JP6610586B2 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
JP6610586B2
JP6610586B2 JP2017047268A JP2017047268A JP6610586B2 JP 6610586 B2 JP6610586 B2 JP 6610586B2 JP 2017047268 A JP2017047268 A JP 2017047268A JP 2017047268 A JP2017047268 A JP 2017047268A JP 6610586 B2 JP6610586 B2 JP 6610586B2
Authority
JP
Japan
Prior art keywords
phase
inverter
state
current
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047268A
Other languages
English (en)
Other versions
JP2018152986A (ja
Inventor
健司 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017047268A priority Critical patent/JP6610586B2/ja
Priority to US15/889,504 priority patent/US10340834B2/en
Priority to CN201810185851.6A priority patent/CN108574405B/zh
Publication of JP2018152986A publication Critical patent/JP2018152986A/ja
Application granted granted Critical
Publication of JP6610586B2 publication Critical patent/JP6610586B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0852Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load directly responsive to abnormal temperature by using a temperature sensor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、駆動装置に関し、詳しくは、モータとインバータと蓄電装置とを備える駆動装置に関する。
従来、この種の駆動装置としては、モータと、複数のスイッチング素子(トランジスタ)および複数のスイッチング素子に並列に接続された複数のダイオードを有すると共に複数のスイッチング素子のスイッチングによりモータを駆動するインバータと、インバータに電力ラインを介して接続されたバッテリと、を備える駆動装置において、インバータがゲート遮断状態で、モータの回転に伴って発生する逆起電圧がインバータの直流側電圧よりも高く且つバッテリに入力される電力が所定電力よりも大きいときには、インバータを三相オン(三相短絡)状態に移行させるものが提案されている(例えば、特許文献1参照)。この駆動装置では、こうした制御により、バッテリに過大な電力が入力されたり、インバータの直流側電圧が過大になったりするのを抑制している。
特開2011−172343号公報
上述の駆動装置において、インバータをゲート遮断状態から三相オン状態に移行させる際に、上アーム(下アーム)のスイッチング素子の全てを略同時にオンにすると、各相のうちそのタイミングで下アーム(上アーム)のダイオードに電流が流れている相について、上下アームを介して電力ラインの正極側ラインと負極側ラインとが短絡し、その相の素子に大電流が流れて素子が故障する可能性がある。
本発明の駆動装置は、モータを駆動するインバータの各素子の故障をより抑制することを主目的とする。
本発明の駆動装置は、上述の主目的を達成するために以下の手段を採った。
本発明の駆動装置は、
モータと、
複数のスイッチング素子および前記複数のスイッチング素子に並列に接続された複数のダイオードを有し、前記複数のスイッチング素子のスイッチングにより前記モータを駆動するインバータと、
前記インバータに電力ラインを介して接続された蓄電装置と、
前記インバータを制御する制御装置と、
を備える駆動装置であって、
前記モータの各相の相電流を検出する電流センサを備え、
前記制御装置は、
前記インバータをゲート遮断状態から三相オン状態に移行させる際には、
前記各相について前記相電流を用いて上アームのダイオードに電流が流れていると判定したときに前記上アームのスイッチング素子をオンにすることにより、上アーム三相オン状態に移行させる、または、
前記各相について前記相電流を用いて下アームのダイオードに電流が流れていると判定したときに前記下アームのスイッチング素子をオンにすることにより、下アーム三相オン状態に移行させる、
ことを要旨とする。
この本発明の駆動装置では、インバータをゲート遮断状態から三相オン状態に移行させる際には、各相について相電流を用いて上アームのダイオードに電流が流れていると判定したときに上アームのスイッチング素子をオンにすることにより、上アーム三相オン状態に移行させる、または、各相について相電流を用いて下アームのダイオードに電流が流れていると判定したときに下アームのスイッチング素子をオンにすることにより、下アーム三相オン状態に移行させる。これにより、上アーム三相オン状態に移行させるときには、各相について、上アームのスイッチング素子をオンにするときに、その相で上下アームを介して電力ラインの正極側ラインと負極側ラインとが短絡するのを回避することができ、その相の素子に大電流が流れるのを回避することができる。また、下アーム三相オン状態移行させるときには、各相について、下アームのスイッチング素子をオンにするときに、その相で上下アームを介して電力ラインの正極側ラインと負極側ラインとが短絡するのを回避することができ、その相の素子に大電流が流れるのを回避することができる。これらの結果、インバータの各素子の故障をより抑制することができる。
こうした本発明の駆動装置において、前記制御装置は、前記インバータが前記ゲート遮断状態で、前記モータの回転に伴って発生する逆起電圧が前記インバータの直流側電圧よりも高いときに、前記インバータを前記三相オン状態に移行させるものとしてもよい。また、前記制御装置は、前記インバータが前記ゲート遮断状態で、前記蓄電装置に入力される電力が所定電力よりも大きいときに、前記インバータを前記三相オン状態に移行させるものとしてもよい。これらのようにすれば、バッテリに過大な電力が入力されたり、電力ラインの電圧が過大になったりするのを抑制することができる。
また、本発明の駆動装置において、前記電力ラインに設けられたリレーを更に備え、前記制御装置は、前記インバータを前記三相オン状態に移行させた後に、前記リレーをオフにするものとしてもよい。こうすれば、インバータからバッテリに電力が供給されていない状態でリレーをオフにすることができ、リレーが溶着するのを抑制することができる。
この場合、前記電力ラインには、コンデンサが取り付けられており、前記制御装置は、前記インバータが前記三相オン状態で、前記モータの温度が第1所定温度よりも高くなったときおよび/または前記インバータの温度が第2所定温度よりも高くなったときに、前記リレーをオフにし、その後に前記インバータを前記ゲート遮断状態に移行させるものとしてもよい。リレーをオフにした後にインバータをゲート遮断状態に移行させると、その直前にモータの逆起電圧がコンデンサの電圧よりも高いときにはコンデンサの電圧が迅速に(極短時間で)上昇して両者が等しくなってインバータの各素子に電流が流れなくなり、その直前にモータの逆起電圧がコンデンサの電圧以下のときにはインバータの各素子には直ちに電流が流れなくなる。したがって、インバータの各素子の過熱を抑制することができる。
本発明の一実施例としての駆動装置を搭載する電気自動車20の構成の概略を示す構成図である。 電子制御ユニット50により実行される異常時処理ルーチンの一例を示すフローチャートである。 上アーム三相オン移行処理の一例を示すフローチャートである。 インバータ34をゲート遮断状態から上アーム三相オン状態に移行させる際の様子の一例を示す説明図である。 下アーム三相オン移行処理の一例を示すフローチャートである。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての駆動装置を搭載する電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図示するように、モータ32と、インバータ34と、蓄電装置としてのバッテリ36と、システムメインリレーSMRと、電子制御ユニット50と、を備える。
モータ32は、同期発電電動機として構成されており、永久磁石が埋め込まれた回転子と、三相コイルが巻回された固定子と、を備える。このモータ32の回転子は、駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。
インバータ34は、モータ32の駆動に用いられると共に電力ライン38を介してバッテリ36に接続されている。このインバータ34は、6つのトランジスタT11〜T16と、6つのダイオードD11〜D16と、を有する。トランジスタT11〜T16は、それぞれ、電力ライン38の正極ラインと負極ラインとに対してソース側とシンク側になるように2個ずつペアで配置されている。また、トランジスタT11〜T16の対となるトランジスタ同士の接続点の各々には、モータ32の三相コイル(U相,V相,W相)の各々が接続されている。ダイオードD11〜D16は、電力ライン38の負極ライン側から正極ライン側の方向が順方向となるようにトランジスタT11〜T16のそれぞれに並列に接続されている。インバータ34に電圧が作用しているときに、電子制御ユニット50によって、対となるトランジスタT11〜T16のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータ32が回転駆動される。以下、トランジスタT11〜T13およびダイオードD11〜D13を「上アーム」といい、トランジスタT14〜T16およびダイオードD14〜D16を「下アーム」という。電力ライン38の正極ラインと負極ラインとには、平滑用のコンデンサ40が取り付けられている。
バッテリ36は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、上述したように、電力ライン38を介してインバータ34に接続されている。電力ライン38には、インバータ34やバッテリ36に加えて、空調装置における空調用インバータ42や、電力ライン38の電力を降圧して補機バッテリや補機に供給するDC/DCコンバータ44なども接続されている。
システムメインリレーSMRは、電力ライン38におけるインバータ34やコンデンサ40,空調用インバータ42,DC/DCコンバータ44よりもバッテリ36側に設けられており、電子制御ユニット50によってオンオフ制御されることにより、インバータ34やコンデンサ40,空調用インバータ42,DC/DCコンバータ44とバッテリ36との接続および接続の解除を行なう。
電子制御ユニット50は、図示しないが、CPU52を中心とするマイクロプロセッサとして構成されており、CPU52の他に、処理プログラムを記憶するROM54やデータを一時的に記憶するRAM56,入出力ポートを備える。電子制御ユニット50には、各種センサからの信号が入力ポートを介して入力されている。電子制御ユニット50に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する回転位置検出センサ(例えばレゾルバ)32aからのモータ32の回転子の回転位置θmや、モータ32の各相の相電流を検出する電流センサ32u,32v,32wからのモータ32の各相の相電流Iu,Iv,Iw,モータ32の温度(例えばコイル温度)を検出する温度センサ32tからのモータ32の温度tm,インバータ34の温度(例えば素子温度)を検出する温度センサ34tからのインバータ34の温度tiを挙げることができる。また、バッテリ36の端子間に取り付けられた電圧センサ36aからのバッテリ36の電圧Vbや、バッテリ36の出力端子に取り付けられた電流センサ36bからのバッテリ36の電流Ib,コンデンサ40の端子間に取り付けられた電圧センサ40aからの電力ライン38(コンデンサ40)の電圧VLも挙げることができる。加えて、イグニッションスイッチ60からのイグニッション信号や、シフトレバー61の操作位置を検出するシフトポジションセンサ62からのシフトポジションSPも挙げることができる。また、アクセルペダル63の踏み込み量を検出するアクセルペダルポジションセンサ64からのアクセル開度Accや、ブレーキペダル65の踏み込み量を検出するブレーキペダルポジションセンサ66からのブレーキペダルポジションBP,車速センサ68からの車速Vも挙げることができる。電子制御ユニット50からは、各種制御信号が出力ポートを介して出力されている。電子制御ユニット50から出力される信号としては、例えば、インバータ34のトランジスタT11〜T16へのスイッチング制御信号や、システムメインリレーSMRへのオンオフ制御信号,空調用インバータ42への制御信号,DC/DCコンバータ44への制御信号を挙げることができる。電子制御ユニット50は、回転位置検出センサ32aからのモータ32の回転子の回転位置θmに基づいてモータ32の電気角θeや角速度ωm,回転数Nmを演算している。また、電子制御ユニット50は、電流センサからのバッテリ36の電流Ibの積算値に基づいてバッテリ36の蓄電割合SOCを演算している。ここで、蓄電割合SOCは、バッテリ36の全容量に対するバッテリ36から放電可能な電力の容量の割合である。
こうして構成された実施例の電気自動車20では、電子制御ユニット50のCPU52は、アクセル開度Accと車速Vとに基づいて駆動軸26に要求される要求トルクTd*を設定し、設定した要求トルクTd*をモータ32のトルク指令Tm*に設定し、モータ32がトルク指令Tm*で駆動されるようにインバータ34のトランジスタT11〜T16のスイッチング制御を行なう。
次に、こうして構成された実施例の電気自動車20の動作、特に、モータ32や回転位置検出センサ32aに異常が生じたときの動作について説明する。図2は、このときに電子制御ユニット50により実行される異常時処理ルーチンの一例を示すフローチャートである。なお、本ルーチンの実行開始時には、空調用インバータ42やDC/DCコンバータ44の駆動を停止するものとした。
図2の異常時処理ルーチンが実行されると、電子制御ユニット50のCPU52は、インバータ34を、トランジスタT11〜T16の全てがオフのゲート遮断状態にする(ステップS100)。続いて、電力ライン38(コンデンサ40)の電圧VLやモータ32の回転に伴って発生する逆起電圧Vcefなどのデータを入力する(ステップS110)。ここで、電力ライン38(コンデンサ40)の電圧VLは、電圧センサ40aにより検出された値を入力するものとした。モータ32の逆起電圧Vcefは、回転位置検出センサ32aにより検出されたモータ32の回転子の回転位置θmに基づくモータ32の角速度ωmに起電圧定数Kmを乗じて演算された値を入力するものとした。なお、モータ32の角速度ωmは、車速Vに換算係数を乗じて演算するものとしてもよい。
こうしてデータを入力すると、モータ32の逆起電圧Vcefを電力ライン38の電圧VLと比較する(ステップS120)。モータ32の逆起電圧Vcefが電力ライン38の電圧VLよりも高いときには、モータ32の逆起電圧Vcefに基づく電力がインバータ34のダイオードD11〜D16により整流されて電力ライン38を介してバッテリ36に供給される。このため、バッテリ36に過大な電力が入力されたり、電力ライン38の電圧VLが過大になったりする可能性がある。ステップS120の処理は、こうした可能性があるか否かを判断する処理である。モータ32の逆起電圧Vcefが電力ライン38の電圧VL以下のときには、こうした可能性はないと判断し、本ルーチンを終了する。
ステップS120でモータ32の逆起電圧Vcefが電力ライン38の電圧VLよりも高いときには、上述の可能性があると判断し、インバータ34をゲート遮断状態から三相オン状態に移行させる(ステップS130)。ここで、三相オン状態には、上アームのトランジスタT11〜T13の全てがオンの上アーム三相オン状態と、下アームのトランジスタT14〜T16の全てがオンの下アーム三相オン状態と、がある。実施例では、図3の上アーム三相オン移行処理により、インバータ34をゲート遮断状態から上アーム三相オン状態に移行させるものとした。インバータ34を三相オン状態(上アーム三相オン状態)に移行させることにより、モータ32とインバータ34との間で電流が循環するようになってインバータ34から電力ライン38側に電力が供給されなくなるから、バッテリ36に過大な電力が入力されたり、電力ライン38の電圧VLが過大になったりするのを抑制することができる。これにより、バッテリ36やコンデンサ40,空調用インバータ42,DC/DCコンバータ44を保護することができる。以下、図2の異常時処理ルーチンの説明を中断し、図3のの上アーム三相オン移行処理について説明する。
図3の上アーム三相オン移行処理では、電子制御ユニット50は、トランジスタT11がオンかオフかを判定する(ステップS200)。トランジスタT11がオフのときには、U相の相電流Iuを入力し(ステップS210)、入力したU相の相電流Iuを負の閾値Iuref1と比較する(ステップS220)。ここで、U相の相電流Iuは、電流センサ32uにより検出された値(インバータ34側からモータ32側の方向が正の値)を入力するものとした。トランジスタT11,T14がオフのときにおいて、相電流Iuが正の値のときには、ダイオードD14に電流が流れており、相電流Iuが負の値のときには、ダイオードD11に電流が流れていると考えられる。閾値Iuref1は、ダイオードD11,D14のうちダイオードD11に電流が流れていると判断できる値として、例えば、電流センサ32uの検出誤差を考慮して−5Aや−7A,−10Aなどを用いることができる。
ステップS220でU相の相電流Iuが閾値Iuref1よりも大きいときには、トランジスタT11をオフで保持し(ステップS230)、U相の相電流Iuが閾値Iuref1以下のときには、トランジスタT11をオンにする(ステップS240)。ステップS200でトランジスタT11がオンのときには、それを保持する(ステップS240)。即ち、トランジスタT11がオフでU相の相電流Iuが閾値Iuref1以下に至ると、トランジスタT11をオンにしてそれを保持するのである。
続いて、トランジスタT12がオンかオフかを判定する(ステップS250)。トランジスタT12がオフのときには、V相の相電流Ivを入力し(ステップS260)、入力したV相の相電流Ivを負の閾値Ivref1と比較する(ステップS270)。ここで、V相の相電流Ivは、電流センサ32vにより検出された値(インバータ34側からモータ32側の方向が正の値)を入力するものとした。トランジスタT12,T15がオフのときにおいて、相電流Ivが正の値のときには、ダイオードD15に電流が流れており、相電流Ivが負の値のときには、ダイオードD12に電流が流れていると考えられる。閾値Ivref1は、ダイオードD12,D15のうちダイオードD12に電流が流れていると判断できる値として、例えば、電流センサ32vの検出誤差を考慮して−5Aや−7A,−10Aなどを用いることができる。
ステップS270でU相の相電流Ivが閾値Ivref1よりも大きいときには、トランジスタT12をオフで保持し(ステップS280)、V相の相電流Ivが閾値Ivref1以下のときには、トランジスタT12をオンにする(ステップS290)。ステップS250でトランジスタT12がオンのときには、それを保持する(ステップS290)。即ち、トランジスタT12がオフでV相の相電流Ivが閾値Ivref1以下に至ると、トランジスタT12をオンにしてそれを保持するのである。
そして、トランジスタT13がオンかオフかを判定する(ステップS300)。トランジスタT13がオフのときには、W相の相電流Iwを入力し(ステップS310)、入力したW相の相電流Iwを負の閾値Iwref1と比較する(ステップS320)。ここで、W相の相電流Iwは、電流センサ32wにより検出された値(インバータ34側からモータ32側の方向が正の値)を入力するものとした。トランジスタT13,T16がオフのときにおいて、相電流Iwが正の値のときには、ダイオードD16に電流が流れており、相電流Iwが負の値のときには、ダイオードD12に電流が流れていると考えられる。閾値Iwref1は、ダイオードD13,D16のうちダイオードD13に電流が流れていると判断できる値として、例えば、電流センサ32wの検出誤差を考慮して−5Aや−7A,−10Aなどを用いることができる。
ステップS320でW相の相電流Iwが閾値Iwref1よりも大きいときには、トランジスタT13をオフで保持し(ステップS330)、W相の相電流Iwが閾値Iwref1以下のときには、トランジスタT13をオンにする(ステップS340)。ステップS300でトランジスタT13がオンのときには、それを保持する(ステップS340)。即ち、トランジスタT13がオフでW相の相電流Iwが閾値Iwref1以下に至ると、トランジスタT13をオンにしてそれを保持するのである。
そして、インバータ34の上アーム三相オン状態(上アームのトランジスタT11〜T13の全てがオンの状態)への移行が完了したか否かを判定し(ステップS350)、インバータ34の上アーム三相オン状態への移行が完了していない(上アームのトランジスタT11〜T13のうちオフのトランジスタがある)と判定したときには、ステップS200に戻る。そして、ステップS200〜S350の処理を繰り返し実行して、ステップS350で、インバータ34の上アーム三相オン状態への移行が完了した(上アームのトランジスタT11〜T13の全てがオンになった)と判定したときに、本ルーチンを終了する。
インバータ34をゲート遮断状態から上アーム三相オン状態に移行させる際に、上アームのトランジスタの全てを略同時にオンにすると、各相のうちそのタイミングで下アームのダイオードに電流が流れている相について、上下アームを介して電力ライン38の正極側ラインと負極側ラインとが短絡し、その相の素子に大電流が流れて素子が故障する可能性がある。これに対して、実施例では、U相の上アームのトランジスタT11については、U相の相電流Iuが閾値Iuref1以下のとき(ダイオードD11に電流が流れていると判定したとき)にオンにし、V相の上アームのトランジスタT12については、V相の相電流Ivが閾値Ivref1以下のとき(ダイオードD12に電流が流れていると判定したとき)にオンにし、W相の上アームのトランジスタT13についてはW相の相電流Iwが閾値Iwref1以下のとき(ダイオードD13に電流が流れていると判定したとき)にオンにすることにより、上アーム三相オン状態に移行させる。これにより、U相,V相,W相の何れの相でも、上アームのトランジスタをオンにするときにその相で上下アームを介して電力ライン38の正極側ラインと負極側ラインとが短絡するのを回避することができる。この結果、インバータ34の各素子の故障をより抑制することができる。
図3の上アーム三相オン移行処理について説明した。図2の異常時処理ルーチンの説明に戻る。上アーム三相オン移行処理を完了すると、電力ライン38の電圧VLやモータ32の逆起電圧Vcef,モータ32の温度tm,インバータ34の温度tiなどのデータを入力する(ステップS140)。電力ライン38の電圧VLやモータ32の逆起電圧Vcefの入力方法については上述した。モータ32の温度tmは、温度センサ32tにより検出された値を入力するものとした。インバータ34の温度tiは、温度センサ34tにより検出された値を入力するものとした。
こうしてデータを入力すると、モータ32の温度tmを閾値tmrefと比較すると共に(ステップS150)、インバータ34の温度tiを閾値tirefと比較する(ステップS160)。ここで、閾値tmrefは、モータ32の過熱温度よりも若干低い許容温度として、例えば、160℃や180℃,200℃など用いることができる。閾値tirefは、インバータ34の過熱温度よりも若干低い許容温度として、例えば、120℃や140℃,160℃などを用いることができる。
ステップS150,S160で、モータ32の温度tmが閾値tmref以下で且つインバータ34の温度tiが閾値tiref以下のときには、モータ32もインバータ34も許容温度以下であると判断し、モータ32の逆起電圧Vcefを電力ライン38の電圧VLと比較する(ステップS170)。そして、モータ32の逆起電圧Vcefが電力ライン38の電圧VLよりも高いときには、ステップS140に戻る。この場合、インバータ34を三相オン状態(上アーム三相オン状態)で保持する。一方、モータ32の逆起電圧Vcefが電力ライン38の電圧VL以下のときには、インバータ34をゲート遮断状態に移行させて(ステップS190)、本ルーチンを終了する。
ステップS150でモータ32の温度tmが閾値tmrefよりも高いときや、ステップS160でインバータ34の温度tiが閾値tirefよりも高いときには、モータ32やインバータ34が許容温度を超えていると判断し、システムメインリレーSMRをオフにし(ステップS180)、インバータ34をゲート遮断状態に移行させて(ステップS190)、本ルーチンを終了する。いま、空調用インバータ42やDC/DCコンバータ44の駆動を停止しており、且つ、インバータ34が三相オン状態(上アーム三相オン状態)のときを考えている。このとき、モータ32とインバータ34の上アームとで電流が循環しており、電力ライン38には電流が流れていない。したがって、システムメインリレーSMRをオフにする際に溶着するのを抑制することができる。また、システムメインリレーSMRをオフにした後にインバータ34をゲート遮断状態に移行させることにより、その直前にモータ32の逆起電圧Vcefがコンデンサ40の電圧VLよりも高いときにはコンデンサ40の電圧VLが迅速に(極短時間で)上昇して両者が等しくなってインバータ34の各素子に電流が流れなくなり、その直前にモータ32の逆起電圧Vcefがコンデンサ40の電圧VL以下のときにはインバータ34の各素子には直ちに電流が流れなくなる。したがって、インバータ34の各素子の過熱を抑制することができる。
図4は、インバータ34をゲート遮断状態から上アーム三相オン状態に移行させる際の様子の一例を示す説明図である。図4では、各相の相電流Iu,Iv,Iw,各相で上アームおよび下アームのダイオードのうち何れのダイオードに電流が流れているか,各相の上アームのトランジスタがオンかオフか,バッテリ36の電流Ib(バッテリ36から放電するときが正の値)について示す。図示するように、インバータ34がゲート遮断状態で、時刻t11にW相で上アームのダイオードD13に電流が流れるようになると上アームのトランジスタT13をオンにし、時刻t12にU相で上アームのダイオードD11に電流が流れるようになると上アームのトランジスタT11をオンにし、時刻t13にV相で上アームのダイオードD12に電流が流れるようになると上アームのトランジスタT12をオンにし、上アーム三相オン状態への移行を完了する。これにより、U相,V相,W相の何れの相でも、上アームのトランジスタをオンにするときにその相で上下アームを介して電力ライン38の正極側ラインと負極側ラインとが短絡するのを回避することができる。そして、インバータ34が上アーム三相オン状態になると、バッテリ36の電流Ibが値0になる。
以上説明した実施例の電気自動車20に搭載される駆動装置では、インバータ34をゲート遮断状態から三相オン状態に移行させる際には、U相の上アームのトランジスタT11については、U相の相電流Iuが閾値Iuref1以下のとき(ダイオードD11に電流が流れていると判定したとき)にオンにし、V相の上アームのトランジスタT12については、V相の相電流Ivが閾値Ivref1以下のとき(ダイオードD12に電流が流れていると判定したとき)にオンにし、W相の上アームのトランジスタT13についてはW相の相電流Iwが閾値Iwref1以下のとき(ダイオードD13に電流が流れていると判定したとき)にオンにすることにより、上アーム三相オン状態に移行させる。これにより、U相,V相,W相の何れの相でも、上アームのトランジスタをオンにするときにその相で上下アームを介して電力ライン38の正極側ラインと負極側ラインとが短絡するのを回避することができる。この結果、インバータ34の各素子の故障をより抑制することができる。
また、実施例の電気自動車20に搭載される駆動装置では、インバータ34が三相オン状態(上アーム三相オン状態)で、モータ32の温度tmが閾値tmrefよりも高いときやインバータ34の温度tiが閾値tirefよりも高いときには、システムメインリレーSMRをオフにし、その後にインバータ34をゲート遮断状態に移行させる。空調用インバータ42やDC/DCコンバータ44の駆動を停止しており且つインバータ34が三相オン状態のときにシステムメインリレーSMRをオフにすることにより、システムメインリレーSMRが溶着するのを抑制することができる。また、システムメインリレーSMRをオフにした後にインバータ34をゲート遮断状態に移行させることにより、インバータ34の各素子の過熱を抑制することができる。
実施例の電気自動車20に搭載される駆動装置では、電子制御ユニット50は、図2の異常時処理ルーチンのステップS130の処理、即ち、インバータ34をゲート遮断状態から三相オン状態に移行させる処理として、図3の上アーム三相オン移行処理により上アーム三相オン状態に移行させる処理を実行するものとした。しかし、これに代えて、図5の下アーム三相オン移行処理により下アーム三相オン状態に移行させる処理を実行するものとしてもよい。
図5の下アーム三相オン移行処理では、電子制御ユニット50は、トランジスタT14がオンかオフかを判定する(ステップS400)。トランジスタT14がオフのときには、U相の相電流Iuを入力し(ステップS410)、入力したU相の相電流Iuを正の閾値Iuref2と比較する(ステップS420)。上述したように、トランジスタT11,T14がオフのときにおいて、相電流Iuが正の値のときには、ダイオードD14に電流が流れており、相電流Iuが負の値のときには、ダイオードD11に電流が流れていると考えられる。閾値Iuref2は、ダイオードD11,D14のうちダイオードD14に電流が流れていると判断できる値として、例えば、電流センサ32uの検出誤差を考慮して5Aや7A,10Aなどを用いることができる。
ステップS420でU相の相電流Iuが閾値Iuref2未満のときには、トランジスタT14をオフで保持し(ステップS430)、U相の相電流Iuが閾値Iuref2以上のときには、トランジスタT14をオンにする(ステップS440)。ステップS400でトランジスタT14がオンのときには、それを保持する(ステップS440)。即ち、トランジスタT14がオフでU相の相電流Iuが閾値Iuref2以上に至ると、トランジスタT14をオンにしてそれを保持するのである。
続いて、トランジスタT15がオンかオフかを判定する(ステップS450)。トランジスタT15がオフのときには、V相の相電流Ivを入力し(ステップS460)、入力したV相の相電流Ivを正の閾値Ivref2と比較する(ステップS470)。上述したように、トランジスタT12,T15がオフのときにおいて、相電流Ivが正の値のときには、ダイオードD15に電流が流れており、相電流Ivが負の値のときには、ダイオードD12に電流が流れていると考えられる。閾値Ivref2は、ダイオードD12,D15のうちダイオードD15に電流が流れていると判断できる値として、例えば、電流センサ32vの検出誤差を考慮して5Aや7A,10Aなどを用いることができる。
ステップS470でU相の相電流Ivが閾値Ivref2未満のときには、トランジスタT15をオフで保持し(ステップS480)、V相の相電流Ivが閾値Ivref2以上のときには、トランジスタT15をオンにする(ステップS490)。ステップS450でトランジスタT15がオンのときには、それを保持する(ステップS490)。即ち、トランジスタT15がオフでV相の相電流Ivが閾値Ivref2以上に至ると、トランジスタT15をオンにしてそれを保持するのである。
そして、トランジスタT16がオンかオフかを判定する(ステップS500)。トランジスタT16がオフのときには、W相の相電流Iwを入力し(ステップS510)、入力したW相の相電流Iwを正の閾値Iwref2と比較する(ステップS520)。上述したように、トランジスタT13,T16がオフのときにおいて、相電流Iwが正の値のときには、ダイオードD16に電流が流れており、相電流Iwが負の値のときには、ダイオードD12に電流が流れていると考えられる。閾値Iwref2は、ダイオードD13,D16のうちダイオードD16に電流が流れていると判断できる値として、例えば、電流センサ32wの検出誤差を考慮して5Aや7A,10Aなどを用いることができる。
ステップS520でW相の相電流Iwが閾値Iwref2未満のときには、トランジスタT16をオフで保持し(ステップS530)、W相の相電流Iwが閾値Iwref2以上のときには、トランジスタT16をオンにする(ステップS540)。ステップS500でトランジスタT16がオンのときには、それを保持する(ステップS540)。即ち、トランジスタT16がオフでW相の相電流Iwが閾値Iwref2以上に至ると、トランジスタT16をオンにしてそれを保持するのである。
そして、インバータ34の下アーム三相オン状態(下アームのトランジスタT14〜T16の全てがオンの状態)への移行が完了したか否かを判定し(ステップS550)、インバータ34の下アーム三相オン状態への移行が完了していない(下アームのトランジスタT14〜T16のうちオフのトランジスタがある)と判定したときには、ステップS400に戻る。そして、ステップS400〜S550の処理を繰り返し実行して、ステップS550で、インバータ34の下アーム三相オン状態への移行が完了した(下アームのトランジスタT14〜T16の全てがオンになった)と判定したときに、本ルーチンを終了する。
この変形例では、インバータ34をゲート遮断状態から三相オン状態に移行させる際には、U相の下アームのトランジスタT14については、U相の相電流Iuが閾値Iuref2以上のとき(ダイオードD14に電流が流れていると判定したとき)にオンにし、V相の下アームのトランジスタT15については、V相の相電流Ivが閾値Ivref2以上のとき(ダイオードD15に電流が流れていると判定したとき)にオンにし、W相の下アームのトランジスタT16についてはW相の相電流Iwが閾値Iwref2以上のとき(ダイオードD16に電流が流れていると判定したとき)にオンにすることにより、下アーム三相オン状態に移行させる。これにより、U相,V相,W相の何れの相でも、下アームのトランジスタをオンにするときにその相で上下アームを介して電力ライン38の正極側ラインと負極側ラインとが短絡するのを回避することができる。この結果、インバータ34の各素子の故障をより抑制することができる。
実施例や変形例の電気自動車20に搭載される駆動装置では、インバータ34がゲート遮断状態でモータ32の逆起電圧Vcefが電力ライン38の電圧VLよりも大きいときに、インバータ34を三相オン状態(上アーム三相オン状態または下アーム三相オン状態)に移行させるものとした。しかし、インバータ34がゲート遮断状態でバッテリ36に入力される電力Pchが閾値Pchよりも大きいときに、インバータ34を三相オン状態に移行させるものとしてもよいし、インバータ34がゲート遮断状態で、モータ32の逆起電圧Vcefが電力ライン38の電圧VLよりも大きく且つバッテリ36に入力される電力Pchが閾値Pchよりも大きいときに、インバータ34を三相オン状態に移行させるものとしてもよい。ここで、バッテリ36に入力される電力Pchは、電圧センサ36aにより検出されるバッテリ36の電圧Vbと、電流センサ36bにより検出されるバッテリ36の電流Ib(充電するときが正の値)と、の積により計算することができる。これらの場合でも、バッテリ36に過大な電力が入力されたり、電力ライン38の電圧VLが過大になったりするのを抑制することができる。
実施例や変形例の電気自動車20に搭載される駆動装置では、インバータ34がゲート遮断状態で、モータ32の逆起電圧Vcefが電力ライン38の電圧VLよりも大きいときなどに、インバータ34を三相オン状態(上アーム三相オン状態または下アーム三相オン状態)に移行させるものとした。しかし、インバータ34がゲート遮断状態のときには、モータ32の逆起電圧Vcefなどに拘わらずに、インバータ34を三相オン状態に移行させるものとしてもよい。
実施例や変形例の電気自動車20に搭載される駆動装置では、インバータ34が三相オン状態(上アーム三相オン状態または下アーム三相オン状態)で、モータ32の逆起電圧Vcefが電力ライン38の電圧VL以下のときには、インバータ34をゲート遮断状態に移行させるものとした。しかし、インバータ34を三相オン状態で保持するものとしてもよい。この場合、モータ32が回転停止したときなどに、インバータ34をゲート遮断状態に移行させるものとしてもよい。
実施例や変形例の電気自動車20に搭載される駆動装置では、インバータ34が三相オン状態(上アーム三相オン状態または下アーム三相オン状態)で、モータ32の温度tmが閾値tmrefよりも高いときやインバータ34の温度tiが閾値tirefよりも高いときには、システムメインリレーSMRをオフにし、その後に、インバータ34をゲート遮断状態に移行させるものとした。しかし、インバータ34が三相オン状態のときには、モータ32の温度tmやインバータ34の温度tiに拘わらずに、システムメインリレーSMRをオフにするまたはオンで保持するものとしてもよい。モータ32の温度tmやインバータ34の温度tiに拘わらずにシステムメインリレーSMRをオフにする場合、その後に、モータ32の温度tmが閾値tmref以下のときやインバータ34の温度tiが閾値tiref以下のときには、インバータ34を三相オン状態で保持し、モータ32の温度tmが閾値tmrefよりも高いときやインバータ34の温度tiが閾値tirefよりも高いときには、インバータ34をゲート遮断状態に移行させるものとしてもよい。
実施例や変形例では、電気自動車20に搭載される駆動装置の構成とした。しかし、モータとインバータと蓄電装置とを備える構成であればよく、ハイブリッド自動車に搭載される駆動装置の構成としたり、建設設備などの移動しない設備に搭載される駆動装置の構成としたりしてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、モータ32が「モータ」に相当し、インバータ34が「インバータ」に相当し、バッテリ36が「蓄電装置」に相当し、電子制御ユニット50が「制御装置」に相当する。また、システムメインリレーSMRが「リレー」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、駆動装置の製造産業などに利用可能である。
20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32 モータ、32a 回転位置検出センサ、32t,34t 温度センサ、32u,32v,32w,36b 電流センサ、34 インバータ、36 バッテリ、36a,40a 電圧センサ、38 電力ライン、40 コンデンサ、42 空調用インバータ、44 DC/DCコンバータ、50 電子制御ユニット、52 CPU、54 ROM、56 RAM、60 イグニッションスイッチ、61 シフトレバー、62 シフトポジションセンサ、63 アクセルペダル、64 アクセルペダルポジションセンサ、65 ブレーキペダル、66 ブレーキペダルポジションセンサ、68 車速センサ、D11〜D16 ダイオード、T11〜T16 トランジスタ。

Claims (5)

  1. モータと、
    複数のスイッチング素子および前記複数のスイッチング素子に並列に接続された複数のダイオードを有し、前記複数のスイッチング素子のスイッチングにより前記モータを駆動するインバータと、
    前記インバータに電力ラインを介して接続された蓄電装置と、
    前記インバータを制御する制御装置と、
    を備える駆動装置であって、
    前記モータの各相の相電流を検出する電流センサを備え、
    前記制御装置は、
    前記インバータをゲート遮断状態から三相オン状態に移行させる際には、
    前記各相について前記相電流を用いて上アームのダイオードに電流が流れていると判定したときに前記上アームのスイッチング素子をオンにすることにより、上アーム三相オン状態に移行させる、または、
    前記各相について前記相電流を用いて下アームのダイオードに電流が流れていると判定したときに前記下アームのスイッチング素子をオンにすることにより、下アーム三相オン状態に移行させる、
    駆動装置。
  2. 請求項1記載の駆動装置であって、
    前記制御装置は、前記インバータが前記ゲート遮断状態で、前記モータの回転に伴って発生する逆起電圧が前記インバータの直流側電圧よりも高いときに、前記インバータを前記三相オン状態に移行させる、
    駆動装置。
  3. 請求項1記載の駆動装置であって、
    前記制御装置は、前記インバータが前記ゲート遮断状態で、前記蓄電装置に入力される電力が所定電力よりも大きいときに、前記インバータを前記三相オン状態に移行させる、
    駆動装置。
  4. 請求項1ないし3のうちの何れか1つの請求項に記載の駆動装置であって、
    前記電力ラインに設けられたリレーを更に備え、
    前記制御装置は、前記インバータを前記三相オン状態に移行させた後に、前記リレーをオフにする、
    駆動装置。
  5. 請求項4記載の駆動装置であって、
    前記電力ラインには、コンデンサが取り付けられており、
    前記制御装置は、前記インバータが前記三相オン状態で、前記モータの温度が第1所定温度よりも高くなったときおよび/または前記インバータの温度が第2所定温度よりも高くなったときに、前記リレーをオフにし、その後に前記インバータを前記ゲート遮断状態に移行させる、
    駆動装置。
JP2017047268A 2017-03-13 2017-03-13 駆動装置 Active JP6610586B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017047268A JP6610586B2 (ja) 2017-03-13 2017-03-13 駆動装置
US15/889,504 US10340834B2 (en) 2017-03-13 2018-02-06 Drive system
CN201810185851.6A CN108574405B (zh) 2017-03-13 2018-03-07 驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047268A JP6610586B2 (ja) 2017-03-13 2017-03-13 駆動装置

Publications (2)

Publication Number Publication Date
JP2018152986A JP2018152986A (ja) 2018-09-27
JP6610586B2 true JP6610586B2 (ja) 2019-11-27

Family

ID=63445126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047268A Active JP6610586B2 (ja) 2017-03-13 2017-03-13 駆動装置

Country Status (3)

Country Link
US (1) US10340834B2 (ja)
JP (1) JP6610586B2 (ja)
CN (1) CN108574405B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019005495T5 (de) * 2018-11-02 2021-09-02 Rohm Co., Ltd. Halbleiterbauteil, halbleitermodul, relay-einheit, batterieeinheit und fahrzeug
JP7151534B2 (ja) * 2019-02-15 2022-10-12 株式会社デンソー モータ駆動装置
JP2020162254A (ja) * 2019-03-26 2020-10-01 日本電産株式会社 インバータ装置
DE112019007096T5 (de) * 2019-03-28 2021-12-16 Mitsubishi Electric Corporation Motorantriebsvorrichtung
JP7424172B2 (ja) 2020-04-01 2024-01-30 富士電機株式会社 モータ駆動装置、モータ駆動方法、およびモータ駆動プログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273517B (zh) * 2005-10-24 2012-02-08 松下电器产业株式会社 逆变器装置
JP4729393B2 (ja) * 2005-12-06 2011-07-20 東芝キヤリア株式会社 電力変換装置
JP4497149B2 (ja) * 2005-12-16 2010-07-07 パナソニック株式会社 インバータ装置
JP2008193873A (ja) * 2007-02-08 2008-08-21 Denso Corp 多相回転電機の制御装置
JP5104647B2 (ja) 2008-08-20 2012-12-19 トヨタ自動車株式会社 ハイブリッド自動車の制御装置及び制御方法
JP4968698B2 (ja) * 2008-12-26 2012-07-04 本田技研工業株式会社 電動機の制御装置
JP2011172343A (ja) * 2010-02-17 2011-09-01 Toyota Motor Corp 駆動装置
DE112011102229T5 (de) * 2010-06-29 2013-06-06 Honda Motor Co., Ltd. Elektrisches Automobil
US9281776B2 (en) * 2011-01-31 2016-03-08 Mitsubishi Electric Corporation Power conversion apparatus including different voltage-type bridge circuits
JP5433608B2 (ja) * 2011-03-03 2014-03-05 日立オートモティブシステムズ株式会社 電力変換装置
JP5397432B2 (ja) 2011-08-22 2014-01-22 トヨタ自動車株式会社 回転電機の駆動システム
US8773063B2 (en) * 2011-10-17 2014-07-08 Panasonic Corporation Motor drive system and control method thereof
CN103229414A (zh) * 2011-10-17 2013-07-31 松下电器产业株式会社 电动机驱动系统及其控制方法
CN104106205B (zh) * 2012-03-30 2017-05-31 富士电机株式会社 交流电机系统及其控制方法
CN104410337B (zh) * 2014-11-26 2017-11-03 联合汽车电子有限公司 高压永磁同步电机驱动系统
JP6119778B2 (ja) * 2015-02-24 2017-04-26 トヨタ自動車株式会社 インバータの制御装置
JP6237699B2 (ja) 2015-05-25 2017-11-29 トヨタ自動車株式会社 異常検出装置
JP2017038484A (ja) * 2015-08-11 2017-02-16 トヨタ自動車株式会社 自動車

Also Published As

Publication number Publication date
US20180262149A1 (en) 2018-09-13
CN108574405B (zh) 2019-12-20
US10340834B2 (en) 2019-07-02
CN108574405A (zh) 2018-09-25
JP2018152986A (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6610586B2 (ja) 駆動装置
KR101793581B1 (ko) 인버터의 제어 시스템
JP6589929B2 (ja) 駆動装置
CN110027412B (zh) 汽车
JP2016111754A (ja) 自動車
JP5578033B2 (ja) 負荷駆動装置および車両
EP3569439B1 (en) Drive device and control method for vehicle
JP2019170057A (ja) モータ制御装置
JP6683052B2 (ja) コンバータ装置
JP6825544B2 (ja) 電動車両
JP2017131083A (ja) 自動車
JP6708843B2 (ja) 駆動装置
JP2016208686A (ja) 電動車両
JP2021083188A (ja) 制御装置および制御方法
JP2015231276A (ja) 同期モータの制御装置、及び、これを備える車両制御システム
JP2015202020A (ja) 電力装置
JP7305984B2 (ja) 車両
JP2020089054A (ja) 電動車両
JP7151534B2 (ja) モータ駆動装置
JP2013055821A (ja) 電力装置
JP2022038147A (ja) 駆動装置
JP6852652B2 (ja) 自動車
JP2018102057A (ja) 電源装置
JP2016123229A (ja) 自動車
JP6569626B2 (ja) 電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R151 Written notification of patent or utility model registration

Ref document number: 6610586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151