WO2007007475A1 - 弾性波フィルタ装置 - Google Patents

弾性波フィルタ装置 Download PDF

Info

Publication number
WO2007007475A1
WO2007007475A1 PCT/JP2006/310268 JP2006310268W WO2007007475A1 WO 2007007475 A1 WO2007007475 A1 WO 2007007475A1 JP 2006310268 W JP2006310268 W JP 2006310268W WO 2007007475 A1 WO2007007475 A1 WO 2007007475A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave filter
acoustic wave
longitudinally coupled
coupled resonator
resonator type
Prior art date
Application number
PCT/JP2006/310268
Other languages
English (en)
French (fr)
Inventor
Teruhisa Shibahara
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to US11/995,208 priority Critical patent/US7804384B2/en
Priority to JP2007524538A priority patent/JPWO2007007475A1/ja
Priority to EP06746752A priority patent/EP1903676A4/en
Priority to CN2006800250689A priority patent/CN101218743B/zh
Publication of WO2007007475A1 publication Critical patent/WO2007007475A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0066Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel
    • H03H9/0076Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel the balanced terminals being on opposite sides of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0085Balance-unbalance or balance-balance networks using surface acoustic wave devices having four acoustic tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02685Grating lines having particular arrangements
    • H03H9/0274Intra-transducers grating lines
    • H03H9/02748Dog-legged reflectors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14594Plan-rotated or plan-tilted transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6469Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes
    • H03H9/6476Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes the tracks being electrically parallel

Definitions

  • the present invention relates to an acoustic wave filter device using a surface acoustic wave or a boundary acoustic wave, and in particular, the first and second longitudinally coupled resonator type acoustic wave filters are formed on the same piezoelectric substrate.
  • the present invention relates to an elastic wave filter device having a balanced-unbalanced conversion function.
  • Patent Document 1 discloses a surface acoustic wave filter having such a balance-unbalance conversion function.
  • FIG. 8 is a plan view showing an electrode structure of the surface acoustic wave filter described in Patent Document 1.
  • the surface acoustic wave filter 501 has a structure in which the illustrated electrode structure is formed on a piezoelectric substrate.
  • the first to third IDTs 502 to 504 are arranged along the surface acoustic wave propagation direction.
  • IDTs 502 to 504 are provided, and reflectors 505 and 506 are disposed on both sides of the surface wave propagation direction of the region.
  • One end of the center IDT 503 is connected to the unbalanced terminal 507, and one ends of the IDTs 502 and 504 on both sides are electrically connected to the first and second balanced terminals 508 and 509, respectively.
  • the IDTs 502 and 504 are arranged so that the phase of the signal flowing from the unbalanced terminal 507 to the balanced terminal 508 is opposite to the phase of the signal flowing from the unbalanced terminal 507 to the balanced terminal 509. It is configured.
  • the IDT 502 is subjected to cross width weighting.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-374147
  • the degree of balance is improved by applying cross width weighting in the IDT 502 connected to one balanced terminal 508 as described above. That is, at least one IDT 502 is weighted so that the surface acoustic wave receiving / exciting states of the signals output from the IDTs 502 and 504 are aligned.
  • An object of the present invention is to provide an elastic wave filter device that eliminates the above-mentioned drawbacks of the prior art and can easily and effectively increase the degree of signal balance between a pair of balanced terminals. There is to do.
  • the first longitudinally coupled resonator-type elastic wave formed on the piezoelectric substrate, the plurality of IDT electrodes, and the first and second terminals is formed on the piezoelectric substrate.
  • a filter, and a second longitudinally coupled resonator type acoustic wave filter formed on the piezoelectric substrate and having a plurality of IDT electrodes and third and fourth terminals, at least in a passband When the same signal is input to the first terminal and the third terminal, the phase difference between the signal output from the second terminal and the signal output from the fourth terminal is approximately 180 °.
  • the first and third terminals are connected in common and connected to the unbalanced terminal, and the second and fourth terminals are the first and second balanced terminals, respectively.
  • the elastic wave in the first longitudinally coupled resonator type elastic wave filter is An acoustic wave filter device is provided in which the propagation direction is different from the propagation direction of the elastic wave in the second longitudinally coupled resonator type elastic wave filter.
  • the first balanced terminal The first longitudinal coupling so that the difference between the insertion loss in the pass band of the filter waveform output from the filter waveform and the insertion loss in the pass band of the filter waveform output from the second balanced terminal is ⁇ ldB or less.
  • the propagation direction of the elastic wave of the resonator type elastic wave filter is different from the propagation direction of the elastic wave of the second longitudinally coupled resonator type elastic wave filter.
  • an inertial wave between IDT-IDTs in a plurality of IDTs among the first and second longitudinally coupled resonator type elastic wave filters is made smaller than the electromechanical coupling coefficient of the other longitudinally coupled resonator-type acoustic wave filter.
  • At least one of the first and second longitudinally coupled resonator type elastic wave filters is a surface acoustic wave filter.
  • At least one of the first and second longitudinally coupled resonator type elastic wave filters is a boundary acoustic wave filter.
  • the piezoelectric substrate is made of LiNbO, and a dielectric film is formed on the piezoelectric substrate so as to cover the IDT.
  • the Euler angle ⁇ force is in the range of 0 ° ⁇ ⁇ 60 °.
  • the IDT is a group force selected from Al, Ti, Pt, Fe, Ni, Cr, Cu, Ag, W, Ta, and Au force. Made of metal-based alloy.
  • the dielectric film is made of SiO.
  • each of the first and second longitudinally coupled resonator type elastic wave filters is used as an unbalanced terminal, and the other end is used as the first and second balanced terminals.
  • the first longitudinally coupled resonator type elastic Since the propagation direction of the elastic wave in the wave filter and the propagation direction of the elastic wave in the second longitudinally coupled resonator type elastic wave filter are different, the balance of the signal between the first and second balanced terminals Can be effectively improved. This is due to the following reason.
  • the excitation excitation strength of the elastic wave at the IDT-IDT boundary in the first longitudinally coupled resonator type elastic wave filter is equal to the IDT-IDT boundary of the corresponding second longitudinally coupled resonator type elastic wave filter. It must be different from the excitation intensity of the elastic wave.
  • the elastic wave excitation strength at the IDT-I DT boundary is strong, and on the side, As a result, the passband width becomes large, and it is considered that the signal balance between the balanced terminals is poor.
  • the elastic wave propagation direction of the first longitudinally coupled resonator type elastic wave filter is different from the elastic wave propagation direction of the second longitudinally coupled resonator type elastic wave filter. They have different electromechanical coupling coefficients. As the electromechanical coupling coefficient decreases, the passband width of the longitudinally coupled resonator type acoustic wave filter decreases, and as the electromechanical coupling coefficient increases, the passband width increases.
  • the second acoustic wave is received at the IDT-IDT boundary portion of the first longitudinally coupled resonator type acoustic wave filter and the second longitudinally coupled resonator type acoustic wave filter.
  • the elastic wave propagation directions of the first and second longitudinally coupled resonator type elastic wave filters are made different so that the electromechanical coupling coefficient in the filter on which excitation is relatively strong is reduced.
  • the electromechanical coupling coefficients are optimized independently, and the elastic wave is excited and excited as described above.
  • the passband widths of the first and second longitudinally coupled resonator type elastic wave filters are made uniform. Therefore, the transmission characteristics of the first and second elastic wave filters can be made closer, and the balance of the balanced signal can be effectively improved.
  • the filter on the side where strong excitation of elastic waves is performed at the IDT-IDT boundary, that is, the passband is Since the direction of elastic wave propagation is different so that the electromechanical coupling coefficient of the larger filter is smaller than the electromechanical coupling coefficient of the other longitudinally coupled resonator type elastic wave filter, The widths are aligned and the balance is improved.
  • Insertion loss in the passband of the filter waveform output from the first balanced terminal connected to the first longitudinally coupled resonator type acoustic wave filter, and the second longitudinally coupled resonator type acoustic wave filter The first and second longitudinally coupled resonator type elastic wave filters so that the difference from the insertion loss in the passband of the filter waveform output from the second balanced terminal connected to the If the propagation directions of the elastic waves are different, the amplitude of the antiphase signal is canceled out efficiently, and the balance can be further improved.
  • the difference between the insertion loss in the passband of the filter waveform output from the first balanced terminal and the insertion loss in the passband of the filter waveform output from the second balanced terminal force is ⁇ ldB or less. This means that the difference in insertion loss observed at the same frequency in the passbands of both filters is less than ⁇ ldB.
  • the first, second and second filter waveforms output from the first balanced terminal force have the same passband width as that of the filter waveform output from the second balanced terminal.
  • the propagation direction of the elastic wave of the resonator type elastic wave filter is selected, the balance of the signal between the first and second balanced terminals can be further improved.
  • the electromechanical coupling coefficient of the longitudinally coupled resonator type acoustic wave filter on the side where strong excitation and excitation of the acoustic wave between IDT and IDT in a plurality of IDTs is Therefore, it is possible to increase the balance of the signal between the first and second balanced terminals.
  • At least one of the first and second longitudinally coupled resonator type acoustic wave filters may be an elastic surface wave filter.
  • a surface acoustic wave filter device having excellent balance can be provided.
  • At least one of the first and second longitudinally coupled resonator type acoustic wave filters In such a case, it is possible to provide a boundary acoustic wave filter device with excellent balance according to the present invention.
  • the piezoelectric substrate is made of LiNbO, and a dielectric film is formed on the piezoelectric substrate including IDT.
  • ⁇ and 0 force are in the range of 31 ° ⁇ ⁇ 31 ° and 90 ° ⁇ 0 ⁇ 130 °, and ⁇ force of the first and second elastic wave filters ⁇ ). If the range of ⁇ Fai ⁇ 60 °, due to Euler angles ⁇ is the propagation direction changing in the range of 0 ° to 60 ° as described above, changing the electromechanical coupling coefficient kappa 2 in a wide range be able to. In addition, by setting this range, it is possible to reduce the propagation loss of the boundary acoustic wave and the insertion loss.
  • IDT is a metal selected from the group consisting of Al, Ti, Pt, Fe, Ni, Cr, Cu, Ag, W, Ta, and Au! /
  • an IDT can be formed by using an ordinary electrode material which is widely used for surface acoustic wave devices and boundary acoustic wave devices.
  • the dielectric film has no SiO, SiN, quartz, LBO, langasite, langanite, and glass strength.
  • FIG. 1 is a schematic plan view showing an electrode structure of a boundary acoustic wave filter device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic partial cutaway front sectional view of a boundary acoustic wave device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the amplitude balance and the frequency in the boundary acoustic wave device of the first embodiment and the boundary acoustic wave filter device of the reference example.
  • FIG. 4 is a diagram showing pass characteristics output from the first and second balanced terminals in the boundary acoustic wave filter device of the reference example.
  • FIG. 5 is a diagram showing pass characteristics output from the first and second balanced terminals in the boundary acoustic wave filter device of the first embodiment.
  • FIG. 6 shows an electrode structure of a boundary acoustic wave filter device according to a second embodiment of the present invention. It is a schematic plan view to show.
  • FIG. 7 is a schematic plan view showing an electrode structure of a boundary acoustic wave filter device according to a third embodiment of the present invention.
  • FIG. 8 is a schematic plan view showing an electrode structure of a conventional surface acoustic wave device. Explanation of symbols
  • FIG. 1 is a schematic plan view showing an electrode structure of a boundary acoustic wave device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram for explaining the structure of the boundary acoustic wave device. It is front sectional drawing.
  • the boundary acoustic wave filter device 100 of this embodiment includes a LiNbO substrate 101 made of a LiNbO single crystal as a piezoelectric substrate. On the LiNbO substrate 101, the invitation
  • a SiO film 103 is laminated as an electric film.
  • the boundary acoustic wave filter device of this embodiment is laminated as an electric film.
  • an electrode pattern 102 for receiving and exciting the boundary acoustic wave is schematically shown. More specifically, the electrode pattern 102 corresponds to the electrode structure shown in the schematic plan view of FIG.
  • dielectric film openings 103 a and 103 b are formed in the SiO film 103.
  • connection conductive portions 105a and 105b are formed on the dielectric film 103.
  • the connection conductive portions 105 a and 105 b reach the dielectric film openings 103 a and 103 b and are electrically connected to a part of the electrode pattern 102! RU
  • first and second balanced terminals 104a and 104b are formed on the upper surface of the dielectric film 103, and the balanced terminals 104a and 104b are electrically connected to the connection conductive portions 105a and 105b, respectively. It is connected to the.
  • connection conductive portions 105a and 105b can be formed of an appropriate metal or alloy such as A or Cu.
  • first and second balanced terminals 104a and 104b can be formed of an appropriate metal or alloy such as A1 or Cu.
  • the electrode pattern 102 formed on the LiNbO substrate 101 has a thickness of
  • is a wavelength corresponding to the center frequency of the boundary acoustic wave in the pass band of the boundary acoustic wave filter device 100.
  • the shaft Rotate the shaft counterclockwise to obtain the Xa axis.
  • the Xa axis is the center axis
  • the Z axis is rotated ⁇ counterclockwise to obtain the Z 'axis.
  • the plane including the Xa axis and normal to the Z 'axis is the cut surface of the substrate.
  • the direction of boundary acoustic wave propagation is defined as the direction rotated about the Z 'axis counterclockwise by the Xa axis.
  • the axis is parallel to the c axis
  • the X axis is parallel to any one of the three equivalent a axes
  • the Y axis is the normal direction of the plane containing the X and Z axes.
  • the crystal Z axis of the LiNbO substrate 101 is counterclockwise with the crystal X axis as the central axis.
  • the direction rotated by 105 ° is the normal direction to the page. Further, in FIG. 1, the direction extending to the left and right of the paper surface is the LiNbO crystal substrate 101 crystal X-axis direction. Therefore, in Figure 1,
  • the electrode pattern 2 includes a first longitudinally coupled resonator type boundary acoustic wave filter 110, a second longitudinally coupled resonator type boundary acoustic wave filter 120, and one-terminal-pair boundary acoustic wave resonators 150 and 160.
  • the first longitudinally coupled resonator type boundary acoustic wave filter 110 is a region in which 10 orders 113 to 115 and 10 orders 113 to 115 arranged along the boundary acoustic wave propagation direction are provided.
  • the reflectors 111 and 112 are arranged on both sides of the boundary wave propagation direction.
  • the second longitudinally coupled resonator type boundary acoustic wave filter 120 includes an IDT 1 arranged in the boundary acoustic wave propagation direction.
  • the design parameters of the first longitudinally coupled resonator type boundary acoustic wave filter 110 and the second longitudinally coupled resonator type boundary acoustic wave filter 120 are substantially the same, that is, substantially the same frequency. Designed to have characteristics. However, the polarity of IDT114 is opposite to that of IDT124.
  • one ends of IDTs 114 and 124 of first and second longitudinally coupled resonator type boundary acoustic wave filters 110 and 120 are connected to wirings 131 and 135, respectively.
  • the wirings 131 and 135 are connected in common and are connected to the unbalanced terminal 104 via the one-terminal-pair boundary acoustic wave resonator 150.
  • the unbalanced terminal 104 is formed on the upper surface of the SiO film 103 in the same manner as the first and second balanced terminals 104a and 104b shown in FIG.
  • the IDTs 113 and 115 of the first longitudinally coupled resonator type boundary acoustic wave filter 110 are connected to the first balanced terminal 104a via the one-terminal-pair boundary acoustic wave resonator 160 by the wiring 133. Yes.
  • the IDTs 123 and 125 of the second longitudinally coupled resonator type boundary acoustic wave filter 120 are connected to the second balanced terminal 104b via the one-terminal-pair boundary acoustic wave resonator 170 by the wiring 136.
  • the ⁇ of the boundary acoustic wave propagation direction in the first longitudinally coupled resonator type boundary acoustic wave filter 110 is 10 °.
  • first and second longitudinally coupled resonator boundary acoustic wave filters 110 and 120 are configured to have substantially the same frequency characteristics, but the boundary acoustic wave propagation directions are different. .
  • the boundary acoustic wave filter device 100 of the present embodiment includes the unbalanced terminal 104 and first and second balanced terminals 104a and 104b.
  • IDT114 is set so that the difference between the phase of the signal flowing from the unbalanced terminal 104 to the first balanced terminal 104a and the phase of the signal flowing from the unbalanced terminal 104 to the second balanced terminal 104b is approximately 180 °.
  • the polarity of IDT124 and the polarity of IDT124 are reversed. Therefore, it has a balanced-unbalanced transformation.
  • Each of the longitudinally coupled resonator boundary acoustic wave filters 110 and 120 is designed to pass a signal in the pass band and attenuate a signal in the attenuation band outside the pass band. It has a filter characteristic.
  • the one-terminal boundary acoustic wave resonators 150, 160, and 170 are designed so that the impedance is low in the pass band of the boundary acoustic wave filter device 100 and the impedance is high outside the pass band. Therefore, the out-of-band attenuation is increased by connecting the one-terminal-pair boundary acoustic wave resonators 150 to 170.
  • the propagation directions of the boundary acoustic waves in the first and second longitudinally coupled resonator boundary acoustic wave filters 110 and 120 are different as described above. Therefore, the balance can be effectively improved. This will be described more specifically with reference to FIGS.
  • FIG. 3 is a diagram showing a comparison of the amplitude balance of the balanced signal of the boundary acoustic wave device of the above embodiment, and the amplitude balance of the balanced signal of the boundary acoustic wave filter device of the reference example prepared for comparison. It is.
  • the boundary acoustic wave propagation direction of the first longitudinally coupled resonator type boundary acoustic wave filter 110 in the surface acoustic wave filter device of the above embodiment is Except for the fact that the second longitudinally coupled resonator type boundary acoustic wave filter 120 is the same as that of the second longitudinally coupled resonator type boundary acoustic wave filter 120, a filter formed in the same manner as in the embodiment was prepared.
  • the balanced terminal consists of the first and second balanced terminals 104a and 104b.
  • the amplitude balance of the balanced signal is the amplitude of the signal output to one of the balanced terminals in a pair.
  • the balanced amplitude of the balanced signal is 0 (dB).
  • the amplitude balance is around 890 MHz to 894 MHz, which is a high frequency side portion in the pass band, particularly in the pass band. It can be seen that it is effectively enhanced.
  • FIG. 4 is a diagram showing the pass characteristic of one balanced terminal 104a and the pass characteristic of the other balanced terminal 104b in the boundary acoustic wave filter device of the reference example, and FIG. It is a figure which shows the pass characteristic output to one balanced terminal 104a of a boundary acoustic wave filter apparatus, and the pass characteristic output to the other balanced terminal 104b.
  • Figs. 4 and 5 the pass power ratio with respect to the input signal is shown as insertion loss (dB) as the pass characteristic.
  • the pass band here refers to a pass band required for the boundary acoustic wave filter device.
  • the difference in insertion loss in the passband is reduced in the pass characteristics output from the first and second balanced terminals 104a and 104b.
  • the amplitude balance of the balanced signal is improved.
  • the design parameters of the boundary acoustic wave filters 110 and 120 are substantially the same.
  • the insertion loss on the higher frequency side than the center frequency is higher than the insertion loss on the lower frequency side of the center frequency. Also gets better.
  • the insertion loss on the high frequency side of the center frequency is higher than the insertion loss on the low frequency side of the center frequency. Deteriorate. Therefore, there is a difference in the insertion loss in the pass band between the balanced signal output from the balanced terminal 104a and the balanced signal output from the balanced terminal 104b, and the amplitude balance is poor.
  • Bandwidth longitudinally coupled resonator boundary acoustic wave pass characteristics of the filter such as the boundary acoustic wave filter 110, 120 is approximately proportional to the electromechanical coupling factor kappa 2. Therefore, with the above configuration, the first boundary acoustic wave filter 110 can be inserted into the passbands of the first and second boundary acoustic wave filters 110 and 120 by relatively reducing the bandwidth of the pass characteristic of the first boundary acoustic wave filter 110. The difference in loss is reduced, resulting in improved amplitude balance.
  • the first and second longitudinally coupled resonator type boundary acoustic wave filters have different propagation directions of the boundary acoustic waves, and the insertion loss of both in the passband is different. Since the bandwidth of the pass characteristic of the filter is set so that the difference between the two is small, the amplitude balance is effectively improved.
  • the difference in insertion loss between the first balanced terminal side and the second balanced terminal side is about 0.5 dB.
  • the degree is also about 0.5 dB.
  • the difference in insertion loss exceeds ldB, and the balance exceeds ldB near the high band of the passband. I understand that.
  • the passband characteristics of the first and second longitudinally coupled resonator type boundary acoustic wave filters vary depending on various design parameter factors.
  • the boundary acoustic waves of the two are set so that the bandwidths of the two pass characteristics are substantially the same.
  • the propagation direction of the may be different.
  • the center frequencies are also matched so that the pass characteristics of both are substantially the same, it is preferable that excellent amplitude balance is obtained even outside the pass band.
  • the bandwidth of the pass characteristic means that the insertion loss is the smallest! / And the bandwidth is reduced by 3 dB from the point.
  • the bandwidth of the pass characteristics is approximately the same, not including only when they are completely matched.
  • the bandwidth of the pass characteristics The relative bandwidth expressed by the Z center frequency is allowed to be about ⁇ 0.2%. It means getting. In other words, the pass characteristic bandwidths are approximately the same, including the range where the pass bandwidths are the same and the specific bandwidths differ by about ⁇ 0.2%.
  • the Euler angle ⁇ that is the boundary acoustic wave propagation direction is set to 0 ° to 6 by varying in the range of 0 °, it is possible to change the electromechanical coupling coefficient kappa 2 in the range approximately 0% to 16%. In this range, boundary acoustic wave propagation loss does not occur in this range. Therefore, it is preferable to set the ⁇ and ⁇ of the LiNbO substrate within the above ranges.
  • a low-loss boundary acoustic wave filter device can be provided.
  • FIG. 6 is a schematic plan view showing the electrode structure of the boundary acoustic wave filter device according to the second embodiment of the present invention.
  • the boundary acoustic wave filter device 200 according to the second embodiment is different from the IDT 114A according to the first embodiment except that the IDT 114A in the center of the first longitudinally coupled resonator type boundary acoustic wave filter 110 is different from the IDT 114 in the first embodiment. It is constituted similarly. Therefore, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
  • serial weighting is applied to the center IDT 114A of the first longitudinally coupled resonator type boundary acoustic wave filter 110 as shown in the figure.
  • floating electrode fingers 201a, 201b are provided at the tips of outermost electrode fingers of IDT 114A in the boundary acoustic wave propagation direction, and the floating electrode fingers 201a, 201b are placed next to the outermost electrode fingers. It has a structure formed so as to extend at the tip of the wire with a gap.
  • the bandwidth in the first longitudinally coupled resonator type boundary acoustic wave filter 110 in which the passband width is widened can be narrowed. It has been known that the pass band width of a longitudinally coupled resonator type boundary acoustic wave filter can be adjusted by serially weighting IDTs in this way.
  • the known boundary acoustic wave filter device is thus A method of adjusting the pass bandwidth by column weighting can be applied, thereby improving the balance of the signal even more effectively.
  • the Euler angle ⁇ in the propagation direction of the boundary acoustic wave in the first longitudinally coupled resonator type boundary acoustic wave filter 110 is equal to the longitudinally coupled resonator type of the first embodiment. It can be made smaller than the Euler angle ⁇ in the boundary wave propagation direction of the first longitudinally coupled resonator boundary acoustic wave filter in the boundary acoustic wave filter, and is set to 5 °. This is because the bandwidth can be adjusted by the above series weighting, and therefore the amount of adjustment of the pass bandwidth according to the boundary acoustic wave propagation direction can be reduced.
  • FIG. 7 is a schematic plan view of a boundary acoustic wave filter device according to a third embodiment of the present invention.
  • the boundary acoustic wave filter device 300 does not include the one-terminal-pair boundary acoustic wave resonators 150, 160, and 170, provided that the first and second longitudinally coupled resonator type elasticities are provided.
  • the third and fourth longitudinally coupled resonator type boundary acoustic wave filters 310 and 320 are connected downstream of the boundary wave filters 11 0 and 120, that is, except that a two-stage cascade connection configuration is used. These are the same as those in the first embodiment. Therefore, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the third and fourth longitudinally coupled resonator type boundary acoustic wave filters 310 and 320 have IDTs 31 to 315 and 323 to 325 and reflectors 311, 312, 321, and 322, respectively.
  • the third and fourth longitudinally coupled resonator type boundary acoustic wave filters 310 and 320 are configured in the same manner as the second longitudinally coupled resonator type boundary acoustic wave filter 120.
  • the boundary acoustic wave filter device has a configuration in which other longitudinally coupled resonator type boundary acoustic wave filters are connected in addition to at least two boundary acoustic wave filters 110 and 120. It may be.
  • a force using a 3IDT type longitudinally coupled resonator type boundary acoustic wave filter having three IDTs, such as 5IDT type or 7IDT type, is used.
  • a longitudinally coupled resonator type boundary acoustic wave filter with IDT may be used.
  • the boundary acoustic wave filter device has been described.
  • the present invention can also be applied to a surface acoustic wave device using an elastic surface wave. That is, At least one of the first and second longitudinally coupled resonator type surface acoustic wave filters may be a boundary acoustic wave filter, and at least one of the first and second longitudinally coupled resonator type surface acoustic wave filters may be a boundary acoustic wave filter. May be a surface acoustic wave filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 平衡-不平衡変換機能を有する弾性波フィルタ装置であって、一対の平衡端子間の信号の平衡度が改善された弾性波フィルタ装置を提供する。  圧電基板101上において、少なくとも1つの縦結合共振子型弾性波フィルタ110の一端と、残りの弾性波フィルタの内少なくとも1つの弾性波フィルタ120の一端とが共通接続され、不平衡端子104に接続されており、縦結合共振子型弾性波フィルタ110,120の各他端が、第1,第2の平衡端子104a,104bにそれぞれ電気的に接続されており、不平衡端子から入力された信号が、第1の平衡端子から出力される信号と、第2の平衡端子104bから出力される信号の位相とが約180°となるように構成されており、縦結合共振子型弾性波フィルタ110における弾性波の伝搬方向と、縦結合共振子型弾性波フィルタ120における弾性波の伝搬方向とが異なっている弾性波フィルタ装置100。

Description

明 細 書
弾性波フィルタ装置
技術分野
[0001] 本発明は、弾性表面波や弾性境界波を利用した弾性波フィルタ装置に関し、特に 、第 1,第 2の縦結合共振子型弾性波フィルタが同一圧電基板に形成されており、か つ平衡ー不平衡変換機能を有する弾性波フィルタ装置に関する。
背景技術
[0002] 従来、携帯電話機等の通信機の帯域フィルタとして、弾性表面波フィルタが広く用 いられている。また、近年、弾性表面波に代わり、弾性境界波を利用した弾性境界波 フィルタも注目されている。
[0003] ところで、携帯電話の RF段に使用される帯域フィルタでは、平衡—不平衡変
能を有することが求められている。平衡ー不平衡変 能を有する弾性波フィルタを 帯域フィルタとして用いることにより、ノ ンを省略することができ、小型化を進めるこ とがでさる。
[0004] 下記の特許文献 1には、このような平衡ー不平衡変換機能を有する弾性表面波フ ィルタが開示されている。
[0005] 図 8は、特許文献 1に記載の弾性表面波フィルタの電極構造を示す平面図である。
弾性表面波フィルタ 501は、圧電基板上に図示の電極構造を形成した構造を有する 。ここでは、弾性表面波伝搬方向に沿って、第 1〜第 3の IDT502〜504が配置され て 、る。 IDT502〜504が設けられて 、る領域の表面波伝搬方向両側に反射器 505 , 506が配置されている。
[0006] 中央の IDT503の一端が不平衡端子 507に接続されており、両側の IDT502, 50 4の一端が第 1,第 2の平衡端子 508, 509にそれぞれ電気的に接続されている。
[0007] 弾性表面波フィルタ 501では、不平衡端子 507から平衡端子 508に流れる信号の 位相と、不平衡端子 507から平衡端子 509に流れる信号の位相とが逆相となるように IDT502, 504が構成されている。そして、平衡度を改善するために、 IDT502に交 差幅重み付けが施されて 、る。 特許文献 1:特開 2002— 374147号公報
発明の開示
[0008] 従来、平衡ー不平衡変換機能を有する弾性表面波フィルタでは、第 1,第 2の平衡 端子カゝら入出力される平衡信号間の平衡度を高めることが強く求められている。特許 文献 1に記載の弾性表面波フィルタ 501では、上記のように、一方の平衡端子 508に 接続されている IDT502において交差幅重み付けを施すことにより、平衡度の改善 が図られている。すなわち、 IDT502, 504から出力される信号の弾性表面波の受励 振状況を揃えるように、少なくとも一方の IDT502に重み付けが施されている。
[0009] し力しながら、単に重み付けにより、 IDT502側における弾性表面波の受励振量と 、 IDT504側における弾性表面波の受励振量とを揃えることは困難であり、平衡度を 十分にかつ高精度に高めることは困難であった。
[0010] 力!]えて、 IDT502, 504における弾性表面波の受励振量を揃えるような重み付けを 設計する作業も困難であった。
[0011] 本発明の目的は、上述した従来技術の欠点を解消し、一対の平衡端子間における 信号の平衡度を簡便にかつ効果的に高めることが可能とされている弾性波フィルタ 装置を提供することにある。
[0012] 本発明によれば、圧電基板と、前記圧電基板上に形成されており、複数の IDT電 極と、第 1,第 2の端子とを有する第 1の縦結合共振子型弾性波フィルタと、前記圧電 基板上に形成されており、複数の IDT電極と、第 3,第 4の端子とを有する第 2の縦結 合共振子型弾性波フィルタとを備え、少なくとも通過帯域内において、同一信号を前 記第 1の端子及び第 3の端子に入力したときに、前記第 2の端子から出力される信号 と、第 4の端子から出力される信号との位相差が略 180° であり、前記第 1,第 3の端 子が共通接続されて不平衡端子に接続されており、前記第 2,第 4の端子が、それぞ れ、第 1,第 2の平衡端子とされている、平衡ー不平衡変 能を有する弾性波フィ ルタ装置において、前記第 1の縦結合共振子型弾性波フィルタにおける弾性波の伝 搬方向と、前記第 2の縦結合共振子型弾性波フィルタにおける弾性波の伝搬方向と が異なって!/ヽることを特徴とする、弾性波フィルタ装置が提供される。
[0013] 本発明に係る弾性波フィルタ装置のある特定の局面では、前記第 1の平衡端子か ら出力されるフィルタ波形の通過帯域における挿入損失と、前記第 2の平衡端子から 出力されるフィルタ波形の通過帯域における挿入損失との差が ± ldB以下となるよう に、前記第 1の縦結合共振子型弾性波フィルタの弾性波の伝搬方向と、前記第 2の 縦結合共振子型弾性波フィルタの弾性波の伝搬方向とが異ならされている。
[0014] 本発明に係る弾性波フィルタ装置のさらに別の特定の局面では、前記第 1,第 2の 縦結合共振子型弾性波フィルタの内、複数の IDTにおける IDT-IDT間における弹 性波の受励振がより強く生じる側の縦結合共振子型弾性波フィルタの電気機械結合 係数が、他方の縦結合共振子型弾性波フィルタの電気機械結合係数よりも小さくさ れている。
[0015] 本発明に係る弾性波フィルタ装置のさらに他の特定の局面では、前記第 1,第 2の 縦結合共振子型弾性波フィルタの内少なくとも一方が弾性表面波フィルタである。
[0016] 本発明に係る弾性波フィルタ装置のさらに別の特定の局面では、前記第 1,第 2の 縦結合共振子型弾性波フィルタの内少なくとも一方が弾性境界波フィルタである。
[0017] 本発明に係る弾性波フィルタ装置のさらに別の特定の局面では、前記圧電基板が LiNbOからなり、前記圧電基板上において前記 IDTを覆うように誘電体膜が形成さ
3
れており、前記 LiNbO基板のオイラー角の φ及び Θ力 31° ≤ φ≤31° かつ 9
3
0° ≤ Θ≤130° の範囲にあり、前記第 1,第 2の縦結合共振子型弾性波フィルタに おいて、オイラー角の φ力 0° ≤ ≤60° の範囲内とされている。
[0018] 本発明に係る弾性波フィルタ装置では、好ましくは、前記 IDTが、 Al、 Ti、 Pt、 Fe、 Ni、 Cr、 Cu、 Ag、 W、 Ta及び Au力 なる群力 選択した金属あるいは該金属を主 体とする合金からなる。
[0019] 本発明に係る弾性波フィルタ装置の別の特定の局面では、前記誘電体膜が、 SiO
2
、 SiN、水晶、 LBO、ランガサイト、ランガナイト及びガラス力もなる群力も選択した一 種の誘電体からなる。
(発明の効果)
[0020] 本発明に係る弾性波フィルタ装置では、第 1,第 2の縦結合共振子型弾性波フィル タの各一端を不平衡端子に、各他端を第 1,第 2の平衡端子に接続してなる平衡— 不平衡変換機能を有する弾性波フィルタ装置にぉ ヽて、第 1の縦結合共振子型弾性 波フィルタにおける弾性波の伝搬方向と、第 2の縦結合共振子型弾性波フィルタに おける弾性波の伝搬方向とが異なっているため、第 1,第 2の平衡端子間における信 号の平衡度を効果的に改善することができる。これは、以下の理由による。
[0021] 第 1の縦結合共振子型弾性波フィルタと、第 2の縦結合共振子型弾性波フィルタと では、信号の位相を逆相とするために、一部の IDTの極性が逆とされている。そのた め、第 1の縦結合共振子型弾性波フィルタにおける IDT— IDT境界部における弾性 波の受励振強度が、対応する第 2の縦結合共振子型弾性波フィルタの IDT— IDT境 界部にける弾性波の受励振強度と異ならざるを得ない。第 1,第 2の縦結合共振子型 弾性波フィルタの設計パラメータが、上記構成を除いて全く同一である場合、 IDT-I DT境界部における弾性波の受励振強度が強 、側にお 、て、通過帯域幅は大きくな り、そのため、平衡端子間における信号の平衡度が悪ィ匕していると考えられる。
[0022] これに対して、本発明では、第 1の縦結合共振子型弾性波フィルタの弾性波伝搬 方向と、第 2の縦結合共振子型弾性波フィルタにおける弾性波伝搬方向とが異なつ ており、両者の電気機械結合係数が異なっている。電気機械結合係数が小さくなると 、縦結合共振子型弾性波フィルタの通過帯域幅は小さくなり、電気機械結合係数が 大きくなると、通過帯域幅は大きくなる。
[0023] 本発明では、第 1の縦結合共振子型弾性波フィルタ及び第 2の縦結合共振子型弹 性波フィルタの内、上述した IDT— IDT境界部において、第 2の弾性波の受励振が 相対的に強く行われる側のフィルタにおける電気機械結合係数が小さくなるように、 第 1,第 2の縦結合共振子型弾性波フィルタの弾性波伝搬方向が異ならされている。 すなわち、第 1,第 2の縦結合共振子型弾性波フィルタにおける弾性波伝搬方向を 異ならせること〖こより、それぞれの電気機械結合係数を独立に最適化し、上記のよう に、弾性波の受励振が強く行われる側の電気機械結合係数を小さくすることにより、 第 1,第 2の縦結合共振子型弾性波フィルタの通過帯域幅が揃えられる。従って、第 1,第 2の弾性波フィルタにおける伝送特性が近づけられ、平衡信号の平衡度を効果 的に改善することが可能とされている。
[0024] 言い換えれば、第 1,第 2の縦結合共振子型弾性波フィルタの内、 IDT— IDT境界 部において、弾性波の受励振が強く行われる側のフィルタ、すなわち、通過帯域が 大きくなる側のフィルタの電気機械結合係数が、他方の縦結合共振子型弾性波フィ ルタの電気機械結合係数よりも小さくなるように弾性波伝搬方向が異ならされている ことにより、両者の通過帯域幅が揃えられ、平衡度が改善されている。
[0025] 従って、本発明によれば、第 1,第 2の縦結合共振子型弾性波フィルタにおける弾 性波伝搬方向を異ならせるだけでよいため、困難な設計作業を伴うことなぐ簡便に 、し力も効果的に平衡度を改善することが可能となる。
[0026] 第 1の縦結合共振子型弾性波フィルタに接続されている第 1の平衡端子から出力さ れるフィルタ波形の通過帯域における挿入損失と、第 2の縦結合共振子型弾性波フ ィルタに接続されている第 2の平衡端子から出力されるフィルタ波形の通過帯域にお ける挿入損失との差が ± ldB以下となるように、第 1,第 2の縦結合共振子型弾性波 フィルタの弾性波の伝搬方向が異ならされている場合には、逆位相信号の振幅の打 ち消しが効率良く行われ、それにより平衡度をより一層改善することができる。
[0027] なお、第 1の平衡端子から出力されるフィルタ波形の通過帯域における挿入損失と 、第 2の平衡端子力 出力されるフィルタ波形の通過帯域における挿入損失との差が ± ldB以下とは、双方のフィルタの通過帯域において同じ周波数で観測される挿入 損失の差が全て ± ldB以下であるということを意味する。
[0028] 特に、第 1の平衡端子力 出力されるフィルタ波形の通過帯域幅と、第 2の平衡端 子から出力されるフィルタ波形の通過帯域幅とが同一となるように第 1,第 2の縦結合 共振子型弾性波フィルタの弾性波の伝搬方向が選ばれている場合には、より一層第 1,第 2の平衡端子間の信号の平衡度を改善することができる。
[0029] また、複数の IDTにおける IDT— IDT間の弾性波の受励振が強く生じる側の縦結 合共振子型弾性波フィルタの電気機械結合係数が、他方の縦結合共振子型弾性波 フィルタの電気機械結合係数よりも小さくなるようにされて!ヽる場合には、それによつ て、第 1,第 2の平衡端子間の信号の平衡度を高めることができる。
[0030] 本発明では、第 1,第 2の縦結合共振子型弾性波フィルタの内少なくとも一方は、弾 性表面波フィルタであってもよい。この場合には、本発明に従って、平衡度に優れた 弾性表面波フィルタ装置を提供することができる。
[0031] また、本発明では、第 1,第 2の縦結合共振子型弾性波フィルタの内少なくとも一方 が弾性境界波を利用していてもよぐその場合には、本発明に従って、平衡度に優れ た弾性境界波フィルタ装置を提供することが可能となる。
[0032] 圧電基板が LiNbOからなり、 IDTを含む圧電基板上に誘電体膜が形成されており
3
、上記圧電基板のオイラー角の内、 φ及び 0力 31° ≤ ≤31° かつ 90° ≤ 0≤130° の範囲にあり、第 1,第 2の弾性波フィルタの φ力^)。 ≤φ≤60° の範囲 である場合には、伝搬方向であるオイラー角 Φを上記のように 0° 〜60° の範囲に 変化させることにより、電気機械結合係数 Κ2を広い範囲で変化させることができる。ま た、この範囲とすることにより、弾性波境界波の伝搬損失を低減することができ、挿入 損失を低減することができる。
[0033] IDTが、 Al、 Ti、 Pt、 Fe、 Ni、 Cr、 Cu、 Ag、 W、 Ta及び Auからなる群から選択し た金属ある!/、は該金属を主体とする合金力もなる場合には、弾性波表面波装置や弾 性境界波装置にぉ 、て汎用されて ヽる通常の電極材料を用いて IDTを形成すること ができる。
[0034] 誘電体膜が、 SiO、 SiN、水晶、 LBO、ランガサイト、ランガナイト及びガラス力もな
2
る群から選択された一種の誘電体からなる場合には、平衡度に優れかつ周波数温度 特性に優れた弾性境界波装置を提供できる。
図面の簡単な説明
[0035] [図 1]図 1は、本発明の第 1の実施形態に係る弾性境界波フィルタ装置の電極構造を 示す模式的平面図である。
[図 2]図 2は、本発明の第 1の実施形態に係る弾性境界波装置の略図的部分切欠正 面断面図である。
[図 3]図 3は、第 1の実施形態の弾性境界波装置及び参考例の弾性境界波フィルタ 装置における振幅平衡度と周波数との関係を示す図である。
[図 4]図 4は、参考例の弾性境界波フィルタ装置における第 1,第 2の平衡端子から出 力される通過特性を示す図である。
[図 5]図 5は、第 1の実施形態の弾性境界波フィルタ装置における第 1,第 2の平衡端 子から出力される通過特性を示す図である。
[図 6]図 6は、本発明の第 2の実施形態に係る弾性境界波フィルタ装置の電極構造を 示す模式的平面図である。
[図 7]図 7は、本発明の第 3の実施形態に係る弾性境界波フィルタ装置の電極構造を 示す模式的平面図である。
[図 8]図 8は、従来の弾性表面波装置の電極構造を示す模式的平面図である。 符号の説明
100…弾性境界波フィルタ装置
101---LiNbO基板
3
102…電極パターン
103---SiO膜
2
104···不平衡端子
104a, 104b…第 1,第 2の平衡端子
105a, 105b…接続導電部
110· "縦結合共振子型弾性境界波フィルタ
111, 112···反射器
113〜115···Π Γ
114A---IDT
120· "縦結合共振子型弾性境界波フィルタ
121, 122…反射器
123~125···ΙϋΤ
131, 135···配線
133, 136···配線
150, 160, 170…一端子対弾性境界波共振子
200…弾性境界波フィルタ装置
201a, 201b…浮き電極指
300…弾性境界波フィルタ装置
310, 320…縦結合共振子型弾性境界波フィルタ
311, 312···反射器
313〜315···Π Γ 320· "縦結合共振子型弾性境界波フィルタ
321, 322· ··反射器
323~325· ··ΙϋΤ
発明を実施するための最良の形態
[0037] 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発 明を明らかにする。
[0038] 図 1は、本発明の一実施形態に係る弾性境界波装置の電極構造を示す模式的平 面図であり、図 2は、該弾性境界波装置の構造を説明するための模式的正面断面図 である。
[0039] 図 2に示すように、本実施形態の弾性境界波フィルタ装置 100は、圧電基板として 、 LiNbO単結晶からなる LiNbO基板 101を有する。 LiNbO基板 101上には、誘
3 3 3
電体膜として SiO膜 103が積層されている。本実施形態の弾性境界波フィルタ装置
2
100は、上記 LiNbO基板 101と、 SiO膜 103の境界面を伝搬する SH型の弾性境
3 2
界波を利用している。
[0040] 図 2においては、上記弾性境界波を受励振するための電極パターン 102が略図的 に示されている。この電極パターン 102は、より具体的には図 1に模式的平面図で示 す電極構造に相当する。
[0041] なお、 SiO膜 103には、誘電体膜開口部 103a, 103bが形成されている。誘電体
2
膜開口部 103a, 103bにおいて、電極パターン 102の一部がそれぞれ露出している 。誘電体膜 103上に、接続導電部 105a, 105bが形成されている。接続導電部 105 a, 105bは、誘電体膜開口部 103a, 103b内に至っており、電極パターン 102の一 部に電気的に接続されて!、る。
[0042] また、誘電体膜 103の上面に、第 1,第 2の平衡端子 104a, 104bが形成されてお り、平衡端子 104a, 104bが、それぞれ、上記接続導電部 105a, 105bに電気的に 接続されている。
[0043] 上記接続導電部 105a, 105bは、 Aほたは Cuなどの適宜の金属もしくは合金によ り形成することができる。同様に、第 1,第 2の平衡端子 104a, 104bについても、 A1 または Cuなどの適宜の金属もしくは合金により形成され得る。 [0044] 図 2に示すように、上記 LiNbO基板 101上に形成された電極パターン 102は、厚
3
み 0. 05えの金の薄膜により形成されている。なお、 λは、弾性境界波フィルタ装置 1 00の通過帯域における弾性境界波の中心周波数に相当する波長である。
[0045] また、 LiNbO基板 101のオイラー角の φは 0° 、 0は 105° とした。なお、図 1に
3
ぉ 、ては、後述する IDTの電極指の本数及び反射器のグレーティングの本数は実際 よりも少なく略図的に示されている。
[0046] なお、上記オイラー角( φ , θ , φ )については、公知の右手系オイラー角を用いる こととする。すなわち、 LiNbO単結晶の結晶軸 X, Υ, Zに対し、 Z軸を中心軸とし、 X
3
軸を反時計回りに φ回転し、 Xa軸を得る。次に、 Xa軸を中心軸とし、 Z軸を反時計回 りに Θ回転し、 Z'軸を得る。 Xa軸を含み、 Z'軸を法線とする面を基板の切断面にす る。 Z'軸を軸として、 Xa軸を反時計回りに φ回転した方向を弾性境界波伝搬方向と する。
[0047] また、オイラー角の初期値として与えられる LiNbO単結晶の結晶軸 X, Υ, Zは、 Z
3
軸を c軸と平行とし X軸を等価な 3方向の a軸の内の任意の 1つと平行とし、 Y軸は X軸 及び Z軸を含む面の法線方向とする。
[0048] 図 1において、 LiNbO基板 101の結晶 Z軸を、結晶 X軸を中心軸として反時計回り
3
に 105° 回転した方向が紙面に対する法線方向となる。また、図 1においては、紙面 の左右に延びる方向を LiNbO結晶基板 101結晶 X軸方向とする。従って、図 1では
3
、紙面の左右方向に伝搬するオイラー角は φ =0° となり、紙面の上下方向に伝搬 する弾性境界波のオイラー角は φ = 90° となる。
[0049] 上記電極パターン 2は、第 1の縦結合共振子型弾性境界波フィルタ 110と、第 2の 縦結合共振子型弾性境界波フィルタ 120と、一端子対弾性境界波共振子 150, 160
, 170とこれらを電気的に接続する配線を有する。
[0050] また、第 1の縦結合共振子型弾性境界波フィルタ 110は、弾性境界波伝搬方向に 沿って配置された10丁113〜115と、10丁113〜115が設けられてぃる領域の弹性 境界波伝搬方向両側に配置された反射器 111, 112とを有する。同様に、第 2の縦 結合共振子型弾性境界波フィルタ 120は、弾性境界波伝搬方向に配置された IDT1
23〜125と、反射器 121, 122とを有する。 [0051] 第 1の縦結合共振子型弾性境界波フィルタ 110と、第 2の縦結合共振子型弾性境 界波フィルタの 120の設計パラメータはほぼ同じとされており、すなわち略同一の周 波数特性を有するように設計されている。もっとも、 IDT114の極性と、 IDT124の極 性とは逆とされている。
[0052] 他方、第 1,第 2の縦結合共振子型弾性境界波フィルタ 110, 120の IDT114, 12 4の一端がそれぞれ、配線 131, 135に接続されている。配線 131, 135は、共通接 続されており、一端子対弾性境界波共振子 150を介して不平衡端子 104に接続され ている。この不平衡端子 104は、図 2に示した第 1,第 2の平衡端子 104a, 104bと同 様に、 SiO膜 103の上面に形成されており、図示しない接続導電部により弾性境界
2
波共振子 150に電気的に接続されている。
[0053] 他方、第 1の縦結合共振子型弾性境界波フィルタ 110の IDT113, 115が、配線 1 33により一端子対弾性境界波共振子 160を介して第 1の平衡端子 104aに接続され ている。同様に、第 2の縦結合共振子型弾性境界波フィルタ 120の IDT123, 125が 、配線 136により一端子対弾性境界波共振子 170を介して第 2の平衡端子 104bに 接続されている。第 2の縦結合共振子型弾性境界波フィルタ 120及び一端子対弾性 境界波共振子 150, 160, 170における弾性境界波伝搬方向は、 φ =0° とされて いる。これに対して、第 1の縦結合共振子型弾性境界波フィルタ 110における弾性境 界波伝搬方向の φは 10° とされている。
[0054] すなわち、第 1,第 2の縦結合共振子型弾性境界波フィルタ 110, 120は、略同一 の周波数特性を有するように構成されているが、弾性境界波伝搬方向が異ならされ ている。
[0055] 本実施形態の弾性境界波フィルタ装置 100は、上記不平衡端子 104と、第 1,第 2 の平衡端子 104a, 104bとを有する。そして、不平衡端子 104から第 1の平衡端子 1 04aに流れる信号の位相と、不平衡端子 104から第 2の平衡端子 104bに流れる信 号の位相との差が略 180° となるように IDT114の極性と、 IDT124の極性とが逆と されている。従って、平衡—不平衡変 能を有する。
[0056] また、縦結合共振子型弾性境界波フィルタ 110, 120は、いずれも、通過帯域内の 信号を通過させ、通過帯域外の減衰域の信号を減衰させるように設計されて ヽるフィ ルタ特性を有する。加えて、一端子対弾性境界波共振子 150, 160, 170は、弾性 境界波フィルタ装置 100の通過帯域内においてインピーダンスが低ぐ通過帯域外 においてインピーダンスが高くなるように設計されている。従って、帯域外減衰量が一 端子対弾性境界波共振子 150〜170を接続することにより高められている。
[0057] また、本実施形態の弾性境界波フィルタ装置 100では、第 1,第 2の縦結合共振子 型弾性境界波フィルタ 110, 120における弾性境界波の伝搬方向が上記のように異 ならされているため、平衡度を効果的に改善することができる。これを、図 3〜図 5を 参照してより具体的に説明する。
[0058] 図 3は、上記実施形態の弾性境界波装置の平衡信号の振幅平衡度、比較のため に用意した参考例の弾性境界波フィルタ装置の平衡信号度の振幅平衡度の比較を 示す図である。なお、比較のために用意した参考例の弾性境界波フィルタ装置として は、上記実施形態の弾性表面波フィルタ装置における第 1の縦結合共振子型弾性 境界波フィルタ 110の弾性境界波伝搬方向を、第 2の縦結合共振子型弾性境界波 フィルタ 120と同一としたことを除いては、実施形態と同様に形成されたものを用意し た。
[0059] 図 3において、実線が実施形態の結果を、破線が参考例の結果を示す。なお、平 衡端子は、第 1,第 2の平衡端子 104a, 104bからなるが、平衡信号の振幅平衡度と は、対をなす平衡端子の内一方の平衡端子に出力される信号の振幅と、他方の平 衡端子に出力される信号の振幅との強度比であり、信号の電力の比を dBで表現した ものである。理想的には、平衡信号の振幅平衡度は 0 (dB)となる。
[0060] 図 3から明らかなように、参考例に比べて、本実施形態によれば、振幅平衡度が通 過帯域において、特に通過帯域内における高域側の部分である 890MHz〜894M Hz付近で効果的に高められていることがわかる。
[0061] 図 4は、上記参考例の弾性境界波フィルタ装置における一方の平衡端子 104aの 通過特性と、他方の平衡端子 104bの通過特性とを示す図であり、図 5は、上記実施 形態の弾性境界波フィルタ装置の一方の平衡端子 104aに出力される通過特性と、 他方の平衡端子 104bに出力される通過特性を示す図である。
[0062] 図 4及び図 5においては、実線が第 1の平衡端子に出力される通過特性、破線が第 2の平衡端子に出力される通過特性を示す。
[0063] 図 4における第 1,第 2の平衡端子に出力される信号の振幅平衡度が図 3において 破線で示されており、図 5における第 1,第 2の平衡端子に出力される信号の振幅平 衡度が図 3にお 、て実線で示されて!/、る。
[0064] なお、図 4及び図 5においては、通過特性として、入力信号に対する通過電力比を 挿入損失 (dB)で示した。
[0065] 図 4から、参考例においては、一方の平衡端子から出力される通過帯域内の挿入 損失と、他方の平衡端子力 出力される通過帯域内の挿入損失とが大きく異なるた め、平衡信号の振幅平衡度が悪ィ匕していることがわかる。
[0066] なお、ここでいう通過帯域とは弾性境界波フィルタ装置に対して要求される通過帯 域を指すものとする。
[0067] 他方、図 5から明らかなように、本実施形態によれば、第 1,第 2の平衡端子 104a, 104bから出力される通過特性において、通過帯域内の挿入損失の差が小さくされ て ヽるために平衡信号の振幅平衡度が改善されて ヽることがゎカゝる。
[0068] これは、以下の理由によると考えられる。
[0069] すなわち、参考例の弾性境界波フィルタ装置では、第 1,第 2の縦結合共振子型弹 性境界波フィルタの弾性境界波伝搬方向が等しぐ共に φ =0° とされている。また 、弾性境界波フィルタ 110, 120の設計パラメータはほぼ同一とされている。このとき 、 IDT— IDT間隔において、弾性境界波の受励振が行われる弾性境界波フィルタ 1 10の通過特性では、中心周波数よりも高域側の挿入損失が中心周波数の低域側の 挿入損失よりも良くなる。一方、 IDT-IDT間隔において弾性境界波の受励振が行 われな ヽ弹性境界波フィルタ 120の通過特性では、中心周波数の高域側の挿入損 失が中心周波数の低域側の挿入損失よりも悪くなる。従って、平衡端子 104aから出 力される平衡信号と、平衡端子 104bから出力される平衡信号との通過域内の挿入 損失に差が生じ、振幅平衡度が悪ィ匕している。
[0070] これに対して、上記実施形態では、第 1の縦結合共振子型弾性境界波フィルタ 11 0における弾性境界波伝搬方向が φ = 10° とされており、第 2の縦結合共振子型弹 性境界波フィルタ 120における弾性境界波の伝搬方向が、 φ =0° とされている。そ のため、第 1の弾性境界波フィルタ 110における弾性境界波の電気機械結合係数 κ2 力 第 2の弾性境界波フィルタ 120における弾性境界波の電気機械結合係数よりも 小さくされている。弾性境界波フィルタ 110, 120のような縦結合共振子型弾性境界 波フィルタの通過特性の帯域幅は電気機械結合係数 Κ2にほぼ比例する。従って、 上記構成により、第 1の弾性境界波フィルタ 110の通過特性の帯域幅を相対的にや や小さくすることにより、第 1,第 2の弾性境界波フィルタ 110, 120の通過帯域内の 挿入損失の差が小さくされ、結果として振幅平衡度が改善されている。
[0071] よって、本実施形態によれば、第 1,第 2の縦結合共振子型弾性境界波フィルタは 弾性境界波の伝搬方向が異ならされており、通過帯域内においての両者の挿入損 失の差が小さくなるようにフィルタの通過特性の帯域幅が設定されて 、るので、振幅 平衡度が効果的に改善されて 、る。
[0072] 本実施形態の弾性境界波装置では、図 5から明らかなように、第 1の平衡端子側と 第 2の平衡端子側における挿入損失の差は約 0. 5dBとされており、平衡度も約 0. 5 dBとされている。これに対して、参考例の結果を示す図 4から明らかなように、参考例 では、挿入損失の差は ldBを超えており、平衡度は、通過帯域の高域付近で ldBを 超えていることがわかる。すなわち、本発明では、好ましくは、第 1の平衡端子が出力 されるフィルタ波形の通過帯域における挿入損失と、第 2の平衡端子力 出力される フィルタ波形の通過帯域における挿入損失の差力 ± ldB以下となるように、第 1, 第 2の弾性境界波フィルタにおける弾性境界波の伝搬方向が異ならされていることが 望ましい。
[0073] もっとも、第 1,第 2の縦結合共振子型弾性境界波フィルタにおける通過帯域特性 は様々な設計パラメータの要因を受けて変化する。本実施形態とは異なる形態として 、挿入損失の差が元々小さいにも関わらず、通過特性の帯域幅が異なる場合には、 両者の通過特性の帯域幅を略一致させるように両者の弾性境界波の伝搬方向を異 ならせてもよい。このとき中心周波数も一致させ、両者の通過特性がほぼ同一とする ようにすれば、通過域外にお!ヽても優れた振幅平衡度が得られ好まし 、。
[0074] なおここで 、う通過特性の帯域幅とは挿入損失が最も小さ!/、点から 3dB低下する 帯域幅をいうものとする。 [0075] 通過特性の帯域幅が略一致とは、完全に一致した場合のみを含むものではなぐ 通過特性の帯域幅 Z中心周波数で表される比帯域幅が ±0. 2%程度まで許容し得 ることを意味する。すなわち、通過特性の帯域幅が略一致とは、通過特性の帯域幅 がー致している場合から、比帯域幅で ±0. 2%程度異なる範囲を含むものとする。
[0076] また、 LiNbO基板を用 ヽた場合、オイラー角 φ及び 0力 一 31° ≤ ≤+ 31°
3
かつ 90° ≤ Θ≤130° の範囲にある場合には、積層された誘電体膜との境界を伝 搬する弾性境界波において、弾性境界波伝搬方向であるオイラー角の φを 0° 〜6 0° の範囲で変化させることにより、電気機械結合係数 Κ2を 16%からほぼ 0%の範囲 で変化させることができる。し力も、この範囲においては、弾性境界波の伝搬損失が 発生しない。従って、好ましくは、 LiNbO基板の φ及び Θを上記範囲とすることによ
3
り、低損失の弾性境界波フィルタ装置を提供することができる。
[0077] 図 6は、本発明の第 2の実施形態に係る弾性境界波フィルタ装置の電極構造を示 す模式的平面図である。第 2の実施形態の弾性境界波フィルタ装置 200は、第 1の 縦結合共振子型弾性境界波フィルタ 110の中央の IDT114Aが第 1の実施形態に おける IDT114と異なっていることを除いては、同様に構成されている。従って、同一 の部分については、同一の参照番号を付することにより、その説明を省略する。
[0078] 本実施形態の弾性境界波フィルタ装置 200においては、第 1の縦結合共振子型弹 性境界波フィルタ 110における中央の IDT114Aに、図示のように直列重み付けが 施されている。直列重み付けとは、 IDT114Aの弾性境界波伝搬方向最外側の電極 指の先端に浮き電極指 201a, 201bを設け、該浮き電極指 201a, 201bを、最外側 の電極指の次に位置する電極指の先端にギャップを隔てて延びるように形成した構 造を有する。このような直列重み付けを施すことにより、 IDT— IDT境界部における 弾性境界波の受励振強度が弱められる。それによつて、同一の周波数特性を有する ように設計された場合に、通過帯域幅が広くなる第 1の縦結合共振子型弾性境界波 フィルタ 110における帯域幅を狭めることができる。このように IDTに直列重み付けを 施すことにより、縦結合共振子型弾性境界波フィルタの通過帯域幅を調整し得ること は従来より知られている。
[0079] 本発明においては、このように、弾性境界波フィルタ装置において知られている直 列重み付けによる通過帯域幅の調整手法を適用することができ、それによつて、信号 の平衡度をより一層効果的に改善することができる。
[0080] なお、第 2の実施形態においては、第 1の縦結合共振子型弾性境界波フィルタ 110 における弾性境界波の伝搬方向のオイラー角 φは、第 1の実施形態の縦結合共振 子型弾性境界波フィルタにおける第 1の縦結合共振子型弾性境界波フィルタの弾性 境界波伝搬方向におけるオイラー角 Φに比べて小さくすることができ、 = 5° とさ れている。これは、上記直列重み付けによって帯域幅を調整し得るため、弾性境界 波伝搬方向による通過帯域幅の調整量が少なくてすむことによる。
[0081] 図 7は、本発明の第 3の実施形態に係る弾性境界波フィルタ装置の模式的平面図 である。
[0082] 第 3の実施形態の弾性境界波フィルタ装置 300は、一端子対弾性境界波共振子 1 50, 160, 170を有せず、但し、第 1,第 2の縦結合共振子型弾性境界波フィルタ 11 0, 120の後段に、第 3,第 4の縦結合共振子型弾性境界波フィルタ 310, 320が接 続されており、すなわち 2段カスケード接続構成とされていることを除いては、第 1の 実施形態と同様とされている。従って、同一部分については、同一の参照番号を付 することにより、その説明は省略する。
[0083] 第 3,第 4の縦結合共振子型弾性境界波フィルタ 310, 320は、それぞれ、 IDT31 3〜315, 323〜325と、反射器 311, 312, 321, 322とを有する。また、第 3,第 4の 縦結合共振子型弾性境界波フィルタ 310, 320は、第 2の縦結合共振子型弾性境界 波フィルタ 120と同一に構成されて 、る。
[0084] このように、本発明に係る弾性境界波フィルタ装置では、少なくとも 2つの弾性境界 波フィルタ 110, 120以外にさらに他の縦結合共振子型弾性境界波フィルタを接続し た構成を有していてもよい。
[0085] なお、上記第 1〜第 3の実施形態では、 3個の IDTを有する 3IDT型の縦結合共振 子型弾性境界波フィルタを用いた力 5IDT型あるいは 7IDT型などのそれ以上の数 の IDTを有する縦結合共振子型弾性境界波フィルタを用いてもょ ヽ。
[0086] さらに、第 1〜第 3の実施形態では、弾性境界波フィルタ装置につき説明したが、弾 性表面波を利用した弾性表面波装置にも本発明を適用することができる。すなわち、 第 1 ,第 2の縦結合共振子型弾性表面波フィルタの内少なくとも 1つが弾性境界波フ ィルタであってもよぐ第 1,第 2の縦結合共振子型弾性波フィルタの内少なくとも 1つ が弾性表面波フィルタであってもよ 、。

Claims

請求の範囲
[1] 圧電基板と、
前記圧電基板上に形成されており、複数の IDT電極と、第 1,第 2の端子とを有す る第 1の縦結合共振子型弾性波フィルタと、
前記圧電基板上に形成されており、複数の IDT電極と、第 3,第 4の端子とを有す る第 2の縦結合共振子型弾性波フィルタとを備え、
少なくとも通過帯域内において、同一信号を前記第 1の端子及び第 3の端子に入 力したときに、前記第 2の端子力 出力される信号と、第 4の端子力 出力される信号 との位相差が略 180° であり、
前記第 1,第 3の端子が共通接続されて不平衡端子に接続されており、 前記第 2,第 4の端子が、それぞれ、第 1,第 2の平衡端子とされている、平衡ー不 平衡変換機能を有する弾性波フィルタ装置にぉ ヽて、
前記第 1の縦結合共振子型弾性波フィルタにおける弾性波の伝搬方向と、 前記第 2の縦結合共振子型弾性波フィルタにおける弾性波の伝搬方向とが異なつ ていることを特徴とする、弾性波フィルタ装置。
[2] 前記第 1の平衡端子力 出力されるフィルタ波形の通過帯域における挿入損失と、 前記第 2の平衡端子力 出力されるフィルタ波形の通過帯域における挿入損失との 差が ± ldB以下となるように、前記第 1の縦結合共振子型弾性波フィルタの弾性波 の伝搬方向と、前記第 2の縦結合共振子型弾性波フィルタの弾性波の伝搬方向とが 異ならされて ヽる、請求項 1に記載の弾性波フィルタ装置。
[3] 前記第 1,第 2の縦結合共振子型弾性波フィルタの内、複数の IDTにおける IDT— IDT間における弾性波の受励振がより強く生じる側の縦結合共振子型弾性波フィル タの電気機械結合係数が、他方の縦結合共振子型弾性波フィルタの電気機械結合 係数よりも小さくされている、請求項 1または 2に記載の弾性波フィルタ装置。
[4] 前記第 1,第 2の縦結合共振子型弾性波フィルタの内少なくとも一方が弾性表面波 フィルタである、請求項 1〜3のいずれか 1項に記載の弾性波フィルタ装置。
[5] 前記第 1,第 2の縦結合共振子型弾性波フィルタの内少なくとも一方が弾性境界波 フィルタである、請求項 1〜3のいずれか 1項に記載の弾性波フィルタ装置。
[6] 前記圧電基板が LiNbOからなり、
3
前記圧電基板上にぉ ヽて前記 IDTを覆うように誘電体膜が形成されており、 前記 LiNbO基板のオイラー角の φ及び 0力 一 31° ≤ ≤31° かつ 90° ≤ Θ
3
≤130° の範囲にあり、
前記第 1,第 2の縦結合共振子型弾性波フィルタにおいて、オイラー角の φが、 0° ≤ φ≤60° の範囲にあることを特徴とする、請求項 5に記載の弾性波フィルタ装置。
[7] 前記 IDTが、 Al、 Ti、 Pt、 Fe、 Ni、 Cr、 Cu、 Ag、 W、 Ta及び Auからなる群から選 択した金属あるいは該金属を主体とする合金からなる、請求項 1〜6のいずれか 1項 に記載の弾性波フィルタ装置。
[8] 前記誘電体膜が、 SiO、 SiN、水晶、 LBO、ランガサイト、ランガナイト及びガラスか
2
らなる群力 選択した一種の誘電体力もなる、請求項 6に記載の弾性波フィルタ装置
PCT/JP2006/310268 2005-07-13 2006-05-23 弾性波フィルタ装置 WO2007007475A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/995,208 US7804384B2 (en) 2005-07-13 2006-05-23 Acoustic wave filter device utilizing filters having different acoustic wave propagation directions
JP2007524538A JPWO2007007475A1 (ja) 2005-07-13 2006-05-23 弾性波フィルタ装置
EP06746752A EP1903676A4 (en) 2005-07-13 2006-05-23 ELASTIC WAVE FILTER
CN2006800250689A CN101218743B (zh) 2005-07-13 2006-05-23 声波滤波器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-204758 2005-07-13
JP2005204758 2005-07-13

Publications (1)

Publication Number Publication Date
WO2007007475A1 true WO2007007475A1 (ja) 2007-01-18

Family

ID=37636875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310268 WO2007007475A1 (ja) 2005-07-13 2006-05-23 弾性波フィルタ装置

Country Status (6)

Country Link
US (1) US7804384B2 (ja)
EP (1) EP1903676A4 (ja)
JP (1) JPWO2007007475A1 (ja)
KR (1) KR100898703B1 (ja)
CN (1) CN101218743B (ja)
WO (1) WO2007007475A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128202A1 (ja) * 2008-04-14 2009-10-22 株式会社村田製作所 弾性波フィルタ装置
US8242861B2 (en) 2008-03-27 2012-08-14 Murata Manufacturing Co., Ltd. Acoustic wave filter device
WO2013061926A1 (ja) * 2011-10-24 2013-05-02 株式会社村田製作所 弾性表面波装置
JP2017158160A (ja) * 2016-03-04 2017-09-07 太陽誘電株式会社 フィルタおよびデュプレクサ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041063B2 (ja) * 2008-06-30 2012-10-03 株式会社村田製作所 帯域阻止フィルタ
WO2010125934A1 (ja) * 2009-04-30 2010-11-04 株式会社村田製作所 弾性波装置
JP2011066747A (ja) * 2009-09-18 2011-03-31 Panasonic Corp 弾性波フィルタ
DE112010005279B4 (de) 2010-02-17 2017-03-30 Murata Manufacturing Co., Ltd. Vorrichtung für elastische Wellen
JP6572842B2 (ja) * 2016-07-15 2019-09-11 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置
KR20180064168A (ko) * 2016-12-05 2018-06-14 삼성전기주식회사 탄성파 필터 장치 및 이의 제조방법
DE102017127713B3 (de) * 2017-11-23 2019-02-28 RF360 Europe GmbH Elektroakustisches Filter mit einer verringerten akustischen Kopplung, Verfahren zum Verringern der akustischen Kopplung und Multiplexer
DE102018130144A1 (de) * 2018-11-28 2020-05-28 RF360 Europe GmbH Elektroakustischer Resonator und HF-Filter
CN111727564B (zh) 2018-12-28 2024-01-19 株式会社村田制作所 滤波器装置以及多工器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283688A (ja) * 1994-04-07 1995-10-27 Matsushita Electric Ind Co Ltd 弾性表面波フィルター
JP2002374147A (ja) 2001-04-09 2002-12-26 Murata Mfg Co Ltd 弾性表面波装置、通信装置
JP2003209458A (ja) * 2001-03-04 2003-07-25 Kazuhiko Yamanouchi 弾性表面波基板及び弾性表面波機能素子
WO2004070946A1 (ja) * 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. 弾性境界波装置
JP2004343573A (ja) * 2003-05-19 2004-12-02 Murata Mfg Co Ltd 弾性表面波装置、通信機

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1449841A (en) * 1973-04-09 1976-09-15 Mullard Ltd Oscillators
JPS53145595A (en) * 1977-05-25 1978-12-18 Nippon Telegr & Teleph Corp <Ntt> Elastic surface wave oscillator
JPS58130613A (ja) 1982-01-29 1983-08-04 Citizen Watch Co Ltd 弾性表面波装置
JPS59151517A (ja) 1983-02-18 1984-08-30 Nec Corp 弾性表面波素子
JPH05335881A (ja) * 1992-06-04 1993-12-17 Murata Mfg Co Ltd 縦型2重モード弾性表面波フィルタ
JPH06268475A (ja) 1993-03-10 1994-09-22 Fujitsu Ltd 弾性表面波フィルタ
JPH11136081A (ja) 1997-10-27 1999-05-21 Kyocera Corp 弾性表面波装置
US6278340B1 (en) * 1999-05-11 2001-08-21 Industrial Technology Research Institute Miniaturized broadband balun transformer having broadside coupled lines
US6426583B1 (en) * 1999-06-14 2002-07-30 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave element, method for producing the same and surface acoustic wave device using the same
JP3780408B2 (ja) * 2001-01-26 2006-05-31 株式会社村田製作所 弾性表面波フィルタ装置
EP1239588A2 (en) 2001-03-04 2002-09-11 Kazuhiko Yamanouchi Surface acoustic wave substrate and surface acoustic wave functional element
JP3509764B2 (ja) 2001-03-23 2004-03-22 株式会社村田製作所 弾性表面波装置、通信装置
JP3534080B2 (ja) * 2001-03-23 2004-06-07 株式会社村田製作所 弾性表面波フィルタ装置
US6815868B2 (en) 2001-04-09 2004-11-09 Murata Manufacturing Co., Ltd. Surface acoustic wave apparatus and communication unit
JP3873807B2 (ja) * 2001-06-22 2007-01-31 株式会社村田製作所 弾性表面波装置、通信装置
JP4182157B2 (ja) * 2002-08-12 2008-11-19 株式会社村田製作所 表面波装置
JP2004166213A (ja) * 2002-09-20 2004-06-10 Murata Mfg Co Ltd 弾性表面波装置、通信装置
JP2004274696A (ja) 2002-10-04 2004-09-30 Seiko Epson Corp 弾性表面波装置および弾性表面波装置の温度特性調整方法
JP3894917B2 (ja) * 2003-11-12 2007-03-22 富士通メディアデバイス株式会社 弾性境界波デバイス及びその製造方法
KR100785242B1 (ko) * 2003-12-16 2007-12-12 가부시키가이샤 무라타 세이사쿠쇼 탄성 경계파 장치
KR100840872B1 (ko) * 2005-02-16 2008-06-23 가부시키가이샤 무라타 세이사쿠쇼 밸런스형 탄성파 필터 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283688A (ja) * 1994-04-07 1995-10-27 Matsushita Electric Ind Co Ltd 弾性表面波フィルター
JP2003209458A (ja) * 2001-03-04 2003-07-25 Kazuhiko Yamanouchi 弾性表面波基板及び弾性表面波機能素子
JP2002374147A (ja) 2001-04-09 2002-12-26 Murata Mfg Co Ltd 弾性表面波装置、通信装置
WO2004070946A1 (ja) * 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. 弾性境界波装置
JP2004343573A (ja) * 2003-05-19 2004-12-02 Murata Mfg Co Ltd 弾性表面波装置、通信機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242861B2 (en) 2008-03-27 2012-08-14 Murata Manufacturing Co., Ltd. Acoustic wave filter device
WO2009128202A1 (ja) * 2008-04-14 2009-10-22 株式会社村田製作所 弾性波フィルタ装置
WO2013061926A1 (ja) * 2011-10-24 2013-05-02 株式会社村田製作所 弾性表面波装置
JPWO2013061926A1 (ja) * 2011-10-24 2015-04-02 株式会社村田製作所 弾性表面波装置
JP2017158160A (ja) * 2016-03-04 2017-09-07 太陽誘電株式会社 フィルタおよびデュプレクサ

Also Published As

Publication number Publication date
CN101218743A (zh) 2008-07-09
US20090224852A1 (en) 2009-09-10
EP1903676A1 (en) 2008-03-26
KR20080028427A (ko) 2008-03-31
EP1903676A4 (en) 2012-08-22
JPWO2007007475A1 (ja) 2009-01-29
US7804384B2 (en) 2010-09-28
KR100898703B1 (ko) 2009-05-20
CN101218743B (zh) 2012-04-25

Similar Documents

Publication Publication Date Title
WO2007007475A1 (ja) 弾性波フィルタ装置
KR100897174B1 (ko) 탄성경계파 필터장치
JP4631972B2 (ja) 弾性波フィルタ装置
US7479855B2 (en) Longitudinally-coupled-resonator-type elastic wave filter device
KR100840872B1 (ko) 밸런스형 탄성파 필터 장치
EP1168611A2 (en) Surface acoustic wave device
JP4557008B2 (ja) 弾性波フィルタ装置及びデュプレクサ
JP5158725B2 (ja) 弾性表面波装置およびそれを用いた通信装置
JPWO2006068086A1 (ja) バランス型sawフィルタ
WO2007083503A1 (ja) 弾性表面波フィルタ装置
WO2006043445A1 (ja) バランス型弾性表面波フィルタ
WO2006049000A1 (ja) バランス型sawフィルタ
US8525621B2 (en) Boundary acoustic wave filter
US7746199B2 (en) Acoustic wave device
US7800460B2 (en) Elastic wave filter device and duplexer
US8339221B2 (en) Elastic wave filter device having narrow-pitch electrode finger portions
WO2010032377A1 (ja) 弾性波フィルタ装置
JPWO2008038459A1 (ja) 弾性境界波フィルタ装置
JP2009260463A (ja) 弾性波フィルタ装置
WO2006048999A1 (ja) バランス型sawフィルタ
WO2012026207A1 (ja) 弾性波フィルタ
WO2009128202A1 (ja) 弾性波フィルタ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025068.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524538

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006746752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11995208

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE