WO2013058018A1 - コンデンサの陽極体の製造方法 - Google Patents

コンデンサの陽極体の製造方法 Download PDF

Info

Publication number
WO2013058018A1
WO2013058018A1 PCT/JP2012/071759 JP2012071759W WO2013058018A1 WO 2013058018 A1 WO2013058018 A1 WO 2013058018A1 JP 2012071759 W JP2012071759 W JP 2012071759W WO 2013058018 A1 WO2013058018 A1 WO 2013058018A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
anode body
powder
mass
anode
Prior art date
Application number
PCT/JP2012/071759
Other languages
English (en)
French (fr)
Inventor
内藤 一美
正二 矢部
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/351,057 priority Critical patent/US20140233154A1/en
Priority to JP2013503319A priority patent/JP5266427B1/ja
Priority to EP12842453.8A priority patent/EP2770517A4/en
Publication of WO2013058018A1 publication Critical patent/WO2013058018A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a method for manufacturing a capacitor anode body. More specifically, the present invention relates to a method for producing an anode body of a capacitor having a tungsten sintered body as an anode, and an electrolytic capacitor using the anode body made of the sintered body.
  • the electrolytic capacitor includes a conductor (anode body) as one electrode, a dielectric layer formed on the surface of the electrode, and the other electrode (semiconductor layer) provided thereon.
  • an anode body of a capacitor made of a sintered body of valve action metal powder such as tantalum capable of anodization is anodized, and a dielectric layer made of these metal oxides is formed on the surface.
  • An electrolytic capacitor has been proposed.
  • Electrolytic capacitors that use tungsten as the valve metal and have a sintered body of tungsten powder as the anode body have the same volume of anode body using tantalum powder of the same particle size, compared to electrolytic capacitors that can be obtained with the same conversion voltage.
  • the leakage current (LC) is large and it has not been put to practical use as an electrolytic capacitor.
  • a capacitor using an alloy of tungsten and another metal has been studied.
  • the leakage current is somewhat improved, it has not been sufficient (Japanese Patent Laid-Open No. 2004-349658 (US6876083)).
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-349658 (US6876083)
  • the present inventors previously mixed silicon powder with tungsten powder and heated under reduced pressure as tungsten powder that can solve the problem of leakage current (LC) in an electrolytic capacitor having a sintered body of tungsten powder as an anode body.
  • Tungsten powder in which part of the surface is tungsten silicide so that the silicon content is in a specific range by reaction, an anode body of a capacitor formed by sintering the powder, and electrolysis using the anode body as an electrode
  • a patent application has been filed for a capacitor (WO2012 / 086272).
  • the subject of this invention is providing the method which can manufacture more efficiently the tungsten sintered compact containing tungsten silicide on the surface of a sintered compact particle
  • the present inventors when sintering the compact of tungsten powder, by exposing to silicon vapor and silicidation, a part of the surface is made of tungsten silicide so that the silicon content is in a specific range.
  • the present invention was completed by confirming that the produced tungsten powder could be produced efficiently.
  • this invention relates to the manufacturing method of the sintered compact for capacitors shown below, the sintered compact for capacitors, and the electrolytic capacitor.
  • a manufacturing method for obtaining an anode body of a capacitor by sintering a molded body of tungsten powder the molded body is exposed to silicon vapor and sintered.
  • the capacity is equal to or higher than that of a conventional tungsten sintered body, and the LC characteristics per capacity. Therefore, it is possible to produce an electrolytic capacitor having a good quality.
  • the tungsten powder (unprocessed tungsten powder) used as a raw material for the tungsten powder molded body used in the present invention is commercially available with a lower limit of the particle size of up to about 0.5 ⁇ m. If the volume is the same, the smaller the particle size of the tungsten powder, the larger the capacity of the sintered body (anode body) can be produced. However, the tungsten powder having a smaller particle size than the commercially available product is, for example, tungsten trioxide powder. Is pulverized in a hydrogen atmosphere, or tungstic acid or tungsten halide is obtained by using a reducing agent such as hydrogen or sodium and appropriately selecting the reducing conditions. Moreover, it can also obtain by selecting reduction conditions directly or through several processes from a tungsten containing mineral.
  • a reducing agent such as hydrogen or sodium
  • the tungsten powder as a raw material of the molded body may be a granulated powder (hereinafter, the granulated tungsten powder may be simply referred to as “granulated powder”).
  • a granulated powder is more preferable because the pores of the anode body are easily formed.
  • ungranulated tungsten powder hereinafter sometimes referred to as “primary powder”
  • niobium powder by a method disclosed in Japanese Patent Laid-Open No. 2003-213302 (WO02 / 092864). The pore distribution may be adjusted.
  • the granulated powder can also be obtained by adding at least one liquid such as water or liquid resin to the primary powder to form a granule of an appropriate size, and then heating and sintering under reduced pressure.
  • the reduced pressure condition and the high temperature standing condition can be obtained by preliminary experiments within the above-mentioned range. If there is no aggregation of the granules after sintering, there is no need for crushing.
  • Such granulated powder can be classified by sieving to make the particle size uniform.
  • the average particle size is preferably in the range of 50 to 200 ⁇ m, more preferably 100 to 200 ⁇ m, it is convenient for the powder to smoothly flow from the hopper of the molding machine to the mold when molding as an anode body of an electrolytic capacitor. is there.
  • the capacity of the electrolytic capacitor can be particularly increased by making it from the granulated powder.
  • the specific surface area (by the BET method) of the granulated powder is preferably 0.2 to 20 m 2 / g, more preferably 1.
  • the capacity of the electrolytic capacitor can be increased, which is preferable.
  • a sintered body obtained by molding and sintering such tungsten powder may be used as an anode body as it is, but the sintered body may be further processed and used as an anode body.
  • the processing include chemical processing such as inclusion of an impurity element such as oxygen on the surface of the sintered body, and physical processing such as connecting an anode lead wire to the sintered body. In addition, these processes may be performed before producing the sintered body, as will be described later.
  • the tungsten powder used in the present invention one having at least one selected from tungsten nitride, tungsten carbide, and tungsten boride in part of the surface is also preferably used.
  • nitriding a part of the surface of various tungsten powders there is a method in which the powder is placed at 350 to 1500 ° C. for about 1 minute to 10 hours under reduced pressure in a nitrogen gas atmosphere (usually 10 3 Pa or less). Nitriding may be performed on the tungsten molded body or the tungsten sintered body under the same conditions as in the case of the tungsten powder. Further, nitriding may be performed at any time after the production of the granulated powder or the sintered body when the primary powder is used. Thus, although there is no limitation on the timing of nitriding, it is preferable to perform nitriding at an early stage of the process. Nitriding can prevent unnecessary oxidation when the powder is handled in air.
  • the amount of nitriding is preferably such that 0.01 to 0.5 mass%, more preferably 0.05 to 0.3 mass% of nitrogen remains in the anode body. If the primary powder is to be nitrided, the amount of nitridation may be adjusted by using the same amount or twice the target content in the anode body. That is, a preliminary test is performed in the range of 0.01 to 1% by mass as the nitriding amount of the primary powder, and the above-mentioned preferable content as the anode body can be obtained.
  • the nitrogen content includes nitrogen that is not chemically bonded to tungsten (for example, nitrogen in solid solution) in addition to nitrogen that is bonded to tungsten.
  • the powder is subjected to reduced pressure (usually 10 3 Pa or less) at 300 to 1500 ° C. for 1 minute to 10 hours in a reduced pressure high temperature furnace using a carbon electrode.
  • reduced pressure usually 10 3 Pa or less
  • the carbon content can be adjusted.
  • Carbonization is preferably performed so that the carbon content in the obtained anode body is preferably 0.001 to 0.1% by mass, more preferably 0.01 to 0.1% by mass.
  • the carbonization time is the same as the nitriding time described above. However, since carbon remains in the anode body with a good yield, the carbon content can be adjusted to the above range regardless of the carbonization period.
  • nitrogen is passed in a carbon electrode furnace under predetermined conditions, carbonization and nitridation occur simultaneously, and it is also possible to produce tungsten powder having a part of the surface nitrided and carbonized.
  • a method for boring part of the surface of tungsten powder there is a method of granulating by placing boron element or a compound containing boron element as a boron source when granulating the powder. It is preferable to add the boron source so that the content in the obtained anode body is preferably 0.001 to 0.1% by mass, more preferably 0.01 to 0.1% by mass. Within this range, good LC characteristics can be obtained.
  • the nitrided powder is put into a carbon electrode furnace and a boron source is placed and granulated, it is possible to produce tungsten powder in which a part of the surface is siliconized, nitrided, carbonized and borated.
  • LC may be further improved.
  • a part of the surface of the anode body contains at least one compound selected from tungsten nitride, tungsten carbide, and tungsten boride. It is preferable to provide a process.
  • the oxygen content in the anode body is preferably 0.05 to 3% by mass, more preferably 0.1 to 2% by mass. If the oxygen content is within the above range, the LC characteristics of the produced electrolytic capacitor can be kept better.
  • a method of incorporating oxygen into the anode body there is a method of oxidizing the surface of at least one of the tungsten materials (primary powder, granulated powder, molded body or sintered body) to be used.
  • a gas containing oxygen is introduced when the tungsten material is taken out from the reduced-pressure high-temperature furnace.
  • a gas obtained by adding oxygen to an inert gas such as argon or helium gas may be used. By gradually introducing gas, a predetermined oxygen content can be obtained.
  • nitriding can be performed at the same time.
  • the ratio of the reaction amount of oxygen and nitrogen can also be controlled by the concentration ratio of each gas and the temperature taken out from the reduced-pressure high-temperature furnace.
  • the temperature is less than 280 ° C., oxidation takes precedence over nitriding.
  • the oxygen content in the anode body may be such that the oxygen content is in the range of the oxygen content when it becomes the anode body in any step prior to the production of the sintered body.
  • the oxygen content may be within the range when the sintered body is taken out from the sintering furnace (reduced pressure high temperature furnace).
  • tungsten powder preferably primary powder or granulated powder, more preferably primary powder
  • the oxygen content may be adjusted.
  • the oxygen content of the tungsten powder used in the present invention is preferably 0.05 to 8% by mass, more preferably 0.08 to 1% by mass.
  • the anode element preferably has a phosphorus element content of 1 to 500 ppm by mass, and more preferably 10 to 200 ppm by mass.
  • Examples of a method for containing the phosphorus element in the above range in the anode body include a method using a raw material containing phosphorus element (a primary powder or granulated powder of tungsten).
  • a raw material containing phosphorus element a primary powder or granulated powder of tungsten.
  • there is a method of preparing tungsten powder containing phosphorus by placing phosphorus or a phosphorus compound as a phosphating source in a reduced-pressure high-temperature furnace during the production of primary tungsten powder or granulated powder.
  • the content of phosphorus element in the raw material containing phosphorus element may be in the same range as the content in the anode body described above.
  • the content of impurity elements in the anode body is such that the amount of elements other than tungsten, silicon, nitrogen, carbon, boron, oxygen, and phosphorus is 1000 ppm by mass or less. It is preferable to suppress to. In order to keep these elements below the above contents, the amount of impurity elements contained in raw materials, used pulverized materials, containers and the like is examined in detail.
  • the central portion of the tungsten particles tends to remain as a metal having a high conductivity, which is preferable because the equivalent series resistance of the capacitor can be kept low when the capacitor is manufactured.
  • the content of tungsten silicide can be adjusted by the silicon particle size, the amount of input, the number of compacts, the sintering time, and the sintering temperature.
  • the silicon content of the tungsten sintered body is preferably 0.05 to 7% by mass, particularly preferably 0.2 to 4% by mass.
  • a tungsten sintered body having a silicon content in this range gives a capacitor having particularly good LC characteristics and is preferable as an anode body of the capacitor.
  • Sintering is performed at high temperature under reduced pressure.
  • the decompression condition is preferably 10 ⁇ 1 Pa or less, more preferably 10 ⁇ 3 Pa or less, the oxygen content is easily adjusted to the above-mentioned preferable range.
  • the reaction temperature of tungsten and silicon is preferably 1100 ° C. or higher and 2600 ° C. or lower. As the particle size of the silicon used is smaller, the siliconization can be performed at a lower temperature. When it exceeds 2600 ° C., silicon is easily vaporized at a high speed, and maintenance of a reduced-pressure high-temperature furnace corresponding thereto is required.
  • the time for leaving at high temperature is preferably 3 minutes or more and less than 2 hours.
  • the optimum conditions of temperature and time according to the reduced-pressure high-temperature furnace to be used may be determined by analyzing the sintered body produced in the preliminary experiment. In addition, after finishing the reaction between tungsten and silicon, the molded body that has once reacted may be taken out from the sintering furnace, and final sintering may be performed again in the same sintering furnace or another kind of sintering furnace. This is desirable because the furnace electrodes are less likely to be damaged.
  • the sintered body obtained by the method of the present invention has a pore distribution of 0.04 to 10 ⁇ m and an average pore diameter (D 50 ) of 0.1 to 4 ⁇ m.
  • An electrolytic capacitor is formed from a dielectric body interposed between the anode body of a capacitor manufactured by the method of the present invention as one electrode and a counter electrode (cathode).
  • the dielectric is formed on the surface of the anode body (including the surface in the pores), for example, by electrolytic oxidation of the anode body.
  • the counter electrode is formed, for example, by laminating a semiconductor layer such as a conductive polymer on a dielectric.
  • the particle diameter, specific surface area, pore distribution, average pore diameter, and elemental analysis were measured by the following methods.
  • the particle size is measured by laser diffraction scattering method using HRA9320-X100 manufactured by Microtrack Co., and the average particle size is a particle size value (D 50 ; ⁇ m) corresponding to 50% by volume. It was.
  • the BET specific surface area and pore diameter were measured using NOVA2200E (SYSMEX).
  • the pore distribution was in the range of pore diameter corresponding to a cumulative volume% of pores corresponding to 5% to pore diameter corresponding to 95% (D 5 to D 95 ).
  • the average pore diameter was defined as a pore diameter (D 50 ) corresponding to a cumulative volume% of pores of 50%.
  • ICP-emission analysis was performed using ICPS-8000E (manufactured by Shimadzu Corporation).
  • Example 1 Tungsten powder with an average particle size of 0.4 ⁇ m obtained by hydrogen reduction of ammonium tungstate was allowed to stand at 1400 ° C. for 30 minutes under reduced pressure at 10 ⁇ 2 Pa, taken out at room temperature, crushed with a hammer mill, and classified. Thus, a granulated powder having a particle size range of 20 to 180 ⁇ m and an average particle size of 115 ⁇ m was obtained. This powder is put into a hopper of a molding tool TAP-2R manufactured by OPPC, and a 0.29 mm ⁇ tungsten wire is molded so as to be planted outside 6 mm, and has a size of 1.02 ⁇ 1.64 ⁇ 4.62 mm. A plurality of molded bodies (55 mg) were produced.
  • Elemental analysis of the obtained sintered body revealed that silicon was 4.4 mass%, oxygen 0.76 mass%, and other impurity elements were all 300 mass ppm or less.
  • the sintered body was crushed and the fragments near the center of the sintered body were analyzed with an X-ray diffraction device (X'pert PRO, manufactured by PANalytical). Tungsten silicide was detected as an object. Most of the tungsten silicide detected was W 5 Si 3 . Further, when the surface of the sintered body was sputtered and analyzed in the same manner, it was found that the tungsten silicide as a reaction product was present in a range from the surface to a depth of 30 nm. That is, it was confirmed that silicon is present as tungsten silicide in at least a part of the particle surface layer of the sintered body.
  • Examples 2-5 and Comparative Examples 1-2 A sintered body was obtained in the same manner as in Example 1 except that the amount of silicon in the container and the number of molded bodies were changed as shown in Table 1 in Example 1. The numerical values of the specific surface area and pore distribution in each example were the same as in Example 1. The sintered body obtained in each example had the results shown in Table 1 with respect to the contents of silicon and oxygen, and all other impurity elements were 300 ppm by mass or less.
  • Example 6 A tungsten primary powder having an average particle size of 0.1 ⁇ m and a specific surface area of 9.6 m 2 / g was obtained by vapor phase hydrogen reduction of tungsten chloride at 400 ° C. This powder was allowed to stand at 1300 ° C. for 30 minutes under reduced pressure at 10 ⁇ 2 Pa. Thereafter, the temperature was lowered to 1100 ° C., and in this state, nitrogen gas was introduced into the furnace and left for 5 hours. After returning to room temperature, air was gradually added to take it out into the atmosphere. Thereafter, it was crushed with a hammer mill and classified to obtain a granulated powder having a particle size distribution of 40 to 160 ⁇ m and an average particle size of 100 ⁇ m.
  • a molded body (31 mg) having a size of 1.02 ⁇ 2.34 ⁇ 1.86 mm was produced in the same manner as in Example 1 except that only the mold incorporated in the molding machine of Example 1 was changed. 200 pieces of this compact were placed uniformly on 0.2 g of commercially available silicon powder having an average particle diameter of 1 ⁇ m in a container made of tungsten, placed in a sintering furnace, reduced in pressure to 10 ⁇ 2 Pa, and 1450 ° C. Left for 20 minutes. After returning to room temperature, air was gradually introduced and taken out to obtain a sintered body having a size of 1.00 ⁇ 2.27 ⁇ 1.72 mm.
  • the obtained sintered body had a specific surface area of 4.5 m 2 / g, a pore distribution diameter of 0.05 to 10 ⁇ m, and an average pore diameter of 0.1 ⁇ m. Elemental analysis of the obtained sintered body revealed that silicon was 0.7 mass%, oxygen 1.22 mass%, nitrogen 0.25 mass%, and other impurity elements were all 200 massppm or less.
  • Example 7 A commercially available tungsten powder (primary powder) having an average particle diameter of 1 ⁇ m was classified to obtain a 0.3 to 20 ⁇ m portion. To this classified powder, a boron solution (a solution in which boron is dissolved in 0.1% by mass of boron in a 20% by mass nitric acid aqueous solution) is added and mixed so that boron is added in an amount of 0.03% by mass, and mixed. Next, it was left to stand for 2 hours under a reduced pressure of 260 ° C. and 7 ⁇ 10 2 Pa, and returned to room temperature. The tungsten powder thus treated was molded with the molding machine used in Example 1, and a plurality of molded bodies similar to Example 1 were produced.
  • a boron solution a solution in which boron is dissolved in 0.1% by mass of boron in a 20% by mass nitric acid aqueous solution
  • Example 2 a sintered body was produced in the same manner as in Example 1 except that 0.6 g of commercially available powder having an average particle diameter of 3 ⁇ m was used as the silicon powder of Example 1.
  • the obtained sintered body had a specific surface area of 0.26 m 2 / g, a pore distribution diameter of 0.04 to 6 ⁇ m, and an average pore diameter of 0.4 ⁇ m. Elemental analysis of the obtained sintered body revealed that silicon was 3.9 mass%, oxygen 0.33 mass%, boron was 300 massppm, and other impurity elements were all 200 massppm or less.
  • the sintered body was crushed and the fragments near the center of the sintered body were analyzed with an X-ray diffraction device (X'pert PRO, manufactured by PANalytical).
  • X'pert PRO X-ray diffraction device
  • tungsten silicide As tungsten silicide was detected. Most of the tungsten silicide detected was W 5 Si 3 . Further, when the surface of the sintered body was sputtered and analyzed in the same manner, it was found that the tungsten silicide as a reactant was present in a range from the surface to a depth of 40 nm. That is, it was confirmed that silicon is present as tungsten silicide in at least a part of the particle surface layer of the sintered body.
  • Example 8 A solution prepared by dissolving 0.3 g of stearic acid separately in 3 g of toluene was mixed well with 20 g of the same tungsten primary powder as in Example 6 to obtain a granular mixture having an average particle diameter of 160 ⁇ m.
  • phosphoric acid is added to 0.05% by mass and mixed well, placed in a vacuum high-temperature furnace, left at 1 ⁇ 10 ⁇ 2 Pa at 1340 ° C. for 20 minutes, and then released. After cooling to room temperature, the pressure was returned to normal pressure.
  • the tungsten granulated powder thus obtained had an average particle size of 180 ⁇ m and a specific surface area of 8.2 m 2 / g.
  • Example 6 a plurality of molded bodies were produced in the same manner as in Example 6, and then sintered bodies were produced in the same manner as in Example 6.
  • the obtained sintered body had a specific surface area of 5.2 m 2 / g, a pore distribution diameter of 0.05 to 8 ⁇ m, and an average pore diameter of 0.1 ⁇ m. Elemental analysis of the obtained sintered body revealed that silicon 0.8% by mass, oxygen 1.5% by mass, phosphorus 0.01% by mass, carbon 0.03% by mass, and other impurity elements were all 300 ppm by mass. It was the following.
  • the sintered bodies produced in Examples 1-8 and Comparative Examples 1-2 were used as anode bodies for electrolytic capacitors.
  • the anode body was formed in a 0.1% by mass sulfuric acid aqueous solution at 10 V for 2 hours to form a dielectric layer on the surface of the anode body.
  • the anode body on which the dielectric layer was formed was immersed in a 30% aqueous sulfuric acid solution using platinum black as a cathode to form an electrolytic capacitor, and the capacitance and LC value were measured.
  • the capacity was measured using an Agilent LCR meter at room temperature, 120 Hz, and a bias value of 2.5V.
  • the LC value was measured 30 seconds after applying 2.5 V at room temperature.
  • the measured values of the capacity and LC value, and the LC value per capacity are shown in Table 2.
  • the LC value per capacitance of the electrolytic capacitors of Examples 1 to 8 is less than 0.1, and the LC value per capacitance of the electrolytic capacitors of Comparative Examples 1 and 2 exceeds 0.1. Recognize.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

 本発明はタングステン粉の成形体を焼結してコンデンサの陽極体を作製する製造方法において、前記成形体をケイ素の蒸気に曝して焼結し、得られる焼結体の表面の少なくとも一部をケイ化タングステンにすることを特徴とするコンデンサの陽極体の製造方法に関する。 本発明によれば、タングステンコンデンサの漏れ電流(LC)の問題を解消できる焼結体粒子の表面にケイ化タングステンを含むタングステン焼結体からなる陽極体を効率的に製造することができる。

Description

コンデンサの陽極体の製造方法
 本発明は、コンデンサの陽極体の製造方法に関する。さらに詳しく言えば、タングステンの焼結体を陽極とするコンデンサの陽極体の製造方法、及び前記焼結体からなる陽極体を用いた電解コンデンサに関する。
 携帯電話やパーソナルコンピュータ等の電子機器の形状の小型化、高速化、軽量化に伴い、これらの電子機器に使用されるコンデンサは、より小型で軽く、より大きな容量、より低いESRが求められている。
 電解コンデンサは、導電体(陽極体)を一方の電極とし、その電極の表層に形成した誘電体層とその上に設けられた他方の電極(半導体層)とで構成される。
 このようなコンデンサとしては、陽極酸化が可能なタンタルなどの弁作用金属粉末の焼結体からなるコンデンサの陽極体を陽極酸化して、その表面にこれらの金属酸化物からなる誘電体層を形成した電解コンデンサが提案されている。
 弁作用金属としてタングステンを用い、タングステン粉の焼結体を陽極体とする電解コンデンサは、同一粒径のタンタル粉を用いた同体積の陽極体、同化成電圧で得られる電解コンデンサに比較して、大きな容量を得ることができるが、漏れ電流(LC)が大きく電解コンデンサとして実用に供されなかった。このことを改良するために、タングステンと他の金属との合金を用いたコンデンサが検討されているが、漏れ電流は幾分改良されるものの十分ではなかった(特開2004-349658号公報(US6876083;特許文献1)。
 特許文献2(特開2003-272959号公報)には、WO3、W2N、WN2から選択される誘電体層が形成されたタングステン箔の電極を用いたコンデンサが開示されているが、前記漏れ電流について解決したものではない。
 また、特許文献3(国際公開第2004/055843号パンフレット(US7154743))には、タンタル、ニオブ、チタン、タングステンから選択される陽極を用いた電解コンデンサを開示しているが、タングステンを用いた具体例の記載はない。
特開2004-349658号公報 特開2003-272959号公報 国際公開第2004/055843号パンフレット
 本発明者らは先に、タングステン粉の焼結体を陽極体とする電解コンデンサにおける漏れ電流(LC)の問題を解消し得るタングステン粉として、タングステン粉にケイ素粉を混合し減圧下で加熱し反応させてケイ素含有量が特定の範囲となるように表面の一部をケイ化タングステンとしたタングステン粉、その粉を焼結してなるコンデンサの陽極体、及びその陽極体を電極として用いた電解コンデンサについて特許出願している(WO2012/086272)。
 本発明の課題は、焼結体粒子の表面にケイ化タングステンを含むタングステン焼結体を、ケイ素粉の混合加熱によらずにより効率的に製造することができる方法を提供することにある。
 本発明者等は今回、タングステン粉末の成形体を焼結する際、ケイ素の蒸気に曝し、ケイ素化する方法により、ケイ素含有量が特定の範囲となるように表面の一部をケイ化タングステンとしたタングステン粉を効率的に製造できることを確認し、本発明を完成した。
 すなわち、本発明は、以下に示すコンデンサ用焼結体の製造方法、コンデンサ用焼結体、及び電解コンデンサに関する。
[1]タングステン粉の成形体を焼結してコンデンサの陽極体を得る製造方法において、前記成形体をケイ素の蒸気に曝して焼結し、得られる焼結体の表面の少なくとも一部をケイ化タングステンにすることを特徴とするコンデンサの陽極体の製造方法。
[2]タングステン粉の成形体とケイ素粉とを焼結炉に入れ、1100~2600℃の温度にてケイ素の一部または全部を気化させてタングステンと反応させる前項1に記載の陽極体の製造方法。
[3]陽極体中のケイ素含有量が、0.05~7質量%である前項1または2に記載の陽極体の製造方法。
[4]ケイ化タングステンがW5Si3である前項1~3のいずれかに記載の陽極体の製造方法。
[5]陽極体の表面の一部に、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1種の化合物を含有させる工程を含む前項1~4のいずれかに記載の陽極体の製造方法。
[6]表面の一部に、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1種の化合物を含有するタングステン粉の成形体を使用し、前記化合物を含む陽極体を得る前項5に記載の陽極体の製造方法。
[7]陽極体中の窒素含有量が0.01~0.5質量%である前項5または6に記載の陽極体の製造方法。
[8]陽極体中の炭素含有量が0.001~0.1質量%である前項5~7のいずれかに記載の陽極体の製造方法。
[9]陽極体中のホウ素含有量が0.001~0.1質量%である前項5~8のいずれかに記載の陽極体の製造方法。
[10]リン元素を含有するタングステン粉の成形体を使用し、リン元素を1~500質量ppm含む陽極体を得る前項1~9のいずれかに記載の陽極体の製造方法。
[11]酸素を含有するタングステン粉の成形体を使用し、酸素を0.05~3質量%含む陽極体を得る前項1~10のいずれかに記載の陽極体の製造方法。
[12]陽極体中の、タングステン、ケイ素、窒素、炭素、ホウ素、リン及び酸素の各元素を除く元素の含有量が、各1000質量ppm以下である前項1~11のいずれかに記載の陽極体の製造方法。
[13]前項1~12のいずれかに記載の方法により陽極体の表面がケイ素化されたコンデンサの陽極体。
[14]前項11~13のいずれかに記載のコンデンサの陽極体を一方の電極とし、対電極との間に介在する誘電体とから構成された電解コンデンサ。
 本発明の方法で得られる一部がケイ素化されたタングステン焼結体をコンデンサ用陽極体として用いることにより、従来のタングステン焼結体に比較して、容量が同等以上で、容量あたりのLC特性が良好な電解コンデンサを作製することができる。
 本発明で使用するタングステン粉の成形体の原料となるタングステン粉(未加工のタングステン粉)は、粒径の下限が約0.5μmまでのものが市販されている。同一体積であれば、タングステン粉の粒径が小さいほど容量の大きな焼結体(陽極体)を作製できるので好ましいが、市販品よりもさらに粒径の小さいタングステン粉は、例えば、三酸化タングステン粉を水素雰囲気下で粉砕して、あるいはタングステン酸やハロゲン化タングステンを水素やナトリウム等の還元剤を使用し、還元条件を適宜選択することによって得ることができる。
 また、タングステン含有鉱物から直接または複数の工程を経て、還元条件を選択することによって得ることもできる。
 成形体原料のタングステン粉は、前記粉体を造粒したものでもよい(以下、造粒されたタングステン粉を単に「造粒粉」ということがある。)。電解コンデンサ用の粉体としては、陽極体の細孔を形成しやすいので、造粒粉がより好ましい。
 前述の未造粒の各タングステン粉体(以下、「一次粉」ということがある。)を用いて、例えばニオブ粉について特開2003-213302号公報(WO02/092864)に開示されている方法により細孔分布を調整してもよい。
 また、造粒粉は、一次粉に水等の液体や液状樹脂の少なくとも1種を加えて適当な大きさの顆粒状とした後に、減圧下に加熱し、焼結して得ることもできる。減圧条件や高温放置条件は、前述の範囲内で予備実験により求めることができる。焼結後の顆粒同士の凝集がなければ、解砕の必要はない。
 このような造粒粉は、ふるいで分級して粒径を揃えることができる。平均粒径が好ましくは50~200μm、より好ましくは100~200μmの範囲であれば、電解コンデンサの陽極体として成形する場合、粉が、成形機のホッパーから金型にスムーズに流れるために好都合である。
 タングステン粉は、平均一次粒子径0.1~1μm、好ましくは0.1~0.3μmの範囲にしておくと、特にその造粒粉から作製し電解コンデンサの容量を大きくすることができる。
 このような造粒粉を得る場合、例えば、前記一次粒子径を調整して、造粒粉の比表面積(BET法による)が、好ましくは0.2~20m2/g、より好ましくは1.5~20m2/gになるようにすると、電解コンデンサの容量をより大きくすることができ好ましい。
 このようなタングステン粉を成形し、焼結して得られた焼結体をそのまま陽極体として用いてもよいが、焼結体をさらに加工して陽極体として用いてもよい。前記加工には、例えば、酸素等の不純物元素を焼結体表面に含ませる等の化学的な加工や、焼結体に陽極リード線を接続する等の物理的な加工が挙げられる。なお、これら加工は、後述するように、焼結体作製前に行う場合もある。
 本発明で使用するタングステン粉としては、さらに、表面の一部に、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを有するものも好ましく用いられる。
 各種タングステン粉の表面の一部を窒化する方法の一例として、該粉を窒素ガス雰囲気の減圧下(通常103Pa以下)に350~1500℃で1分から10時間程度置く方法がある。
 窒化は、タングステン粉の場合と同様の条件で、タングステン成形体またはタングステン焼結体に対して行ってもよい。また、窒化は一次粉のとき、造粒粉作製後、あるいは焼結体作製後のいずれかの時期に行ってもよい。このように、窒化の時期に限定は無いが、好ましくは、工程の早い段階で窒化しておくとよい。窒化により、粉体を空気中で取り扱う際、必要以上の酸化を防ぐことができる。
 窒化量としては、陽極体中に、好ましくは0.01~0.5質量%、より好ましくは0.05~0.3質量%の窒素が残るようにしておくとよい。一次粉を窒化するのであれば、目標とする陽極体中の含有量に対し、同程度~倍量を目安に窒化量を調整すればよい。すなわち、一次粉の窒化量として0.01~1質量%の範囲で予備試験をし、陽極体として前記好ましい含有量とすることができる。
 なお、前記窒素含有量には、タングステンと結合している窒素以外に、タングステンと化学結合していない窒素(例えば、固溶している窒素)も含まれる。
 タングステン粉の表面の一部を炭化する方法の一例としては、該粉を炭素電極を使用した減圧高温炉中で、減圧下(通常103Pa以下)、300~1500℃に1分~10時間置く方法がある。温度と時間を選択することにより、炭素含有量を調整できる。炭素含有量は、得られる陽極体中に、好ましくは0.001~0.1質量%、より好ましくは0.01~0.1質量%になるように炭化することが好ましい。炭化の時期は、前述した窒化の時期と同様である。ただし、炭素は収率よく陽極体中に残るので、どの時期に炭化する場合でも、前記含有量の範囲に調整することができる。炭素電極炉で窒素を所定条件で通じると、炭化と窒化が同時に起こり、表面の一部を窒化及び炭化したタングステン粉を作製することも可能である。
 タングステン粉の表面の一部をホウ化する方法の一例として、該粉を造粒するときにホウ素元素やホウ素元素を有する化合物をホウ素源として置き、造粒する方法がある。得られる陽極体中の含有量が、好ましくは0.001~0.1質量%、より好ましくは0.01~0.1質量%になるようにホウ素源を添加するのが好ましい。この範囲であれば良好なLC特性が得られる。窒化した粉を炭素電極炉に入れ、ホウ素源を置き造粒を行うと、表面の一部をケイ素化、窒化、炭化、ホウ化したタングステン粉を作製することも可能である。所定量のホウ化を行うと、さらにLCが良くなる場合がある。
 このように、陽極体の製造工程中のいずれかの時期に、陽極体の表面の一部に、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1種の化合物を含有させるための工程を設けることが好ましい。
 陽極体中の酸素含有量は、好ましくは0.05~3質量%、より好ましくは0.1~2質量%である。酸素含有量が前記範囲内であれば、作製した電解コンデンサのLC特性をより良好に保つことができる。
 陽極体中に酸素を含有させる方法としては、使用する少なくともいずれかのタングステン材料(一次粉、造粒粉、成形体または焼結体)の表面を酸化する方法がある。例えば、一次粉、造粒粉または焼結体のいずれかのタングステン材料の作製時、前記タングステン材料を減圧高温炉からの取り出す際に、酸素を含有するガスを投入する。酸素を含有するガスとしては、アルゴンやヘリウムガス等の不活性ガスに酸素を含ませたガスを使用してもよい。徐々にガスを投入することにより所定の酸素含有量にすることができる。この工程で、酸素を含有するガスとして酸素を含有する窒素ガスを用いると、窒化も同時に行える。この時、酸素と窒素との反応量の比は、それぞれのガスの濃度比や、減圧高温炉からの取り出し温度でも制御できる。前記温度が280℃未満であると窒化よりも酸化が優先して起こる。
 このような方法により、陽極体中の酸素含有量は、焼結体作製前のいずれかの工程で陽極体となったとき前記酸素含有量の範囲となるように酸素を含有量させてもよく、焼結体を焼結炉(減圧高温炉)から取り出す際に前記酸素含有量の範囲となるようにしてもよい。あるいは、工程の早い段階、すなわちタングステン粉(好ましくは一次粉または造粒粉、より好ましくは一次粉)の時期にある程度の酸素を含有させ、最終的に焼結体を焼結炉から取り出す際に酸素含有量を調整してもよい。工程の早い段階である程度の酸素を含有させることにより、陽極体を作製する後工程中で不規則に生じる過度の酸化劣化も緩和することができる。本発明で使用するタングステン粉の酸素含有量は、0.05~8質量%が好ましく、0.08~1質量%がより好ましい。
 陽極体は、リン元素の含有量が1~500質量ppmであることが好ましく、10~200質量ppmであることがより好ましい。
 陽極体に、前記範囲のリン元素を含有させる方法として、リン元素を含む原料(タングステンの一次粉や造粒粉)を使用する方法が挙げられる。例えば、タングステンの一次粉作製時や造粒粉作製時に、減圧高温炉中にリンやリン化合物をリン化源として置いてリンを含有するタングステン粉を作製する方法がある。なお、リン元素を含む原料中のリン元素の含有量は、前述の陽極体中の含有量と同様の範囲でよい。
 リン化源の量を調整するなどして、前述の含有量となるようにリンを含有させると、作製される陽極体の物理的破壊強度が増加する場合があるので好ましい。この範囲であれば、作製した電解コンデンサのLC性能がさらに良好になる。
 より良好なLC特性を得るために、陽極体中の不純物元素の含有量は、タングステン、ケイ素、窒素、炭素、ホウ素、酸素およびリンの各元素以外の元素量が各1000質量ppm以下となるように抑えることが好ましい。これらの元素を前記含有量以下に抑えるためには、原料や、使用粉砕材、容器等に含まれる不純物元素量を詳細に吟味する。
 本発明ではタングステン粉の成形体を焼結してコンデンサの陽極体を作製する製造方法において、前記成形体をケイ素の蒸気に曝して焼結し、焼結体を構成するタングステン粒子表面の少なくとも一部がケイ素化された焼結体を製造する。なお、本発明において、成形体、焼結体または陽極体の表面とは、それらの外表面だけでなく、それらの細孔内表面も含む。
 前記表面の少なくとも一部がケイ素化された本発明の陽極体は、例えば以下のようにして製造することができる。
 ケイ素粉を入れた容器をタングステン成形体と共に焼結炉に入れ、焼結時の加熱温度である1100~2600℃の温度にてケイ素の一部または全部を気化させて、あるいはケイ素蒸気の下でタングステンと反応させて得られるタングステン焼結体の表面の少なくとも一部をケイ素化する。
 この方法の場合、タングステン成形体を構成するタングステン粒子は表面からケイ素と反応し、粒子表層から通常50nm以内に局在して、W5Si3等のケイ化タングステンが形成される。そのため、タングステン粒子の中心部は導電率の高い金属のまま残りやすく、コンデンサを作製したとき、コンデンサの等価直列抵抗を低く抑えられるので好ましい。ケイ化タングステンの含有量はケイ素の粒径、投入量や、成形体の個数、焼結時間、焼結温度により調整することができる。タングステン焼結体のケイ素含有量は、0.05~7質量%が好ましく、0.2~4質量%が特に好ましい。この範囲のケイ素含有量のタングステン焼結体は、特にLC特性の良好なコンデンサを与え、コンデンサの陽極体として好ましいものとなる。
 焼結は、減圧下、高温で行う。前記減圧条件は、好ましくは10-1Pa以下、より好ましくは10-3Pa以下で行うと、酸素含有量を前述の好ましい範囲に調整しやすい。
 タングステンとケイ素の反応温度は、1100℃以上2600℃以下が好ましい。使用するケイ素の粒径が小さいほど低温でケイ素化が行えるが、1100℃未満であるとケイ素化に時間がかかる。2600℃を超えるとケイ素が高速に気化しやすくなり、それに対応した減圧高温炉のメンテナンスが必要となる。
 高温に放置する時間は、3分以上2時間未満がよい。使用する減圧高温炉等に合わせた温度と時間の最適な条件は、予備実験で作製した焼結体を分析して決定すればよい。
 なお、タングステンとケイ素の反応を終えた後に一度焼結炉から反応した成形体を取り出し、再度、同じ焼結炉または別種焼結炉で最終的な焼結を行ってもよい。このようにすると、炉の電極が傷みにくくなるので望ましい。
 本発明の方法で得られる焼結体は、0.04~10μmの細孔分布を有し、0.1~4μmの平均細孔径(D50)を有する。
 本発明の方法で製造されたコンデンサの陽極体を一方の電極とし、対電極(陰極)との間に介在する誘電体とから電解コンデンサが形成される。誘電体は、例えば、陽極体を電解酸化することにより、陽極体表面(細孔内表面を含む)上に形成される。対電極は、例えば、導電性高分子等の半導体層を誘電体上に積層することにより形成される。
 以下に実施例及び比較例を挙げて本発明を説明するが、下記の記載により本発明は何ら限定されるものではない。
 本発明において、粒子径、比表面積、細孔分布、平均細孔径及び元素分析は以下の方法で測定した。
 粒子径は、マイクロトラック社製HRA9320-X100を用い、粒度分布をレーザー回折散乱法で測定し、その累積体積%が、50体積%に相当する粒径値(D50;μm)を平均粒径とした。
 BET比表面積と細孔径は、NOVA2200E(SYSMEX社)を用いて測定した。細孔分布は、細孔の累積体積%が5%に相当する細孔径~同95%に相当する細孔径の範囲(D5~D95)とした。また、平均細孔径は、細孔の累積体積%が50%に相当する細孔径(D50)とした。
 元素分析は、ICPS-8000E((株)島津製作所製)を用い、ICP発光分析を行った。
実施例1:
 タングステン酸アンモニウムを水素還元して得た平均粒径0.4μmのタングステン粉を、10-2Paに減圧下1400℃で30分間放置した後、室温で取り出し、ハンマーミルで解砕後、分級して粒径範囲20~180μm、平均粒径115μmの造粒粉を得た。この粉をOPPC社製の成形型器TAP-2Rのホッパーに入れ、0.29mmφのタングステン線を6mm外部に植立するように成形し、大きさ1.02×1.64×4.62mmの成形体(55mg)を複数個作製した。この成形体120個を、タングステン製の容器に入れた市販の平均粒径1μmのケイ素粉0.4gの上に均一に置いて焼結炉に入れ、10-2Paに減圧し、1500℃で20分間放置した。室温に戻した後、徐々に空気を入れて取り出し、大きさ1.01×1.50×4.45mmの焼結体を得た。得られた焼結体は、比表面積0.5m2/g、細孔分布径0.04~10μm、平均細孔径0.25μmであった。
 得られた焼結体を元素分析したところ、ケイ素が4.4質量%、酸素0.76質量%、その他の各不純物元素はいずれも300質量ppm以下であった。
 また、焼結体を破砕し、該焼結体の中心部付近の破片をX線回析装置(X'pert PRO, PANalytical製)で分析したところ、焼結体の細孔内の表面より反応物としてケイ化タングステンが検出された。検出されたケイ化タングステンのほとんどがW5Si3であった。また焼結体の表面をスパッタリングして同様に分析したところ、反応物のケイ化タングステンは表面から深さ30nmまでの範囲に存在することがわかった。すなわち、ケイ素が焼結体の粒子表層の少なくとも一部で、ケイ化タングステンとして存在することが確認された。
実施例2~5及び比較例1~2:
 実施例1で容器中のケイ素の量と成形体の個数を表1に記載のように変更した以外は実施例1と同様にして焼結体を得た。各例の比表面積および細孔分布の各数値は実施例1と同様であった。各例で得られた焼結体は、ケイ素および酸素の含有量について表1の結果となり、その他の不純物元素はいずれも300質量ppm以下であった。
実施例6:
 塩化タングステンを400℃で気相水素還元することにより、平均粒径0.1μm、比表面積9.6m2/gのタングステンの一次粉を得た。この粉を、10-2Paに減圧下1300℃で30分間放置した。その後、1100℃に降温し、この状態で炉に窒素ガスを投入し5時間放置した。室温に戻した後に徐々に空気を投入して大気中に取り出した。その後ハンマーミルで解砕後、分級して粒度分布40~160μm、平均粒径100μmの造粒粉を得た。造粒粉は、表面の一部が窒化されており窒素量が0.25質量%であった。実施例1の成形器で内蔵された金型のみ変更して実施例1と同様にして、大きさ1.02×2.34×1.86mmの成形体(31mg)を作製した。この成形体200個を、タングステン製の容器に入れた市販の平均粒径1μmのケイ素粉0.2gの上に均一に置いて焼結炉に入れ、10-2Paに減圧し、1450℃で20分間放置した。室温に戻した後、徐々に空気を入れて取り出し、大きさ1.00×2.27×1.72mmの焼結体を得た。得られた焼結体は、比表面積4.5m2/g、細孔分布径0.05~10μm、平均細孔径0.1μmであった。
 得られた焼結体を元素分析したところ、ケイ素が0.7質量%、酸素1.22質量%、窒素が0.25質量%、その他の不純物元素はいずれも200質量ppm以下であった。
実施例7:
 市販の平均粒径1μmのタングステン粉(一次粉)を分級して0.3~20μmの部分を得た。この分級粉に対し、ホウ素が0.03質量%の添加量になるようにホウ素溶液(20質量%硝酸水溶液にホウ素を0.1質量%となるように溶解した溶液)を加えて混合し、次に、260℃の温度、7×102Paの減圧下2時間放置して乾燥し室温に戻した。このように処理をしたタングステン粉を用いて実施例1で使用した成形器で成形し、実施例1と同様な成形体を複数個作製した。次いで、実施例1のケイ素粉を平均粒径3μmの市販粉0.6gを使用した以外は実施例1と同様にして焼結体を作製した。得られた焼結体は、比表面積0.26m2/g、細孔分布径0.04~6μm、平均細孔径0.4μmであった。
 得られた焼結体を元素分析したところ、ケイ素が3.9質量%、酸素0.33質量%、ホウ素が300質量ppm、その他の不純物元素はいずれも200質量ppm以下であった。また、焼結体を破砕し、該焼結体の中心部付近の破片をX線回析装置(X'pert PRO, PANalytical製)で分析したところ、焼結体の細孔内表面より反応物としてケイ化タングステンが検出された。検出されたケイ素化タングステンのほとんどがW5Si3であった。また焼結体の表面をスパッタリングして同様に分析したところ、反応物のケイ化タングステンは表面から深さ40nmまでの範囲に存在することがわかった。すなわち、ケイ素が焼結体の粒子表層の少なくとも一部で、ケイ化タングステンとして存在することが確認された。
実施例8:
 別途用意したステアリン酸0.3gをトルエン3gに溶かした液に実施例6と同様なタングステン一次粉20gをよく混合して平均粒径160μmの顆粒状の混合物を得た。得られた顆粒状の混合物に、リン酸を0.05質量%になるように加えてよく混合し、減圧高温炉に入れ、1×10-2Paで1340℃に20分放置し、その後放冷して室温にしてから常圧に戻した。このようにして得たタングステン造粒粉は、平均粒径180μm、比表面積8.2m2/gであった。続いて、実施例6と同様にして成形体を複数作製後、実施例6と同様にして焼結体を作製した。得られた焼結体は、比表面積5.2m2/g、細孔分布径0.05~8μm、平均細孔径0.1μmであった。
 得られた焼結体を元素分析したところ、ケイ素0.8質量%、酸素1.5質量%、リン0.01質量%、炭素0.03質量%、その他の不純物元素はいずれも300質量ppm以下であった。
Figure JPOXMLDOC01-appb-T000001
 実施例1~8及び比較例1~2で作製した焼結体を電解コンデンサの陽極体として用いた。陽極体を0.1質量%の硫酸水溶液中で10Vで2時間化成し、陽極体表面に誘電体層を形成した。誘電体層を形成した陽極体を、白金黒を陰極とした30%硫酸水溶液中に漬け、電解コンデンサを形成し、容量及びLC値を測定した。容量は、アジレント製LCRメーターを用い、室温、120Hz、バイアス2.5V値での値で測定した。LC値は、室温で2.5Vを印加して30秒後に測定した。容量及びLC値の測定値、容量当たりのLC値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から実施例1~8の電解コンデンサの容量あたりのLC値は、0.1未満であり、比較例1及び2の電解コンデンサの容量あたりのLC値は0.1を超えていることがわかる。

Claims (14)

  1.  タングステン粉の成形体を焼結してコンデンサの陽極体を得る製造方法において、前記成形体をケイ素の蒸気に曝して焼結し、得られる焼結体の表面の少なくとも一部をケイ化タングステンにすることを特徴とするコンデンサの陽極体の製造方法。
  2.  タングステン粉の成形体とケイ素粉とを焼結炉に入れ、1100~2600℃の温度にてケイ素の一部または全部を気化させてタングステンと反応させる請求項1に記載の陽極体の製造方法。
  3.  陽極体中のケイ素含有量が、0.05~7質量%である請求項1または2に記載の陽極体の製造方法。
  4.  ケイ化タングステンがW5Si3である請求項1~3のいずれかに記載の陽極体の製造方法。
  5.  陽極体の表面の一部に、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1種の化合物を含有させる工程を含む請求項1~4のいずれかに記載の陽極体の製造方法。
  6.  表面の一部に、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1種の化合物を含有するタングステン粉の成形体を使用し、前記化合物を含む陽極体を得る請求項5に記載の陽極体の製造方法。
  7.  陽極体中の窒素含有量が0.01~0.5質量%である請求項5または6に記載の陽極体の製造方法。
  8.  陽極体中の炭素含有量が0.001~0.1質量%である請求項5~7のいずれかに記載の陽極体の製造方法。
  9.  陽極体中のホウ素含有量が0.001~0.1質量%である請求項5~8のいずれかに記載の陽極体の製造方法。
  10.  リン元素を含有するタングステン粉の成形体を使用し、リン元素を1~500質量ppm含む陽極体を得る請求項1~9のいずれかに記載の陽極体の製造方法。
  11.  酸素を含有するタングステン粉の成形体を使用し、酸素を0.05~3質量%含む陽極体を得る請求項1~10のいずれかに記載の陽極体の製造方法。
  12.  陽極体中の、タングステン、ケイ素、窒素、炭素、ホウ素、リン及び酸素の各元素を除く元素の含有量が、各1000質量ppm以下である請求項1~11のいずれかに記載の陽極体の製造方法。
  13.  請求項1~12のいずれかに記載の方法により陽極体の表面がケイ素化されたコンデンサの陽極体。
  14.  請求項11~13のいずれかに記載のコンデンサの陽極体を一方の電極とし、対電極との間に介在する誘電体とから構成された電解コンデンサ。
PCT/JP2012/071759 2011-10-18 2012-08-29 コンデンサの陽極体の製造方法 WO2013058018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/351,057 US20140233154A1 (en) 2011-10-18 2012-08-29 Method of manufacturing anode body of capacitor
JP2013503319A JP5266427B1 (ja) 2011-10-18 2012-08-29 コンデンサの陽極体の製造方法
EP12842453.8A EP2770517A4 (en) 2011-10-18 2012-08-29 METHOD FOR MANUFACTURING ANODE OF A CAPACITOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-229040 2011-10-18
JP2011229040 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013058018A1 true WO2013058018A1 (ja) 2013-04-25

Family

ID=48140673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071759 WO2013058018A1 (ja) 2011-10-18 2012-08-29 コンデンサの陽極体の製造方法

Country Status (4)

Country Link
US (1) US20140233154A1 (ja)
EP (1) EP2770517A4 (ja)
JP (1) JP5266427B1 (ja)
WO (1) WO2013058018A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190886A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 コンデンサの陽極体
WO2013190887A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 タングステンコンデンサの陽極体及びその製造方法
WO2013190885A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 固体電解コンデンサの陽極体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190757A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 コンデンサ素子
US9870867B2 (en) * 2014-07-09 2018-01-16 Showa Denko K.K. Capacitor anode, solid electrolytic capacitor element, solid electrolytic capacitor, and method for producing capacitor anode

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116060A (ja) * 1997-06-12 1999-01-12 Japan Energy Corp スパッタリングターゲット及びその製造方法
JPH11256322A (ja) * 1998-03-10 1999-09-21 Hitachi Metals Ltd 金属シリサイドターゲット材
WO2001026123A1 (fr) * 1999-10-01 2001-04-12 Showa Denko K.K. Composition pour condensateur sous forme de poudre, corps fritte obtenu a partir de ladite composition et condensateur constitue du corps fritte
WO2002092864A2 (en) 2001-05-15 2002-11-21 Showa Denko K. K. Niobium powder, niobium sintered body and capacitor using the sintered body
JP2003213302A (ja) 2001-05-15 2003-07-30 Showa Denko Kk ニオブ粉、ニオブ焼結体及びニオブ焼結体を用いたコンデンサ
JP2003272959A (ja) 2002-03-15 2003-09-26 Sanyo Electric Co Ltd コンデンサ
WO2004055843A1 (ja) 2002-12-13 2004-07-01 Sanyo Electric Co.,Ltd. 固体電解コンデンサ及びその製造方法
JP2004349658A (ja) 2002-07-26 2004-12-09 Sanyo Electric Co Ltd 電解コンデンサ
US6876083B2 (en) 2002-07-26 2005-04-05 Sanyo Electric Co., Ltd. Electrolytic capacitor and a fabrication method therefor
JP2007081067A (ja) * 2005-09-13 2007-03-29 Sanyo Electric Co Ltd 電解コンデンサおよびその製造方法
WO2012086272A1 (ja) 2010-12-24 2012-06-28 昭和電工株式会社 タングステン粉、コンデンサの陽極体及び電解コンデンサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2593943A (en) * 1949-03-01 1952-04-22 Thompson Prod Inc Methods of molding powders of metal character
US3825802A (en) * 1973-03-12 1974-07-23 Western Electric Co Solid capacitor
US4173518A (en) * 1974-10-23 1979-11-06 Sumitomo Aluminum Smelting Company, Limited Electrodes for aluminum reduction cells
DE3140248C2 (de) * 1981-10-09 1986-06-19 Hermann C. Starck Berlin, 1000 Berlin Verwendung von dotiertem Ventilmetallpulver für die Herstellung von Elektrolytkondensatoranoden
US5919321A (en) * 1996-08-13 1999-07-06 Hitachi Metals, Ltd. Target material of metal silicide
CN105033283A (zh) * 1998-05-06 2015-11-11 H.C.施塔克公司 用气态镁还原有关氧化物制备的金属粉末
JP2004076063A (ja) * 2002-08-13 2004-03-11 Kawatetsu Mining Co Ltd ニオブ合金粉末、固体電解コンデンサ用アノード及び固体電解コンデンサ
US7253104B2 (en) * 2003-12-01 2007-08-07 Micron Technology, Inc. Methods of forming particle-containing materials
JP4743507B2 (ja) * 2004-11-29 2011-08-10 昭和電工株式会社 固体電解コンデンサ用多孔質陽極体、その製造方法、及び固体電解コンデンサ
JP4508913B2 (ja) * 2005-03-23 2010-07-21 三洋電機株式会社 固体電解コンデンサ及び固体電解コンデンサ用陽極材料の製造方法
CN101323451A (zh) * 2008-07-05 2008-12-17 中国矿业大学 一种三硅化五钨粉末的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116060A (ja) * 1997-06-12 1999-01-12 Japan Energy Corp スパッタリングターゲット及びその製造方法
JPH11256322A (ja) * 1998-03-10 1999-09-21 Hitachi Metals Ltd 金属シリサイドターゲット材
WO2001026123A1 (fr) * 1999-10-01 2001-04-12 Showa Denko K.K. Composition pour condensateur sous forme de poudre, corps fritte obtenu a partir de ladite composition et condensateur constitue du corps fritte
WO2002092864A2 (en) 2001-05-15 2002-11-21 Showa Denko K. K. Niobium powder, niobium sintered body and capacitor using the sintered body
JP2003213302A (ja) 2001-05-15 2003-07-30 Showa Denko Kk ニオブ粉、ニオブ焼結体及びニオブ焼結体を用いたコンデンサ
JP2003272959A (ja) 2002-03-15 2003-09-26 Sanyo Electric Co Ltd コンデンサ
JP2004349658A (ja) 2002-07-26 2004-12-09 Sanyo Electric Co Ltd 電解コンデンサ
US6876083B2 (en) 2002-07-26 2005-04-05 Sanyo Electric Co., Ltd. Electrolytic capacitor and a fabrication method therefor
WO2004055843A1 (ja) 2002-12-13 2004-07-01 Sanyo Electric Co.,Ltd. 固体電解コンデンサ及びその製造方法
US7154743B2 (en) 2002-12-13 2006-12-26 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
JP2007081067A (ja) * 2005-09-13 2007-03-29 Sanyo Electric Co Ltd 電解コンデンサおよびその製造方法
WO2012086272A1 (ja) 2010-12-24 2012-06-28 昭和電工株式会社 タングステン粉、コンデンサの陽極体及び電解コンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770517A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190886A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 コンデンサの陽極体
WO2013190887A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 タングステンコンデンサの陽極体及びその製造方法
WO2013190885A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 固体電解コンデンサの陽極体
US9892861B2 (en) 2012-06-22 2018-02-13 Showa Denko K.K. Anode body for solid electrolytic capacitor

Also Published As

Publication number Publication date
EP2770517A4 (en) 2015-09-30
JPWO2013058018A1 (ja) 2015-04-02
US20140233154A1 (en) 2014-08-21
JP5266427B1 (ja) 2013-08-21
EP2770517A1 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5132840B2 (ja) タングステン粉、コンデンサの陽極体及び電解コンデンサ
JP5266427B1 (ja) コンデンサの陽極体の製造方法
US20090180240A1 (en) Valve metal particles uniformly containing nitrogen and the method for preparing the same, the valve metal green pellets and sintered pellets, and the electrolytic capacitor anodes
US9789538B2 (en) Method for producing ultrafine tungsten powder
JP6977021B2 (ja) 薄片状タンタル粉末およびその調製方法
JP5750200B1 (ja) タングステン粉、コンデンサの陽極体、及び電解コンデンサ
JP2002030301A (ja) 窒素含有金属粉末およびその製造方法ならびにそれを用いた多孔質焼結体および固体電解コンデンサ
US9865402B2 (en) Anode body for tungsten capacitors
JP5613861B2 (ja) 固体電解コンデンサの陽極体
JP5752270B2 (ja) タングステンコンデンサの陽極及びその製造方法
WO2015029631A1 (ja) タングステン粉及びコンデンサの陽極体
WO2013172453A1 (ja) コンデンサ素子の製造方法
JP5750201B1 (ja) タングステン粉、コンデンサの陽極体、及び電解コンデンサ
JP5613863B2 (ja) タングステンコンデンサの陽極体及びその製造方法
WO2014104177A1 (ja) ニオブコンデンサ陽極用化成体及びその製造方法
JP5613862B2 (ja) コンデンサの陽極体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013503319

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14351057

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012842453

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE