WO2013057853A1 - モータ駆動システムおよびその制御方法 - Google Patents
モータ駆動システムおよびその制御方法 Download PDFInfo
- Publication number
- WO2013057853A1 WO2013057853A1 PCT/JP2012/002777 JP2012002777W WO2013057853A1 WO 2013057853 A1 WO2013057853 A1 WO 2013057853A1 JP 2012002777 W JP2012002777 W JP 2012002777W WO 2013057853 A1 WO2013057853 A1 WO 2013057853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- current
- motor
- timing
- control
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 16
- 230000007704 transition Effects 0.000 claims description 19
- 238000010586 diagram Methods 0.000 description 24
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 22
- 230000008859 change Effects 0.000 description 14
- 238000001514 detection method Methods 0.000 description 12
- 230000000630 rising effect Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/02—Details of starting control
- H02P1/04—Means for controlling progress of starting sequence in dependence upon time or upon current, speed, or other motor parameter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present invention relates to a motor drive system including an inverter and a control unit for driving a motor.
- An electric vehicle includes a motor that is mounted on a vehicle and can generate a driving torque for the vehicle, an inverter that generates a three-phase alternating current supplied to the motor, and a control unit that controls the inverter.
- a motor that is mounted on a vehicle and can generate a driving torque for the vehicle
- an inverter that generates a three-phase alternating current supplied to the motor
- a control unit that controls the inverter.
- the relationship between the rotation speed and generated torque of a general motor and energy efficiency is as shown in FIG.
- the energy efficiency of the motor varies depending on the rotational speed and torque. That is, if the torque changes even if the rotation speed is constant, the energy efficiency changes. Therefore, a motor drive system is disclosed in which the motor is intermittently driven at a high-efficiency drive point of the motor to reduce the average motor loss and increase the overall energy efficiency (for example, Patent Document 1).
- the intermittent motor drive is a drive that generates torque intermittently.
- FIG. 13 is a timing chart showing the time change of torque in the motor drive technique described in Patent Document 1.
- the control unit includes a first drive period in which the electric motor is driven with a first travel drive torque command value that is smaller than a required torque based on an accelerator operation amount during a power running in which a travel drive torque by the motor is required, and a requested travel
- a second driving period in which the electric motor is driven with a second travel driving torque command value larger than the driving torque is alternately set.
- the ratio between the first and second driving periods is set so that the time average values of the first and second traveling driving torques in the first and second driving periods coincide with the required torque within a predetermined error range. ing.
- the energy efficiency at the time of driving the motor at the second travel drive torque command value is set to a value higher than the energy efficiency at the time of driving the motor at the required torque.
- the overall energy efficiency when the first and second travel drives are time-averaged is the energy when the motor continuously outputs the required travel drive torque based on the accelerator operation amount. It can be higher than efficiency. Therefore, as shown in FIG. 13, two travel drive torque command values are provided, and the command value is alternately changed to vary the generated torque of the motor, thereby satisfying the required travel drive torque without excess or deficiency. Energy efficiency can be increased.
- Patent Document 1 is based on the second travel drive torque command state in which the three-phase alternating current is resupplied to the motor from the first travel drive torque command state in which the supply of current to the motor is interrupted.
- the specific operation of the inverter at the time of transition to is not disclosed. Normally, regardless of the intermittent operation described above, when the current supply to the motor is interrupted, each switching element of the inverter is turned off, and when the current supply to the motor is performed, the inverter Each switching element is often operated by PWM (Pulse Width Modulation) control or the like so that a three-phase alternating current is supplied.
- PWM Pulse Width Modulation
- each switching element of the inverter is simply set in a non-conductive state.
- a method of switching from the first control to the second control in which each switching element of the inverter is PWM-controlled is assumed.
- the period from the interruption of the current supply to the resupply of the three-phase alternating current is a period in which the generated torque gradually increases from the first travel drive torque (zero) to the second travel drive torque.
- the driving state is low in energy efficiency. Therefore, it is desirable that the time required for the transition from interruption of current supply to resupply is as short as possible.
- An object of the present invention is to provide a motor drive system capable of shortening the time required for transition from interruption of current supply to resupply.
- a motor drive system disclosed in the present specification includes at least three upper arms each having a switching element and a free-wheeling diode connected in parallel to the switching element, and the switching element and the switching element.
- An inverter for supplying power to a three-phase motor; and a controller for controlling the plurality of switching elements included in the inverter.
- the control unit includes a first control for turning off all of the plurality of switching elements so as to stop supply of current to the three-phase motor, and each of the three-phase motors.
- the conduction state and non-conduction of the plurality of switching elements so as to supply an alternating current to the phase The second arm that repeats the state, and the upper arm corresponding to the phase into which the current in the three-phase motor flows at the timing of starting the supply of the alternating current to each phase of the three-phase motor among the switching elements of the upper arm And the switching element of the lower arm corresponding to the phase in which the current in the three-phase motor flows out at the timing among the switching elements of the lower arm. Is selectively executed until the timing is reached, and each phase of the three-phase motor is changed from the state where the supply of current to the three-phase motor is stopped.
- the plurality of switch-ons are switched in the order of the first control, the third control, and the second control. Switching the control of the device.
- the time required for the transition from the state where the supply of current to the motor is interrupted to the state where the three-phase alternating current is supplied again to the motor can be shortened.
- FIG. 3 is a control block diagram illustrating a configuration of the motor drive system according to the first embodiment. It is an example of a waveform diagram of a selection signal and a motor current when performing time division control.
- (A) is a partially enlarged view in FIG. 2, and (b) is a diagram showing a signal output to each switching element in order to obtain the waveform of (a).
- 3 is a circuit diagram illustrating an energized phase of the inverter according to Embodiment 1.
- FIG. 2 is an equivalent circuit diagram of the three-phase motor according to Embodiment 1.
- FIG. (A) is a three-phase current waveform diagram according to the first embodiment, and (b) is a diagram illustrating a signal output to each switching element in order to obtain the waveform of (a).
- A is a figure which shows the current waveform of each area which divided the rotation phase angle of the motor every 30 degrees
- (b) is a table
- A) is a waveform diagram showing the time change of the motor current waveform in this embodiment
- (b) is a waveform diagram showing the time change of the motor current waveform in the comparative example.
- (A) is a three-phase current waveform diagram according to the modified example, and (b) is a diagram illustrating signals output to each switching element in order to obtain the waveform of (a).
- the first control is not directly switched from the first control to the second control. Switching is performed in the order of the third control and the second control.
- the current can be changed by PWM control in which each switching element repeats a non-conduction state and a conduction state, or by a third control in which a specific switching element is continuously in a conduction state.
- the PWM control since the PWM control includes a period during which the switching element is in a non-conducting state, the rate of change of the current is small, and as a result, the current is changed to a current value required for generating the torque required in the second control. It takes longer time to complete.
- the third control since the specific switching element is continuously turned on, the period during which the specific switching element is turned off is not included. Therefore, the rate of change of current can be increased compared to PWM control, and as a result, the time required to change the current to the current value required for generating torque required in the second control can be shortened. it can.
- the motor efficiency is low during the transition period from the interruption of the current supply to the resupply, the time required for the transition can be shortened according to the present invention, so that the energy loss can be reduced. Further, the shorter the transition period, the longer the period in which the torque that maximizes the energy efficiency is generated and the period in which the generation of torque is interrupted can be set longer. Therefore, a motor drive system that can further reduce energy loss can be provided.
- FIG. 1 is a control block diagram showing a configuration of a motor drive system 1 according to the first embodiment.
- the motor drive system 1 includes an inverter 12 and a control unit 13.
- the inverter 12 includes a U-phase upper arm switching element 14UP and a return diode, a U-phase lower arm switching element 14UN and a return diode, a V-phase upper arm switching element 14VP and a return diode, and a V-phase lower arm switching element 14VN and a return diode.
- a three-phase bridge circuit comprising a diode, W-phase upper arm switching element 14WP and freewheeling diode, and W-phase lower arm switching element 14WN and freewheeling diode (hereinafter collectively referred to as "switching element 14" when there is no need to distinguish) To do).
- switching element 14 and the free wheel diode are connected in parallel.
- the switching element 14 for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) can be used.
- the IGBT or MOSFET may be a switching element made of silicon (Si) or a switching element made of silicon carbide (SiC).
- the inverter 12 orthogonally converts the DC power output from the power supply 10 during power running and supplies AC power to the motor 11, and converts the AC power generated by the motor 11 into DC power and supplies it to the power supply 10 during regeneration.
- the power source 10 for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery can be used.
- the motor drive system may include a capacitive element such as a capacitor connected in parallel with the power supply 10 (not shown).
- the three-phase motor 11 is connected to the inverter 12 and functions as a power source for the electric vehicle.
- the control unit 13 includes a current detection unit 15, a rotation speed detection unit 16, a phase angle detection unit 17, a time division torque control unit 18, a comparator 20, a voltage command unit 19, and an all-OFF signal generation unit. 22, a PWM signal generation unit 21, a specific signal generation unit 23, a selector 24, a motor sensor 28, and current detection sensors 29 and 30.
- the motor sensor 28 is, for example, a resolver, an encoder, a hall element, or the like.
- the current detection means 15 detects at least any two-phase motor currents of the U, V, and W phases, and the rotation phase angle of the motor 11 detected by the phase angle detection means 17 described later. To dq transform. The current on the d axis and the current on the q axis obtained by the dq conversion are output to the comparator 20.
- the rotational speed detection means 16 detects the rotational speed of the rotor per unit time of the three-phase motor 11 by the motor sensor 28 provided in the three-phase motor 11, and outputs this rotational speed to the time division torque control means 18. .
- the actual rotation speed of the three-phase motor 11 can be grasped from the number of rotations per unit time.
- the phase angle detecting means 17 detects the phase angle of the rotor by the motor sensor 28 provided in the three-phase motor 11, and this phase angle is supplied to the current detecting means 15, the voltage command means 19 and the time division torque control means 18. Output.
- the time division torque control means 18 includes a current command generation means 25, a time division control means 26, and a three-phase motor efficiency map 27.
- the time division torque control means 18 determines the operation of the inverter 12 based on the torque command value, the motor current, the rotation speed of the motor 11, and the rotation phase angle of the motor 11.
- the time-sharing torque control means 18 executes time-sharing control that repeats interruption of current supply to the motor 11 and supply of three-phase AC current, or continuously supplies current to the motor. Decide whether to perform normal control. This determination is made by, for example, using the required torque based on the torque command value, the rotational speed obtained by the rotational speed detection means 16, and the three-phase motor efficiency map 27, and the energy efficiency and the normal control when the time-sharing control is performed. This is done by comparing the energy efficiency with the implementation.
- the current command generation means 25 refers to the three-phase motor efficiency map 27 to obtain the maximum efficiency torque that maximizes the energy efficiency at the current rotational speed, and on the d-axis based on the maximum efficiency torque and A current command on the q axis is generated. As long as the torque is higher than the required torque, a current command based on the command torque may be generated without being limited to the maximum efficiency torque. Further, in the case of normal control, the current command generator 25 generates current commands on the d axis and the q axis based on the required torque.
- the time division control unit 26 generates a selection signal for controlling the selector 24 and a specific conduction command signal for controlling the specific signal generation unit 23. A method for generating the selection signal and the specific conduction command signal will be described later.
- the three-phase motor efficiency map 27 is information obtained by mapping the relationship between the motor rotation speed and torque shown in FIG. 12 and the motor efficiency.
- the comparator 20 obtains the motor current value obtained and output by the current detection means 15 based on the sampling at the current detection sensors 29 and 30 for each of the d and q axes, and the current command value obtained from the current command generation means 25. These current errors are calculated and output to the voltage command means 19. Specifically, the current error due to the comparison between the current command value on the d-axis and the motor current value on the d-axis, and the current error due to the comparison between the current command value on the q-axis and the motor current value on the q-axis , Respectively, to the voltage command means 19. The current error is the difference between the current actually supplied to the three-phase motor 11 and the current required for driving desired by the user.
- the voltage command means 19 calculates a voltage command value based on the current error output from the comparator 20. Specifically, the voltage command means 19 performs, for example, PI control (proportional integration control) on the current error on the d-axis and the q-axis, and calculates voltage command values on the d-axis and the q-axis, respectively. The voltage command means 19 performs inverse dq conversion using the voltage command values on the d and q axes and the rotational phase angle of the three-phase motor 11, and calculates the voltage command values for the U, V, and W phases. This is output to the PWM signal generating means 21.
- PI control proportional integration control
- the all-OFF signal generation means 22 generates a signal (for example, a LOW level signal) that makes all the switching elements 14 non-conductive for each of the U, V, and W phases, and outputs the generated signal to the selector 24.
- a signal for example, a LOW level signal
- the PWM signal generating means 21 Based on the voltage command, the PWM signal generating means 21 sends a signal that causes each switching element 14 to repeat a conductive state and a non-conductive state based on PWM control (for example, a signal that repeats a HIGH level and a LOW level), U, Generated for each V and W phase and outputs to the selector 24.
- PWM control for example, a signal that repeats a HIGH level and a LOW level
- the specific signal generation unit 23 continues to make the specific switching element 14 conductive and keeps the remaining switching elements 14 non-conductive.
- a signal to be generated (for example, a high level signal for a specific switching element and a low level signal for the remaining switching elements 14) is generated and output to the selector 24.
- the selector 24 Based on the selection signal output from the time division control unit 26, the selector 24 outputs the signal output from the all-OFF signal generation unit 22, the signal output from the PWM signal generation unit 21, and the specific signal generation unit 23. One of the output signals is selected and output to the inverter 12.
- control unit 13 may be configured by one processor or a combination of a plurality of processors. Specifically, a microcomputer, a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), or a dedicated IC (integrated circuit: Integrated Circuit) may be used. 3. Operation Next, the operation of the motor drive system when performing time division control will be described with reference to the waveform of the motor current.
- a microcomputer a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), or a dedicated IC (integrated circuit: Integrated Circuit).
- FIG. 2 is an example of a waveform diagram of a selection signal and a motor current when performing time-sharing control.
- FIG. 3A is a partially enlarged view of FIG. 2
- FIG. 3B is a diagram showing signals output to the switching elements in order to obtain the waveform of FIG.
- the selection signal can take three types of states: a state S1 for selecting all OFF signal generation means 22, a state S2 for selecting PWM signal generation means 21, and a state S3 for selecting specific signal generation means 23.
- the specific conduction command signal indicates which of the switching elements 14UP, 14VP, 14WP, 14UN, 14VN, and 14WN is to be turned on when the selection signal is in state S3.
- the selector 24 outputs the signal output from the all-OFF signal generation means 22 to the inverter 12. As a result, all of the switching elements 14 are turned off. During this period, the motor current is zero for all U, V, and W phases. Further, as shown in FIG. 3B, an off signal is output to all the switching elements 14.
- the selector 24 Since the selection signal indicates the state S3 from time t1 to time t2, the selector 24 outputs the signal output from the specific signal generation means 23 to the inverter 12. Thereby, the specific switching element 14 is continuously turned on, and the remaining switching elements 14 are continuously turned off.
- the switching element 14 to be turned on is determined by the state S11 of the specific conduction command signal.
- state S11 indicates that switching element 14UP of the U-phase upper arm and switching element 14WN of the W-phase lower arm are turned on, and the remaining switching elements are turned off. Thereby, from time t1 to time t2, switching elements 14UP and 14WN are turned on, and the remaining switching elements 14UN, 14VP, 14VN, and 14WP are turned off. At this time, as shown in FIG.
- a current flowing in the motor 11 flows in the U phase, and a current flowing out of the motor 11 flows in the W phase. Then, as shown in FIG. 3A, the U-phase current and the W-phase current increase with time. Also, as shown in FIG. 3B, an on signal is output to the switching elements 14UP and 14WN, and an off signal is output to the switching elements 14UN, 14VP, 14VN, and 14WP.
- the selector 24 Since the selection signal indicates the state S2 from time t2 to time t3, the selector 24 outputs the signal output from the PWM signal generation means 21 to the inverter 12. Thereby, each switching element 14 repeats a conduction
- FIG. 3B an ON signal and an OFF signal are repeatedly output to all the switching elements 14. The length of the period from time t2 to time t3 is determined by the following method.
- the time division control means 26 determines the energization time from the total length of the energization time and the non-energization time and the on-duty.
- the total length of the energization time and the non-energization time is constant and is a fixed value.
- the time division control means 26 sets the determined energization time to the length of the period from time t2 to time t3. Thereby, the time average of the generated torque of the motor 11 can be brought close to the required torque.
- the selector 24 Since the selection signal indicates the state S1 from time t3 to time t4, the selector 24 outputs the signal output from the all-OFF signal generation means 22 to the inverter 12. Thereafter, the above operation is repeated except that the switching element indicated by the specific conduction command signal is different. For example, since the selection signal indicates the state S3 from time t4 to t5, the selector 24 outputs the signal output from the specific signal generation unit 23 to the inverter 12. The switching element 14 to be turned on is determined by the state S12 of the specific conduction command signal. 4). Selection Signal Generation Method The time-division control means 26 internally generates a pulse signal in which a pulse rises at a constant cycle, and uses the rise timing of the pulse as a guideline for determining the timing of supplying current to the motor 11.
- the time division control means 26 predicts the current values of the U-phase, V-phase, and W-phase at that timing before the pulse rise timing.
- the current value can be predicted as follows.
- the rotation phase angle of the motor 11 at the timing when the pulse rises is predicted based on the current rotation phase angle of the motor 11, the current rotation speed of the motor 11, and the length of time from the present to the rise timing of the pulse.
- the current rotational phase angle of the motor can be detected by the phase angle detector 17, and the current rotational speed of the motor can be detected by the rotational speed detector 16.
- the peak value of the current to be passed through the U phase, V phase, and W phase is obtained from the magnitude of the maximum efficiency torque.
- the U-phase current value at the timing when the pulse rises is obtained by multiplying the current value (standard value) to be passed through the U-phase by the peak value of the U-phase current.
- V phase and W phase are obtained in the same manner. Thereby, the current values of the U phase, the V phase, and the W phase at the timing when the pulse rises can be predicted.
- the time division control means 26 sets the predicted U-phase, V-phase, and W-phase current values as target current values Isu, Isv, and Isw.
- the time division control means 26 predicts the time until the currents of the U phase, the V phase, and the W phase reach the target current values Isu, Isv, Isw after the specific switching element is turned on. This time can be predicted as follows.
- Fig. 5 is an equivalent circuit diagram of a three-phase motor. As shown in FIG. 5, the electric circuit model per phase of the motor can be expressed as a circuit in which an inductance L and a resistance R of a winding are connected in series.
- Equation 1 The circuit equation when the DC voltage Vdc is applied to each phase is expressed by Equation 1 assuming that the inverter input voltage is sufficiently larger than the generated voltage due to the rotation of the motor, that is, it can be ignored because the generated voltage is small. it can.
- Equations 1 to 3 are assumed to be negligible because the generated voltage due to the rotation of the motor is small, but when the generated voltage cannot be ignored greatly, the left side of Equation 1 is not the inverter input voltage Vdc (inverter input voltage -Motor generation voltage).
- the time division control means 26 sets the timing that is earlier than the predicted timing of the pulse as the timing at which a specific switching element is turned on. That is, it is set as the timing which switches a selection signal from state S1 to state S3.
- the time division control unit 26 detects the current of the U phase, the V phase, and the W phase, and the detected current values of the U phase, the V phase, and the W phase are the target current.
- the timing at which the values Isu, Isv, Isw are reached is set as the timing at which the supply of alternating current to each phase of the motor 11 is started. That is, it is set as the timing which switches a selection signal from state S3 to state S2.
- the time prediction based on the above equation 3 is accurate, the timing of the rise of the pulse coincides with the timing of supplying current to the motor 11.
- the time division control means 26 sets the timing at which the energization time determined by the above-mentioned on-duty has elapsed after the selection signal is switched to the state S2 as the timing at which the supply of current to the motor 11 is interrupted. That is, it is set as the timing which switches a selection signal from state S2 to state S1.
- the selection signal can be generated by the above processing. 5.
- Method for Generating Specific Conduction Command Signal As already described, the time division control means 26 internally generates a pulse signal in which a pulse rises at a constant period. The time division control means 26 predicts the magnitude and direction of the U-phase, V-phase, and W-phase currents at that timing before the pulse rise timing. The magnitude and direction of the current predict the rotational phase angle of the motor 11 at the timing when the pulse rises, and obtain the current value to be passed through the U phase, V phase, and W phase from the predicted rotational phase angle of the motor 11. These processes are the same as the processes for generating the selection signal. The obtained current value is positive / negative, the absolute value of the current value indicates the magnitude of the current, and the positive / negative of the current value indicates the direction of the current.
- the time division control means 26 keeps the upper arm switching element corresponding to the phase into which the current flows in the motor 11 at the timing of starting the current supply to the motor 11 until the timing is reached, and the timing.
- the specific conduction command signal is set so that the switching element of the lower arm corresponding to the phase in which the current in the motor 11 begins to flow is continuously conducted until the timing is reached.
- the time division control means 26 changes the state S11 of the specific conduction command signal from the time t1 to the time t2 so that the switching element 14UP of the U-phase upper arm and the switching element 14WN of the lower arm of the W-phase become conductive. Is set.
- the switching element 14UP of the U-phase upper arm and the switching element 14WN of the lower arm of the W-phase become conductive. Is set.
- the current value of the V phase at time t2 is zero by chance, but the current value of any phase may not be zero at the timing of supplying current to the motor 11. is there.
- the current values of the U phase, the V phase, and the W phase are not zero.
- FIG. 6B is a diagram illustrating a signal output to each switching element in order to obtain the waveform of FIG.
- an off signal is output to all the switching elements 14 until time t4.
- an on signal is output to the switching elements 14UP and 14WN, and an off signal is output to the switching elements 14UN, 14VP, 14VN, and 14WP.
- an on signal is output to the switching elements 14UP, 14VP, and 14WN, and an off signal is output to the switching elements 14UN, 14VN, and 14WP.
- an ON signal and an OFF signal are repeatedly output to all the switching elements 14.
- the switching element 14UP of the U-phase upper arm is turned on at time t4
- the switching element 14WN of the lower arm of W phase is turned on
- the switching element of the V-phase upper arm is turned on at time t6.
- 14VP is in a conducting state. This time difference is due to the magnitudes of the target current values Isu, Isv, Isw. That is, since the inductance L and resistance R of the winding of the motor 11 are substantially the same in any of the U phase, the V phase, and the W phase, the rate of change of current when the specific switching element 14 is turned on is also the U phase, It is substantially the same in both the V phase and the W phase.
- the conduction state may be set at time t61, and at time t5, the target current value Isv2 may be reached earlier than that. It is necessary to turn on at time t62.
- FIG. 8 is a diagram showing each section in which the rotational phase angle of the motor is divided every 30 ° and switching elements that are in a conductive state in each section.
- Sections 1 to 12 in FIG. 8A correspond to sections 1 to 12 in FIG. 8B.
- the phase angle is 0 ° or more and less than 30 °
- the phase angle is 30 ° or more and less than 60 °, and so on.
- “ON” indicates a switching element that is turned on
- “Adjustment ON” indicates that the switching element indicated by “ON” is turned off and is turned on after a predetermined time has elapsed. A switching element is shown.
- the switching element 14VP of the V-phase upper arm is turned on and the switching element 14WN of the W-phase lower arm is turned on for a predetermined time.
- the switching element 14UP of the U-phase upper arm may be changed from the non-conductive state to the conductive state.
- the phase angle at time t2 in FIG. 2 is a phase angle of 60 ° and is included in section 3.
- the current of the switching element that is “adjustment ON” is 0 A (ampere)
- the phase angle at time t5 in FIG. 2 is around the phase angle of 50 ° and is included in the section 2.
- the switching element When the state in one section of a certain switching element is “adjustment ON” and the state in the other section is “ON” at the time of the boundary of each section, the switching element is turned on. For example, at the time of the boundary between the section 1 and the section 2, the switching element 14WN is turned on, and the switching elements 14UP and 14VP are both turned on.
- the switching element when the state in one section of a certain switching element is “adjustment ON” and the state in the other section is “OFF” at the time of the boundary of each section, the switching element is made non-conductive. .
- the switching elements 14UN and 14WP are turned off and the switching elements 14VP and 14VN are turned off. 6). Effect
- the control unit 13 makes the switching elements 14 conductive based on the PWM control so as to supply the three-phase alternating current to the motor 11 in the first control for turning off all the switching elements 14.
- the switching element of the upper arm is continuously conducted.
- the third control for selectively turning on the switching element of the lower arm is selectively executed.
- the control unit 13 switches from the first control, which is a torque generation interruption state, to the second control, which is a torque generation state, the first control, the third control, and the second control. Switching in order. Thereby, the time required for the transition from the interruption of the supply of the three-phase alternating current to the resupply can be shortened.
- FIG. 9A is a waveform diagram showing the time change of the motor current waveform in this embodiment
- FIG. 9B is a waveform diagram showing the time change of the motor current waveform in the comparative example.
- a switching operation by PWM control is performed in all three phases. That is, until the target current values Isu, Isv, and Isw are reached, a switching operation that repeats the conduction state and the non-conduction state is performed in all of the U phase, the V phase, and the W phase.
- the duty of the V-phase switching element is 1 ⁇ 2, the apparent current value of the V-phase is zero.
- the upper phase of the U phase is changed during the transition time from the first control that interrupts the generation of torque to the second control that generates the torque.
- the third control is performed so that the switching element 14UP of the arm is continuously turned on and the switching element 14WN of the lower arm of the W phase is continuously turned on.
- the time division control unit 26 detects the currents of the U phase, the V phase, and the W phase after the selection signal is switched to the state S3.
- the timing at which the detected U-phase, V-phase, and W-phase current values reach the target current values Isu, Isv, and Isw is set as the timing for supplying the motor 11 with the three-phase AC current.
- the present invention is not limited to the example in which the current is actually measured in this way, but the supply of the alternating current to each phase of the motor 11 is started after the time determined by Equation 3 has elapsed after the selection signal is switched to the state S3. It is good also as setting as a timing to perform.
- FIG. 10A is a three-phase current waveform diagram
- FIG. 10B is a diagram illustrating signals output to the switching elements to obtain the waveform of FIG.
- FIG. 11 is a diagram illustrating the relationship between the U-phase target current value and the slope of the U-phase current.
- the switching elements 14UP and 14WN of the U-phase upper arm and the W-phase lower arm are continuously turned on, and at the same time, the switching element 14VP of the V-phase upper arm is switched. It may be operated.
- the on-time in S3 of the V-phase is Isv / Isu
- the upper arm of the V-phase is Isv / Isu in the period from t4 to t5.
- the switching operation is performed so that the switching element 14VP is turned on. Specifically, as shown in FIG. 10B, the OFF signal is output to all the switching elements 14 until time t4. Next, from time t4 to t5, an ON signal is output to the switching elements 14UP and 14WN, and an ON signal and an OFF signal are repeatedly output to the switching element 14VP so as to be turned ON by Isv / Isu.
- An off signal is output to 14VN and 14WP. From time t5, an ON signal and an OFF signal are repeatedly output to all the switching elements 14. As shown in FIG. 11, the switching element 14VP of the upper arm of the V phase is switched from time t4 to t5 so as to reach the target current value Isv at time t5. 3.
- the timing for switching from second control to the first control is made to correspond to the timing of turning on and off the sine wave current. A modification of this will be described.
- the time-sharing torque control means 18 detects the timing at which any one phase current becomes approximately 0 A from the input signal from the current detection means 15. At this timing, the time division control means 26 transmits a signal to the selector 24, whereby the selector 24 outputs the signal from the all OFF signal generation means 22 to each switching element 14. Thereby, all the switching elements 14 of the inverter 12 are in a non-conductive state.
- the timing for switching from the third control to the second control is determined based on the pulse signal generated in the time division control means 26. It is almost coincident with the rising edge of the pulse. Therefore, the relationship between the timing for switching from the third control to the second control and the rotational phase angle of the motor 11 is not fixed.
- the timing for switching from the third control to the second control is not limited to this, and even if the relationship between the timing for switching from the third control to the second control and the rotational phase angle of the motor 11 is fixed. Good.
- the timing for switching from the third control to the second control may be always matched with the timing at which the rotational phase angle of the motor 11 satisfies the condition of ( ⁇ + 60 ° ⁇ N).
- ⁇ is a fixed value of 0 ° or more and less than 60 °
- N is selected every time the timing for supplying the three-phase AC current to the motor 11 from an integer of 0 or more and 5 or less comes.
- the magnitude of the current of each phase is the same every time the rotation phase angle is 60 °.
- the timing is changed.
- the timing for switching from the third control to the second control may be used.
- the timing for switching from the third control to the second control is changed from the timing of the pulse rising.
- the timing may be shifted to either the timing satisfying the condition of ( ⁇ + 60 ° ⁇ N) before or the timing satisfying the condition of ( ⁇ + 60 ° ⁇ N) after the rising timing of the pulse.
- the timing satisfying the condition of ( ⁇ + 60 ° ⁇ N) after the pulse rising timing is satisfied, and in the opposite case, the pulse rising timing.
- the timing is set so as to satisfy the condition ( ⁇ + 60 ° ⁇ N) before. In this way, the deviation between the time average generated torque and the target generated torque can be reduced with a simple calculation.
- the motor drive system according to the present invention is used for, for example, compressor inverter control for air conditioners, inverter control for refrigerators, inverter control for heat pump water heaters, inverter control for industrial servo amplifiers, inverter control for electric vehicles and hybrid vehicles, etc. Widely applicable.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
Description
<実施の形態1>
1.全体構成
図1は、実施の形態1に係るモータ駆動システム1の構成を示す制御ブロック図である。図1に示すように、モータ駆動システム1は、インバータ12、および制御部13からなる。
2.制御部13の詳細な構成
制御部13は、電流検出手段15、回転数検出手段16、位相角検出手段17、時分割トルク制御手段18、比較器20、電圧指令手段19、全OFF信号生成手段22、PWM信号生成手段21、特定信号生成手段23、セレクタ24、モータセンサ28、および電流検出センサ29、30を備える。モータセンサ28は、例えば、レゾルバ、エンコーダ、ホール素子などである。
3.動作
次に、モータ電流の波形を参照しながら、時分割制御を行う場合のモータ駆動システムの動作を説明する。
4.選択信号の生成方法
時分割制御手段26は、一定周期でパルスが立ち上がるパルス信号を内部で生成しており、パルスの立ち上がりのタイミングをモータ11に電流供給を実施するタイミングを決める目安として用いる。
5.特定導通指令信号の生成方法
既に説明したように、時分割制御手段26は、一定周期でパルスが立ち上がるパルス信号を内部で生成している。時分割制御手段26は、パルスの立ち上がりのタイミングになる前に、そのタイミングでのU相、V相、W相の電流の大きさと向きを予測する。電流の大きさと向きとは、パルスが立ち上がるタイミングでのモータ11の回転位相角を予測し、予測されたモータ11の回転位相角からU相、V相、W相に流すべき電流値を求める。これらの処理は、選択信号の生成での処理と同様である。求めた電流値には正負があり、電流値の絶対値が電流の大きさを示し、電流値の正負が電流の向きを示す。
6.効果
上記の通り、制御部13は、スイッチング素子14のすべてを非導通状態とする第1の制御と、モータ11へ3相交流電流を供給するように各スイッチング素子14をPWM制御に基づき導通状態と非導通状態とで繰り返させる第2の制御と、モータ11に電流供給を実施するタイミングでの電流の向きがモータ11に流れ込む向きである相においては上アームのスイッチング素子を継続して導通状態とすると共に、モータ11から流れ出す向きである相においては下アームのスイッチング素子を導通状態とする第3の制御とを選択的に実行している。さらに、制御部13は、トルクの発生の中断状態である第1の制御からトルクの発生状態である第2の制御へと切り替えるとき、第1の制御、第3の制御、第2の制御の順に切り替えている。これにより、3相交流電流の供給の中断から再供給までの遷移に要する時間を短くすることができる。以下、図9を用いて、当該効果をより詳細に説明する。
<変形例>
1.第3の制御から第2の制御への切換えタイミングの変形例
実施の形態では、時分割制御手段26は、選択信号が状態S3に切り替わった後、U相、V相、W相の電流を検出し、検出されたU相、V相、W相の電流値が目標電流値Isu、Isv、Iswに達したタイミングを、モータ11に3相交流電流を供給するタイミングとして設定している。本発明は、このように電流を実測する例に限らず、選択信号が状態S3に切り替わった後、数3により定まる時間が経過したタイミングを、モータ11の各相への交流電流の供給を開始するタイミングとして設定することとしてもよい。
2.第3の制御におけるスイッチング素子調整ON制御の変形例
上記の実施形態においては、第3の制御時に同じ向きに電流が流れる相が2つある場合、電流値が小さい方の相の上アームのスイッチング素子を、待機時間後に非導通状態から導通状態へ切換える例を示したが、これに限定されず別の制御でもよい。以下、この変形例について説明する。
3.第2の制御から第1の制御に切換えるタイミングの変形例
実施の形態では、第2の制御から第1の制御に切換えるタイミングを、正弦波電流のオンからオフへのタイミングに対応させている。これについての変形例を説明する。
4.第3の制御から第2の制御への切換えタイミングの変形例
実施の形態では、第3の制御から第2の制御に切換えるタイミングを、時分割制御手段26の内部で生成されているパルス信号のパルスの立ち上がりに略一致させている。そのため、第3の制御から第2の制御に切り替えるタイミングとモータ11の回転位相角との関係が固定的ではない。しかし、第3の制御から第2の制御に切換えるタイミングは、これに限らず、第3の制御から第2の制御に切り替えるタイミングとモータ11の回転位相角との関係が固定的であってもよい。例えば、第3の制御から第2の制御に切り替えるタイミングを、常に、モータ11の回転位相角が(α+60°×N)の条件を満たすタイミングに一致させることとしても良い。このとき、αは0°以上60°未満の固定値であり、Nは0以上5以下の整数からモータ11への3相交流電流を供給するタイミングが到来するたびに選択される。モータ11では、回転位相角が60°毎に各相の電流の大きさが同じような状況になる。このように第3の制御から第2の制御に切り替えるタイミングを同じような状況で固定すれば、数3を用いた演算を毎回する必要がなく、時分割制御手段26の処理負荷を低減することができる。
12 インバータ
13 制御部
14 スイッチング素子
21 PWM信号生成手段
22 全OFF信号生成手段
23 特定信号生成手段
24 セレクタ
26 時分割制御手段
Claims (9)
- スイッチング素子と前記スイッチング素子に並列に接続された還流ダイオードとを有する少なくとも3つの上アームと、スイッチング素子と前記スイッチング素子に並列に接続された還流ダイオードとを有する少なくとも3つの下アームとを備え、3相モータに電力を供給するためのインバータと、
前記インバータが備える前記複数のスイッチング素子を制御する制御部と
を備えたモータ駆動システムにおいて、
前記制御部は、
前記3相モータへの電流の供給を停止するように、前記複数のスイッチング素子のすべてを非導通状態とする第1の制御と、
前記3相モータの各相へ交流電流を供給するように、前記複数のスイッチング素子の導通状態および非導通状態を繰り返す第2の制御と、
前記上アームのスイッチング素子のうち、前記3相モータの各相への交流電流の供給を開始するタイミングにおいて前記3相モータにおける電流が流れ込む相に対応する上アームのスイッチング素子を、前記タイミングに達するまでの間継続して導通状態とすると共に、前記下アームのスイッチング素子のうち、前記タイミングにおいて前記3相モータにおける電流が流れ出す相に対応する下アームのスイッチング素子を、前記タイミングに達するまでの間継続して導通状態とする第3の制御と
を選択的に実行し、
前記3相モータへの電流の供給が停止した状態から、前記3相モータの各相への交流電流の供給を開始するとき、
前記第1の制御、前記第3の制御、前記第2の制御の順に、前記複数のスイッチング素子の制御を切換える
モータ駆動システム。 - 前記制御部は、
前記3相モータの各相への交流電流の供給を開始するタイミングにおいて、前記3相モータの2つの相に同じ向きの電流が流れる場合、
前記第3の制御において、
前記3相モータの2つの相のうちの電流の大きさが大きい相に対応するスイッチング素子を継続して導通状態とし、所定時間経過後に電流の大きさが小さい相に対応するスイッチング素子を継続して導通状態とする
請求項1に記載のモータ駆動システム。 - 前記制御部は、
前記3相モータの各相への交流電流の供給を開始するタイミングにおいて、前記3相モータの2つの相に同じ向きの電流が流れる場合、
前記第3の制御において、
前記3相モータの2つの相のうちの電流の大きさが大きい相に対応するスイッチング素子を継続して導通状態とし、電流の大きさが小さい相に対応するスイッチング素子を導通状態と非導通状態とで繰り返す
請求項1記載のモータ駆動システム。 - 前記制御部は、
前記3相モータの各相への交流電流の供給を開始するタイミングを、前記3相モータの位相角が(α+60°×N)(αは0°以上60°未満の固定値であり、Nは0以上5以下の整数から選択される値)の条件を満たすタイミングに一致させる
請求項1から3のいずれかに記載のモータ駆動システム。 - 前記制御部は、
前記3相モータの各相への交流電流の供給を開始するタイミングの目安となるパルス信号を得て、
前記パルス信号に基づくタイミングが前記(α+60°×N)の条件を満たすタイミングからずれている場合に、前記3相モータの各相への交流電流を供給するタイミングを、前記パルス信号に基づくタイミングよりも前の前記(α+60°×N)の条件を満たすタイミングか、前記パルス信号に基づくタイミングよりも後の前記(α+60°×N)の条件を満たすタイミングかのいずれかに設定する
請求項4に記載のモータ駆動システム。 - 前記制御部は、
前記第2の制御から前記第1の制御へと切換えるとき、前記3相モータの3相のうちいずれかの相の電流がゼロとなるタイミングで切換える
請求項1から5のいずれかに記載のモータ駆動システム。 - スイッチング素子と前記スイッチング素子に並列に接続された還流ダイオードとを有する少なくとも3つの上アームと、スイッチング素子と前記スイッチング素子に並列に接続された還流ダイオードとを有する少なくとも3つの下アームとを備え、3相モータに電力を供給するためのインバータの駆動方法であって、
前記3相モータへの電流の供給が停止した状態から、前記3相モータの各相への交流電流の供給を開始するとき、
前記上アームのスイッチング素子のうち、前記3相モータの各相への交流電流の供給を開始するタイミングにおいて前記3相モータにおける電流が流れ込む相に対応する上アームのスイッチング素子を、前記タイミングに達するまでの間継続して導通状態とすると共に、前記下アームのスイッチング素子のうち、前記タイミングにおいて前記3相モータにおける電流が流れ出す相に対応する下アームのスイッチング素子を、前記タイミングに達するまでの間継続して導通状態とする遷移制御を行い、
前記遷移制御を行った後、前記3相モータの各相への交流電流の供給を開始するように、前記複数のスイッチング素子の導通状態および非導通状態を繰り返す交流電流供給制御を行う
インバータの駆動方法。 - 前記3相モータの各相への交流電流の供給を開始するタイミングにおいて、前記3相モータの2つの相に同じ向きの電流が流れる場合、
前記遷移制御において、
前記3相モータの2つの相のうちの電流の大きさが大きい相に対応するスイッチング素子を継続して導通状態とし、所定時間経過後に電流の大きさが小さい相に対応するスイッチング素子を継続して導通状態とする
請求項7に記載のインバータの駆動方法。 - 前記3相モータの各相への交流電流の供給を開始するタイミングにおいて、前記3相モータの2つの相に同じ向きの電流が流れる場合、
前記遷移制御において、
前記3相モータの2つの相のうちの電流の大きさが大きい相に対応するスイッチング素子を継続して導通状態とし、電流の大きさが小さい相に対応するスイッチング素子を導通状態と非導通状態とで繰り返す
請求項7に記載のインバータの駆動方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12799040.6A EP2605399A4 (en) | 2011-10-17 | 2012-04-23 | MOTOR DRIVE SYSTEM AND CONTROL PROCEDURE THEREFOR |
US13/810,304 US8729846B2 (en) | 2011-10-17 | 2012-04-23 | Motor drive system and control method thereof |
CN2012800020659A CN103229414A (zh) | 2011-10-17 | 2012-04-23 | 电动机驱动系统及其控制方法 |
JP2012542275A JP5216940B1 (ja) | 2011-10-17 | 2012-04-23 | モータ駆動システムおよびその制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011227802 | 2011-10-17 | ||
JP2011-227802 | 2011-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013057853A1 true WO2013057853A1 (ja) | 2013-04-25 |
Family
ID=48140526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002777 WO2013057853A1 (ja) | 2011-10-17 | 2012-04-23 | モータ駆動システムおよびその制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8729846B2 (ja) |
EP (1) | EP2605399A4 (ja) |
JP (1) | JP5216940B1 (ja) |
CN (1) | CN103229414A (ja) |
WO (1) | WO2013057853A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105826778A (zh) * | 2016-03-17 | 2016-08-03 | 晶科华兴集成电路(深圳)有限公司 | 一种辅助电机与电机控制器进行电连接的配线器 |
JP2019146405A (ja) * | 2018-02-22 | 2019-08-29 | 株式会社ミツバ | モータ制御装置及びモータ制御方法 |
CN110474573A (zh) * | 2018-05-11 | 2019-11-19 | 爱信精机株式会社 | 电机控制装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6036322B2 (ja) * | 2013-01-18 | 2016-11-30 | 株式会社島津製作所 | モータ駆動装置および真空ポンプ |
JP6303354B2 (ja) * | 2013-09-19 | 2018-04-04 | 株式会社デンソー | モータ駆動装置 |
WO2015046000A1 (ja) * | 2013-09-24 | 2015-04-02 | アイシン・エィ・ダブリュ株式会社 | 制御装置 |
KR101988088B1 (ko) * | 2016-10-31 | 2019-06-12 | 현대자동차주식회사 | 모터 구동 제어 방법, 시스템 및 이를 적용한 연료전지 시스템의 압축기 구동 제어 방법 |
JP6610586B2 (ja) * | 2017-03-13 | 2019-11-27 | トヨタ自動車株式会社 | 駆動装置 |
JP7173775B2 (ja) * | 2018-07-20 | 2022-11-16 | ミネベアミツミ株式会社 | モータ駆動制御装置及びモータの駆動制御方法 |
CN112332719B (zh) * | 2019-07-30 | 2023-05-23 | 南京泉峰科技有限公司 | 一种电动工具的控制方法、系统和电动工具 |
US11296644B2 (en) * | 2020-01-20 | 2022-04-05 | Ford Global Technologies, Llc | Alternating passive rectification and 3-phase-short control for motor fault protection |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08182381A (ja) * | 1994-12-28 | 1996-07-12 | Hitachi Ltd | 負荷を間欠駆動するためのインバータ装置 |
JPH10243680A (ja) * | 1997-02-27 | 1998-09-11 | Nissan Motor Co Ltd | モータ制御装置及び電動車両 |
JP2011036008A (ja) * | 2009-07-31 | 2011-02-17 | Hitachi Automotive Systems Ltd | モータの制御装置及びそれを備えたモータシステム |
JP2011067043A (ja) | 2009-09-18 | 2011-03-31 | Mitsubishi Electric Corp | 電気自動車の駆動制御装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0614786B2 (ja) | 1984-12-28 | 1994-02-23 | 富士電機株式会社 | Pwm信号発生回路 |
JPH05153705A (ja) | 1991-11-28 | 1993-06-18 | Hitachi Ltd | 電気自動車 |
JP3232823B2 (ja) | 1993-11-16 | 2001-11-26 | 株式会社日立製作所 | 電気自動車の回生制動制御方法 |
JP3229094B2 (ja) | 1993-11-25 | 2001-11-12 | 三菱電機株式会社 | インバータ装置 |
JPH0956162A (ja) | 1995-08-21 | 1997-02-25 | Hitachi Ltd | コンバータのpwm制御装置 |
DE10037972B4 (de) * | 1999-08-05 | 2005-09-15 | Sharp K.K. | Vorrichtung und Verfahren zur Elektromotorsteuerung |
CN1297067C (zh) * | 2000-02-14 | 2007-01-24 | 三洋电机株式会社 | 电机装置 |
BRPI0004062B1 (pt) * | 2000-09-08 | 2015-10-13 | Brasil Compressores Sa | método de controle de motor elétrico, sistema de controle de motor elétrico e motor elétrico |
ES2433640T3 (es) * | 2001-09-29 | 2013-12-12 | Daikin Industries, Ltd. | Procedimiento para la detección de la corriente de fase, procedimiento de control de inversor, procedimiento de control de motor y aparatos utilizados en estos procedimientos |
JP3907453B2 (ja) | 2001-11-28 | 2007-04-18 | 松下電器産業株式会社 | 電気動力装置付き車輌の制御装置 |
US6774592B2 (en) * | 2001-12-03 | 2004-08-10 | Delphi Technologies, Inc. | Method and system for controlling a permanent magnet machine |
ATE386362T1 (de) * | 2002-12-12 | 2008-03-15 | Matsushita Electric Ind Co Ltd | Motorsteuerungsvorrichtung |
EP1501186B1 (en) * | 2003-07-18 | 2018-08-22 | III Holdings 10, LLC | Motor driving apparatus |
JP4118841B2 (ja) * | 2004-07-01 | 2008-07-16 | 山洋電気株式会社 | 同期電動機の制御装置、及び、その制御方法 |
CN100440713C (zh) | 2006-12-22 | 2008-12-03 | 清华大学 | 一种减小共模电压的两相pwm调制方法 |
CA2698956C (en) * | 2007-10-29 | 2013-07-16 | Mitsubishi Electric Corporation | Controller of motor |
JP2011015515A (ja) | 2009-07-01 | 2011-01-20 | Nissan Motor Co Ltd | 電動機の制御システムおよび電動機の制御方法 |
JP5439352B2 (ja) | 2010-04-28 | 2014-03-12 | 株式会社日立製作所 | 電力変換装置 |
DE102010030239A1 (de) * | 2010-06-17 | 2011-12-22 | BSH Bosch und Siemens Hausgeräte GmbH | Verfahren und Vorrichtung zum Anlassen eines Elektromotors |
-
2012
- 2012-04-23 WO PCT/JP2012/002777 patent/WO2013057853A1/ja active Application Filing
- 2012-04-23 EP EP12799040.6A patent/EP2605399A4/en not_active Withdrawn
- 2012-04-23 JP JP2012542275A patent/JP5216940B1/ja active Active
- 2012-04-23 US US13/810,304 patent/US8729846B2/en active Active
- 2012-04-23 CN CN2012800020659A patent/CN103229414A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08182381A (ja) * | 1994-12-28 | 1996-07-12 | Hitachi Ltd | 負荷を間欠駆動するためのインバータ装置 |
JPH10243680A (ja) * | 1997-02-27 | 1998-09-11 | Nissan Motor Co Ltd | モータ制御装置及び電動車両 |
JP2011036008A (ja) * | 2009-07-31 | 2011-02-17 | Hitachi Automotive Systems Ltd | モータの制御装置及びそれを備えたモータシステム |
JP2011067043A (ja) | 2009-09-18 | 2011-03-31 | Mitsubishi Electric Corp | 電気自動車の駆動制御装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105826778A (zh) * | 2016-03-17 | 2016-08-03 | 晶科华兴集成电路(深圳)有限公司 | 一种辅助电机与电机控制器进行电连接的配线器 |
JP2019146405A (ja) * | 2018-02-22 | 2019-08-29 | 株式会社ミツバ | モータ制御装置及びモータ制御方法 |
JP6994979B2 (ja) | 2018-02-22 | 2022-01-14 | 株式会社ミツバ | モータ制御装置及びモータ制御方法 |
CN110474573A (zh) * | 2018-05-11 | 2019-11-19 | 爱信精机株式会社 | 电机控制装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103229414A (zh) | 2013-07-31 |
US20130187588A1 (en) | 2013-07-25 |
JPWO2013057853A1 (ja) | 2015-04-02 |
EP2605399A4 (en) | 2014-02-26 |
EP2605399A1 (en) | 2013-06-19 |
JP5216940B1 (ja) | 2013-06-19 |
US8729846B2 (en) | 2014-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5216940B1 (ja) | モータ駆動システムおよびその制御方法 | |
JP5216941B1 (ja) | モータ駆動システムおよびその制御方法 | |
US9054613B2 (en) | Motor drive apparatus and vehicle with the same mounted thereon | |
JP4497235B2 (ja) | 交流電動機の制御装置および制御方法 | |
KR101021256B1 (ko) | 전동기구동제어시스템 및 그 제어방법 | |
JP4729526B2 (ja) | 電動機の駆動制御装置 | |
JP6217554B2 (ja) | インバータ装置 | |
US10164551B2 (en) | Boost control apparatus based on output current change rate | |
KR20180040085A (ko) | 차량용 인버터 구동 장치 및 차량용 유체 기계 | |
JP2009201192A (ja) | モータ駆動制御装置 | |
JP2009095144A (ja) | 交流モータの制御装置および交流モータの制御方法 | |
US20120286705A1 (en) | Apparatus and method for controlling rotary electric machine | |
JP6241460B2 (ja) | 電動機の制御装置 | |
JP6217667B2 (ja) | 電動圧縮機 | |
JP2021182836A (ja) | インバータ制御装置及び車載用流体機械 | |
JP2009232604A (ja) | 回転電機制御システム | |
JP2008154431A (ja) | モータ制御装置 | |
JP6680183B2 (ja) | インバータ制御装置及び車載流体機械 | |
US20130307451A1 (en) | System and method for sensor-less hysteresis current control of permanent magnet synchronous generators without rotor position information | |
JP2012244740A (ja) | 駆動装置 | |
US8148927B2 (en) | Alternating-current motor control apparatus | |
JP2013021869A (ja) | スイッチング回路の制御装置 | |
JP2010220306A (ja) | モータの制御装置 | |
JP5404810B2 (ja) | ブラシレス直流モータの動作方法 | |
JP2012223026A (ja) | 駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012542275 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012799040 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13810304 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12799040 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |