WO2013061705A1 - 鋼材の表面処理方法、塗装方法および機械部材の製造方法 - Google Patents

鋼材の表面処理方法、塗装方法および機械部材の製造方法 Download PDF

Info

Publication number
WO2013061705A1
WO2013061705A1 PCT/JP2012/073363 JP2012073363W WO2013061705A1 WO 2013061705 A1 WO2013061705 A1 WO 2013061705A1 JP 2012073363 W JP2012073363 W JP 2012073363W WO 2013061705 A1 WO2013061705 A1 WO 2013061705A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
surface treatment
treatment method
steel
water washing
Prior art date
Application number
PCT/JP2012/073363
Other languages
English (en)
French (fr)
Inventor
春司 森田
恒夫 楯
明 塩澤
Original Assignee
株式会社小松製作所
コーテック株式会社
日本化材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所, コーテック株式会社, 日本化材株式会社 filed Critical 株式会社小松製作所
Priority to US14/350,724 priority Critical patent/US9752225B2/en
Priority to CN201280051867.9A priority patent/CN103890231A/zh
Priority to JP2013540699A priority patent/JP6025739B2/ja
Publication of WO2013061705A1 publication Critical patent/WO2013061705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • C23C22/47Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a steel material surface treatment method, a coating method, and a machine member manufacturing method.
  • the treatment liquid containing zinc phosphate has a problem that it contains a lot of heavy metal ions that affect the environment.
  • zinc phosphate itself is a deleterious substance, it has a problem of cost increase such as requiring a dedicated facility for the treatment (for example, see Patent Document 1).
  • treatment liquids mainly composed of malic acid, orthophosphoric acid or the like have been developed and used for surface treatment of some parts as treatment liquids that have a low environmental impact and are safe for work.
  • JP 2010-106334 A (published on May 13, 2010)
  • the conventional steel surface treatment method has the following problems.
  • the phosphate film that obtains a fine crystal structure by adding organic acid such as malic acid with orthophosphoric acid as the main component is compared with the phosphate film with a relatively large crystal structure such as the conventional zinc phosphate film.
  • the crystal structure is fine, unstable phosphates and electrolytes remaining on the crystal surface in the treatment process tend to adversely affect the adhesion to the coating.
  • An object of the present invention is to provide a surface treatment method for steel, which can simplify the process and reduce costs while ensuring the same or better corrosion resistance and adhesion as when using a treatment liquid containing zinc phosphate, and coating It is to provide a method and a method for manufacturing a mechanical member.
  • the steel material surface treatment method according to the first invention includes a rust prevention step, a rinse step, and a cleaning step.
  • a rust prevention process performs a rust prevention process on the surface of steel materials using a rust prevention liquid containing orthophosphoric acid and an organic acid.
  • the surface of the steel material is rinsed using a treatment liquid containing a transition metal oxoacid salt.
  • the cleaning process the surface of the steel material after the rinsing process is cleaned.
  • the steel material surface treatment method according to the second invention is a steel material surface treatment method according to the first invention, and further includes a degreasing step of removing oil and fat on the surface of the steel material using a degreasing liquid.
  • the steel material surface treatment method according to the third invention is a steel material surface treatment method according to the second invention, and further includes a first water washing step of washing the surface of the steel material after the degreasing step.
  • a steel material surface treatment method according to a fourth invention is a steel material surface treatment method according to any one of the first to third inventions, wherein a treatment liquid containing orthophosphoric acid and an organic acid is used to prevent the steel material from being treated.
  • a second water washing step for washing the surface of the steel material after the rust step is further provided.
  • a steel material surface treatment method according to a fifth invention is a steel material surface treatment method according to any one of the first to fourth inventions, wherein a spraying step of spraying water on the surface of the steel material after the cleaning step. Is further provided.
  • a steel material surface treatment method according to a sixth invention is a steel material surface treatment method according to any one of the first to fifth inventions, wherein dihydrogen phosphate is used in the rust prevention step and the second water washing step.
  • a treatment liquid containing sodium hydrate, a fluorosurfactant and specially modified ionized water is used.
  • a steel material surface treatment method according to a seventh invention is the steel material surface treatment method according to any one of the first to sixth inventions, wherein the transition metal oxoacid salt and the specially modified ionized water are used in the rinsing step. Is used.
  • a steel material surface treatment method according to an eighth invention is the steel material surface treatment method according to any one of the first to seventh inventions, wherein the transition metal oxo contained in the treatment liquid used in the rinse step
  • the acid salt is any one of tungstate, molybdate, and zirconate.
  • a steel material surface treatment method according to a ninth invention is a steel material surface treatment method according to any one of the first to eighth inventions, and in the rust prevention step, the steel material is rusted and a phosphate film. Processing is performed simultaneously.
  • a steel material surface treatment method according to a tenth invention is the steel material surface treatment method according to any one of the first to ninth inventions, wherein the first water washing step is repeatedly performed in a plurality of times.
  • a steel material surface treatment method according to an eleventh aspect of the invention is the steel material surface treatment method according to any one of the first to tenth aspects of the invention, and ultrasonic waves or sprays are used in the second water washing step.
  • a steel material coating method performs a coating process on a steel material treated by the steel material surface treatment method according to any one of the first to eleventh aspects of the invention.
  • a mechanical member manufacturing method using the steel material coated by the steel material coating method according to the twelfth aspect of the invention.
  • a mechanical member manufacturing method according to a fourteenth invention is a mechanical member manufacturing method according to the thirteenth invention, wherein the mechanical member is a hydraulic pipe of a hydraulic excavator.
  • the flowchart which shows the flow of the surface treatment method of the steel materials which concern on one Embodiment of this invention.
  • the figure which shows the structure of the process liquid used in each process of the surface treatment method of FIG. The whole perspective view which shows the structure of the hydraulic shovel carrying the hydraulic piping processed by the surface treatment method of FIG.
  • (A) is a figure which shows the shape of the membrane
  • (B) is a comparison figure which shows the shape of the membrane
  • the steel material surface treatment method according to the present embodiment is a pretreatment step that is performed as a pre-painting treatment of a hydraulic pipe 11a (see FIG. 4) mounted on the hydraulic excavator 1, for example, as shown in FIG. , Degreasing step (S1), first water washing step (S2), rust prevention step (S3), second water washing step (S4), rinsing step (S5), washing step (S6), spraying step (S7) are performed in this order. Thereafter, a painting step (S8) is performed.
  • the steel material is provided on the surface of the boom 11 of the working machine 4 mounted on the hydraulic excavator 1 on the cab 10 side.
  • the degreasing liquid at 40 to 70 ° C. is immersed or sprayed.
  • the processing liquid containing a component as shown in FIG. 3 can be used for the degreasing liquid # 5000 used here.
  • Sodium silicate sodium silicate, water glass: 20-50 wt% (CAS registration number: 1344-09-8 (American Chemical Society))
  • Diphosphate Pyrophosphate: 0.02-2.00 wt% (CAS registration number: 2466-09-3 (American Chemical Society))
  • Specially modified ionized water 50 to 70 wt% (CAS registration number: 7732-18-5 (American Chemical Society))
  • the steel material treated in the degreasing step (S1) is immersed in fresh water (well water) for 1 to 2 minutes.
  • the steel material treated in the first water washing step (S2) is mainly composed of orthophosphoric acid at 40 to 50 ° C. for the purpose of obtaining a fine crystal structure.
  • the treatment liquid for example, a 5- to 10-fold diluted liquid of Appre Hybrid (registered trademark) liquid (manufactured by Nippon Kayaku Co., Ltd.) can be used.
  • Appre Hybrid liquid the process liquid containing a component as shown in FIG. 3 can be used.
  • Phosphoric acid (orthophosphoric acid): 2.0 to 60.0 wt% (CAS registration number: 7664-38-2 (American Chemical Society)) DL-malic acid: 0.02 to 5 wt% (CAS registration number: 617-48-1 (American Chemical Society)) Sodium dihydrogen phosphate dihydrate: 0.01 to 5 wt% (CAS registration number: 13472-35-0 (American Chemical Society)) Fluorosurfactant: 0.01 to 0.15 wt% (CAS registration number: 68391-08-2 (American Chemical Society))
  • This solution is an aqueous solution, and as water to be used, fresh water having an electric conductivity of 20 ⁇ S or less, or specially modified ionized water (CAS registration number: 7732-18-5 (American Chemical Society)) is used. .
  • the organic acid contained in the Appre Hybrid solution in addition to the malic acid (DL-malic acid), tartaric acid, citric acid, oxalic acid and the like can be considered.
  • oxalic acid can be used as the organic acid. It is known that when a surface treatment is performed using malic acid, tartaric acid or citric acid, a very fine crystal structure can be obtained.
  • oxalic acid when oxalic acid is used, although the crystal becomes large, it is possible to obtain a crystal structure that is finer than the conventional zinc-based phosphate-treated film and has a uniform crystal shape. For this reason, it confirmed that the performance equivalent to the fine crystal structure obtained by surface treatment using malic acid etc. was obtained. Moreover, it was confirmed similarly that adhesion and corrosion resistance improve by using this process.
  • the mixing ratio of the organic acid is 0.02 to 5.00 wt%, more preferably 0.1 to 0.5 wt%.
  • a treatment liquid containing an organic acid as an Appre Hybrid liquid that forms a microstructured film on the surface of a steel material, it is possible to locally form a metal complex and promote metal elution.
  • Phosphate ions are considered to contribute to the formation of a fine crystal structure by reacting with the eluted metal complex.
  • the fluorine-containing surfactant contained in the above-mentioned Appre Hybrid solution is a substitute for a hydrogen atom in the alkyl chain with a fluorine atom, which is physicochemically stable and does not contain a fluorine atom. And has a low surface tension.
  • a nonionic surfactant it is thought that by using a nonionic surfactant, a fine structure film is formed on the metal surface due to the structure of the hydrophilic portion, and a better rust prevention effect is exhibited. Therefore, in this embodiment, by adding a nonionic fluorosurfactant to the Appre Hybrid liquid, the permeability is promoted and a microstructured film is formed on the steel material surface.
  • the nonionic fluorosurfactant is not particularly limited, but is a perfluoroalkylethylene oxide adduct, a fluorine-containing group / hydrophilic group / new oil group-containing oligomer (for example, perfluoroalkyl sulfone). At least one compound selected from the group consisting of acid compounds and perfluoroalkyl oxide adducts) can be used.
  • the blending ratio of the nonionic fluorosurfactant is preferably in the range of 0.01 to 0.15 wt%, more preferably 0.01 to 0.1 wt%. This is because it is difficult to obtain the effect when the blending ratio is less than 0.01 wt%, and the economic effect becomes poor due to cost increase when the blending ratio is 0.15 wt% or more.
  • sodium dihydrogen phosphate dihydrate contained in the above-mentioned Appre Hybrid liquid functions strongly as an auxiliary agent for forming an ultrafine film on the steel surface.
  • further performance improvements such as rust prevention performance, effect as a coating base film, anchor effect, and improvement of current-carrying characteristics are expected.
  • the blending ratio of sodium dihydrogen phosphate dihydrate is 0.01 to 5.00 wt%, more preferably 0.02 to 0.50 wt%.
  • the steel material treated in the rust prevention step (S3) using the 100-fold diluted solution of the Appre Hybrid liquid used in the rust prevention step (S3) is used.
  • the water washing process by an ultrasonic wave or a spray is performed.
  • a transmitter (not shown) that generates ultrasonic waves of 28 kHz can be processed to reciprocate three times along the longitudinal direction of the hydraulic pipe 11a. .
  • the ultrasonic wave in the case of performing an immersion process by a tank system and the spray process implemented by other than that can be used properly, for example.
  • ultrasonic treatment may be performed on a pipe-shaped steel material such as the hydraulic piping 11a (see FIG. 4), and spray processing may be performed on a plate-shaped or rod-shaped steel material. Thereby, it is possible to reliably perform the surface treatment regardless of the shape of the steel material.
  • the steel material treated in the second water washing step (S4) is immersed in a T rinse solution (manufactured by Nippon Kasei Co., Ltd.) for 1 to 2 minutes. To do.
  • a T rinse liquid used here the process liquid containing a component as shown in FIG. 3 can be used.
  • Modified sodium tungstate (transition metal oxoacid salt): 5 to 50 wt% (CAS registration number: 10213-10-2 (American Chemical Society))
  • Specially modified ionized water 50 to 95 wt% (CAS registration number: 7732-18-5 (American Chemical Society))
  • the steel material treated in the rinsing step (S5) is immersed in fresh water (well water) at 40 to 70 ° C. for 3 minutes.
  • fresh water of 40 to 70 ° C. is used to promote drying of moisture on the surface of the steel material.
  • the present invention is not limited to this, and for example, using normal temperature water. Also good.
  • pure water is sprayed for about 30 seconds onto the steel material processed in the cleaning step (S6).
  • 20 ⁇ S preferably 10 ⁇ S or less
  • the surface treatment of the steel material before coating is performed by the above-described steps, thereby forming a microstructured film on the steel material surface while reducing the number of steps compared to the conventional method. Can do. For this reason, when coating is performed on this surface, the coating material enters the fine structure and the adhesion can be improved by an anchor effect with the steel material.
  • a fine structure film including a dense crystal structure can be formed on the surface of the steel material depending on the characteristics of each treatment liquid, so that foreign matter such as crystal water accumulates inside the crystal. It is difficult to obtain thermal characteristics excellent in heat cycle characteristics.
  • the PFE-CR displayed in the test results shown in FIGS. 5 and 6 is a surface treatment of the present invention for a steel plate (SPCC-SD (JIS G3141 steel plate (100 ⁇ 70 ⁇ 0.8 mmt))).
  • the test result by the test piece surface-treated by the method is shown.
  • the PFE-CR is a test piece coated with a powder 1 coat (Evaclad 8010 natural manufactured by Kansai Paint Co., Ltd.) after the surface treatment using the Appre Hybrid liquid described in the above embodiment. is there.
  • PZ Zinc-based phosphate coating
  • SPCC-SD JIS G3141 steel plate (100 ⁇ 70 ⁇ 0.8 mmt)
  • the test result by the test piece surface-treated with the process liquid containing zinc is shown.
  • PZ is a test piece that has been treated with Partec's industrial zinc phosphate and then coated with 1 powder powder (Evaclad 8010 natural manufactured by Kansai Paint Co., Ltd.) in the same manner as PFE-CR.
  • FIG. 5 shows the results of a scratch hardness test and an adhesion test performed on the steel material that has been treated by the surface treatment method for steel according to the present invention and then coated.
  • the quality required here is a pencil hardness F or more in the case of a printing enamel.
  • both the PFE-CR test piece and the PZ test piece had a scratch hardness equivalent to the pencil hardness H or higher. That is, in the scratch hardness test, the same results were obtained with the steel material surface treatment method of the present invention and the conventional steel material surface treatment method.
  • Adhesion test Next, the adhesion test was performed in accordance with JIS D 0202 (General Rules for Coating Films of Automobile Parts 3.14 Cross-bond adhesion). However, the test was performed with the interval between cuts in the adhesion test being 2.0 mm and the number of squares being 100.
  • the quality required here is a state in which the coating is not peeled in 95 to 100 squares out of 100 squares. As a result, it was found that in both the PFE-CR test piece and the PZ test piece, the coating was not peeled in 100 squares out of 100 squares. That is, in the adhesion test, the same results were obtained with the steel surface treatment method of the present invention and the conventional steel surface treatment method.
  • FIG. 6 shows a result of a corrosion resistance test performed on the steel material that has been coated by the steel material surface treatment method of the present invention and then coated.
  • test piece tested using the same test piece as what was used by the scratch hardness test and adhesion test mentioned above.
  • corrosion resistance test in accordance with JIS K 5600-7-1, using a single blade defined in JIS K 5600-5-6 on the exposed surface, diagonally inward 20 mm from the end of the test piece. Salt water is sprayed on the crossed scratched test pieces, and the width and swelling of the rust portion generated in part of the coating after 120 hours, 240 hours, 480 hours, 600 hours, and 720 hours A test was conducted to confirm the salt spray corrosion performance by measuring the width of the part.
  • the test piece of the present invention obtained the same test result as the conventional test piece for all the test pieces.
  • the rust width after 240 hours was 1.4 mm.
  • the test pieces 1, 2, 4 and 5 have both the rust width and the swollen width after 240 hours of less than 1.0 mm. Met. And the test piece 3 had a rust width of 1.2 mm when 240 hours had elapsed.
  • the test pieces of the present invention obtained the test results superior to the conventional test pieces for all the test pieces.
  • the rust width after 480 hours was 1.9 mm.
  • the test pieces 2, 3, 4, and 5 have a rust width of 1.2 mm, 1.8 mm when 480 hours have elapsed, They were 1.6 mm and 1.4 mm.
  • the swelling width at the time of 480 h passage of the test piece 1 was 1.4 mm.
  • the test piece of the present invention obtained a test result superior to the conventional test piece for all the test pieces.
  • the rust width after the elapse of 600 hours was 2.5 mm.
  • the test pieces 2, 3, 4, and 5 have a rust width of 2.0 mm, 2.5 mm when 600 hours have elapsed, 2.3 mm and 2.5 mm.
  • the test piece 1 had a swollen width of 1.9 mm after 600 hours.
  • the test piece of the present invention obtained a test result superior to the conventional test piece.
  • the rust width after 720 hours was 3.0 mm.
  • the test pieces 2, 3, 4, and 5 have a rust width of 2.7 mm, 2.6 mm after 720 hours, It was 2.5 mm and 2.9 mm.
  • the swelling width at the time of 720 h progressing of the test piece 1 was 2.0 mm.
  • the test piece of this invention obtained the test result superior to the conventional test piece about all the test pieces.
  • the steel material surface treatment method of the present invention obtained results equivalent to or better than the conventional steel material surface treatment method in the corrosion resistance test.
  • FIG. 7A shows an enlarged image of 10,000 times taken by an SEM (scanning electron microscope).
  • FIG.7 (b) has shown the 10,000 times magnified image which image
  • the phosphate treatment film using the above-described antirust anticorrosive solution containing orthophosphoric acid as a main component and added with an organic acid resulted in clearly inferior adhesion and corrosion resistance.
  • a phosphatized film having a fine crystal structure has a higher performance due to iron ions, phosphorus ions, or unstable crystal components generated on the film surface or remaining on the film surface during the film formation process. It is presumed that it was inhibited.
  • the inventors have obtained the effects of preventing excessive elution of the material and stabilizing the fine crystal structure on the surface of the steel material by the T rinse solution used in the present invention. It was thought that the anchor effect was promoted and stabilized.
  • T rinse solution containing other transition metal oxoacid salts such as molybdate and zirconate may be used.
  • the surface treatment method including a degreasing process, a 1st water washing process, a rust prevention process, a 2nd water washing process, a rinse process, a washing process, and a spray process was given and demonstrated.
  • the present invention is not limited to this.
  • the degreasing step is not an essential step in the present invention when, for example, a steel material that does not require degreasing is used.
  • the first water washing step, the second water washing step, and the spraying step are not essential steps for obtaining the effects of the present invention.
  • an Appre Hybrid liquid using distilled water or the like may be used.
  • water having an electric conductivity of 20 ⁇ S or less from the viewpoint of corrosion performance.
  • the present invention may be applied to painting (manufacturing) of other mechanical members used for other construction machines such as a hydraulic excavator, and mechanical members to be used for various vehicles.
  • it may be determined whether to use ultrasonic waves or spray depending on the shape of the mechanical member.
  • the steel material surface treatment method of the present invention simplifies the process and reduces costs while ensuring equivalent or better corrosion resistance and adhesion than the conventional steel material surface treatment method using a zinc phosphate treatment solution. Since it has an effect that it can be achieved, it can be widely used as a surface treatment of steel before coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 本表面処理方法は、防錆工程と、リンス工程と、洗浄工程と、を備えている。防錆工程は、オルトリン酸および有機酸を含む防錆液を用いて鋼材の表面に防錆処理を行う。リンス工程は、遷移金属オキソ酸塩を含む処理液を用いて鋼材の表面のリンス処理を行う。洗浄工程は、リンス工程後の鋼材の表面を洗浄処理する。

Description

鋼材の表面処理方法、塗装方法および機械部材の製造方法
 本発明は、鋼材の表面処理方法、塗装方法および機械部材の製造方法に関する。
 近年、油圧ショベル等の建設機械に用いられる機械部材には、塗装の耐食性、密着性を向上させるために、塗装前の下処理として様々な表面処理が実施されている。
 例えば、リン酸亜鉛を含む処理液を用いて、脱脂工程、第1水洗工程、酸洗工程、第2水洗工程、中和工程、第3水洗工程、表面調整工程、第4水洗工程、化成皮膜処理工程、第5水洗工程、湯洗工程を含む鋼材の表面処理方法があった。
 しかし、リン酸亜鉛を含む処理液には、環境に影響を及ぼす重金属イオンが多く含まれているという問題があった。また、リン酸亜鉛自体も劇物であるため、その処理を行う専用の設備が必要になる等、コストアップの問題を有していた(例えば、特許文献1参照)。
 このため、環境負荷が小さく作業上も安全な処理液として、リンゴ酸やオルトリン酸等を主成分とした処理液が開発され、一部の部品の表面処理に使用されている。
特開2010-106334号公報(平成22年5月13日公開)
 しかしながら、上記従来の鋼材の表面処理方法では、以下に示すような問題点を有している。
 すなわち、オルトリン酸を主成分としてリンゴ酸等の有機酸を加えることで微細な結晶構造を得るリン酸塩皮膜では、従来のリン酸亜鉛皮膜等の結晶構造が比較的大きいリン酸塩皮膜と比較して、結晶構造が微細であるために処理工程で結晶表面に残る不安定なリン酸塩や電解質が塗装との密着性等に悪影響を及ぼし易いという問題があった。
 本発明の課題は、リン酸亜鉛を含む処理液を用いた場合と同等以上の耐食性、密着性を確保しつつ、工程を簡素化してコストダウンを図ることが可能な鋼材の表面処理方法、塗装方法および機械部材の製造方法を提供することにある。
 第1の発明に係る鋼材の表面処理方法は、防錆工程と、リンス工程と、洗浄工程と、を備えている。防錆工程は、オルトリン酸および有機酸を含む防錆液を用いて、鋼材の表面に防錆処理を行う。リンス工程は、遷移金属オキソ酸塩を含む処理液を用いて、鋼材の表面のリンス処理を行う。洗浄工程は、リンス工程後の鋼材の表面を洗浄処理する。
 第2の発明に係る鋼材の表面処理方法は、第1の発明に係る鋼材の表面処理方法であって、脱脂液を用いて鋼材の表面の油脂を除去する脱脂工程を、さらに備えている。
 第3の発明に係る鋼材の表面処理方法は、第2の発明に係る鋼材の表面処理方法であって、脱脂工程後の鋼材の表面を洗浄する第1水洗工程を、さらに備えている。
 第4の発明に係る鋼材の表面処理方法は、第1から第3の発明のいずれか1つに係る鋼材の表面処理方法であって、オルトリン酸および有機酸を含む処理液を用いて、防錆工程後の鋼材の表面を洗浄する第2水洗工程を、さらに備えている。
 第5の発明に係る鋼材の表面処理方法は、第1から第4の発明のいずれか1つに係る鋼材の表面処理方法であって、洗浄工程後の鋼材の表面に水をスプレーするスプレー工程を、さらに備えている。
 第6の発明に係る鋼材の表面処理方法は、第1から第5の発明のいずれか1つに係る鋼材の表面処理方法であって、防錆工程および第2水洗工程では、リン酸二水素ナトリウム水和物、フッ素系界面活性剤、特殊変性イオン水を含む処理液が用いられる。
 第7の発明に係る鋼材の表面処理方法は、第1から第6の発明のいずれか1つに係る鋼材の表面処理方法であって、リンス工程では、遷移金属オキソ酸塩と特殊変性イオン水とを含む処理液が用いられる。
 第8の発明に係る鋼材の表面処理方法は、第1から第7の発明のいずれか1つに係る鋼材の表面処理方法であって、リンス工程で使用される処理液に含まれる遷移金属オキソ酸塩は、タングステン酸塩、モリブデン酸塩、ジルコン酸塩のいずれか1つである。
 第9の発明に係る鋼材の表面処理方法は、第1から第8の発明のいずれか1つに係る鋼材の表面処理方法であって、防錆工程では、鋼材の除錆とリン酸塩皮膜処理とが同時に行われる。
 第10の発明に係る鋼材の表面処理方法は、第1から第9の発明のいずれか1つに係る鋼材の表面処理方法であって、第1水洗工程は、複数回に分けて繰り返し行われる。
 第11の発明に係る鋼材の表面処理方法は、第1から第10の発明のいずれか1つに係る鋼材の表面処理方法であって、第2水洗工程では、超音波またはスプレーが用いられる。
 第12の発明に係る鋼材の塗装方法は、第1から第11の発明のいずれか1つに係る鋼材の表面処理方法によって処理された鋼材に対して塗装処理を行う。
 第13の発明に係る機械部材の製造方法は、第12の発明に係る鋼材の塗装方法によって塗装処理された鋼材を用いて機械部材を製造する。
 第14の発明に係る機械部材の製造方法は、第13の発明に係る機械部材の製造方法であって、機械部材は、油圧ショベルの油圧配管である。
本発明の一実施形態に係る鋼材の表面処理方法の流れを示すフローチャート。 図1の表面処理方法の内容を具体的に示す図。 図1の表面処理方法の各工程において用いられる処理液の構成を示す図。 図1の表面処理方法によって処理される油圧配管を搭載した油圧ショベルの構成示す全体斜視図。 本発明の表面処理方法によって処理された鋼材の引っかき硬度試験および付着性(密着性)試験の試験結果とその比較例の試験結果を示す図。 本発明の表面処理方法によって処理された鋼材の耐食性試験の試験結果とその比較例の試験結果を示す図。 (a)は、本発明の表面処理方法によって鋼材表面に形成された皮膜の形状を示す図。(b)は、リン酸亜鉛を用いた表面処理方法によって鋼材表面に形成された皮膜の形状を示す比較図。
 本発明の一実施形態に係る鋼材の表面処理方法について、図1~図4を用いて説明すれば以下の通りである。
 [鋼材の表面処理方法全体の構成]
 本実施形態に係る鋼材の表面処理方法は、例えば、油圧ショベル1に搭載される油圧配管11a(図4参照)の塗装前処理として実施される前処理工程であって、図1に示すように、脱脂工程(S1)と、第1水洗工程(S2)と、防錆工程(S3)と、第2水洗工程(S4)と、リンス工程(S5)と、洗浄工程(S6)と、スプレー工程(S7)とが、この順に実施される。そして、その後、塗装工程(S8)が実施される。
 ここで、本実施形態の鋼材の表面処理方法によって処理される鋼材として、例えば、図4に示すように、油圧ショベル1に搭載された作業機4のブーム11のキャブ10側の面に設けられた油圧配管11a等がある。
 脱脂工程(S1)では、図2に示すように、40~70℃の脱脂液の浸漬もしくはスプレーを行う。ここでは、環境負荷を考慮して、#5000(日本化材(株)社製)の5~10倍希釈液を用いることが望ましい。
 なお、ここで用いられる脱脂液#5000は、図3に示すような成分を含む処理液を用いることができる。
   けい酸ナトリウム(けい酸ソーダ、水ガラス):20~50wt%(CAS登録番号:1344-09-8(アメリカ化学会))
   二リン酸(ピロリン酸):0.02~2.00wt%(CAS登録番号:2466-09-3(アメリカ化学会))
   特殊変性イオン水:50~70wt%(CAS登録番号:7732-18-5(アメリカ化学会))
 第1水洗工程(S2)では、図2に示すように、脱脂工程(S1)において処理された鋼材を、清水(井水)中に1~2分間浸漬する。
 防錆工程(S3)では、図2に示すように、微細な結晶構造を得ることを目的として、第1水洗工程(S2)において処理された鋼材を、40~50℃のオルトリン酸を主成分として有機酸が加えられた処理液中に浸漬、あるいはその処理液をスプレーすることにより、鋼材表面の除錆(脱錆)とリン酸塩皮膜の形成とが同時に行われる。
 処理液としては、例えば、Appre Hybrid(登録商標)液(日本化材(株)社製)の5~10倍希釈液を用いることができる。
 なお、ここで用いられるAppre Hybrid液としては、図3に示すような成分を含む処理液を用いることができる。
   リン酸(オルトリン酸):2.0~60.0wt%(CAS登録番号:7664-38-2(アメリカ化学会))
   DL-リンゴ酸:0.02~5wt%(CAS登録番号:617-48-1(アメリカ化学会))
   リン酸二水素ナトリウム二水和物:0.01~5wt%(CAS登録番号:13472-35-0(アメリカ化学会))
   フッ素系界面活性剤:0.01~0.15wt%(CAS登録番号:68391-08-2(アメリカ化学会))
 本液は、水溶液であって、使用される水としては、電気伝導度が20μS以下の清水、あるいは特殊変性イオン水(CAS登録番号:7732-18-5(アメリカ化学会))などが用いられる。
 ここで、上記Appre Hybrid液に含まれる有機酸としては、上記リンゴ酸(DL-リンゴ酸)以外に、酒石酸やクエン酸、シュウ酸等が考えられる。
 なお、本発明の研究開発の過程で、有機酸としてシュウ酸を用いることも可能であることが分かった。リンゴ酸、酒石酸、クエン酸を用いて表面処理を実施した場合には、非常に微細な結晶構造が得られることが知られている。一方で、シュウ酸を用いた場合には、結晶は大きくなるものの、従来の亜鉛系リン酸塩処理皮膜よりも微細で、かつ結晶の形状が均一な結晶構造を得ることができる。このため、リンゴ酸等を用いた表面処理によって得られる微細な結晶構造と同等の性能が得られることを確認した。また、本工程を用いることで密着性や耐食性が向上することも同様に確認された。
 また、有機酸の配合割合としては、0.02~5.00wt%、より好ましくは、0.1~0.5wt%である。
 これは、有機酸を多く配合するほど防錆性能は向上するものの、その割合が0.02wt%未満になると防錆性能が低下してしまう一方、5.0wt%を超えるとコストアップによって経済的効果が乏しくなってしまうためである。
 本実施形態のように、鋼材表面に微細構造皮膜を形成するAppre Hybrid液として有機酸を含む処理液を用いることにより、局所的に金属錯体を形成して金属の溶出を促進することができるとともに、リン酸イオンはこの溶出した金属錯体と反応して微細な結晶構造を形成される一因となるものと考えられる。
 また、上記Appre Hybrid液に含まれるフッ素系界面活性剤は、アルキル鎖中の水素原子をフッ素原子に置換したものであって、物理化学的に安定でフッ素原子を含有しない界面活性剤と比較して表面張力が低いという特性がある。また、非イオン性の界面活性剤とすることで、その親水部の構造に起因して金属表面に微細構造被膜が形成され、より良い防錆効果が発揮されると考えられる。よって、本実施形態では、Appre Hybrid液に非イオン性のフッ素系界面活性剤を添加することで、浸透性を促進し、鋼材表面に微細構造皮膜を形成する。
 なお、非イオン性のフッ素系界面活性剤としては、特に限定されるものではないが、パーフルオロアルキルエチレンオキシド付加物、含フッ素基・親水性基・新油性基含有オリゴマー(例えば、パーフルオロアルキルスルホン酸化合物およびパーフルオロアルキルオキサイド付加物)からなる群から選択される少なくとも1種の化合物等を用いることができる。
 また、非イオン性フッ素系界面活性剤の配合割合としては、上記0.01~0.15wt%、より好ましくは、0.01~0.1wt%の範囲であるが好ましい。これは、配合割合が、0.01wt%未満の場合には効果が得られにくくなり、0.15wt%以上になるとコストアップによって経済的効果が乏しくなるためである。
 さらに、上記Appre Hybrid液に含まれるリン酸二水素ナトリウム二水和物は、鋼材表面に極微細構造皮膜を形成する助剤として強力に機能するものである。これを添加することで、防錆性能、塗装下地皮膜としての効果、アンカー効果、通電特性の向上等、一層の性能向上が期待される。
 ここで、リン酸二水素ナトリウム二水和物の配合割合としては、0.01~5.00wt%、より好ましくは、0.02~0.50wt%である。
 第2水洗工程(S4)では、図2に示すように、防錆工程(S3)において用いられたAppre Hybrid液の100倍希釈液を用いて、防錆工程(S3)において処理された鋼材に対して、超音波あるいはスプレーによる水洗処理を行う。
 これにより、鋼材の皮膜表面に残された不安定なリン酸鉄等の除去効果を高めることができる。
 ここで、超音波による水洗処理を行う場合には、例えば、28kHzの超音波を発生させる発信機(図示せず)を油圧配管11aの長手方向に沿って3往復させるように処理することができる。
 また、スプレーによる水洗処理を行う場合には、0.1MPa以上の圧力で処理液をスプレーすることが好ましい。
 なお、本実施形態では、例えば、槽方式で浸漬処理を行う場合の超音波と、それ以外で実施されるスプレー処理と、を使い分けることができる。具体的な対象製品としては、油圧配管11a(図4参照)のようなパイプ状の鋼材に対しては超音波処理を行い、板状や棒状の鋼材に対してはスプレー処理を行えばよい。これにより、鋼材の形状に関わらず、確実に表面処理を実施することができる。
 リンス工程(S5)では、図2に示すように、第2水洗工程(S4)において処理された鋼材を、常温のTリンス液(日本化材(株)社製)中に1~2分間浸漬する。
 なお、ここで用いられるTリンス液としては、図3に示すような成分を含む処理液を用いることができる。
   変性タングステン酸ナトリウム(遷移金属オキソ酸塩):5~50wt%(CAS登録番号:10213-10-2(アメリカ化学会))
   特殊変性イオン水:50~95wt%(CAS登録番号:7732-18-5(アメリカ化学会))
 洗浄工程(S6)では、図2に示すように、リンス工程(S5)において処理された鋼材を、40~70℃の清水(井水)中に3分間浸漬する。
 なお、この洗浄工程では、鋼材表面の水分の乾燥を促進させるために、40~70℃の清水を用いているが、本発明はこれに限定されるものではなく、例えば、常温水を用いてもよい。
 スプレー工程(S7)では、図2に示すように、洗浄工程(S6)において処理された鋼材に対して、純水を30秒間程度スプレーする。
 なお、ここでは、鋼材表面に残された電解質等を洗い流す効果を高めるために、20μS(好ましくは、10μS以下)の清水を用いることが好ましい。また、スプレーではなく、この清水中に鋼材を浸漬させることで、鋼材表面に残された電解質等を洗い流してもよい。
 本実施形態の鋼材の表面処理方法では、以上のような工程により、塗装前の鋼材の表面処理を行うことで、従来よりも工程数を削減しつつ、鋼材表面に微細構造皮膜を形成することができる。このため、この表面上に塗装を施すと、塗料が微細構造に入り込んで鋼材とのアンカー効果によって密着性を向上させることができる。
 また、本実施形態の鋼材の表面処理方法では、各処理液の特性によって、緻密な結晶構造を含む微細構造被膜を鋼材表面に形成することができるため、結晶内部に結晶水等の異物が溜まり難く、ヒートサイクル性等にも優れた熱的特性も得ることができる。
 この結果、従来のリン酸亜鉛を含む処理液を用いた表面処理方法によって塗装前処理された製品と同等以上の塗装の付着性(密着性)、耐食性を確保することができる。
 塗装工程(S8)では、図2に示すように、以上の表面処理方法による処理が施された鋼材の表面に塗装を行う。
 なお、本実施形態の鋼材の表面処理方法による塗装の付着性、耐食性に関する効果について、以下の実施例において説明する。
 上記実施形態において説明した鋼材の表面処理方法によって処理された鋼材の表面に施された塗装の密着性、耐食性について検証した結果について、図5から図7を用いて説明すれば以下の通りである。
 なお、図5および図6に示す試験結果に表示されたPFE-CRとは、鋼板(SPCC-SD(JIS G3141鋼板(100×70×0.8mmt)))に対して、本発明の表面処理方法によって表面処理した試験片による試験結果を示している。より詳細には、PFE-CRは、上記実施形態で説明したAppre Hybrid液等を用いた表面処理が施された後、紛体1コート(関西ペイント社製エバクラッド8010ナチュラル)で塗装された試験片である。
 一方、PZ(亜鉛系リン酸塩皮膜)とは、PFE-CR試験片と共通の鋼板(SPCC-SD(JIS G3141鋼板(100×70×0.8mmt)))に対して、従来のリン酸亜鉛を含む処理液によって表面処理した試験片による試験結果を示している。より詳細には、PZは、パルテック製工業用リン酸亜鉛処理された後、PFE-CRと同様に、紛体1コート(関西ペイント社製エバクラッド8010ナチュラル)で塗装された試験片である。
 <塗装の引っかき硬度試験および付着性試験>
 ここで、本発明の鋼材の表面処理方法によって処理された後、塗装が施された鋼材について、引っかき硬度試験および付着性試験を行った結果を、図5に示す。
 (引っかき硬度試験)
 まず、引っかき硬度試験は、JIS K 5600-5-4(塗装一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆硬度)に従って実施した。
 なお、ここで要求される品質としては、焼き付け型エナメルの場合には鉛筆硬度F以上である。
 この結果、PFE-CRの試験片およびPZの試験片ともに、鉛筆硬度H以上と同等の引っかき硬度を有していることが分かった。
 つまり、引っかき硬度試験においては、本発明の鋼材の表面処理方法と従来の鋼材の表面処理方法とは、同等の結果が得られた。
 (付着性試験)
 次に、付着性試験は、JIS D 0202(自動車部品の塗膜通則 3.14 碁盤目付着性)に従って実施した。ただし、付着性試験における切り傷間隔を2.0mm、マス目の数を100として試験を行った。
 なお、ここで要求される品質としては、マス目100個のうち、95~100のマス目において塗装が剥離していない状態である。
 この結果、PFE-CRの試験片およびPZの試験片ともに、マス目100個のうち、100個のマス目において塗装が剥離していないことが分かった。
 つまり、付着性試験においても、本発明の鋼材の表面処理方法と従来の鋼材の表面処理方法とは、同等の結果が得られた。
 <耐食性試験>
 次に、本発明の鋼材の表面処理方法によって処理された後、塗装が施された鋼材について、耐食性試験を行った結果を、図6に示す。
 なお、試験片は、上述した引っかき硬度試験および付着性試験で用いたものと同じ試験片を用いて試験を行った。
 ここで、耐食性試験は、JIS K 5600-7-1に従って、暴露の面にJIS K 5600-5-6に規定されている単一刃を用いて試験片の端から20mm内側に対角状に交差するスクラッチを施した各試験片に対して塩水を噴霧し、120h経過時、240h経過時、480h経過時、600h経過時、720h経過時における塗装の一部に生じたサビ部分の幅、膨れ部分の幅を測定することで、塩水噴霧腐食性能を確認する試験を行った。
 (120h経過時)
 この結果、従来のPZの試験片では、120h経過時のサビ幅、膨れ幅は、ともに1.0mm未満であった。
 これに対して、本発明のPFE-CRの試験片では、従来のPZの試験結果と同様に、120h経過時のサビ幅、膨れ幅は、ともに1.0mm未満であった。
 よって、120h経過時の試験結果としては、本発明の試験片は、全ての試験片について、従来の試験片と同等の試験結果が得られた。
 (240h経過時)
 次に、従来のPZの試験片では、240h経過時のサビ幅は、1.4mmであった。
 これに対して、本発明のPFE-CRの試験片では、5つの試験片のうち、試験片1,2,4,5が、240h経過時のサビ幅、膨れ幅は、ともに1.0mm未満であった。そして、試験片3が、240h経過時のサビ幅は、1.2mmであった。
 よって、240h経過時の試験結果としては、本発明の試験片は、全ての試験片について、従来の試験片よりも優れた試験結果が得られた。
 (480h経過時)
 次に、従来のPZの試験片では、480h経過時のサビ幅は、1.9mmであった。
 これに対して、本発明のPFE-CRの試験片では、5つの試験片のうち、試験片2,3,4,5が、480h経過時のサビ幅は、1.2mm,1.8mm、1.6mm、1.4mmであった。そして、試験片1が、480h経過時の膨れ幅は、1.4mmであった。
 よって、480h経過時の試験結果としては、本発明の試験片は、全ての試験片について、従来の試験片よりも優れた試験結果が得られた。
 (600h経過時)
 次に、従来のPZの試験片では、600h経過時のサビ幅は、2.5mmであった。
 これに対して、本発明のPFE-CRの試験片では、5つの試験片のうち、試験片2,3,4,5が、600h経過時のサビ幅は、2.0mm,2.5mm、2.3mm、2.5mmであった。そして、試験片1が、600h経過時の膨れ幅は、1.9mmであった。
 よって、600h経過時の試験結果としては、本発明の試験片は、従来の試験片よりも優れた試験結果が得られた。
 (720h経過時)
 次に、従来のPZの試験片では、720h経過時のサビ幅は、3.0mmであった。
 これに対して、本発明のPFE-CRの試験片では、5つの試験片のうち、試験片2,3,4,5が、720h経過時のサビ幅は、2.7mm、2.6mm、2.5mm、2.9mmであった。そして、試験片1が、720h経過時の膨れ幅は、2.0mmであった。
 よって、720h経過時の試験結果としては、本発明の試験片は、全ての試験片について、従来の試験片よりも優れた試験結果が得られた。
 以上のように、本発明の鋼材の表面処理方法は、耐食性試験において、従来の鋼材の表面処理方法に対して同等以上の結果が得られた。
 <皮膜の形状>
 本実施形態では、上述したオルトリン酸を主成分として有機酸を加えた除錆防錆液を用いることで、鋼材の表面に、図7(a)に示すような皮膜を形成する。図7(a)は、SEM(走査型電子顕微鏡)によって撮影した1万倍の拡大画像を示している。
 一方、図7(b)は、従来の表面処理方法によって形成された亜鉛系リン酸塩処皮膜をSEM(走査型電子顕微鏡)によって撮影した1万倍の拡大画像を示している。
 これらを比較すると、オルトリン酸を主成分として有機酸を加えた除錆防錆液を用いた場合、従来の亜鉛系リン酸塩処理皮膜と比較して、皮膜の山と谷の高低差は小さいものの、頂点となる部分の数が多く形成されていることが分かる。実際に表面積で比較すると、オルトリン酸を主成分として有機酸を加えた本発明の表面処理後の皮膜の方が、従来の亜鉛系リン酸塩処理皮膜よりも大きい。
 このため、オルトリン酸を主成分として有機酸を加えた除錆防錆液を用いた場合には、微細な凹凸が多く形成されることで、従来の亜鉛系リン酸塩処理皮膜と同等のアンカー効果を得ることができるものと推定される。
 しかしながら、実際には、上述のオルトリン酸を主成分として有機酸を加えた除錆防錆液を用いたリン酸塩処理皮膜の方が、密着性や耐食性が明らかに劣る結果となった。これは、微細な結晶構造を持つリン酸塩処理皮膜は、皮膜形成の過程において皮膜表面に発生する、あるいは皮膜表面に残存する鉄イオン、リンイオンあるいは不安定な結晶成分によって、これらの性能がより阻害されたためと推測される。
 <考察>
 本発明の鋼材の表面処理方法について、以上のような優れた結果が得られた理由について考察した結果、本発明の発明者らは、本発明の表面処理方法で用いたTリンス液の効果として、酸化剤として鉄イオンおよびリン酸イオンに対する反応の促進安定化作用によるものと推察した。
 すなわち、発明者らは、本発明で用いたTリンス液によって、素材の過度の溶出を防ぐとともに、鋼材の表面に微細な結晶構造を安定化させるという効果が得られたため、塗膜の鋼材に対するアンカー効果の促進と安定化が図れたものと考えた。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施形態では、図1に示すリンス工程において、変性タングステン酸ナトリウムを含むTリンス液を用いて、鋼材の表面処理を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、上述した変性タングステン酸ナトリウムを含む変性タングステン酸塩以外に、モリブデン酸塩やジルコン酸塩等、他の遷移金属オキソ酸塩を含むTリンス液を用いてもよい。
 (B)
 上記実施形態では、脱脂工程、第1水洗工程、防錆工程、第2水洗工程、リンス工程、洗浄工程、スプレー工程を含む表面処理方法を塗装前に実施する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、脱脂工程については、例えば、脱脂処理の必要がない鋼材を用いる場合には、本発明に必須工程ではない。
 第1水洗工程、第2水洗工程、スプレー工程についても同様に、本発明の効果を得る上で必須の工程ではない。
 (C)
 上記実施形態では、塗装の前処理として、上述した本発明の表面処理方法を実施する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、メッキ処理等を実施する前処理として、本発明の表面処理方法を実施してもよい。
 この場合でも、塗装処理と同様に、鋼材表面におけるアンカー効果を発揮することで、密着性等に優れたメッキ処理を実施することができる。
 (D)
 上記実施形態では、第1水洗工程を1回実施する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、第1水洗工程を複数回に分けて繰り返し実施してもよい。
 (E)
 上記実施形態では、鋼材表面に微細構造皮膜を形成するAppre Hybrid液として、水道水等の清水を主成分とする水溶液を用いる例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、蒸留水等を用いたAppre Hybrid液を用いてもよい。
 ただし、この場合には、腐食性能の面から、電気伝導率が20μS以下の水を用いることが好ましい。
 (F)
 上記実施形態では、本発明の鋼材の表面処理方法によって処理される鋼材の一例として、油圧ショベル1に用いられた油圧配管11aを例として挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、油圧ショベル等の他の建設機械に用いられる他の機械部材や、各種車両等に用いられる塗装処理される機械部材の塗装(製造)に本発明を適用してもよい。
 この場合には、例えば、第2水洗工程における処理として、機械部材の形状等に応じて、超音波を用いるかスプレーを用いるかを決定すればよい。
 本発明の鋼材の表面処理方法は、リン酸亜鉛処理液を用いた従来の鋼材の表面処理方法と比較して、同等以上の耐食性や密着性を確保しつつ、工程を簡略化してコストダウンを図ることができるという効果を奏することから、塗装前の鋼材の表面処理として広く活用可能である。
 1   油圧ショベル
 4   作業機
10   キャブ
11   ブーム
11a  油圧配管

Claims (14)

  1.  オルトリン酸および有機酸を含む防錆液を用いて、鋼材の表面に防錆処理を行う防錆工程と、
     遷移金属オキソ酸塩を含む処理液を用いて、前記鋼材の表面のリンス処理を行うリンス工程と、
     前記リンス工程後の前記鋼材の表面を洗浄処理する洗浄工程と、
    を備えている鋼材の表面処理方法。
  2.  脱脂液を用いて前記鋼材の表面の油脂を除去する脱脂工程を、さらに備えている、
    請求項1に記載の鋼材の表面処理方法。
  3.  前記脱脂工程後の前記鋼材の表面を洗浄する第1水洗工程を、さらに備えている、
    請求項2に記載の鋼材の表面処理方法。
  4.  オルトリン酸および有機酸を含む処理液を用いて、前記防錆工程後の前記鋼材の表面を洗浄する第2水洗工程を、さらに備えている、
    請求項1から3のいずれか1項に記載の鋼材の表面処理方法。
  5.  前記洗浄工程後の前記鋼材の表面に水をスプレーするスプレー工程を、さらに備えている、
    請求項1から3のいずれか1項に記載の鋼材の表面処理方法。
  6.  前記防錆工程および前記第2水洗工程では、リン酸二水素ナトリウム水和物、フッ素系界面活性剤、特殊変性イオン水を含む処理液が用いられる、
    請求項1から3のいずれか1項に記載の鋼材の表面処理方法。
  7.  前記リンス工程では、前記遷移金属オキソ酸塩と特殊変性イオン水とを含む処理液が用いられる、
    請求項1から3のいずれか1項に記載の鋼材の表面処理方法。
  8.  前記リンス工程で使用される処理液に含まれる前記遷移金属オキソ酸塩は、タングステン酸塩、モリブデン酸塩、ジルコン酸塩のいずれか1つである、
    請求項1から3のいずれか1項に記載の鋼材の表面処理方法。
  9.  前記防錆工程では、前記鋼材の除錆とリン酸塩皮膜処理とが同時に行われる、
    請求項1から3のいずれか1項に記載の鋼材の表面処理方法。
  10.  前記第1水洗工程は、複数回に分けて繰り返し行われる、
    請求項1から3のいずれか1項に記載の鋼材の表面処理方法。
  11.  前記第2水洗工程では、超音波またはスプレーが用いられる、
    請求項1から3のいずれか1項に記載の鋼材の表面処理方法。
  12.  請求項1から3のいずれか1項に記載の鋼材の表面処理方法によって処理された鋼材に対して、塗装処理を行う塗装工程を、
    備えている鋼材の塗装方法。
  13.  請求項12に記載の鋼材の塗装方法によって塗装処理された鋼材を用いて、機械部材を製造する、機械部材の製造方法。
  14.  前記機械部材は、油圧ショベルの油圧配管である、
    請求項13に記載の機械部材の製造方法。
PCT/JP2012/073363 2011-10-25 2012-09-12 鋼材の表面処理方法、塗装方法および機械部材の製造方法 WO2013061705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/350,724 US9752225B2 (en) 2011-10-25 2012-09-12 Surface treatment method and coating method for steel material, and method for producing machine component
CN201280051867.9A CN103890231A (zh) 2011-10-25 2012-09-12 钢材的表面处理方法、涂装方法及机械部件的制造方法
JP2013540699A JP6025739B2 (ja) 2011-10-25 2012-09-12 機械部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011234331 2011-10-25
JP2011-234331 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013061705A1 true WO2013061705A1 (ja) 2013-05-02

Family

ID=48167543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073363 WO2013061705A1 (ja) 2011-10-25 2012-09-12 鋼材の表面処理方法、塗装方法および機械部材の製造方法

Country Status (4)

Country Link
US (1) US9752225B2 (ja)
JP (2) JP6025739B2 (ja)
CN (2) CN107012452B (ja)
WO (1) WO2013061705A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679405B1 (ko) 2016-07-29 2016-11-25 문한석 Cr 소재용 전착도장방법 및 전착도장장치
KR101679407B1 (ko) 2016-07-29 2016-11-25 문한석 Sus 304 소재용 전착도장방법 및 전착도장장치
KR101679409B1 (ko) 2016-07-29 2016-11-25 문한석 Sus 430 소재용 전착도장방법 및 전착도장장치
JP2016198934A (ja) * 2015-04-09 2016-12-01 新日鐵住金株式会社 下地化成処理を行ったポリオレフィン被覆鋼材
CN108220944A (zh) * 2018-01-23 2018-06-29 重庆博昶电子科技有限公司 一种发黑处理设备及其处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216194A (zh) * 2016-08-01 2016-12-14 安徽贝莱电子科技有限公司 一种雷达用工件的烤漆工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947396A (ja) * 1982-09-08 1984-03-17 Toyo Kohan Co Ltd シ−ムレス缶用電気めつきぶりき
JPH0762553A (ja) * 1993-08-20 1995-03-07 Mitsubishi Heavy Ind Ltd 鉄鋼表面の塗装下地処理剤
JP2003156053A (ja) * 2001-11-22 2003-05-30 Koyo Seiko Co Ltd 旋回装置用軸受
WO2003093533A1 (fr) * 2002-04-16 2003-11-13 Nippon Steel Corporation Plateau metallique thermostabilise presentant une resistance a la corrosion elevee, plateau metallique presentant un revetement organique et plateau metallique galvanise phosphate
JP2005264073A (ja) * 2004-03-19 2005-09-29 Nippon Paint Co Ltd シーリング剤、リン酸塩処理鋼板の被覆方法及びリン酸塩処理鋼板
JP2006520852A (ja) * 2003-03-13 2006-09-14 ビーエーエスエフ アクチェンゲゼルシャフト 金属表面処理用窒素含有ポリマー

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4615406Y1 (ja) * 1966-10-25 1971-05-28
US4220485A (en) * 1978-12-14 1980-09-02 Calgon Corporation Process for sealing phosphatized metal components
JP2771826B2 (ja) * 1988-12-27 1998-07-02 株式会社リケン ピストンリングの製造方法
JPH0696773B2 (ja) * 1989-06-15 1994-11-30 日本ペイント株式会社 金属表面のリン酸亜鉛皮膜形成方法
JPH04128384A (ja) * 1990-09-17 1992-04-28 Nippon Paint Co Ltd 金属表面の処理方法、処理浴および処理剤
DE4041091A1 (de) * 1990-12-21 1992-06-25 Metallgesellschaft Ag Verfahren zur nachspuelung von konversionsschichten
CN1069528A (zh) * 1991-08-13 1993-03-03 浙江工学院 除油除锈无渣常温磷化液
JPH0762533A (ja) * 1993-08-24 1995-03-07 Sony Corp イオン注入プロファイルのシミュレーション方法
CN1038201C (zh) * 1994-05-31 1998-04-29 四川联合大学 低温多功能磷化液
US6027579A (en) * 1997-07-07 2000-02-22 Coral Chemical Company Non-chrome rinse for phosphate coated ferrous metals
US6576346B1 (en) * 1999-05-24 2003-06-10 Birchwood Laboratories, Inc. Composition and method for metal coloring process
JP2002285363A (ja) * 2001-03-23 2002-10-03 Nippon Paint Co Ltd 塗装前処理方法
JP2003260757A (ja) * 2002-03-11 2003-09-16 Jfe Steel Kk 環境調和性、耐食性、耐沸騰水性に優れたプレコート鋼板
JP2003293162A (ja) * 2002-04-08 2003-10-15 Nisshin Steel Co Ltd 耐食性に優れた塗装めっき鋼板
JP4571557B2 (ja) * 2005-08-31 2010-10-27 株式会社アルファ 錠装置
JP2007138264A (ja) * 2005-11-21 2007-06-07 Noguchi Koki Kk 鉄鋼表面の防錆処理剤
JP5660751B2 (ja) * 2008-05-01 2015-01-28 ディップソール株式会社 亜鉛又は亜鉛合金めっき上にクロムフリー化成皮膜を形成するための化成処理水溶液及びそれより得られたクロムフリー化成皮膜
JP5462467B2 (ja) 2008-10-31 2014-04-02 日本パーカライジング株式会社 金属材料用化成処理液および処理方法
CN101698938A (zh) * 2009-09-01 2010-04-28 浙江海洋学院 船舶的除锈方法
CN102051605B (zh) * 2009-10-30 2012-07-04 海洋王照明科技股份有限公司 铝或铝合金制品表面防腐蚀的处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947396A (ja) * 1982-09-08 1984-03-17 Toyo Kohan Co Ltd シ−ムレス缶用電気めつきぶりき
JPH0762553A (ja) * 1993-08-20 1995-03-07 Mitsubishi Heavy Ind Ltd 鉄鋼表面の塗装下地処理剤
JP2003156053A (ja) * 2001-11-22 2003-05-30 Koyo Seiko Co Ltd 旋回装置用軸受
WO2003093533A1 (fr) * 2002-04-16 2003-11-13 Nippon Steel Corporation Plateau metallique thermostabilise presentant une resistance a la corrosion elevee, plateau metallique presentant un revetement organique et plateau metallique galvanise phosphate
JP2006520852A (ja) * 2003-03-13 2006-09-14 ビーエーエスエフ アクチェンゲゼルシャフト 金属表面処理用窒素含有ポリマー
JP2005264073A (ja) * 2004-03-19 2005-09-29 Nippon Paint Co Ltd シーリング剤、リン酸塩処理鋼板の被覆方法及びリン酸塩処理鋼板

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198934A (ja) * 2015-04-09 2016-12-01 新日鐵住金株式会社 下地化成処理を行ったポリオレフィン被覆鋼材
KR101679405B1 (ko) 2016-07-29 2016-11-25 문한석 Cr 소재용 전착도장방법 및 전착도장장치
KR101679407B1 (ko) 2016-07-29 2016-11-25 문한석 Sus 304 소재용 전착도장방법 및 전착도장장치
KR101679409B1 (ko) 2016-07-29 2016-11-25 문한석 Sus 430 소재용 전착도장방법 및 전착도장장치
CN108220944A (zh) * 2018-01-23 2018-06-29 重庆博昶电子科技有限公司 一种发黑处理设备及其处理方法
CN108220944B (zh) * 2018-01-23 2024-03-15 西安凯龙航空技术有限公司 一种发黑处理设备及其处理方法

Also Published As

Publication number Publication date
JP2017031511A (ja) 2017-02-09
CN107012452B (zh) 2020-09-25
JPWO2013061705A1 (ja) 2015-04-02
US9752225B2 (en) 2017-09-05
JP6243501B2 (ja) 2017-12-06
CN107012452A (zh) 2017-08-04
US20140290802A1 (en) 2014-10-02
CN103890231A (zh) 2014-06-25
JP6025739B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6243501B2 (ja) 鋼材の表面処理方法
CN105369271B (zh) 一种涂装前金属表面处理方法
US20080286470A1 (en) Chemical conversion coating agent and surface-treated metal
JP5446057B2 (ja) 化成処理用亜鉛系めっき鋼板およびその製造方法、並びに化成処理鋼板
US7452427B2 (en) Corrosion resistant conversion coatings
JP6055263B2 (ja) 自動車部品の製造方法
JP2013526656A (ja) 金属表面上の腐食保護層の形成方法
JP4187162B2 (ja) 化成処理剤及び表面処理金属
KR20150138254A (ko) 알루미늄 및 알루미늄 합금용의 개선된 3가 크롬-함유 조성물
KR20040058038A (ko) 화성 처리제 및 표면 처리 금속
JP2005325402A (ja) スズ又はスズ系合金めっき鋼材の表面処理方法
JP5827792B2 (ja) 化成処理鉄系材料
KR101469610B1 (ko) 마그네슘용 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면처리방법
JP3286583B2 (ja) マグネシウム含有金属用化成処理液組成物、同表面処理方法及び同表面処理物
US20170137947A1 (en) Processes and compositions for improving corrosion performance of zirconium oxide pretreated zinc surfaces
JP7329472B2 (ja) スケールおよび/またはカーボン除去方法、および金属材の製造方法
JP3417653B2 (ja) アルミニウム材の塗装前処理方法
JP5648245B2 (ja) クロムフリー金属保護皮膜の形成方法及びクロムフリー金属保護皮膜形成処理剤
JP3765812B2 (ja) アルミニウムおよびアルミニウム合金用化成処理液
EP3290543B1 (en) Method of treating metal surfaces with an aqueous composition and aqueous composition
JP2017141495A (ja) 化成処理浴への補給方法
CN115698381A (zh) 水性酸浸组合物及其用途
CN107002247A (zh) 用于金属表面预处理的碱性基于铈的涂层组合物
JP2021501263A (ja) 三価クロム化合物を使用して金属表面を処理するためのプロセスおよび組成物
JPH0931666A (ja) ステンレス鋼板の塗装前処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540699

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844018

Country of ref document: EP

Kind code of ref document: A1