WO2013061903A1 - セグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法 - Google Patents

セグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法 Download PDF

Info

Publication number
WO2013061903A1
WO2013061903A1 PCT/JP2012/077191 JP2012077191W WO2013061903A1 WO 2013061903 A1 WO2013061903 A1 WO 2013061903A1 JP 2012077191 W JP2012077191 W JP 2012077191W WO 2013061903 A1 WO2013061903 A1 WO 2013061903A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
segment
joining
insulating layer
annular core
Prior art date
Application number
PCT/JP2012/077191
Other languages
English (en)
French (fr)
Inventor
慎一 飯塚
寛延 坂
有吉 剛
貴志 平櫛
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011235979A external-priority patent/JP5848579B2/ja
Priority claimed from JP2012016236A external-priority patent/JP5845931B2/ja
Priority claimed from JP2012020859A external-priority patent/JP5890698B2/ja
Priority claimed from JP2012023874A external-priority patent/JP5856498B2/ja
Priority claimed from JP2012045004A external-priority patent/JP5890708B2/ja
Priority claimed from JP2012198558A external-priority patent/JP5984592B2/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112012004516.5T priority Critical patent/DE112012004516T8/de
Priority to US14/354,311 priority patent/US9755469B2/en
Priority to CN201280053180.9A priority patent/CN103947085B/zh
Publication of WO2013061903A1 publication Critical patent/WO2013061903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • H02K15/0421Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils consisting of single conductors, e.g. hairpins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the present invention relates to a segment coil, a stator using the segment coil, and a method for manufacturing the segment coil.
  • segment coils in which wires are formed in a substantially U shape.
  • a stator using such segment coils is formed by aligning and arranging a plurality of segment coils in slots of the stator and then joining the ends of adjacent segment coils using arc welding or the like. Things are common.
  • Patent Documents 1 and 2 there are, for example, Patent Documents 1 and 2 below.
  • Patent Document 1 is an invention related to a segment coil joining apparatus and method, and provides a segment coil joining apparatus and method that is fully automatic and maintains product quality and has high productivity without deteriorating production costs. There is a merit that can be done.
  • the said patent document 2 is invention regarding the stator of the alternating current generator for vehicles, and there exists a merit which can provide the stator of the alternating current generator for vehicles which can ensure the distance between junction parts.
  • Patent Documents 1 and 2 there is a problem that workability is poor because the end portions of the segment coils to be joined to each other are joined one by one.
  • Patent Documents 1 and 2 since the end portions of the segment coils to be joined together are joined while being pressed in the radial direction of the annular core, the space in the pressing direction is narrow, and the positioning accuracy of the jig is reduced.
  • workability was poor.
  • the segment coil is provided with an insulating layer for insulation between adjacent segment coils and the core.
  • the insulating layer needs to be configured so that partial discharge does not occur between the members.
  • the partial discharge is likely to occur in a portion where the voltage difference is large. For example, when a segment coil is employed in the stator of a three-phase AC motor, the voltage difference between the segment coils belonging to different phases is the largest. Therefore, partial discharge is likely to occur at a portion where segment coils belonging to different phases are close to or in contact with each other.
  • the conventional segment coil is configured to prevent partial discharge by providing an insulating layer that can cope with a voltage difference between segment coils belonging to different phases throughout the segment coil.
  • the voltage difference at the part where the segment coils belonging to the same phase contact each other and the part where the core and the segment coil contact each other is small, and it is not necessary to provide a thick insulating layer that can handle a large voltage difference.
  • the conventional segment coil since an insulating layer that can cope with the voltage difference between coils belonging to different phases is provided in the entire area of the coil, the space factor in the slot is reduced, and the motor is increased in size and the amount of heat generated. There was a problem that led to an increase.
  • a surge-resistant motor has been proposed in which a conductive film is formed on an insulating film of a conductor wire so as to reduce a potential difference between insulating coating layers of adjacent windings.
  • the conductive film is formed by mixing a conductive powder material such as carbon into a resin, the degree of expansion and contraction is low, and film cracking is likely to occur during coil processing or the like. For this reason, it has been difficult to apply to the bending process in the segment coil.
  • the conductive film is provided over the entire area of the segment coil, when the conductor wire is exposed and connected at the terminal, the conductive film is likely to come into contact with the conductive film, which makes it difficult to process the terminal.
  • segment coils having a plurality of types are prepared. After these segment coils are mounted in a predetermined slot and assembled in a predetermined order, the segment coils form an integral coil. In addition, the joining tip of each segment coil must be connected.
  • segment coils are densely arranged, it is difficult to inspect for assembly errors or connection errors after assembly or connection, which is very laborious.
  • the present invention solves the above-mentioned conventional problems, makes it possible to realize efficient joining of adjacent segment coils in a segment coil arranged and arranged in the slot of the annular core, and deteriorates the insulation film particularly in the coil end portion. It is an object of the present invention to provide a segment coil that can effectively prevent the occurrence of the above, a stator using the segment coil, and a method of manufacturing the segment coil.
  • the present invention provides a segment coil that can set a large cross-sectional area of the coil to allow a large current to flow and prevent partial discharge, and can increase the space factor and improve the performance of the motor.
  • the task is to do.
  • the present invention solves the above-mentioned conventional problems, can set a large cross-sectional area of the coil to allow a large current to flow, and can effectively prevent partial discharge. It is an object to provide a stator capable of improving performance.
  • the present invention can easily identify a large number of segment coils and attach them to a predetermined slot in which each segment coil is to be attached, and can easily identify and connect the joining tip to be connected.
  • An object is to provide a segment coil or the like that can be used.
  • the segment coil of the present invention is a stator of a rotating electrical machine composed of an annular core and a multi-phase rectangular wire coil, and is radially arranged in slots in the annular core and coils in adjacent slots are arranged in the circumferential direction.
  • a segment coil comprising: a straight portion housed inside the slot; and a pair of coil end portions protruding outside the slot; and one of the pair of coil end portions.
  • the joining tip is provided with a joining surface for joining the other end of the segment coil to the other segment coil. When the joining tip is viewed from the axial direction of the annular core, the joining surface is the annular core.
  • the first feature is that the configuration is parallel to the radial direction.
  • the segment coil is a stator of a rotating electrical machine comprising an annular core and a plurality of phases of rectangular wire coils.
  • Segment coils that are aligned with each other in the circumferential direction, each including a straight portion that is accommodated inside the slot, and a pair of coil end portions that protrude outside the slot, and the pair of coil end portions Among them, the tip end of one of the coil end portions is a tip end for joining provided with a joint surface for joining to another segment coil, and the tip end for joining is viewed from the axial direction of the annular core.
  • the joint surface is configured to be parallel to the radial direction of the annular core, a plurality of segment coils are aligned on the annular core.
  • the pressing direction of the bonding tip can take in the circumferential direction of the annular core. Therefore, the joining tip portion can be joined by effectively utilizing the space (gap) formed between adjacent slots. Therefore, a sufficient space in the pressurizing direction of the joining tip can be secured, and the workability of the joining process of the joining tip can be improved. Therefore, it is possible to realize efficient joining of adjacent segment coils.
  • the joining surface of the joining tip portion so as to be parallel to the radial direction of the annular core, it is formed between adjacent slots when a plurality of segment coils are aligned on the annular core. Space (gap) can be effectively increased, and a stator with good heat dissipation can be formed.
  • the segment coil of the present invention includes a pair of joining tips disposed at predetermined positions in the circumferential direction of the annular core, When the segment coils are aligned and arranged in the slots of the annular core, the adjacent joining tips are arranged with a gap between the radial inner diameter side and the outer diameter side of the annular core.
  • the second feature is that it is configured as described above.
  • the segment coil is a pair of joining tips disposed at predetermined positions in the circumferential direction of the annular core.
  • a pair of joining tips and when the segment coils are aligned and arranged in the slots of the annular core, the joining tips are adjacent to the radially inner and outer diameter sides of the annular core. Since the plurality of segment coils are aligned with the annular core, the plurality of segment coils arranged in the same slot can be joined to each other. It can arrange
  • the joint surfaces are parallel to the radial direction of the annular core, the joint surfaces of a plurality of sets of joining tips that are joined together can be arranged in a row in the radial direction of the annular core. Therefore, a plurality of sets of joining tips can be joined simultaneously (collectively) (multiple simultaneous joining of a plurality of sets of joining tips can be realized). Therefore, the workability of the joining step of the joining tip can be improved more effectively, and the efficient joining of adjacent segment coils can be further realized.
  • the segment coil of the present invention is added to a predetermined region of the coil end portion including at least the joining tip portion of the pair of coil end portions.
  • the third feature is that an insulating layer is provided.
  • a coil end portion including at least the joining tip portion of the pair of coil end portions. Since the additional insulating layer is provided in the predetermined region, partial discharge can be efficiently prevented.
  • the segment coil of the present invention has a fourth feature that the additional insulating layer is provided at a portion where the segment coils belonging to different phases are in contact with each other.
  • the additional insulating layer is provided at a portion where the segment coils belonging to different phases are in contact with each other.
  • the thickness of the insulating layer can be varied. Thereby, partial discharge can be efficiently prevented without reducing reliability.
  • the weight can be reduced.
  • the manufacturing cost can be reduced.
  • the additional insulating layer is formed on the radially inner surface and / or outer surface of the annular core of the segment coil. This is the fifth feature.
  • the additional insulating layer is formed on the radially inner surface and / or outer surface of the annular core of the segment coil. Since it is formed in the direction, it is possible to further reduce the region where the additional insulating layer is provided.
  • the coil end portion is formed in a mountain shape
  • the additional insulating layer includes the A sixth feature is that it is provided on the hypotenuse other than the vicinity of the top of the chevron and the vicinity of both hems, and / or the straight portion extending from the slot.
  • the coil end portion is formed in a mountain shape, and Since the additional insulating layer is provided on the hypotenuse other than the vicinity of the top and the bottom of the chevron and / or the straight portion extending from the slot, the additional insulating layer can be easily and reliably formed. In addition, the additional insulating layer can be effectively prevented from being cracked or peeled off and being deteriorated in insulation.
  • the additional insulating layer in order to prevent the additional insulating layer from being cracked or peeled off, it is preferable to provide the additional insulating layer in a predetermined region of a portion that has not been bent or a portion that has been bent with a large curvature radius.
  • the long side of the rectangular cross section of the coil is 0.5. Bending with a radius of curvature up to 3 times is performed.
  • the hypotenuse part excluding the vicinity of the top of the chevron and the vicinity of both skirts is bent with a radius of curvature that is 20 to 60 times the long side of the rectangular cross section of the coil. Further, the straight portion extending from the slot is not bent. Therefore, an additional insulating layer can be formed easily and reliably by providing an additional insulating layer on the hypotenuse or / and straight part excluding the vicinity of the top of the chevron and the vicinity of both hems. It is possible to effectively prevent the insulating layer from being degraded due to cracks or peeling in the insulating layer. Note that a predetermined bending process along the circumferential direction of the stator can be performed on the oblique side portion.
  • a bending process in which the hypotenuse part is bent at one or two or more points to form a substantially broken line, or a bending process in which the center of curvature radius or the curvature changes can be performed.
  • the segment coil of the present invention includes a half of the pair of coil end portions in a predetermined region of the coil end portion on the side not provided with the joining tip portion.
  • a seventh feature is that a conductive layer is provided, arranged close to each other, and the semiconductive layers of the segment coils belonging to different phases are configured to contact at least at one point.
  • the segment coil includes at least the joining tip portion of the pair of coil end portions. Since a semiconductive layer is provided in a predetermined region of the coil end portion on the non-coiled side and arranged close to each other, the semiconductive layers of the segment coils belonging to different phases are configured to contact at least at one point. By providing a semiconductive layer in a predetermined region of the coil end portion, the electric charge on the coil surface is dispersed, and the electric field strength is reduced. When the electric field strength decreases, even if a voltage exceeding the partial discharge start voltage in the case where the semiconductive layer is not provided is generated, the occurrence of partial discharge is suppressed. That is, even when segment coils belonging to different phases are arranged adjacent to each other, the potential difference due to charge accumulation does not increase between the segment coils, and it is possible to effectively prevent partial discharge from occurring in these portions. Can do.
  • the partial discharge between these segment coils can be effectively prevented by configuring the semiconductive layers provided in the segment coils belonging to different phases so as to contact at least one point.
  • the contact form of the contact point is not limited as long as the contact point is configured to contact at least one point. For example, not only point contact but also line contact or surface contact may be used.
  • a semiconductive layer can exhibit an effect. For this reason, the weight of the stator can be reduced and the manufacturing cost can be reduced as compared with the conventional method of increasing the thickness of the insulating coating layer.
  • segment coil of the present invention is characterized in that, in addition to any one of the first to seventh features of the present invention, a color identification portion is provided on the surface of a predetermined region of the segment coil. It is a feature.
  • a colored identification portion is provided on the surface of the predetermined region of the segment coil. For this reason, the color identification can be used as an identification mark in the assembly process of the stator, and a segment coil with high manufacturing efficiency can be obtained.
  • the segment coil of the present invention is capable of identifying the segment coil joint tip connected to each other at or near the segment coil joint tip.
  • a ninth feature is that a coloring identification unit is provided.
  • the segment coil joining tip connected to each other at or near the joining tip of the segment coil. Since the first coloring identification portion that can identify the portion is provided, the joining tip portions that are connected to each other are identified in the step of connecting the joining tip portions of the segment coils mounted in the predetermined slots of the annular core. Connection errors can be effectively prevented.
  • the configuration and form of the first coloring identification unit are not particularly limited.
  • a colored identification part colored in the same color can be provided at or near the joining tip of segment coils connected to each other.
  • part which provides a coloring identification part is not specifically limited, It can provide in the front-end
  • the segment coil of the present invention is provided on a surface other than the joining tip, and the slot or / and the slot in which each segment coil is mounted.
  • a tenth feature is that a second coloring identification portion formed so as to identify the arrangement position is provided.
  • the segment coil is mounted on the surface other than the joining tip. Since the second coloring identification portion formed so as to identify the slot or / and the arrangement position in the slot is provided, the predetermined segment coil can be easily attached to the predetermined slot. In addition, the arrangement order in each slot can be easily confirmed.
  • a second coloring identification portion provided for mounting a predetermined segment coil in a predetermined slot and a second coloring identification portion for identifying the arrangement order in each slot are formed so as to be combined. It can also be provided as a separate color identification part in a separate part.
  • the second coloring identification portion provided for mounting the predetermined segment coil in the predetermined slot can be formed so as to have the same color in each slot, for example.
  • a second coloring identification unit that is colored in the same color and whose density changes in the arrangement order can be provided.
  • the second colored identification unit applies a colored paint to a predetermined region of the segment coil and a colored tape material.
  • the eleventh feature is that a colored tube material is attached.
  • the second color identification unit applies a colored paint to a predetermined region of the segment coil, Since the colored tape material is attached or the colored tube material is attached, the second colored identification portion can be easily formed.
  • the second coloring identification portion can be provided by coloring the entire region of the coil end portion, or can be provided by coloring a partial region.
  • the said 2nd coloring identification part should just be provided in the coil end part at least. Further, the entire insulating layer of each segment coil can be colored to form the second colored identification portion.
  • the segment coil of the present invention has a twelfth feature that the second coloring identification portion constitutes an additional insulating layer.
  • the second coloring identification portion constitutes an additional insulating layer.
  • the configuration and form of the second coloring identification unit are not particularly limited.
  • a required partial discharge voltage can be secured by applying a coating made of an insulating resin with a thickness of 20 to 200 ⁇ m.
  • the thickness is 20 ⁇ m or less, partial discharge may occur between adjacent coils, and a required coating strength cannot be ensured.
  • the thickness is 200 ⁇ m or more, it is difficult to secure a mounting space for the coil.
  • the second colored identification portion that also serves as the additional insulating layer can be formed.
  • an insulating resin tape material (trade name: Kapton tape) manufactured by Permacel, Inc. can be used.
  • an insulating resin tube (trade name Sumitube) manufactured by Sumitomo Electric Industries, Ltd. can be used.
  • the segment coil of the present invention has a thirteenth feature that the segment coil is made of tough pitch copper.
  • the segment coil is made of tough pitch copper, A segment coil having excellent thermal conductivity and good workability can be obtained. Further, the manufacturing cost can be reduced.
  • the fourteenth feature of the stator according to the present invention is that a plurality of the segment coils according to any one of claims 1 to 13 are arranged in alignment with the slots of the annular core.
  • the stator is formed by arranging a plurality of segment coils according to any one of claims 1 to 13 in the slots of the annular core, the size of the segment coils can be reduced. In addition, it is possible to effectively prevent the insulating film from being deteriorated.
  • the stator of the present invention includes at least one set of adjacent segments arranged in the same slot among the plurality of segment coils arranged in alignment in the slot of the annular core.
  • the coil is arranged in the same slot.
  • At least one set of adjacent segment coils is inclined in the radial direction in a region from the slot to the end of the coil end portion until it is bent in the circumferential direction, thereby coil end portions of these segment coils.
  • the insulating layer is formed such that the distance between the coils in the radial direction of the stator at the contact location is larger than the distance between the coils in the slot. Therefore, it is possible to achieve a higher space factor in the slot and to turn the coil in the slot. It is possible to increase the number effectively. In addition, it is possible to more effectively prevent the insulating film from being deteriorated in at least one pair of adjacent segment coils arranged in the same slot.
  • the stator of the present invention is characterized in that the plurality of segment coils are formed by solid-phase joining the joining tip portions of adjacent segment coils. There are 16 features.
  • the plurality of segment coils are configured such that the joining tips of adjacent segment coils are solid-phased. Since it is joined, it is possible to use a cheaper conductor and coating material with low heat resistance because the effect of heat is small, in addition to being able to obtain a stator with higher manufacturing efficiency.
  • the manufacturing method of the segment coil of this invention is a manufacturing method of the segment coil of Claim 1, Comprising: The coil body formation process which forms the coil body by bending the strand which consists of at least a flat wire, And an insulating layer forming step of forming an insulating layer by covering the surface of the coil body with an insulating material. In the coil body forming step, another segment coil is joined to the tip of the coil end portion of the coil body.
  • the insulating layer forming step includes a base insulating layer forming step of forming a base insulating layer by integrally covering the coil body with an insulator, and the base insulating layer forming step. Wherein and that in a predetermined area of the coil end portion and an additional insulating layer forming step of forming an additional insulating layer is an insulator additionally is coated with the features of the 17.
  • the segment coil manufacturing method is the segment coil manufacturing method according to claim 1, wherein the coil body is formed by bending at least a strand composed of a rectangular wire.
  • a coil end portion is provided at a tip of a coil end portion of the coil body.
  • the joining surface for joining with another segment coil is parallel to the radial direction of the annular core when viewed from the axial direction of the annular core and is arranged at a predetermined position in the circumferential direction of the annular core.
  • a bonding tip portion forming step for forming a tip portion, and the insulating layer forming step includes a base insulating layer forming step in which an insulating material is integrally coated on the coil body to form a base insulating layer; and Bae And an additional insulating layer forming step of forming an additional insulating layer by additionally covering an insulating material in a predetermined region of the coil end portion after the insulating layer forming step, so that a plurality of segment coils are arranged in an annular core.
  • the pressure direction of the joining tip can be taken in the circumferential direction of the annular core. Therefore, the joining tip portion can be joined by effectively utilizing the space (gap) formed between adjacent slots.
  • achieve the efficient joining of the adjacent segment coil can be manufactured.
  • the joining surface of the joining tip portion so as to be parallel to the radial direction of the annular core, it is formed between adjacent slots when a plurality of segment coils are aligned on the annular core. Space (gap) can be effectively increased, and a segment coil capable of forming a stator with good heat dissipation can be manufactured.
  • the joining tip portion forming step is performed by twisting the end portion of the coil end portion of the coil body. This is the 18th feature.
  • the joining tip portion forming step includes twisting the end portion of the coil end portion of the coil body. As a result, the joining tip can be formed efficiently.
  • the joining tip portion forming step is performed by plastically deforming an end portion of the coil end portion of the coil body. This is the nineteenth feature.
  • the joining tip portion forming step plastically deforms the end portion of the coil end portion of the coil body. By doing so, the joining tip can be formed efficiently.
  • the segment coil manufacturing method of the present invention includes a predetermined region on the surface of the coil body at the same time as or after the additional insulating layer forming step, in addition to any one of the seventeenth to nineteenth features of the present invention. It has a twentieth feature that it has a coloring identification part forming step for applying a predetermined coloring to the.
  • the surface of the coil body is formed simultaneously with or after the additional insulating layer forming step. Since the color recognition part forming step for applying a predetermined color to the predetermined region is provided, the color recognition part can be efficiently formed.
  • the segment coil of the present invention in the segment coil arranged in alignment with the slot of the annular core, it is possible to realize efficient joining of adjacent segment coils and to form a stator with good heat dissipation. Can do. Further, it is possible to effectively prevent the insulating coating from being deteriorated particularly in the coil end portion. Moreover, according to the stator of this invention, it can be set as a stator with favorable manufacturing efficiency and heat dissipation. In particular, it is possible to effectively prevent the insulating coating from being deteriorated at the coil end portion.
  • the manufacturing method of the segment coil of this invention while being able to implement
  • FIG. 10 is a diagram showing a segment coil of Comparative Example 2.
  • FIG. It is a figure which simplifies and shows the process of preparing the strand which consists of a rectangular wire in the state in which the insulating layer is not formed in the manufacturing method of the segment coil which concerns on the 1st Embodiment of this invention.
  • FIG. 16 is a cross-sectional view taken along line VIII-VIII in FIG. FIG.
  • FIG. 17 is a cross-sectional view taken along line XI-XI in FIG. It is a figure which shows the 2nd Example of an additional insulating layer, and is sectional drawing equivalent to FIG. It is sectional drawing which shows the segment coil which concerns on the 3rd Embodiment of this invention. It is a figure which shows the relationship between a partial discharge start voltage and surface resistivity. It is sectional drawing which shows typically the state which made the semiconductive layer provided in the coil contact. It is an enlarged plan view of the tip part for joining of a segment coil of a stator provided with a segment coil concerning a 4th embodiment of the present invention. It is a front view which shows the modification of the segment coil which concerns on the 4th Embodiment of this invention.
  • FIG. 24 is a right side view taken along line XIV-XIV in FIG. 23. It is sectional drawing which follows the XV-XV line
  • segment coil 12 according to a first embodiment of the present invention, a stator 10 using the segment coil 12, a motor 1 using the stator 10, and the segment coil 12 are described.
  • a manufacturing method will be described to provide an understanding of the present invention.
  • the following description is an embodiment of the present invention and does not limit the contents described in the scope of claims.
  • the motor 1 includes a stator 10 described later and a rotor (not shown).
  • the motor 1 is a three-phase motor of PWM drive (Pulse Width Modulation) to which electric power switched by inverter control is supplied.
  • PWM drive Pulse Width Modulation
  • the electric power from the battery 2 is increased in voltage by the relay 3 and the boost converter 4, and is connected to the high-voltage cable 6 via the inverter control unit 5 including a switching element. It is supplied to the motor 1 via the input terminals of phase, V phase and W phase.
  • the U phase, the V phase, and the W phase have a configuration in which a pair of four winding coils connected in series are connected in parallel.
  • vertical MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • horizontal devices thyristors
  • GTO Gate Turn-Off Thyristor
  • bipolar transistors IGBT (Insulated GateBitrans switching elements, etc.)
  • stator 10 according to the embodiment of the present invention will be described in more detail with reference to FIGS. 3A to 9C.
  • the stator 10 is a stator of the motor 1, and as shown in FIGS. 3A, 3B, and 4B, the stator 10 is composed of an annular core 11 and a segment coil 12 whose rectangular wire shape is substantially U-shaped.
  • the annular core 11 is composed of an annular core body 11a and a plurality of teeth portions 11b arranged in an annular shape as shown in a simplified manner in FIG. 4B.
  • a plurality of slot portions 11c are formed on both sides of the tooth portion 11b, and the segment coils 12 are assembled to the annular core 11 by accommodating the segment coils 12 in the slot portions 11c.
  • the segment coil 12 is a so-called covered electric wire made of a flat wire assembled to the annular core 11. As shown in FIGS. 7A and 7B, the segment coil 12 includes a wire R made of a conductor and an insulating layer Z made of an insulator covering the wire R.
  • the segment coil 12 mainly has a pair of straight straight portions C accommodated in the slot portion 11c, and protrudes outside the slot portion 11c.
  • a pair of coil end portions E1 and E2 having a shape are provided.
  • FIG. 4B it is set as the structure provided with the front-end
  • the direction perpendicular to the outer diameter side coil surface G or the inner diameter side coil surface N of the straight portion C of the segment coil 12 corresponds to the radial direction of the annular core.
  • the “predetermined position in the circumferential direction of the annular core 11” means that the same phase is formed when viewed from the axial direction of the annular core 11 when the plurality of segment coils 12 are arranged on the annular core 11. It shall mean the arbitrary position of the circumferential direction of the annular core 11 which can arrange the some joint surface S1 of the some segment coil 12 in a line in the radial direction of an annular core.
  • the inner diameter side coil surface N is In the pair of joining tips S, both are arranged inside the annular core 11 in the circumferential direction (the outer diameter side coil surface G is arranged in the pair of joining tips S both outside the annular core 11 in the circumferential direction.
  • the pair of end portions of the coil end portion E2 are twisted (bent) by 90 degrees toward the radially outer diameter side of the annular core 11 so as to project toward the radially outer diameter side of the annular core 11.
  • a pair of joining tips S to be provided is formed.
  • the pair of joining tip portions S is formed by twisting (bending) the pair of end portions of the coil end portion E2 by 90 degrees in the same direction (the outer radial direction of the annular core 11).
  • the inner diameter side coil surface N is used as a joining surface S1 for joining with other segment coils.
  • the segment coils 12 are aligned and arranged in the slot portions 11c of the annular core 11, adjacent joints are used.
  • the distal end portion S (a pair of joining distal end portions S provided in the same segment coil 12) is configured so as to be displaced from the radial inner diameter side and outer diameter side of the annular core 11.
  • the displacement of the pair of joining tips S is not shown in detail, but on either side of the coil divided into two by the virtual line (one-dot chain line) shown in FIG. 5A.
  • the extending portion H extending from the straight portion C to the joining tip portion S is directed inward in the circumferential direction of the annular core 11.
  • the structure is bent at one or a plurality of locations. More specifically, as shown in FIG. 6, in the inner diameter side coil 12-1 disposed on the inner diameter side in the radial direction of the annular core 11, two locations of the first bent region K1 and the second bent region K2 are provided. Thus, the extending portion H is bent inward in the circumferential direction of the annular core 11.
  • the extending portion H is bent inward in the circumferential direction of the annular core 11 at one location of the first bending region K1. This is a configuration to be made.
  • the bending angle of the coil between the first bending region K1 in the inner diameter side coil 12-1 and the first bending region K1 in the outer diameter side coil 12-2 is the same angle ⁇ 1.
  • the angle ⁇ 2 that is the bending angle of the coil in the second bending region K2 is set to be larger than the angle ⁇ 1 that is the bending angle of the coil in the first bending region K1.
  • the angle ⁇ 1 is desirably about 95 ° to 150 °, more preferably about 105 ° to 125 °. If the angle is less than 95 degrees, the coils end part E will interfere with each other and cannot be arranged. If the angle exceeds 150 degrees, the dead space increases between the core end face and the coil, and the dimension in the motor shaft length direction increases. Because it will end up.
  • the angle ⁇ 2 is about 100 to 160 degrees, more preferably about 110 to 130 degrees. This is because if the angle is less than 100 degrees, interference with the other end portion of the same coil is likely to occur, and if the angle exceeds 160 degrees, the joining length of the coil tip is shortened.
  • segment coil 12 is bent at the coil end E1 on the side opposite to the joining tip S in order to avoid contact between the segment coils 12 accommodated in the adjacent slot portions 11c.
  • a crank portion is formed.
  • those normally used as the wire forming the segment coil such as tough pitch copper and oxygen-free copper, can be used.
  • tough pitch copper is used.
  • the length D in the short direction of the wire R shown in FIG. 7A is desirably about 1.0 mm to 2.0 mm, more preferably about 1.5 mm to 2.0 mm. This is because if it is less than 1.0 mm, it is difficult to obtain a stable dimensional shape in coil processing, or the number of turns increases, resulting in an increase in cost, and if it exceeds 2.0 mm, the joining space decreases.
  • the length F in the longitudinal direction of the wire R shown in FIG. 7A is desirably about 2.5 mm to 5.0 mm, more preferably about 3.0 mm to 4.0 mm. If the length is less than 2.5 mm, the aspect ratio becomes small, and the productivity of the wire rod and the assembly is reduced. If it exceeds 5.0 mm, the width becomes wide, coil bending becomes difficult, and the radial dimension of the joint increases. Because it does.
  • the structure of the insulating layer Z which forms the segment coil 12 is set as a different structure in the straight part C, the coil end part E1, and the coil end part E2. is there. More specifically, in the straight portion C, as shown in FIG. 7A, the insulating layer Z is formed by covering only the base insulating layer Z1 on the surface of the wire R.
  • the surface of the wire R is covered with the base insulating layer Z1, and further added to the surface of the base insulating layer Z1.
  • the insulating layer Z is formed by covering the insulating layer Z2.
  • the thickness of the insulating layer Z constituting the predetermined regions of the coil end portion E1 and the coil end portion E2 is set to be thicker than the thickness of the insulating layer Z constituting the straight portion C.
  • the “predetermined region of the coil end portion E1 and the coil end portion E2” means “a region where the adjacent segment coils 12 are close to each other in the coil end portion E1 and the coil end portion E2, more specifically, a wire. This means a region where the distance between adjacent wires R in the R state is about several ⁇ m to several hundred ⁇ m.
  • the base insulating layer Z1 As a material of the base insulating layer Z1, polyamideimide, polyimide, or the like can be used.
  • the insulating base layer Z1 only needs to have a thickness corresponding to the design voltage between coil turns. For example, when the design voltage is 500 V, it is preferably about 15 ⁇ m to 30 ⁇ m, more preferably about 15 ⁇ m to 25 ⁇ m. Is desirable. If the thickness is less than 15 ⁇ m, the film deterioration due to partial discharge and the probability of pinhole occurrence during manufacturing increase. Because. Moreover, dicing, electrodeposition, etc. can be used for the formation method.
  • the straight part C, the base insulating layer Z1 of the coil end part E1, and the coil end part E2 can be integrally formed in the same process.
  • a super engineering plastic material typified by polyamideimide or polyimide
  • a material obtained by mixing an inorganic filler in engineering plastic, or the like can be used.
  • powder coating, tape affixing, dipping, spray coating, insert type injection molding, extrusion molding, heat shrinkable tube and the like can be used.
  • the thickness of the additional insulating layer Z2 is, for example, 40 ⁇ m when the design voltage is 1000V. It is desirable that the thickness is about 200 ⁇ m, more preferably about 80 ⁇ m to 120 ⁇ m. If the thickness is less than 40 ⁇ m, film deterioration due to partial discharge occurs. If the thickness exceeds 200 ⁇ m, the coil end portion E1 and the coil end portion E2 increase in dimension due to an increase in the distance between the lines.
  • the beveled portion is subjected to a predetermined bending process along the circumferential direction of the stator.
  • the form of the predetermined bending process along the circumferential direction of the stator is not particularly limited. For example, it is possible to perform a bending process in which the hypotenuse part is bent at one or two or more locations to form a substantially polygonal line, or a bending process in which the center of curvature radius or the curvature changes.
  • the segment coil 12 having such a configuration is assembled to the annular core 11 with the configuration described below. That is, as shown in a simplified manner in FIG. 1, among the predetermined number (four in the present embodiment) of the segment coils 12 accommodated in the same slot portion 11 c, the segment coils 12 adjacent in the radial direction of the annular core 11. However, the first winding coil 12a composed of the four segment coils 12 is formed by joining at the joining tip portions S.
  • the first winding coil 12a to the fourth winding coil 12d composed of the four segment coils 12 are connected in series at the respective joining tips S and connected in series.
  • a pair of first winding coil 12a to fourth winding coil 12d are connected in parallel to form a U phase.
  • the V phase and the W phase are formed in the same configuration as the U phase.
  • the joining tip portions S to be joined to each other are joined to the annular core 11 in a state in which the segment coils 12 are aligned.
  • the motor 1 is formed by combining the stator 10 and a rotor (not shown).
  • one end of the segment coil 12 constituting each phase of the U phase, the V phase, and the W phase (in the present embodiment, the first winding coil 12 a) is connected to the high voltage cable 6.
  • the input terminals 12U, 12V, and 12W are provided, and the other ends (the fourth winding coil 12d in the present embodiment) are neutral points 12UN, 12VN, and 12WN.
  • welding such as resistance welding, solid phase joining, such as ultrasonic joining and cold welding, etc. can be used as the structure which joins the front-end
  • the segment coil 12 having such a configuration according to the embodiment of the present invention, the stator 10 using the segment coil 12, and the motor 1 using the stator 10 have the following effects.
  • the joining surface S1 is parallel to the radial direction of the annular core 11 when viewed from the axial direction of the annular core 11.
  • the joining tip 30 for facilitating the insertion and removal of the joining jig 30 (ultrasonic jig in the present embodiment) to and from the space L formed between the adjacent slot portions 11c and joining to each other.
  • An improvement in the gripping accuracy of S can be realized. Therefore, it is possible to realize efficient joining of adjacent segment coils 12.
  • the joining surface S1 of the joining tip S is configured to be parallel to the radial direction of the annular core 11, so that when the plurality of segment coils 12 are arranged and arranged on the annular core 11, they are adjacent to each other.
  • the space L (gap) formed between the slot portions 11c can be effectively increased, and the stator 10 and the motor 1 with good heat dissipation can be obtained.
  • the adjacent joining tips S are in the radial direction of the annular core 11.
  • the adjacent joining tips S are in the radial direction of the annular core 11.
  • the joint surfaces S1 of a plurality of sets of joining tips S to be joined to each other are formed on the annular core 11 as shown in FIG. They can be arranged in a row in the radial direction.
  • the joining tip portion S can be joined by effectively utilizing the space L (gap) formed between the adjacent slot portions 11c, as shown in FIG.
  • a plurality of sets of joining tips S to be joined to each other can be sandwiched simultaneously (collectively) by the joining jig 30, and a plurality of sets of joining tips S can be joined simultaneously. That is, it is possible to realize multi-point simultaneous joining of a plurality of sets of joining tips S. Therefore, the workability of the joining process of the joining tip S can be further effectively improved. Therefore, it is possible to achieve more efficient joining of the adjacent segment coils 12, and the stator 10 and the motor 1 with high manufacturing efficiency can be obtained.
  • the extension portion H is bent inward in the circumferential direction of the annular core 11 at two locations of the first bent region K1 and the second bent region K2, and the outer diameter side coil 12 is also bent.
  • -2 has a configuration in which the extending portion H is bent inward in the circumferential direction of the annular core 11 at one location of the first bending region K1, and further the bending of the coil in the first bending region K1 in the inner diameter side coil 12-1.
  • the angle and the bending angle of the coil of the first bending region K1 in the outer diameter side coil 12-2 are both angle ⁇ 1, and in the inner diameter side coil 12-1, the angle ⁇ 2 is larger than the angle ⁇ 1.
  • the joining tip S of the inner diameter side coil 12-1 and the joining tip S of the outer diameter side coil 12-2 are displaced in the axial direction of the annular core 11. Can be formed.
  • the inner diameter side coil 12-1 and the outer diameter side coil 12-2 are configured such that the coil (extension portion H) is bent inward in the circumferential direction of the annular core 11 at the same angle ⁇ 1. Therefore, as shown by the phantom line (one-dot chain line) in FIG. 6, the joining tip S of the inner diameter side coil 12-1 and the joining tip of the outer diameter side coil 12-2 are inherently shown. S is a position where there is no deviation in the axial direction of the annular core 11, but by further bending the inner diameter side coil 12-1 at an angle ⁇ 2, as shown in FIG. The joining tip portion S can be disposed below the joining tip portion S of the outer diameter side coil 12-2 in the axial direction of the annular core 11.
  • a space Q (gap) can be formed between the segment coils 12 arranged in the adjacent slot portions 11c (portions indicated by broken-line squares in FIG. 9A). Therefore, it can prevent that the adjacent segment coils 12 contact. More specifically, as shown in FIG. 9A, the first segment coil 40, the second segment coil 50, and the third segment coil 60 (the inner diameter side coil 12-1 is not shown) are arranged. In this state, it is possible to effectively prevent the inner diameter side coil 12-1 of the first segment coil 40 and the outer diameter side coil 12-2 of the third segment coil 60 from contacting each other.
  • the second segment coil 50 and the third segment coil 60 are disposed in the same slot portion (not shown), and the second segment coil 50 It is indicated that the inner diameter side coil 12-1 and the outer diameter side coil 12-2 of the third segment coil 60 are ultrasonically bonded to each other.
  • the first segment coil 40 indicates the segment coil 12 disposed in the slot portion 11c adjacent to the slot portion 11c in which the second segment coil 50 and the third segment coil 60 are disposed.
  • the space P is simultaneously provided between the pair of joining tips S in the same segment coil 12, and the space Q is simultaneously provided between the segment coils 12 arranged in the adjacent slot portions 11c.
  • the joining tip portions S to be joined to each other are joined by ultrasonic joining which is solid phase joining, the working time of the joining process can be shortened, and the stator 10 with higher manufacturing efficiency.
  • the motor 1 can be used.
  • solid-phase bonding it is possible to use an inexpensive conductor or coating material with low heat resistance because of less thermal influence.
  • segment coil 12 that is excellent in electrical conductivity and thermal conductivity and has good workability. Moreover, it can be set as the segment coil 12, the stator 10, and the motor 1 which can aim at reduction of manufacturing cost.
  • the straight portion C only the base insulating layer Z1 is formed on the surface of the wire R, and the thickness of the insulating layer Z1 is set to about 15 ⁇ m to 30 ⁇ m when the design voltage is 500 V, so that the slot portion It can be set as the segment coil 12 which can improve the space factor in 11c effectively. Therefore, a highly efficient stator 10 and motor 1 can be obtained.
  • the base insulating layer Z1 having a thickness of about 15 ⁇ m to 30 ⁇ m is formed on the surface of the wire R, and the base insulating layer Z1
  • the distance between adjacent segment coils 12, more specifically, the distance between adjacent strands R is several ⁇ m to several hundred ⁇ m. With such a degree, it is possible to provide a segment coil 12 that can effectively prevent deterioration of the insulating layer Z in a region where corona discharge is likely to occur and the insulating layer Z is likely to deteriorate. Therefore, the stator 10 and the motor 1 that can maintain good insulation can be obtained.
  • the thickness of the insulating layer Z in the coil 12 can be varied. More specifically, in the straight portion C where the space factor is desired to be improved, the thickness of the insulating layer Z can be reduced, and in the coil end portions E1 and E2, insulation is prevented in regions where it is desired to prevent insulation deterioration due to corona discharge.
  • the thickness of the layer Z can be increased. Compared to the case where the insulating layer Z is integrally formed on the surface of the element wire R in accordance with the thickness of the predetermined region of the coil end portion E that needs to be thick by having such a configuration, Manufacturing costs can be reduced. Therefore, the segment coil 12 that can simultaneously improve the space factor in the slot portion 11c and prevent the deterioration of the insulating layer Z in the coil end portion E at the same time, and can reduce the manufacturing cost.
  • the stator 10 and the motor 1 can be used.
  • the conventional segment coil 22 arranged in alignment with the slot portion 21 c of the annular core 21 has the joining surface S 1 of the joining tip portion S in the radial direction of the annular core 21. In general, they are configured to be orthogonal to each other. Therefore, in the stator 20 using such a conventional segment coil 22, as shown in FIG. 13, when the plurality of segment coils 22 are arranged and arranged on the annular core 21, The pressing direction is the radial direction of the annular core 21 (the direction indicated by the white arrow in FIG. 13).
  • the space M (gap) formed in the radial direction of the annular core 21 is narrow in the adjacent joining tip portion S, a sufficient space is secured in the pressurizing direction of the joining tip portion S.
  • the workability of the joining process of the joining tip S is poor. More specifically, as shown in FIG. 13, the joining tip S is joined by joining a pair of joining tips S to be joined to each other on the inside and outside in the radial direction of the annular core 21. This is limited to so-called single-point joining, which is fixed by the jig 30 and joined one by one, and there are problems that the joining process becomes complicated and workability is poor.
  • the space M formed between the joining tip portions S adjacent in the radial direction of the annular core 21 becomes narrow, there is a problem that the positioning accuracy of the joining jig 30 is strict and the working efficiency is poor. It was.
  • the thickness of the insulating layer Z is increased, so that the space factor in the slot portion cannot be improved and the manufacturing cost is reduced. There was a problem that reduction could not be achieved.
  • the workability of the joining step of the joining tip S can be improved, and a plurality of sets of joining tips S can be obtained. Multi-point simultaneous joining can be realized. Further, a segment capable of simultaneously improving the space factor in the slot portion 11c and preventing the deterioration of the insulating layer Z in the coil end portions E1 and E2 and effectively reducing the manufacturing cost. The coil 12 and the stator 10 and the motor 1 using them can be obtained.
  • a strand R made of a rectangular wire in a state where an insulating layer is not formed is prepared.
  • the element wire R made of tough pitch copper is used.
  • the wire R made of a flat wire is bent into a substantially U shape by using a bending jig (not shown), so that the wire R is formed into a so-called segment coil.
  • the coil body B having a shape is processed.
  • Bending to the side (not shown) forms a step in the coil that is divided into two.
  • the extending portion H is bent inward in the circumferential direction of the annular core 11 at two locations of the first bent region K1 and the second bent region K2.
  • the extending portion H is bent inward in the circumferential direction of the annular core 11 at one location of the first bending region K1.
  • the bending angle ⁇ 1 of the first bending region K1 shown in FIG. 6 is about 95 to 150 degrees, more preferably about 105 to 125 degrees
  • the bending angle ⁇ 2 of the second bending region K2 is 100 to 160 degrees. It is desirable that the angle be about 110 degrees, more preferably about 110 to 130 degrees.
  • a crank part (not shown) is formed in the coil body B using a bending jig (not shown).
  • the pair of end portions of the coil end portion E4 of the coil body B are twisted (bent) by 90 degrees toward the radially outer diameter side of the annular core 11 by the joining tip portion forming step.
  • the joint surface S ⁇ b> 1 for joining with other segment coils is parallel to the radial direction of the annular core 11 and annular at the tip of the coil end portion E ⁇ b> 4.
  • a pair of joining tips S arranged at predetermined positions in the circumferential direction of the core 11 is formed.
  • the coil body B is coated with an insulating material with a uniform thickness on the entire surface of the coil body B except for the joining tip portion S by the base insulating layer forming process in the insulating layer forming process.
  • a base insulating layer Z1 having a uniform thickness is integrally formed on the surface of B.
  • the thickness of the base insulating layer Z1 is desirably about 15 ⁇ m to 30 ⁇ m, more preferably about 15 ⁇ m to 25 ⁇ m when the design voltage is 500V.
  • the same insulating material as that of the base insulating layer Z1 is uniformly formed in a predetermined area of the coil end portions E3 and E4 of the coil body B by the additional insulating layer forming step in the insulating layer forming step.
  • the additional insulating layer Z2 is formed.
  • the thickness of the additional insulating layer Z2 is desirably about 40 ⁇ m to 200 ⁇ m, more preferably about 80 ⁇ m to 120 ⁇ m when the design voltage is 1000V.
  • the insulating layer Z is formed on the surface of the coil body B.
  • the segment coil 12 according to the embodiment of the present invention is formed.
  • the segment coil 12 in a temporarily assembled state is assembled to the slot portion 11 c of the annular core 11.
  • the joining tip portions S of the segment coils 12 constituting the U phase, V phase, and W phase assembled in the same slot portion 11c are joined by ultrasonic joining. More specifically, as shown in FIG. 8, ultrasonic bonding is performed in a state where a plurality of sets of bonding tips S to be bonded to each other are sandwiched by a bonding jig 30 at the same time.
  • the first winding coil 12a to the fourth winding coil 12d in each phase are connected in series by a jumper, and the pair of the first winding coil 12a to the fourth winding coil 12d are connected. Connect in parallel.
  • the stator 10 is formed.
  • the motor 1 is formed by combining the stator 10 thus formed and a rotor (not shown).
  • the manufacturing method of the stator 10 using the segment coil 12 and the segment coil 12 according to the embodiment of the present invention having such a configuration and the motor 1 using the stator 10 has the following effects.
  • the joining surface S ⁇ b> 1 is parallel to the radial direction of the annular core 11 and is disposed at a predetermined position in the circumferential direction of the annular core 11.
  • the pressing direction of the joining tip S is the circumferential direction of the annular core 11 (see FIG. 8). 8 (direction indicated by a white arrow). Therefore, the joining tip portion S can be joined by effectively utilizing the space L (gap) formed between the adjacent slot portions 11c.
  • the joining surface S1 of the joining tip S is configured to be parallel to the radial direction of the annular core 11, so that when the plurality of segment coils 12 are arranged and arranged on the annular core 11, they are adjacent to each other.
  • the segment coil 12 that can effectively increase the space L (gap) formed between the slot portions 11c can be manufactured. Therefore, the stator 10 and the motor 1 with good heat dissipation can be manufactured.
  • the joining tip portion S is formed so as to be arranged at a predetermined position in the circumferential direction of the annular core 11, and when the segment coil 12 is aligned and arranged in the slot portion 11 c of the annular core 11, the adjacent joining portion S is used.
  • the tip portions S (the pair of joining tip portions S provided in the same segment coil 12) are arranged so as to be displaced from each other between the radially inner diameter side and the outer diameter side of the annular core 11 as shown in FIG.
  • the joint surfaces S1 of a plurality of sets of joining tips S to be joined to each other are formed on the annular core 11 as shown in FIG. They can be arranged in a row in the radial direction.
  • the joining tip portion S can be joined by effectively utilizing the space L (gap) formed between the adjacent slot portions 11c, as shown in FIG.
  • a plurality of sets of joining tips S to be joined to each other can be sandwiched at the same time (collectively) by a joining jig 30 (in this embodiment, an ultrasonic jig). S can be joined simultaneously.
  • the extension portion H is bent inward in the circumferential direction of the annular core 11 at two locations of the first bent region K1 and the second bent region K2, and the outer diameter side coil 12 is also bent.
  • -2 has a configuration in which the extending portion H is bent inward in the circumferential direction of the annular core 11 at one location of the first bending region K1, and the coil of the first bending region K1 in the inner diameter side coil 12-1 is further bent.
  • the bending angle and the bending angle of the coil of the first bending region K1 in the outer diameter side coil 12-2 are both set to an angle ⁇ 1, and in the inner diameter side coil 12-1, the angle ⁇ 2 is set to an angle larger than the angle ⁇ 1.
  • the stator 10 and the motor 1 having high electrical connection reliability can be manufactured, and the stator 10 and the motor 1 can be manufactured by increasing the efficiency of the manufacturing process. Moreover, it can be set as the manufacturing method of the segment coil 12, the stator 10, and the motor 1 which can aim at reduction of manufacturing cost.
  • the base insulating layer Z1 is formed on the surface of the wire R, and the thickness of the insulating layer Z1 is set to about 15 ⁇ m to 30 ⁇ m when the design voltage is 500 V, so that the slot portion The segment coil 12 that can effectively improve the space factor in 11c can be manufactured. Therefore, the highly efficient stator 10 and motor 1 can be manufactured.
  • the base insulating layer Z1 having a thickness of about 15 ⁇ m to 30 ⁇ m is formed on the surface of the wire R, and the base insulating layer Z1
  • the distance between adjacent segment coils 12, more specifically, the distance between adjacent strands R is several ⁇ m to several hundred ⁇ m. Therefore, the segment coil 12 that can effectively prevent the insulating layer Z from being deteriorated in a region where the corona discharge is likely to occur and the insulating layer Z is likely to be deteriorated can be manufactured. Therefore, the stator 10 and the motor 1 that can maintain good insulation can be manufactured.
  • the thickness of the insulating layer Z in the segment coil 12 can be varied. More specifically, the thickness of the insulating layer Z can be reduced in the straight portion C where it is desired to improve the space factor, and the insulating layer Z can be prevented in the region where it is desired to prevent insulation deterioration due to corona discharge in the coil end portion E. The thickness of can be increased. Compared to the case where the insulating layer Z is integrally formed on the surface of the element wire R in accordance with the thickness of the predetermined region of the coil end portion E that needs to be thick by having such a configuration, It can be set as the manufacturing method of the segment coil 12, the stator 10, and the motor 1 using them which can hold down manufacturing cost effectively.
  • Stator 10 and motor 1 can be produced.
  • the imaginary line (one-dot chain line) shown in FIG. 5A is obtained by bending the coil in the portion excluding the joining tip S to the inner diameter side or the outer diameter side in the radial direction of the annular core 11.
  • a step is formed on the left and right sides of the two divided coils, thereby causing the pair of joining tips S to be displaced in the radial direction of the annular core 11, but the pair of joining tips S has the annular core 11.
  • the method of causing the deviation in the radial direction is not necessarily limited to such a configuration.
  • the twisting direction (bending of the pair of joining tips S without forming a step in the radial direction of the annular core 11
  • the inner diameter side coil surface N is disposed on the inner side in the circumferential direction of the annular core 11 in any one of the pair of joining tips S, and the inner diameter side coil surface N is the annular core in the remaining one.
  • the coil end portions of the segment coils 12 disposed between the pair of joining tip portions S in the same segment coil 12 and the adjacent slot portions 11c. If the configuration can prevent the coils from coming into contact with each other between the inner diameter side coil 12-1 and the outer diameter side coil 12-2, the number of times the annular core 11 is bent inward in the circumferential direction, The bending position and the bending angle are not limited to those of the present embodiment, and can be changed as appropriate.
  • the joining tips S to be joined together are joined using ultrasonic joining that is solid phase joining, but the present invention is not necessarily limited to such a configuration.
  • it is good also as a structure which joins the front-end
  • the base insulating layer Z1 and the additional insulating layer Z2 are formed of the same insulator.
  • the present invention is not necessarily limited to such a configuration, and the base insulating layer Z1 and the additional insulating layer are not limited thereto.
  • Z2 may be formed of a different insulator.
  • the base insulating layer Z1 may be formed of an insulator that is less expensive than the additional insulating layer Z2. By setting it as such a structure, it can be set as the segment coil 12 which can hold down manufacturing cost further.
  • the additional insulating layer Z2 is provided on the entire circumference of the segment coil 12.
  • the configuration is not necessarily limited to this configuration.
  • the distance between the adjacent segment coils 12 in the state where the adjacent segment coils 12 are close to each other, more specifically, in the state of the strand R is about several ⁇ m to several hundred ⁇ m. If it is set as the structure which provides the additional insulating layer Z2 in a part, it is good also as a structure which provides the additional insulating layer Z2 only in a part among the outer periphery of the segment coil 12.
  • the portion where the additional insulating layer Z2 is provided is provided on the hypotenuse portion excluding the vicinity of the top of the chevron and the vicinity of both hems, and / or the straight portion extending from the slot. It is desirable.
  • the “hem” means a bent portion that shifts from the straight portion to the hypotenuse that constitutes the coil end portions E1 and E2.
  • the additional insulating layer Z2 in order to prevent the additional insulating layer Z2 from being cracked or peeled, it is necessary to provide the additional insulating layer Z2 in a predetermined region of a portion that has not been bent or a portion that has been bent with a large curvature radius.
  • the coil end portions E1 and E2 are formed in a mountain shape, the length in the rectangular cross section of the coil in the vicinity of the peak portion of the mountain shape or in the vicinity of the skirt shape of the mountain shape that transitions from the oblique side of the mountain shape to the straight portion C accommodated in the slot portion 11c. Bending with a radius of curvature 0.5 to 3 times the side is performed.
  • the hypotenuse part excluding the vicinity of the top of the chevron and the vicinity of both skirts is bent with a radius of curvature that is 20 to 60 times the long side of the rectangular cross section of the coil. Further, the straight portion extending from the slot is not bent. Therefore, the additional insulating layer Z2 can be easily and reliably formed by providing the additional insulating layer Z2 in the oblique side or / and the straight portion excluding the vicinity of the top and the bottom of the chevron. In addition, it is possible to effectively prevent the insulating properties from being lowered due to cracks or peeling in the additional insulating layer Z2.
  • segment coils 12 constituting the U phase, V phase, and W phase, the shape of the segment coil 12, the shape of the annular core 11, the configuration of the motor 1 and the like are not limited to those of the present embodiment, and are appropriately changed. Is possible.
  • the insulating layer forming step is performed after the coil body forming step.
  • the present invention is not necessarily limited to such a configuration.
  • the element wire R can be prepared, the base insulating layer forming step is first performed, the coil body forming step is then performed, and then the additional insulating layer forming step is further performed.
  • the segment coil according to the second embodiment of the present invention has the same configuration as that of the segment coil described above except for the configuration of the additional insulating layer described below. Description is omitted.
  • a segment coil 201 of a typical form mounted in each slot portion 11c of the stator 10 as shown in FIGS. 3A and 3B has a pair of straight portions C accommodated in the slot portion 11c. And a substantially hexagonal shape including a pair of coil end portions E1 and E2 extending from both axial ends of the slot portion 11c and having a mountain shape. In the coil end portion E2, adjacent segment coils mounted in the same slot portion 11c are connected, and connection with segment coils mounted in other slots is performed. In order to connect to the segment coils mounted in other slots, the segment coils mounted on the radially innermost and outermost sides of the stator are provided with coil end portions having a plurality of forms according to the connection pattern. ing. The following description will be given with respect to the segment coil 201 shown in FIG. 14 for easy understanding.
  • One coil end portion E1 is formed in a mountain shape that connects a pair of straight portions C accommodated in a predetermined slot portion 11c in a spanning manner.
  • the other coil end portion E2 is provided with joining tip portions 205a and 205b for connection with the segment coil accommodated adjacent to the slot portion 11c, and the coil of the connected segment coil is provided.
  • a mountain shape is formed in cooperation with the end portion.
  • the segment coils 201A to 201E have a base insulating layer 207 formed on the entire outer periphery excluding the joining tip portions 205a and 205b of the conductive wire 206 having a rectangular cross section. Yes.
  • the insulating base layer 207 is formed with a uniform thickness over the entire outer periphery of the coil material 206 with a thickness of 5 to 25 ⁇ m using a material that can withstand bending such as polyimide.
  • the additional insulating layers 212 a, 212 b, 212 c, 212 d, and the like are provided on one of the oblique sides 210 a, 211 a of the coil end portions E 1, E 2 formed in the mountain shape in the segment coil 201 according to the present embodiment.
  • 214a, 214b, 214c, 214d are formed.
  • the oblique sides provided with the additional insulating layer may be opposite oblique sides 210b and 211b.
  • the upper and lower coil end portions E1 and E2 can be provided with the additional insulating layer on different oblique sides. In one coil end portion, the additional insulating layer is provided on the oblique side portion on the same side of each segment coil.
  • the additional insulating layers 212a, 212b, 212c, 212d, 214a, 214b, 214c, and 214d are coated on the base insulating layer 207 with an insulating polyamide-imide resin.
  • the dressing material is formed by laminating and coating the entire circumference with a predetermined thickness and a predetermined width.
  • the thickness of the additional insulating layers 212a, 212b, 212c, 212d, 214a, 214b, 214c, and 214d is not particularly limited.
  • the thickness is 50 to 200 ⁇ m depending on the voltage difference between the segment coils to be in contact with each other. It can be formed with the thickness.
  • each of the coils including segment coils arranged on the radially innermost side and the radially outermost side of the stator 10 shown in FIGS. 3A and 3B.
  • Four coils are arranged in contact with or in close proximity to the chevron-shaped oblique sides 210a and 210b of the coil end E1 of the segment coils 201A to 201E.
  • FIG. 15 is a front view schematically showing one segment coil 201A and segment coils 201B, 201C, 201D, and 201E that are brought into contact with one oblique side portion 210a of the segment coil 201A.
  • the left oblique side portion 210a of the drawing of one segment coil 201A is such that the right oblique side portions 210b of the four adjacent segment coils 201B, 201C, 201D, and 201E intersect at a predetermined interval. It is made to face.
  • the additional insulating layers 212a to 212d are formed in the left oblique side portion 210a of the one segment coil 201A at portions where the other segment coils 201B, 201C, 201D, and 201E are brought into contact with each other.
  • FIG. 16 is a sectional view taken along line VIII-VIII in FIG.
  • additional insulating layers 212a, 212b, 212c, and 212d are provided on the left oblique side portion 210a of the coil end portions E1 and E2 each having a mountain shape of each segment coil.
  • the additional insulating layers 212a, 212b, 212c, and 212d expand the gaps between the segment coils 201B, 201C, 201D, and 201E that are in contact with each other, and perform partial discharge between the segment coils that are in contact with each other at the coil end portion E1. Can be prevented.
  • the additional insulating layers 212a to 212d are provided only in the segment coil 201A on one side that comes into contact. For this reason, it is possible to set a small area in which the additional insulating layers 212a to 212d are provided in the entire coil constituting the stator. In addition, partial discharge can be prevented efficiently, the material necessary for providing the additional insulating layers 212a to 212d can be reduced, the manufacturing cost can be reduced, and the weight of the motor can be reduced.
  • the additional insulating layer is not formed in the portion accommodated in the slot portion 11c, the cross-sectional area of the conductor in the slot portion 11c can be set large. For this reason, it becomes possible to raise the space factor in the said slot part 11c, and can raise the efficiency of an electric motor.
  • the segment coils 201B and 201E arranged on the radially outermost side and the radially innermost side of the stator are arranged in adjacent slots on only one side in the radial direction and mounted in other slots. Since it is connected to the segment coil of the same phase, the portion that is brought into contact with the adjacent segment coil differs depending on the design. In this manner, an additional insulating layer may be provided in a portion in contact with another segment coil according to the configuration of the segment coil in the stator 10.
  • the additional insulating layer is provided between all the segment coils in contact with each other at the coil end portions E1 and E2.
  • the additional insulation layer is added only in a portion where the segment coils belonging to different phases having a large voltage difference are in contact.
  • An insulating layer can also be provided. Thereby, the area
  • the additional insulating layers 212a to 212d are provided so as to surround the periphery of one segment coil 201A with a predetermined width, but on the surface where the other segment coils 201B to 201E are brought into contact with each other. Can only be provided.
  • the additional insulating layer 112a may be formed only on the radially inner and outer surfaces of the stator 10 with which the other segment coils 201B to 201E are brought into contact. it can. By adopting this configuration, it is possible to further reduce the region where the additional insulating layer is provided.
  • the additional insulating layers 212a to 212d are formed of an insulating resin coating material, but the present invention is not limited to this.
  • the additional insulating layers 212a to 212d can be formed from an insulating resin tube material.
  • the insulating tube material for example, a heat-shrinkable tube material such as an insulating resin tube material (trade name Sumitube) manufactured by Sumitomo Electric Industries, Ltd. can be used.
  • the additional insulating layers 212a to 212d can be formed from an insulating resin tape material.
  • an insulating resin tape material (trade name: Kapton tape) manufactured by Permacel can be used.
  • the additional insulating layer is provided is not particularly limited.
  • the additional insulating layers 212a to 212d are formed only in a portion where the other segment coils 201B to 201D are brought into contact with each other in the one oblique side portion 210a of the one segment coil 201A. It can also be formed over the entire area of the portion 210a.
  • the segment coils 201A to 201E are formed by bending a conductor having a large cross-sectional area in advance. If an additional insulating layer is provided at a site where the bending process is performed before the bending process, the additional insulating layer may be cracked or peeled off, resulting in a decrease in insulation. In addition, even after bending, it may be difficult to provide the additional insulating layer at the bent portion. For example, it is difficult to form an additional insulating layer in a portion that has been bent using the tape material or tube material. For this reason, when forming an additional insulating layer with a film material or a tube material, it is preferable to provide an additional insulating layer in a portion where bending is not performed.
  • the segment coil according to the third embodiment of the present invention has the same configuration as the segment coil described above except for the configuration of the insulating layer and the semiconductive layer described below. The detailed description about is omitted.
  • the segment coils 304 and 305 are configured by providing an insulating layer 309 on the outer peripheral surface of a conductive wire 308 having a rectangular cross section. Furthermore, in the present embodiment, the semiconductive layer 306 is provided in a predetermined region of the coil end portions E1 and E2 extending from the slot portion 11c of the segment coils 304 and 305 provided with the insulating layer 309, and is disposed close to each other. Further, the semiconductive layers 306 and 306 of the segment coils 304 and 305 belonging to different phases are configured to contact at least at one point V.
  • the semiconductive layer 306 is provided in both directions along the axis of the segment coil with the contact point as the center, at least in a region equal to or larger than the maximum sectional width of the segment coil.
  • the semiconductive layer 306 is provided in a region having a diagonal length equal to or longer than the rectangular cross section with the contact point as the center.
  • the semiconductive layer 306 is provided in a range that is not less than the maximum sectional width of the segment coil and not more than 100 mm.
  • the thickness of the semiconductive layer 306 is not particularly limited, and can be formed to a thickness of 5 to 100 ⁇ m, for example.
  • the semiconductive layer 306 has a surface resistivity set to 1 ⁇ 10 3 to 1 ⁇ 10 9 ⁇ / sq, and a conductive material applied to a fluorine-based resin such as PFA or FEP.
  • the blended heat-shrinkable tube is configured to be mounted within a range of 100 mm front and rear with the contact point V as the center.
  • tape materials such as a semiconductive Kapton adhesive tape (registered trademark of DuPont, USA) and an aramid nonwoven fabric (Nikkan Kogyo Co., Ltd., # 5183, 65 ⁇ m), can be used.
  • the partial discharge start voltage can be increased to 1000 V or more.
  • the semiconductive layers 306 and 306 of the segment coils 304 and 305 are opposed to each other in the range of 100 mm before and after the contact point V, and the partial discharge start voltage between the semiconductive layers 306 and 306 is set. Is set to be 1000 V or higher. For this reason, it has comprised so that the partial discharge prevention effect in the vicinity of the contact point V can be acquired.
  • the contact point V when providing a semiconductive layer in the area
  • the semiconductive layer 306 By setting the semiconductive layer 306 as described above, the partial discharge start voltage between the adjacent segment coils 304 and 305 in these regions can be increased to 1000 V or more.
  • the semiconductive layer 306 can be set very thin as compared with a conventional insulating layer provided to prevent partial discharge. For this reason, partial discharge can be effectively prevented without increasing the weight and cost of the stator.
  • the segment coil according to the fourth embodiment of the present invention has the same configuration as that of the segment coil described above except for the configuration of the color identification unit described below, and therefore a detailed description of the basic configuration of the segment coil. Is omitted.
  • the first coloring identifying portions 451b, 452a, 452b, 453a, 453b, 454a, 454b, and 455a that can identify the joining tip portions 505a and 505b of the segment coils A10 to A50 connected in series.
  • the segment coils A20 to A40 located at the intermediate part are mounted with the straight part C shown in FIG. 23 in the same slot.
  • at least one of the segment coil A10 disposed on the radially innermost side of the stator and the segment coil A50 disposed on the radially outermost side of the stator has a coil end portion extending from a straight portion mounted in another slot. It is connected to the.
  • the first coloring identification portions 451b, 452a, 452b, 453a, 453b, 454a, 454b, and 455a flatten the coil end surfaces of the joining tip portions 505a and 505b of the segment coils A10 to A50. In addition to forming, a colored paint is applied to the flat surface.
  • the above-mentioned coloring identification portions 451b, 452a, 452b, 453a, 453b, 454a, 454b, and 455a are configured by applying the same color paint to the joining tip portions connected to each other.
  • the same pattern is drawn as having the same color. That is, as shown in FIG. 22, the coloring identification part 452b formed in the segment coil A20 and the coloring identification part 453a formed in the segment coil A30 are provided with the same color.
  • the color identification unit 451b and the color identification unit 452a, the color identification unit 453b and the color identification unit 454a, the color identification unit 454b and the color identification unit 455a are provided with different colors, respectively. ing.
  • a plurality of segment coils A10 to A50 belonging to the same phase are connected to each other by connecting the joining tip portions on which the color identification portions having the same color are formed by welding or ultrasonic waves, thereby forming a series of coils. Is done.
  • the end surfaces of the joining tip portions 505a and 505b of each segment coil are portions that can be surely seen from the outside of the stator.
  • the segment coils to be connected to each other are provided.
  • the joining tips 505a and 505b can be reliably identified and connected.
  • the segment coils connected to each other are given the same coloring
  • the segment coils are given the same coloring by observing the end face of the joining tip portion with an image recognition device after connection. It is also possible to automatically determine whether or not is connected. For this reason, it is possible to perform not only the assembly work of the stator but also the inspection work very efficiently.
  • the method for forming the coloring identification part is not particularly limited.
  • the first color identification portions 451b, 452a, 452b, 453a, 453b, 454a, 454b, and 455a can be formed by applying a colored paint.
  • the second coloring identification portions 465A1, 465B1, 465C1, and 465D1 (not shown) for identifying the segment coils assembled in the slot portions 11c are provided at the coil end portions of the segment coils A10 to A50. It is provided on one oblique side of E2.
  • the second coloring identification portions 465A1, 465B1, 465C1, 465D1 are configured by providing colored layers having the same color on the segment coils A10 to A40 accommodated in the same slot.
  • the predetermined segment coil can be easily attached to the predetermined slot.
  • a second colored identifying unit 570 for identifying an array that can identify the sequence of segment coils accommodated in the same slot is provided.
  • the second color identification section 570 for identifying the array is independent of the coil end section E1 opposite to the coil end section E2 provided with the second color identification sections 465A1, 465B1, 465C1, and 465D1 for identifying the slot. Is provided.
  • the second color identification 570 for identifying the array can be formed, for example, by coloring with the same color and with a difference in shade according to the array order. Moreover, it can comprise so that the coloring identification part which has a different coloring may appear alternately in the segment coil mounted
  • the second coloring identification section 570 for identifying the array, it becomes possible to easily identify the assembly order (array) of the segment coils assembled in each slot and perform the assembly work.
  • the configuration and form of the second coloring identification unit 465A1, 465B1, 465C1, 465D1 are not particularly limited.
  • the paint having the corresponding color is applied to a predetermined region on the insulating layer 408 provided on the strand 407, thereby A second coloring identification portion 465A1 can be formed.
  • the second colored identification portion can be configured by sticking a colored tape material or attaching a colored tube material to a predetermined region of the segment coil.
  • a colored tape material for example, an insulating resin tape material (trade name: Kapton tape) manufactured by Permacel, Inc. can be used.
  • a heat-shrinkable tube material such as an insulating resin tube (trade name Sumitube) manufactured by Sumitomo Electric Industries, Ltd. can be used.
  • the second colored identification portion can function as an additional insulating layer. As a result, the segment coil can be easily assembled and connected, and partial discharge between adjacent segment coils can be effectively prevented.
  • FIG. 23 shows a second modification example relating to the first coloring identification unit.
  • the first coloring identification portion is configured by providing coloring caps 562a and 562b at the joining tip portions 505a and 505b.
  • the conductor surface is often oxidized or oils or fats are attached during handling or storage. By providing the colored cap, the exposed conductor surface can be protected.
  • the colored cap according to the present embodiment is formed from a resin molded product in a form to cover the surface excluding the connection surface 506c, as shown in FIG. By adopting the above configuration, it is possible to perform the connection with the colored caps 562a and 562b attached.
  • the material for forming the colored cap is not particularly limited, and a material formed from a colored resin material or a material formed from a metal material can be used.
  • the already-described coloring identification portion can be formed by performing a coloring identification portion forming step of applying predetermined coloring to a predetermined region on the surface of the coil body simultaneously with or after the additional insulating layer forming step.
  • the segment coil according to the fifth embodiment of the present invention has the same configuration as the segment coil described above except for the configuration of the inclined region K described below. Description is omitted.
  • an inclined region K that is inclined toward the outer side in the radial direction of the annular core 711 is provided in a region excluding the thick region A described later of the pair of coil end portions E1 and E2.
  • the direction indicated by the white arrow indicates the radially outer side.
  • the segment coils arranged adjacent to each other in the same slot of the stator are inclined in the radial direction in the region until they are bent from the slot toward the top of the coil end portion in the circumferential direction. By doing so, the insulating layer provided in the coil end part of these segment coils is made to contact in the radial direction of the stator.
  • the insulating layer is formed so that the distance between the coils in the radial direction of the stator at the contact location is larger than the distance between the coils in the slot.
  • the “intercoil distance” means a distance between the centers of the coils in the radial direction of the annular core in the adjacent segment coils 712.
  • the inclined region K is set within a range of about 500 ⁇ m to 5 mm in the axial direction of the annular core 711 from the end surface 711d of the annular core 711 among the coil end portions E1 and E2. .
  • the tilt angle means an angle H formed by the segment coil 712 constituting the tilt region K and the end surface 711d of the annular core 711 as shown in FIG. 26B.
  • the thickness of the insulating layer of the segment coil 712 is different between the straight portion C and the coil end portions E1 and E2. More specifically, in the straight portion C, an insulating layer is formed by covering only the base insulating layer Z1 on the surface of the wire R. On the other hand, in a predetermined region of the coil end portions E1 and E2 excluding the inclined region K, the surface of the element wire R is covered with the base insulating layer Z1 and further added to the surface of the base insulating layer Z1.
  • the thick region A is formed by covering the insulating layer Z2.
  • the “predetermined region” means a region including a portion where the insulating layer of the adjacent segment coil 712 is brought into contact with the coil end portions E1 and E2.
  • FIG. 26B exaggerates the thick region A for convenience of explanation.
  • the strand R is normally used as a strand which forms a coil, such as copper, what kind of thing may be used.
  • the insulating base layer Z1 may have a thickness corresponding to the design voltage between coil turns. For example, when the design voltage is 500 V, it is preferably about 15 ⁇ m to 30 ⁇ m, more preferably about 15 ⁇ m to 25 ⁇ m. If the thickness is less than 15 ⁇ m, the film deterioration due to partial discharge and the probability of pinhole occurrence during manufacturing increase. Because. Moreover, dicing, electrodeposition, etc. can be used for the formation method. Note that the base insulating layer Z1 of the straight portion C and the coil end portions E1 and E2 can be integrally formed in the same process.
  • a super engineering plastic material typified by polyamide imide or polyimide, a material obtained by mixing an inorganic filler in engineering plastic, or the like can be used.
  • a forming method die drawing, electrodeposition, powder coating, tape application, dipping, spray coating, insert type injection molding, extrusion molding and the like can be used.
  • the thickness of the additional insulating layer Z2 is, for example, from 40 ⁇ m when the design voltage is 1000V.
  • the thickness is preferably about 200 ⁇ m, more preferably about 80 ⁇ m to 120 ⁇ m. If the thickness is less than 40 ⁇ m, film deterioration due to partial discharge occurs, and if it exceeds 200 ⁇ m, the dimension increases due to an increase in the distance between the coil ends.
  • the segment coils 712 arranged adjacent to each other in the same slot can be brought into close contact with each other between the straight portions C and the coil end portions E1 and E2.
  • the base insulating layer Z1 of the straight portion C and the additional insulating layer Z2 constituting the thick region A of the coil end portions E1 and E2 are spaced apart. There is no close contact. As a result, a high space factor in the slot can be realized, and the number of turns of the coil in the slot can be increased.
  • the corona discharge described above is likely to occur in a region where the gap between adjacent segment coils is close.
  • the occurrence of corona discharge between adjacent segment coils 712 in the same phase can be effectively prevented.
  • the inclination angle H of the segment coil 712 and the length of the segment coil 712 may be different from each other.
  • the coil inclination angle H in the region K is such that the segment coil 712 arranged on the inner peripheral side of the annular core 711
  • the inclination angle of the segment coil 712 arranged on the outer peripheral side of the annular core 711 is larger than the inclination angle
  • the length of the region K is annular than the length of the segment coil 712 arranged on the inner peripheral side of the annular core 711. It is necessary that the length of the segment coil 712 disposed on the outer peripheral side of the core 711 is increased.
  • all the adjacent segment coils 712 in the same slot are configured to contact in the radial direction of the annular core in the thick region A of the straight portion C and the coil end portions E1 and E2.
  • it is not necessarily limited to such a configuration, and at least one pair of adjacent segment coils 712 arranged in the same slot is annular in the thick region A of the straight portion C and the coil end portions E1 and E2. Any configuration that can contact the core in the radial direction can be appropriately changed.
  • the present invention can be used for a motor that supplies electric power switched by inverter control to a coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

環状コアのスロットに整列配置されるセグメントコイルにおいて、隣接するセグメントコイルの効率的な接合を実現可能とすると共に、特にコイルエンド部において絶縁被膜に劣化が生じることを効果的に防止することができるセグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法の提供を課題とする。環状コア11のスロット部11cに整列配置されるセグメントコイル12であって、ストレート部Cと、一対のコイルエンド部E1、E2とを備えると共に、一対のコイルエンド部E1、E2のうち、コイルエンド部E2の先端を他のセグメントコイル12と接合するための接合面S1を備える接合用先端部Sとするものにおいて、接合用先端部Sは、環状コアの軸方向から見たときに、接合面S1が環状コア11の径方向に対して平行となるように構成してあるセグメントコイル12である。

Description

セグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法
 本出願は、2011年10月27日に出願された日本出願第2011-235979号、2012年1月16日に出願された日本出願第2012-005797号、2012年1月30日に出願された日本出願第2012-016236号、2012年2月2日に出願された日本出願第2012-020859号、2012年2月7日に出願された日本出願第2012-023874号、2012年3月1日に出願された日本出願第2012-045004号、および2012年9月10日に出願された日本出願第2012-198558号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 本発明は、セグメントコイル、該セグメントコイルを用いてなるステータ及び前記セグメントコイルの製造方法に関する。
 近年におけるモータの小型化、高性能化、高出力化等に伴い、モータのステータを構成するコイルとして、スロット内の占積率を効果的に向上させることができる平角線からなるコイル、特に平角線を略U字状に形成してなる、いわゆるセグメントコイルへの需要が高まっている。
 このようなセグメントコイルを用いてなるステータは、複数のセグメントコイルをステータのスロット内に整列配置させた後に、隣接するセグメントコイルの端部同士をアーク溶接等を用いて接合させることで形成されるものが一般的である。
 このようなセグメントコイルを示す関連技術として、例えば下記特許文献1、2がある。
特開2005-224028号公報 特開2000-166150号公報
 上記特許文献1は、セグメントコイル接合装置および方法に関する発明で、全自動で、且つ製品品質を維持した形で、生産コストを悪化させることなく高い生産性を備えるセグメントコイルの接合装置および方法を提供できるメリットがある。
 また上記特許文献2は、車両用交流発電機の固定子に関する発明で、接合部間の距離を確保することができる車両用交流発電機の固定子を提供できるメリットがある。
 しかし、上記特許文献1、2においては、相互に接合させるセグメントコイルの端部を1組毎に接合していく構成であることから、作業性が悪いという問題があった。
 また上記特許文献1、2においては、相互に接合させるセグメントコイルの端部を環状コアの径方向に加圧しながら接合させる構成であることから、加圧方向のスペースが狭く、治具の位置決め精度が厳しいと共に、作業性が悪いという問題があった。
 上記セグメントコイルには、隣接するセグメントコイルとの間や、コアとの間の絶縁を行うための絶縁層が設けられている。上記絶縁層は、上記各部材間において部分放電が生じないように構成する必要がある。上記部分放電は、電圧差が大きくなる部分において生じやすい。たとえば、3相交流電動機のステータにセグメントコイルを採用した場合、異なる相に属するセグメントコイル間における電圧差が最も大きくなる。したがって、異なる相に属するセグメントコイルが近接あるいは接触する部分において部分放電が生じやすい。
 従来のセグメントコイルにおいては、異なる相に属するセグメントコイル間の電圧差に対応できる絶縁層を、セグメントコイルの全域に設けることにより、部分放電を防止するように構成されていた。
 ところが、同じ相に属するセグメントコイルが対接する部位や、コアとセグメントコイルとが対接する部位における電圧差は小さく、大きな電圧差に対応できる厚みの大きな絶縁層を設ける必要はない。従来のセグメントコイルにおいては、異なる相に属するコイル間の電圧差に対応できる絶縁層がコイルの全域に設けられているため、スロット内の占積率が低下して、電動機の大型化や発熱量の増加につながるといった問題があった。
 占積率を高めるため、比誘電率が低く絶縁性能が高い高価な絶縁材料を用いて、セグメントコイルの全体に、厚みの小さい絶縁層を形成することも考えられるが、製造コストの増加につながることになる。
 また、導体素線の絶縁被膜に重ねて導電性皮膜を形成し、隣接する巻線の絶縁被覆層間の電位差を緩和するように構成した耐サージモータが提案されている。
 ところが、上記導電性皮膜は、樹脂にカーボン等の導電性の粉体材料を混入させて形成されるため伸縮度が低く、コイル加工等において皮膜割れが生じやすい。このため、セグメントコイルにおける曲げ加工等に適用することは困難であった。
 また、導電性皮膜をセグメントコイルの全域に設けると、端末において導体素線を露出させて接続する際に上記導電性皮膜に接触して短絡等が生じやすく、端末加工が困難であった。
 ステータを構成するには、複数種類の形態を備えるセグメントコイルが準備され、これらセグメントコイルを所定のスロットに所定の順序で装着して組み付けた後、これらセグメントコイルが一体的なコイルを構成するように、各セグメントコイルの接合用先端部を接続しなければならない。
 ところが、上記セグメントコイルの装着作業及び接続作業は面倒である。しかも、多数のセグメントコイルを密集した状態で組み付ける必要があるため、各セグメントコイル及び接続すべき接合用先端部を識別するのが困難である。このため、組み付け間違いや、接続間違いが生じやすい。
 しかも、各セグメントコイルは、密集して設けられているため、組み付け後や接続後に、組み付け間違いや、接続間違いを検査するのも困難であり、非常に手間がかかる。
 本発明は上記従来の問題点を解決し、環状コアのスロットに整列配置されるセグメントコイルにおいて、隣接するセグメントコイルの効率的な接合を実現可能とすると共に、特にコイルエンド部において絶縁被膜に劣化が生じることを効果的に防止することができるセグメントコイル、該セグメントコイルを用いてなるステータ及び前記セグメントコイルの製造方法の提供を課題とする。
 また、本願発明は、コイルの断面積を大きく設定して大電流を流せるとともに部分放電を防止することができ、また占積率を高めて、電動機の性能を向上させることができるセグメントコイルを提供することを課題とする。
 また、本願発明は、上記従来の問題を解決し、コイルの断面積を大きく設定して大電流を流せるとともに部分放電を効果的に防止することができ、また占積率を高めて、モータの性能を向上させることができるステータを提供することを課題とする。
 また、本願発明は、多数のセグメントコイルを容易に識別して各セグメントコイルが装着されるべき所定のスロットに装着できるとともに、接続すべき接合用先端部を容易に識別して接続を行うことができるセグメントコイル等を提供することを課題とする。
 本発明のセグメントコイルは、環状コアと複数相の平角線コイルからなる回転電機のステータにおいて、環状コアのスロットに径方向に整列配置され、かつ隣接スロットのコイル同士が周方向に整列配置されるセグメントコイルであって、前記スロットの内部に収容されるストレート部と、前記スロットの外部に突出する一対のコイルエンド部とを備えると共に、前記一対のコイルエンド部のうち、何れか一方のコイルエンド部の先端を他のセグメントコイルと接合するための接合面を備える接合用先端部とするものにおいて、前記接合用先端部は、環状コアの軸方向から見たときに、接合面が前記環状コアの径方向に対して平行となるように構成してあることを第1の特徴としている。
 上記本発明の第1の特徴によれば、セグメントコイルは、環状コアと複数相の平角線コイルからなる回転電機のステータにおいて、環状コアのスロットに径方向に整列配置され、かつ隣接スロットのコイル同士が周方向に整列配置されるセグメントコイルであって、前記スロットの内部に収容されるストレート部と、前記スロットの外部に突出する一対のコイルエンド部とを備えると共に、前記一対のコイルエンド部のうち、何れか一方のコイルエンド部の先端を他のセグメントコイルと接合するための接合面を備える接合用先端部とするものにおいて、前記接合用先端部は、環状コアの軸方向から見たときに、接合面が前記環状コアの径方向に対して平行となるように構成してあることから、複数のセグメントコイルを環状コアに整列配置させた際に、接合用先端部の加圧方向を環状コアの周方向にとることができる。よって、隣接するスロット間に形成される空間(隙間)を有効に利用して接合用先端部の接合を行うことができる。
 従って、接合用先端部の加圧方向に十分なスペースを確保することができ、接合用先端部の接合工程の作業性を向上させることができる。従って隣接するセグメントコイルの効率的な接合を実現可能とすることができる。
 また、接合用先端部の接合面を環状コアの径方向に対して平行となるように構成することで、複数のセグメントコイルを環状コアに整列配置させた際に、隣接するスロット間に形成される空間(隙間)を効果的に増大させることができ、放熱性の良いステータを形成することができる。
 また、本発明のセグメントコイルは、上記本発明の第1の特徴に加えて、前記セグメントコイルは、環状コアの周方向の所定位置に配置される一対の前記接合用先端部を備え、該一対の接合用先端部は、前記環状コアのスロットにセグメントコイルを整列配置させた際に、隣接する接合用先端部が前記環状コアの径方向の内径側と外径側とにズレを持って配置されるように構成してあることを第2の特徴としている。
 上記本発明の第2の特徴によれば、上記本発明の第1の特徴による作用効果に加えて、前記セグメントコイルは、環状コアの周方向の所定位置に配置される一対の前記接合用先端部を備え、該一対の接合用先端部は、前記環状コアのスロットにセグメントコイルを整列配置させた際に、隣接する接合用先端部が前記環状コアの径方向の内径側と外径側とにズレを持って配置されるように構成してあることから、複数のセグメントコイルを環状コアに整列配置させるだけで、同一スロット内に配置される複数のセグメントコイルにおいて、相互に接合される接合用先端部の接合面を対向させた状態で配置することができる。
 更に、接合面は環状コアの径方向に対して平行であることから、相互に接合される複数組の接合用先端部の接合面を環状コアの径方向に一列に配置することができる。
 よって、複数組の接合用先端部の接合を同時に(一括させて)行うことができる(複数組の接合用先端部の多点同時接合を実現可能とすることができる。)。
 従って、接合用先端部の接合工程の作業性を一段と効果的に向上させることができ、隣接するセグメントコイルの効率的な接合を一段と実現可能とすることができる。
 また、本発明のセグメントコイルは、上記本発明の第1又は第2の特徴に加えて、前記一対のコイルエンド部のうち、少なくとも前記接合用先端部を備えるコイルエンド部の所定領域に、付加絶縁層を設けてあることを第3の特徴としている。
 上記本発明の第3の特徴によれば、上記本発明の第1又は第2の特徴による作用効果に加えて、前記一対のコイルエンド部のうち、少なくとも前記接合用先端部を備えるコイルエンド部の所定領域に、付加絶縁層を設けてあることから、部分放電を効率的に防止することができる。
 また、本発明のセグメントコイルは、上記本発明の第3の特徴に加えて、前記付加絶縁層は、異なる相に属するセグメントコイルが対接する部分に設けてあることを第4の特徴としている。
 上記本発明の第4の特徴によれば、上記本発明の第3の特徴による作用効果に加えて、前記付加絶縁層は、異なる相に属するセグメントコイルが対接する部分に設けてあることから、隣接するコイルあるいはコアとの間の電圧差に応じて、絶縁層の厚みを異ならせることができる。これにより、信頼性を低下させることなく部分放電を効率的に防止することができる。しかも、絶縁層の平均的な厚みを減少させることができるため、軽量化を図ることもできる。また、製造コストを低減させることもできる。
 また、本発明のセグメントコイルは、上記本発明の第3又は第4の特徴に加えて、前記付加絶縁層は、セグメントコイルの環状コアの径方向内方面及び/又は外方面に形成されていることを第5の特徴としている。
 上記本発明の第5の特徴によれば、上記本発明の第3又は第4の特徴による作用効果に加えて、前記付加絶縁層は、セグメントコイルの環状コアの径方向内方面及び/又は外方面に形成されていることから、付加絶縁層を設ける領域をさらに削減することが可能となる。
 また、本発明のセグメントコイルは、上記本発明の第3~第5の何れか1つの特徴に加えて、前記コイルエンド部は、山形状に形成されていると共に、前記付加絶縁層は、前記山形の頂部近傍と両裾部近傍とを除く斜辺部、又は/及び上記スロットから延出するストレート部分に設けてあることを第6の特徴としている。
 上記本発明の第6の特徴によれば、上記本発明の第3~第5の何れか1つの特徴による作用効果に加えて、前記コイルエンド部は、山形状に形成されていると共に、前記付加絶縁層は、前記山形の頂部近傍と両裾部近傍とを除く斜辺部、又は/及び上記スロットから延出するストレート部分に設けてあることから、容易且つ確実に付加絶縁層を形成することができると共に、付加絶縁層に亀裂や剥離が生じて絶縁性が低下することを効果的に防止することができる。
 つまり、付加絶縁層に亀裂や剥離が生じることを防止するためには、曲げ加工が施されていない部分又は大きな曲率半径で曲げ加工された部分の所定領域に付加絶縁層を設けるのが好ましい。
 例えば、コイルエンド部を山形に形成した場合、山形の頂部近傍や、山形斜辺からスロット部に収容されるストレート部に移行する山形の裾部近傍では、コイルの矩形断面における長辺の0.5~3倍の曲率半径の曲げ加工が施される。一方、上記山形の頂部近傍と両裾部近傍とを除く斜辺部は、コイルの矩形断面における長辺の20~60倍の曲率半径の曲げ加工が施される。また、スロットから延出したところのストレート部分には、曲げ加工が施されていない。
 従って、山形の頂部近傍と両裾部近傍とを除く斜辺部、又は/及びストレート部分に付加絶縁層を設ける構成とすることで、容易且つ確実に付加絶縁層を形成することができると共に、付加絶縁層に亀裂や剥離が生じて絶縁性が低下することを効果的に防止することができる。
 なお、上記斜辺部に、ステータの周方向に沿う所定の曲げ加工を施すことができる。上記周方向に沿う曲げ加工として、例えば、斜辺部が1又は2以上の個所で屈曲されて略折れ線状となる曲げ加工や、曲率半径の中心や曲率が変化する曲げ加工を施すことができる。
 また、本発明のセグメントコイルは、上記本発明の第1の特徴に加えて、前記一対のコイルエンド部のうち、少なくとも前記接合用先端部を備えていない側のコイルエンド部の所定領域に半導電層を設け、近接して配置されると共に、異なる相に属するセグメントコイルの前記半導電層を、少なくとも一点において接触するように構成してあることを第7の特徴としている。
 上記本発明の第7の特徴によれば、上記本発明の第1の特徴による作用効果に加えて、前記セグメントコイルは、前記一対のコイルエンド部のうち、少なくとも前記接合用先端部を備えていない側のコイルエンド部の所定領域に半導電層を設け、近接して配置されると共に、異なる相に属するセグメントコイルの前記半導電層を、少なくとも一点において接触するように構成してあることから、コイルエンド部の所定領域に半導電層を設けることにより、コイル表面の電荷が分散されて、電界強度が低下させられる。電界強度が低下すると、半導電層を設けていない場合における部分放電開始電圧を上回る電圧が生じても、部分放電の発生が抑制されることになる。すなわち、異なる相に属するセグメントコイルが隣接して配置されても、これらセグメントコイル間において、電荷の蓄積による電位差が大きくなることはなく、これら部位において部分放電が生じるのを効果的に防止することができる。
 すなわち、本願発明では、異なる相に属するセグメントコイルに設けた半導電層を、少なくとも一点において接触するように構成することにより、これらセグメントコイル間の部分放電を効果的に防止することができる。少なくとも一点において接触するように構成されていれば、上記接触点の接触形態は限定されることはない。たとえば、点接触のみならず、線接触や面接触であってもよい。また、半導電層は、厚みを薄く設定しても効果を発揮させることができる。このため、絶縁被覆層を厚くする従来の手法にくらべて、ステータの重量を小さくすることが可能になるとともに、製造コストを低減させることができる。
 また、本発明のセグメントコイルは、上記本発明の第1~第7の何れか1つの特徴に加えて、前記セグメントコイルの所定領域の表面に、着色識別部を設けてあることを第8の特徴としている。
 上記本発明の第8の特徴によれば、上記本発明の第1~第7の何れか1つの特徴による作用効果に加えて、前記セグメントコイルの所定領域の表面に、着色識別部を設けてあることから、ステータの組み立て工程において着色識別を識別標識として用いることができ、製造効率の良いセグメントコイルとすることができる。
 また、本発明のセグメントコイルは、上記本発明の第8の特徴に加えて、前記セグメントコイルの接合用先端部又はその近傍に、互いに接続されるセグメントコイルの接合用先端部を識別できる第1の着色識別部を備えることを第9の特徴としている。
 上記本発明の第9の特徴によれば、上記本発明の第8の特徴による作用効果に加えて、前記セグメントコイルの接合用先端部又はその近傍に、互いに接続されるセグメントコイルの接合用先端部を識別できる第1の着色識別部を備えることから、環状コアの所定のスロットに装着された各セグメントコイルの接合用先端部を接続する工程において、互いに接続される接合用先端部を識別して接続間違いを効果的に防止することができる。
 上記第1の着色識別部の構成や形態は特に限定されることはない。たとえば、互いに接続されるセグメントコイルの接合用先端部又はその近傍に同一色で着色された着色識別部を設けることができる。また、着色識別部を設ける部位も特に限定されることはなく、接続作業の際に接合用先端部を識別できるように、接合用先端部又はその近傍に設けることができる。
 また、組み立て終了後に外部から識別できる部位に形成しておくことにより、上記第1の着色識別部を画像認識して、接続間違いの有無を検査することが可能となる。
 また、本発明のセグメントコイルは、上記本発明の第8又は第9の特徴に加えて、前記接合用先端部以外の表面に設けられると共に、各セグメントコイルが装着されるスロット又は/及びスロット内の配列位置を識別できるように形成された第2の着色識別部を備えることを第10の特徴としている。
 上記本発明の第10の特徴によれば、上記本発明の第8又は第9の特徴による作用効果に加えて、前記接合用先端部以外の表面に設けられると共に、各セグメントコイルが装着されるスロット又は/及びスロット内の配列位置を識別できるように形成された第2の着色識別部を備えることから、所定のセグメントコイルを所定のスロットに容易に装着することができる。また、各スロット内における配列順序を容易に確認することができる。なお、所定のセグメントコイルを所定のスロットに装着するために設けられる第2の着色識別部と、上記各スロット内における配列順序を識別する第2の着色識別部とを、兼用するように形成することもできるし、別途の部位に独立した着色識別部として設けることもできる。
 所定のセグメントコイルを所定のスロットに装着するために設けられる第2の着色識別部は、たとえば、各スロットに同一の色彩を有するように形成することができる。また、各スロットに装着されるセグメントコイルの配列位置を認識するには、たとえば、同じ色彩で、配列順に濃度が変化する着色を施した第2の着色識別部を設けることができる。
 また本発明のセグメントコイルは、上記本発明の第10の特徴に加えて、前記第2の着色識別部は、セグメントコイルの所定領域に、着色塗料を塗着し、着色テープ材を貼着し、又は着色チューブ材を装着して構成されていることを第11の特徴としている。
 上記本発明の第11の特徴によれば、上記本発明の第10の特徴による作用効果に加えて、前記第2の着色識別部は、セグメントコイルの所定領域に、着色塗料を塗着し、着色テープ材を貼着し、又は着色チューブ材を装着して構成されていることから、第2の着色識別部を容易に形成することができる。
 第2の着色識別部は、コイルエンド部の全領域に着色を施すことにより設けることもできるし、一部の領域に着色を施すことにより設けることもできる。また、上記第2の着色識別部は、少なくともコイルエンド部に設けられていればよい。さらに、各セグメントコイルの絶縁層の全体に着色を施して、上記第2の着色識別部とすることもできる。
 また、本発明のセグメントコイルは、上記本発明の第10又は第11の特徴に加えて、前記第2の着色識別部は、付加絶縁層を構成していることを第12の特徴としている。
 上記本発明の第12の特徴によれば、上記本発明の第10又は第11の特徴による作用効果に加えて、前記第2の着色識別部は、付加絶縁層を構成していることから、ステータの組み立て作業を容易にできるばかりでなく、部分放電を効率的に防止することができ、ステータの信頼性を向上させることもできるセグメントコイルとすることができる。
 第2の着色識別部の構成や形態は特に限定されることはない。部分放電を効果的に防止するには、たとえば、絶縁性の樹脂からなる塗料を20~200μmの厚みで塗着することにより、所要の部分放電電圧を確保することが可能となる。厚みが20μm以下の場合、近接するコイル間において部分放電が生じる恐れがあるとともに、所要の被膜強度を確保できない。一方、厚みが200μm以上になると、コイルの装着スペースを確保するのが困難になる。
 また、絶縁性テープ材や絶縁性チューブ材を採用することにより、付加絶縁層を兼ねる第2の着色識別部を形成することができる。部分放電防止効果を有する上記着色テープ材として、パーマセル社製の絶縁性樹脂テープ材(商標名カプトンテープ)等を採用できる。また、着色チューブ材として、住友電気工業製の絶縁性樹脂チューブ(商標名スミチューブ)を採用できる。
 また、本発明のセグメントコイルは、上記本発明の第1~第12の何れか1つの特徴に加えて、前記セグメントコイルは、タフピッチ銅からなることを第13の特徴としている。
 上記本発明の第13の特徴によれば、上記本発明の第1~第12の何れか1つの特徴による作用効果に加えて、前記セグメントコイルは、タフピッチ銅からなることから、電気伝導性、熱伝導性に優れると共に、加工性の良いセグメントコイルとすることができる。また製造コストの低減を図ることができる。
 また、本発明のステータは、請求項1~13の何れか1項に記載のセグメントコイルを環状コアのスロットに複数整列配置させてなることを第14の特徴としている。
 上記本発明の第14の特徴によれば、ステータは、請求項1~13の何れか1項に記載のセグメントコイルを環状コアのスロットに複数整列配置させてなることから、セグメントコイルの小型化を実現することができると共に、絶縁被膜に劣化が生じることを効果的に防止することができる。
 また、本発明のステータは、上記本発明の第14の特徴に加えて、前記環状コアのスロットに複数整列配置されるセグメントコイルのうち、同一スロット内に配置される少なくとも一組の隣接するセグメントコイルを、前記スロットから出て前記コイルエンド部の頂点へ向かって周方向に曲折されるまでの領域において、径方向に傾斜させることにより、これらセグメントコイルのコイルエンド部に設けた絶縁層をステータの径方向に接触させ、且つ、前記接触箇所におけるステータの径方向におけるコイル間距離が、前記スロット内のコイル間距離よりも大きくなるように前記絶縁層が形成されていることを第15の特徴としている。
 上記本発明の第15の特徴によれば、上記本発明の第14の特徴による作用効果に加えて、前記環状コアのスロットに複数整列配置されるセグメントコイルのうち、同一スロット内に配置される少なくとも一組の隣接するセグメントコイルを、前記スロットから出て前記コイルエンド部の頂点へ向かって周方向に曲折されるまでの領域において、径方向に傾斜させることにより、これらセグメントコイルのコイルエンド部に設けた絶縁層をステータの径方向に接触させ、且つ、前記接触箇所におけるステータの径方向におけるコイル間距離が、前記スロット内のコイル間距離よりも大きくなるように前記絶縁層が形成されていることから、スロット内における高占積率を一段と実現することができると共に、スロット内におけるコイルのターン数を効果的に増やすことができる。
 また同一スロット内に配置される少なくとも一組の隣接するセグメントコイルにおいて絶縁被膜に劣化が生じることを一段と効果的に防止することができる。
 また、本発明のステータは、上記本発明の第14又は第15の特徴に加えて、前記複数のセグメントコイルは、隣接するセグメントコイルの前記接合用先端部を固相接合させてあることを第16の特徴としている。
 上記本発明の第16の特徴によれば、上記本発明の第14又は第15の特徴による作用効果に加えて、前記複数のセグメントコイルは、隣接するセグメントコイルの前記接合用先端部を固相接合させてあることから、一段と製造効率が良いステータとすることができることに加え、熱影響が少ないことから耐熱性の低い安価な導体、皮膜材料を使用することが可能になる。
 また、本発明のセグメントコイルの製造方法は、請求項1に記載のセグメントコイルの製造方法であって、少なくとも平角線からなる素線を屈曲させてコイル体を形成するコイル体形成工程と、前記コイル体の表面に絶縁物を被覆させて絶縁層を形成する絶縁層形成工程とを備えると共に、前記コイル体形成工程には、前記コイル体のコイルエンド部の先端に、他のセグメントコイルと接合するための接合面が環状コアの軸方向から見たときに前記環状コアの径方向に対して平行で、且つ環状コアの周方向の所定位置に配置される接合用先端部を形成する接合用先端部形成工程を備え、且つ前記絶縁層形成工程には、前記コイル体に絶縁物を一体的に被覆させてベース絶縁層を形成するベース絶縁層形成工程と、該ベース絶縁層形成工程の後に前記コイルエンド部の所定領域に絶縁物を付加的に被覆させて付加絶縁層を形成する付加絶縁層形成工程とを備えることを第17の特徴としている。
 上記本発明の第17の特徴によれば、セグメントコイルの製造方法は、請求項1に記載のセグメントコイルの製造方法であって、少なくとも平角線からなる素線を屈曲させてコイル体を形成するコイル体形成工程と、前記コイル体の表面に絶縁物を被覆させて絶縁層を形成する絶縁層形成工程とを備えると共に、前記コイル体形成工程には、前記コイル体のコイルエンド部の先端に、他のセグメントコイルと接合するための接合面が環状コアの軸方向から見たときに前記環状コアの径方向に対して平行で、且つ環状コアの周方向の所定位置に配置される接合用先端部を形成する接合用先端部形成工程を備え、且つ前記絶縁層形成工程には、前記コイル体に絶縁物を一体的に被覆させてベース絶縁層を形成するベース絶縁層形成工程と、該ベース絶縁層形成工程の後に前記コイルエンド部の所定領域に絶縁物を付加的に被覆させて付加絶縁層を形成する付加絶縁層形成工程とを備えることから、複数のセグメントコイルを環状コアに整列配置させた際に、接合用先端部の加圧方向を環状コアの周方向にとることができる。よって隣接するスロット間に形成される空間(隙間)を有効に利用して接合用先端部の接合を行うことができる。
 従って、接合用先端部の加圧方向に十分なスペースを確保することができ、接合用先端部の接合工程の作業性を向上させることができる。従って隣接するセグメントコイルの効率的な接合を実現することができるセグメントコイルを製造することができる。
 また、接合用先端部の接合面を環状コアの径方向に対して平行となるように構成することで、複数のセグメントコイルを環状コアに整列配置させた際に、隣接するスロット間に形成される空間(隙間)を効果的に増大させることができ、放熱性の良いステータを形成することができるセグメントコイルを製造することができる。
 また、特にコイルエンド部において絶縁被膜に劣化が生じることを効果的に防止することができるセグメントコイルを製造することができる。
 また、本発明のセグメントコイルの製造方法は、上記本発明の第17の特徴に加えて、前記接合用先端部形成工程は、前記コイル体のコイルエンド部の端部を捻ることにより行うことを第18の特徴としている。
 上記本発明の第18の特徴によれば、上記本発明の第17の特徴による作用効果に加えて、前記接合用先端部形成工程は、前記コイル体のコイルエンド部の端部を捻ることにより行うことから、接合用先端部を効率的に形成することができる。
 また、本発明のセグメントコイルの製造方法は、上記本発明の第17の特徴に加えて、前記接合用先端部形成工程は、前記コイル体のコイルエンド部の端部を塑性変形させることにより行うことを第19の特徴としている。
 上記本発明の第19の特徴によれば、上記本発明の第17の特徴による作用効果に加えて、前記接合用先端部形成工程は、前記コイル体のコイルエンド部の端部を塑性変形させることにより行うことから、接合用先端部を効率的に形成することができる。
 また、本発明のセグメントコイルの製造方法は、上記本発明の第17~第19の何れか1つの特徴に加えて、前記付加絶縁層形成工程と同時に若しくはその後に、コイル体の表面の所定領域に所定の着色を施す着色識別部形成工程を有することを第20の特徴としている。
 上記本発明の第20の特徴によれば、上記本発明の第17~第19の何れか1つの特徴による作用効果に加えて、前記付加絶縁層形成工程と同時に若しくはその後に、コイル体の表面の所定領域に所定の着色を施す着色識別部形成工程を有することから、着色識別部を効率的に形成することができる。
 本発明のセグメントコイルによれば、環状コアのスロットに整列配置されるセグメントコイルにおいて、隣接するセグメントコイルの効率的な接合を実現可能とすることができると共に、放熱性の良いステータを形成することができる。また、特にコイルエンド部において絶縁被膜に劣化が生じることを効果的に防止することができる。
 また、本発明のステータによれば、製造効率が良いと共に、放熱性の良いステータとすることができる。また特にコイルエンド部において絶縁被膜に劣化が生じることを効果的に防止することができる。
 また、本発明のセグメントコイルの製造方法によれば、隣接するセグメントコイルの効率的な接合を実現可能とすることができると共に、放熱性の良いステータを形成することができるセグメントコイルを製造することができる。また特にコイルエンド部において絶縁被膜に劣化が生じることを効果的に防止することができるセグメントコイルを製造することができる。
本発明の実施形態に係るセグメントコイルを用いたモータの概略配線図である。 モータへの配電系統を示す模式図である。 本発明の実施形態に係るステータの平面図である。 本発明の実施形態に係るステータの底面図である。 本発明の第1の実施形態に係るセグメントコイルの斜視図である。 本発明の第1の実施形態に係るセグメントコイルを示す図で、環状コアに組み付けられているセグメントコイルを環状コアの外側から見た要部を簡略化して示す図である。 本発明の第1の実施形態に係るセグメントコイルの斜視図である。 本発明の第1の実施形態に係るセグメントコイルの側面図である。 本発明の第1の実施形態に係るセグメントコイルの要部を示す図である。 本発明の第1の実施形態に係るセグメントコイルのストレート部の断面図である。 本発明の第1の実施形態に係るセグメントコイルのコイルエンド部の所定領域の断面図である。 本発明の第1の実施形態に係るセグメントコイルが環状コアに組み付けられた後に接合用先端部が接合される状態を摸式的に示す図である。 本発明の第1の実施形態に係るセグメントコイルを示す図で、セグメントコイルが環状コアに組み付けられた状態において、隣接するスロット部に配置されるセグメントコイルを摸式的に示す図である。 比較例1のセグメントコイルを示す図である。 比較例2のセグメントコイルを示す図である。 本発明の第1の実施形態に係るセグメントコイルの製造方法において、絶縁層が形成されていない状態の平角線からなる素線を準備する工程を簡略化して示す図である。 本発明の第1の実施形態に係るセグメントコイルの製造方法において、素線をセグメントコイルの形状をなすコイル体に加工するコイル体形成工程を簡略化して示す図である。 本発明の第1の実施形態に係るセグメントコイルの製造方法において、U相、V相、W相を構成するセグメントコイルの仮組みを行う工程を簡略化して示す図である。 本発明の第1の実施形態に係るセグメントコイルの製造方法において、仮組みされた状態のセグメントコイルを環状コアのスロット部に組み付ける工程を簡略化して示す図である。 従来のセグメントコイルの斜視図である。 従来のセグメントコイルを示す図で、環状コアに組み付けられているセグメントコイルをロータ側から見た要部を簡略化して示す図である。 従来のセグメントコイルの断面図である。 従来のセグメントコイルが環状コアに組み付けられた後に接合用先端部が接合される状態を摸式的に示す図である。 本発明の第2の実施形態に係るセグメントコイルを示す正面図である。 一のセグメントコイルと、これに隣接して配置されるセグメントコイル間の対接状態を示す要部の正面図である。 図15におけるVIII-VIII線に沿う断面図である。 図16におけるXI-XI線に沿う断面図である。 付加絶縁層の第2の実施例を示す図であり、図17に相当する断面図である。 本発明の第3の実施形態に係るセグメントコイルを示す断面図である。 部分放電開始電圧と表面抵抗率との関係を示す図である。 コイルに設けた半導電層を接触させた状態を模式的に示す断面図である。 本発明の第4の実施形態に係るセグメントコイルを備えるステータのセグメントコイルの接合用先端部の拡大平面図である。 本発明の第4の実施形態に係るセグメントコイルの変形例を示す正面図である。 図23におけるXIV-XIV線に沿う右側面図である。 図23におけるXV-XV線に沿う断面図である。 本発明の第5の実施形態に係るセグメントコイルが同一スロット部内に整列配置されている状態を簡略化して示す斜視図である。 本発明の第5の実施形態に係るセグメントコイルが同一スロット部内に整列配置されている状態を簡略化して示す図で、セグメントコイルの側面の要部を模式的に示す図である。
 1     モータ
 2     バッテリー
 3     リレー
 4     昇圧コンバータ
 5     インバータ制御部
 6     高圧ケーブル
 10    ステータ
 11    環状コア
 11a   コア本体
 11b   ティース部
 11c   スロット部
 12    セグメントコイル
 12a   第1巻回コイル
 12b   第2巻回コイル
 12c   第3巻回コイル
 12d   第4巻回コイル
 12U   U相端子
 12UN  U相中性点
 12V   V相端子
 12VN  V相中性点
 12W   W相端子
 12WN  W相中性点
 12-1  内径側コイル
 12-2  外径側コイル
 20    ステータ
 21    環状コア
 21a   コア本体
 21b   ティース部
 21c   スロット部
 22    セグメントコイル
 22U   U相端子
 22V   V相端子
 22W   W相端子
 30    接合用治具
 40    第1のセグメントコイル
 50    第2のセグメントコイル
 60    第3のセグメントコイル
 201   セグメントコイル
 201A  セグメントコイル
 201B  セグメントコイル
 201C  セグメントコイル
 201D  セグメントコイル
 201E  セグメントコイル
 205a  接合用先端部
 205b  接合用先端部
 206   素線
 207   ベース絶縁層
 210a  斜辺部
 211a  斜辺部
 212a  付加絶縁層
 212b  付加絶縁層
 212c  付加絶縁層
 212d  付加絶縁層
 214a  付加絶縁層
 214b  付加絶縁層
 214c  付加絶縁層
 214d  付加絶縁層
 212a  付加絶縁層
 304   セグメントコイル
 305   セグメントコイル
 306   半導電層
 308   素線
 309   絶縁層
 407   素線
 408   絶縁層
 451b  第1の着色識別部
 452a  第1の着色識別部
 452b  第1の着色識別部
 453a  第1の着色識別部
 453b  第1の着色識別部
 454a  第1の着色識別部
 454b  第1の着色識別部
 455a  第1の着色識別部
 465A1 第1の着色識別部
 465B1 第1の着色識別部
 465C1 第1の着色識別部
 465D1 第1の着色識別部
 505a  接合用先端部
 505b  接合用先端部
 562a  着色キャップ
 562b  着色キャップ
 570   第2の着色識別部
 711   環状コア
 711c  スロット部
 711d  端面
 712   セグメントコイル
 A10   セグメントコイル
 A20   セグメントコイル
 A30   セグメントコイル
 A40   セグメントコイル
 A50   セグメントコイル
 B     コイル体
 C     ストレート部
 D     長さ
 E1    コイルエンド部
 E2    コイルエンド部
 E3    コイルエンド部
 E4    コイルエンド部
 F     長さ
 G     外径側コイル面
 H     延出部
 K1    第1屈曲領域
 K2    第2屈曲領域
 L     空間
 M     空間
 N     内径側コイル面
 P     空間
 Q     空間
 R     素線
 S     接合用先端部
 S1    接合面
 V     接触点
 Z     絶縁層
 Z1    ベース絶縁層
 Z2    付加絶縁層
 Θ1    角度
 Θ2    角度
 以下、本発明の実施形態を図面に基づいて具体的に説明する。
 まず、以下の図面を参照して、本発明の第1の実施形態に係るセグメントコイル12、該セグメントコイル12を用いてなるステータ10、該ステータ10を用いてなるモータ1及び前記セグメントコイル12の製造方法を説明し、本発明の理解に供する。しかし、以下の説明は本発明の実施形態であって、請求の範囲に記載の内容を限定するものではない。
 まず、図1、図2を参照して、本発明の実施形態に係るセグメントコイルを用いたモータ1(回転電機)を説明する。
 本発明の実施形態に係るモータ1は、後述するステータ10と、図示しないロータとから構成される。
 また、図1、図2に示すように、このモータ1は、インバータ制御によりスイッチングされた電力が供給されるPWM駆動(Pulse Width Modulation:パルス幅変調)の3相式モータである。具体的には図2に示すように、バッテリー2からの電力が、その電圧をリレー3及び昇圧コンバータ4により上げられ、スイッチング素子を備えるインバータ制御部5を経て、高圧ケーブル6と接続されたU相、V相、W相の入力端子を経てモータ1に供給される。また図1に示すように、U相、V相、W相は、直列接続された4本の巻回コイルを一対並列接続させた構成である。
 なお、スイッチング素子としては、縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、横型デバイス、サイリスタ、GTO(Gate Turn-Off Thyristor)、バイポーラトランジスタ、IGBT(Insulated Gate Bipolar Transistor)等、任意のスイッチング素子を用いることができる。
 次に、図3A~図9Cも参照して、本発明の実施形態に係るステータ10を更に詳細に説明する。
 前記ステータ10は、モータ1の固定子であり、図3A、図3B、図4Bに示すように、環状コア11と、平角線コイルの形状を略U字状とするセグメントコイル12とから構成される。
 前記環状コア11は図3A、図3Bに示すように、環状のコア本体11aと、図4Bに簡略化して示すように、環状に複数配置されたティース部11bとから構成されている。またティース部11bの両側には複数のスロット部11cが形成され、このスロット部11cにセグメントコイル12が収容されることで環状コア11にセグメントコイル12が組み付けられる。
 前記セグメントコイル12は、環状コア11に組み付けられる平角線からなる、いわゆる被覆電線である。このセグメントコイル12は図7A、図7Bに示すように、導体からなる素線Rと、素線Rを被覆する絶縁物からなる絶縁層Zとから構成される。
 また、このセグメントコイル12は図4Bに示すように、主としてスロット部11c内に収容される直線状の一対のストレート部Cと、スロット部11cの外部に突出されると共に、斜辺部を備えて山形形状をなす一対のコイルエンド部E1、E2とを備える。
 また、図4Bに示すように、コイルエンド部E2の先端には、同一相内の隣接するセグメントコイル12同士を接合するための接合面S1を有する接合用先端部Sを備える構成としてある。より具体的には、図4B、図5A、図5Bに示すように、コイルエンド部E2の端部を環状コア11の径方向の外径側へ捻じる(屈曲させる)ことで、環状コア11の軸方向から見たときに、接合面S1が環状コア11の径方向に対して平行であり、且つ環状コア11の周方向の所定位置に配置される接合用先端部Sをコイルエンド部E2の先端に一対備える構成としてある。
 なお、ここで、セグメントコイル12のストレート部Cの外径側コイル面G、あるいは内径側コイル面Nに垂直な方向が環状コアの径方向に対応する。また、「環状コア11の周方向の所定位置」とは、複数のセグメントコイル12を環状コア11に整列配置させた際に、環状コア11の軸方向から見たときに、同一相を構成する複数のセグメントコイル12の複数の接合面S1を、環状コアの径方向に一列に並べることができる、環状コア11の周方向の任意の位置のことを意味するものとする。
 更に、具体的には、図5A、図5Bに示すように、環状コア11の径方向における内径側コイル面Nと外径側コイル面Gとを備えるセグメントコイル12において、内径側コイル面Nが一対の接合用先端部Sにおいて、共に環状コア11の周方向内側に配置されるように(外径側コイル面Gが一対の接合用先端部Sにおいて、共に環状コア11の周方向外側に配置されるように)、コイルエンド部E2の一対の端部を環状コア11の径方向の外径側へ90度捻じる(屈曲させる)ことで、環状コア11の径方向の外径側へ突設する一対の接合用先端部Sを形成してある。
 つまり、コイルエンド部E2の一対の端部を同一方向(環状コア11の径方向の外径方向)へ90度捻じる(屈曲させる)ことで一対の接合用先端部Sを形成してある。
 なお本実施形態においては、図5Aに示すように、一対の接合用先端部Sにおいて、共に内径側コイル面Nを他のセグメントコイルと接合するための接合面S1とする構成としてある。
 また、本実施形態においては、図4A、図4B、図5A、図5Bに一部を示すように、環状コア11のスロット部11cにセグメントコイル12を整列配置させた際に、隣接する接合用先端部S(同じセグメントコイル12に備える一対の接合用先端部S)が環状コア11の径方向の内径側と外径側とにズレを持って配置されるように構成してある。
 なお、本実施形態においては、この一対の接合用先端部Sにおけるズレは、詳しくは図示していないが、図5Aに示す仮想線(1点鎖線)で2分割されるコイルの何れか片側において、接合用先端部Sを除く部分のコイルを環状コア11の径方向の内径側若しくは外径側に屈曲させることで、2分割されるコイルに環状コア11の径方向で段差を形成してズレを生じさせる構成としてある。
 また、本実施形態においては図4Bに示すように、セグメントコイル12において、ストレート部Cから延出して接合用先端部Sに至るまでの延出部Hを、環状コア11の周方向内向きに1乃至複数箇所で屈曲させる構成としてある。
 より具体的には、図6に示すように、環状コア11の径方向の内径側に配置される内径側コイル12-1においては、第1屈曲領域K1と第2屈曲領域K2との2ヶ所で環状コア11の周方向内向きに延出部Hを屈曲させる構成としてある。
 また、環状コア11の径方向の外径側に配置される外径側コイル12-2においては、第1屈曲領域K1の1ヶ所で環状コア11の周方向内向きに延出部Hを屈曲させる構成としてある。
 また、内径側コイル12-1における第1屈曲領域K1と、外径側コイル12-2における第1屈曲領域K1とのコイルの屈曲角度を同一角度である角度Θ1としてある。更に内径側コイル12-1においては、第2屈曲領域K2のコイルの屈曲角度である角度Θ2を第1屈曲領域K1のコイルの屈曲角度である角度Θ1よりも大きい角度とする構成としてある。
 なお、角度Θ1は、95度~150度程度、より好ましくは105度~125度程度とすることが望ましい。95度未満であるとコイルエンド部Eでコイル同士の干渉が起こり配列ができないからであり、150度を超えるとコア端面とコイル間にデッドスペースが大きくなり、モータ軸長方向の寸法が増大してしまうからである。
 また、角度Θ2は、100度~160度程度、より好ましくは110度~130度程度とすることが望ましい。100度未満であると同一コイルの他端部分と干渉しやすくなるからであり、160度を超えるとコイル先端の接合長さが短くなるからである。
 また、図示していないが、接合用先端部Sと反対側のコイルエンド部E1には、隣接するスロット部11cに収容されるセグメントコイル12同士の接触を回避するために、セグメントコイル12を屈曲してなるクランク部を形成してある。
 なお、セグメントコイル12を形成する素線Rとしては、タフピッチ銅、無酸素銅等、セグメントコイルを形成する素線として通常用いられるものを用いることができる。本実施形態においては、タフピッチ銅を用いる構成としてある。
 また、図7Aに示す素線Rの短手方向の長さDは、1.0mm~2.0mm程度、より好ましくは1.5mm~2.0mm程度とすることが望ましい。1.0mm未満とするとコイル加工において安定した寸法形状が得られ難かったり、ターン数が増えてコストアップの要因になるからであり、2.0mmを超えると接合スペースが減少するからである。
 また、図7Aに示す素線Rの長手方向の長さFは、2.5mm~5.0mm程度、より好ましくは3.0mm~4.0mm程度とすることが望ましい。2.5mm未満とすると縦横比が小さくなり線材や組み付けの生産性が低下するからであり、5.0mmを超えると幅広になり、コイル曲げ加工が難しくなったり、接合部の径方向寸法が増大するからである。
 また、本実施形態においては、図7A、図7Bに示すように、セグメントコイル12を形成する絶縁層Zの構成を、ストレート部Cと、コイルエンド部E1及びコイルエンド部E2とで異なる構成としてある。
 より具体的には、ストレート部Cにおいては、図7Aに示すように、素線Rの表面にベース絶縁層Z1だけを被覆させることで絶縁層Zを形成する構成としてある。
 これに対してコイルエンド部E1及びコイルエンド部E2の所定領域においては、図7Bに示すように、素線Rの表面にベース絶縁層Z1を被覆させると共に、ベース絶縁層Z1の表面に更に付加絶縁層Z2を被覆させることで絶縁層Zを形成する構成としてある。
 つまり、コイルエンド部E1及びコイルエンド部E2の所定領域を構成する絶縁層Zの厚みを、ストレート部Cを構成する絶縁層Zの厚みよりも厚肉とする構成としてある。
 なお、ここで「コイルエンド部E1及びコイルエンド部E2の所定領域」とは、「コイルエンド部E1及びコイルエンド部E2において、隣接するセグメントコイル12が近接する領域、より具体的には素線Rの状態で隣接する素線R間の距離が数μm~数百μm程度となる領域」のことを意味するものとする。
 なお、ベース絶縁層Z1の材質としては、ポリアミドイミド、ポリイミド等を用いることができる。またベース絶縁層Z1の厚みはコイルターン間の設計電圧に対応した厚みがあればよく、例えば設計電圧が500Vの場合は、15μm~30μm程度とすることが望ましく、より好適には15μm~25μm程度とすることが望ましい。15μm未満では部分放電の発生による皮膜劣化や製造時のピンホール発生確率が増加し、25μmを超えるとスロット部11c内の占積率の低下による発熱増加や外径増大による組み付け性の低下が生じるからである。またその形成方法は、ダイス引き、電着等を用いることができる。なおストレート部Cとコイルエンド部E1及びコイルエンド部E2のベース絶縁層Z1は、同一工程で一体的に形成することができる。
 また、付加絶縁層Z2の材質としては、ポリアミドイミドやポリイミドを代表とするスーパーエンジニアリングプラスチック材料、或いはエンジニアリングプラスチックに無機フィラーを混合した材料等用いることができる。またその形成方法としては、粉体塗装、テープの貼り付け、ディップ、スプレー塗装、インサート式射出成形、押し出し成形、熱収縮チューブ等を用いることができる。
 また、モータ相間の電圧は、インバータサージ等の影響により、入力電圧の約2倍のピーク電圧が印加されることから、付加絶縁層Z2の厚みは、例えば、設計電圧が1000Vの場合は、40μm~200μm程度とすることが望ましく、より好ましくは80μm~120μm程度とすることが望ましい。40μm未満では部分放電による皮膜劣化が発生し、200μmを超えるとコイルエンド部E1及びコイルエンド部E2の線間距離増加による寸法増大を招くからである。
 また、図示はしないが、上記斜辺部に、ステータの周方向に沿う所定の曲げ加工が施されている。上記ステータの周方向に沿う所定の曲げ加工の形態は特に限定されることはない。例えば、斜辺部が1又は2以上の個所で屈曲されて略折れ線状となる曲げ加工や、曲率半径の中心や曲率が変化する曲げ加工を施すことができる。
 本実施形態においては、このような構成からなるセグメントコイル12が以下に述べる構成で環状コア11に組み付けられている。
 つまり、図1に簡略化して示すように、同じスロット部11cに収容される所定数(本実施形態においては4本)のセグメントコイル12のうち、環状コア11の径方向に隣接するセグメントコイル12が、それぞれの接合用先端部Sで接合されることで、4本のセグメントコイル12からなる第1巻回コイル12aが形成される。
 更に、図1に示すように、4本のセグメントコイル12からなる第1巻回コイル12a~第4巻回コイル12dが、それぞれの接合用先端部Sで直列接続されると共に、直列接続される第1巻回コイル12a~第4巻回コイル12dが一対並列接続されることで、U相が形成される。また詳しくは図示していないが、U相の構成と同様の構成でV相、W相が形成される。
 このような構成からなるU相、V相、W相を形成するセグメントコイル12が仮組みされた状態で所定のスロット部11cに収容された後、相互に接合されるべき接合用先端部S同士が接合されることで、セグメントコイル12が整列配置された状態で環状コア11に組み付けられる。
 以上の構成により、図3A、図3Bと、図4A、図4Bに一部を示すステータ10が形成されている。またこのステータ10と図示しないロータとを組み合わせることでモータ1が形成されている。
 また、図1に示すように、U相、V相、W相の各相を構成するセグメントコイル12の一端(本実施形態においては第1巻回コイル12a)は、高圧ケーブル6と接続される入力端子12U、12V、12Wとなり、他端(本実施形態においては第4巻回コイル12d)は、中性点12UN、12VN、12WNとなっている。
 なお、接合用先端部Sの接合方法としては、抵抗溶接等の溶接や、超音波接合、冷間圧接等の固相接合等を用いることができる。本実施形態においては、相互に接合すべき接合用先端部Sを固相接合たる超音波接合で接合する構成としてある。
 このような構成からなる本発明の実施形態に係るセグメントコイル12、セグメントコイル12を用いてなるステータ10、ステータ10を用いてなるモータ1は以下の効果を奏する。
 接合用先端部Sの構成を、コイルエンド部E2の端部を捻じることで、環状コア11の軸方向から見たときに、その接合面S1が環状コア11の径方向に対して平行となるような構成とすることで、図8に示すように、複数のセグメントコイル12を環状コア11に整列配置させた際に、接合用先端部Sの加圧方向を環状コア11の周方向(図8において白抜き矢印で示す方向)にとることができる。よって隣接するスロット部11c間に形成される空間L(隙間)を有効に利用して接合用先端部Sの接合を行うことができる。
 従って、接合用先端部Sの加圧方向に十分なスペースを確保することができ、接合用先端部Sの接合工程の作業性を向上させることができる。より具体的には、隣接するスロット部11c間に形成される空間Lへの接合用治具30(本実施形態においては超音波治具)の出し入れの容易化や相互に接合する接合用先端部Sの把持精度の向上等を実現することができる。
 従って、隣接するセグメントコイル12の効率的な接合を実現可能とすることができる。
 また、接合用先端部Sの接合面S1を環状コア11の径方向に対して平行となるように構成することで、複数のセグメントコイル12を環状コア11に整列配置させた際に、隣接するスロット部11c間に形成される空間L(隙間)を効果的に増大させることができ、放熱性の良いステータ10、モータ1とすることができる。
 また、環状コア11のスロット部11cにセグメントコイル12を整列配置させた際に、隣接する接合用先端部S(同じセグメントコイル12に備える一対の接合用先端部S)が環状コア11の径方向の内径側と外径側とにズレを持って配置されるように構成することで、図8に示すように、複数のセグメントコイル12を環状コア11に整列配置させるだけで、同一スロット部11c内に配置される複数のセグメントコイル12において、相互に接合される接合用先端部Sの接合面S1を対向させた状態で配置することができる。
 更に、接合面S1を環状コア11の径方向に対して平行とすることで、図8に示すように、相互に接合される複数組の接合用先端部Sの接合面S1を環状コア11の径方向に一列に配置することができる。
 加えて、既述したように、隣接するスロット部11c間に形成される空間L(隙間)を有効に利用して接合用先端部Sの接合を行うことができることから、図8に示すように、相互に接合すべき複数組の接合用先端部Sを接合用治具30で同時に(一括させて)挟み込むことができ、複数組の接合用先端部Sの接合を同時に行うことができる。つまり複数組の接合用先端部Sの多点同時接合を実現可能とすることができる。
 よって、接合用先端部Sの接合工程の作業性を一段と効果的に向上させることができる。
 従って、隣接するセグメントコイル12の効率的な接合を一段と実現可能とすることができ、製造効率の良いステータ10、モータ1とすることができる。
 また、内径側コイル12-1においては、第1屈曲領域K1と第2屈曲領域K2との2ヶ所で環状コア11の周方向内向きに延出部Hを屈曲させると共に、外径側コイル12-2においては、第1屈曲領域K1の1ヶ所で環状コア11の周方向内向きに延出部Hを屈曲させる構成とし、更に内径側コイル12-1における第1屈曲領域K1のコイルの屈曲角度と、外径側コイル12-2における第1屈曲領域K1のコイルの屈曲角度とを共に角度Θ1とし、且つ内径側コイル12-1においては、角度Θ2を角度Θ1よりも大きい角度とする構成とすることで、図6に示すように、内径側コイル12-1の接合用先端部Sと、外径側コイル12-2の接合用先端部Sとに、環状コア11の軸方向でズレを形成することができる。
 より具体的には、内径側コイル12-1と、外径側コイル12-2とは、同一角度である角度Θ1でコイル(延出部H)を環状コア11の周方向内側に屈曲させる構成であることから、本来的には図6に仮想線(1点鎖線)で示すように、内径側コイル12-1の接合用先端部Sと、外径側コイル12-2の接合用先端部Sとは、環状コア11の軸方向でズレが生じることがないところ、内径側コイル12-1を、角度Θ2で更に屈曲させることで、図6に示すように、内径側コイル12-1の接合用先端部Sを、外径側コイル12-2の接合用先端部Sよりも環状コア11の軸方向において下方に配置させることができる。
 よって、複数のセグメントコイル12を環状コア11に整列配置させた際、図9Aに簡略化して示すように、まず、同じセグメントコイル12における一対の接合用先端部S間(図9Aに破線の円で示す部分)に空間P(隙間)を形成することができる。よって一対の接合用先端部S同士が接触することを防止することができる。
 加えて、隣接するスロット部11cに配置されるセグメントコイル12間(図9Aに破線の四角で示す部分)に空間Q(隙間)を形成することができる。よって隣接するセグメントコイル12同士が接触することを防止することができる。より具体的には図9Aに示すように、第1のセグメントコイル40と、第2のセグメントコイル50と、第3のセグメントコイル60(内径側コイル12-1は図示しない)とが配置された状態において、第1のセグメントコイル40の内径側コイル12-1と、第3のセグメントコイル60の外径側コイル12-2とが接触することを効果的に防止することができる。
 なお、図9A、図9B、図9Cにおいては、第2のセグメントコイル50と第3のセグメントコイル60とが同一のスロット部(図示しない)に配置されていると共に、第2のセグメントコイル50の内径側コイル12-1と、第3のセグメントコイル60の外径側コイル12-2とが相互に超音波接合されるものであることを示すものとする。また第1のセグメントコイル40は、第2のセグメントコイル50及び第3のセグメントコイル60が配置されるスロット部11cの隣のスロット部11cに配置されるセグメントコイル12を示すものとする。
 つまり、図9Bに示す比較例1のように、内径側コイル12-1において、角度Θ1(図6に示す)の角度を本実施形態におけるものよりも小さい角度とした場合、隣接するスロット部11cに配置されるセグメントコイル12間(図9Bに破線の四角で示す部分)に空間Qを形成することができるものの、同じセグメントコイル12における一対の接合用先端部S間(図9Bに破線の円で示す部分)に空間Pを形成することができない。
 よって、一対の接合用先端部S同士が接触することになる。
 また、図9Cに示す比較例2のように、内径側コイル12-1において、角度Θ1(図6に示す)の角度を本実施形態におけるものよりも大きい角度とした場合、同じセグメントコイル12における一対の接合用先端部S間(図9Cに破線の円で示す部分)に空間Pを形成することができるものの、隣接するスロット部11cに配置されるセグメントコイル12間(図9Cに破線の四角で示す部分)に空間Qを形成することができない。
 よって、隣接するスロット部11cに配置されるセグメントコイル12同士が接触することになる。
 従って、本実施形態の構成とすることで、同じセグメントコイル12における一対の接合用先端部S間においては空間Pを、隣接するスロット部11cに配置されるセグメントコイル12間においては空間Qを同時に形成することができる。
 つまり、角度Θ1によって隣接するスロット部11cに配置されるセグメントコイル12間におけるコイルの接触を回避できると共に、角度Θ2によって同じセグメントコイル12における一対の接合用先端部S間におけるコイルの接触を回避できる。
 従って、複数のセグメントコイル12を環状コア11に整列配置させた際に、隣接するスロット部11cに配置されるセグメントコイル12間と、同じセグメントコイル12における一対の接合用先端部S間との両方においてコイルが接触することを防止することができる。更に接合用先端部Sと反対側のコイルエンド部Eに、クランク部を形成する構成とすることで、接合用先端部Sと反対側のコイルエンド部Eにおいても隣接するスロット部11cに収容されるセグメントコイル12同士の接触を回避することができる。
 従って電気的な接続信頼性の高いステータ10、モータ1とすることができる。
 また、相互に接合すべき接合用先端部Sを固相接合たる超音波接合で接合させる構成とすることで、接合工程の作業時間を短縮化させることができ、一段と製造効率の良いステータ10、モータ1とすることができる。また固相接合とすることで、熱影響が少ないことから耐熱性の低い安価な導体、皮膜材料を使用することが可能になる。
 また、セグメントコイル12を構成する素線Rとしてタフピッチ銅を用いる構成とすることで、電気伝導性、熱伝導性に優れると共に、加工性の良いセグメントコイル12とすることができる。また製造コストの低減を図ることができるセグメントコイル12、ステータ10、モータ1とすることができる。
 また、ストレート部Cにおいては、素線Rの表面にベース絶縁層Z1だけを形成すると共に、絶縁層Z1の厚みを設計電圧が500Vの場合には、15μm~30μm程度とすることで、スロット部11c内における占積率を効果的に向上させることができるセグメントコイル12とすることができる。よって高効率なステータ10及びモータ1とすることができる。
 また、コイルエンド部E1、E2の所定領域においては、設計電圧が1000Vの場合には、素線Rの表面に厚みが15μm~30μm程度のベース絶縁層Z1を形成すると共に、ベース絶縁層Z1の表面に更に厚みが40μm~200μm程度の付加絶縁層Z2を形成することで、隣接するセグメントコイル12が近接する領域、より具体的には隣接する素線R間の距離が数μm~数百μm程度となることでコロナ放電が発生し易く、絶縁層Zの劣化が生じ易い領域において、絶縁層Zに劣化が生じることを効果的に防止することができるセグメントコイル12とすることができる。よって、良好な絶縁性を維持することができるステータ10及びモータ1とすることができる。
 つまり、コイル12における絶縁層Zの厚みにバリエーションを持たせることができる。より具体的には、占積率を向上させたいストレート部Cでは絶縁層Zの厚みを薄くすることができると共に、コイルエンド部E1、E2においてコロナ放電に伴う絶縁劣化を防止したい領域においては絶縁層Zの厚みを厚くすることができる。このような構成とすることで、厚みを厚肉にする必要があるコイルエンド部Eの所定領域の厚みに合わせて素線Rの表面に絶縁層Zを一体的に形成する場合に比べて、製造コストの低減を図ることができる。
 従って、スロット部11c内における占積率の向上と、特にコイルエンド部Eにおける絶縁層Zの劣化の防止とを同時に実現することができると共に、製造コストの低減を図ることができるセグメントコイル12、ステータ10、モータ1とすることができる。
 つまり、図11A~図13に示すように、環状コア21のスロット部21cに整列配置される従来のセグメントコイル22は、接合用先端部Sの接合面S1を、環状コア21の径方向に対して直交するように構成してあるものが一般的であった。
 よって、このような従来のセグメントコイル22を用いてなるステータ20においては、図13に示すように、複数のセグメントコイル22を環状コア21に整列配置させた際、相互に接合させる接合面S1の加圧方向が環状コア21の径方向(図13において白抜き矢印で示す方向)となる。
 よって、隣接する接合用先端部Sにおいて、環状コア21の径方向に形成される空間M(隙間)は狭小なものであることから、接合用先端部Sの加圧方向に十分なスペースを確保することができず、接合用先端部Sの接合工程の作業性が悪いという問題があった。
 より具体的には図13に示すように、接合用先端部Sの接合方法が、相互に接合させる一対の接合用先端部Sを一組ずつ環状コア21の径方向の内側と外側とで接合用治具30で固定し、一組ずつ接合する、いわゆる単点接合に制限されることなり、接合工程が煩雑となると共に、作業性が悪いという問題があった。また環状コア21の径方向において隣接する接合用先端部S間に形成される空間Mが狭小なものとなることで、接合用治具30の位置決め精度が厳しく、作業効率が悪いという問題があった。
 また、このような従来のセグメントコイル22においては、図12に示すように、ストレート部C及びコイルエンド部Eにおいて、素線Rの表面全体に均一な厚みの絶縁層Zを形成することで、厚みに厚薄がないセグメントコイル22とするものが一般的であった。
 つまりコロナ放電に伴う絶縁層Zの劣化を防止するために、絶縁層Zの厚みを厚肉にする必要があるコイルエンド部Eの厚みに合わせて素線Rの表面に厚みが均一な絶縁層Zを一体的に形成する構成であった。
 よって、絶縁層Zの厚みを厚肉にする必要がないストレート部Cにおいても絶縁層Zの厚みが厚肉になることで、スロット部内における占積率を向上させることができないと共に、製造コストの低減を図ることができないという問題があった。
 よって、本発明の実施形態に係るセグメントコイル12、ステータ10の構成とすることで、接合用先端部Sの接合工程の作業性を向上させることができると共に、複数組の接合用先端部Sの多点同時接合を実現可能とすることができる。
 また、スロット部11c内における占積率の向上と、特にコイルエンド部E1、E2における絶縁層Zの劣化の防止とを同時に実現することができると共に、製造コストを効果的に抑えることができるセグメントコイル12及びステータ10、それらを用いたモータ1とすることができる。
 次に、図10A~図10Dを参照して、本発明の実施形態に係るセグメントコイル12、セグメントコイル12を用いてなるステータ10、ステータ10を用いてなるモータ1の製造方法を説明する。
 まず、図10Aを参照して、絶縁層が形成されていない状態の平角線からなる素線Rを準備する。なお本実施形態においては、タフピッチ銅からなる素線Rを用いる構成としてある。
 次に、図10Bを参照して、コイル体形成工程により、図示しない折り曲げ治具を用いて平角線からなる素線Rを略U字状に屈曲させることで、素線Rをいわゆるセグメントコイルの形状をなすコイル体Bに加工する。
 この際、図10Bに示す仮想線(1点鎖線)で2分割されるコイルの左右何れか片側において、接合用先端部Sを除く部分のコイルを環状コア11の径方向の内径側若しくは外径側に屈曲させる(図示しない)ことで、2分割されるコイルに段差を形成する。
 これにより、環状コア11のスロット部11cにセグメントコイル12を整列配置させた際に、隣接する接合用先端部S(同じセグメントコイル12に備える一対の接合用先端部S)を環状コア11の径方向の内径側と外径側とにズレを持って配置させることができる。
 また、図6に示すように、内径側コイル12-1においては、第1屈曲領域K1と第2屈曲領域K2との2ヶ所で環状コア11の周方向内向きに延出部Hを屈曲させると共に、外径側コイル12-2においては、第1屈曲領域K1の1ヶ所で環状コア11の周方向内向きに延出部Hを屈曲させる。
 なお、図6に示す第1屈曲領域K1の屈曲角度Θ1は、95度~150度程度、より好ましくは105度~125度程度、第2屈曲領域K2の屈曲角度Θ2は、100度~160度程度、より好ましくは110度~130度程度とすることが望ましい。
 また、図示しない折り曲げ治具を用いて、コイル体Bにクランク部(図示しない)を形成する。
 更に、このコイル体形成工程においては、接合用先端部形成工程により、コイル体Bのコイルエンド部E4の一対の端部を環状コア11の径方向の外径側へ90度捻る(屈曲させる)ことで、コイルエンド部E4の先端に、環状コア11の軸方向から見たときに、他のセグメントコイルと接合するための接合面S1が環状コア11の径方向に対して平行で、且つ環状コア11の周方向の所定位置に配置される一対の接合用先端部Sを形成する。
 次に、図示していないが、絶縁層形成工程におけるベース絶縁層形成工程により、コイル体Bにおいて、接合用先端部Sを除く表面全体に絶縁物を均一な厚みで被覆させることで、コイル体Bの表面に均一な厚みからなるベース絶縁層Z1を一体的に形成する。なおこの際、ベース絶縁層Z1の厚みは、設計電圧が500Vの場合には、15μm~30μm程度、より好ましくは15μm~25μm程度とすることが望ましい。
 次に、図示していないが、絶縁層形成工程における付加絶縁層形成工程により、コイル体Bのコイルエンド部E3、E4のうち、所定領域にベース絶縁層Z1と同一の絶縁物を均一な厚みで被覆させることで、付加絶縁層Z2を形成する。
 なおこの際、付加絶縁層Z2の厚みは、設計電圧が1000Vの場合には、40μm~200μm、より好ましくは80μm~120μm程度とすることが望ましい。
 以上の工程により、コイル体Bの表面に絶縁層Zが形成される。これによって本発明の実施形態に係るセグメントコイル12が形成される。
 次に、図10Cに簡略化して示すように、U相、V相、W相を構成するセグメントコイル12の仮組みを行う。
 次に、図10Dに簡略化して示すように、仮組みされた状態のセグメントコイル12を環状コア11のスロット部11cに組み付ける。
 次に、同じスロット部11c内に組み付けられているU相、V相、W相を構成する各セグメントコイル12の接合用先端部Sを超音波接合により接合する。
 より具体的には、図8に示すように、複数組の相互に接合される接合用先端部Sを、接合用治具30で同時に挟み込んだ状態で超音波接合させる。
 これにより、各相における第1巻回コイル12a~第4巻回コイル12dが形成される。
 次に、図示していないが、各相における第1巻回コイル12a~第4巻回コイル12dを渡り線により直列接続させると共に、一対の第1巻回コイル12a~第4巻回コイル12dを並列接続させる。
 以上の工程により、本発明の実施形態に係るステータ10が形成される。
 このように形成されるステータ10と、図示しないロータとを組み合わせることで、モータ1が形成される。
 このような構成からなる本発明の実施形態に係るセグメントコイル12及びセグメントコイル12を用いてなるステータ10、そのステータ10を用いてなるモータ1の製造方法は、以下の効果を奏する。
 接合用先端部Sの構成を、環状コア11の軸方向から見たときに、接合面S1が環状コア11の径方向に対して平行であり、且つ環状コア11の周方向の所定位置に配置される構成とすることで、図8に示すように、複数のセグメントコイル12を環状コア11に整列配置させた際に、接合用先端部Sの加圧方向を環状コア11の周方向(図8において白抜き矢印で示す方向)にとることができる。よって隣接するスロット部11c間に形成される空間L(隙間)を有効に利用して接合用先端部Sの接合を行うことができる。
 従って、接合用先端部Sの加圧方向に十分なスペースを確保することができ、接合用先端部Sの接合工程の作業性を向上させることができる。より具体的には隣接するスロット部11c間に形成される空間Lへの接合用治具30の出し入れの容易化や相互に接合する接合用先端部Sの把持精度の向上等を実現することができる。
 従って、隣接するセグメントコイル12の効率的な接合を実現可能とすることができるセグメントコイル12を製造することができる。よって製造効率の良いステータ10、モータ1の製造方法とすることができる。
 また、接合用先端部Sの接合面S1を環状コア11の径方向に対して平行となるように構成することで、複数のセグメントコイル12を環状コア11に整列配置させた際に、隣接するスロット部11c間に形成される空間L(隙間)を効果的に増大させることができるセグメントコイル12を製造することができる。よって放熱性の良いステータ10、モータ1を製造することができる。
 また、環状コア11の周方向の所定位置に配置されるように接合用先端部Sを形成すると共に、環状コア11のスロット部11cにセグメントコイル12を整列配置させた際に、隣接する接合用先端部S(同じセグメントコイル12に備える一対の接合用先端部S)が環状コア11の径方向の内径側と外径側とにズレを持って配置されるように構成することで、図8に示すように、複数のセグメントコイル12を環状コア11に整列配置させるだけで、同一スロット部11c内に配置される複数のセグメントコイル12において、相互に接合される接合用先端部Sの接合面S1を対向させた状態で配置することができる。
 更に、接合面S1を環状コア11の径方向に対して平行とすることで、図8に示すように、相互に接合される複数組の接合用先端部Sの接合面S1を環状コア11の径方向に一列に配置することができる。加えて、既述したように、隣接するスロット部11c間に形成される空間L(隙間)を有効に利用して接合用先端部Sの接合を行うことができることから、図8に示すように、相互に接合すべき複数組の接合用先端部Sを接合用治具30(本実施形態においては超音波治具)で同時に(一括させて)挟み込むことができ、複数組の接合用先端部Sの接合を同時に行うことができる。つまり、複数組の接合用先端部Sの多点同時接合を実現可能とすることができる。
 よって、接合用先端部Sの接合工程の作業性を一段と効果的に向上させることができる。
 従って、隣接するセグメントコイル12の効率的な接合を一段と実現可能とすることができるセグメントコイル12を製造することができる。よって、製造効率の良いステータ10、モータ1の製造方法とすることができる。
 また、内径側コイル12-1においては、第1屈曲領域K1と第2屈曲領域K2との2ヶ所で環状コア11の周方向内向きに延出部Hを屈曲させると共に、外径側コイル12-2においては、第1屈曲領域K1の1ヶ所で環状コア11の周方向内向きに延出部Hを屈曲させる構成とし、更に、内径側コイル12-1における第1屈曲領域K1のコイルの屈曲角度と、外径側コイル12-2における第1屈曲領域K1のコイルの屈曲角度とを共に角度Θ1とし、且つ内径側コイル12-1においては、角度Θ2を角度Θ1よりも大きい角度とする構成とすることで、図6に示すように、内径側コイル12-1の接合用先端部Sと、外径側コイル12-2の接合用先端部Sとで、環状コア11の軸方向でズレを形成することができる。
 従って、既述したように、複数のセグメントコイル12を環状コア11に整列配置させた際に、隣接するスロット部11cに配置されるセグメントコイル12間と、同じセグメントコイル12における一対の接合用先端部S間との両方においてコイルが接触することを防止することができる。更に、接合用先端部Sと反対側のコイルエンド部Eに、クランク部を形成する構成とすることで、接合用先端部Sと反対側のコイルエンド部Eにおいても隣接するスロット部11cに収容されるセグメントコイル12同士の接触を回避することができる。
 従って、電気的な接続信頼性の高いステータ10、モータ1を実現可能なセグメントコイル12を製造することができる。
 また、相互に接合すべき接合用先端部Sを固相接合たる超音波接合で接合させる構成とすることで、接合工程の作業時間を短縮化させることができ、一段と製造効率の良いステータ10、モータ1の製造方法とすることができる。
 また、セグメントコイル12を構成する素線Rとしてタフピッチ銅を用いる構成とすることで、電気伝導性、熱伝導性に優れると共に、加工性の良いセグメントコイル12とすることができる。よって、電気的な接続信頼性が高いステータ10、モータ1を製造することができると共に、製造工程の効率化を実現可能なステータ10、モータ1の製造方法とすることができる。また、製造コストの低減を図ることができるセグメントコイル12、ステータ10、モータ1の製造方法とすることができる。
 また、ストレート部Cにおいては、素線Rの表面にベース絶縁層Z1だけを形成すると共に、絶縁層Z1の厚みを設計電圧が500Vの場合には、15μm~30μm程度とすることで、スロット部11c内における占積率を効果的に向上させることができるセグメントコイル12を製造することができる。よって、高効率なステータ10及びモータ1を製造することができる。
 また、コイルエンド部E1、E2の所定領域においては、設計電圧が1000Vの場合には、素線Rの表面に厚みが15μm~30μm程度のベース絶縁層Z1を形成すると共に、ベース絶縁層Z1の表面に更に厚みが40μm~200μm程度の付加絶縁層Z2を形成することで、隣接するセグメントコイル12が近接する領域、より具体的には隣接する素線R間の距離が数μm~数百μm程度となることでコロナ放電が発生し易く、絶縁層Zの劣化が生じ易い領域において、絶縁層Zに劣化が生じることを効果的に防止することができるセグメントコイル12を製造することができる。よって、良好な絶縁性を維持することができるステータ10、モータ1を製造することができる。
 つまり、セグメントコイル12における絶縁層Zの厚みにバリエーションを持たせることができる。より具体的には、占積率を向上させたいストレート部Cでは絶縁層Zの厚みを薄くすることができると共に、コイルエンド部Eにおいてコロナ放電に伴う絶縁劣化を防止したい領域においては絶縁層Zの厚みを厚くすることができる。このような構成とすることで、厚みを厚肉にする必要があるコイルエンド部Eの所定領域の厚みに合わせて素線Rの表面に絶縁層Zを一体的に形成する場合に比べて、製造コストを効果的に抑えることができるセグメントコイル12、ステータ10、及びそれらを用いたモータ1の製造方法とすることができる。
 従って、スロット部11c内における占積率の向上と、特にコイルエンド部Eにおける絶縁層Zの劣化の防止とを同時に実現することができると共に、製造コストを効果的に抑えることができるセグメントコイル12、ステータ10、モータ1の製造方法とすることができる。
 なお、本実施形態においては、接合用先端部Sを除く部分におけるコイルを環状コア11の径方向の内径側若しくは外径側に屈曲させることで、図5Aに示す仮想線(1点鎖線)で2分割されるコイルの左右において段差を形成し、これによって一対の接合用先端部Sに環状コア11の径方向においてズレを生じさせる構成としたが、一対の接合用先端部Sに環状コア11の径方向においてズレを生じさせる方法は必ずしもこのような構成に限るものではない。
 例えば、図5Aに示す仮想線(1点鎖線)で2分割されるコイルの左右において、環状コア11の径方向で段差を形成することなく、一対の接合用先端部Sの捻じり方向(屈曲方向)をそれぞれ異ならせることで、一対の接合用先端部Sに環状コア11の径方向においてズレを生じさせる構成としてもよい。より具体的には、一対の接合用先端部Sの何れか一方においては内径側コイル面Nが環状コア11の周方向内側に配置されると共に、残る他方においては内径側コイル面Nが環状コア11の周方向外側に配置されるようにコイルエンド部E4の端部を90度捻じる(屈曲させる)ことで、一対の接合用先端部Sに環状コア11の径方向においてズレを生じさせる構成としてもよい。つまり、コイルエンド部E4の一対の端部を、それぞれ環状コア11の径方向の異なる方向へ90度捻じる(屈曲させる)ことで一対の接合用先端部Sに環状コア11の径方向においてズレを生じさせる構成としてもよい。
 また、複数のセグメントコイル12を環状コア11に整列配置させた際に、同じセグメントコイル12における一対の接合用先端部S間と、隣接するスロット部11cに配置されるセグメントコイル12のコイルエンド部間との両方においてコイルが接触することを防止することができる構成であれば、内径側コイル12-1と外径側コイル12-2における、環状コア11の周方向内向きへの屈曲回数、屈曲位置、屈曲角度も本実施形態のものに限るものではなく、適宜変更可能である。
 また、本実施形態においては、相互に接合させる接合用先端部Sを固相接合たる超音波接合を用いて接合させる構成としたが、必ずしもこのような構成に限るものではない。
 例えば、冷間圧接等の他の固相接合や、抵抗溶接等の溶接を用いて相互に接合させる接合用先端部Sを接合させる構成としてもよい。
 また、本実施形態においては、ベース絶縁層Z1と付加絶縁層Z2とを同一の絶縁物で形成する構成としたが、必ずしもこのような構成に限るものではなく、ベース絶縁層Z1と付加絶縁層Z2とを異なる絶縁物で形成する構成としてもよい。例えばベース絶縁層Z1を、付加絶縁層Z2よりも安価な絶縁物で形成する構成とすることができる。このような構成とすることで、一段と製造コストを抑えることができるセグメントコイル12とすることができる。
 また、本実施形態においては図7Bに示すように、セグメントコイル12の所定領域において、セグメントコイル12の全周に付加絶縁層Z2を設ける構成としたが、必ずしもこのような構成に限るものではなく、一対のコイルエンド部E1、E2において、隣接するセグメントコイル12が近接する領域、より具体的には素線Rの状態で隣接する素線R間の距離が数μm~数百μm程度となる部分に付加絶縁層Z2を設ける構成とするものであれば、セグメントコイル12の外周のうち、一部分のみに付加絶縁層Z2を設けるような構成としてもよい。
 但し、一対のコイルエンド部E1、E2において、付加絶縁層Z2を設ける部分は、前記山形の頂部近傍と両裾部近傍とを除く斜辺部、又は/及び上記スロットから延出するストレート部分に設けることが望ましい。
 なお、ここで「裾部」とは、ストレート部からコイルエンド部E1、E2を構成する斜辺部に移行する曲げ部分のことを意味するものである。
 つまり、付加絶縁層Z2に亀裂や剥離が生じることを防止するためには、曲げ加工が施されていない部分又は大きな曲率半径で曲げ加工された部分の所定領域に付加絶縁層Z2を設けるのが好ましい。
 例えば、コイルエンド部E1、E2を山形に形成した場合、山形の頂部近傍や、山形斜辺からスロット部11cに収容されるストレート部Cに移行する山形の裾部近傍では、コイルの矩形断面における長辺の0.5~3倍の曲率半径の曲げ加工が施される。一方、上記山形の頂部近傍と両裾部近傍とを除く斜辺部は、コイルの矩形断面における長辺の20~60倍の曲率半径の曲げ加工が施される。また、スロットから延出したところのストレート部分には、曲げ加工が施されていない。
 従って、山形の頂部近傍と両裾部近傍とを除く斜辺部、又は/及びストレート部分に付加絶縁層Z2を設ける構成とすることで、容易且つ確実に付加絶縁層Z2を形成することができると共に、付加絶縁層Z2に亀裂や剥離が生じて絶縁性が低下することを効果的に防止することができる。
 また、U相、V相、W相を構成するセグメントコイル12の数、セグメントコイル12の形状、環状コア11の形状、モータ1の構成等も本実施形態のものに限るものではなく、適宜変更可能である。
 また、本発明の実施形態においては、コイル体形成工程を行った後に絶縁層形成工程を行う構成としたが、必ずしもこのような構成に限るものではない。
 例えば、素線Rを準備し、まずベース絶縁層形成工程を行い、その後コイル体形成工程を行い、更にその後に付加絶縁層形成工程を行う構成とすることができる。このような構成とすることで、絶縁性能とコストのバランスがとれた絶縁材料の選択が可能になる。
 次に、図14~図18を参照して、本発明の第2の実施形態に係るセグメントコイルを説明する。
 なお、本発明の第2の実施形態に係るセグメントコイルは、以下に述べる付加絶縁層の構成以外は既述したセグメントコイルと同様の構成であることから、セグメントコイルの基本的な構成に関する詳細な説明は省略する。
 図3A、図3Bに示すようなステータ10の各スロット部11cに装着される代表的な形態のセグメントコイル201は、図14に示すように、上記スロット部11cに収容される一対のストレート部Cと、上記スロット部11cの軸方向両端部から延出させられるとともに山形形状を備える一対のコイルエンド部E1、E2とを備える略6角形状に形成されている。コイルエンド部E2において同一のスロット部11cに装着された隣接するセグメントコイルが接続されるとともに、他のスロットに装着されたセグメントコイルとの接続が行われる。他のスロットに装着されたセグメントコイルとの接続を行うため、ステータの径方向最内側及び最外側に装着されるセグメントコイルにおいては、接続パターンに応じて複数の形態を備えるコイルエンド部が設けられている。以下の説明は、理解を容易にするため、図14に示す形態のセグメントコイル201について行う。
 一方のコイルエンド部E1は、所定のスロット部11cに収容された一対のストレート部Cを掛け渡し状に接続する山形状に形成されている。一方、他方のコイルエンド部E2には、スロット部11cに隣接して収容されたセグメントコイルとの接続を行うための接合用先端部205a、205bが設けられており、接続されたセグメントコイルのコイルエンド部と共働して山形形状が構成される。
 図15及び図17に示すように、セグメントコイル201A~201Eは、矩形断面を備える導電性の素線206の上記接合用先端部205a、205bを除く外周の全域にベース絶縁層207が形成されている。上記ベース絶縁層207は、ポリイミド等の曲げ加工に耐える材料を用いて、5~25μmの厚みで、コイル材料206の外周全域に均等な厚みで形成されている。
 図14に示すように、本実施形態に係るセグメントコイル201における山形形状に形成されたコイルエンド部E1、E2の一方の斜辺部210a、211aには、付加絶縁層212a、212b、212c、212d、214a、214b、214c、214dが形成されている。なお、上記付加絶縁層を設ける斜辺部は、反対側の斜辺部210b、211bであってもよい。また、上下のコイルエンド部E1、E2において、異なる斜辺部に上記付加絶縁層を設けることができる。なお、一のコイルエンド部においては、各セグメントコイルの同一側の斜辺部に上記付加絶縁層が設けられる。
 本実施形態に係る上記付加絶縁層212a、212b、212c、212d、214a、214b、214c、214dは、図17に示すように、上記ベース絶縁層207の上に、絶縁性を有するポリアミドイミド樹脂塗着材を、所定厚みで所定幅の全周に積層塗着して形成されている。上記付加絶縁層212a、212b、212c、212d、214a、214b、214c、214dの厚みは特に限定されることはないが、たとえば、対接させられるセグメントコイル間の電圧差等に応じて50~200μmの厚みで形成することができる。
 本実施形態では、3相交流電動機の各相を構成するコイルのうち、図3A、図3Bに示すステータ10の径方向最内周側と径方向最外周側に配置されるセグメントコイルを含む各セグメントコイル201A~201Eのコイルエンド部E1における山形形状の斜辺部210a、210bに、4つのコイルが当接あるいは近接した状態で配列される。
 図15は、一のセグメントコイル201Aと、このセグメントコイル201Aの一方の斜辺部210aに対接させられるセグメントコイル201B、201C、201D、201Eを注出して模式的に表した正面図である。
 この図に示すように、一のセグメントコイル201Aの図面の左側斜辺部210aには、隣接する4つのセグメントコイル201B、201C、201D、201Eの各右側斜辺部210bが所定の間隔で交差するように対接させられる。
 本実施形態では、上記一のセグメントコイル201Aの左側斜辺部210aにおいて、他のセグメントコイル201B、201C、201D、201Eが対接させられる部分に上記付加絶縁層212a~212dが形成されている。
 図16は、図15におけるVIII-VIII線に沿う断面図である。図16に示すように、本実施形態では、各セグメントコイルの山形形状をしたコイルエンド部E1、E2の左側斜辺部210aに付加絶縁層212a、212b、212c、212dが設けられている。上記付加絶縁層212a、212b、212c、212dによって、対接するセグメントコイル201B、201C、201D、201Eとの間の隙間が拡大させられて、コイルエンド部E1において互いに対接するセグメントコイル間の部分放電を防止できる。
 しかも、対接する一方の側のセグメントコイル201Aにのみ付加絶縁層212a~212dが設けられている。このため、ステータを構成するコイル全体として、付加絶縁層212a~212dを設ける領域を小さく設定することが可能となる。また、効率よく部分放電を防止できるとともに、付加絶縁層212a~212dを設けるために必要な材料を削減して製造コストを低減させ、さらに、電動機の重量を削減することもできる。
 スロット部11cに収容される部分には、付加絶縁層が形成されることがないため、スロット部11c内の導体の断面積を大きく設定することが可能となる。このため、上記スロット部11c内の占積率を高めることが可能となり、電動機の効率を高めることができる。
 一方、ステータの径方向最外側及び径方向最内側に配置されるセグメントコイル201B、201Eは、上記径方向の一方の側にのみ隣接するセグメントコイルが配置されるとともに、他のスロットに装着された同相のセグメントコイルと連結されるため、設計によって隣接するセグメントコイルに対接させられる部分が異なる。このこめ、ステータ10におけるセグメントコイルの構成等に応じて、他のセグメントコイルと対接する部分に付加絶縁層を設ければよい。
 また、本実施形態では、上記付加絶縁層を、コイルエンド部E1、E2において対接するすべてのセグメントコイル間に設けたが、電圧差が大きい異なる相に属するセグメントコイルが対接する部分にのみ上記付加絶縁層を設けることもできる。これにより、付加絶縁層を設ける領域をさらに削減することができる。また、部分放電が生じやすい異なる相に属するセグメントコイル間に付加絶縁層が設けられるため、部分放電をより効果的に防止できる。
 また、図17に示す実施形態では付加絶縁層212a~212dを、一のセグメントコイル201Aの周囲を、所定幅で囲むように設けたが、他のセグメントコイル201B~201Eが対接させられる面にのみに設けることができる。たとえば、図18に示すように、一のセグメントコイル201Aにおいて、他のセグメントコイル201B~201Eが対接させられるステータ10の径方向内方面及び外方面にのみ、付加絶縁層112aを形成することができる。この構成を採用することにより、付加絶縁層を設ける領域をさらに削減することが可能となる。
 また、本実施形態では、付加絶縁層212a~212dを、絶縁性を有する樹脂塗着材によって形成したが、これに限定されることはない。たとえば、上記付加絶縁層212a~212dを、絶縁性樹脂チューブ材から形成することができる。上記絶縁性チューブ材として、たとえば、住友電気工業製の絶縁性樹脂チューブ材(商標名スミチューブ)等の熱収縮性のあるチューブ材を採用することができる。
 また、上記付加絶縁層212a~212dを、絶縁性樹脂テープ材から形成することができる。たとえば、パーマセル社製の絶縁性樹脂テープ材(商標名カプトンテープ)を採用することができる。
 上記付加絶縁層を設ける範囲も特に限定されることはない。本実施形態では、上記付加絶縁層212a~212dを、一のセグメントコイル201Aの一方の斜辺部210aにおいて、他のセグメントコイル201B~201Dが対接させられる部分にのみ形成したが、上記一方の斜辺部210aの全域に形成することもできる。
 上記各セグメントコイル201A~201Eは、断面積が大きな導体をあらかじめ曲げ加工して形成される。曲げ加工を行う前に上記曲げ加工を行う部位に付加絶縁層を設けると、付加絶縁層に亀裂や剥離が生じて絶縁性が低下する恐れがある。また、曲げ加工を行った後であっても、曲げ加工を行った部位に上記付加絶縁層を設けるのが困難な場合がある。たとえば、上記テープ材やチューブ材を用いて曲げ加工を施した部分に付加絶縁層を形成するのは困難である。このため、フィルム材やチューブ材によって付加絶縁層を形成する場合は、曲げ加工を行なわない部分に付加絶縁層を設けるように構成するのが好ましい。
 次に、図19~図21を参照して、本発明の第3の実施形態に係るセグメントコイルを説明する。
 なお、本発明の第3の実施形態に係るセグメントコイルは、以下に述べる絶縁層及び半導電層の構成以外は既述したセグメントコイルと同様の構成であることから、セグメントコイルの基本的な構成に関する詳細な説明は省略する。
 図19に示すように、本実施形態に係るセグメントコイル304、305は、矩形断面を備える導電性の素線308の外周表面に絶縁層309を設けて構成される。
 さらに、本実施形態では、絶縁層309を設けた各セグメントコイル304、305の上記スロット部11cから延出するコイルエンド部E1、E2の所定領域に半導電層306を設けるとともに、近接して配置されるとともに異なる相に属するセグメントコイル304、305の上記半導電層306、306を、少なくとも1点Vにおいて接触するように構成している。
 図21に示すように、上記半導電層306は、上記接触点を中心として、セグメントコイルの軸線に沿って両方向に、少なくともセグメントコイルの最大断面幅以上の領域に設けられる。たとえば、矩形断面を有するコイルを採用した場合、上記接触点を中心として、矩形断面の対角線長さ以上の領域に、上記半導電層306を設けるのが好ましい。また、本実施形態では、セグメントコイルの最大断面幅以上で、かつ100mm以下の範囲に、上記半導電層306を設けている。上記半導電層306の厚みは特に限定されることはなく、たとえば、5~100μmの厚みで形成することができる。
また、図20に示すように、半導電層306は、表面抵抗率が、1×10~1×10Ω/sqに設定されるとともに、PFAやFEP等のフッ素系樹脂に導電材料を配合した熱収縮チューブを、上記接触点Vを中心として前後100mmの範囲に装着して構成されている。また、半導電性を有するカプトン粘着テープ(米国デュポン社の登録商標)、アラミド不織布(ニッカン工業株式会社、#5183、65μm)等のテープ材を採用できる。
 上記半導電層306は、図20に示すように、1×10~1×10Ω/sqの表面抵抗を備えるため、部分放電開始電圧を1000V以上に高めることができる。本実施形態では、上記接触点Vの前後100mmの範囲において、各セグメントコイル304、305の半導電層306、306が対向させられているとともに、これら半導電層306、306間の部分放電開始電圧が1000V以上となるように設定している。このため、接触点Vの近傍における部分放電防止効果を得ることができるように構成している。
 なお、半導電層を200mm以上の領域に設ける場合は、確実な効果を得るために、200mmごとに接触点Vを設定するのが好ましい。上記のように半導電層306を設定することにより、これら領域において近接するセグメントコイル304、305間の部分放電開始電圧を1000V以上に高めることができる。
 上記半導電層306は、従来の部分放電を防止するために設けられる絶縁層に比べて非常に薄く設定することができる。このため、ステータの重量やコストを増加させることなく、部分放電を効果的に防止することができる。
 次に図22~図26Bを参照して、本発明の第4の実施形態に係るセグメントコイルを説明する。
 なお本発明の第4の実施形態に係るセグメントコイルは、以下に述べる着色識別部の構成以外は既述したセグメントコイルと同様の構成であることから、セグメントコイルの基本的な構成に関する詳細な説明は省略する。
 図22に示すように、一連に接続されるセグメントコイルA10~A50の各接合用先端部505a、505bを識別できる第1の着色識別部451b、452a、452b、453a、453b、454a、454b、455aが設けられている。基本的に、中間部に位置するセグメントコイルA20~A40は、図23に示すストレート部Cが同一のスロットに装着される。一方、ステータの径方向最内側に配置されるセグメントコイルA10とステータの径方向最外側に配置されるセグメントコイルA50の少なくとも一方は、他のスロットに装着されたストレート部から延出するコイルエンド部に接続されている。
 本実施形態に係る上記第1の着色識別部451b、452a、452b、453a、453b、454a、454b、455aは、各セグメントコイルA10~A50の各接合用先端部505a、505bのコイル端面を平坦に形成するとともに、この平坦面に着色塗料を塗着して形成されている。
 上記着色識別部451b、452a、452b、453a、453b、454a、454b、455aは、互いに接続される接合用先端部に同じ色彩の塗料を塗着して構成されている。なお、実施形態では、同じ模様が同じ色彩を備えているものとして描いている。すなわち、図22に示すように、セグメントコイルA20に形成された着色識別部452bと、セグメントコイルA30に形成された着色識別部453aとに同じ色彩を備えて構成されている。同様に、図22に示すように、着色識別部451b及び着色識別部452a、着色識別部453b及び着色識別部454a、着色識別部454b及び着色識別部455aとに、それぞれ異なる色彩を設けて構成されている。したがって、同じ色彩を施した着色識別部が形成された接合用先端部を溶接や超音波によって接続することにより、同じ相に属する複数のセグメントコイルA10~A50が接続されて、一連のコイルが構成される。
 各セグメントコイルの接合用先端部505a、505bの端面は、ステータの外方から確実に目視できる部位であり、上記第1の着色識別部をコイル端面に設けることにより、互いに接続すべきセグメントコイルの接合用先端部505a、505bを確実に識別して、接続作業を行うことができる。
 しかも、互いに接続されるセグメントコイルの着色識別部は、同じ着色が施されているため、接続後に画像認識装置で上記接合用先端部の端面を観察することによって、同じ着色が施されたセグメントコイルが接続されているか否かを、自動的に判断することも可能となる。このため、ステータの組立作業のみならず検査作業を極めて効率的に行うことが可能となる。
 上記着色識別部を形成する手法は特に限定されることはない。たとえば、着色塗料を塗着することにより上記第1の着色識別部451b、452a、452b、453a、453b、454a、454b、455aを形成することができる。
 また、本実施形態では、各スロット部11cに組み付けられるセグメントコイルを識別するための第2の着色識別部465A1、465B1、465C1、465D1(図示しない)が、各セグメントコイルA10~A50のコイルエンド部E2の一方の斜辺部に設けられている。上記第2の着色識別部465A1、465B1、465C1、465D1は、同じスロットに収容されるセグメントコイルA10~A40に、同じ色彩の着色を有する着色層を設けて構成されている。
 上記第2の着色識別部465A1、465B1、465C1、465D1を設けることにより、所定のセグメントコイルを所定のスロットに容易に装着することができる。
 さらに、本実施形態では、図23に示すように、同一のスロットに収容されるセグメントコイルの配列順序を識別することができる配列識別用の第2の着色識別部570を設けている。
 上記配列識別用の第2の着色識別部570は、上記スロット識別用の第2の着色識別部465A1、465B1、465C1、465D1を設けたコイルエンド部E2と反対側のコイルエンド部E1に独立して設けられている。上記配列識別用の第2の着色識別570は、たとえば、同一の色彩を有するとともに配列順序に応じた濃淡の差を有する着色を施すことにより形成することができる。また、組み付け後に、異なる着色を有する着色識別部が、同一のスロットに装着したセグメントコイルに交互に現れるように構成することができる。
 上記配列識別用の第2の着色識別部570を設けることにより、各スロットに組み付けられるセグメントコイルの組み付け順序(配列)を容易に識別して組み付け作業を行うことが可能となる。
 上記第2の着色識別部465A1、465B1、465C1、465D1(図示しない)の構成及び形態は特に限定されることはない。たとえば、図25に示すように、上記第1の着色識別部と同様に、対応する色彩を有する塗料を、素線407に設けられた絶縁層408上の所定領域に塗着することにより、上記第2の着色識別部465A1を形成することができる。
 また、上記第2の着色識別部を、セグメントコイルの所定領域に、着色テープ材を貼着し、又は着色チューブ材を装着して構成することができる。上記着色テープ材として、たとえば、パーマセル社製の絶縁性樹脂テープ材(商標名カプトンテープ)等を採用することができる。また、上記着色チューブ材として、住友電気工業製の絶縁性樹脂チューブ(商標名スミチューブ)等の熱収縮のチューブ材を採用することができる。絶縁性を有する上記塗料や、上記テープ材、上記チューブ材を採用することにより、上記第2の着色識別部を、付加絶縁層として機能させることができる。これにより、セグメントコイルの組み付け作業や接続作業を容易に行うことができるばかりでなく、隣接するセグメントコイル間の部分放電を効果的に防止することができる。
 図23に、第1の着色識別部に係る第2の変形例を示す。第2の変形例では、上記第1の着色識別部を、上記接合用先端部505a、505bに着色キャップ562a、562bを設けて構成している。
 上記接合用先端部505a、505bは、絶縁層を除去して形成されているため、ハンドリングの際や保存の際に、導体表面が酸化したり油脂等が付着したりすることが多い。上記着色キャップを設けることにより、露出された導体表面を保護することが可能となる。
 本実施形態に係る着色キャップは、図24に示すように、接続面506cを除く表面を覆うよう形態の樹脂成形品から形成されている。上記構成を採用することにより、着色キャップ562a、562bを付属したまま接続を行うことが可能となる。
 上記着色キャップを形成する材料は特に限定されることはなく、着色した樹脂材料から成形したものや、金属材料から形成されたものに着色を施したものを採用することができる。
 なお、既述した着色識別部は、前記付加絶縁層形成工程と同時に若しくはその後に、コイル体の表面の所定領域に所定の着色を施す着色識別部形成工程を行うことで形成することができる。
 次に、図26A、図26Bを参照して、本発明の第5の実施形態に係るセグメントコイルを説明する。
 なお、本発明の第5の実施形態に係るセグメントコイルは、以下に述べる傾斜領域Kの構成以外は既述したセグメントコイルと同様の構成であることから、セグメントコイルの基本的な構成に関する詳細な説明は省略する。
 図26Aに示すように、一対のコイルエンド部E1、E2のうち、後述する厚肉領域Aを除く領域に、環状コア711の径方向外側に向けて傾斜させてなる傾斜領域Kを設けている。なお、図26A、図26Bにおいては、白抜き矢印で示す方向が径方向外側を示している。
具体的には、ステータの同一スロット内に隣接して配置されるセグメントコイルを、上記スロットから出て上記コイルエンド部の頂部へ向かって周方向に曲折されるまでの領域において、径方向に傾斜させることにより、これらセグメントコイルのコイルエンド部に設けた絶縁層をステータの径方向に接触させている。また、上記接触箇所におけるステータの径方向におけるコイル間距離が、上記スロット内のコイル間距離よりも大きくなるように上記絶縁層が形成されている。
 なお、ここで「コイル間距離」とは、隣接するセグメントコイル712における、環状コアの径方向でのコイルの中心間の距離を意味する。
 上記傾斜領域Kは、図26Bに一部を示すように、コイルエンド部E1、E2のうち、環状コア711の端面711dから環状コア711の軸方向に500μm~5mm程度の範囲内に設定される。
 上記傾斜角度は、図26Bに示すように、傾斜領域Kを構成するセグメントコイル712と環状コア711の端面711dとで形成される角度Hを意味する。
 また、本実施形態においては、セグメントコイル712の絶縁層の厚みを、ストレート部Cと、コイルエンド部E1、E2とで異ならせている。
 より具体的には、ストレート部Cにおいては、素線Rの表面にベース絶縁層Z1だけを被覆することで絶縁層を形成する構成としてある。これに対してコイルエンド部E1、E2における傾斜領域Kを除く領域のうち、所定領域においては、素線Rの表面にベース絶縁層Z1を被覆すると共に、上記ベース絶縁層Z1の表面にさらに付加絶縁層Z2を被覆することにより、上記厚肉領域Aを形成する構成としてある。
 なお、ここで「所定領域」とは、コイルエンド部E1、E2において、隣接するセグメントコイル712の絶縁層が接触させられる部位を含む領域を意味している。
 また、図26Bは説明の便宜上、厚肉領域Aを誇張して図示している。
 なお、素線Rは、銅等、コイルを形成する素線として通常用いられるものであれば、如何なるものを用いてもよい。
 ベース絶縁層Z1の材質としては、ポリアミドイミド、ポリイミド等を用いることができる。また、ベース絶縁層Z1の厚みはコイルターン間の設計電圧に対応した厚みがあればよい。例えば設計電圧が500Vの場合は、15μm~30μm程度とすることが望ましく、より好適には15μm~25μm程度とすることが望ましい。15μm未満では部分放電の発生による皮膜劣化や製造時のピンホール発生確率が増加し、25μmを超えるとスロット部11c内の占積率の低下による発熱増加や外径増大による組み付け性の低下が生じるからである。また、その形成方法は、ダイス引き、電着等を用いることができる。なお、ストレート部C及びコイルエンド部E1、E2のベース絶縁層Z1は、同一工程で一体的に形成することができる。
 付加絶縁層Z2の材質としては、ポリアミドイミドやポリイミドを代表とするスーパーエンジニアリングプラスチック材料、或いはエンジニアリングプラスチックに無機フィラーを混合した材料等用いることができる。また、その形成方法としては、ダイス引き、電着、粉体塗装、テープの貼り付け、ディップ、スプレー塗装、インサート式射出成形、押し出し成形等を用いることができる。
 また、電動機相間の電圧は、インバータサージ等の影響により、入力電圧の約2倍のピーク電圧が印加されることから、付加絶縁層Z2の厚みは、例えば設計電圧が1000Vの場合は、40μm~200μm程度とすることが望ましく、より好ましくは80μm~120μm程度とすることが望ましい。40μm未満では部分放電による皮膜劣化が発生し、200μmを超えるとコイルエンドの線間距離増加による寸法増大を招くからである。
 上記構成を採用することにより、同一スロット内に隣接して配置されるセグメントコイル712を、ストレート部C間及びコイルエンド部E1、E2間において効果的に近接して接触させることができる。
 特に、本実施形態では、同一スロット内に配置される隣接するセグメントコイル712において、ストレート部Cのベース絶縁層Z1及びコイルエンド部E1、E2の厚肉領域Aを構成する付加絶縁層Z2を隙間なく密着させている。これにより、スロット内における高占積率を実現することができると共に、スロット内におけるコイルのターン数を増やすことができる。
 また、既述したコロナ放電は、隣接するセグメントコイルの隙間が近接する領域において発生し易い。本実施形態では、特に同一相内における隣接するセグメントコイル712間でのコロナ放電の発生を効果的に防止することができる。
 これにより、同一相内における隣接するセグメントコイル712間において、コロナ放電に伴いベース絶縁層Z1、付加絶縁層Z2に劣化が生じることを効果的に防止することができ、良好な絶縁性を維持することができるステータとすることができる。
 セグメントコイル712の傾斜角度H、セグメントコイル712の長さをそれぞれ異なるものとしてもよい。但し、ステータを形成した場合に、同一スロット711c内に配置される隣接するセグメントコイル712において、上記領域Kにおけるコイルの傾斜角度Hが、環状コア711の内周側に配置されるセグメントコイル712の傾斜角度よりも環状コア711の外周側に配置されるセグメントコイル712の傾斜角度が大きく、且つ領域Kの長さが、環状コア711の内周側に配置されるセグメントコイル712の長さよりも環状コア711の外周側に配置されるセグメントコイル712の長さが長くなる構成となることが必要である。
 また、本変形例においては、同一スロット内における全ての隣接するセグメントコイル712が、ストレート部C及びコイルエンド部E1、E2の厚肉領域Aにおいて、環状コアの径方向に接触するような構成としたが、必ずしもこのような構成に限るものではなく、同一スロット内に配置される少なくとも1組の隣接するセグメントコイル712が、ストレート部C及びコイルエンド部E1、E2の厚肉領域Aにおいて、環状コアの径方向に接触するような構成であれば、適宜変更可能である。
 本発明の範囲は、上述の実施形態に限定されることはない。今回開示された実施形態は、すべての点で例示であって、制限的なものでないと考えられるべきである。本願発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 本発明はインバータ制御によりスイッチングされた電力をコイルに供給するモータに利用することができる。

Claims (20)

  1.  環状コアと複数相の平角線コイルからなる回転電機のステータにおいて、環状コアのスロットに径方向に整列配置され、かつ隣接スロットのコイル同士が周方向に整列配置されるセグメントコイルであって、前記スロットの内部に収容されるストレート部と、前記スロットの外部に突出する一対のコイルエンド部とを備えると共に、前記一対のコイルエンド部のうち、何れか一方のコイルエンド部の先端を他のセグメントコイルと接合するための接合面を備える接合用先端部とするものにおいて、前記接合用先端部は、前記環状コアの軸方向から見たときに、接合面が前記環状コアの径方向に対して平行となるように構成してあることを特徴とするセグメントコイル。
  2.  前記セグメントコイルは、環状コアの周方向の所定位置に配置される一対の前記接合用先端部を備え、該一対の接合用先端部は、前記環状コアのスロットにセグメントコイルを整列配置させた際に、隣接する接合用先端部が前記環状コアの径方向の内径側と外径側とにズレを持って配置されるように構成してあることを特徴とする請求項1に記載のセグメントコイル。
  3.  前記一対のコイルエンド部のうち、少なくとも前記接合用先端部を備えるコイルエンド部の所定領域に、付加絶縁層を設けてあることを特徴とする請求項1又は2に記載のセグメントコイル。
  4.  前記付加絶縁層は、異なる相に属するセグメントコイルが対接する部分に設けてあることを特徴とする請求項3に記載のセグメントコイル。
  5.  前記付加絶縁層は、セグメントコイルの環状コアの径方向内方面及び/又は外方面に形成されていることを特徴とする請求項3又は4に記載のセグメントコイル。
  6.  前記コイルエンド部は、山形状に形成されていると共に、前記付加絶縁層は、前記山形の頂部近傍と両裾部近傍とを除く斜辺部、又は/及び上記スロットから延出するストレート部分に設けてあることを特徴とする請求項3~5の何れか1項に記載のセグメントコイル。
  7.  前記セグメントコイルは、前記一対のコイルエンド部のうち、少なくとも前記接合用先端部を備えていない側のコイルエンド部の所定領域に半導電層を設け、近接して配置されると共に、異なる相に属するセグメントコイルの前記半導電層を、少なくとも一点において接触するように構成してあることを特徴とする請求項1に記載のセグメントコイル。
  8.  前記セグメントコイルの所定領域の表面に、着色識別部を設けてあることを特徴とする請求項1~7の何れか1項に記載のセグメントコイル。
  9.  前記セグメントコイルの接合用先端部又はその近傍に、互いに接続されるセグメントコイルの接合用先端部を識別できる第1の着色識別部を備えることを特徴とする請求項8に記載のセグメントコイル。
  10.  前記接合用先端部以外の表面に設けられると共に、各セグメントコイルが装着されるスロット又は/及びスロット内の配列位置を識別できるように形成された第2の着色識別部を備えることを特徴とする請求項8又は9に記載のセグメントコイル。
  11.  前記第2の着色識別部は、セグメントコイルの所定領域に、着色塗料を塗着し、着色テープ材を貼着し、又は着色チューブ材を装着して構成されていることを特徴とする請求項10に記載のセグメントコイル。
  12.  前記第2の着色識別部は、付加絶縁層を構成していることを特徴とする請求項10又は11に記載のセグメントコイル。
  13.  前記セグメントコイルは、タフピッチ銅からなることを特徴とする請求項1~12の何れか1項に記載のセグメントコイル。
  14.  請求項1~13の何れか1項に記載のセグメントコイルを環状コアのスロットに複数整列配置させてなることを特徴とするステータ。
  15.  前記環状コアのスロットに複数整列配置されるセグメントコイルのうち、同一スロット内に配置される少なくとも一組の隣接するセグメントコイルを、前記スロットから出て前記コイルエンド部の頂点へ向かって周方向に曲折されるまでの領域において、径方向に傾斜させることにより、これらセグメントコイルのコイルエンド部に設けた絶縁層をステータの径方向に接触させ、且つ、前記接触箇所におけるステータの径方向におけるコイル間距離が、前記スロット内のコイル間距離よりも大きくなるように前記絶縁層が形成されていることを特徴とする請求項14に記載のステータ。
  16.  前記複数のセグメントコイルは、隣接するセグメントコイルの前記接合用先端部を固相接合させてあることを特徴とする請求項14又は15に記載のステータ。
  17.  請求項1に記載のセグメントコイルの製造方法であって、少なくとも平角線からなる素線を屈曲させてコイル体を形成するコイル体形成工程と、前記コイル体の表面に絶縁物を被覆させて絶縁層を形成する絶縁層形成工程とを備えると共に、前記コイル体形成工程には、前記コイル体のコイルエンド部の先端に、環状コアの周方向の所定位置に配置されると共に、他のセグメントコイルと接合するための接合面が前記環状コアの軸方向から見たときに前記環状コアの径方向に対して平行な接合用先端部を形成する接合用先端部形成工程を備え、且つ前記絶縁層形成工程には、前記コイル体に絶縁物を一体的に被覆させてベース絶縁層を形成するベース絶縁層形成工程と、該ベース絶縁層形成工程の後に前記コイルエンド部の所定領域に絶縁物を付加的に被覆させて付加絶縁層を形成する付加絶縁層形成工程とを備えることを特徴とするセグメントコイルの製造方法。
  18.  前記接合用先端部形成工程は、前記コイル体のコイルエンド部の端部を捻ることにより行うことを特徴とする請求項17に記載のセグメントコイルの製造方法。
  19.  前記接合用先端部形成工程は、前記コイル体のコイルエンド部の端部を塑性変形させることにより行うことを特徴とする請求項17に記載のセグメントコイルの製造方法。
  20.  前記付加絶縁層形成工程と同時に若しくはその後に、コイル体の表面の所定領域に所定の着色を施す着色識別部形成工程を有することを特徴とする請求項17~19の何れか1項に記載のセグメントコイルの製造方法。
PCT/JP2012/077191 2011-10-27 2012-10-22 セグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法 WO2013061903A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012004516.5T DE112012004516T8 (de) 2011-10-27 2012-10-22 Segmentspule, Stator mit der Segmentspule und Verfahren zur Herstellung der Segmentspule
US14/354,311 US9755469B2 (en) 2011-10-27 2012-10-22 Segment coil, stator including segment coil, and method of manufacturing segment coil
CN201280053180.9A CN103947085B (zh) 2011-10-27 2012-10-22 分段线圈、使用分段线圈而成的定子及分段线圈的制造方法

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2011-235979 2011-10-27
JP2011235979A JP5848579B2 (ja) 2011-10-27 2011-10-27 セグメントコイル、セグメントコイルの製造方法及びステータ
JP2012-005797 2012-01-16
JP2012005797 2012-01-16
JP2012-016236 2012-01-30
JP2012016236A JP5845931B2 (ja) 2012-01-30 2012-01-30 セグメントコイル、ステータ及びセグメントコイルの製造方法、ステータの製造方法
JP2012020859A JP5890698B2 (ja) 2012-02-02 2012-02-02 ステータ及びセグメントコイル
JP2012-020859 2012-02-02
JP2012-023874 2012-02-07
JP2012023874A JP5856498B2 (ja) 2012-02-07 2012-02-07 ステータ及びセグメントコイル
JP2012-045004 2012-03-01
JP2012045004A JP5890708B2 (ja) 2012-03-01 2012-03-01 セグメントコイル、セグメントコイルの製造方法、ステータの製造方法及びステータ
JP2012-198558 2012-09-10
JP2012198558A JP5984592B2 (ja) 2012-01-16 2012-09-10 セグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法

Publications (1)

Publication Number Publication Date
WO2013061903A1 true WO2013061903A1 (ja) 2013-05-02

Family

ID=48167735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077191 WO2013061903A1 (ja) 2011-10-27 2012-10-22 セグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法

Country Status (4)

Country Link
US (1) US9755469B2 (ja)
CN (1) CN103947085B (ja)
DE (1) DE112012004516T8 (ja)
WO (1) WO2013061903A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10432049B2 (en) 2014-04-10 2019-10-01 Moteurs Leroy-Somer Rotor for a rotary electric machine
CN110784046A (zh) * 2018-07-29 2020-02-11 比亚迪股份有限公司 定子组件及具有该定子组件的电机
CN110784044A (zh) * 2018-07-29 2020-02-11 比亚迪股份有限公司 定子组件及具有该定子组件的电机
CN110784045A (zh) * 2018-07-29 2020-02-11 比亚迪股份有限公司 定子组件及具有该定子组件的电机

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011100077T5 (de) * 2010-02-18 2012-10-31 Aisin Aw Co., Ltd. Anker für eine drehende elektrische Maschine
JP5592554B1 (ja) 2013-12-18 2014-09-17 武延 本郷 冷間圧接装置、コイル製造装置、コイルおよびその製造方法
CN113067439B (zh) 2013-12-18 2024-07-30 株式会社阿斯特 线圈制造方法、线圈制造装置以及线圈
JP6294425B1 (ja) 2016-09-20 2018-03-14 Dmg森精機株式会社 モータ
DE102016225240A1 (de) * 2016-12-16 2018-06-21 Volkswagen Aktiengesellschaft Stator für eine elektrische Maschine und Verfahren zur Herstellung eines derartigen Stators
JP6851499B2 (ja) * 2017-10-26 2021-03-31 三菱電機株式会社 固定子、固定子アッセンブリおよび固定子の製造方法
JP2019088139A (ja) * 2017-11-08 2019-06-06 本田技研工業株式会社 ステータおよび回転電機
EP3696951A4 (en) * 2017-11-30 2020-12-02 Aisin Aw Co., Ltd. REINFORCEMENT, AND PROCESS FOR MANUFACTURING REINFORCEMENT
JP6996407B2 (ja) * 2018-04-19 2022-01-17 スズキ株式会社 固定子コイル及びこれを備えた固定子
WO2020017394A1 (ja) * 2018-07-17 2020-01-23 株式会社アスター コイル製造装置、コイル製造システム、コイル製造方法およびコイル
CN110784043B (zh) * 2018-07-29 2021-09-21 比亚迪股份有限公司 定子组件及具有该定子组件的电机
JP6846391B2 (ja) * 2018-09-12 2021-03-24 本田技研工業株式会社 電線セグメント及びステータ
US11750047B2 (en) * 2019-05-29 2023-09-05 Mitsubishi Electric Corporation Motor and compressor including the same
WO2021186594A1 (ja) 2020-03-17 2021-09-23 株式会社 東芝 回転電機の固定子および回転電機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268737A (ja) * 1992-03-18 1993-10-15 Kusatsu Denki Kk 電動機のステ−タおよびその製造方法
JP2000228853A (ja) * 1998-12-03 2000-08-15 Denso Corp 車両用交流発電機
JP2004064989A (ja) * 2002-06-04 2004-02-26 Toyota Motor Corp セグメントコイル回転電機の固定子及びその製造方法
JP4688003B2 (ja) * 2007-03-05 2011-05-25 株式会社デンソー 回転電機の固定子およびそれを用いた回転電機
WO2011102150A1 (ja) * 2010-02-18 2011-08-25 アイシン・エィ・ダブリュ株式会社 回転電機用電機子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207482A (en) * 1978-11-14 1980-06-10 Westinghouse Electric Corp. Multilayered high voltage grading system for electrical conductors
JPS5622548A (en) * 1979-08-01 1981-03-03 Hitachi Ltd Armature coil for electrical rotary machine
JPS58157350A (ja) 1982-03-10 1983-09-19 Mitsubishi Electric Corp 回転電機の絶縁コイル
JPH0623209B2 (ja) 1985-03-01 1994-03-30 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− フリ−ラジカル重合における連鎖移動剤としてのコバルト(▲ii▼)キレ−ト
US4675591A (en) * 1985-04-19 1987-06-23 A. O. Smith Corporation Induction motor winding
JPH0260439A (ja) * 1988-08-24 1990-02-28 Nippon Denso Co Ltd 電動機用電機子
JP3407675B2 (ja) 1998-11-26 2003-05-19 株式会社デンソー 車両用交流発電機の固定子およびそれを用いた車両用交流発電機
JP3589105B2 (ja) 1999-08-06 2004-11-17 株式会社デンソー 回転電機の固定子巻線及びその製造方法
JP2001231205A (ja) * 2000-02-14 2001-08-24 Mitsubishi Electric Corp 交流発電機の固定子
JP3767789B2 (ja) 2000-02-21 2006-04-19 三菱電機株式会社 交流発電機の固定子
JP3586186B2 (ja) * 2000-11-15 2004-11-10 株式会社日立製作所 回転電機の固定子
JP4316948B2 (ja) 2003-08-14 2009-08-19 株式会社日立産機システム 低圧モータ
JP2005224028A (ja) 2004-02-06 2005-08-18 Toyota Motor Corp セグメントコイル接合装置および方法
JP2008125328A (ja) 2006-11-15 2008-05-29 Aisin Aw Co Ltd 3相モータ用のステータ
JP2008236924A (ja) 2007-03-22 2008-10-02 Hitachi Ltd 回転電機及び電気自動車
JP2010028943A (ja) 2008-07-17 2010-02-04 Toshiba Mitsubishi-Electric Industrial System Corp 電界緩和用半導電性ワニス及びテープ並びに回転電機の固定子
US8344577B2 (en) * 2010-08-31 2013-01-01 GM Global Technology Operations LLC Solid phase welding of aluminum-based rotors for induction electric motors
JP5286397B2 (ja) 2011-10-20 2013-09-11 スミダ電機株式会社 波捲きコイル、および平角線の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268737A (ja) * 1992-03-18 1993-10-15 Kusatsu Denki Kk 電動機のステ−タおよびその製造方法
JP2000228853A (ja) * 1998-12-03 2000-08-15 Denso Corp 車両用交流発電機
JP2004064989A (ja) * 2002-06-04 2004-02-26 Toyota Motor Corp セグメントコイル回転電機の固定子及びその製造方法
JP4688003B2 (ja) * 2007-03-05 2011-05-25 株式会社デンソー 回転電機の固定子およびそれを用いた回転電機
WO2011102150A1 (ja) * 2010-02-18 2011-08-25 アイシン・エィ・ダブリュ株式会社 回転電機用電機子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10432049B2 (en) 2014-04-10 2019-10-01 Moteurs Leroy-Somer Rotor for a rotary electric machine
CN110784046A (zh) * 2018-07-29 2020-02-11 比亚迪股份有限公司 定子组件及具有该定子组件的电机
CN110784044A (zh) * 2018-07-29 2020-02-11 比亚迪股份有限公司 定子组件及具有该定子组件的电机
CN110784045A (zh) * 2018-07-29 2020-02-11 比亚迪股份有限公司 定子组件及具有该定子组件的电机
CN110784045B (zh) * 2018-07-29 2021-09-21 比亚迪股份有限公司 定子组件及具有该定子组件的电机
CN110784046B (zh) * 2018-07-29 2021-10-22 比亚迪股份有限公司 定子组件及具有该定子组件的电机
CN110784044B (zh) * 2018-07-29 2021-12-07 比亚迪股份有限公司 定子组件及具有该定子组件的电机

Also Published As

Publication number Publication date
US20140265711A1 (en) 2014-09-18
US9755469B2 (en) 2017-09-05
CN103947085B (zh) 2016-03-16
DE112012004516T8 (de) 2014-09-11
CN103947085A (zh) 2014-07-23
DE112012004516T5 (de) 2014-07-10

Similar Documents

Publication Publication Date Title
WO2013061903A1 (ja) セグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法
WO2013061902A1 (ja) セグメントコイル、セグメントコイルの製造方法、セグメントコイルを用いてなるステータ
WO2013061904A1 (ja) セグメントコイル、セグメントコイルの製造方法、セグメントコイル用線材及びステータ
JP6094102B2 (ja) セグメントコイル、該セグメントコイルの製造方法、前記セグメントコイルを用いてなるステータ
JP6072238B2 (ja) 回転電機の製造方法
US6661146B2 (en) Automotive alternator
US9577498B2 (en) Stator for rotary electric machine and method for manufacturing the stator
JP5687048B2 (ja) バスバー装置、ステータ、ブラシレスモータ及びバスバー装置の製造方法
US9318814B2 (en) Wire connection member, wire connection structure and annular power distribution member
JP5984592B2 (ja) セグメントコイル、セグメントコイルを用いてなるステータ及びセグメントコイルの製造方法
JP5365862B2 (ja) 回転電機用電機子
JP2013138594A (ja) セグメントコイル、セグメントコイルの製造方法、セグメントコイル用線材及びステータ
US10164490B2 (en) Rotary electric machine and manufacturing method therefor
JP5304058B2 (ja) 集中巻線式ステータの製造方法、及び集中巻線式ステータ
US9225215B2 (en) Rotating electric machine
JPWO2012029706A1 (ja) インバータ一体型駆動モジュール
CN114448132A (zh) 旋转电机
US20130049514A1 (en) Electric rotating machine
US20220393535A1 (en) Motor
JP5845931B2 (ja) セグメントコイル、ステータ及びセグメントコイルの製造方法、ステータの製造方法
US11632008B2 (en) Arrangement structure of wiring member for rotating electrical machine
JP6093269B2 (ja) セグメントコイル及びステータ
JP3671396B2 (ja) 交流発電機の固定子
US7466048B2 (en) Dynamoelectric stator
KR102714753B1 (ko) 회전 전기 기기의 스테이터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280053180.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14354311

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012004516

Country of ref document: DE

Ref document number: 1120120045165

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844275

Country of ref document: EP

Kind code of ref document: A1