WO2013051369A1 - 繊維強化樹脂組成物 - Google Patents
繊維強化樹脂組成物 Download PDFInfo
- Publication number
- WO2013051369A1 WO2013051369A1 PCT/JP2012/073009 JP2012073009W WO2013051369A1 WO 2013051369 A1 WO2013051369 A1 WO 2013051369A1 JP 2012073009 W JP2012073009 W JP 2012073009W WO 2013051369 A1 WO2013051369 A1 WO 2013051369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- component
- rayon
- resin
- resin composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
Definitions
- the present invention relates to a fiber reinforced resin composition from which a molded body that is lightweight and has a high mechanical strength, particularly a high specific modulus, and a molded body obtained therefrom.
- a resin molded body is used as a metal substitute, but it is known to mold a resin composition containing fibers in order to increase its mechanical strength.
- Japanese Patent Application Laid-Open No. 2008-013693 describes a reinforcing fiber based on 100 parts by weight of a composition in which a thermoplastic polyurethane resin (TPU) and a styrene resin (SR) are in a weight ratio (TPU / SR) of 20/80 to 90/10.
- TPU thermoplastic polyurethane resin
- SR styrene resin
- the reinforcing fiber at least selected from the group consisting of glass, carbon, silicon carbide, basalt, boron inorganic fiber; stainless steel metal fiber; aramid, rayon, nylon, polynaphthalate, polyester, cellulose organic fiber Although it is described that a kind of fiber is included, urethane long fiber glass fiber is used in the examples.
- Japanese Patent Application Laid-Open No. 2008-202012 discloses a long fiber reinforced thermoplastic resin composition in which 11 to 200 parts by weight of reinforcing fibers are blended with 100 parts by weight of a composition comprising a polycarbonate resin (PC) and a styrene resin (SR). It is a product invention.
- PC polycarbonate resin
- SR styrene resin
- Reinforcing fiber selected from the group consisting of glass, carbon, silicon carbide, basalt, boron inorganic fiber; stainless steel metal fiber; aramid, rayon, nylon, polynaphthalate, polyester organic fiber; cellulose fiber
- glass fibers are used.
- An object of the present invention is to provide a fiber-reinforced resin composition capable of obtaining a molded article that is lightweight and has a high mechanical strength, particularly a high specific modulus, and a molded article obtained therefrom.
- the present invention (A) A fiber reinforced resin composition comprising a resin-impregnated long fiber bundle containing a thermoplastic resin and (B) rayon fiber,
- the component (B) rayon fiber has a fiber diameter of 5 to 30 ⁇ m and an X-ray orientation degree of 86% or more.
- the thermoplastic resin component (A) is melted.
- a fiber-reinforced resin composition that is impregnated and integrated and then cut into a length of 3 to 30 mm.
- the present invention relates to a molded product obtained from the fiber reinforced resin composition.
- the resin-impregnated long fiber bundle contained in the fiber reinforced resin composition of the present invention has high tensile elastic modulus and strength in which cellulose molecules are highly oriented in the longitudinal direction of the fiber (that is, the degree of X-ray orientation is 86% or more). Since the rayon fiber is used, the fiber length of the rayon fiber remaining in the molded body after molding can be increased. For this reason, the mechanical strength (particularly the specific elastic modulus) of the molded body can be increased compared to those using conventional inorganic fibers and organic fibers. It is possible to obtain a molded body (for example, a plate-shaped molded body) having Detailed Description of the Invention
- the composition of the present invention includes a resin-impregnated long fiber bundle (resin-impregnated rayon long fiber bundle) containing the component (A) and the component (B), and may consist only of the resin-impregnated long fiber bundle. In addition, it may contain other components as required.
- thermoplastic resin of component (A) polyolefin resin, polyamide resin, styrene resin, polycarbonate resin, polyvinyl chloride, polyvinylidene chloride, polycarbonate resin, acrylic resin, methacrylic resin, polyester resin, Examples thereof include polyacetal resins and polyphenylene sulfide resins.
- thermoplastic resin of a component what contains what is chosen from polyolefin resin and polyamide resin is preferable.
- Polyolefin resins include polypropylene, high density, low density and linear low density polyethylene, poly-1-butene, polyisobutylene, copolymers of ethylene and propylene, ethylene-propylene-diene terpolymers (as raw materials) Diene component of 10% by mass or less), polymethylpentene, ethylene or propylene (50 mol% or more) and other copolymerization monomers (vinyl acetate, alkyl methacrylate, alkyl acrylate, aromatic vinyl, etc.) Random, block, and graft copolymers can be used. Among these, polypropylene is preferable.
- a polyolefin-based resin is used as the component (A)
- an acid-modified polyolefin in combination in order to easily impregnate the rayon fiber bundle of the component (B).
- the acid-modified polyolefin maleic acid-modified polyolefin (maleic acid-modified polypropylene) and maleic anhydride-modified polyolefin (maleic anhydride-modified polyolefin) are preferable.
- the amount of acid in component (A) is 0.005 to an average in terms of maleic anhydride.
- the thermoplastic resin of component (A) includes polypropylene and maleic acid-modified polypropylene and / or maleic anhydride-modified polypropylene, (A) The above fiber reinforced resin composition wherein the acid amount in component (A) is 0.005 to 0.5% by mass in terms of maleic anhydride.
- the polyamide resin is preferably selected from aliphatic polyamides and aromatic polyamides.
- aliphatic polyamide examples include polyamide 6, polyamide 66, polyamide 69, polyamide 610, polyamide 612, polyamide 46, polyamide 11 and polyamide 12.
- Aromatic polyamides include those obtained from aromatic dicarboxylic acids and aliphatic diamines or aliphatic dicarboxylic acids and aromatic diamines, such as nylon MXD (metaxylylenediamine and adipic acid), nylon 6T (hexamethylenediamine and terephthalate).
- nylon 6I hexamethylenediamine and isophthalic acid
- nylon 9T nonanediamine and terephthalic acid
- nylon M5T methylpentadiamine and terephthalic acid
- nylon 10T decamethylenediamine and terephthalic acid
- aliphatic polyamides such as polyamide 6, polyamide 69, polyamide 610, polyamide 612, polyamide 11 and polyamide 12 are preferable.
- the component (B) rayon fiber rayon fiber
- rayon fiber rayon fibers
- rayon fiber rayon fibers
- the component (B) rayon fiber has a fiber diameter of 5 to 30 ⁇ m and an X-ray orientation degree of 86% or more in order to facilitate impregnation of the rayon fiber bundle with resin and to increase the mechanical strength of the molded product. It is.
- the fiber diameter of the component (B) rayon fiber is preferably 6 to 20 ⁇ m, more preferably 7 to 15 ⁇ m.
- the X-ray orientation degree of the component (B) rayon fiber is preferably 90% or more.
- the degree of X-ray orientation is obtained from the mathematical formulas in paragraphs 0012 and 0013 of JP-A-9-31744 and paragraphs 0020 to 0021 of JP-A-9-256216.
- the component (B) rayon fiber has the above fiber diameter and the above X-ray orientation degree, and preferably has a tensile elastic modulus (Young's modulus) of 10 GPa or more, more preferably 13 GPa or more, and still more preferably. 15 GPa or more.
- the component (B) rayon fiber is one in which cellulose molecules are highly oriented in the longitudinal direction of the fiber (X-ray orientation degree is 86% or more), has high tensile elastic modulus, high interfacial strength with resin, and long fiber. Therefore, it is very excellent as a fiber for long fiber reinforced resin.
- the rayon fiber (B) has a strong activity on the fiber surface and a high reactivity compared to natural cellulose fiber having high crystallinity. Therefore, in order to further enhance the effect of containing the component (B), it is preferable to use an acid-modified polyolefin in combination as the component (A).
- the interfacial strength between the rayon fiber and the resin of the component (A) becomes higher, the physical properties are further improved, and the physical properties are improved by making the fibers longer. Will be even larger.
- thermoplastic resin of component (A) is melted in a bundle of 2,000 to 30,000 bundles of rayon fibers of component (B) aligned in the length direction. Then, after being integrated, it can be obtained by cutting to a length of 3 to 30 mm. At this time, the thermoplastic resin melted to the center of the rayon fiber bundle is impregnated.
- the number of rayon fiber bundles exceeds 30,000, it becomes impossible to impregnate the thermoplastic resin of component (A) melted to the center of the fiber bundle, and when the fiber reinforced resin composition is molded and processed, The dispersion of the resin deteriorates and the appearance and mechanical strength deteriorate. If the number of rayon fiber bundles is less than 3,000, problems in production such as fiber bundles being cut during the production of resin-impregnated fiber bundles occur.
- the number of rayon fiber bundles is preferably 3,000 to 25,000, and more preferably 5,000 to 25,000.
- the resin-impregnated long fiber bundle can be produced by a known production method using a die, for example, paragraph number 7 of JP-A-6-31350, paragraph number 23 of JP-A-2007-176227, Japanese Patent Publication No. 6-2344 (manufacturing method and molding method of resin-coated long fiber bundle), Japanese Patent Laid-Open No. 6-1414832 (fiber reinforced thermoplastic resin structure and manufacturing method thereof), Japanese Patent Laid-Open No. 6-293023 ( (Manufacturing method of long fiber reinforced thermoplastic resin composition), Japanese Patent Laid-Open No. 7-205317 (method of taking out fiber bundle and manufacturing method of long fiber reinforced resin structure), Japanese Patent Laid-Open No.
- the length of the resin-impregnated long fiber bundle (that is, the length of the rayon fiber of component (B) contained in the resin-impregnated long fiber bundle) is in the range of 3 to 30 mm, preferably 5 mm to 20 mm, more preferably Is 6 mm to 15 mm. If it is 3 mm or more, the mechanical strength of the molded product obtained from the composition can be increased, and if it is 30 mm or less, the moldability is improved.
- the content ratio of the component (A) and the component (B) in the resin-impregnated long fiber bundle is
- the component (A) is preferably 95 to 30% by mass, more preferably 90 to 40% by mass, still more preferably 80 to 40% by mass
- Component (B) is preferably 5 to 70% by mass, more preferably 10 to 60% by mass, and still more preferably 20 to 60% by mass.
- the fiber reinforced resin composition of the present invention includes other known flame retardants and flame retardants, heat stabilizers, lubricants, light stabilizers, antioxidants, and colorants within the range that can solve the problems of the present invention.
- a mold release agent and an antistatic agent can be contained. These components may be contained in the resin-impregnated long fiber bundle or may be contained separately from the resin-impregnated long fiber bundle.
- the molded body of the present invention is obtained by molding a fiber reinforced resin composition including the above-described resin-impregnated long fiber bundle.
- the thermoplastic resin of the above-mentioned (A) component can be added as needed. Since the resin-impregnated long fiber bundle contained in the fiber-reinforced resin composition of the present invention has good dispersibility with respect to the molten resin, the rayon fibers can be uniformly dispersed in the obtained molded body.
- the rayon fiber contained in the resin-impregnated long fiber bundle is damaged and shortened due to the force applied at the time of molding.
- the rayon fiber in which cellulose molecules are highly oriented in the longitudinal direction of the fiber is used. Is shortened. Further, since the strength and elastic modulus of the fiber itself are high, the mechanical strength (such as bending elastic modulus) of the obtained molded body can be increased.
- the molded product obtained from the fiber-reinforced resin composition of the present invention contains rayon fibers having a predetermined tensile elastic modulus, and is lighter than those containing inorganic fibers such as glass fibers. From (that is, the density can be reduced), a molded article having a large specific elastic modulus (flexural modulus / density) can be obtained. And, for example, when comparing a rayon long fiber-containing polypropylene molded product and a glass long fiber-containing polypropylene molded product, the specific modulus increases as the blending amount of rayon fiber or glass fiber increases.
- the fiber-containing polypropylene molded body is larger.
- the molded product obtained from the fiber-reinforced resin composition of the present invention preferably has a specific elastic modulus of a molded product having a thickness of 4 mm of 4,000 MPa or more, more preferably 4,500 MPa or more, Preferably it is 5,000 MPa or more.
- the molded body of the present invention can be formed into a desired shape according to the application. However, since the specific elastic modulus can be increased as described above, it is light and high when it is made into a thin plate-shaped molded body. What has mechanical strength can be obtained. When the molded body of the present invention is formed into a thin plate-shaped molded body, even when the thickness is, for example, 1 to 5 mm, a material having high mechanical strength can be obtained. Moreover, since the molded object obtained from the fiber reinforced resin composition of this invention contains the rayon fiber, even if it burns, a combustion residue like glass fiber does not remain.
- the molded product of the present invention is lightweight and has high mechanical strength (especially specific elastic modulus), it is a substitute for metal parts used in various fields such as electrical / electronic equipment, communication equipment, automobiles, building materials, and daily necessities.
- it is suitable as a housing for various devices and a plate-shaped exterior material.
- Production Example 1 (Production of resin-impregnated long fiber bundle) Resin-impregnated long fiber bundles used in Examples 1 to 5 and Comparative Example 1 shown in Table 1 were produced.
- a bundle of fibers (the number of fibers shown in Table 1) made of the rayon filaments of the component (B) was passed through a crosshead die. At that time, to the crosshead die, the melted state (A) component shown in Table 1 is supplied from a twin screw extruder (cylinder temperature 290 ° C.) in the amount shown in Table 1, and the melt is used as the component (B).
- a rayon fiber bundle was impregnated.
- Comparative Example 1 A composition comprising the resin-impregnated long fiber bundle obtained in Production Example 1 was obtained.
- Comparative Example 2 Using the components shown in Table 1, a cellulose fiber-containing composition was produced by the following method (the method described in the examples of JP-A-2008-297479). [First step] Heat the heater mixer (upper blade: kneading type, lower blade: high circulation / high load, with heater and thermometer, capacity 200L) to 140 ° C, and turn the rod-shaped pulp sheet into a mixer at an angle of 90 ° And stirred at an average peripheral speed of 50 m / sec. At about 3 minutes, the rod-like pulp sheet changed to cotton.
- the power started to increase after about 10 minutes. After another minute, the current value increased to 50 A, so the peripheral speed was lowered to a low speed of 25 m / sec. Furthermore, the power started to increase again due to the continued low speed stirring. 1 minute and 30 lines after the start of low-speed rotation, the current value reached 70 A, so the outlet of the mixer was opened and discharged to the connected cooling mixer.
- Cooling mixer [Rotating blade: Standard blade for cooling, with water cooling means (20 ° C) and thermometer, capacity 500L, cooler mixer] Stirring was started at an average peripheral speed of 10 m / sec, and the temperature in the mixer reached 80 ° C. At this point, stirring was terminated.
- the mixture of cellulose fibers and polypropylene was solidified, and a granulated product having a diameter of about several mm to 2 cm was obtained.
- Cooling mixer [Rotating blade: Standard blade for cooling, with water cooling means (20 ° C) and thermometer, capacity 500L, cooler mixer] Stirring was started at an average peripheral speed of 10 m / sec, and the temperature in the mixer reached 80 ° C. At this point, stirring was terminated.
- the mixture of cellulose fibers and polypropylene was solidified, and a granulated product having a diameter of about several mm to 2 cm was obtained.
- Comparative Example 5 A commercially available product (Plastotron PP-GF-20-02: manufactured by Daicel Polymer Co., Ltd.) was used as the resin-impregnated glass long fiber bundle. In this commercially available product, the glass fibers are almost parallel to the length direction, and the resin is impregnated to the center.
- Component PP polypropylene
- J139 manufactured by Prime Polymer Co., Ltd.
- Acid-modified PP OREVAC CA100 (manufactured by Atofina Japan Co., Ltd.), maleic anhydride-modified 1.0%
- Component (B) Rayon fiber bundle 1: 6,000 fibers using rayon fibers having a fiber diameter of 12 ⁇ m, X-ray orientation of 93%, Young's modulus of 20 GPa
- Rayon fiber bundle 2 Fiber diameter of 12 ⁇ m, X-ray orientation of 91% 20,000 rayon fiber bundles using rayon fibers with a Young's modulus of 18 GPa 3: A bundle of rayon fibers (TENCEL (registered trademark) manufactured by Lenzing) with a fiber diameter of 10 ⁇ m, an X-ray orientation of 91% and a Young's modulus of 13 GPa Unwrap and split into 18,000 bundles)
- Rayon fiber bundle for comparison 1 37500 fibers using rayon fibers having a fiber diameter of 9 ⁇ m, an X-ray orientation degree of 90%, and a Young's modulus of 9 GPa.
- Rayon short fibers 1 Rayon long fiber bundles 1 cut to 3 mm.
- Rayon short fiber 2 Rayon long fiber bundle 3 cut to 3 mm.
- Wood pulp Pulp NDP-T (manufactured by Nippon Paper Industries Co., Ltd.), fiber diameter 25 ⁇ m, average fiber length 1.8mm
- Long glass fiber reinforced resin Plastron PP-GF-20-02 (20% long fiber glass reinforced polypropylene resin, manufactured by Daicel Polymer Co., Ltd.)
- ⁇ Measurement method> (Tension elastic modulus (Young's modulus) of rayon fiber) Measured at a chucking distance of 200 mm and a tensile speed of 200 mm / min after storage for 3 weeks at 23 ° C and 50RH air conditioning.
- Test piece preparation method An ISO multipurpose test piece A-shaped product (thickness 2 mm) was produced under the following conditions, and used as a test piece for each measurement described below.
- Comparative Example 5 is an example in which a resin-impregnated glass long fiber bundle was used, and the specific modulus was inferior to Examples 1-5. From this result, it can be seen that rayon fibers are superior in properties (balance between density and Young's modulus) as reinforcing fibers for reinforcing long fibers for improving the elastic modulus, compared to glass fibers.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
背景技術
強化繊維として、ガラス、カーボン、シリコンカーバイド、玄武岩、ボロン製の無機繊維;ステンレス製の金属繊維;アラミド、レーヨン、ナイロン、ポリナフタレート、ポリエステル、セルロース製の有機繊維からなる群から選ばれた少なくとも一種の繊維を含むことが記載されているが、実施例ではウレタン系長繊維ガラス繊維が使用されている。
(A)熱可塑性樹脂及び(B)レーヨン繊維を含む樹脂含浸長繊維束を含む繊維強化樹脂組成物であって、
(B)成分のレーヨン繊維が、繊維径が5~30μmで、X線配向度が86%以上のものであり、
前記樹脂含浸長繊維束が、(B)成分のレーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに(A)成分の熱可塑性樹脂を溶融させた状態で含浸させて一体化した後に、3~30mmの長さに切断したものである、繊維強化樹脂組成物を提供する。
本発明は、上記繊維強化樹脂組成物から得られる成形体に関する。
このため、従来の無機繊維や有機繊維を使用したものと比べると、成形体の機械的強度(特に比弾性率)を高くできることから、厚みを小さくするなどして、軽量でかつ高い機械的強度を有する成形体(例えば板状成形体)を得ることができる。
発明の詳細な説明
本発明の組成物は、(A)成分及び(B)成分を含有する樹脂含浸長繊維束(樹脂含浸レーヨン長繊維束)を含むものであり、前記樹脂含浸長繊維束のみからなるものでもよいし、必要に応じてさらに他の成分を含有するものでもよい。
(A)成分の熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリアミド系樹脂、スチレン系樹脂、ポリカーボネート樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂を挙げることができる。
(A)成分の熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリアミド系樹脂から選ばれるものを含むものが好ましい。
酸変性ポリオレフィンとしては、マレイン酸変性ポリオレフィン(マレイン酸変性ポリプロピレン)、無水マレイン酸変性ポリオレフィン(無水マレイン酸変性ポリオレフィン)が好ましい。
(A)成分として酸変性ポリオレフィンを併用するとき、(A)成分中の酸量(酸変性ポリオレフィンに含まれる酸の(A)成分中の量)が、無水マレイン酸換算で平均0.005~0.5質量%の範囲になるように配合することが好ましい。
本発明は、好ましくは、(A)成分の熱可塑性樹脂がポリプロピレンとマレイン酸変性ポリプロピレン及び/又は無水マレイン酸変性ポリプロピレンを含むものであり、
(A)成分中の酸量が、無水マレイン酸換算で平均0.005~0.5質量%である上記繊維強化樹脂組成物を含む。
脂肪族ポリアミドとしては、ポリアミド6、ポリアミド66、ポリアミド69、ポリアミド610、ポリアミド612、ポリアミド46、ポリアミド11、ポリアミド12等を挙げることができる。
芳香族ポリアミドとしては、芳香族ジカルボン酸と脂肪族ジアミン又は脂肪族ジカルボン酸と芳香族ジアミンから得られるもの、例えば、ナイロンMXD(メタキシリレンジアミンとアジピン酸)、ナイロン6T(ヘキサメチレンジアミンとテレフタル酸)、ナイロン6I(ヘキサメチレンジアミンとイソフタル酸)、ナイロン9T(ノナンジアミンとテレフタル酸)、ナイロンM5T(メチルペンタジアミンとテレフタル酸)、ナイロン10T(デカメチレンジアミンとテレフタル酸)を挙げることができる。
これらの中でも、ポリアミド6、ポリアミド69、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12等の脂肪族ポリアミドが好ましい。
(B)成分のレーヨン繊維は、レーヨン繊維の束に樹脂を含浸し易くするため及び成形品の機械的強度を高めるため、繊維径が5~30μmで、X線配向度が86%以上のものである。
(B)成分のレーヨン繊維の繊維径は、好ましくは6~20μm、より好ましくは7~15μmである。
(B)成分のレーヨン繊維のX線配向度は、好ましくは90%以上である。
ここでX線配向度は、特開平9-31744号公報の段落番号0012と段落番号0013や特開平9-256216号公報の段落0020から段落0021の数式から求められるものである。
(B)成分のレーヨン繊維は、上記の繊維径で、かつ上記のX線配向度であり、さらに引張弾性率(ヤング率)が10GPa以上のものが好ましく、より好ましくは13GPa以上、さらに好ましくは15GPa以上である。
(B)成分のレーヨン繊維は、結晶性が高い天然セルロース繊維等に比べると繊維表面の活性が強く反応性が高い。よって、(B)成分を含有することによる効果をより高めるため、(A)成分として酸変性ポリオレフィンを併用することが好ましい。(A)成分として官能基含有樹脂を含有することで、レーヨン繊維と(A)成分の樹脂との界面強度がより高くなり、物性がさらに向上されるとともに、長繊維化することによる物性向上効果もさらに大きくなる。
樹脂含浸長繊維束は、(B)成分のレーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに(A)成分の熱可塑性樹脂を溶融させた状態で含浸させて、一体化した後に、3~30mmの長さに切断して得ることができる。このとき、レーヨン繊維束の中心部にまで溶融させた熱可塑性樹脂を含浸させるようにする。
(A)成分は95~30質量%が好ましく、90~40質量%がより好ましく、80~40質量%がさらに好ましく、
(B)成分は5~70質量%が好ましく、10~60質量%がより好ましく、20~60質量%がさらに好ましい。
これらの成分は樹脂含浸長繊維束に含有させてもよいし、樹脂含浸長繊維束とは別に含有してもよい。
本発明の成形体は、上記した樹脂含浸長繊維束を含む繊維強化樹脂組成物を成形して得られるものである。
本発明の成形体を得るときは、上記した樹脂含浸長繊維束を含む繊維強化樹脂組成物に加えて、必要に応じて上記した(A)成分の熱可塑性樹脂を加えることができる。
本発明の繊維強化樹脂組成物に含まれている樹脂含浸長繊維束は、溶融した樹脂に対する分散性が良いので、得られた成形体中にレーヨン繊維を均一に分散することができる。
また繊維そのものの強度や弾性率も高いことから、得られた成形体の機械的強度(曲げ弾性率等)を大きくすることができる。
そして、例えばレーヨン長繊維含有ポリプロピレン成形体とガラス長繊維含有ポリプロピレン成形体を比較すると、レーヨン繊維又はガラス繊維の配合量が高くなるに従い比弾性率は大きくなってくるが、その度合いは、レーヨン長繊維含有ポリプロピレン成形体の方が大きくなる。
本発明の繊維強化樹脂組成物から得られた成形体は、厚さ4mmの成形体の比弾性率が4,000MPa以上のものであることが好ましく、より好ましくは4,500MPa以上のものであり、さらに好ましくは5,000MPa以上のものである。
本発明の成形体を薄い板状成形体にする場合には、例えば1~5mmの厚さにした場合でも、高い機械的強度のものを得ることができる。
また本発明の繊維強化樹脂組成物から得られた成形体は、レーヨン繊維を含有していることから、燃焼したときにもガラス繊維のような燃焼残渣が残らない。
表1に示す実施例1~5と比較例1で使用した樹脂含浸長繊維束を製造した。
束ねられた(B)成分のレーヨン長繊維からなる繊維束(表1に示す繊維本数)をクロスヘッドダイに通した。そのとき、クロスヘッドダイには、2軸押出機(シリンダー温度290℃)から溶融状態の表1に示す(A)成分を表1に示す量だけ供給し、その溶融物を(B)成分のレーヨン繊維束に含浸させた。
その後、クロスヘッドダイ出口の賦形ノズルで賦形し、整形ロールで形を整えた後、ペレタイザーにより所定長さ(表1の長繊維束の長さ)に切断し、ペレット状(円柱状)の樹脂含浸長繊維束を得た。
このようにして得た樹脂含浸長繊維束を切断して確認したところ、実施例1~5では、レーヨン繊維が長さ方向にほぼ平行になっており、中心部まで樹脂が含浸されていた。
比較例1の樹脂含浸長繊維束を同様に切断して確認したところ、比較例1では、レーヨン繊維が長さ方向にほぼ平行になっていたが、中心部までは樹脂が十分には含浸されていなかった。
製造例1で得た樹脂含浸長繊維束からなる組成物を得た。
表1に示す成分を用いて、下記の方法(特開2008-297479号公報の実施例に記載されている方法)により、セルロース繊維含有組成物を製造した。
〔第1工程〕
ヒーターミキサー(上羽根:混練用タイプ、下羽根:高循環・高負荷用,ヒーター及び温度計付き,容量200L)を140℃に加温し、棒状のパルプシートを90°の角度にてミキサーに投入し、平均周速50m/秒で攪拌した。約3分経過時点において、棒状のパルプシートが綿状に変化した。
引き続き、ヒーターミキサー内にポリプロピレンを投入した後、平均周速50m/秒で攪拌を続けた。このときのモーターの電流値は30Aであった。ミキサーの温度が120℃に達した時に、MPPを投入し攪拌を続けた。
冷却ミキサー〔回転羽根:冷却用標準羽根,水冷手段(20℃)及び温度計付き,容量500L,クーラーミキサー〕平均周速10m/秒で攪拌を開始し、ミキサー内の温度が80℃になった時点で攪拌を終了した。第3工程の処理により、セルロース繊維とポリプロピレンの混合物は固化して、直径が数mmから2cm程度の造粒物が得られた。
表1に示す成分を用いて、下記の方法(特開2007-84713号公報の実施例に記載されている方法に類似する方法)により、繊維含有組成物を製造した。
〔第1工程〕
ヒーターミキサー(上羽根:混練用タイプ、下羽根:高循環・高負荷用,ヒーター及び温度計付き,容量200L)を140℃に加温し、ポリプロピレン樹脂とレーヨン短繊維をミキサーに投入し、平均周速50m/秒で攪拌した。ミキサーの温度が120℃に達した時に、酸変性PPを投入し攪拌を続けた。
約10分経過時点において、動力が上がり始めた。更に1分後、電流値が50Aに上昇したので、周速を25m/secの低速に落とした。更に、低速の撹拌の継続により、動力が再度上昇し始めた。低速回転開始1分30秒後、電流値は70Aに達したので、ミキサーの排出口を開け、接続する冷却ミキサーに排出した。
冷却ミキサー〔回転羽根:冷却用標準羽根,水冷手段(20℃)及び温度計付き,容量500L,クーラーミキサー〕平均周速10m/秒で攪拌を開始し、ミキサー内の温度が80℃になった時点で攪拌を終了した。第3工程の処理により、セルロース繊維とポリプロピレンの混合物は固化して、直径が数mmから2cm程度の造粒物が得られた。
樹脂含浸ガラス長繊維束として市販品(プラストロンPP-GF-20-02:ダイセルポリマー(株)製)を使用した。この市販品も、ガラス繊維が長さ方向にほぼ平行になっており、中心部まで樹脂が含浸されているものである。
(A)成分
PP(ポリプロピレン):J139((株)プライムポリマー製)
酸変性PP:OREVAC CA100(アトフィナ・ジャパン(株)製),無水マレイン酸変性1.0%
(B)成分
レーヨン繊維束1:繊維径12μm,X線配向度93%、ヤング率20GPaのレーヨン繊維を使用した本数6,000本
レーヨン繊維束2:繊維径12μm、X線配向度91%、ヤング率18GPaのレーヨン繊維を使用した本数20,000本
レーヨン繊維束3:繊維径10μm、X線配向度91%、ヤング率13GPaのレーヨン繊維(Lenzing社製のTENCEL〔登録商標〕)の束を解いて分割し、18,000本にした束)
比較用レーヨン繊維束1:繊維径9μm,X線配向度90%、ヤング率9GPaのレーヨン繊維を使用した本数37500本
レーヨン短繊維1:レーヨン長繊維束1を3mmにカットしたもの。
レーヨン短繊維2:レーヨン長繊維束3を3mmにカットしたもの。
木材パルプ:パルプNDP-T(日本製紙(株)製),繊維径25μm、平均繊維長1.8mm
ガラス長繊維強化樹脂:プラストロンPP-GF-20-02(長繊維ガラス20%強化ポリプロピレン樹脂,ダイセルポリマー(株)製)
(レーヨン繊維の引張弾性率(ヤング率))
23℃、50RHの空調で3週間保管後、チャック間距離200mm、引張速度200mm/min.で測定。
(レーヨン繊維のX線配向度)
X線配向度は,透過法で求めた。シンチレーションカウンターを(101)面の回折角度に相当する2θ=20.1°に固定し,繊維束を入射X線に対し垂直に回転させ,方位角ψの回折X線強度を測定し、E.Ott、M.Spurlin編「Cellulose and Cellulose Derivatives」2nd.ed.、Vol.II,Interscience publishers,New York(1954)に記載される次式により算出した。式中、ψ1/2
は、方位角度(degrees)で表した半値幅である。
fc(%)={(1-(ψ1/2/180))×100
下記条件にてISO多目的試験片A型形状品(厚み2mm)を作製して、下記の各測定用の試験片とした。
装置:(株)日本製鋼所製、J-150EII
シリンダー温度280℃
金型温度:100℃
スクリュー:長繊維専用スクリュー
スクリュー径:51mm
ゲート形状20mm幅サイドゲート
ISO527に準拠して測定した。
(2)曲げ強度(MPa)
ISO178に準拠して測定した。
(3)曲げ弾性率(MPa)
ISO178に準拠して測定した。
(4)シャルピー衝撃強度(kJ/m2)
ISO179/1eAに準拠して、ノッチ付きシャルピー衝撃強さを測定した。
(5)成形体中のレーヨン繊維の分散状態
試験片の表面を目視にて観察した。
成形体中のレーヨン繊維の分散が良いものは、試験片表面にレーヨン繊維の塊(解繊されずに残った繊維束)が存在していないが、分散が悪いものは、試験片表面にレーヨン繊維の塊(解繊されずに残った繊維束)が見られる。
比較例1は、樹脂含浸レーヨン長繊維束を使用しているが、製造例1に記載しているとおり、繊維束の中心部にまで樹脂(PP)が含浸されていなかったため、繊維束が十分に解繊されず、多数本の繊維がまとまった束(塊)状のものが分散していることが確認された。このため、実施例1~5と比べると機械的強度が劣ったものと認められる。
Claims (9)
- (A)熱可塑性樹脂及び(B)レーヨン繊維を含む樹脂含浸長繊維束を含む繊維強化樹脂組成物であって、
(B)成分のレーヨン繊維が、繊維径が5~30μmで、X線配向度が86%以上のものであり、
前記樹脂含浸長繊維束が、(B)成分のレーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに(A)成分の熱可塑性樹脂を溶融させた状態で含浸させて一体化した後に、3~30mmの長さに切断したものである、繊維強化樹脂組成物。 - (B)成分のレーヨン繊維が、繊維径が5~30μm、X線配向度が86%以上でかつ引張弾性率が10GPa以上のものである請求項1記載の繊維強化樹脂組成物。
- (B)成分のレーヨン繊維が、繊維径が5~30μm、X線配向度が90%以上でかつ引張弾性率が13GPa以上のものである、請求項1記載の繊維強化樹脂組成物。
- (A)成分の熱可塑性樹脂が、ポリオレフィン樹脂及びポリアミド系樹脂から選ばれるものを含むものである、請求項1~3のいずれか1項記載の繊維強化樹脂組成物。
- (A)成分の熱可塑性樹脂がポリプロピレンとマレイン酸変性ポリプロピレン及び/又は無水マレイン酸変性ポリプロピレンを含むものであり、
(A)成分中の酸量が、無水マレイン酸換算で平均0.005~0.5質量%である、請求項1~4のいずれか1項記載の繊維強化樹脂組成物。 - (A)成分の熱可塑性樹脂が、ポリアミド6、ポリアミド69、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12の脂肪族ポリアミドから選ばれるものである、請求項1~4のいずれか1項記載の繊維強化樹脂組成物。
- 請求項1~6のいずれか1項記載の繊維強化樹脂組成物から得られる成形体。
- 厚さ4mmの成形体の比弾性率が4,000MPa以上である請求項7記載の成形体。
- 厚さ4mmの成形体の比弾性率が4,500MPa以上である請求項7記載の成形体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280046028.8A CN103813893B (zh) | 2011-10-05 | 2012-09-10 | 纤维强化树脂组合物 |
US14/344,175 US9096750B2 (en) | 2011-10-05 | 2012-09-10 | Fiber-reinforced resin composition |
EP12838086.2A EP2764968B1 (en) | 2011-10-05 | 2012-09-10 | Fiber-reinforced resin composition |
KR1020147005858A KR101954432B1 (ko) | 2011-10-05 | 2012-09-10 | 섬유 강화 수지 조성물 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-220772 | 2011-10-05 | ||
JP2011220772 | 2011-10-05 | ||
JP2012182123A JP5938299B2 (ja) | 2011-10-05 | 2012-08-21 | 繊維強化樹脂組成物 |
JP2012-182123 | 2012-08-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051369A1 true WO2013051369A1 (ja) | 2013-04-11 |
Family
ID=48043536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073009 WO2013051369A1 (ja) | 2011-10-05 | 2012-09-10 | 繊維強化樹脂組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9096750B2 (ja) |
EP (1) | EP2764968B1 (ja) |
JP (1) | JP5938299B2 (ja) |
KR (1) | KR101954432B1 (ja) |
CN (1) | CN103813893B (ja) |
TW (1) | TWI558746B (ja) |
WO (1) | WO2013051369A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014185243A1 (ja) * | 2013-05-13 | 2014-11-20 | ダイセルポリマー株式会社 | 繊維強化樹脂組成物 |
WO2015194271A1 (ja) * | 2014-06-18 | 2015-12-23 | ダイセルポリマー株式会社 | 繊維強化樹脂組成物 |
WO2017159706A1 (ja) * | 2016-03-17 | 2017-09-21 | ダイセルポリマー株式会社 | Pas樹脂組成物 |
JP2018187944A (ja) * | 2014-06-18 | 2018-11-29 | ダイセルポリマー株式会社 | 繊維強化樹脂組成物 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9505915B2 (en) * | 2012-11-05 | 2016-11-29 | Kyoto Municipal Institute Of Industrial Technology And Culture | Fastening component and method for manufacturing the fastening component |
WO2016067400A1 (ja) * | 2014-10-29 | 2016-05-06 | Ykk株式会社 | ファスナーエレメント及びファスナーエレメントの製造方法 |
EP3395568A4 (en) * | 2015-12-25 | 2019-09-04 | Toray Industries, Inc. | COMPOSITE MOLDED ARTICLE AND METHOD FOR MANUFACTURING THE SAME |
JP6545145B2 (ja) * | 2016-05-20 | 2019-07-17 | パナソニック株式会社 | 複合樹脂成型体 |
EP3251813B1 (en) | 2016-05-20 | 2018-09-05 | Panasonic Corporation | Composite resin molded body, manufacturing method thereof, and casing member using same |
US10982059B2 (en) * | 2017-01-10 | 2021-04-20 | Celanese International Corporation | Long fiber-reinforced propylene composition for use in a thin part |
US10975233B2 (en) * | 2017-01-10 | 2021-04-13 | Celanese International Corporation | High flow fiber-reinforced propylene composition having low emissions |
JP6937160B2 (ja) * | 2017-05-01 | 2021-09-22 | パナソニック株式会社 | 繊維複合樹脂成形部品 |
JP7264340B2 (ja) * | 2018-03-16 | 2023-04-25 | パナソニックホールディングス株式会社 | 繊維複合樹脂組成物の製造方法 |
JP7354134B2 (ja) | 2018-10-03 | 2023-10-02 | 古河電気工業株式会社 | 樹脂成形体及び樹脂組成物 |
EP3950823A4 (en) * | 2019-03-27 | 2022-12-07 | Furukawa Electric Co., Ltd. | RESIN MOLD REINFORCED WITH ORGANIC FIBER AND METHOD FOR PRODUCTION THEREOF |
KR102563871B1 (ko) | 2021-07-12 | 2023-08-09 | 재단법인 한국탄소산업진흥원 | 미분 셀룰로스섬유를 포함하는 고효율 섬유강화열가소성수지 조성물 |
JPWO2023127688A1 (ja) * | 2021-12-28 | 2023-07-06 | ||
KR20240104381A (ko) | 2022-12-28 | 2024-07-05 | 재단법인 한국탄소산업진흥원 | 라이오셀을 이용한 생분해성 프리프레그 및 이의 제조방법 |
KR20240104382A (ko) | 2022-12-28 | 2024-07-05 | 재단법인 한국탄소산업진흥원 | 생분해성 열가소성 수지를 함침시킨 라이오셀 연속섬유가 적층된 상태를 갖는 목재 조성물 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062344B2 (ja) | 1985-09-10 | 1994-01-12 | 株式会社神戸製鋼所 | 樹脂被覆長繊維束の製造方法並びに成形方法 |
JPH06114832A (ja) | 1992-10-05 | 1994-04-26 | Polyplastics Co | 繊維強化熱可塑性樹脂構造体およびその製造法 |
JPH06293023A (ja) | 1993-04-08 | 1994-10-21 | Polyplastics Co | 長繊維強化熱可塑性樹脂組成物の製造方法 |
JPH06313050A (ja) | 1993-04-28 | 1994-11-08 | Aisin Chem Co Ltd | 成形材料 |
JPH07205317A (ja) | 1994-01-26 | 1995-08-08 | Polyplastics Co | 繊維束の取り出し方法および長繊維強化樹脂構造物の製造方法 |
JPH07216104A (ja) | 1994-01-26 | 1995-08-15 | Polyplastics Co | 長繊維強化樹脂構造物の製造方法 |
JPH07251437A (ja) | 1994-03-15 | 1995-10-03 | Ube Ind Ltd | 長繊維強化熱可塑性複合材料の製造方法およびその製造装置 |
JPH08118490A (ja) | 1994-10-18 | 1996-05-14 | Polyplastics Co | クロスヘッドダイおよび長繊維強化樹脂構造物の製造方法 |
JPH08232146A (ja) * | 1995-02-28 | 1996-09-10 | Japan Vilene Co Ltd | 芯地及びこれを用いた接着芯地 |
JPH0931744A (ja) | 1995-07-20 | 1997-02-04 | Asahi Chem Ind Co Ltd | 人造セルロース繊維 |
JPH09256216A (ja) | 1996-03-26 | 1997-09-30 | Asahi Chem Ind Co Ltd | 再生セルロース繊維およびその製造法 |
JP2007084713A (ja) | 2005-09-22 | 2007-04-05 | Daicel Polymer Ltd | セルロース繊維含有熱可塑性樹脂組成物の製造方法 |
JP2007176227A (ja) | 2005-12-27 | 2007-07-12 | Nsk Ltd | 電動パワーステアリング装置用減速ギア |
JP2008013693A (ja) | 2006-07-07 | 2008-01-24 | Daicel Polymer Ltd | 自動車外板部材用長繊維強化熱可塑性樹脂組成物 |
JP2008202012A (ja) | 2007-02-23 | 2008-09-04 | Daicel Polymer Ltd | 長繊維強化熱可塑性樹脂組成物 |
JP2008297479A (ja) | 2007-06-01 | 2008-12-11 | Daicel Polymer Ltd | セルロース繊維含有熱可塑性樹脂組成物の製造方法 |
JP2011162905A (ja) * | 2010-02-09 | 2011-08-25 | Daicel Polymer Ltd | 成形材料の補強用繊維材 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3355588B2 (ja) * | 1994-05-12 | 2002-12-09 | 信越化学工業株式会社 | セルロース繊維含有セメント組成物 |
KR100471004B1 (ko) * | 2000-03-27 | 2005-03-07 | 에스케이케미칼주식회사 | 레이온 섬유, 섬유제품, 필름 및 이들의 제조방법 |
JP2007146526A (ja) * | 2005-11-29 | 2007-06-14 | Toray Ind Inc | 建具用シートおよびそれを用いてなる建具 |
-
2012
- 2012-08-21 JP JP2012182123A patent/JP5938299B2/ja active Active
- 2012-09-10 CN CN201280046028.8A patent/CN103813893B/zh active Active
- 2012-09-10 WO PCT/JP2012/073009 patent/WO2013051369A1/ja active Application Filing
- 2012-09-10 US US14/344,175 patent/US9096750B2/en active Active
- 2012-09-10 KR KR1020147005858A patent/KR101954432B1/ko active IP Right Grant
- 2012-09-10 EP EP12838086.2A patent/EP2764968B1/en active Active
- 2012-10-04 TW TW101136619A patent/TWI558746B/zh active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062344B2 (ja) | 1985-09-10 | 1994-01-12 | 株式会社神戸製鋼所 | 樹脂被覆長繊維束の製造方法並びに成形方法 |
JPH06114832A (ja) | 1992-10-05 | 1994-04-26 | Polyplastics Co | 繊維強化熱可塑性樹脂構造体およびその製造法 |
JPH06293023A (ja) | 1993-04-08 | 1994-10-21 | Polyplastics Co | 長繊維強化熱可塑性樹脂組成物の製造方法 |
JPH06313050A (ja) | 1993-04-28 | 1994-11-08 | Aisin Chem Co Ltd | 成形材料 |
JPH07205317A (ja) | 1994-01-26 | 1995-08-08 | Polyplastics Co | 繊維束の取り出し方法および長繊維強化樹脂構造物の製造方法 |
JPH07216104A (ja) | 1994-01-26 | 1995-08-15 | Polyplastics Co | 長繊維強化樹脂構造物の製造方法 |
JPH07251437A (ja) | 1994-03-15 | 1995-10-03 | Ube Ind Ltd | 長繊維強化熱可塑性複合材料の製造方法およびその製造装置 |
JPH08118490A (ja) | 1994-10-18 | 1996-05-14 | Polyplastics Co | クロスヘッドダイおよび長繊維強化樹脂構造物の製造方法 |
JPH08232146A (ja) * | 1995-02-28 | 1996-09-10 | Japan Vilene Co Ltd | 芯地及びこれを用いた接着芯地 |
JPH0931744A (ja) | 1995-07-20 | 1997-02-04 | Asahi Chem Ind Co Ltd | 人造セルロース繊維 |
JPH09256216A (ja) | 1996-03-26 | 1997-09-30 | Asahi Chem Ind Co Ltd | 再生セルロース繊維およびその製造法 |
JP2007084713A (ja) | 2005-09-22 | 2007-04-05 | Daicel Polymer Ltd | セルロース繊維含有熱可塑性樹脂組成物の製造方法 |
JP2007176227A (ja) | 2005-12-27 | 2007-07-12 | Nsk Ltd | 電動パワーステアリング装置用減速ギア |
JP2008013693A (ja) | 2006-07-07 | 2008-01-24 | Daicel Polymer Ltd | 自動車外板部材用長繊維強化熱可塑性樹脂組成物 |
JP2008202012A (ja) | 2007-02-23 | 2008-09-04 | Daicel Polymer Ltd | 長繊維強化熱可塑性樹脂組成物 |
JP2008297479A (ja) | 2007-06-01 | 2008-12-11 | Daicel Polymer Ltd | セルロース繊維含有熱可塑性樹脂組成物の製造方法 |
JP2011162905A (ja) * | 2010-02-09 | 2011-08-25 | Daicel Polymer Ltd | 成形材料の補強用繊維材 |
Non-Patent Citations (1)
Title |
---|
"Cellulose and Cellulose Derivatives", vol. II, 1954, INTERSCIENCE PUBLISHERS |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014185243A1 (ja) * | 2013-05-13 | 2014-11-20 | ダイセルポリマー株式会社 | 繊維強化樹脂組成物 |
WO2015194271A1 (ja) * | 2014-06-18 | 2015-12-23 | ダイセルポリマー株式会社 | 繊維強化樹脂組成物 |
JP2016020465A (ja) * | 2014-06-18 | 2016-02-04 | ダイセルポリマー株式会社 | 繊維強化樹脂組成物 |
EP3159371A4 (en) * | 2014-06-18 | 2017-12-20 | Daicel Polymer Ltd. | Fiber-reinforced resin composition |
JP2018187944A (ja) * | 2014-06-18 | 2018-11-29 | ダイセルポリマー株式会社 | 繊維強化樹脂組成物 |
US11338475B2 (en) | 2014-06-18 | 2022-05-24 | Daicel Polymer Ltd. | Fiber-reinforced resin composition |
WO2017159706A1 (ja) * | 2016-03-17 | 2017-09-21 | ダイセルポリマー株式会社 | Pas樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP2013091775A (ja) | 2013-05-16 |
KR20140080481A (ko) | 2014-06-30 |
EP2764968A1 (en) | 2014-08-13 |
US20140343196A1 (en) | 2014-11-20 |
JP5938299B2 (ja) | 2016-06-22 |
EP2764968B1 (en) | 2019-02-27 |
TWI558746B (zh) | 2016-11-21 |
CN103813893A (zh) | 2014-05-21 |
US9096750B2 (en) | 2015-08-04 |
CN103813893B (zh) | 2016-08-31 |
KR101954432B1 (ko) | 2019-03-05 |
EP2764968A4 (en) | 2015-05-20 |
TW201329138A (zh) | 2013-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5938299B2 (ja) | 繊維強化樹脂組成物 | |
JP5712464B2 (ja) | 炭素長繊維強化複合材料 | |
KR101154651B1 (ko) | 섬유 강화 폴리올레핀계 수지 조성물 및 그의 성형품 | |
JP6453575B2 (ja) | 繊維強化樹脂組成物 | |
US20060261509A1 (en) | Method for making fiber reinforced polypropylene composites | |
JP2010150371A (ja) | 炭素長繊維強化ポリプロピレン系複合材料 | |
CN1131427A (zh) | 长纤维增强聚合物合金树脂组合物 | |
JP5789933B2 (ja) | 繊維強化熱可塑性樹脂シートの圧縮成形方法 | |
US20180179347A1 (en) | Composite and Method of Preparing the Same | |
WO2014185243A1 (ja) | 繊維強化樹脂組成物 | |
JP6711876B2 (ja) | 繊維強化樹脂組成物 | |
US20080214703A1 (en) | Pellet and fiber length for polyester fiber reinforced polypropylene composites | |
TWI763635B (zh) | 附著丙烯系樹脂之纖維束及其製造方法、以及成形品 | |
MXPA05004599A (es) | Composicion de resina de poliolefina y metodo para producirla. | |
WO1996005347A1 (en) | Jute and kenaf fiber composite materials and methods for producing same | |
JP2002060502A (ja) | 繊維強化熱可塑性樹脂ペレットおよびその製法 | |
JP5601156B2 (ja) | 炭素長繊維強化複合材料 | |
Bravo et al. | DIRECT LONG BIOFIBRE THERMOPLASTIC COMPOSITES FOR AUTOMOTIVE, AEROSPACE AND TRANSPORTATION INDUSTRIES | |
Sarifuddin | Optimization of Mechanical Properties in Natural Hybrid Polymer Composite using Polypropylene (PP), Banana Stem Fiber (BS) and Pineapple Leaf Fiber (PALF) | |
JP2002226605A (ja) | 長繊維強化樹脂ペレットおよび成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12838086 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147005858 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14344175 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012838086 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |