WO2019051662A1 - 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法 - Google Patents

一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2019051662A1
WO2019051662A1 PCT/CN2017/101529 CN2017101529W WO2019051662A1 WO 2019051662 A1 WO2019051662 A1 WO 2019051662A1 CN 2017101529 W CN2017101529 W CN 2017101529W WO 2019051662 A1 WO2019051662 A1 WO 2019051662A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
ion battery
sodium ion
cathode material
potential
Prior art date
Application number
PCT/CN2017/101529
Other languages
English (en)
French (fr)
Inventor
侴术雷
陈明哲
李用成
栗云鹏
王绍才
窦世学
Original Assignee
辽宁宏成供电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辽宁宏成供电有限公司 filed Critical 辽宁宏成供电有限公司
Priority to PCT/CN2017/101529 priority Critical patent/WO2019051662A1/zh
Priority to CN201780085446.0A priority patent/CN110326136B/zh
Publication of WO2019051662A1 publication Critical patent/WO2019051662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of cathode materials for sodium ion batteries. More specifically, the present invention relates to a novel high-potential multilayer carbon-coated polyanionic sodium ion battery cathode material, and to a method of preparing the material.
  • lithium-ion battery has been widely used in various portable mobile devices, electric vehicles and energy storage fields due to its high safety, high energy density and long service life.
  • lithium-ion battery has been widely used in various portable mobile devices, electric vehicles and energy storage fields due to its high safety, high energy density and long service life.
  • sodium ion batteries have been widely studied and paid attention to in the global energy storage field due to their wide distribution of sodium resources.
  • the positive electrode material as a key part of the whole battery system, its cycle stability, output voltage, thermal stability, output capacity, power density and other indicators played a decisive factor in the entire battery system.
  • the Na 2-2 ⁇ Fe 2+ ⁇ (SO 4 ) 3 @C@rGO (NFS@C@rGO) material of the present invention has a superior 3.8V discharge platform in the sodium electric cathode material, which is close to 110mAh g -1 discharge specific capacity, and has the advantages of cheap and easy to obtain, good thermal stability, high energy and power density, etc., is a promising new generation of sodium battery cathode material.
  • the main limiting factor of this kind of polyanionic sodium ion battery cathode material is its low electronic conductivity. Therefore, it is very effective to coat the surface with a carbon layer or to establish a two-dimensional and three-dimensional carbon skeleton network to improve the electronic conductivity.
  • the preparation methods of the existing polyanionic cathode materials are mainly sol-gel method, hydrothermal method, high-temperature solid phase method and the like.
  • the sol-gel process is very complicated, the organic solvent used is more expensive; the hydrothermal method consumes more energy, the phase formation process is more complicated and the intermediate process is uncontrollable; the high temperature solid phase method has a long calcination time and the raw materials are not mixed. Uniform, poor consistency and other issues. Therefore, the development of a suitable high-potential positive electrode material for preparing a uniform carbon coating and having a multi-dimensional carbon skeleton support structure is an urgent need today.
  • the object of the present invention is to provide a novel high-potential polyanionic sodium ion battery cathode material and a preparation method thereof.
  • the preparation method is a high energy sanding-freeze drying method, and can construct a three-dimensional carbon coating network, and includes steps of preparation and drying of precursor powder, subsequent calcination and freeze drying.
  • the invention has simple process flow, less equipment investment, high degree of continuity, controllable cost and easy industrial enlargement, and the obtained product has uniform particles and high purity, and the carbon layer is uniform.
  • the novel high-potential polyanionic sodium ion electronic positive electrode material of the invention has excellent electrochemical performance, the discharge capacity of 0.1C is up to 107.9 mAh g -1 , the energy density can reach 400 Wh kg -1 and the cycle performance is good, at 0.5 C rate.
  • the capacity retention rate was above 90% after 300 cycles; the capacity retention rate was close to 81% after 800 cycles at 5C.
  • the material has good thermal stability, low raw material cost, and can be mass-produced at low cost, and is a competitive new generation of sodium ion battery cathode material.
  • An object of the present invention is to provide a method for preparing a positive electrode material which is uniformly carbon coated and has a multi-dimensional carbon skeleton support structure, which has simple operation, easy industrial scale, uniform particle size of the obtained product, uniform carbon layer and electrochemical Excellent performance and other advantages.
  • the preparation method of the positive electrode material Na 2-2 ⁇ Fe 2+ ⁇ (SO 4 ) 3 @C@rGO (0 ⁇ ⁇ ⁇ 1/4) of the high-potential sodium ion battery according to the present invention has the following steps:
  • Anhydrous sodium sulfate and anhydrous ferrous sulfate are weighed according to the chemical formula I, and are placed together with a carbon source and an antioxidant in a sanding tank of a sand mill; then a grinding aid solvent is added, followed by sanding beads.
  • the sand mill used in the present invention is currently on the market, such as the PUHLER Nano sander, horizontal.
  • the rheological phase material obtained in Step A was placed in a drying oven under the protection of an argon atmosphere to dry.
  • step B The dried precursor powder in step B was placed in a box reactor, calcined under an argon atmosphere, and then cooled.
  • step C The material calcined in step C is added to the redox graphene suspension, and after sufficiently freeze-drying, the Na 2-2 ⁇ Fe 2+ ⁇ (SO 4 ) 3 @C@rGO (0 ⁇ ⁇ ⁇ 1/4) is obtained. ) the final product.
  • the carbon source is at least one of citric acid, stearic acid, and sucrose.
  • the carbon source is added in an amount of from 8 to 10 mol% based on the total of the starting materials.
  • the antioxidant is ascorbic acid.
  • the antioxidant is added in an amount of from 3 to 5% by weight based on the total mass of the raw material.
  • the grinding aid solvent is at least one of acetone, ethanol, and ethylene glycol.
  • the mass ratio of the raw material to the sanding beads is from 1:5 to 1:10.
  • the sand mill used has a rotational speed of between 800 and 1200 rpm and an operating time of between 12 and 18 hours.
  • the calcination temperature is from 330 to 370 ° C and the calcination time is from 12 to 24 h.
  • the amount of the grinding aid solvent added can be determined as needed.
  • the assembly of the sanding tank of the sander is preferably carried out under an argon atmosphere.
  • the conditions of drying in step B can be determined as needed, for example, drying at 50-80 ° C for another 15-40 h.
  • the calcining comprises: raising to 330 ° C to 370 ° C by a one-step heating program (2 ° C / min), and then calcining for 12 h to 24 h.
  • the concentration of the redox graphene in the suspension of the redox graphene is preferably 0.8-1.2 mg/mL, relative to the calcined material per gram.
  • the suspension of the redox graphene is added in an amount of 0.002-0.003 L.
  • Another object of the present invention is to provide a polyanionic sodium ion battery positive electrode material produced by the method.
  • This material has the following chemical formula:
  • the chemical formula of 3 @C@rGO (0 ⁇ ⁇ ⁇ 1/4) is within the protection scope of the present invention.
  • the compound Upon analysis, the compound has the following characteristics:
  • the present invention provides a novel high-potential multilayer carbon-coated polyanionic sulfate system material for the field of sodium ion battery cathode materials.
  • the high potential multilayer carbon coated polyanionic sodium ion battery cathode material prepared by the method of the invention is Na 2-2 ⁇ Fe 2+ ⁇ (SO 4 ) 3 @C@rGO (0 ⁇ ⁇ ⁇ 1/4) ), which has the advantages of fine particle size (about 50-100 nm), uniform particle size distribution, and good product consistency.
  • the material prepared by the method of the invention has good thermal stability, excellent cycle performance, and high discharge capacity and rate performance.
  • the material prepared by the method of the invention has a multi-dimensional carbon coating and a skeleton, and the coating effect is still good after 300 cycles.
  • the material prepared by the method of the invention has a high stable charge and discharge platform (3.8V (vs. Na + /Na)), which can provide high energy density.
  • the method of the invention adopts only one-step calcination, has simple process and low production cost, and is favorable for industrial production.
  • Example 1 is a powder diffraction spectrum and finishing results of a synchrotron radiation X-ray source test of a Na 2 Fe 2 (SO 4 ) 3 @C@rGO material prepared in Example 1. This refinement is based on GSAS-II software.
  • Example 2 is a powder diffraction spectrum and finishing results of a synchrotron radiation X-ray source test of the Na 1.5 Fe 2.25 (SO 4 ) 3 @C@rGO material prepared in Example 2. This refinement is also based on GSAS-II software.
  • Figure 3 is a schematic view showing the results of the finishing of the material obtained in Example 1.
  • Figure 4 is a schematic view showing the results of the finishing of the material obtained in Example 2.
  • Figure 5 is a scanning electron micrograph of the material obtained in the preparation of Example 1.
  • Figure 6 is a scanning electron micrograph of the material obtained in the preparation of Example 2.
  • Figure 7 is a scanning transmission electron micrograph of the material prepared in Example 1.
  • Fig. 8 is a graph showing charge and discharge curves of the material obtained in the preparation of Example 1.
  • Figure 9 is a graph showing the cycle performance of 300 cycles at a current of 0.2 C obtained in the material prepared in Example 1.
  • Figure 10 is a graph showing the cycle performance of 800 cycles at a 5C current of the material prepared in Example 1.
  • Figure 11 is a graph showing the rate performance of the material obtained in Example 2.
  • Fig. 12 is a transmission electron microscope and an EDS spectrum of the material obtained in Example 2 after circulating at a current of 5 C for 800 cycles.
  • Figure 13 is a constant current intermittent titration of the material obtained in Example 3.
  • Figure 14 is a graph showing the discharge capacity of the first and second rings of the material obtained in Example 3.
  • Figure 15 is a first five-turn CV diagram of the material obtained in Example 3.
  • Figure 16 is a graph showing the magnetic properties of the material obtained in the preparation of Example 3.
  • the process of the preparation method is as follows:
  • the rheological phase material obtained in Step A was placed in a drying oven under the protection of an argon atmosphere and dried at 60 ° C for 24 h.
  • the dried precursor powder in the step B is placed in a box reactor, firstly added with an argon atmosphere protection, and is heated to a temperature of -2 ° C / min to a temperature of 330 ° C for 12 hours, and then cooled to obtain a final material.
  • the powder diffraction spectrum and the finishing result obtained by the material synchrotron radiation X-ray source test obtained in this embodiment are shown in Fig. 1.
  • the specific placeholder information is shown in Table 1.
  • the schematic diagram of the refinement results is shown in Figure 3.
  • the morphology and carbon coating are shown in Figure 5 and Figure 7.
  • the button battery of the CR2032 was assembled in an argon-filled glove box.
  • the electrochemical performance test was carried out in the voltage range of 1.9 to 4.25 V.
  • the specific discharge capacity of mAh g -1 (Fig. 8).
  • the capacity retention rate can reach 90.1% after 300 cycles (Fig. 9); at a discharge rate of 5C, the capacity retention rate can still reach 80.1% after 800 cycles (Fig. 10). .
  • the process of the preparation method is as follows:
  • the rheological phase material obtained in Step A was placed in a drying oven under the protection of an argon atmosphere and dried at 60 ° C for 24 h.
  • the dried precursor powder in step B is placed in a box reactor, firstly added with an argon atmosphere protection, and calcined for 24 hours at a temperature of -2 ° C / min to be cooled for 24 hours to obtain a final material.
  • the powder diffraction spectrum and the finishing result obtained by the material synchrotron radiation X-ray source test obtained in this embodiment are shown in Fig. 2.
  • the specific placeholder information is shown in Table 2.
  • the schematic diagram of the refinement results is shown in Figure 4.
  • the morphology and carbon coating are shown in Figure 6.
  • the button battery of the CR2032 was assembled in an argon-filled glove box.
  • the electrochemical performance test was carried out in the voltage range of 1.9 to 4.25 V.
  • the results show that the positive electrode material prepared in this example has excellent electrochemical performance.
  • the rate performance diagram is shown in Figure 11.
  • the transmission electron microscope and EDS spectrum after 800 cycles of 5C discharge current are shown in Figure 12. These results indicate that the chemical formula obtained at both ends of the ⁇ value is superior in the range of ⁇ value of Na 2-2 ⁇ Fe 2+ ⁇ (SO 4 ) 3 @C@rGO (0 ⁇ ⁇ ⁇ 1/4). Chemical properties.
  • the process of the preparation method is as follows:
  • the rheological phase material obtained in Step A was placed in a drying oven under the protection of an argon atmosphere and dried at 60 ° C for 24 h.
  • the dried precursor powder in the step B is placed in a box reactor, firstly added with an argon atmosphere protection, and heated to a temperature of -2 ° C / min to a temperature of 350 ° C for 18 hours, and then cooled to obtain a final material.
  • the results of the potentiostatic titration test obtained in this example are shown in Fig. 13.
  • the first cycle charge and discharge curve is shown in Figure 14.
  • the first five laps of the CV curve are shown in Figure 15.
  • the magnetic test results are shown in Figure 16.
  • the materials obtained according to the above specific examples have good electrochemical performance and cycle stability, and are a promising positive electrode material for high-potential sodium ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种高电位聚阴离子型钠离子电池正极材料及其制备方法。该制备方法为高能砂磨-冷冻干燥法,可构建三维碳包覆网络,并包括前驱体粉末制备及干燥、后续锻烧及冷冻干燥等步骤。工艺流程简单、设备投入少、连续化程度高,成本可控,易于工业放大,所得产品颗粒均一且纯度高,碳层均匀。高电位聚阴离子型钠离子电子正极材料电化学性能优异,0.1C放电容量高达107.9gmAhg -1,能量密度可达400Whkg -1且循环性能好,在0.5C倍率下循环300次其容量保持率在90%以上;5C倍率下循环800次容量保持率接近81%。该材料热稳定性佳,原料成本低,是一种极具竞争力的新一代钠离子电池正极材料。

Description

一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法 技术领域
本发明属于钠离子电池正极材料领域。更具体地,本发明涉及一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料,还涉及所述材料的制备方法。
背景技术
近年来,全球的环境问题日益严峻,对于新型可再生能源的开发已经迫在眉睫。锂离子电池作为最具发展前景的可持续能源,凭借其高度的安全性、高能量密度、长使用寿命等优点,已被广泛应用于各种便携式移动设备、电动汽车以及能源存储等多领域。但由于全球锂资源极度分布不均以及现今快速大量的消耗,其生产及使用成本必然会受到极大地影响。因此,钠离子电池因其广泛的钠资源分布,在全球储能领域受到了广泛的研究与关注。其中,正极材料作为整个电池体系的关键一环,其循环稳定性、输出电压、热稳定性、输出容量、功率密度等指标在整个电池体系中起到了决定性的因素。在此基础上,本发明所涉及的Na2-2βFe2+ β(SO4)3@C@rGO(NFS@C@rGO)材料具有在钠电正极材料中出众的3.8V放电平台,接近110mAh g-1的放电比容量,且具有廉价易得、热稳定性好、能量及功率密度高等优点,是极具前景的新一代钠电池正极材料。
目前该类聚阴离子型钠离子电池正极材料的主要制约因素是其较低的电子电导率。因此,在其表面包覆碳层或者建立二维及三维碳骨架网络来提高电子电导率是非常有效的手段。同时,针对大规模工业生产,现有的聚阴离子型正极材料的制备方法主要是溶胶-凝胶法,水热法,高温固相法等。其中,溶胶-凝胶法工艺非常复杂,所用的有机溶剂价格较为昂贵;水热法能耗较大,成相过程较为复杂且中间过程不可控;高温固相法存在煅烧时间长,原料混合不均匀,一致性较差等问题。因此,开发一种合适的制备均匀碳包覆并且具有多维碳骨架支撑结构的高电位正极材料是现今较为迫切的需求。
发明内容
本发明的目的是提供一种新型高电位聚阴离子型钠离子电池正极材料及其制备方法。该制备方法为高能砂磨-冷冻干燥法,可构建三维碳包覆网络,并包括前驱体粉末制备及干燥、后续煅烧及冷冻干燥等步骤。本发明工艺流程简单、设备投入少、连续化程度高,成本可控,易于工业放大,所得产品颗粒均一且纯度高,碳层均匀。本发明所述的新型高电位聚阴离子型钠离子电子正极材料电化学性能优异,0.1C放电容量高达107.9mAh g-1,能量密度可达400Wh kg-1且循环性能好,在0.5C倍率下循环300次其容量保持率在90%以上;5C倍率下循环800次容量保持率接近81%。且该材料热稳定性佳,原料成本低,可被低成本地大量制造,是一种极具竞争力的新一代钠离子电池正极材料。
本发明的一个目的是提供一种均匀碳包覆并且具有多维碳骨架支撑结构的正极材料的制备方法,该方法具有操作简单、易于工业放大、所得产品粒径均一细小、碳层均匀且电化学性能优异等优点。
本发明所述的高电位钠离子电池正极材料Na2-2βFe2+β(SO4)3@C@rGO(0≤β≤1/4)的制备方法,工艺步骤如下:
A、前驱体粉末的制备
按照化学式I计量称取无水硫酸钠、无水硫酸亚铁作为原料,与碳源、抗氧化剂,共同置于砂磨机的砂磨罐中;接着加入助磨溶剂,然后加入砂磨珠进行砂磨;
Na2-2βFe2+β(SO4)3@C@rGO式I,其中,0≤β≤1/4;
其中0≤β≤1/4,当β=0时,该高电位正极材料的化学式为Na2Fe2(SO4)3;当β=1/4时,该高电位正极材料的化学式为Na1.5Fe2.25(SO4)3
本发明所使用的砂磨机是市场上目前在售的产品,例如PUHLER派乐纳米砂磨机,卧式。
B、前驱体粉末的干燥
将步骤A所得的流变相的材料放置于氩气气氛保护下的干燥烘箱干燥。
C、前驱体粉末的煅烧
将步骤B中已干燥的前驱体粉末放置于箱式反应炉中,在氩气气氛保护下煅烧,然后冷却。
D、NFS@C@rGO最终产物的制备
将步骤C已煅烧的材料加入氧化还原石墨烯悬浊液中,经充分冷冻干燥后得到所述Na2-2βFe2+β(SO4)3@C@rGO(0≤β≤1/4)终产物。
具体地,将市售氧化石墨烯放置于管式炉中,并通高纯氩气保护。之后迅速升温至1100℃,保持1h后自然冷却至室温。称取该氧化还原石墨烯25mg于25mL纯乙醇溶液中,在氩气气氛的保护下超声24h,然后加入步骤C所得的已煅烧的NFS材料200mg,经冷冻干燥后即可得到NFS@C@rGO最终产物。
根据本发明的一种优选实施方式,所述碳源是柠檬酸、硬脂酸、蔗糖中的至少一种。所述碳源的添加量占总原料摩尔的8-10mol%。
根据本发明的另一种优选实施方式,所述抗氧化剂为抗坏血酸。所述抗氧化剂的添加量占总原料质量的3~5wt%。
根据本发明的另一种优选实施方式,所述助磨溶剂为丙酮、乙醇、乙二醇中的至少一种。
根据本发明的另一种优选实施方式,原料与砂磨珠的质量比为1:5-1:10。优选地,所用砂磨机转速为800-1200转/分钟之间,运行时间为12~18h。
根据本发明的另一种优选实施方式,所述煅烧温度为330~370℃,煅烧时间为12~24h。
根据本发明的另一种优选实施方式,所述助磨溶剂的加入量可根据需要确定。
根据本发明的另一种优选实施方式,所述砂磨机的砂磨罐的组装优选在氩气气氛下进行。
根据本发明的另一种优选实施方式,步骤B中干燥的条件可根据需要确定,例如再50-80℃下干燥15-40h。
根据本发明的另一种优选实施方式,步骤C中,所述煅烧包括:经一步升温程序(2℃/min)升至330℃~370℃,然后煅烧12h~24h。
根据本发明的另一种优选实施方式,步骤D中,所述氧化还原石墨烯的悬浊液中氧化还原石墨烯的浓度优选为0.8-1.2mg/mL,相对于每克已煅烧的材料,所述氧化还原石墨烯的悬浊液的加入量为0.002-0.003L。
本发明的另一个目的是提供采用所述方法所制得的聚阴离子型钠离子电池正极材料。这种材料具有如下化学式:
Na2-2βFe2+β(SO4)3@C@rGO其中,0≤β≤1/4,当β=0时,该材料的化学式为Na2Fe2(SO4)3@C@rGO;当β=1/4时,该材料的化学式为Na1.5Fe2.25(SO4)3@C@rGO;在所述β值范围内,该Na2-2βFe2+β(SO4)3@C@rGO(0≤β≤1/4)的化学式均在本发明的保护范围内。
经分析,该化合物具有如下特征:
(1)它具有单斜晶体结构,属于C2/c空间群。
(2)它具有4nm左右厚度的碳包覆层,经300次循环后该包覆层依然保持良好。
(3)它具有高达3.8V(vs.Na+/Na)的稳定充放电平台,经800次循环后仍然未有中值电压的衰减。
本发明具有以下有益效果:
1、本发明为钠离子电池正极材料领域提供了一种新型的高电位多层碳包覆聚阴离子型硫酸盐体系的材料。
2、本发明所述方法制备的该高电位多层碳包覆聚阴离子型钠离子电池正极材料Na2-2βFe2+β(SO4)3@C@rGO(0≤β≤1/4),具有颗粒粒径细小(50-100nm左右),粒径分布均匀,产品一致性好的优点。
3、本发明所述方法制备的材料热稳定性好,循环性能优异,放电容量及倍率性能较高。
4、本发明所述方法制备的材料具有多维碳包覆及骨架,且经300次循环包覆效果依然良好。
5、本发明所述方法制备的材料具有较高的稳定充放电平台(3.8V(vs.Na+/Na)),可提供高的能量密度。
6、本发明所述方法仅采用一步煅烧,工艺简单,生产成本低,有利于工业化生产。
附图说明
图1是实施例1制备的Na2Fe2(SO4)3@C@rGO材料的同步辐射X射线源测试所得的粉末衍射谱图及精修结果。该精修是基于GSAS-II软件进行的。
图2是实施例2制备的Na1.5Fe2.25(SO4)3@C@rGO材料的同步辐射X射线源测试所得的粉末衍射谱图及精修结果。该精修亦是基于GSAS-II软件进行的.
图3是实施例1制备所得材料的精修结果示意图。
图4是实施例2制备所得材料的精修结果示意图。
图5是实施例1制备所得的材料扫描电子显微镜图。
图6是实施例2制备所得的材料扫描电子显微镜图。
图7是实施例1制备所得的材料扫描透射电子显微镜图。
图8是实施例1制备所得的材料充放电曲线图。
图9是实施例1制备所得的材料的0.2C电流下的300圈循环性能图。
图10是实施例1制备所得的材料的5C电流下的800圈循环性能图。
图11是实施例2制备所得的材料的倍率性能图。
图12是实施例2制备所得的材料5C电流下循环800圈后的透射电镜及EDS能谱图。
图13是实施例3制备所得的材料的恒电流间歇滴定图。
图14是实施例3制备所得的材料的首圈及二圈的放电容量图。
图15是实施例3制备所得的材料的前五圈CV图。
图16是实施例3制备所得的材料的磁性能图。
具体实施方式
下面通过具体的实施例对本发明进行进一步阐明。
实施例1
本实施例中,制备方法的工艺如下:
A、按照化学式Na2Fe2(SO4)3的配比,称取无水Na2SO4 1mol(分析纯,纯度>99.5%)142.75g以及无水FeSO42mol(分析纯,纯度>99.0%)307.07g,硬脂酸(分析纯,纯度>99%)86.20g(0.3mol),抗坏血酸(分析纯,纯度>99%)30.90g(5wt%),乙醇(分析纯,纯度>99.5%)35ml作为助磨剂。然后加入至含有氧化锆砂磨珠(3.09kg,与物料比为5:1)的砂磨罐中,后将该砂磨罐置于手套箱中用氩气作为惰性气氛保护并完成组装。设定转速800转/分钟,总运行时间18h。
B、前驱体粉末的干燥
将步骤A所得的流变相的材料放置于氩气气氛保护下的干燥烘箱内,60℃干燥24h。
C、前驱体粉末的煅烧
将步骤B中已干燥的前驱体粉末放置于箱式反应炉中,先加入氩气气氛保护,经一步升温程序-2℃/min升至330℃煅烧12h后冷却即可得最终材料。
D、NFS@C@rGO最终产物的制备
将市售氧化石墨烯放置于管式炉中,并通高纯氩气保护。之后迅速升温至1100℃,保持1h后自然冷却至室温。称取该氧化还原石墨烯1g于1L纯乙醇溶液中,在氩气气氛的保护下超声24h,然后加入步骤C所得的已煅烧的NFS材料446.0g,经充分冷冻干燥后即可得到NFS@C@rGO最终产物。
本实施例所得的材料同步辐射X射线源测试所得的粉末衍射谱图及精修结果见图1。具体占位信息见表1。精修结果示意图见图3,其形貌及碳包覆情况见图5及图7。
表1
Figure PCTCN2017101529-appb-000001
充放电性能测试:按质量比80:13:7称取本实施例制备的Na2Fe2(SO4)3@C@rGO正极材料、乙炔黑和聚偏氟乙烯(PVDF),加入到适量N-甲基吡咯烷酮中调成浆料后涂覆到铝箔上(面密度在2~3mg cm-2),在120℃真空干燥(真空度0.094MPa)12h,然后裁切成正 极片并于20MPa下进行压片。以金属钠片为负极,SIGMA-ALDRICH公司生产的玻璃纤维为隔膜,在充满氩气的手套箱中装配成型号为CR2032的扣式电池。在1.9~4.25V的电压范围内进行电化学性能测试,结果表明本实施例制备的正极材料具有较为优异的电化学性能,在0.1C(1C=120mA g-1)的电流密度下能够得到107.9mAh g-1的放电比容量(图8)。同时,在0.2C的放电倍率下,循环300圈后其容量保持率可达90.1%(图9);在5C的放电倍率下,循环800次后容量保持率仍可达到80.1%(图10)。
实施例2
本实施例中,制备方法的工艺如下:
A、按照化学式Na1.5Fe2.25(SO4)3的配比,称取无水Na2SO4 0.75mol(分析纯,纯度>99.5%)107.06g以及无水FeSO4 2.25mol(分析纯,纯度>99.0%)345.45g,柠檬酸(分析纯,纯度>99%)57.6g(0.3mol),抗坏血酸(分析纯,纯度>99%)18.54g(3wt%),丙酮(分析纯,纯度>99.5%)35ml作为助磨剂。然后加入至含有氧化锆砂磨珠(4.82kg,与物料比为10:1)的砂磨罐中,后将该砂磨罐置于手套箱中用氩气作为惰性气氛保护并完成组装。设定转速1200转/分钟,总运行时间12h。
B、前驱体粉末的干燥
将步骤A所得的流变相的材料放置于氩气气氛保护下的干燥烘箱内,60℃干燥24h。
C、前驱体粉末的煅烧
将步骤B中已干燥的前驱体粉末放置于箱式反应炉中,先加入氩气气氛保护,经一步升温程序-2℃/min升至370℃煅烧24h后冷却即可得最终材料。
D、NFS@C@rGO最终产物的制备
将市售氧化石墨烯放置于管式炉中,并通高纯氩气保护。之后迅速升温至1100℃,保持1h后自然冷却至室温。称取该氧化还原石墨烯1g于1L纯乙醇溶液中,在氩气气氛的保护下超声24h,然后加入步骤C所得的已煅烧的NFS材料446.0g,经充分冷冻干燥后即可得到NFS@C@rGO最终产物。
本实施例所得的材料同步辐射X射线源测试所得的粉末衍射谱图及精修结果见图2。具体占位信息见表2。精修结果示意图见图4,其形貌及碳包覆情况见图6。
表2
Figure PCTCN2017101529-appb-000003
充放电性能测试:按质量比80:13:7称取本实施例制备的Na1.5Fe2.25(SO4)3@C@rGO正极材料、乙炔黑和聚偏氟乙烯(PVDF),加入到适量N-甲基吡咯烷酮中调成浆料后涂覆到铝箔上(面密度在2~3mg cm-2),在120℃真空干燥(真空度0.094MPa)12h,然后裁切成正极片并于20MPa下进行压片。以金属钠片为负极,SIGMA-ALDRICH公司生产的玻璃纤维为隔膜,在充满氩气的手套箱中装配成型号为CR2032的扣式电池。在1.9~4.25V的电压范围内进行电化学性能测试,结果表明本实施例制备的正极材料具有较为优异的电化学性能。倍率性能图见图11,5C放电电流下循环800圈后的透射电镜及EDS能谱图见图12。这些结果表明在Na2-2βFe2+β(SO4)3@C@rGO(0≤β≤1/4)的β值范围内,其β值两端所得的化学式均有较为优异的电化学性能。
实施例3
本实施例中,制备方法的工艺如下:
A、按照化学式Na1.75Fe2.125(SO4)3的配比,称取无水Na2SO4 0.875mol(分析纯,纯度>99.5%)124.91g以及无水FeSO4 2.125mol(分析纯,纯度>99.0%)326.26g,蔗糖(分析纯,纯度>99%)102.69g(0.3mol),抗坏血酸(分析纯,纯度>99%)18.7g(4wt%),乙二醇(分析纯,纯度>99.5%)35ml作为助磨剂。然后加入至含有氧化锆砂磨珠(3.49kg,与物料比为7.5:1)的砂磨罐中,后将该砂磨罐置于手套箱中用氩气作为惰性气氛保护并完成组装。设定转速1000转/分钟,总运行时间15h。
B、前驱体粉末的干燥
将步骤A所得的流变相的材料放置于氩气气氛保护下的干燥烘箱内,60℃干燥24h。
C、前驱体粉末的煅烧
将步骤B中已干燥的前驱体粉末放置于箱式反应炉中,先加入氩气气氛保护,经一步升温程序-2℃/min升至350℃煅烧18h后冷却即可得最终材料。
D、NFS@C@rGO最终产物的制备
将市售氧化石墨烯放置于管式炉中,并通高纯氩气保护。之后迅速升温至1100℃,保持1h后自然冷却至室温。称取该氧化还原石墨烯1g于1L纯乙醇溶液中,在氩气气氛的保护下超声24h,然后加入步骤C所得的已煅烧的NFS材料446.0g,经充分冷冻干燥后即可得到NFS@C@rGO最终产物。
充放电性能测试:按质量比80:13:7称取本实施例制备的Na1.5Fe2.25(SO4)3@C@rGO正极材料、乙炔黑和聚偏氟乙烯(PVDF),加入到适量N-甲基吡咯烷酮中调成浆料后涂覆到铝箔上(面密度在2~3mg cm-2),在120℃真空干燥(真空度0.094MPa)12h,然后裁切成正极片并于20MPa下进行压片。以金属钠片为负极,SIGMA-ALDRICH公司生产的玻璃纤维为隔膜,在充满氩气的手套箱中装配成型号为CR2032的扣式电池。在1.9~4.25V的电压范围内进行电化学性能测试,结果表明本实施例制备的正极材料具有较为优异的电化学性能。
该实施例所得的恒电位滴定测试结果见图13。首圈充放电曲线见图14。前五圈CV曲线见图15。磁性测试结果见图16。
在本发明所述正极材料化学式范围内,依上述具体实施例所得的材料均有良好的电化学性能及循环稳定性,是一种极具前景的高电位钠离子电池正极材料。

Claims (10)

  1. 一种新型高电位聚阴离子型钠离子电池正极材料的制备方法,其特征在于该制备方法的步骤如下:
    A、前驱体粉末的制备
    按照化学式I计量称取无水硫酸钠、无水硫酸亚铁作为原料,与碳源、抗氧化剂,共同置于砂磨机的砂磨罐中;接着加入助磨溶剂,然后加入砂磨珠进行砂磨;
    Na2-2βFe2+β(SO4)3@C@rGO式I,其中,0≤β≤1/4;
    B、前驱体粉末的干燥
    将步骤A所得的流变相的材料放置于氩气气氛保护下的干燥烘箱内干燥;
    C、前驱体粉末的煅烧
    将步骤B中已干燥的前驱体粉末放置于箱式反应炉中,在氩气气氛保护下煅烧,然后冷却;
    D、最终产物的制备
    将步骤C已煅烧的材料加入氧化还原石墨烯悬浊液中,经充分冷冻干燥后得到所述Na2-2βFe2+β(SO4)3@C@rGO(0≤β≤1/4)终产物。
  2. 根据权利要求1所述的制备方法,其特征在于所述碳源为柠檬酸、硬脂酸、蔗糖中的至少一种。
  3. 根据权利要求1所述的制备方法,其特征在于所述碳源的添加量占总原料摩尔的8-10mol%。
  4. 根据权利要求1所述的制备方法,其特征在于所述抗氧化剂为抗坏血酸。
  5. 根据权利要求1所述的制备方法,其特征在于所述抗氧化剂的添加量占总原料质量的3~5wt%。
  6. 根据权利要求1所述的制备方法,其特征在于助磨溶剂为丙酮、乙醇、乙二醇中的至少一种。
  7. 根据权利要求1所述的制备方法,其特征在于原料与砂磨珠的质量比为1:5-1:10。
  8. 根据权利要求1所述的制备方法,其特征在于所用砂磨机转速为800~1200转/分钟,运行时间为12~18h。
  9. 根据权利要求1所述的制备方法,其特征在于煅烧温度为330~370℃,保温时间为12~24h。
  10. 根据权利要求1-9中任一项权利要求所述制备方法得到的钠离子电池正极材料,其特征在于它具有如下化学式:Na2-2βFe2+β(SO4)3@C@rGO,其中0≤β≤1/4,它具有单斜晶体结构,属于C2/c空间群。
PCT/CN2017/101529 2017-09-13 2017-09-13 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法 WO2019051662A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/101529 WO2019051662A1 (zh) 2017-09-13 2017-09-13 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法
CN201780085446.0A CN110326136B (zh) 2017-09-13 2017-09-13 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101529 WO2019051662A1 (zh) 2017-09-13 2017-09-13 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019051662A1 true WO2019051662A1 (zh) 2019-03-21

Family

ID=65723235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101529 WO2019051662A1 (zh) 2017-09-13 2017-09-13 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110326136B (zh)
WO (1) WO2019051662A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314549A (zh) * 2021-12-28 2022-04-12 陕西煤业化工技术研究院有限责任公司 一种石墨烯包覆锂离子电池正极材料及其制备方法
CN115020681A (zh) * 2022-07-14 2022-09-06 江苏众钠能源科技有限公司 一种碳包裹的硫酸铁钠正极材料及其制备方法
CN115050934A (zh) * 2022-05-31 2022-09-13 四川大学 疏水亲油的Na2Fe2(SO4)3/C正极材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050246B (zh) * 2021-11-16 2023-02-07 郑州大学 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池
CN115385380B (zh) * 2022-06-16 2024-04-12 深圳珈钠能源科技有限公司 钠离子电池正极材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244100A1 (en) * 2012-03-15 2013-09-19 Imra America, Inc. Iron phosphates: negative electrode materials for aqueous rechargeable sodium ion energy storage devices
CN103858258A (zh) * 2011-10-25 2014-06-11 丰田自动车株式会社 负极活性物质和使用了它的金属离子电池
CN105355886A (zh) * 2015-11-27 2016-02-24 中南大学 一种钠离子电池正极Na2+2xFe2-x(SO4)3@碳复合材料及其制备方法
CN105810920A (zh) * 2016-06-02 2016-07-27 东莞市迈科新能源有限公司 一种有机体系钠离子电池负极材料的制备方法
CN106784727A (zh) * 2017-01-17 2017-05-31 东莞市迈科新能源有限公司 一种聚阴离子型钠离子电池正极材料及其制备方法
CN106848236A (zh) * 2017-02-20 2017-06-13 中南大学 一种用于钠离子电池的硫酸亚铁钠/石墨烯复合正极材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2987498B1 (fr) * 2012-02-29 2017-08-11 Univ Picardie Sulfates utiles comme materiaux d'electrode
JP6423794B2 (ja) * 2013-09-11 2018-11-14 国立大学法人 東京大学 ナトリウムイオン二次電池用正極材料
EP3258532B1 (en) * 2015-02-13 2020-12-16 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences All-solid-state polymer electrolyte, and preparation and application thereof
US10673065B2 (en) * 2015-04-07 2020-06-02 Brown University Cation energy storage device and methods
JP2018518030A (ja) * 2015-06-19 2018-07-05 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク Na−イオン電池用正極複合材料の製造方法
JP6583434B2 (ja) * 2016-01-06 2019-10-02 株式会社村田製作所 非水系二次電池、並びに、非水系二次電池用の正極活物質及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858258A (zh) * 2011-10-25 2014-06-11 丰田自动车株式会社 负极活性物质和使用了它的金属离子电池
US20130244100A1 (en) * 2012-03-15 2013-09-19 Imra America, Inc. Iron phosphates: negative electrode materials for aqueous rechargeable sodium ion energy storage devices
CN105355886A (zh) * 2015-11-27 2016-02-24 中南大学 一种钠离子电池正极Na2+2xFe2-x(SO4)3@碳复合材料及其制备方法
CN105810920A (zh) * 2016-06-02 2016-07-27 东莞市迈科新能源有限公司 一种有机体系钠离子电池负极材料的制备方法
CN106784727A (zh) * 2017-01-17 2017-05-31 东莞市迈科新能源有限公司 一种聚阴离子型钠离子电池正极材料及其制备方法
CN106848236A (zh) * 2017-02-20 2017-06-13 中南大学 一种用于钠离子电池的硫酸亚铁钠/石墨烯复合正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUBIN NIU ET AL.: "Electrospun graphene-wrapped Na6.24Fe4.88(P207)4 nanofi- bers as a high-performance cathode for sodium-ion batteries", PHYS. CHEM. CHEM. PHYS., vol. 19, no. 26, 2 June 2017 (2017-06-02), pages 17270 - 17277, XP055583751, ISSN: 1463-9084 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314549A (zh) * 2021-12-28 2022-04-12 陕西煤业化工技术研究院有限责任公司 一种石墨烯包覆锂离子电池正极材料及其制备方法
CN115050934A (zh) * 2022-05-31 2022-09-13 四川大学 疏水亲油的Na2Fe2(SO4)3/C正极材料及其制备方法
CN115050934B (zh) * 2022-05-31 2024-01-30 四川大学 疏水亲油的Na2Fe2(SO4)3/C正极材料及其制备方法
CN115020681A (zh) * 2022-07-14 2022-09-06 江苏众钠能源科技有限公司 一种碳包裹的硫酸铁钠正极材料及其制备方法
CN115020681B (zh) * 2022-07-14 2024-05-07 江苏众钠能源科技有限公司 一种碳包裹的硫酸铁钠正极材料及其制备方法

Also Published As

Publication number Publication date
CN110326136A (zh) 2019-10-11
CN110326136B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN110226252B (zh) 一种聚阴离子型钠离子电池正极材料及其制备方法
WO2018133339A1 (zh) 一种聚阴离子型钠离子电池正极材料及其制备方法
Liu et al. Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
WO2019051662A1 (zh) 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法
Zhang et al. Li4Ti5O12 prepared by a modified citric acid sol–gel method for lithium-ion battery
Su et al. 3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high-low temperature anode for Na-ion storage
CN105845889B (zh) 一种NiCo2O4复合材料及其制备方法和其在锂离子电池上的应用
CN109817949B (zh) 硅或其氧化物@二氧化钛@碳核壳结构复合颗粒及制备
CN108155353B (zh) 一种石墨化碳包覆电极材料及其制备方法和作为储能器件电极材料的应用
Li et al. Nano-sized Li4Ti5O12 anode material with excellent performance prepared by solid state reaction: The effect of precursor size and morphology
WO2015051627A1 (zh) 棒状纳米氧化铁电极材料及其制备方法和应用
Wang et al. One-step hydrothermal reduction synthesis of tiny Sn/SnO2 nanoparticles sandwiching between spherical graphene with excellent lithium storage cycling performances
CN107093739A (zh) 钾离子电池正极材料用钾锰氧化物及其制备方法
Feng et al. Preparation of SnO2 nanoparticle and performance as lithium-ion battery anode
CN104979541A (zh) 一种钛酸锂复合材料及其制备方法
CN106207150A (zh) 一种喷雾冷冻干燥制备锂电负极材料钛酸锂的方法
Yang et al. Insights into electrochemical performances of NiFe2O4 for lithium-ion anode materials
WO2016165262A1 (zh) 一种掺杂钛酸锂负极材料的制备方法
CN110880589A (zh) 一种纳米碳管@二氧化钛纳米晶@碳的复合材料及其制备方法和应用
Yuan et al. ZnSe@ C core-shell microspheres as potential anode material for sodium ion batteries
CN105161678A (zh) 一种用于锂电池电极的多层复合二氧化钛纳米管材料
Deng et al. One-dimensional Ti2Nb10O29 nanowire for enhanced lithium storage
CN107665972B (zh) 一种高性能钾离子电池负极材料的Sn@C材料制备方法
CN111769257A (zh) 一种超薄碳包覆二氧化锡纳米复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925502

Country of ref document: EP

Kind code of ref document: A1