WO2013061770A1 - 負極活物質及びこれを用いた金属イオン電池 - Google Patents

負極活物質及びこれを用いた金属イオン電池 Download PDF

Info

Publication number
WO2013061770A1
WO2013061770A1 PCT/JP2012/076123 JP2012076123W WO2013061770A1 WO 2013061770 A1 WO2013061770 A1 WO 2013061770A1 JP 2012076123 W JP2012076123 W JP 2012076123W WO 2013061770 A1 WO2013061770 A1 WO 2013061770A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
battery
active material
electrode active
lithium
Prior art date
Application number
PCT/JP2012/076123
Other languages
English (en)
French (fr)
Inventor
佐藤 茂樹
雅文 野瀬
中山 英樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP12844377.7A priority Critical patent/EP2772971B1/en
Priority to KR1020147006467A priority patent/KR101605277B1/ko
Priority to JP2013540714A priority patent/JP5783262B2/ja
Priority to US14/345,776 priority patent/US9406935B2/en
Priority to CN201280049449.6A priority patent/CN103858258A/zh
Publication of WO2013061770A1 publication Critical patent/WO2013061770A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/68Aluminium compounds containing sulfur
    • C01F7/74Sulfates
    • C01F7/76Double salts, i.e. compounds containing, besides aluminium and sulfate ions, only other cations, e.g. alums
    • C01F7/762Ammonium or alkali metal aluminium sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode active material and a metal ion battery using the same.
  • Lithium ion secondary batteries are characterized by higher energy density than other secondary batteries and capable of operating at high voltages. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • a lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed therebetween, and a non-aqueous liquid substance (electrolyte) or the like is used for the electrolyte layer. Yes.
  • Patent Document 1 discloses a negative electrode active material used for a non-aqueous lithium ion secondary battery, having a spinel structure, and having a general formula LiM 0.5
  • a lithium ion secondary that includes a lithium titanium composite oxide represented by Ti 1.5 O 4 (M is one or more elements of Fe, Co, Ni, Mn, and Zn) that absorbs and releases lithium ions.
  • a negative electrode active material for a battery and a lithium ion secondary battery using the negative electrode active material are disclosed.
  • Patent Document 2 discloses a negative electrode active material for a lithium ion secondary battery, which is Si single-phase powder particles in which B is solid-solved at 0.01 mass% or more and 0.40 mass% or less.
  • Patent Document 3 includes a negative electrode active material, a positive electrode active material, and a non-aqueous electrolyte.
  • the negative electrode active material includes a plurality of crystals, and the C-axis direction of each crystal forms a random direction.
  • a lithium ion secondary battery using a polycrystalline mesocarbon microsphere graphitized product having an average particle size of 1 to 120 ⁇ m is disclosed.
  • Patent Document 4 discloses a lithium ion secondary battery using a negative electrode active material made of layered lithium iron nitride whose composition formula is represented by Li 3-x Fe x N (0 ⁇ x ⁇ 0.4). Is disclosed.
  • graphite is known as a typical negative electrode active material in a lithium ion secondary battery, but in a sodium ion secondary battery in which sodium ions move between the positive electrode layer and the negative electrode layer, it is interposed between the graphite layers. Sodium ion insertion / extraction does not occur. Therefore, graphite cannot be used as a negative electrode active material for sodium ion secondary batteries. In recent years, it has been found that hard carbon functions as a negative electrode active material for sodium ion secondary batteries, and research and development of sodium ion secondary batteries has been activated.
  • Patent Document 5 discloses a positive electrode having a composite oxide containing sodium and iron as a positive electrode active material, and a negative electrode having a carbon material as an occlusion material for sodium ions and lithium ions. And a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing lithium ions and sodium ions.
  • Patent Document 6 discloses a technique relating to a negative electrode active material for a sodium ion secondary battery containing a carbon material and a sodium ion secondary battery using the negative electrode active material as a negative electrode.
  • the lithium-titanium composite oxide having a spinel structure used in the technique disclosed in Patent Document 1 has an electrode potential for occluding and releasing lithium ions with respect to a lithium electrode potential reference (vs Li / Li +) . )) Is about 1.5V.
  • a lithium electrode potential reference vs Li / Li +) .
  • the lithium ion secondary battery disclosed in Patent Document 1 has a problem that the deposition of metallic lithium can be prevented, but the battery voltage is low and the energy density tends to be small.
  • a negative electrode active material capable of increasing the energy density of a lithium ion secondary battery a graphite-based material that occludes and releases lithium ions at a potential near 0 V on the basis of a lithium electrode potential is known.
  • the electrode potential for occluding and releasing sodium ions is based on the sodium electrode potential reference (vs Na / Na + , the same applies hereinafter). It is around 0V. Therefore, the sodium ion secondary battery disclosed in Patent Document 5 and Patent Document 6 is easy to deposit metal sodium at the time of charging at a low temperature or after charging and discharging repeatedly, and safety is high. There was a problem that it was easy to decrease.
  • an object of the present invention is to provide a negative electrode active material capable of increasing battery voltage while enhancing battery safety, and a metal ion battery using the negative electrode active material.
  • an alunite group of materials capable of inserting and desorbing ions of at least one metal element selected from the group consisting of alkali metal elements and alkaline earth metal elements. It is a negative electrode active material which has.
  • the “ion of at least one metal element selected from the group consisting of alkali metal elements and alkaline earth metal elements” means, for example, lithium ion, sodium ion, potassium ion, magnesium ion, and calcium It means at least one or more ions selected from the group containing ions and the like.
  • the “Alumite group of substances” means K and / or Al of alunite: KAl 3 (SO 4 ) 2 (OH) 6 and KAl 3 (SO 4 ) 2 (OH) 6 Refers to a substance in which is replaced with other elements.
  • Alumite group materials include, for example, alumite: KAl 3 (SO 4 ) 2 (OH) 6 , soda alumite: NaAl 3 (SO 4 ) 2 (OH) 6 , ammonium alum Stone (ammonia): (NH 4 ) Al 3 (SO 4 ) 2 (OH) 6 , Minamiite: (Na, Ca, K, ⁇ ) Al 3 (SO 4 ) 2 (OH) 6 , Hoan stone (Huangite): Ca ⁇ Al 6 (SO 4 ) 4 (OH) 12 , warthierite: BaAl 6 (SO 4 ) 4 (OH) 12 , ironite: KFe 3+ 3 (SO 4) ) 2 (OH) 6, soda iron alum stone (natrojarosite): NaFe 3+ 3 ( S 4) 2 (OH) 6, Doraruruchia ore (dorallcharite) :( Tl, K) Fe 3+ 3 (SO 4) 2 (OH) 6,
  • the negative electrode active material according to the first aspect of the present invention can insert and desorb alkali metal ions at a potential higher than the equilibrium potential between the alkali metal and the alkali metal ion.
  • Alkaline earth metal ions can be inserted and desorbed at a potential higher than the equilibrium potential with the metal ions. That is, since it can function as a negative electrode active material in a potential range in which alkali metal or alkaline earth metal does not precipitate, safety can be improved.
  • the negative electrode active material according to the first aspect of the present invention has an alkali metal ion or alkaline earth in a lower potential range than a conventional negative electrode active material that can be used in a potential range in which alkali metal or alkaline earth metal does not precipitate. Since the metal ions can be inserted and removed, the battery voltage can be increased. Therefore, according to the 1st aspect of this invention, the negative electrode active material which can raise a battery voltage can be provided, improving the safety
  • the alkali metal element includes at least one element selected from the group consisting of lithium, sodium, and potassium.
  • the negative electrode active material according to the first aspect of the present invention can be used as a negative electrode active material in a lithium ion battery, a sodium ion battery, or a potassium ion battery.
  • the alkaline earth metal element includes at least one element selected from the group consisting of magnesium and calcium.
  • the negative electrode active material according to the first aspect of the present invention can be used as a negative electrode active material in a magnesium ion battery or a calcium ion battery.
  • the second aspect of the present invention is a negative electrode active material having an alumite group of materials.
  • the negative electrode active material according to the second aspect of the present invention can insert and desorb alkali metal ions at a potential higher than the equilibrium potential between the alkali metal and the alkali metal ion.
  • Alkaline earth metal ions can be inserted and desorbed at a potential higher than the equilibrium potential with the metal ions. That is, since it can function as a negative electrode active material in a potential range in which alkali metal or alkaline earth metal does not precipitate, safety can be improved.
  • the negative electrode active material according to the second aspect of the present invention includes an alkali metal ion and an alkaline earth in a lower potential range than a conventional negative electrode active material that can be used in a potential range in which no alkali metal or alkaline earth metal is deposited. Since the metal ions can be inserted and removed, the battery voltage can be increased. Therefore, according to the 2nd aspect of this invention, the negative electrode active material which can raise a battery voltage can be provided, improving the safety
  • At least one element selected from the group consisting of A, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn is M, ⁇ 1 ⁇ a, b,
  • the negative electrode active material according to the first aspect of the present invention or the second aspect of the present invention is represented by the chemical formula: A 1 + a M 3 + b (SO 4 ) 2 + c (OH) 6 + d ⁇ v (H 2 O).
  • M may be not only one type but also plural types, and A is (1 / 2A) 1 + a, that is, A (1/2 + a / 2) when the valence is divalent.
  • A is (1 / 2A) 1 + a, that is, A (1/2 + a / 2) when the valence is divalent.
  • the negative electrode active material represented by the above chemical formula is a natural mineral, various impurities are included.
  • the negative electrode active material according to the first aspect of the present invention or the second aspect of the present invention is NaAl 3.0 (SO 4 ) 2.2 (OH) 5.6 ⁇ 0.30H 2 O. There may be. Even in such a form, it is possible to increase the battery voltage while improving the safety of the battery.
  • the alumite group material may be soda iron alunite. Even in such a form, it is possible to increase the battery voltage while improving the safety of the battery.
  • the negative electrode active material according to the first aspect of the present invention or the second aspect of the present invention is NaAl 1.1 Fe 1.6 (SO 4 ) 2 (OH) 5.1 ⁇ 0.12H 2. O may be sufficient. Even in such a form, it is possible to increase the battery voltage while improving the safety of the battery. Further, the charge / discharge capacity per unit mass of NaAl 1.1 Fe 1.6 (SO 4 ) 2 (OH) 5.1 ⁇ 0.12H 2 O is expressed as graphite or lithium titanate (hereinafter referred to as “LTO”). It is larger than the charge / discharge capacity per unit mass. Therefore, by using NaAl 1.1 Fe 1.6 (SO 4 ) 2 (OH) 5.1 ⁇ 0.12H 2 O, it becomes possible to increase the energy density while enhancing the safety of the battery.
  • LTO lithium titanate
  • the negative electrode active material according to the first aspect of the present invention or the second aspect of the present invention may be NaFe 3 (SO 4 ) 2 (OH) 6 . Even in such a form, it is possible to increase the battery voltage while improving the safety of the battery.
  • the negative electrode active material according to the first aspect of the present invention or the second aspect of the present invention may be KFe 3 (SO 4 ) 2 (OH) 6 . Even in such a form, it is possible to increase the battery voltage while improving the safety of the battery.
  • a third aspect of the present invention includes a positive electrode and a negative electrode, and an electrolyte that conducts metal ions filled between the positive electrode and the negative electrode, and the negative electrode includes the first aspect of the present invention or the present invention. It is a metal ion battery containing the negative electrode active material concerning a 2nd aspect.
  • metal ion battery refers to a battery in which metal ions move between a positive electrode and a negative electrode.
  • the metal ion battery include a lithium ion battery, a sodium ion battery, a potassium ion battery, a calcium ion battery, and a magnesium ion battery.
  • the metal ion battery may be a primary battery or a secondary battery.
  • the negative electrode active material according to the first aspect of the present invention or the second aspect of the present invention is used for the negative electrode. Therefore, according to the 3rd aspect of this invention, the metal ion battery which can raise a battery voltage, improving safety
  • the metal ion may be a lithium ion.
  • the lithium ion battery which can raise a battery voltage can be provided, improving safety
  • the metal ion may be a sodium ion.
  • the sodium ion battery which can raise a battery voltage, improving safety
  • the present invention it is possible to provide a negative electrode active material capable of increasing battery voltage while improving battery safety, and a metal ion battery using the negative electrode active material.
  • FIG. 3 is a graph showing the results of X-ray diffraction measurement of the powder of Example 1. It is a figure which shows the X-ray-diffraction pattern of natrojarosite. It is a figure which shows the X-ray-diffraction pattern of unitite. It is a figure which shows the result of the constant current charging / discharging of the lithium ion secondary battery using the powder of Example 1, and the lithium ion secondary battery using the powder of Example 2.
  • FIG. It is a figure which shows the result of the constant current charging / discharging of the sodium ion secondary battery using the powder of Example 1.
  • FIG. It is a figure which shows the X-ray-diffraction measurement result of the powder of Example 4.
  • FIG. It is a figure which shows the result of the constant current charging / discharging of the lithium ion secondary battery using the powder of Example 4.
  • FIG. It is a figure which shows the X-ray-diffraction measurement result of the powder of Example 5. It is a figure which shows the X-ray diffraction pattern of Jarosite. It is a figure which shows the result of the constant current charging / discharging of the lithium ion secondary battery using the powder of Example 5.
  • FIG. It is a figure which shows the result of the constant current charging / discharging of the sodium ion secondary battery using the powder of Example 4.
  • FIG. It is a figure which shows the result of the constant current charging / discharging of the sodium ion secondary battery using the powder of Example 5.
  • FIG. It is a figure which shows the result of the constant current charging / discharging of the sodium ion secondary battery using the powder of Example 5.
  • the battery voltage can be increased and the energy density of the battery can be increased.
  • the potential at which lithium ions are inserted into graphite and the potential at which lithium ions are desorbed from graphite are in the vicinity of the potential at which lithium ions are deposited as metallic lithium. Therefore, when graphite is used for the negative electrode active material, metallic lithium is likely to be deposited at the same time, especially during charging at low temperatures or after repeated charging and discharging, and sufficient measures are taken to ensure battery safety. There was a need to do.
  • LTO or the like has been proposed as a negative electrode active material capable of inserting / extracting lithium ions at a potential at which lithium ions do not precipitate as metallic lithium.
  • LTO it becomes easy to improve the safety of the battery, but the potential at which lithium ions are inserted into LTO and the potential at which lithium ions are desorbed from LTO are as high as about 1.5 V on the basis of the lithium electrode potential. . Therefore, when LTO is used, the battery voltage tends to decrease. Further, since the charge / discharge capacity per unit mass of LTO is 1 ⁇ 2 or less of the charge / discharge capacity per unit mass of graphite, the battery using LTO has a low energy density.
  • In-vehicle batteries are required to have high safety and high energy density, and in order to satisfy this requirement, lithium ions can be used at a potential that does not precipitate as metallic lithium, and the battery voltage must be reduced. It is considered important to identify a negative electrode active material that can be increased.
  • the present inventors have inserted and desorbed ions of at least one metal element selected from the group of alunite group (a group consisting of alkali metal elements and alkaline earth metal elements).
  • Materials such as a negative electrode active material having a skeletal structure having an alunite structure, a negative electrode active material having a skeleton structure having a natrojarosite structure, and a skeleton structure having a jarosite structure. It was found that the negative electrode active material can be used in a potential region where lithium ions do not precipitate as metallic lithium, and that lithium ions can be inserted and desorbed at a potential lower than that of LTO.
  • this negative electrode active material was used for the negative electrode of a sodium ion secondary battery, it was found that the sodium ion secondary battery can be operated in a potential region where sodium ions do not precipitate as metallic sodium.
  • hard carbon can be used as a negative electrode active material of a sodium ion secondary battery, but the potential at which sodium ions are mainly inserted into the hard carbon and the sodium ions are hard. The potential mainly desorbing from the carbon is around 0 V with respect to the sodium electrode potential. Therefore, in order to increase the energy density of a sodium ion secondary battery using hard carbon, it is necessary to use the sodium ion secondary battery in a potential region where sodium ions are deposited as metallic sodium.
  • the negative electrode active material of the present invention has a charge / discharge capacity per unit mass equal to or higher than that of hard carbon even when used in a potential region where sodium ions do not precipitate as metallic sodium. It was found that it can be secured.
  • the negative electrode active material of the present invention can be used not only as a negative electrode active material for lithium ion batteries but also as a negative electrode active material for sodium ion batteries. This is because the mechanism by which lithium ions and sodium ions enter the negative electrode active material of the present invention is the same as the mechanism by which lithium ions and sodium ions are desorbed from the negative electrode active material of the present invention. Details of the mechanism are unknown, but it is speculated that charging and discharging may be repeated by a reaction in which lithium ions and sodium ions are inserted into empty sites of the structure and desorbed during discharge, or so-called conversion reaction .
  • the expression “insertion-desorption” may not be appropriate, but here it is expressed as “insertion-desorption” including the event of the conversion reaction.
  • the negative electrode active material of the present invention is applied to a metal ion battery in which potassium ions, magnesium ions, and calcium ions move between the positive electrode layer and the negative electrode layer, potassium ions, magnesium ions, and calcium ions as well as lithium ions and sodium ions are used. It is thought that ions can also be inserted and desorbed. Therefore, the negative electrode active material of the present invention is considered to be applicable not only to lithium ion batteries and sodium ion batteries but also to potassium ion batteries, magnesium ion batteries, and calcium ion batteries.
  • A is other than Na
  • it has the same structure, and there is a space of the structure.
  • the reaction can occur. Even in the conversion reaction, since the reaction with the element M is the center, A may occur even when other than Na.
  • the material in which the element M is other than Al is also included in the negative electrode active material of the present invention, even if the element M is other than Al, it has the same structure, and there is a space for the structure. And similar reactions can occur. Even if a conversion reaction is included, any of the oxides of the elements claimed this time can cause a conversion reaction. Therefore, the reaction occurs even when other than Al.
  • the current reaction is a reaction that inserts and desorbs into the structure space or a conversion reaction
  • the negative electrode active material of the present invention does not contain Fe, alkali metal elements and alkaline earth metals At least one or more metal element ions selected from the group consisting of elements can be inserted and desorbed.
  • the negative electrode active material of the present invention contains Fe from the viewpoint of making it easy to increase the energy density.
  • the negative electrode active material of the present invention can be used for a negative electrode of a metal ion battery having a positive electrode, a negative electrode, and an electrolyte that conducts metal ions filled between the positive electrode and the negative electrode.
  • metal ions that are transferred to the electrolyte and move between the positive electrode and the negative electrode include lithium ions, sodium ions, potassium ions, magnesium ions, and calcium ions. That is, the negative electrode active material of the present invention can be used for negative electrodes such as lithium ion batteries, sodium ion batteries, potassium ion batteries, magnesium ion batteries, and calcium ion batteries.
  • the positive electrode active material contained in the positive electrode may be appropriately selected from positive electrode active materials corresponding to metal ions that move between the positive electrode and the negative electrode.
  • the positive electrode active material include layered active materials such as lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), as well as olivine-type lithium iron phosphate (Known positive electrode active materials such as olivine type active materials such as LiFePO 4 ) and spinel type active materials such as spinel type lithium manganate (LiMn 2 O 4 ) can be used as appropriate.
  • the positive electrode active material may be a known positive electrode active material such as sodium ferrate (NaFeO 2 ) or fluorinated sodium iron phosphate (Na 2 FePO 4 F). Can be used as appropriate.
  • the metal ion battery of the present invention is a potassium ion battery, a magnesium ion battery, or a calcium ion battery, a positive electrode active material that can be used for each battery can be appropriately used as the positive electrode active material.
  • the positive electrode of the metal ion battery of the present invention only needs to contain at least a positive electrode active material.
  • a known solid electrolyte, a binder that binds the positive electrode active material and other materials, and conductivity are provided.
  • a conductive material to be improved may be contained.
  • the metal ion battery of the present invention is a lithium ion battery
  • Li 3 PS 4 or Li 2 S and P 2 S 5 produced by mixing them are prepared. Examples thereof include sulfide-based solid electrolytes such as 2 S—P 2 S 5 .
  • the form of the solid electrolyte is not particularly limited.
  • an amorphous solid electrolyte glass ceramic, polyethylene oxide (PEO), polyvinylidene fluoride, A polymer electrolyte such as hexafluoropropylene copolymer (PVdF-HFP) may be used.
  • the binder that can be contained in the positive electrode include styrene butadiene rubber (SBR) and polyvinylidene fluoride (PVdF).
  • SBR styrene butadiene rubber
  • PVdF polyvinylidene fluoride
  • the conductive material that can be contained in the positive electrode includes a gas phase.
  • carbon materials such as carbon fiber and carbon black
  • metal materials that can withstand the environment when the battery is used can be exemplified.
  • the negative electrode of the metal ion battery of the present invention only needs to contain the negative electrode active material of the present invention. Besides this, a solid electrolyte, a binder that binds the negative electrode active material and other materials, and conductivity A conductive material to be improved may be contained.
  • the solid electrolyte, binder, and conductive material that can be contained in the negative electrode include the same substances as the solid electrolyte, binder, and conductive material that can be contained in the positive electrode.
  • the addition amount of the conductive material is set to 10% or more of the weight of the negative electrode including the conductive material from the viewpoint of easily exerting the effect of improving the electronic conductivity, and the capacity is reduced. From the standpoint of facilitating the suppression, the weight of the negative electrode including the conductive material is 80% or less.
  • the addition amount of the conductive material is preferably 20% to 60% of the weight of the negative electrode including the conductive material.
  • the negative electrode is produced, for example, through a process in which a negative electrode composition containing the negative electrode active material of the present invention is applied to a substrate (a negative electrode current collector described later) and dried. can do.
  • a negative electrode is produced through a process of applying a negative electrode composition to a substrate, a doctor blade method, an electrostatic coating method, a dip coating method, a spray coating method, or the like can be applied as a coating method.
  • the positive electrode in the metal ion battery of the present invention undergoes a process in which, for example, a positive electrode composition containing a positive electrode active material is applied to a substrate (a positive electrode current collector described later) and dried. Can be produced.
  • the positive electrode and the negative electrode of the metal ion battery of the present invention may be connected to a positive electrode current collector and a negative electrode current collector made of a conductive material, respectively.
  • the conductive material that can constitute the positive electrode current collector and the negative electrode current collector include Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In.
  • the metal material include one or more selected elements.
  • the positive electrode current collector and the negative electrode current collector can be formed into, for example, a metal foil, a metal mesh, or the like, and a foam metal can be used for the positive electrode current collector or the negative electrode current collector.
  • the electrolyte of the metal ion battery of the present invention only needs to have conductivity of metal ions that move between the positive electrode and the negative electrode, and an appropriate electrolyte is selected according to the metal ions that move between the positive electrode and the negative electrode. Just do it.
  • the electrolyte may be a liquid electrolyte (hereinafter referred to as “electrolytic solution”), or may be a gel electrolyte or a solid electrolyte.
  • the metal ion battery of the present invention is a lithium ion battery or a sodium ion battery and an electrolytic solution is used
  • usable electrolytic solution solvents are ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl Examples thereof include methyl carbonate (EMC), diethyl carbonate (DEC), and propylene carbonate (PC).
  • examples of usable supporting salts include LiPF 6 , LiClO 4 , LiTFSA, etc.
  • examples of usable supporting salts include NaPF 6 , NaClO 4 , NaTFSA, and the like.
  • examples of the usable solid electrolyte include the solid electrolyte that can be contained in the positive electrode and a polymer electrolyte such as PEO. Can be illustrated.
  • a gel electrolyte a PVdF-HFP copolymer containing the above liquid can be used.
  • the electrolytic solution is used in the metal ion battery of the present invention
  • the electrolytic solution is used in a form impregnated in a separator composed of a porous organic material or inorganic material.
  • a known separator such as a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated film can be appropriately used in addition to a polypropylene single layer separator and a polyethylene single layer separator.
  • a polymer electrolyte or a solid electrolyte may be used instead of the separator.
  • Example 1 ⁇ Synthesis of negative electrode active material>
  • aluminum sulfate, iron sulfate and sodium sulfate are dissolved in pure water and stirred.
  • Sodium hydroxide solution was added dropwise. This was transferred to an autoclave apparatus and reacted at 150 ° C. for 1 hour. Next, the mixture was cooled to room temperature, filtered, and washed with 1 L of pure water. Thereafter, by drying for 24 hours at 80 ° C., to give the Example 1 powder (NaAl 1.1 Fe 1.6 (SO 4 ) 2 (OH) 5.1 ⁇ 0.12H 2 O) .
  • a slurry-like composition hereinafter referred to as “first composition”.
  • the negative electrode of Example 1 was produced by applying the first composition thus produced to a copper foil (current collector) and rolling it after drying.
  • Example 1 The negative electrode of Example 1 was used for the negative electrode, lithium metal was used for the counter electrode, a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated film was used for the separator, and ethylene carbonate (EC) and diethyl carbonate (DEC) ) In a solvent mixed with a volume ratio of 1: 1, an electrolytic solution in which a supporting salt (1 mol / L-LiPF6) is dissolved is used to form a CR2032-type coin battery (lithium ion secondary battery. Battery ”)).
  • a supporting salt (1 mol / L-LiPF6
  • Example 2 ⁇ Synthesis of negative electrode active material> To obtain NaAl 3.0 (SO 4 ) 2.2 (OH) 5.6 ⁇ 0.30H 2 O, aluminum sulfate and sodium sulfate are dissolved in pure water, and the sodium hydroxide solution is stirred while stirring. It was dripped. This was transferred to an autoclave apparatus and reacted at 150 ° C. for 1 hour. Next, the mixture was cooled to room temperature, filtered, and washed with 1 L of pure water. Thereafter, by drying for 24 hours at 80 ° C., to obtain a powder (NaAl 3.0 (SO 4) 2.2 (OH) 5.6 ⁇ 0.30H 2 O) Example 2.
  • a slurry-like composition hereinafter referred to as “second composition”.
  • the negative electrode of Example 2 was produced by applying the second composition thus produced to a copper foil (current collector) and rolling it after drying.
  • Example 2 The negative electrode of Example 2 was used for the negative electrode, lithium metal was used for the counter electrode, a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated film was used for the separator, and ethylene carbonate (EC) and diethyl carbonate (DEC) ) In a solvent mixed with a volume ratio of 1: 1, an electrolytic solution in which a supporting salt (1 mol / L-LiPF6) is dissolved is used to form a CR2032-type coin battery (lithium ion secondary battery. Battery ”)).
  • a supporting salt (1 mol / L-LiPF6
  • Example 3 ⁇ Production of battery> The negative electrode of Example 1 was used for the negative electrode, sodium metal was used for the counter electrode, a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated film was used for the separator, and ethylene carbonate (EC) and diethyl carbonate (DEC) ) In a solvent mixed with a volume ratio of 1: 1, an electrolytic solution in which a supporting salt (1 mol / L-NaPF6) is dissolved is used to form a CR2032-type coin battery (sodium ion secondary battery. Battery ”)).
  • a supporting salt (1 mol / L-NaPF6
  • Example 4 Synthesis of negative electrode active material> To obtain NaFe 3 (SO 4 ) 2 (OH) 6 , iron sulfate and sodium sulfate were dissolved in pure water, and a sodium hydroxide solution was added dropwise with stirring. This was transferred to an autoclave apparatus and reacted at 120 ° C. for 24 hours. Next, the mixture was cooled to room temperature, filtered, and washed with 1 L of pure water. Thereafter, by drying for 24 hours at 80 ° C., to obtain a powder of Example 4 (NaFe 3 (SO 4) 2 (OH) 6).
  • Example 4 The negative electrode of Example 4 was used for the negative electrode, lithium metal was used for the counter electrode, a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated film was used for the separator, and ethylene carbonate (EC) and diethyl carbonate (DEC) ) In a solvent mixed with a volume ratio of 1: 1, an electrolytic solution in which a supporting salt (1 mol / L-LiPF6) is dissolved is used to form a CR2032-type coin battery (lithium ion secondary battery. Battery ”)).
  • a supporting salt (1 mol / L-LiPF6
  • Example 5 Synthesis of negative electrode active material>
  • KFe 3 (SO 4 ) 2 (OH) 6 iron sulfate and potassium sulfate were dissolved in pure water, and a potassium hydroxide solution was added dropwise with stirring. This was transferred to an autoclave apparatus and reacted at 120 ° C. for 24 hours. Next, the mixture was cooled to room temperature, filtered, and washed with 1 L of pure water. Thereafter, by drying for 24 hours at 80 ° C., to obtain a powder of Example 5 (KFe 3 (SO 4) 2 (OH) 6).
  • Example 5 The negative electrode of Example 5 was used for the negative electrode, lithium metal was used for the counter electrode, a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated film was used for the separator, and ethylene carbonate (EC) and diethyl carbonate (DEC) ) In a solvent mixed with a volume ratio of 1: 1, an electrolytic solution in which a supporting salt (1 mol / L-LiPF6) is dissolved is used to form a CR2032-type coin battery (lithium ion secondary battery. Battery ”)).
  • a supporting salt (1 mol / L-LiPF6
  • a dispersion material N-methyl-2-pyrrolidone
  • Example 6 The negative electrode of Example 6 was used for the negative electrode, sodium metal was used for the counter electrode, a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated film was used for the separator, and ethylene carbonate (EC) and diethyl carbonate (DEC) ) In a solvent mixed with a volume ratio of 1: 1, an electrolytic solution in which a supporting salt (1 mol / L-NaPF6) is dissolved is used to form a CR2032-type coin battery (sodium ion secondary battery. Battery ”)).
  • a supporting salt (1 mol / L-NaPF6
  • Example 7 Provide of negative electrode>
  • a slurry composition was prepared.
  • the slurry-like composition thus produced was applied to a copper foil (current collector), dried and rolled, and thereby a negative electrode of Example 7 was produced.
  • Example 7 The negative electrode of Example 7 was used as the negative electrode, sodium metal was used as the counter electrode, a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated film was used as the separator, and ethylene carbonate (EC) and diethyl carbonate (DEC) ) In a solvent mixed with a volume ratio of 1: 1 using an electrolytic solution in which a supporting salt (1 mol / L-NaPF6) is dissolved, a CR2032-type coin battery (sodium ion secondary battery. Battery ”)).
  • a supporting salt (1 mol / L-NaPF6
  • the measurement result of the powder of Example 2 corresponded to FIG. 1C. Therefore, it was found that the powder of Example 1 had a natrojarosite crystal structure, and the powder of Example 2 had an alanite crystal structure.
  • the powder of Example 1 and the powder of Example 2 are both composed of inexpensive elements. Therefore, according to the present invention, the production cost of the negative electrode active material can be reduced, and the production cost of the battery can be reduced by using the negative electrode active material of the present invention.
  • the batteries of Example 3 are 0.05 V or more and 1.5 V on the basis of the sodium electrode potential.
  • constant current charging / discharging was performed.
  • the results of the second cycle of the battery of Example 1 and the battery of Example 2 are shown in FIG. 2, and the results of the second cycle of the battery of Example 3 are shown in FIG. FIG.
  • FIG. 2 shows the results of the second cycle of the battery using graphite as the negative electrode active material and the results of the second cycle of the battery using Li 4 Ti 5 O 12 (LTO) as the negative electrode active material.
  • FIG. 3 also shows the results of the second cycle of the battery using hard carbon as the negative electrode active material.
  • the battery of Example 1 using the powder of Example 1 containing Fe as a negative electrode operates stably in the range of 0.05 V to 1.5 V with respect to the lithium electrode potential. did. Further, the battery of Example 1 had a reversible capacity of 500 mAh / g or more, and even when used in a potential range in which metallic lithium did not precipitate, a capacity exceeding the theoretical capacity of 372 mAh / g of graphite could be secured. That is, since the battery of Example 1 can be operated in a potential range in which metallic lithium does not precipitate, the safety of the battery can be improved, and lithium ions are inserted in a potential region lower than Li 4 Ti 5 O 12. Since it is desorbed, it is possible to increase the battery voltage, and it is possible to increase the energy density to a level equal to or higher than that of a battery using graphite or the like.
  • the battery of Example 2 using the powder of Example 2 containing no Fe as the negative electrode is stable in the range of 0.05 V to 1.5 V with respect to the lithium electrode potential. Operated.
  • the battery of Example 2 was able to insert and desorb lithium ions at a potential lower than the potential at which lithium ions were inserted and desorbed from Li 4 Ti 5 O 12 . Therefore, the battery of Example 2 can increase the battery voltage as compared with the battery using Li 4 Ti 5 O 12 as the negative electrode active material.
  • the powder of Example 2 the charge and discharge capacity per unit weight than Li 4 Ti 5 O 12 is was small.
  • the lithium ion battery it is possible to increase the safety of the lithium ion battery because it can operate in a potential range where metallic lithium does not precipitate, and the energy density is equal to or higher than that of the lithium ion battery using Li 4 Ti 5 O 12. It turned out that it is preferable to use the negative electrode active material (powder of Example 1) containing Fe for a negative electrode from the viewpoint of making it possible to increase the form.
  • the battery of Example 3 using the powder of Example 1 containing Fe as a negative electrode is stable in the range of 0.05 V or more and 1.5 V or less with respect to the sodium electrode potential. Operated. Further, the battery of Example 3 had a reversible capacity of 250 mAh / g or more. That is, since the battery of Example 3 can be operated in a potential range in which metallic sodium does not precipitate, the safety of the battery can be increased, and the energy density can be increased as compared with the battery using hard carbon. It was possible.
  • the crystal structure of the powder of Example 4 was identified by X-ray diffraction.
  • the result of the powder of Example 4 is shown in FIG. 4 and 1B, the X-ray diffraction measurement result (FIG. 4) of the powder of Example 4 corresponded to FIG. 1B. Therefore, it was found that the powder of Example 4 had a crystal structure of natrojarosite: NaFe 3 (SO 4 ) 2 (OH) 6 .
  • the powder of Example 4 is comprised with the cheap element. Therefore, according to the present invention, the production cost of the negative electrode active material can be reduced, and the production cost of the battery can be reduced by using the negative electrode active material of the present invention.
  • the battery of Example 4 stably operated in the range of 0.05 V or more and 1.5 V or less with respect to the lithium electrode potential.
  • the battery of Example 4 had a capacity of 500 mAh / g or more, and even when used in a potential range in which metallic lithium did not precipitate, a capacity exceeding the theoretical capacity of 372 mAh / g of graphite could be secured. That is, since the battery of Example 4 can be operated in a potential range in which metallic lithium does not precipitate, the safety of the battery can be improved.
  • the battery voltage can be increased, so that the energy density is equal to or higher than that of a battery using graphite or the like. It was possible to increase.
  • FIG. 6A shows an X-ray diffraction pattern of jarosite: KFe 3 (SO 4 ) 2 (OH) 6 .
  • FIG. 6B shows an X-ray diffraction pattern of jarosite: KFe 3 (SO 4 ) 2 (OH) 6 .
  • FIG. 6A shows an X-ray diffraction pattern of jarosite: KFe 3 (SO 4 ) 2 (OH) 6 .
  • FIG. 6B shows an X-ray diffraction pattern of jarosite: KFe 3 (SO 4 ) 2 (OH) 6 .
  • the battery of Example 5 operated stably in the range of 0.05 V to 1.5 V with respect to the lithium electrode potential. Further, the battery of Example 5 had a capacity of 500 mAh / g or more, and even when used in a potential range in which metallic lithium did not precipitate, a capacity exceeding the theoretical capacity of 372 mAh / g of graphite could be secured. That is, since the battery of Example 5 can be operated in a potential range in which metallic lithium does not precipitate, the safety of the battery can be improved.
  • the battery voltage can be increased, so that the energy density is equal to or higher than that of a battery using graphite or the like. It was possible to increase.
  • the battery of Example 6 stably operated in the range of 0.05 V to 1.5 V with respect to the sodium electrode potential.
  • the battery of Example 6 had a discharge capacity of 260 mAh / g or more. That is, since the battery of Example 6 can be operated in a potential range in which metallic sodium does not precipitate, the safety of the battery can be increased, and the energy density can be increased as compared with the battery using hard carbon. It was possible.
  • Example 7 ⁇ Battery performance measurement> With respect to a battery using the powder of Example 5 (battery of Example 7) manufactured by the same process as Example 3, a load current of 70 mA / g (active material) at a temperature of 25 ° C. Constant current charge / discharge was performed at a voltage of 05 V or more and 1.5 V or less (sodium electrode potential reference). The result of the first cycle of the battery of Example 7 is shown in FIG.
  • the battery of Example 7 operated stably in the range of 0.05 V to 1.5 V with respect to the sodium electrode potential.
  • the battery of Example 7 had a discharge capacity of 190 mAh / g or more. That is, the battery of Example 7 can be operated in a potential range in which metallic sodium does not precipitate, so that the safety of the battery can be increased, and the energy density can be increased as compared with the battery using hard carbon. It was possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compounds Of Iron (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明は、電池の安全性を高めつつエネルギー密度を高めることが可能な負極活物質、及び、該負極活物質を用いた金属イオン電池を提供することを主目的とする。 本発明は、アルカリ金属元素及びアルカリ土類金属元素からなる群より選択される少なくとも1つの金属元素のイオンを挿入・脱離することが可能な明ばん石グループの物質を有する負極活物質とし、正極及び負極、並びに、正極と負極との間に充填された、金属イオンを伝導する電解質を有し、負極に上記負極活物質が含有されている金属イオン電池とする。

Description

負極活物質及びこれを用いた金属イオン電池
 本発明は負極活物質及びこれを用いた金属イオン電池に関する。
 リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質層とが備えられ、電解質層には、非水系の液体状の物質(電解液)等が用いられている。
 このようなリチウムイオン二次電池に関する技術として、例えば特許文献1には、非水系のリチウムイオン二次電池に用いられる負極活物質であって、スピネル型構造を有し、一般式LiM0.5Ti1.5(MはFe、Co、Ni、Mn及びZnのうちいずれか1以上の元素)で表され、リチウムイオンを吸蔵・放出するリチウムチタン複合酸化物を含む、リチウムイオン二次電池用負極活物質、及び、該負極活物質を用いたリチウムイオン二次電池が開示されている。また、特許文献2には、Bを0.01質量%以上0.40質量%以下で固溶させたSiの単相粉末粒子であるリチウムイオン二次電池の負極活物質が開示されている。また、特許文献3には、負極活物質、正極活物質、及び、非水系電解質を備え、負極活物質として、複数の結晶からなり、各結晶のC軸方向がランダムな方向をなしている、平均粒径が1~120μmの多結晶メソカーボン小球体黒鉛化品を用いるリチウムイオン二次電池が開示されている。また、特許文献4には、組成式がLi3-xFeN(0<x<0.4)で表される層状のリチウム鉄窒化物からなる負極活物質を用いたリチウムイオン二次電池が開示されている。
 一方、グラファイトは、リチウムイオン二次電池における代表的な負極活物質として知られているが、正極層と負極層との間をナトリウムイオンが移動するナトリウムイオン二次電池においては、グラファイトの層間にナトリウムイオンの挿入脱離が起こらない。そのため、グラファイトをナトリウムイオン二次電池の負極活物質として用いることはできない。近年、ハードカーボンがナトリウムイオン二次電池用の負極活物質として機能することが見出され、ナトリウムイオン二次電池の研究開発が活発化してきている。
 このようなナトリウムイオン二次電池に関する技術として、例えば特許文献5には、ナトリウム及び鉄を含む複合酸化物を正極活物質として有する正極と、炭素材料をナトリウムイオン及びリチウムイオンの吸蔵材として有する負極と、リチウムイオン及びナトリウムイオンを含有する非水電解質とを備える非水電解質二次電池が開示されている。また、特許文献6には、炭素材料を含有するナトリウムイオン二次電池用負極活物質及び該負極活物質を負極に用いたナトリウムイオン二次電池に関する技術が開示されている。
特開2011-86464号公報 特開2011-40310号公報 特開2009-173547号公報 特開2010-257736号公報 特開平11-40156号公報 特開2009-129742号公報
 特許文献1に開示されている技術で用いている、スピネル型構造を有するリチウムチタン複合酸化物は、リチウムイオンを吸蔵放出する電極電位が、リチウム電極電位基準(vs Li/Li。以下において同じ。)で1.5V程度である。そのため、特許文献1に開示されているリチウムイオン二次電池は、金属リチウムの析出を防止できる反面、電池電圧が低く、エネルギー密度が小さくなりやすいという問題があった。リチウムイオン二次電池のエネルギー密度を高めることが可能な負極活物質としては、リチウム電極電位基準で0V付近の電位においてリチウムイオンを吸蔵放出する黒鉛系材料が知られている。しかしながら、黒鉛系材料を負極に用いると、特に低温での充電時や、繰り返し充放電を行った後の充電で金属リチウムが同時に析出しやすく、安全性が低下しやすいという問題があった。これまでに、金属リチウムが析出しない電位でリチウムイオンを吸蔵放出可能であり、且つ、電池電圧を高めたリチウムイオン二次電池を実現可能な負極活物質は提案されておらず、特許文献1乃至特許文献4に開示されている技術では、金属リチウムの析出防止と電池の高電圧化とを両立することは困難であった。
 一方、特許文献5及び特許文献6に開示されている技術で用いている炭素材料は、ナトリウムイオンを吸蔵放出する電極電位が、ナトリウム電極電位基準(vs Na/Na。以下において同じ。)で0V付近である。そのため、特許文献5及び特許文献6に開示されているナトリウムイオン二次電池は、特に低温での充電時や、繰り返し充放電を行った後の充電で金属ナトリウムが同時に析出しやすく、安全性が低下しやすいという問題があった。
 そこで本発明は、電池の安全性を高めつつ電池電圧を高めることが可能な負極活物質、及び、該負極活物質を用いた金属イオン電池を提供することを課題とする。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明の第1の態様は、アルカリ金属元素及びアルカリ土類金属元素からなる群より選択される少なくとも1つ以上の金属元素のイオンを挿入・脱離することが可能な明ばん石グループの物質を有する、負極活物質である。
 ここに、「アルカリ金属元素及びアルカリ土類金属元素からなる群より選択される少なくとも1つ以上の金属元素のイオン」とは、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン、及び、カルシウムイオン等を含む群より選択される少なくとも1つ以上のイオンをいう。また、「明ばん石グループの物質」とは、明礬石(alunite):KAl(SO(OH)、及び、KAl(SO(OH)のK及び/又はAlを他元素に置換した物質をいう。明ばん石グループの物質とは、例えば、明礬石(alunite):KAl(SO(OH)、ソーダ明礬石(natroalunite):NaAl(SO(OH)、アンモニウム明礬石(ammonioalunite):(NH)Al(SO(OH)、南石(minamiite):(Na、Ca、K、□)Al(SO(OH)、フーアン石(huangite):Ca□Al(SO(OH)12、ワールフィアライト(walthierite):BaAl(SO(OH)12、鉄明礬石(jarosite):KFe3+ (SO(OH)、ソーダ鉄明礬石(natrojarosite):NaFe3+ (SO(OH)、ドラルルチア鉱(dorallcharite):(Tl、K)Fe3+ (SO(OH)、アンモニウム鉄明礬石(ammoniojarosite):(NH)Fe3+ (SO(OH)、銀鉄明礬石(argentojarosite):AgFe3+ (SO(OH)、鉛鉄明礬石(plumbojarosite):PbFe3+ (SO(OH)12、藁鉄石(hydronium jarosite):(HO)Fe3+ (SO(OH)、尾去沢石(osarizawaite):PbCuAl(SO(OH)、ビーバー石(beaverite):PbCuFe3+ (SO(OH)等が挙げられる。なお、上記化学式において、「□」は空位を意味する。
 本発明の第1の態様にかかる負極活物質は、アルカリ金属とアルカリ金属イオンとの平衡電位よりも高い電位において、アルカリ金属イオンを挿入・脱離可能であり、アルカリ土類金属とアルカリ土類金属イオンとの平衡電位よりも高い電位において、アルカリ土類金属イオンを挿入・脱離可能である。すなわち、アルカリ金属やアルカリ土類金属が析出しない電位範囲で負極活物質として機能させることができるので、安全性を高めることが可能になる。また、本発明の第1の態様にかかる負極活物質は、アルカリ金属やアルカリ土類金属が析出しない電位範囲で使用可能な従来の負極活物質よりも低い電位範囲において、アルカリ金属イオンやアルカリ土類金属イオンを挿入・脱離可能なので、電池電圧を高めることが可能である。したがって、本発明の第1の態様によれば、電池の安全性を高めつつ電池電圧を高めることが可能な負極活物質を提供することができる。
 また、上記本発明の第1の態様において、アルカリ金属元素に、リチウム、ナトリウム、及び、カリウムからなる群より選択される少なくとも1つの元素が含まれることが好ましい。これらの元素が含まれていることにより、本発明の第1の態様にかかる負極活物質を、リチウムイオン電池や、ナトリウムイオン電池や、カリウムイオン電池における負極活物質として用いることが可能になる。
 また、上記本発明の第1の態様において、アルカリ土類金属元素に、マグネシウム、及び、カルシウムからなる群より選択される少なくとも1つの元素が含まれることが好ましい。これらの元素が含まれていることにより、本発明の第1の態様にかかる負極活物質を、マグネシウムイオン電池やカルシウムイオン電池における負極活物質として用いることが可能になる。
 本発明の第2の態様は、明ばん石グループの物質を有する、負極活物質である。
 本発明の第2の態様にかかる負極活物質は、アルカリ金属とアルカリ金属イオンとの平衡電位よりも高い電位において、アルカリ金属イオンを挿入・脱離可能であり、アルカリ土類金属とアルカリ土類金属イオンとの平衡電位よりも高い電位において、アルカリ土類金属イオンを挿入・脱離可能である。すなわち、アルカリ金属やアルカリ土類金属が析出しない電位範囲で負極活物質として機能させることができるので、安全性を高めることが可能になる。また、本発明の第2の態様にかかる負極活物質は、アルカリ金属やアルカリ土類金属が析出しない電位範囲で使用可能な従来の負極活物質よりも低い電位範囲において、アルカリ金属イオンやアルカリ土類金属イオンを挿入・脱離可能なので、電池電圧を高めることが可能である。したがって、本発明の第2の態様によれば、電池の安全性を高めつつ電池電圧を高めることが可能な負極活物質を提供することができる。
 また、K、Na、Li、1/2Mg、1/2Ca、1/2Sr、Rb、Ag、Tl、1/2Pb、1/2Hg、NH、及び、HOからなる群より選択される少なくとも1種以上をA、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znからなる群より選択される少なくとも1種以上の元素をM、-1≦a、b、c≦1、-6≦d、及び、0≦vとするとき、上記本発明の第1の態様又は上記本発明の第2の態様にかかる負極活物質が、化学式:A1+a3+b(SO2+c(OH)6+d・v(HO)で表されても良い。かかる形態であっても、電池の安全性を高めつつ電池電圧を高めることが可能である。なお、上記化学式において、Mは一種類だけでなく複数種類の場合もあり、Aは原子価が2価の場合は、(1/2A)1+aつまりA(1/2+a/2)となる。また、上記化学式で表される負極活物質が特に天然鉱物の場合等は、様々な不純物が含まれている。
 また、上記本発明の第1の態様又は上記本発明の第2の態様にかかる負極活物質が、NaAl3.0(SO2.2(OH)5.6・0.30HOであっても良い。かかる形態であっても、電池の安全性を高めつつ電池電圧を高めることが可能である。
 また、上記本発明の第1の態様又は上記本発明の第2の態様において、明ばん石グループの物質がソーダ鉄明礬石であっても良い。かかる形態であっても、電池の安全性を高めつつ電池電圧を高めることが可能である。
 また、上記本発明の第1の態様又は上記本発明の第2の態様にかかる負極活物質が、NaAl1.1Fe1.6(SO(OH)5.1・0.12HOであっても良い。かかる形態であっても、電池の安全性を高めつつ電池電圧を高めることが可能である。また、NaAl1.1Fe1.6(SO(OH)5.1・0.12HOの単位質量当たりの充放電容量は、グラファイトやチタン酸リチウム(以下において、「LTO」ということがある。)の単位質量当たりの充放電容量よりも大きい。そのため、NaAl1.1Fe1.6(SO(OH)5.1・0.12HOを用いることにより、電池の安全性を高めつつエネルギー密度を高めることが可能になる。
 また、上記本発明の第1の態様又は上記本発明の第2の態様にかかる負極活物質が、NaFe(SO(OH)であっても良い。かかる形態であっても、電池の安全性を高めつつ電池電圧を高めることが可能である。
 また、上記本発明の第1の態様又は上記本発明の第2の態様にかかる負極活物質が、KFe(SO(OH)であっても良い。かかる形態であっても、電池の安全性を高めつつ電池電圧を高めることが可能である。
 本発明の第3の態様は、正極及び負極、並びに、正極及び負極の間に充填された、金属イオンを伝導する電解質を有し、負極に上記本発明の第1の態様又は上記本発明の第2の態様にかかる負極活物質が含有されている、金属イオン電池である。
 ここに、「金属イオン電池」とは、正極と負極との間を金属イオンが移動する電池をいう。金属イオン電池には、例えば、リチウムイオン電池、ナトリウムイオン電池、カリウムイオン電池、カルシウムイオン電池、マグネシウムイオン電池が含まれる。また、金属イオン電池は、一次電池であっても良く、二次電池であっても良い。
 本発明の第3の態様では、上記本発明の第1の態様又は上記本発明の第2の態様にかかる負極活物質を負極に用いている。そのため、本発明の第3の態様によれば、安全性を高めつつ電池電圧を高めることが可能な金属イオン電池を提供することができる。
 また、上記本発明の第3の態様において、金属イオンがリチウムイオンであっても良い。かかる形態とすることにより、安全性を高めつつ電池電圧を高めることが可能なリチウムイオン電池を提供することができる。
 また、上記本発明の第3の態様において、金属イオンがナトリウムイオンであっても良い。かかる形態とすることにより、安全性を高めつつ電池電圧を高めることが可能なナトリウムイオン電池を提供することができる。
 本発明によれば、電池の安全性を高めつつ電池電圧を高めることが可能な負極活物質、及び、該負極活物質を用いた金属イオン電池を提供することができる。
実施例1の粉末のX線回折測定結果を示す図である。 natrojarositeのX線回折パターンを示す図である。 aluniteのX線回折パターンを示す図である。 実施例1の粉末を用いたリチウムイオン二次電池及び実施例2の粉末を用いたリチウムイオン二次電池の定電流充放電の結果を示す図である。 実施例1の粉末を用いたナトリウムイオン二次電池の定電流充放電の結果を示す図である。 実施例4の粉末のX線回折測定結果を示す図である。 実施例4の粉末を用いたリチウムイオン二次電池の定電流充放電の結果を示す図である。 実施例5の粉末のX線回折測定結果を示す図である。 JarositeのX線回折パターンを示す図である。 実施例5の粉末を用いたリチウムイオン二次電池の定電流充放電の結果を示す図である。 実施例4の粉末を用いたナトリウムイオン二次電池の定電流充放電の結果を示す図である。 実施例5の粉末を用いたナトリウムイオン二次電池の定電流充放電の結果を示す図である。
 リチウムイオン二次電池の負極活物質にグラファイトを用いることにより、電池電圧を高めることが可能になり、電池のエネルギー密度を高めることが可能になる。しかしながら、グラファイトにリチウムイオンが挿入される電位、及び、リチウムイオンがグラファイトから脱離する電位は、リチウムイオンが金属リチウムとして析出する電位の近傍である。そのため、負極活物質にグラファイトを用いると、特に低温での充電時や繰り返し充放電を行った後の充電で金属リチウムが同時に析出しやすくなり、電池の安全性を確保するための対策を十分に行う必要があった。これに対し、リチウムイオンが金属リチウムとして析出しない電位において、リチウムイオンを挿入・脱離することが可能な負極活物質として、これまでにLTO等が提案されている。LTOを用いることにより、電池の安全性を高めやすくなるが、LTOにリチウムイオンが挿入される電位、及び、リチウムイオンがLTOから脱離する電位は、リチウム電極電位基準で1.5V付近と高い。そのため、LTOを用いると電池電圧が低下しやすい。また、LTOの単位質量当たりの充放電容量はグラファイトの単位質量当たりの充放電容量の1/2以下であるため、LTOを用いた電池はエネルギー密度が低い。車載用電池には、安全性が高く且つ高エネルギー密度の電池が求められており、この要求を満たすためには、リチウムイオンが金属リチウムとして析出しない電位で使用可能であり、且つ、電池電圧を高めることが可能な負極活物質を特定することが重要と考えられる。
 本発明者らは、鋭意研究の結果、明ばん石グループの物質(アルカリ金属元素及びアルカリ土類金属元素からなる群より選択される少なくとも1つ以上の金属元素のイオンを挿入・脱離することが可能な明ばん石グループの物質)を有する負極活物質、例えば、骨格構造がアルナイト構造である負極活物質や、骨格構造がナトロジャロサイト構造である負極活物質や、骨格構造がジャロサイト構造である負極活物質は、リチウムイオンが金属リチウムとして析出しない電位領域で使用可能であり、且つ、LTOよりも低い電位でリチウムイオンを挿入・脱離可能であることを知見した。
 さらに、この負極活物質をナトリウムイオン二次電池の負極に用いたところ、ナトリウムイオンが金属ナトリウムとして析出しない電位領域において、ナトリウムイオン二次電池を作動させることが可能であることを知見した。近年、ハードカーボンを、ナトリウムイオン二次電池の負極活物質として用いることが可能である旨の報告がなされているが、ハードカーボンにナトリウムイオンが主に挿入される電位、及び、ナトリウムイオンがハードカーボンから主に脱離する電位は、ナトリウム電極電位基準で0V付近である。そのため、ハードカーボンを用いたナトリウムイオン二次電池のエネルギー密度を高めるためには、ナトリウムイオンが金属ナトリウムとして析出する電位領域でナトリウムイオン二次電池を使用する必要があり、ハードカーボンを用いたナトリウムイオン二次電池を、金属ナトリウムが析出しない電位領域のみで使用すると、エネルギー密度が著しく低下する。本発明者らは、鋭意研究の結果、本発明の負極活物質は、ナトリウムイオンが金属ナトリウムとして析出しない電位領域で使用しても、ハードカーボンと同等以上の、単位質量当たりの充放電容量を確保可能であることを知見した。
 このように、本発明の負極活物質は、リチウムイオン電池の負極活物質としてのみならず、ナトリウムイオン電池の負極活物質としても用いることができる。これは、本発明の負極活物質内にリチウムイオンやナトリウムイオンが入り込むメカニズムと、本発明の負極活物質からリチウムイオンやナトリウムイオンが脱離するメカニズムとが同じだからである。メカニズムの詳細は不明だが、リチウムイオンやナトリウムイオンが構造の空のサイトに挿入され、放電時には脱離する反応、又は、いわゆるコンバージョン反応により充放電が繰り返されているのではないかと推測している。なお、コンバージョン反応が発生している場合は、「挿入-脱離」という表現は適切でない可能性があるが、ここでは、コンバージョン反応の事象も含めて「挿入-脱離」と表現する。正極層と負極層との間をカリウムイオンやマグネシウムイオンやカルシウムイオンが移動する金属イオン電池に本発明の負極活物質を適用すると、リチウムイオンやナトリウムイオンと同様に、カリウムイオンやマグネシウムイオンやカルシウムイオンも挿入脱離することが可能と考えられる。したがって、本発明の負極活物質は、リチウムイオン電池やナトリウムイオン電池のみならず、カリウムイオン電池やマグネシウムイオン電池やカルシウムイオン電池にも適用可能と考えられる。
 本発明は、以上の知見に基づいて完成させた。以下、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。
 K、Na、Li、1/2Mg、1/2Ca、1/2Sr、Rb、Ag、Tl、1/2Pb、1/2Hg、NH、及び、HOからなる群より選択される少なくとも1種以上をA、
  Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znからなる群より選択される少なくとも1種以上の元素をM、
  -1≦a、b、c≦1、-6≦d、及び、0≦vとするとき、本発明の負極活物質は、例えば、化学式:A1+a3+b(SO2+c(OH)6+d・v(HO)で表すことができる。
 AがNa以外である物質も本発明の負極活物質に含まれるのは、AがNa以外であっても、同様の構造を有しており、そして構造の空間は存在しており、同様の反応は起こり得る。また、コンバージョン反応であっても、元素Mとの反応が中心であるため、AがNa以外でも起こり得る。
 また、元素MがAl以外である物質も本発明の負極活物質に含まれるのは、元素MがAl以外であっても、同様の構造を有しており、そして構造の空間は存在しており、同様の反応は起こり得る。またコンバージョン反応が含まれていたとしても、今回主張する元素の酸化物等はいずれもコンバージョン反応を起こすことが可能である。したがって、Al以外でも反応は起こる。
 また、今回の反応が構造の空間に挿入脱離する反応又はコンバージョン反応であると推察されるため、本発明の負極活物質にFeが含有されていなくても、アルカリ金属元素及びアルカリ土類金属元素からなる群より選択される少なくとも1つ以上の金属元素のイオンを挿入・脱離することができる。ただし、エネルギー密度を高めやすい形態にする等の観点から、本発明の負極活物質にはFeが含まれていることが好ましい。
 本発明の負極活物質は、正極及び負極、並びに、正極及び負極の間に充填された、金属イオンを伝導する電解質を有する金属イオン電池の負極に用いることができる。電解質に伝導される、正極と負極との間を移動する金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン、及び、カルシウムイオン等を例示することができる。すなわち、本発明の負極活物質は、リチウムイオン電池、ナトリウムイオン電池、カリウムイオン電池、マグネシウムイオン電池、カルシウムイオン電池等の負極に用いることができる。
 本発明の金属イオン電池において、正極に含有させる正極活物質は、正極と負極との間を移動させる金属イオンに応じた正極活物質を適宜選択すれば良い。本発明の金属イオン電池がリチウムイオン電池である場合、正極活物質としては、コバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)等の層状活物質のほか、オリビン型リン酸鉄リチウム(LiFePO)等のオリビン型活物質や、スピネル型マンガン酸リチウム(LiMn)等のスピネル型活物質等、公知の正極活物質を適宜用いることができる。また、本発明の金属イオン電池がナトリウムイオン電池である場合、正極活物質としては、鉄酸ナトリウム(NaFeO)、フッ素化リン酸鉄ナトリウム(NaFePOF)等、公知の正極活物質を適宜用いることができる。このほか、本発明の金属イオン電池がカリウムイオン電池やマグネシウムイオン電池やカルシウムイオン電池である場合、正極活物質としては、それぞれの電池に使用可能な正極活物質を適宜用いることができる。
 本発明の金属イオン電池の正極は、少なくとも正極活物質が含有されていれば良く、このほかに、公知の固体電解質や、正極活物質と他の物質とを結着させるバインダーや、導電性を向上させる導電材等が含有されていても良い。例えば、本発明の金属イオン電池がリチウムイオン電池である場合、正極に含有させることが可能な固体電解質としては、LiPSや、LiS及びPを混合して作製したLiS-P等の硫化物系固体電解質を例示することができる。正極に固体電解質を含有させる場合、その固体電解質の形態は特に限定されず、結晶質の固体電解質のほか、非晶質の固体電解質やガラスセラミックス、及び、ポリエチレンオキシド(PEO)やポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP)等のポリマー電解質であっても良い。また、正極に含有させることが可能なバインダーとしては、スチレンブタジエンゴム(SBR)やポリフッ化ビニリデン(PVdF)等を例示することができ、正極に含有させることが可能な導電材としては、気相法炭素繊維やカーボンブラック等の炭素材料のほか、電池の使用時の環境に耐えることが可能な金属材料を例示することができる。
 本発明の金属イオン電池の負極は、本発明の負極活物質を含有していれば良く、このほかに、固体電解質や、負極活物質と他の物質とを結着させるバインダーや、導電性を向上させる導電材等が含有されていても良い。負極に含有させることが可能な固体電解質、バインダー、及び、導電材としては、正極に含有させることが可能な固体電解質、バインダー、及び、導電材と同様の物質を例示することができる。負極に導電材を含有させる場合、導電材の添加量は、電子伝導性を向上させる効果を発揮しやすくする等の観点から、導電材を含む負極の重さの10%以上とし、容量の低下を抑制しやすくする等の観点から、導電材を含む負極の重さの80%以下とする。導電材の添加量は、導電材を含む負極の重さの20%以上60%以下とすることが好ましい。
 本発明の金属イオン電池において、負極は、例えば、本発明の負極活物質を含有する負極用組成物を、基材(後述する負極集電体等)に塗工して乾燥させる過程を経て作製することができる。負極用組成物を基材に塗工する過程を経て負極を作製する場合、塗工方法には、ドクターブレード法、静電塗布法、ディップコート法、スプレーコート法等を適用することができる。一方、本発明の金属イオン電池における正極は、例えば、正極活物質を含有する正極用組成物を、基材(後述する正極集電体等)に上記方法で塗工して乾燥させる過程を経て作製することができる。
 本発明の金属イオン電池の正極及び負極は、それぞれ、導電性材料によって構成された正極集電体及び負極集電体に接続されていても良い。正極集電体や負極集電体を構成可能な導電性材料としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。また、正極集電体及び負極集電体は、例えば、金属箔や金属メッシュ等の形状にすることができるほか、発泡金属を正極集電体や負極集電体に用いることも可能である。
 本発明の金属イオン電池の電解質は、正極と負極との間を移動させる金属イオンの伝導性を有していれば良く、正極と負極との間を移動させる金属イオンに応じた電解質を適宜選択すれば良い。電解質は液体状の電解質(以下において、「電解液」という。)であっても良く、ゲル状の電解質や固体電解質であっても良い。例えば、本発明の金属イオン電池がリチウムイオン電池やナトリウムイオン電池であって、且つ、電解液を用いる場合、使用可能な電解液溶媒としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を例示することができる。また、本発明の金属イオン電池がリチウムイオン電池であって、且つ、電解液を用いる場合、使用可能な支持塩としては、LiPF、LiClO、LiTFSA等を例示することができ、本発明の金属イオン電池がナトリウムイオン電池であって、且つ、電解液を用いる場合、使用可能な支持塩としては、NaPF、NaClO、NaTFSA等を例示することができる。また、本発明の金属イオン電池がリチウムイオン電池であって、且つ、固体電解質を用いる場合、使用可能な固体電解質としては、正極に含有させることが可能な上記固体電解質や、PEO等のポリマー電解質を例示することができる。また、ゲル状の電解質の場合は、PVdF-HFP共重合体等に上記液を含有させたもの等を用いることができる。
 本発明の金属イオン電池に電解液を用いる場合、電解液は、多孔質の有機材料や無機材料によって構成されるセパレータに含浸させた形態で用いられる。本発明の金属イオン電池には、ポリプロピレン単層のセパレータやポリエチレン単層のセパレータのほか、ポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)積層フィルム等、公知のセパレータを適宜用いることができる。また、ポリマー電解質や固体電解質をセパレータの代わりとしても良い。
 実施例を参照しつつ、本発明についてさらに具体的に説明する。
 1.試料作製
  1.1.実施例1
  <負極活物質の合成>
  NaAl1.1Fe1.6(SO(OH)5.1・0.12HOが得られるように、硫酸アルミニウムと硫酸鉄と硫酸ナトリウムとを純水に溶解し、攪拌しながら水酸化ナトリウム溶液を滴下した。これを、オートクレーブ装置に移し入れ、150℃で1時間に亘って反応させた。次いで、室温に冷却して濾別し、1Lの純水で洗浄した。その後、80℃で24時間に亘って乾燥することにより、実施例1の粉末(NaAl1.1Fe1.6(SO(OH)5.1・0.12HO)を得た。
 <負極の作製>
  固形分重量比で、実施例1の粉末:カーボンブラック:PVdF=60:35:5となる量の、負極活物質とカーボンブラックとPVdFとを分散剤(N-メチル-2-ピロリドン)に入れ、混合することにより、スラリー状の組成物(以下において、「第1組成物」という。)を作製した。こうして作製した第1組成物を、銅箔(集電体)に塗布して乾燥後に圧延することにより、実施例1の負極を作製した。
 <電池の作製>
  負極に実施例1の負極を用い、対極にリチウム金属を用い、セパレータにポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)積層フィルムを用い、さらに、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:1で混合した溶媒に、支持塩(1mol/L-LiPF6)を溶解した電解液を用いて、CR2032型コイン電池(リチウムイオン二次電池。以下において、「実施例1の電池」ということがある。)を作製した。
 1.2.実施例2
  <負極活物質の合成>
  NaAl3.0(SO2.2(OH)5.6・0.30HOが得られるように、硫酸アルミニウムと硫酸ナトリウムとを純水に溶解し、攪拌しながら水酸化ナトリウム溶液を滴下した。これを、オートクレーブ装置に移し入れ、150℃で1時間に亘って反応させた。次いで、室温に冷却して濾別し、1Lの純水で洗浄した。その後、80℃で24時間に亘って乾燥することにより、実施例2の粉末(NaAl3.0(SO2.2(OH)5.6・0.30HO)を得た。
 <負極の作製>
  固形分重量比で、実施例2の粉末:カーボンブラック:PVdF=60:35:5となる量の、負極活物質とカーボンブラックとPVdFとを分散剤(N-メチル-2-ピロリドン)に入れ、混合することにより、スラリー状の組成物(以下において、「第2組成物」という。)を作製した。こうして作製した第2組成物を、銅箔(集電体)に塗布して乾燥後に圧延することにより、実施例2の負極を作製した。
 <電池の作製>
  負極に実施例2の負極を用い、対極にリチウム金属を用い、セパレータにポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)積層フィルムを用い、さらに、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:1で混合した溶媒に、支持塩(1mol/L-LiPF6)を溶解した電解液を用いて、CR2032型コイン電池(リチウムイオン二次電池。以下において、「実施例2の電池」ということがある。)を作製した。
 1.3.実施例3
  <電池の作製>
  負極に実施例1の負極を用い、対極にナトリウム金属を用い、セパレータにポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)積層フィルムを用い、さらに、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:1で混合した溶媒に、支持塩(1mol/L-NaPF6)を溶解した電解液を用いて、CR2032型コイン電池(ナトリウムイオン二次電池。以下において、「実施例3の電池」ということがある。)を作製した。
 1.4.実施例4
  <負極活物質の合成>
  NaFe(SO(OH)が得られるように、硫酸鉄と硫酸ナトリウムとを純水に溶解し、攪拌しながら水酸化ナトリウム溶液を滴下した。これを、オートクレーブ装置に移し入れ、120℃で24時間に亘って反応させた。次いで、室温に冷却して濾別し、1Lの純水で洗浄した。その後、80℃で24時間に亘って乾燥することにより、実施例4の粉末(NaFe(SO(OH))を得た。
 <負極の作製>
  固形分重量比で、実施例4の粉末:カーボンブラック:PVdF=60:35:5となる量の、負極活物質とカーボンブラックとPVdFとを分散材(N-メチル-2-ピロリドン)に入れ、混合することにより、スラリー状の組成物を作製した。こうして作製したスラリー状の組成物を、銅箔(集電体)に塗布して乾燥後に圧延することにより、実施例4の負極を作製した。
 <電池の作製>
  負極に実施例4の負極を用い、対極にリチウム金属を用い、セパレータにポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)積層フィルムを用い、さらに、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:1で混合した溶媒に、支持塩(1mol/L-LiPF6)を溶解した電解液を用いて、CR2032型コイン電池(リチウムイオン二次電池。以下において、「実施例4の電池」ということがある。)を作製した。
 1.5.実施例5
  <負極活物質の合成>
  KFe(SO(OH)が得られるように、硫酸鉄と硫酸カリウムとを純水に溶解し、攪拌しながら水酸化カリウム溶液を滴下した。これを、オートクレーブ装置に移し入れ、120℃で24時間に亘って反応させた。次いで、室温に冷却して濾別し、1Lの純水で洗浄した。その後、80℃で24時間に亘って乾燥することにより、実施例5の粉末(KFe(SO(OH))を得た。
 <負極の作製>
  固形分重量比で、実施例5の粉末:カーボンブラック:PVdF=60:35:5となる量の、負極活物質とカーボンブラックとPVdFとを分散材(N-メチル-2-ピロリドン)に入れ、混合することにより、スラリー状の組成物を作製した。こうして作製したスラリー状の組成物を、銅箔(集電体)に塗布して乾燥後に圧延することにより、実施例5の負極を作製した。
 <電池の作製>
  負極に実施例5の負極を用い、対極にリチウム金属を用い、セパレータにポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)積層フィルムを用い、さらに、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:1で混合した溶媒に、支持塩(1mol/L-LiPF6)を溶解した電解液を用いて、CR2032型コイン電池(リチウムイオン二次電池。以下において、「実施例5の電池」ということがある。)を作製した。
 1.6.実施例6
  <負極の作製>
  固形分重量比で、実施例4の粉末:カーボンブラック:PVdF=60:35:5となる量の、負極活物質とカーボンブラックとPVdFとを分散材(N-メチル-2-ピロリドン)に入れ、混合することにより、スラリー状の組成物を作製した。こうして作製したスラリー状の組成物を、銅箔(集電体)に塗布して乾燥後に圧延することにより、実施例6の負極を作製した。
 <電池の作製>
  負極に実施例6の負極を用い、対極にナトリウム金属を用い、セパレータにポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)積層フィルムを用い、さらに、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:1で混合した溶媒に、支持塩(1mol/L-NaPF6)を溶解した電解液を用いて、CR2032型コイン電池(ナトリウムイオン二次電池。以下において、「実施例6の電池」ということがある。)を作製した。
 1.7.実施例7
  <負極の作製>
  固形分重量比で、実施例5の粉末:カーボンブラック:PVdF=60:35:5となる量の、負極活物質とカーボンブラックとPVdFとを分散材(N-メチル-2-ピロリドン)に入れ、混合することにより、スラリー状の組成物を作製した。こうして作製したスラリー状の組成物を、銅箔(集電体)に塗布して乾燥後に圧延することにより、実施例7の負極を作製した。
 <電池の作製>
  負極に実施例7の負極を用い、対極にナトリウム金属を用い、セパレータにポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)積層フィルムを用い、さらに、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:1で混合した溶媒に、支持塩(1mol/L-NaPF6)を溶解した電解液を用いて、CR2032型コイン電池(ナトリウムイオン二次電池。以下において、「実施例7の電池」ということがある。)を作製した。
 2.測定
  <X線回折測定>
  実施例1の粉末の結晶構造をX線回折により特定した。実施例1の粉末の結果を図1Aに示す。また、natrojarosite:NaFe3+ (SO(OH)、のX線回折パターンを図1Bに、alunite:KAl(SO(OH)のX線回折パターンを図1Cに、それぞれ示す。図1A乃至図1Cより、実施例1の粉末のX線回折測定結果(図1A)は図1Bと対応していた。また、実施例2の粉末の測定結果は図1Cと対応していた。したがって、実施例1の粉末はnatrojarositeの結晶構造を有し、実施例2の粉末はaluniteの結晶構造を有することがわかった。なお、実施例1の粉末及び実施例2の粉末は、何れも安価な元素で構成されている。そのため、本発明によれば、負極活物質の製造コストを低減することも可能であり、本発明の負極活物質を用いることにより、電池の製造コストを低減することも可能になる。
 <電池性能測定>
  上記工程により作製した実施例1の電池、実施例2の電池、及び、実施例3の電池に対して、温度25℃にて負荷電流70mA/g(活物質)、電圧範囲0.05V以上1.5V以下(実施例1の電池及び実施例2の電池は、リチウム電極電位基準で0.05V以上1.5V以下。実施例3の電池は、ナトリウム電極電位基準で0.05V以上1.5V以下。)で定電流充放電を行った。実施例1の電池及び実施例2の電池の2サイクル目の結果を図2に、実施例3の電池の2サイクル目の結果を図3に、それぞれ示す。なお、図2には、負極活物質としてグラファイトを用いた電池の2サイクル目の結果、及び、負極活物質としてLiTi12(LTO)を用いた電池の2サイクル目の結果を併せて示しており、図3には、負極活物質としてハードカーボンを用いた電池の2サイクル目の結果を併せて示している。
 図2に示したように、Feを含有する実施例1の粉末を負極に用いた実施例1の電池は、リチウム電極電位基準で0.05V以上1.5V以下の範囲において、安定的に作動した。また、実施例1の電池は、500mAh/g以上の可逆容量が得られ、金属リチウムが析出しない電位範囲で使用しても、グラファイトの理論容量372mAh/gを超える容量を確保できた。すなわち、実施例1の電池は、金属リチウムが析出しない電位範囲において作動可能であるため電池の安全性を高めることが可能であり、LiTi12よりも低い電位領域においてリチウムイオンが挿入脱離されるため電池電圧を高めることが可能であり、グラファイト等を用いた電池と同等以上にエネルギー密度を高めることが可能であった。
 また、図2に示したように、Feを含有しない実施例2の粉末を負極に用いた実施例2の電池は、リチウム電極電位基準で0.05V以上1.5V以下の範囲において、安定的に作動した。また、実施例2の電池は、LiTi12にリチウムイオンが挿入脱離される電位よりも低い電位において、リチウムイオンを挿入脱離させることが可能であった。したがって、実施例2の電池は、負極活物質にLiTi12を用いた電池よりも電池電圧を高めることができる。なお、図2に示したように、実施例2の粉末は、LiTi12よりも単位重量当たりの充放電容量が少なかった。したがって、金属リチウムが析出しない電位範囲において作動可能であるためリチウムイオン電池の安全性を高めることが可能であり、且つ、LiTi12を用いたリチウムイオン電池と同等以上にエネルギー密度を高めることが可能な形態にする観点からは、Feを含有させた負極活物質(実施例1の粉末)を負極に用いるのが好ましいことが分かった。
 また、図3に示したように、Feを含有する実施例1の粉末を負極に用いた実施例3の電池は、ナトリウム電極電位基準で0.05V以上1.5V以下の範囲において、安定的に作動した。また、実施例3の電池は、250mAh/g以上の可逆容量が得られた。すなわち、実施例3の電池は、金属ナトリウムが析出しない電位範囲において作動可能であるため電池の安全性を高めることが可能であり、且つ、ハードカーボンを用いた電池よりもエネルギー密度を高めることが可能であった。
 <X線回折測定>
  実施例4の粉末の結晶構造をX線回折により特定した。実施例4の粉末の結果を図4に示す。図4及び図1Bより、実施例4の粉末のX線回折測定結果(図4)は図1Bと対応していた。したがって、実施例4の粉末は、natrojarosite:NaFe(SO(OH)の結晶構造を有することがわかった。なお、実施例4の粉末は、安価な元素で構成されている。そのため、本発明によれば、負極活物質の製造コストを低減することも可能であり、本発明の負極活物質を用いることにより、電池の製造コストを低減することも可能になる。
 <電池性能測定>
  実施例1と同様の工程により作製した実施例4の粉末を用いた電池に対して、温度25℃にて、負荷電流70mA/g(活物質)、電圧範囲0.05V以上1.5V以下(リチウム電極電位基準)で定電流充放電を行った。実施例4の電池の1サイクル目の結果を図5に示す。
 図5に示したように、実施例4の電池は、リチウム電極電位基準で0.05V以上1.5V以下の範囲において、安定的に作動した。また、実施例4の電池は、500mAh/g以上の容量が得られ、金属リチウムが析出しない電位範囲で使用しても、グラファイトの理論容量372mAh/gを超える容量を確保できた。すなわち、実施例4の電池は、金属リチウムが析出しない電位範囲において作動可能であるため電池の安全性を高めることが可能である。また、実施例4の電池は、LiTi12よりも低い電位領域においてリチウムイオンが挿入脱離されるため電池電圧を高めることが可能なので、グラファイト等を用いた電池と同等以上にエネルギー密度を高めることが可能であった。
 <X線回折測定>
  実施例5の粉末の結晶構造をX線回折により特定した。実施例5の粉末の結果を図6Aに示す。また、jarosite:KFe(SO(OH)のX線回折パターンを図6Bに示す。図6A及び図6Bより、実施例5の粉末のX線回折測定結果(図6A)は図6Bと対応していた。したがって、実施例5の粉末は、jarosite:KFe(SO(OH)の結晶構造を有することがわかった。なお、実施例5の粉末は、安価な元素で構成されている。そのため、本発明によれば、負極活物質の製造コストを低減することも可能であり、本発明の負極活物質を用いることにより、電池の製造コストを低減することも可能になる。
 <電池性能測定>
  実施例1と同様の工程により作製した実施例5の粉末を用いた電池に対して、温度25℃にて、負荷電流70mA/g(活物質)、電圧範囲0.05V以上1.5V以下(リチウム電極電位基準)で定電流充放電を行った。実施例5の電池の1サイクル目の結果を図7に示す。
 図7に示したように、実施例5の電池は、リチウム電極電位基準で0.05V以上1.5V以下の範囲において、安定的に作動した。また、実施例5の電池は、500mAh/g以上の容量が得られ、金属リチウムが析出しない電位範囲で使用しても、グラファイトの理論容量372mAh/gを超える容量を確保できた。すなわち、実施例5の電池は、金属リチウムが析出しない電位範囲において作動可能であるため電池の安全性を高めることが可能である。また、実施例5の電池は、LiTi12よりも低い電位領域においてリチウムイオンが挿入脱離されるため電池電圧を高めることが可能なので、グラファイト等を用いた電池と同等以上にエネルギー密度を高めることが可能であった。
 <電池性能測定>
  実施例3と同様の工程により作製した実施例4の粉末を用いた電池(実施例6の電池)に対して、温度25℃にて、負荷電流70mA/g(活物質)、電圧範囲0.05V以上1.5V以下(ナトリウム電極電位基準)で定電流充放電を行った。実施例6の電池の1サイクル目の結果を図8に示す。
 図8に示したように、実施例6の電池は、ナトリウム電極電位基準で0.05V以上1.5V以下の範囲において、安定的に作動した。また、実施例6の電池は、260mAh/g以上の放電容量が得られた。すなわち、実施例6の電池は、金属ナトリウムが析出しない電位範囲において作動可能であるため電池の安全性を高めることが可能であり、且つ、ハードカーボンを用いた電池よりもエネルギー密度を高めることが可能であった。
 <電池性能測定>
  実施例3と同様の工程により作製した実施例5の粉末を用いた電池(実施例7の電池)に対して、温度25℃にて、負荷電流70mA/g(活物質)、電圧範囲0.05V以上1.5V以下(ナトリウム電極電位基準)で定電流充放電を行った。実施例7の電池の1サイクル目の結果を図9に示す。
 図9に示したように、実施例7の電池は、ナトリウム電極電位基準で0.05V以上1.5V以下の範囲において、安定的に作動した。また、実施例7の電池は、190mAh/g以上の放電容量が得られた。すなわち、実施例7の電池は、金属ナトリウムが析出しない電位範囲において作動可能であるため電池の安全性を高めることが可能であり、且つ、ハードカーボンを用いた電池よりもエネルギー密度を高めることが可能であった。

Claims (13)

  1. アルカリ金属元素及びアルカリ土類金属元素からなる群より選択される少なくとも1つ以上の金属元素のイオンを挿入・脱離することが可能な明ばん石グループの物質を有する、負極活物質。
  2. 前記アルカリ金属元素に、リチウム、ナトリウム、及び、カリウムからなる群より選択される少なくとも1つの元素が含まれる、請求項1に記載の負極活物質。
  3. 前記アルカリ土類金属元素に、マグネシウム、及び、カルシウムからなる群より選択される少なくとも1つの元素が含まれる、請求項1又は2に記載の負極活物質。
  4. 明ばん石グループの物質を有する、負極活物質。
  5. K、Na、Li、1/2Mg、1/2Ca、1/2Sr、Rb、Ag、Tl、1/2Pb、1/2Hg、NH、及び、HOからなる群より選択される少なくとも1種以上をA、
     Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znからなる群より選択される少なくとも1種以上の元素をM、
     -1≦a、b、c≦1、-6≦d、及び、0≦vとするとき、
     化学式:A1+a3+b(SO2+c(OH)6+d・v(HO)で表される、請求項1~4のいずれか1項に記載の負極活物質。
  6. NaAl3.0(SO2.2(OH)5.6・0.30HOである、請求項5に記載の負極活物質。
  7. 前記明ばん石グループの物質が、ソーダ鉄明礬石である、請求項1~5のいずれか1項に記載の負極活物質。
  8. NaAl1.1Fe1.6(SO(OH)5.1・0.12HOである、請求項5に記載の負極活物質。
  9. NaFe(SO(OH)である、請求項5に記載の負極活物質。
  10. KFe(SO(OH)である、請求項5に記載の負極活物質。
  11. 正極及び負極、並びに、前記正極及び前記負極の間に充填された、金属イオンを伝導する電解質を有し、前記負極に請求項1~10のいずれか1項に記載の負極活物質が含有されている、金属イオン電池。
  12. 前記金属イオンがリチウムイオンである、請求項11に記載の金属イオン電池。
  13. 前記金属イオンがナトリウムイオンである、請求項11に記載の金属イオン電池。
PCT/JP2012/076123 2011-10-25 2012-10-09 負極活物質及びこれを用いた金属イオン電池 WO2013061770A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12844377.7A EP2772971B1 (en) 2011-10-25 2012-10-09 Metal ion battery
KR1020147006467A KR101605277B1 (ko) 2011-10-25 2012-10-09 부극 활물질 및 이것을 사용한 금속 이온 전지
JP2013540714A JP5783262B2 (ja) 2011-10-25 2012-10-09 負極活物質及びこれを用いた金属イオン電池
US14/345,776 US9406935B2 (en) 2011-10-25 2012-10-09 Anode active material and metal ion battery prepared therewith
CN201280049449.6A CN103858258A (zh) 2011-10-25 2012-10-09 负极活性物质和使用了它的金属离子电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-233487 2011-10-25
JP2011233487 2011-10-25
JP2012145530 2012-06-28
JP2012-145530 2012-06-28

Publications (1)

Publication Number Publication Date
WO2013061770A1 true WO2013061770A1 (ja) 2013-05-02

Family

ID=48167604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076123 WO2013061770A1 (ja) 2011-10-25 2012-10-09 負極活物質及びこれを用いた金属イオン電池

Country Status (6)

Country Link
US (1) US9406935B2 (ja)
EP (1) EP2772971B1 (ja)
JP (1) JP5783262B2 (ja)
KR (1) KR101605277B1 (ja)
CN (1) CN103858258A (ja)
WO (1) WO2013061770A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638244A (zh) * 2015-02-12 2015-05-20 陕西理工学院 用黄铵铁矾和胆矾制备钠离子电池电极材料的工艺
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638260B (zh) * 2015-02-12 2017-02-01 陕西理工学院 用黄钠铁矾制备多元掺杂钠离子电池电极材料的工艺
JP6563856B2 (ja) * 2016-05-30 2019-08-21 トヨタ自動車株式会社 二次電池システム
WO2018170925A1 (zh) * 2017-03-24 2018-09-27 深圳先进技术研究院 一种基于钙离子的二次电池及其制备方法
CN109148885A (zh) * 2017-06-27 2019-01-04 海门市彼维知识产权服务有限公司 一种电池用负极粘结材料
WO2019051662A1 (zh) * 2017-09-13 2019-03-21 辽宁宏成供电有限公司 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法
CN112310350A (zh) * 2019-07-26 2021-02-02 武汉中原长江科技发展有限公司 黄钾铁矾及其CNTs改性复合物的制备方法和在锂电池电极材料上的应用
CN112397698B (zh) * 2020-11-16 2022-02-18 合肥国轩高科动力能源有限公司 一种复合导电剂包覆磷酸铁锂材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140156A (ja) 1997-07-16 1999-02-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005019351A (ja) * 2003-06-30 2005-01-20 Yoshiaki Koike 分散液およびその製造方法
JP2006516172A (ja) * 2001-10-26 2006-06-22 ヴァレンス テクノロジー インコーポレーテッド アルカリ/遷移金属ハロゲン化−、水酸化−リン酸塩およびそれを使用した電極活物質
JP2009129742A (ja) 2007-11-26 2009-06-11 Kyushu Univ ナトリウムイオン二次電池およびナトリウムイオン二次電池用負極活物質
JP2009173547A (ja) 2002-06-27 2009-08-06 Jfe Chemical Corp 多結晶メソカーボン小球体黒鉛化品、負極活物質およびリチウムイオン二次電池
JP2010510631A (ja) * 2006-11-15 2010-04-02 ヴァレンス テクノロジー インコーポレーテッド 高いレート能力を有する二次電気化学セル
JP2010257736A (ja) 2009-04-24 2010-11-11 Toda Kogyo Corp リチウム鉄窒化物の製造方法、リチウム二次電池用負極活物質及びリチウム二次電池
JP2011040310A (ja) 2009-08-13 2011-02-24 Daido Steel Co Ltd リチウムイオン電池の負極活物質及び負極構造
JP2011086464A (ja) 2009-10-14 2011-04-28 Toyota Central R&D Labs Inc リチウム二次電池用負極活物質、それを用いたリチウム二次電池及びリチウム二次電池用負極活物質の製造方法
JP2011165642A (ja) * 2010-01-13 2011-08-25 Toyota Motor Corp リチウムイオン二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489043A (en) * 1984-02-08 1984-12-18 Kerr-Mcgee Chemical Corporation Manufacture of manganous sulfate solutions
US5258168A (en) * 1989-07-19 1993-11-02 Aluminum Company Of America Production of alunites
FR2703834B1 (fr) * 1993-04-05 1995-06-09 Electricite De France Cathode, procede de fabrication de cathode et accumulateur electrochimique realise avec une telle cathode.
US5908716A (en) 1997-04-15 1999-06-01 Valence Technology, Inc. Lithium--containing sulfates, method of preparation and uses thereof
CN100456552C (zh) * 2005-01-28 2009-01-28 株式会社Lg化学 糊状电解质和包含该糊状电解质的可充电锂电池
KR101222747B1 (ko) 2005-04-08 2013-01-16 교와 가가꾸고교 가부시키가이샤 알루나이트형 화합물 입자, 그 제조 방법 및 그 이용
US20070048575A1 (en) * 2005-08-30 2007-03-01 Rovcal, Inc. Electrochemical cells containing spun mercury-amalgamated zinc particles having improved physical characteristics
KR100927246B1 (ko) * 2006-09-11 2009-11-16 주식회사 엘지화학 점토 광물을 포함하고 있는 전극 합제 및 이를 사용한전기화학 셀
CN101542784A (zh) * 2006-11-15 2009-09-23 威伦斯技术公司 具有高倍率性能的二次电化学电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140156A (ja) 1997-07-16 1999-02-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006516172A (ja) * 2001-10-26 2006-06-22 ヴァレンス テクノロジー インコーポレーテッド アルカリ/遷移金属ハロゲン化−、水酸化−リン酸塩およびそれを使用した電極活物質
JP2009173547A (ja) 2002-06-27 2009-08-06 Jfe Chemical Corp 多結晶メソカーボン小球体黒鉛化品、負極活物質およびリチウムイオン二次電池
JP2005019351A (ja) * 2003-06-30 2005-01-20 Yoshiaki Koike 分散液およびその製造方法
JP2010510631A (ja) * 2006-11-15 2010-04-02 ヴァレンス テクノロジー インコーポレーテッド 高いレート能力を有する二次電気化学セル
JP2009129742A (ja) 2007-11-26 2009-06-11 Kyushu Univ ナトリウムイオン二次電池およびナトリウムイオン二次電池用負極活物質
JP2010257736A (ja) 2009-04-24 2010-11-11 Toda Kogyo Corp リチウム鉄窒化物の製造方法、リチウム二次電池用負極活物質及びリチウム二次電池
JP2011040310A (ja) 2009-08-13 2011-02-24 Daido Steel Co Ltd リチウムイオン電池の負極活物質及び負極構造
JP2011086464A (ja) 2009-10-14 2011-04-28 Toyota Central R&D Labs Inc リチウム二次電池用負極活物質、それを用いたリチウム二次電池及びリチウム二次電池用負極活物質の製造方法
JP2011165642A (ja) * 2010-01-13 2011-08-25 Toyota Motor Corp リチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772971A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
CN104638244A (zh) * 2015-02-12 2015-05-20 陕西理工学院 用黄铵铁矾和胆矾制备钠离子电池电极材料的工艺

Also Published As

Publication number Publication date
CN103858258A (zh) 2014-06-11
EP2772971A1 (en) 2014-09-03
JP5783262B2 (ja) 2015-09-24
US20140227598A1 (en) 2014-08-14
KR101605277B1 (ko) 2016-03-21
EP2772971A4 (en) 2015-07-29
JPWO2013061770A1 (ja) 2015-04-02
EP2772971B1 (en) 2018-05-02
KR20140046480A (ko) 2014-04-18
US9406935B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5783262B2 (ja) 負極活物質及びこれを用いた金属イオン電池
JP6524158B2 (ja) 非水電解質二次電池用負極活物質、負極、非水電解質二次電池、電池パック及び車
JP6076928B2 (ja) 電池用活物質材料、非水電解質電池、電池パック及び自動車
JP4533822B2 (ja) 非水電解質電池および負極活物質
JP5843766B2 (ja) 正極活物質、正極及び非水系二次電池
US10044030B2 (en) Composite positive electrode active material positive electrode including the same, and lithium battery including the positive electrode
JP5472237B2 (ja) 電池用活物質、電池用活物質の製造方法、および電池
WO2015140915A1 (ja) 電池用活物質、非水電解質電池及び電池パック
JP7207261B2 (ja) 正極活物質の製造方法、及びリチウムイオン電池の製造方法
WO2011118302A1 (ja) 電池用活物質および電池
WO2014073701A1 (ja) 正極活物質、リチウム電池および正極活物質の製造方法
JP7006108B2 (ja) 負極活物質、負極、及び非水電解質蓄電素子
CN109860587A (zh) 锂离子电池的正极材料及其制备方法、锂离子电池
US20150017538A1 (en) Cathode active material, cathode, and nonaqueous secondary battery
JP2021012782A (ja) 非水電解質二次電池
JP2016062806A (ja) 負極活物質、ナトリウムイオン電池およびリチウムイオン電池
JP5725000B2 (ja) 電池用活物質および電池
JP2021012781A (ja) 非水電解質二次電池
JP5926746B2 (ja) 酸化物およびその製造方法
JP5354091B2 (ja) 電池用活物質および電池
CN118263430A (zh) 正极活性物质、锂离子二次电池和正极活性物质的制造方法
CN115775870A (zh) 活性物质、电极、二次电池、电池包及车辆
CN115084498A (zh) 活性物质、电极、二次电池、电池包及车辆
JP2014035957A (ja) 負極活物質および電池
Deng Nanostructured Si and Sn-Based Anodes for Lithium-Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540714

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147006467

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14345776

Country of ref document: US

Ref document number: 2012844377

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE