伝搬速度となる場合には、漏洩伝搬型弾性表面波となる。なお、圧電体の遅い横波音速よりも表面波の音速が遅い場合には、非漏洩伝搬型弾性表面波となる。圧電体上を伝搬する波が縦波の場合、弾性表面波の音速が、圧電体の縦波バルク波音速よりも速い伝搬速度となる場合には、漏洩伝搬型弾性表面波となり、圧電体の縦波バルク波音速よりも表面波の音速が遅い場合には、非漏洩伝搬型弾性表面波となる。なお、回転YカットにおけるLiTaOの遅い横波は、3367m/秒であり、LiNbOの遅い横波は、4031m/秒である。
 前述したように特許文献3では、非漏洩伝搬型弾性境界波を用いた弾性境界波装置おいて、IDTにより励振される非漏洩伝搬型弾性境界波の伝搬方位を、他のIDTにより励振される非漏洩伝搬型弾性境界波の伝搬方位と異ならせることにより、帯域幅を調整することが可能とされている。しかしながら、漏洩伝搬型弾性表面波を用いた場合、伝搬方位を変更すると、伝搬損失が大きくなるという問題があった。
 これに対して、本実施形態の弾性表面波装置1では、上記閉じ込め層12が設けられているため、圧電体を伝搬するバルク波よりも音速の速い弾性表面波、すなわち漏洩伝搬型弾性表面波が圧電体4内に閉じ込められる。そのため、伝搬損失をほぼ0とすることができる。これを、以下、実施例1と比較例1とを対比することにより明らかにする。
 実施例1として、以下の弾性表面波装置を作成した。
 実施例1の仕様
 Al(0.08)/LT(0.5)/SiN(2.0)  LTのオイラー角(φ、θ、ψ)=(0~30,0~180,0~180)
 電極及び圧電体の膜厚の単位は波長〔λ〕 波長は2μm。
 閉じ込め層あり
 比較例1の仕様
 Al(0.08)/LT(200)  LTのオイラー角(φ、θ、ψ)=(0,128.5,-15~15)
 電極及び圧電体の膜厚の単位は波長〔λ〕 波長は2μm。
 閉じ込め層なし
 上記実施例1及び比較例1において、伝搬方位を変化させて、伝搬損失を測定した。その結果、オイラー角(0°,θ,ψ)のLiTaOを用いた場合、θを0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°及び180°、ψを0°,30°,60°,90°,120°,150°及び180°とそれぞれ変化させたとしても、漏洩伝搬型弾性表面波のエネルギー集中度は100%であり、漏洩は認められなかった。LiTaOのオイラー角のφを15°または30°とし、同様にθ及びψを変化させた場合においても、実施例1では、エネルギー集中度は100%より漏洩は認められなかった。
 これに対して、比較例1では、図23に示すように、オイラー角(0°,128.5°,ψ)のLiTaOにおいて、伝搬方位ψを変化させたところ、漏洩伝搬型弾性表面波のエネルギー集中度がψによって大きく変化した。
 図23から明らかなように、伝搬方位が変化した場合、比較例1では伝搬損失が伝搬方位によって大きくなることがわかる。これ対して、実施例1では、伝搬方位が変化したとしても、伝搬損失はほぼ0である。
 上記のように、本実施形態の弾性表面波装置1では、閉じ込め層12を設けたことにより、伝搬方位の如何に関わらず弾性表面波の伝搬損失をほぼ0とすることができる。すなわち、閉じ込め層が十分な厚みであれば、圧電体を伝搬するバルク波よりも音速の速い主伝搬モードは伝搬損失0となり、非漏洩の弾性表面波となるが、閉じ込め層が薄い場合でも漏洩の抑制効果が得られ、主伝搬モードは伝搬損失の小さい漏洩伝搬型弾性表面波とすることができる。
 また、本実施形態では、上記のように、第1の弾性表面波素子2における弾性表面波の伝搬方位X1と、第2の弾性表面波素子3の弾性表面波の伝搬方位X2とが異なっている。それによって、伝搬方位の異ならせ方を調整することにより帯域幅を調整することができる。これを、図2~図4を参照して説明する。
 図2~図4は、圧電体として、オイラー角(φ,θ,ψ)のLiTaOにおけるオイラー角のφを0°、15°、30°とし、θを0°~180°、ψを0°~180°の間で変化させた場合の弾性表面波の音速の変化を示す図である。ここでは、LiTaOからなる圧電体4の膜厚は0.5λ、窒化ケイ素からなる閉じ込め層12の膜厚は2.0λ、Alからなる電極の膜厚は0.08λとした。また、IDTの電極指ピッチで定まる波長λは、λ=2μmとした。上記オイラー角のψが上記伝搬方位に相当する。
 なお、図2~図4における記号A1~A6は、それぞれ下記の表1に示す音速範囲であることを示す。
Figure JPOXMLDOC01-appb-T000001
 また、図5~図7は、上記弾性表面波装置1の比帯域のオイラー角依存性を示す図である。この比帯域は、共振子の反共振点と共振点の周波数差を比帯域としてシミュレーションした結果を示す。
 また、図5~図7における記号B1~B11は、帯域幅がそれぞれ以下記の表2の範囲であることを示す。
Figure JPOXMLDOC01-appb-T000002
 なお、上記LiTaOに代えて、LiNbOを用い、実施例1と同様に、オイラー角(φ,θ,ψ)を変化させ、弾性表面波の音速の変化及び帯域幅の変化を求めた。結果を図8~図10及び図11~図13に示す。図8~図10は、弾性表面波の音速の変化を示し、図11~図13は帯域幅の変化を示す。
 なお、図8~図10における記号C1~C5は、それぞれ下記の表3に示す音速範囲であることを示す。
Figure JPOXMLDOC01-appb-T000003
 また、図11~図13における記号D1~D6は、帯域幅がそれぞれ以下の表4の範囲であることを示す。
Figure JPOXMLDOC01-appb-T000004
 図2~図13から明らかなように、LiTaOやLiNbOは異方性があるため、伝搬方位ψを変更することにより、共振子の帯域幅を変化させ得ることがわかる。
 しかも、本実施形態の弾性表面波装置1では、上記閉じ込め層12が設けられているため、伝搬方位を変化させたとしても、伝搬損失はほぼ0となる。よって、本実施形態の弾性表面波装置1によれば、付加容量を接続することなく、帯域幅を調整することができる。すなわち、バルク波より速い弾性波であっても、前述した特許文献3の弾性境界波装置の場合と同様に、複数の弾性波素子間において伝搬方位を異ならせることにより、フィルタの帯域幅を調整することができる。また、伝搬方位を変更しても伝搬損失がほぼ0のため、設計時のレイアウトの自由度があがる。
 なお、上記実施形態では、閉じ込め層12は、窒化ケイ素により形成されていたが、他の高音速材料により閉じ込め層12を形成してもよい。このような閉じ込め層12を形成する材料としては、圧電体を伝搬する弾性波の音速よりもバルク波の音速が速い適宜の材料を用いることができる。このような材料としては、窒化アルミニウム、酸化アルミニウムなどを好適に用いることができる。窒化アルミニウムの横波バルク波の音速は6016m/秒であり、酸化アルミニウムの横波バルク波の音速は6073m/秒である。この他に、炭化ケイ素、酸窒化ケイ素、DLC(ダイヤモンドライクカーボン)膜、ダイヤモンド、サファイア、アルミナ、マグネシア、シリコンや、前記弾性表面波の伝搬速度よりも伝搬するバルク波音速が速くなるように、カット角を選択されたリチウムタンタレート、リチウムニオベイト等の材料を用いた場合でも、同様の効果が得られる。また、上記のとおり、圧電体4を伝搬する弾性波の音速よりもバルク波が速い限り、伝搬方位を変更したとしても弾性表面波の伝搬損失はほぼ0である。
 また、好ましくは、閉じ込め層12は熱伝導率が高いことが望ましい。それによって、放熱性を高めることができ、デバイスに電力を投入した時の信頼性を高めることができる。圧電単結晶のLiTaOの熱伝導率は2.93W/m・K、LiNbOの熱伝導率は4.6W/m・Kであるのに対し、窒化アルミニウムの熱伝導率は170W/m・Kであり、酸化アルミニウムの熱伝導率は29W/m・Kであり、窒化ケイ素の熱伝導率は25.4W/m・Kである。従って、これらの熱伝導性に優れた窒化アルミニウム、酸化アルミニウムまたは窒化ケイ素により閉じ込め層12を形成することが望ましい。熱伝導率を高める上では、窒化アルミニウムを用いることがより望ましい。
 図14は、本発明の第2の実施形態に係る弾性表面波装置を説明するための模式的正面断面図である。第2の実施形態では、圧電体4と閉じ込め層12との間に低音速膜22が積層されている。その他の構造は第1の実施形態と同様であるため、第2の実施形態の弾性表面波装置21の説明において、第1の実施形態の説明を援用することとする。
 低音速膜とは、圧電体4を伝搬するバルク波よりも、該低音速膜中のバルク波の音速が低速となる膜を言うものとする。したがって、低音速膜22は、バルク波の音速が、圧電体4を伝搬するバルク波の音速及び閉じ込め層12を伝搬するバルク波の音速よりも遅い材料からなる。本実施形態では、伝搬する弾性波がSH型表面波であり、バルク波の音速である横波音速が3757m/秒である酸化ケイ素により低音速膜22が形成されている。なお、圧電体4がLiTaOの場合、バルク波は速い横波であるSHバルク波であり、その音速は4212m/秒となる。また、閉じ込め層12が窒化ケイ素の場合、バルク波は横波であり、その音速は5950m/秒となる。もっとも、低音速膜22は、酸化ケイ素に限らず、酸窒化ケイ素、酸化タンタル、ガラス、酸化ケイ素を主体とする混合物などを用いてもよい。
 低音速膜22を用いることにより、それによっても帯域幅を調整することができる。図16は、第2の実施形態の弾性表面波装置21において、上記低音速膜22としての酸化ケイ素の膜厚を変化させた場合の帯域幅の変化を示す図である。なお膜厚(%)は、IDTの電極指ピッチで定まる波長に対する割合で示している。
 図16において酸化ケイ素膜厚が0%とは、低音速膜22を有しない上記第1の実施形態の場合の結果に相当する。図16から明らかなように、酸化ケイ素膜の膜厚を変化させることにより、帯域幅を変化させ得ることがわかる。特に、酸化ケイ素膜厚を0%より厚く、波長の82%以下の範囲とした場合には、低音速膜を設けなかった場合よりも帯域幅を広げ得ることがわかる。さらに、酸化ケイ素膜の膜厚を波長の82%より厚くすると酸化ケイ素膜を設けなかった場合よりも帯域幅を狭くし得ることもわかる。
 なお、図16は、酸化ケイ素膜を低音速膜22として用いた場合の結果を示すが、他の前述した材料からなる低音速膜を用いた場合においても、同様に帯域幅を調整することができる。
 さらに、低音速膜22が酸化ケイ素膜からなる場合、そのTCFは正の値である。他方、圧電体4のTCFは負の値である。従って、酸化ケイ素膜からなる低音速膜22を積層することにより、温度特性を改善することができる。図15は、酸化ケイ素膜の膜厚を変化させた場合の共振周波数及び反共振周波数における音速の周波数温度特性であるTCVの変化を示す図である。図15から明らかなように、酸化ケイ素膜の膜厚を変化させることにより、温度特性が変化することがわかる。特に、酸化ケイ素膜の膜厚を波長の20~150%の範囲とした場合、共振周波数のTCVを±10ppm/℃の範囲内、反共振周波数のTCVを±30ppm/℃の範囲内とし得ることがわかる。
 なお、低音速膜として、周波数温度係数TCFが正の値である窒化ケイ素などや負の値であってもその絶対値が圧電体4を構成している圧電単結晶のTCFの絶対値よりも小さい材料を用いた場合も、同様に周波数温度特性を改善することができる。
 次に、本発明に係る弾性表面波装置の電極の厚みによる影響について説明する。
 弾性表面波素子では、電極膜厚を変更すると、伝搬する表面波の音速は変化する。図17は、第1の実施形態の弾性表面波装置1の第1の弾性表面波素子2と同様に構成されている弾性表面波素子における電極膜厚と圧電体上に励振されたSH型の表面波の音速との関係を示す図である。ここでは、LiTaOのオイラー角は、(0°,128.5°,0°)とした。また、LiTaOからなる圧電体4の厚みは0.5λ、閉じ込め層12の厚みは2.0λとした。λ=2.0μmとした。
 このような構造においてAlからなるIDT電極の膜厚を0.01λ~0.3λの範囲で変化させた。
 図17から明らかなように、上記構造において、電極膜厚が変化すると、共振周波数及び反共振周波数における音速が変化している。すなわち、電極膜厚が厚くなるにつれ、共振周波数及び反共振周波数が低下していくこととなる。そして、圧電体4を伝搬する遅い横波音速が3338m/秒であるため、電極膜厚は15%以下の領域で、圧電体を伝搬するバルク波よりも音速の速い弾性表面波となることがわかる。
 上記のように、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を利用するには、電極膜厚を、圧電体4を伝搬する遅い横波音速よりも表面波の音速が速くなる厚みとすればよい。もっとも、この電極膜厚については、用いる材料によっても異なるが、図17に示したように、使用する圧電体材料及び電極材料に応じ、遅い横波音速よりも速くなるように弾性表面波の音速を調整すればよい。
 周知のように、弾性表面波装置では、IDT電極のデューティー比を変化させることによっても、弾性表面波の音速を変化させることができる。すなわち、圧電体4を伝搬する遅い横波音速よりも表面波の音速が速くなるデューティー比とすることにより、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を利用することができる。
 なお、上記第2の実施形態では、圧電体を伝搬するバルク波よりも音速の速い弾性表面波として横波を用いたが、圧電体を伝搬するバルク波よりも音速の速い弾性表面波として縦波を用いてもよい。その場合には、前記IDT電極の厚みは、前記弾性表面波の音速が前記圧電体を伝搬する縦波バルク波の音速よりも速くなる厚みとすることが望ましい。また、圧電体を伝搬するバルク波よりも音速の速い弾性表面波として縦波を用いた場合、好ましくは、前記IDT電極のデューティー比は、前記圧電体を伝搬する縦波バルク波の音速よりも速くなるデューティー比とされていることが好ましい。上記のように好ましいIDT電極の厚み及び/またはデューティー比とすることにより、上記実施形態と同様に、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を確実に利用することができる。特に、非漏洩型の表面波に比べ弾性表面波の音速を確実に高め得るため、IDTのピッチを大きくすることができる。よって、高周波化に有利なフィルタを提供することができる。
 図18は、本発明の第3の実施形態に係る弾性表面波装置を説明するための模式的正面断面図である。弾性表面波装置31では、圧電体4の下面に、閉じ込め層32が積層されている。
 閉じ込め層32は、音響インピーダンスが相対的に高い第1の材料層32a~32cと、音響インピーダンスが相対的に低い第2の材料層32d~32fとを積層した構造を有する。より具体的には、第1の材料層32a~32cと、第2の材料層32d~32fが交互に積層されている。また、圧電体4に接するように第1の材料層32aが積層されている。
 また、上記第1の材料層32a~32c及び第2の材料層32d~32fは、厚みが1/4波長とされている。従って、閉じ込め層32は、ブラッグ反射器を構成している。
 上記第1の材料層を構成する材料としては、Cu、Au、Mo、Ni、Wなどを挙げることができる。また、第2の材料層を構成する材料としては、酸化ケイ素、または様々なポリマーなどを挙げることができる。
 上記第1,第2の材料層32a~32fの積層は、スパッタリング、蒸着または印刷等の適宜の方法により行い得る。
 弾性表面波装置31では、上記閉じ込め層32がブラッグ反射器からなるため、圧電体4から伝搬してきた弾性表面波を反射させることができる。従って、伝搬方位を変化させた場合であっても、伝搬損失をほぼ0とすることができる。このように、本発明における閉じ込め層としては、前述したように、圧電体を伝搬するバルク波の音速よりも速いバルク波の音速が伝搬する材料からなるものに限られず、ブラッグ反射器であってもよい。
 本発明の弾性表面波装置は、複数の弾性表面波素子を有する。この場合、第1の実施形態のように、好ましくは、1つの圧電体4上に、複数の弾性表面波素子2,3が形成されていることが望ましい。それによって弾性表面波装置1を1チップ化することができる。もっとも、本発明においては、複数の弾性表面波素子は、別々の圧電体上に構成されていてもよい。その場合においても、各弾性表面波素子において、圧電体の下面に閉じ込め層を積層すればよい。
 また、本発明の弾性表面波装置は、複数の弾性表面波素子を備えるものである。このような複数の弾性表面波素子を用いた回路構成及び弾性表面波装置の用途については、特に限定されるものではない。図19~図22を参照して、本発明の弾性表面波装置の応用例を説明する。
 図19は、ラダー型フィルタ40の回路図を示す。ラダー型フィルタ40では、複数の直列腕共振子S1,S2と、複数の並列腕共振子P1~P3とがラダー型回路を構成している。この直列腕共振子S1,S2及び並列腕共振子P1~P3をそれぞれ弾性表面波素子により構成するに際し、本発明に従って、各弾性表面波共振子を構成すればよい。この場合においても、前述したように、弾性表面波の伝搬方位を異ならせることにより、各共振子の帯域幅を容易に調整することができる。また、このような帯域幅調整により、設計の自由度が向上し、ラダー型フィルタ40におけるフィルタとしての帯域を確保しつつ、通過帯域近傍における急峻性を高めることもできる。
 伝搬方位により電気機械結合係数kを変化させて、帯域幅を調整する構造を用い、弾性表面波装置の高性能化を図る手段は、上記ラダー型フィルタ40における通過帯域近傍における急峻性を高めるだけでなく、様々な構成に用いることができる。例えば、図20(a)に示すように、Rxフィルタ41及びTxフィルタ42が1つのチップに構成されている2入力及び2出力タイプの2つの帯域を有するフィルタチップにも適用することができる。図20(a)において、例えばRxフィルタ41の低周波側における急峻性を高めたり、Txフィルタ42の通過帯域高域側における急峻性を高めたり、上記と同様の手段を用いることができる。また、図20(b)に示すように、1入力2出力タイプの2つの帯域を有するフィルタにも同様に上記手段を用いることができる。図20(b)に示すフィルタでは、Rxフィルタ43とTxフィルタ44の入力が共通接続されている。
 また、弾性表面波フィルタを複数個並列または直列に接続した構成において、一方の弾性表面波フィルタの通過帯域の高域側または低域側と、他方の弾性表面波フィルタの通過帯域の低域側または高域側とが接するように設計すれば、広い帯域のフィルタを構成することができる。この場合、通過帯域端は、3dBの減衰量の部分で接することが望ましい。このような設計において、本発明に従って伝搬方位が変えられた複数の弾性表面波フィルタを用い、一方の弾性表面波フィルタを広帯域、一方の弾性表面波フィルタを狭帯域とすれば、通過帯域の高周波側または低周波側のいずれか一方において急峻性を高めることができる。すなわち、図21に示すように、第1の弾性表面波フィルタ45と第2の弾性表面波フィルタ46とが並列に接続されている構成としてもよい。このような構成においても、本発明に従って、伝搬方位を調整することにより容易に広帯域のフィルタ特性を設計することができる。
 本発明に係る弾性表面波装置により、縦結合型フィルタが構成されていてもよい。図22は、縦結合型フィルタを構成した場合の電極構造を示す模式的平面図である。
 図22に示すように、縦結合型フィルタ51では、弾性表面波の伝搬方向に沿って3個のIDT52~54が配置されている。IDT52~54が配置されている領域の表面波伝搬方向両側に反射器55,56が配置されている。中央のIDT53が、入力端子に接続されており、IDT52,54の各一端が共通接続されて出力端子に接続されている。すなわち、縦結合型フィルタ51は、3IDT型の縦結合型弾性表面波フィルタである。
 このような縦結合共振子型の弾性表面波フィルタにも本発明を適用することができる。
1…弾性表面波装置
2…第1の弾性表面波素子
3…第2の弾性表面波素子
4…圧電体
6…IDT電極
7,8…反射器
9…IDT電極
10,11…反射器
12…閉じ込め層
21…弾性表面波装置
22…低音速膜
31…弾性表面波装置
32…閉じ込め層
32a~32c…第1の材料層
32d~32f…第2の材料層
40…ラダー型フィルタ
41…Rxフィルタ
42…Txフィルタ
43…Rxフィルタ
44…Txフィルタ
45…第1の弾性表面波フィルタ
46…第2の弾性表面波フィルタ
51…縦結合型フィルタ
52~54…IDT
55,56…反射器
P1~P3…並列腕共振子
S1,S2…直列腕共振子

Claims (16)

  1.  カット角が同じ圧電体を用いて構成されている、圧電体を伝搬するバルク波よりも音速の速い弾性表面波を用いた複数の弾性表面波素子を備え、
     前記各弾性表面波素子が、前記圧電体と、前記圧電体上に設けられたIDT電極と、前記圧電体の前記IDT電極が設けられている側とは反対側に設けられており、かつ前記弾性表面波を前記圧電体側に閉じ込める閉じ込め層とを有し、
     前記複数の弾性表面波素子において、少なくとも一つの弾性表面波素子における弾性表面波の伝搬方位が、他の少なくとも一つの弾性表面波素子における弾性表面波の伝搬方位と異なっている、弾性表面波装置。
  2.  前記複数の弾性表面波素子が、単一の圧電体上に構成されている、請求項1に記載の弾性表面波装置。
  3.  前記少なくとも一つの弾性表面波素子の帯域幅が、前記少なくとも一つの他の弾性表面波素子の帯域幅と異なっている、請求項1または2に記載の弾性表面波装置。
  4.  前記閉じ込め層は、該閉じ込め層を伝搬するバルク波音速が前記弾性表面波の伝搬速度よりも速い誘電体からなる、請求項1~3のいずれか一項に記載の弾性表面波装置。
  5.  前記誘電体が、窒化アルミニウム、窒化ケイ素及び酸化アルミニウム、酸窒化ケイ素、DLCからなる群から選択された一種の誘電体、もしくは複数の誘電体の混合物、積層物である、請求項4に記載の弾性表面波装置。
  6.  前記弾性表面波は横波であり、前記IDT電極の厚みは、前記弾性表面波の音速が前記圧電体を伝搬する遅い横波の音速よりも速くなる厚みとされている、請求項1~5のいずれか一項に記載の弾性表面波装置。
  7.  前記弾性表面波は縦波であり、前記IDT電極の厚みは、前記弾性表面波の音速が前記圧電体を伝搬する縦波バルク波の音速よりも速くなる厚みとされている、請求項1~5のいずれか一項に記載の弾性表面波装置。
  8.  前記弾性表面波は横波であり、前記IDT電極のデューティー比は、前記圧電体を伝搬する遅い横波の音速よりも速くなるデューティー比とされている、請求項1~6のいずれか一項に記載の弾性表面波装置。
  9.  前記弾性表面波は縦波であり、前記IDT電極のデューティー比は、前記圧電体を伝搬する縦波バルク波の音速よりも速くなるデューティー比とされている、請求項1~5、7のいずれか一項に記載の弾性表面波装置。
  10.  前記圧電体と、前記閉じ込め層との間に設けられており、バルク波の音速が前記圧電体を伝搬するバルク波の音速及び閉じ込め層を伝搬するバルク波の音速よりも遅い低音速層をさらに備える、請求項1~9のいずれか一項に記載の弾性表面波装置。
  11.  前記低音速層が、酸化ケイ素からなる、請求項10に記載の弾性表面波装置。
  12.  前記閉じ込め層が、音響インピーダンスが相対的に高い第1の材料層と、音響インピーダンスが相対的に低い第2の材料層とが積層されているブラッグ反射器である、請求項1~3のいずれか一項に記載の弾性表面波装置。
  13.  前記第1の材料層が、Cu、Au、Mo、Ni及びWからなる群から選択された少なくとも一種からなる、請求項12に記載の弾性表面波装置。
  14.  前記第2の材料層が、酸化ケイ素またはポリマーからなる、請求項12に記載の弾性表面波装置。
  15.  フィルタまたは共振子である、請求項1~14のいずれか一項に記載の弾性表面波装置。
  16.  縦結合型弾性表面波フィルタである、請求項15に記載の弾性表面波装置。
PCT/JP2012/077243 2011-10-24 2012-10-22 弾性表面波装置 WO2013061926A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013540769A JP5720797B2 (ja) 2011-10-24 2012-10-22 弾性表面波装置
EP12844374.4A EP2773040B1 (en) 2011-10-24 2012-10-22 Surface acoustic wave device
CN201280051904.6A CN103891139B (zh) 2011-10-24 2012-10-22 弹性表面波装置
US14/254,984 US9276558B2 (en) 2011-10-24 2014-04-17 Surface acoustic wave device including a confinement layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-233137 2011-10-24
JP2011233137 2011-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/254,984 Continuation US9276558B2 (en) 2011-10-24 2014-04-17 Surface acoustic wave device including a confinement layer

Publications (1)

Publication Number Publication Date
WO2013061926A1 true WO2013061926A1 (ja) 2013-05-02

Family

ID=48167757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077243 WO2013061926A1 (ja) 2011-10-24 2012-10-22 弾性表面波装置

Country Status (5)

Country Link
US (1) US9276558B2 (ja)
EP (1) EP2773040B1 (ja)
JP (1) JP5720797B2 (ja)
CN (1) CN103891139B (ja)
WO (1) WO2013061926A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030239A1 (ja) 2013-09-02 2015-03-05 日本碍子株式会社 熱ダイオード
WO2015030238A1 (ja) 2013-09-02 2015-03-05 日本碍子株式会社 セラミックス材料、および熱スイッチ
WO2016047255A1 (ja) * 2014-09-26 2016-03-31 国立大学法人東北大学 弾性波装置
US20180083592A1 (en) * 2015-04-22 2018-03-22 Snaptrack, Inc. Electroacoustic component with improved acoustics
WO2018163842A1 (ja) * 2017-03-09 2018-09-13 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
KR20190026566A (ko) * 2017-09-04 2019-03-13 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR20190109502A (ko) * 2017-03-09 2019-09-25 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP2019212981A (ja) * 2018-05-31 2019-12-12 京セラ株式会社 弾性波素子、分波器および通信装置
WO2020121976A1 (ja) * 2018-12-13 2020-06-18 株式会社村田製作所 弾性波装置
WO2021090861A1 (ja) * 2019-11-06 2021-05-14 株式会社村田製作所 弾性波装置

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636901B1 (ko) * 2011-09-30 2016-07-06 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
EP2781022B1 (en) * 2011-11-17 2016-10-12 Transense Technologies PLC Resonant monolithic differential surface acoustic wave (saw) temperature sensing device
CN104205629B (zh) 2012-03-23 2016-12-28 株式会社村田制作所 弹性波装置及其制造方法
CN205992889U (zh) * 2014-03-31 2017-03-01 株式会社村田制作所 声表面波滤波器
FR3033462B1 (fr) * 2015-03-04 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif a ondes elastiques de surface comprenant un film piezoelectrique monocristallin et un substrat cristallin, a faibles coefficients viscoelastiques
EP3068049B1 (en) * 2015-03-12 2018-06-13 Skyworks Filter Solutions Japan Co., Ltd. Accoustic wave elements, antenna duplexers and electronic devices
WO2016208447A1 (ja) 2015-06-25 2016-12-29 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2017013968A1 (ja) * 2015-07-17 2017-01-26 株式会社村田製作所 弾性波装置
JP6494462B2 (ja) * 2015-07-29 2019-04-03 太陽誘電株式会社 弾性波デバイスおよびモジュール
WO2017043394A1 (ja) * 2015-09-10 2017-03-16 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
KR102111928B1 (ko) * 2015-10-23 2020-05-18 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
KR102157602B1 (ko) * 2015-10-23 2020-09-18 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
JP6637990B2 (ja) * 2015-10-30 2020-01-29 京セラ株式会社 弾性波共振子、弾性波フィルタ、分波器、通信装置および弾性波共振子の設計方法
CN106225948A (zh) * 2016-07-27 2016-12-14 电子科技大学 一种双声表面波温度传感器及其设计方法
CN109891612A (zh) 2016-10-20 2019-06-14 天工方案公司 具有亚波长厚度的压电层的弹性波器件
DE102016120566A1 (de) * 2016-10-27 2018-05-03 Snaptrack, Inc. SAW-Vorrichtung mit verbesserter Wärmeleitfähigkeit
JP6929565B2 (ja) * 2016-11-25 2021-09-01 国立大学法人東北大学 弾性波デバイス
EP3556014B1 (en) 2017-01-05 2021-03-10 Huawei Technologies Co., Ltd. Bragg mirror, resonator and filter device
US10536131B2 (en) 2017-06-20 2020-01-14 Skyworks Solutions, Inc. Surface acoustic wave device with thermally conductive layer
JP6784331B2 (ja) * 2017-06-23 2020-11-11 株式会社村田製作所 弾性波装置、高周波フロントエンド回路および通信装置
JP7224094B2 (ja) * 2017-06-26 2023-02-17 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ
US10615772B2 (en) 2017-06-30 2020-04-07 Texas Instruments Incorporated Acoustic wave resonators having Fresnel surfaces
US10686425B2 (en) 2017-06-30 2020-06-16 Texas Instruments Incorporated Bulk acoustic wave resonators having convex surfaces, and methods of forming the same
US10855251B2 (en) * 2017-08-08 2020-12-01 Texas Instruments Incorporated Unreleased plane acoustic wave resonators
KR102320454B1 (ko) * 2017-09-27 2021-11-02 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터 장치
CN108039872A (zh) * 2017-12-26 2018-05-15 海宁市瑞宏科技有限公司 一种用于高性能声表面波滤波器的谐振器结构设计
JP2019140456A (ja) * 2018-02-07 2019-08-22 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US10790802B2 (en) 2018-06-15 2020-09-29 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated Y-X cut lithium niobate
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US10756697B2 (en) 2018-06-15 2020-08-25 Resonant Inc. Transversely-excited film bulk acoustic resonator
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US20210328574A1 (en) 2020-04-20 2021-10-21 Resonant Inc. Small transversely-excited film bulk acoustic resonators with enhanced q-factor
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US10601392B2 (en) * 2018-06-15 2020-03-24 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
SG10201905013VA (en) 2018-06-11 2020-01-30 Skyworks Solutions Inc Acoustic wave device with spinel layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US10868510B2 (en) 2018-06-15 2020-12-15 Resonant Inc. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11171629B2 (en) 2018-06-15 2021-11-09 Resonant Inc. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US10797675B2 (en) * 2018-06-15 2020-10-06 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US11228296B2 (en) 2018-06-15 2022-01-18 Resonant Inc. Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter
US11329628B2 (en) 2020-06-17 2022-05-10 Resonant Inc. Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators
US11323095B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Rotation in XY plane to suppress spurious modes in XBAR devices
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
US11728785B2 (en) 2018-06-15 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11201601B2 (en) 2018-06-15 2021-12-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11349450B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11621690B2 (en) 2019-02-26 2023-04-04 Skyworks Solutions, Inc. Method of manufacturing acoustic wave device with multi-layer substrate including ceramic
US11901873B2 (en) 2019-03-14 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors
US10862454B1 (en) 2019-07-18 2020-12-08 Resonant Inc. Film bulk acoustic resonators in thin LN-LT layers
US11329625B2 (en) 2019-07-18 2022-05-10 Resonant Inc. Film bulk acoustic sensors using thin LN-LT layer
US20210273629A1 (en) 2020-02-28 2021-09-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11469733B2 (en) 2020-05-06 2022-10-11 Resonant Inc. Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress
US11482981B2 (en) 2020-07-09 2022-10-25 Resonanat Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11264969B1 (en) 2020-08-06 2022-03-01 Resonant Inc. Transversely-excited film bulk acoustic resonator comprising small cells
US11271539B1 (en) 2020-08-19 2022-03-08 Resonant Inc. Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
US11671070B2 (en) 2020-08-19 2023-06-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes
US11894835B2 (en) 2020-09-21 2024-02-06 Murata Manufacturing Co., Ltd. Sandwiched XBAR for third harmonic operation
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11405020B2 (en) 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
CN112653420A (zh) * 2020-12-18 2021-04-13 广东广纳芯科技有限公司 一种高声速高频低频率温度系数窄带滤波器及制造方法
CN112600531A (zh) * 2020-12-18 2021-04-02 广东广纳芯科技有限公司 一种高频近零频率温度系数的窄带滤波器及制造方法
US11239816B1 (en) 2021-01-15 2022-02-01 Resonant Inc. Decoupled transversely-excited film bulk acoustic resonators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311007A (ja) * 1989-05-26 1990-12-26 Hitachi Ltd 弾性表面波デバイス
JPH07283688A (ja) * 1994-04-07 1995-10-27 Matsushita Electric Ind Co Ltd 弾性表面波フィルター
JPH0865089A (ja) 1994-08-22 1996-03-08 Fujitsu Ltd 弾性表面波フィルタ
WO2003088483A1 (fr) 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Dispositif a ondes acoustiques de surface, appareil de communication mobile et capteur mettant tous deux en oeuvre ledit dispositif
WO2005060094A1 (ja) 2003-12-16 2005-06-30 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2007007475A1 (ja) * 2005-07-13 2007-01-18 Murata Manufacturing Co., Ltd. 弾性波フィルタ装置
WO2009119007A1 (ja) * 2008-03-27 2009-10-01 株式会社村田製作所 弾性波フィルタ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080408A (ja) * 2002-08-19 2004-03-11 Alps Electric Co Ltd ラダー型sawフィルタ及びラダー型sawフィルタの製造方法
CN1286266C (zh) * 2002-10-04 2006-11-22 精工爱普生株式会社 弹性表面波器件及其温度特性调整方法
JP4548088B2 (ja) * 2004-10-20 2010-09-22 セイコーエプソン株式会社 弾性表面波装置
JP2007312164A (ja) * 2006-05-19 2007-11-29 Hitachi Ltd 圧電薄膜共振器並びにそれを用いた高周波フィルタ及び高周波モジュール
US7446453B1 (en) * 2006-07-05 2008-11-04 Triquint, Inc. Surface acoustic wave devices using surface acoustic waves with strong piezoelectric coupling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311007A (ja) * 1989-05-26 1990-12-26 Hitachi Ltd 弾性表面波デバイス
JPH07283688A (ja) * 1994-04-07 1995-10-27 Matsushita Electric Ind Co Ltd 弾性表面波フィルター
JPH0865089A (ja) 1994-08-22 1996-03-08 Fujitsu Ltd 弾性表面波フィルタ
WO2003088483A1 (fr) 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Dispositif a ondes acoustiques de surface, appareil de communication mobile et capteur mettant tous deux en oeuvre ledit dispositif
WO2005060094A1 (ja) 2003-12-16 2005-06-30 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2007007475A1 (ja) * 2005-07-13 2007-01-18 Murata Manufacturing Co., Ltd. 弾性波フィルタ装置
WO2009119007A1 (ja) * 2008-03-27 2009-10-01 株式会社村田製作所 弾性波フィルタ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2773040A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030239A1 (ja) 2013-09-02 2015-03-05 日本碍子株式会社 熱ダイオード
WO2015030238A1 (ja) 2013-09-02 2015-03-05 日本碍子株式会社 セラミックス材料、および熱スイッチ
WO2016047255A1 (ja) * 2014-09-26 2016-03-31 国立大学法人東北大学 弾性波装置
US20180083592A1 (en) * 2015-04-22 2018-03-22 Snaptrack, Inc. Electroacoustic component with improved acoustics
KR20190109502A (ko) * 2017-03-09 2019-09-25 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR102294196B1 (ko) 2017-03-09 2021-08-27 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR20190109522A (ko) * 2017-03-09 2019-09-25 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JPWO2018163842A1 (ja) * 2017-03-09 2019-11-21 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
US11463068B2 (en) 2017-03-09 2022-10-04 Murata Manufacturing Co., Ltd. Acoustic wave device, high frequency front end circuit, and communication apparatus
WO2018163842A1 (ja) * 2017-03-09 2018-09-13 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
KR102311140B1 (ko) 2017-03-09 2021-10-12 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR20190026566A (ko) * 2017-09-04 2019-03-13 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
US11606077B2 (en) 2017-09-04 2023-03-14 Murata Manufacturing Co., Ltd. Elastic wave device, radio-frequency front-end circuit, and communication apparatus
KR102260099B1 (ko) * 2017-09-04 2021-06-03 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP7037439B2 (ja) 2018-05-31 2022-03-16 京セラ株式会社 弾性波素子、分波器および通信装置
JP2019212981A (ja) * 2018-05-31 2019-12-12 京セラ株式会社 弾性波素子、分波器および通信装置
KR20210087537A (ko) * 2018-12-13 2021-07-12 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
JPWO2020121976A1 (ja) * 2018-12-13 2021-10-14 株式会社村田製作所 弾性波装置
JP7088316B2 (ja) 2018-12-13 2022-06-21 株式会社村田製作所 弾性波装置
WO2020121976A1 (ja) * 2018-12-13 2020-06-18 株式会社村田製作所 弾性波装置
KR102629355B1 (ko) * 2018-12-13 2024-01-25 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
US11923820B2 (en) 2018-12-13 2024-03-05 Murata Manufacturing Co., Ltd. Acoustic wave device
JPWO2021090861A1 (ja) * 2019-11-06 2021-05-14
WO2021090861A1 (ja) * 2019-11-06 2021-05-14 株式会社村田製作所 弾性波装置
JP7380703B2 (ja) 2019-11-06 2023-11-15 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US9276558B2 (en) 2016-03-01
JP5720797B2 (ja) 2015-05-20
CN103891139B (zh) 2016-08-24
EP2773040A1 (en) 2014-09-03
CN103891139A (zh) 2014-06-25
JPWO2013061926A1 (ja) 2015-04-02
EP2773040A4 (en) 2015-06-10
US20140225684A1 (en) 2014-08-14
EP2773040B1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP5720797B2 (ja) 弾性表面波装置
US11552615B2 (en) Acoustic wave device
JP6929565B2 (ja) 弾性波デバイス
JP4497159B2 (ja) 弾性境界波フィルタ
JP4715922B2 (ja) 弾性境界波装置
JP5182459B2 (ja) ラダー型弾性波フィルタ及びこれを用いたアンテナ共用器
WO2016208446A1 (ja) フィルタ装置
JP6142924B2 (ja) チューナブルフィルタ
JP4483785B2 (ja) 弾性境界波装置
JP7292100B2 (ja) 弾性表面波素子、フィルタ回路及び電子部品
US6946930B2 (en) Surface acoustic wave device and electronic device using the same
WO2010058544A1 (ja) チューナブルフィルタ
WO2006114930A1 (ja) 弾性境界波装置
JP2014187568A (ja) 弾性波装置
JP7231015B2 (ja) 弾性波装置
WO2009139108A1 (ja) 弾性境界波装置
JP6360847B2 (ja) 弾性波デバイス
WO2010116783A1 (ja) 弾性波装置
US7009468B2 (en) Surface acoustic wave device and electronic device using the same
WO2010125934A1 (ja) 弾性波装置
WO2023080167A1 (ja) フィルタ装置及びマルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540769

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012844374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012844374

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE